Quality Assurance

IT2901 Informatics Project 11
Project report, final delivery
May 21, 2012

Group 8:

Anders Palfi, Astrid Klgve-Graue, Daniel Tandberg Abrahamsen
Haakon Sgnsteby, Mathilde Oftedal, Thomas Iversen

NTNU - Trondheim oge
Norwegian University of (I I fo':a:t?:.il:;; KT

Science and Technology

Preface
This document is the project report established in course IT2901 El, Informatics Project II at Norwegian
University of Science and Technology, during the spring of 2012.
The development team would like to take this opportunity to thank the following for their
contributions:
e The customer, Agency of Public Management and eGovernment (Difi) E] for the challenging
and interesting assignment.

e The customer contact Erlend Klakegg Bergheim for being available, explaining questions about

the assignment and general guiding along the way.

e The supervisor Anh Nguyen Duc for his follow-up of the team and especially the feedback on

deliveries, in addition to guidance of the development process.

Thttp://www.ntnu.edu/studies/courses/IT2901,/2011
2http://www.difi.no/

II

Abstract

The assigned task was to develop a web based tool to help the Agency of Public Management and eGovern-
ment (Difi) evaluate public web pages. The development team consists of students from NTNU, studying
for their Bachelor in Informatics. The application will use MySQL and Java Persistence API to manage and
manipulate the database. Drupal and PHP are used to create the graphical user interface, and the REST
architecture for handling request and responses between the database and GUI. After requirements from the

customer the team will write all back-end code using Java EE6 with Glassfish as the application server.

This report discuss the requirements to the new application, describes the work that has been done and
documents the design- and implementation decisions. This report along with the source code presents a

solution to the assignment.

Anders Palfi Astrid Klgve-Graue
Daniel Tandberg Abrahamsen Haakon Sgnsteby
Mathilde Oftedal Thomas Iversen

IIT

Contents

1 Introductionl 1
[L.1 Problem description| 1
1.2 Description of requirements, high-levell 0o 00000 2
L3 Motivation| e 2
LA Customer] o oo oo 2
L5 TR LAl « « « o o o o o e e e e e e e e e 3
1.6 SUPETVISOI| . « . . v v v v o e e e e e e e e e e e e 3
IL.7 Project report structure|o 4

5
21 Technical solutiond 5
2.2 Development framework| o 8
2.3 Development tools| 17

[3 Project planning| 22
B.1 Team organization| L L 22
3.2 'The team’s development model| oL 24
3.3 Work scope|l e 25

3.4 "T'ime scope]

8.5 Architectural design|o
6 P DE| . . e e e e e
[4 Requirements|
4.1 Functional sub-goals|
4.2 Functional requirements| Lo
4.3 Non-functional requirements|. L e e e e e
4.4 Prioritization of the functional- and non-functional requirements|
EEUsecases . - - o oo o
5 'Testing;
5.1 est plan| oL
B2 Testresults] e
B3 Test evaluationl L
[6Tterations|
6.1 Sprint L.1| L e e e e
6.2 Sprint 2.1] L e
6.3 Sprint 2.2] e
0.4 00 8 P
0.0 Sprint 3.2o
0.0 P e
0 P 420 .o e e e s e e
[T_Closure

44

44

44

47

48

51

54

54

56

64

65

66

71

78

83

90

95

102

109

[7.1 Challenges summary| L e e e 109

7.2 Group structure]. L e e e e e 109
[7.3 Risk management|.o 110
[(.4__Customer relationsl L 110
[7.5 Supervisor interaction] Lo e e e e 111
[7.6 Development method|. 111
[t.7 Social relationsl 111
7.8 Further development| e 112
[(.9 Conclusionl e 112
A _Glossary 115
B Ag 116
[C_Minutes with customer] 119
IC.1 Meeting with the customer, 02.03.12] 119
|IC.2 Skype meeting with the customer, 30.01.12], 121
[D Minutes with supervisor| 123
ID.1 Meeting with the supervisor 26.03.12f 123
ID.2 Meeting with the supervisor 30.01.12f 124
[E_Extended textual use cases| 125
[F_Extended test results| 147
|G User guides| 163
G.1 Drupal|. e 163

VII

176

List of Figures

2.1 Books suggested by the customer| L 6
2.2 Drupal’slogo| o 6
[2.3 JSON logo|(a){and an example of a JSON object from the project|(b)] 7
2.4 MySQL’s logo|. o e 8
2.5 The waterfall method’s phases| L 10
2.6 'The spiral method’s phases| e 11
2.7 An iteration using extreme programiningl. o« oo e b e e e e e e 12
2.8 The Scrum methodl 14
2.9 A figure of the Kanban board| 17
[2.10 Git- and GitHub’s logo|(a){and|(b)[.o L 18
2.11 Eclipse’s logol o e 18
2.12 Maven’s logo| L e e e e 19
2.13 Java’s logo|. oL 19
2.14 Glassfish’s logo| e 20
[2.15 JIRA’s Togo| e 20
2.16 Cacoo’s 1ogo|. L e e e e 21
2.17 Dropbox’s logo|l e e 21

2.18 LaTex’s logol. o 0 e 21

3.1 Organization chart for the team hierarchy| 24
3.2 The team’s development model| oo o 25
8.3 Overall work breakdown structurel oo oo 28
3.4 Detailed work breakdown structurel oo Lo 29
BA Ganttchartl 31
3.6 Example of setting values using the hook structure| 32
3.7 Example of creating a form not using the hook structure|. 32
8.8 Class diagram|. L L e e e e e 34
B.9 Domain model from the customer].o oo oo L 36
13.10 Entity relation diagram| L 36
BITTTow charfl. o o ot e 37
13.12 Sequence diagram, Add file to evaluation|. o oo oo 38
13.13 Sequence diagram, Display all evaluation groups| 38
13.14 Sequence diagram, Create new evaluation group|. oL 39
13.15 Sequence diagram, Create new revision of evaluation| 39
3.16 Evaluation group| 40
B.17 BEvaluation setl. oL L 41
BIS Evaluafionl. . . « o v v ot e e o e 42
8-.19 Comment, | e e e e 43
b.1 An image of testing in Drupal via SimpleTest| o000 57
6.1 Planning poker, estimating tickets while planning the sprint| 68

X

6.2 Example of JPA code]l 73
6.3 Example of JPQL querylo 74
6.4 Example of declarationot EJB| oo oo 74
6.5 Example of declaration of the EntityManager|o oL 74
6.6 Example of a method in the RESTtul API}. 75
6.7 Skype meeting with the customer contact| L. 88
6.8 'The teams implementation of cURL|, 99
6.9 Example of how to use curl in php| 99
[6.10 Graph of different branches evolving and merging back to master (Black)| 106
6.11 The final version of the class diagram| 107
16.12 The final version of the Entity Relation diagram| 108
|G.1 Page showing server status| 163
|G.2 Page showing all evaluationgroups| o o 164
|G.3 Page for adding an evaluationgroup|. L oL 164
|G.4 Page for viewing an evaluationgroup| L Lo 165
|G.5 Page for adding an evaluationset| o Lo 166
|G.6 Page for viewing an evaluationset| L L L 167
|G.7 Page for adding an evaluation| L L oL 168
|G.8 Page for viewing an evaluation and adding a comment|, .. 169
|IG.9 Page for viewing a comment|. L e 170
|G.10 Page for viewing a file]o 170

List of Tables

B.1 Riskanalysis| 26
3.2 Milestonesl e e 30
4.1 Prioritization of functional requirements| o 49
4.2 Prioritization of drupal integration| oo L 50
4.3 Prioritization of non-functional requirements| L. 50
4.4 Use case, example|o 51
4.5 Use case, UC-1.21A] o e 52
4.6 Use case, UC-1.21B|. o 53
BI Generalfestcasel 55
[5.2 Evaluation test, list all active/inactive evaluations in evaluation set|. 58
5.3 Evaluation test, list all revisions of evaluation| 59
9.4 Evaluation test, get revisions of evaluation|.o oo 0oL 60
5.5 Evaluation test, create evaluation in evaluationset| 61
5.6 Evaluation test, create a new revision of evaluation| oL 62
5.7 Evaluation test, mark evaluation deleted| oo oL 63
6.1 Dates, Sprint 1.1] o o e e 66

6.2 Tasks, sprint 1.1 e e 67
6.3 Product backlog] e 70
6.4 Dates, Sprint 2.1 Lo 71
6.5 Tasks, sprint 2.1] L e 72
6.6 Product backlogl e 77
6.7 Dates, Sprint 2.2]o Lo 78
6.8 Tasks, sprint 2.2] 80
6.9 Product backlogl 82
6.10 Dates, Sprint 3.1 o e 83
16.11 Tasks, sprint 3.1 e 86
6.12 Product backlogl 89
6.13 Dates, Sprint 3.2] L o e 90
[6.14 Tasks, sprint 3.2] 93
6.15 Product backlogl 95
6.16 Dates, Sprint 4.1] Lo 95
16.17 Tasks, sprint 4.1 L L e 98
6.18 Product backlogl 101
16.19 Dates, Sprint 4.2] Lo e 102
[E.1 Use case, UC-1.1] o o o o o e 125
.2 Use case, UC-1.2| o o e 126
IE.3 Use case, UC-1.3] o o e 127
[E.4 Use case, UC-1.4] o e 128
.5 Use case, UC-1.9] o o e 129

IE.6 Use case, UC-1.6| o o e 130

IE.7 Use case, UC-1.7] o e 131
IE.8 Use case, UC-1.8] o e 132
IE.9 Use case, UC-1.9 o e e 133
.10 Use case, UC-1.10f o o o e e e e e 134
[E.11 Use case, UC-1.11| o o0 0 e e 135
[E.12 Use case, UC-1.12] o e 136
.13 Use case, UC-1.13| o o e e 137
.14 Use case, UC-1.14] o e e 138
[E.15 Use case, UC-1.16] o e 139
[E.16 Use case, UC-1.17] e e e e e e e 140
.17 Use case, UC-1.18 o o e e 141
IE.18 Use case, UC-1.19]« . o 0 o e 142
[E.19 Use case, UC-1.20] o o o e e 143
IE.20 Use case, UC-1.22| o e 144
[E.21 Use case, UC-1.23]« . o o 0 o e 145
.22 Use case, UC-1.24] o 146
.1 Ewvaluation group test, show all evaluation groups| 147
|[F.2 Evaluation group test, create evaluation group| oL 148
|[F.3 Evaluation group test, edit evaluation group|. oL, 149
|[F.4 Evaluation group test, delete evaluation group|. 0oL 150
IF.5 Evaluation set test, create evaluationset|. 0L, 151
|[F.6 Evaluation set test, edit evaluationset| L L 152

|[F.7 Evaluation set test, delete evaluationset| o L. 153

IF'.8 Evaluation test, list all comments on evaluation|. 154
IF.9 Evaluation test, list all comments on revision of evaluation|. 155
|[F.10 Evaluation test, add a comment on revision of evaluation| 156
|F'.11 Evaluation test, mark comment deleted| 157
[F.12 Evaluation test, add file(s) on comment| o L. 158
|[F.13 Evaluation test, add file(s) on revision of evaluation| 159
|[F.14 Evaluation test, list all files on comment| L. 160
|[F.15 Evaluation test, list all files on evaluation| o000 161
|[F.16 Evaluation test, list all files on revision of evaluation| 162

XIV

Chapter 1

Introduction

1.1 Problem description

Every year the Agency of Public Management and eGovernment (Difi, Appendix works to increase the
quality of public and government websites B A main part of this work is the annual assessment of quality,
which means to go through the process of evaluating over 700 public websites. The criteria set contains 33

indicators in the field’s accessibility, user adjustments, and how useful the content is.

Difi would like the team to optimize the process through the course IT2901 Informatics Project II, at NTNU
spring 2012. This is a mandatory course in the Bachelor’s degree in Informatics, which aims to create a

software system for a customer.

The team will develop an application that will use MySQL and Java Persistence API to manage and ma-
nipulate the database. Drupal and PHP (Appendix are used to create the graphical user interface, and
the REST architecture for handling request and responses between the database and GUI. According to the
requirements from the customer the team will write all back-end code using Java EE6 with Glassfish as the

application server.

Lhttp:/ /kvalitet.difi.no/

1.2 Description of requirements, high-level

The two main requirements for this project are to deliver a REST server interface, which must be applicable
for further integration with other systems within the domain of Difi’s evaluation of websites, and an interface
made in Drupal, which use the REST server interface. The finalized product needs to satisfy the functionality

needed by an evaluator to both easy and thoroughly document his/her evaluation of a website.

1.3 Motivation

Each team member is highly motivated, and is looking forward to work on this project. Both due to the
importance of solving the exercise (developing a system) as a team, the practical experience before individual
employment where a real customer is involved, as well as the project will require each member to acquire

new knowledge.

It is an important job to evaluate public web pages, almost every inhabitant in Norway visits public web
pages several times a year. Therefore it is essential that the sites are quality assured. All the team members
are interested in the quality of web pages — for instance that sites are easy to navigate and user friendly. By
making a system to improve the efficiency of this process the team feel that they are a part of the quality

assurance.

1.4 Customer

The Agency of Public Management and eGovernment (Difi) is a state department who has a central role in
development of Norwegian public administration, and ensuring that the public administration is character-
ized by quality, efficiency, user-orientation, transparency and democracy, and that it is well organized and
managed. Difi aim to develop the organization and leadership in the public sector with coordination among

public authorities and services.

The customer contact from Difi is Erlend Klakegg Bergheim. He graduated from NTNU, Department of Com-

puter and Information Science, in 2010. He can be contacted through his email: erlend.klakegg.bergheim@difi.no.

Several team members are familiar with the customer through NTNU. Difi has held several courses for the
student organization Online and one member of the team has worked at Difi’s summer internship. As a result

of this the dialog between the team and the customer was good from day one. During the first meeting with

the customer it was decided to have weekly meetings. This was a decision based on the customer’s wish,

and the team’s preference.

More detailed information can be found in the minutes of meeting, Appendix C. The Iterations chapter will

also discuss the interaction with the customer.

1.5 The team

The team consists of six students, all studying for their Bachelor’s degree in Informatics at NTNU. All
members have experience from smaller projects in connection with courses at NTNU: this includes system
development, Java, MySQL and the development method Scrum. In addition some of the students have
experience from summer internships where they have worked with technologies like Java EE, MS SQL, C#,

NET, C++, Maven, and GlassFish.

1.5.1 Contact

For questions or comments on the report or the product, please contact us:

Anders Palfi Contact: palfi@stud.ntnu.no
Astrid Klgve-Graue Contact: klovegra@stud.ntnu.no

Daniel Tandberg Abrahamsen Contact: danielab@stud.ntnu.no

Haakon Sgnsteby Contact: haakonsv@stud.ntnu.no
Mathilde Oftedal Contact: mathilof@stud.ntnu.no
Thomas Iversen Contact: thomaive@stud.ntnu.no

1.6 Supervisor

The team’s supervisor is Anh Nguyen Duc. He is a PhD candidate from NTNU, Department of Computer

and Information Science. He can be contacted through his email: anhn@idi.ntnu.no.

During the first meeting with the supervisor it was decided to meet every other week. The meetings would
mainly be about the process and how the team work together. Anh Nguyen Duc assured that the team could

come to him if problems with the customer occurred or if the team had questions about the project report.

More detailed information can be found in the minutes of meeting, Appendix D. The Iterations chapter will

also discuss the interaction with the supervisor.

1.7 Project report structure

Chapter 2, Pre-study
Chapter 2 discuss the technologies and development tools the team decided to use during the development

of the project. As well as information about alternative development frameworks.

Chapter 3, Project planning
Chapter 3 discuss the team’s roles in the project and the chosen development. In addition this chapter shows

the project work scope, time scope and the architectural design.

Chapter 4, Requirements
Chapter 4 discuss the functional and non-functional requirements from the customer, how they are prioritized,

and textual use cases that reflect the requirements.

Chapter 5, Testing
Chapter 5 discuss the test plan for the project, which involves how the team plan to execute unit-, integration,

system-, and usability testing. As well as the test results and the test evaluation.

Chapter 6, Iterations
Chapter 6 discuss a summary of the different iterations that have been completed during the project. This
includes the backlog of each sprint, project management, the result of the sprint, and the product backlog

at the end of each sprint.

Chapter 7, Closure

Chapter 7 sums up the team’s conclusions, lessons learnt and a discussion of the result.

Chapter 2

Pre-study

This chapter will discuss the different technologies and development tools the team decided to use during

the development of the project. This includes information about the alternative development frameworks.

2.1 Technical solutions

The customer required Java EE and Drupal for the project. The books ”Beginning Java EE 6 Platform with
GlassFish 3” (Antonio Goncalves, 2009) [2], and "Pro Drupal 7 Development” (Todd Tomlinson and John
VanDyk, 2010) [II] were suggested for pre-study.

”Pro Drupal 7 Development” had a lot of example code for creating Drupal modules with PHP code. The
team needed to understand Drupal’s structure and syntax to create modules. Figure shows the covers of

the books.

The books gave the team a lot of tips and tricks, and this knowledge made it easier to look for additional

information later on.

2.1.1 Drupal

Drupaﬂis an open-source content-management platform written in PHP that is commonly used to set up and

manage websites. It has many helpful features like account registration and maintenance, menu-management,

Lhttp://www.drupal.org/

|
| |, Beginni
l]Pm] Beginning

\Drupal 7

|] Java EE 6 patiorm
; witr GlassFish 3

|
' | :
ll Developm ent l] From Novice to Professional
—— o g 2 l i maatom iy e - ot
1

EDITION

Antonio Goncalves
eyt et 0 e
SERIIT I el SR L] e

Todd Tamlinson

Figure 2.1: Books suggested by the customer

RSS-feeds, page-layout customization and system administration. Additional functionalities can be extended
through the many community-contributed add-ons or developers can make their own. Drupal will be used
because it is a free and powerful tool that gives the team complete control over the website, in addition to all
the features it supports. Drupal was highly recommended by the customer, and also a requirement. Figure

shows Drupal’s logo.

Drupal

Figure 2.2: Drupal’s logo

2.1.2 REST

REST (Representational State Transfer)[2] is an architecture style, which uses HTTP methods and URIs
as an API for doing different tasks on "resources” on the web. Although the REST architecture uses many

standards like HT'TP, XML and URL it is not a standard, but a style.

The Web contains "resources”. When a client accesses a resource through a URL it gets a representation
of the resource, putting the client in a ”state”. The result of the client accessing another resource will
put the client in another state. The client "transfers” state with each representation. This is where the
name Representational State Transfer comes from. REST is the architecture style of the Web, and it is

often used in computer-to-computer communication. REST architecture is as mentioned a requirement from

the customer. The flow chart in Chapter shows how REST is connected to the different parts of the

application.

2.1.3 JSON

JSON (JavaScript Object Notation) E|is a lightweight data interchange format that easily can represent Java
objects. JSON will be used as the interchange format between Drupal and the REST server. Some of the
reasons why JSON was chosen over XML are because XML is not as suited for data interchange as JSON.

JSON is simpler and much easier for humans to read than XML. Figure shows JSON’s logo and
a JSON object from the project [2.3(b)|

{"evaluationSet":

[{
"active":"true",
"created” :"1335956991479",

l l\l "eriteriaSet":"2",
St et s "evaluationGroup™:"2",

id"tzn,
"subject":"peter pan med crew"

H

1
(a) JSON’s logo (b) JSON object from the project

Figure 2.3: JSON logo @ and an example of a JSON object from the project @

2.1.4 Java Persistence API

Java Persistence API (JPA) [2] offers a way to handle the mapping of object relationships in Java. JPA let
you assign relational data to persistent Java objects. The relational data is stored in a relational database
and can be retrieved at any time. JPA will be used to get information from the database and place it in
objects, and also to place new information in the database. JPA supports it’s own query language called Java

Persistence Query Language (JPQL), and therefore JPQL will be used instead of traditional SQL queries.

2http://www.json.org/

2.1.5 MySQL

MySQL E| is a well-known relational database management system (RDBMS) that is commonly used to keep
information within web applications. MySQL is open source and will be used as the database system to
manage stored data. As a graphical interface to handle the administration with MySQL the team will use

phpMyAdmin. El Figure shows MySQL’s logo.

Mysaql®

Figure 2.4: MySQL’s logo

2.2 Development framework

There are many different development frameworks. The key to a successful project is to choose the most
suitable development framework for your project. The different development framework have their own
strengths and weaknesses. To choose the most suitable framework, a set of factors must be considered. This

might be team size, previous experience and customer involvement.

2.2.1 Waterfall method

The waterfall model [12] is a sequential software development process. The process is seen as a waterfall
flowing downwards through the different phases. These different phases are described below, and illustrated

in figure |2.5

1. Requirements
This first step consists of gathering information about what the customer want the product to solve.
This includes understanding the context and constraints of the customers business, which functions
the product must have, and other requirements from the customer. The information in this analysis

usually results in a formal requirement specification.

3http://mysql.com/
4http://www.phpmyadmin.net/

2. Design
This step consists of figuring out technical solutions and development tools the system designers should
use. This involves everything from selecting the hardware, defining software architecture, choose
database management system, to figure out which programming language to use. User interface design

is also a part of this step.

3. Implementation
This step consists of the implementation of the product based on the requirement specification and the
design specifications. A development team of programmers, interface designers and other specialists

typically implements the system. The result of this step is one or more product components.

4. Verification/testing
This section consists of verification and testing of individual components and the integrated system.
Testing is an important tool to check if the components are error free, and meet the requirements from
the requirement step. An independent quality assurance team will go through the system, creating
“test cases” to check if the system fulfills the requirements. Usually three types of test are executed:
unit testing of individual code modules, system testing of the integrated product, and acceptance
testing. If there are defects, they will be reported back to the implementation team to be corrected.

In this step product documentation, such as a user manual, is published.

5. Maintenance
This step comes after the customer has installed the system, and consists of making modifications to
the system, or to a component, to for instance improve the performance. Reasons for modifications

can be a request from the customer or defects discovered during use of the system.

This is an example of the simplest waterfall model, but the model can be extended to have additional phases.
The model is designed in such a way that the project should only move to the next phase when its preceding
phase is completed and perfected. Since every step must be completed, the model promotes discipline for the
system developers. Because the requirement- and design step comes before the actual implementation the
project waste minimal of time and effort, and reduces the risk of deviations from the project plan. This also
improves quality: it is much easier to discover possible flaws at the design phase than the testing phase. The
waterfall model is also often criticized because the requirement phase is so early in the process. The customer
may not know exactly what they want in the beginning of the project. This also makes the estimating of
time and costs difficult. Therefore this model is only recommended for projects that are relatively stable,

and where customer requirements can be clearly identified at an early stage.

Implementation

Figure 2.5: The waterfall method’s phases

2.2.2 Spiral model

The spiral model [3] is a software development process that combines elements of both design and prototyping-
in-stages. The model combines the waterfall method with prototype testing. It is designed as a spiral, as the
figure El, where you start in the inner center of the spiral and move around the bigger circle. The spirals
represent iterations, and the spiral model was the first development method that described why iterations
work. The project can have any number of loops, according to the project. Each round in the spiral the

project goes through four phases:

1. Determine objectives
In this phase the development team tries to figure out product goals, alternatives in design and re-
strictions imposed due to cost, technology and schedule. A number of users are interviewed which
represents the internal and external users and other aspects of the project. This results in a typical

requirement specification.

2. Identify and resolve risks
In this phase the development team discuss other possible solutions for the implementation that still
fulfill the customer’s requirements. A risk analysis or a problem analysis is created for each solution,
and the evaluation determines future action. Sometimes there is need for a prototype to clarify the
risks and problems. This is usually a scaled-down system that represents an approach of the properties

of the final product.

3. Development and test

Shttp://blog.hydrodge.com/waterfalltoboehm /

10

A

Cumulative Cost

Determine objectives,
altematives and

it Identify and
Resolve Risks

‘Commit to an
approach for
the next
iteration

Requirements Plan, | Concept of Simulations
LifecyclePlan | Operations

Review
Partition

Plan the next
el e 0 S

! andTest

1 Acceptan:
Release | Test |

Figure 2.6: The spiral method’s phases

In this phase the detailed requirements are determined and the implementation begins. It is possible
to implement waterfall or an incremental approach to help the development. Testing is also done in

this phase.

4. Plan the next iteration
In this phase the next iteration is planned. Here the customer is given an opportunity to analyze the

results from the previous phase and give feedback to the development team.

The spiral model is best suited for large, complicated and high risk projects. It is a flexible model since the
project manager can determine the development phases according to the complexity of the project. It is easy
to monitor the project because several concerned people, like the customer, must review each phase and loop.
If the customer wants a change, it can easily be introduced late in the project. Because each loop involves
estimating, the time and cost estimates becomes more and more accurate as the development moves forward.
The costs of projects using the spiral model often become very high because the development continues until
the customer is satisfied. If the customer wants more requirements the requirements are added in another
loop. For project with a clear requirement specification the spiral model often is too complicated and uses

unnecessary time during the loops.

11

New user

User stories
Learn and communicate
Project velocity Unfinished tasks Mew functionality
Iteration
Iteration plan Bug fixes
Failed acceptance tests
Day by day

Figure 2.7: An iteration using extreme programming
2.2.3 [Extreme programming (XP)

Extreme programming [4] is a software development methodology with goal to improve software quality
and responsiveness to changing customer requirements. Extreme programming is a type of agile software
development, therefore it has small development cycles. One cycle may last for two to three weeks depending
on the size of the project. Figure [2.7] represent an iteration using Extreme programming. It is normal in
extreme programming to start with the simplest solution and then add extra features and functionality later.
This methodology does not use a lot of time on future requirements before they become relevant. Testing is
a big part of extreme programming: If a little testing can eliminate a few flaws, a lot of testing can eliminate
many flaws. All the team members are equal partners in a collaborate team, this includes the customer and

managers as well as the developers. It is also very common to work in pairs when programming.

Extreme programming [7] use five different ways to improve a project:

1. Communication: constantly communicating with the customer and the development team.
2. Simplicity: the development team always keeps their code and design simple and clean.

3. Feedback: through testing the different software components from day one, the development team
gets constant feedback. The system is delivered to the customer as soon as possible in case the customer

wants changes. This way the requirements can be implemented continuously.

4. Respect: every small success deepens the respect for each team member.

12

5. Courage: this way the development team courageously can handle changes in the requirements and

the technology.

Extreme programming consists of simple rules that works like a jigsaw puzzle. There are many small pieces
that individually do not make sense, but when combined together you can see the whole picture. The rules

are:

e Planning: consist of writing user stories, planning and scheduling the iterations and releases.

e Managing: consist of setting up the team with a workspace, stand up meetings every day, measure

the project velocity, and fix Extreme Programming if it breaks.

e Designing: the key word in this rule is simplicity. Here the team must choose a system metaphor,

and refactor whenever and wherever it is possible.

e Coding: it is important that the customer always is available in case of questions about the imple-
mentation. The code must be written as the agreed standards say, through pair programming. Only
one pair can integrate their code at a time, and this should happen often. Create the unit test before

the actual coding.

e Testing: all the code must have unit tests, and all code must pass the unit tests before it can be

released.

Some of the advantages of extreme programming are that it focuses on the code, and not unnecessary
paperwork and meetings. It provides a social atmosphere and more opportunities to learn new skills through
pair programming. Extreme programming creates working code fast, with few defects, and to a low cost.
Unfortunately extreme programming is hard to carry out. It is often difficult to get all the programmers to

agree in the best practices, and the customer may not like to be as involved as the method implies.

2.2.4 Scrum

Scrum [9] is an agile software development method for managing software projects and developing software
applications. This method encourages to work incremental and iterative, and that interdisciplinary teams
execute the development job. Scrum is mainly used to develop software systems and is often used in
combination with extreme programming. The requirements from the customer are placed in the product
backlog. A project is typically divided into multiple iterations, called sprints, lasting from one week to a
month. Before each sprint, there is a sprint planning meeting. Here the planning of the next sprint is done.

It consists of two parts where the questions below are answered:

13

e What will be delivered as a result of the next sprint?

e How will this work be achieved?

It is normal to have small scrum meetings, called daily sprints or stand-up, every day where every team
member informs the others about what they have done since last meeting, what they shall do to next
meeting and talk about any problems along the way. It is normal to use a Scrum board to keep track of the
tickets/tasks (Appendix E[) during the sprint. The board is usually divided into three columns: to-do, in
progress, and done. All the tickets are estimated through the process called scrum poker (how the Scrum
team solves this varies). A development team member uses the Scrum board by selecting the ticket with the
highest priority, and moves it from ”to-do”, till ”in progress”. When a ticket is completed it is moved to the
”done” column. After each sprint a sprint review meeting is held to inspect the tickets that are done. This
is an informational meeting with focus on feedback and will foster collaboration. Sprint retrospective is held
to give the development team an opportunity to evaluate the previous sprint, and focuses on improvements

for the next sprint. Figure 2.8 represent the ticket flow using Scrum.

the software

Figure 2.8: The Scrum method

The scrum team is cross functional and consists of:

Product owner is responsible for maximizing the value of the product and the work of the development
team. This person is the only one responsible for handling the product backlog. He/she represents the
customer’s decisions when the customer himself is not present. The product backlog management consists

of:

e Make sure that the product backlog items are clearly expressed.

e Prioritize the items to best achieve goals and missions.

14

e Ensure that the work the development team does is of best value.

e Ensure that the product backlog is visible, transparent, and clear to all, and will show what the

development team should work on next.

e Ensure that the development team understands the items in the product backlog at the level needed.

The development team consists of professionals on the subject. The team must be small enough to remain
nimble and large enough to complete significant work. Preferably a size between 3-5 people, larger than 9

people requires too much coordination.

The Scrum master is the leader of the Scrum team, and responsible for making sure Scrum is understood

and implemented. This is conducted through the Scrum theory, practices and rules.

Scrum provides open communication, everyone in the development team knows what everyone is working
on. It is a method that can save time and money, team efficiency can increase with within 20% when using
Scrum ﬁ Because of small iterations, Scrum requires constant feedback from the customer and the user,
and it becomes easier to cope with changes. Disadvantages with Scrum are that decision-making is entirely
in the hands of the development team. It only works on small teams, and Scrum requires that the product
owner is involved in the whole cycle. The sprints are planned according to requirements, and for each sprint

it is a risk that the customer wants to add new features.

2.2.5 Kanban

Kanban [§] literally means signboard (in Japanese), and is another method for developing software products.

The Kanban method is designed to use just in time production, and is based on three basic principles:

Start with what you do now

Kanban has no specific roles or steps, and there is no such thing as the Kanban software development process
or project management method. Kanban does not impose the development team to change their progress.
In Kanban the development start with the roles and processes the team have and stimulates continuously,

gradual and evolutionary changes to the current system.

Agree to pursue gradual, evolutionary changes
To get the implementation flowing as desired, the development team must agree that continuously, gradual

and evolutionary changes is the way to make the changes in the system.

Shttp://www.brighthub.com/office/project-management/articles/2042.aspx

15

Respect the current process, roles, responsibilities and titles
Often the development team currently has some elements that work acceptably, and are worth preserving.

By agreeing to respect current roles, responsibilities and job titles the team eliminate initial fears.

It has been identified five core properties that have been observed in successful use of Kanban, known as the

”Principles of Kanban” [§]:

1. Visualize the workflow
It is important to understand how the workflow functions to make the right decisions. Therefore it
is a good tool to visualize the workflow, often conducted a wall of cards divided in different columns:
Split the work into pieces, write each item on a card and put it on the wall. The wall evolves into the

Kanban task board.

2. Limit work-in-progress
It is important to limit the tasks created in the principle above. This is often done by limit the amount
of tasks that can be in one column at the time. New tasks cannot be “pulled”, started, until the tasks

in progress are moved to another column. See figure 2.9|[]

3. Manage flow
It is important to monitor and report when each task flow through the task board. The speed and

smoothness of the task movement is interesting, and fast smooth movement is ideal.

4. Make process policies explicit
It is difficult to have a discussion about improving a process if the process is not explicit. Therefore
it is important to have an explicit understanding to achieve more rational, empirical and objective

discussion of issues.

5. Improve collaboratively (using models & the scientific method)
If the team have a shared understanding of the theories about work, workflow, process, and risks, the
team is more likely to have a shared understanding of the problem. Then a product can be created,
where everybody agrees on is the correct solution. This can be achieved by using different models, for

example ”The Theory of Constraints” [f]

Some of the benefits of Kanban are that it reduces overproduction and costs. Bottlenecks become clearly
visible, and the whole team must collaborate to optimize the flow. Kanban provide an agile solution without

necessary having to commit to time-boxed iterations, like sprints in Scrum. The principles around Kanban

"http://blog.crisp.se/2009/06 /26 /henrikkniberg,/1246053060000
8http://en.wikipedia.org/wiki/Theory_of_Constraints

16

Develog Howcan we help?
Backleg Selected 2 ‘U?pm; ‘ Live!

@ Ongoing | Daone 1
|]

(I‘u:antF&Gaswell_ =

Butthe Kanban limit "‘ul
J
K

stops me. Hmmm....

IE' We don't need any more hands right now.
|

k‘fﬂr_itto avoid the problemin the future! J

Butthis is a recurring problem, so write a test

Figure 2.9: A figure of the Kanban board

tend to spread to other departments, which increase visibility of everything that is going on in the company.
Kanban does not focus on estimation, which can make it hard to estimate delivery dates and the pace of the

development. Kanban requires more discipline from the development team since there are no clear iterations.

2.3 Development tools

2.3.1 Git

The customer wanted the team to use Git []] as the version control system. None of the team members had
any experience with Git, and information had to be gathered. The team got started with git by reading the
book ”Getting Good With Git” (Burgess, 2010) [I]. The book holds a lot of basic information about Git,
and gave a good introduction. The team also arranged a personal course held by a fellow student with Git

experience.

Git will be used as the version control system, and the repository will be connected to the customers account
at GitHub E Git will ensure that a copy of the project always will be saved locally by every team member
(Git is distributed) and it opens the possibility to go back in versions if anything should go wrong at any

time.

9http://git-scm.com/
Ohttp://github.com/

17

github

SOCIAL CODING

+++ 011

(a) Git’s logo (b) GitHub’s logo

Figure 2.10: Git- and GitHub’s logo@ and
2.3.2 Eclipse

All team members were free to choose their own preferred IDE. Eclipse El was the natural choice for the
whole team, due to several courses and projects on NTNU where this IDE were used. Eclipse is a powerful
multi-language environment for software development. It consists of an integrated development environment
and an extensible plug-in system. The Eclipse Java development tool (JDT) is included in the integrated

development environment.

Figure 2.11: Eclipse’s logo

2.3.3 Maven

Maven |E| will be used to build and manage the project. This gives several possibilities when compiling, and

ensures a fast build. Maven also makes it easier to include all the necessary jars and libraries, which makes

Hhttp://www.eclipse.org/
2http://maven.apache.org/

18

it more convenient for each team member to implement new components to the existing system. To include
the project and generate Eclipse IDE files the team will use the Maven Eclipce PluginF_gl Maven was highly

recommended by the customer.

mMaven

Figure 2.12: Maven’s logo

2.3.4 Java Platform, Enterprise Edition (Java EE6)

Java EE6 E is one of the most widely spread technology to write enterprise-class applications. It consists of
Enterprise Java Beans 3.1, Java Persistence API 2.0 and the Java API for RESTful web services, JAX-RS.
The customer requested the use of Java EE6. Java EEG6 is well suited for developing enterprise applications.
The team has used the book 'Beginning Java EE Platform with Glassfish 3’ (Antonio Goncalves) [2] to get
an introduction to Java EE, RESTful web services and JPA.

Java

Figure 2.13: Java’s logo

B3http://maven.apache.org/plugins/maven-eclipse-plugin/
Mhttp:/ /www.oracle.com/technetwork/java/javaee/overview /index.html

19

2.3.5 Glassfish

Glassfish |'°| is an open source application server that was recommended by the customer. Glassfish is the
reference implementation of Java EE and supports all the Java application programming interfaces used in
this project, such as Java Persistence API 2.0, Enterprise JavaBeans 3.1 and RESTful web services. This
makes it possible to create enterprise applications that are both portable and scalable. The team will use

the GlassFish v3.

GlassFish

Figure 2.14: Glassfish’s logo

2.3.6 JIRA

JIRA E is a system for tracking issues in a project. It keeps a good overview of the tasks that are in the
backlog, which are in progress, and which are finished. This web-based program will be used in connection
with Scrum and the plugin Greenhopper. The team chose JIRA for tracking issues because of a team

member’s good experiences with this system.

Figure 2.15: JIRA’s logo

LShttp://glassfish.java.net/
L6http://www.atlassian.com /software/jira/overview

20

2.3.7 Cacoo

CacooEis a user friendly and useful web based drawing tool to create wireframes, UML diagrams, flowcharts,
site maps, mind maps, network diagrams and others. The team selected Cacoo because of its real-time
collaboration possibilities and easy sharing between team members and will use this to create various UML
diagrams such as class diagram, entity relationship diagram and flow charts. One team member has used

Cacoo in an earlier project with good experiences.

cacoo

Figure 2.16: Cacoo’s logo

2.3.8 Dropbox

Dropbox |E| is a free service that allows the user to upload different files into their own space on Dropbox.
Any file saved on Dropbox will automatically be available to all the collaborating users accounts. Through

Dropbox the team can easily share documents and pictures through a shared folder for the project report.
%= Dropbox

Figure 2.17: Dropbox’s logo

2.3.9 PIEX

BTEX |E| is a document preparation system and document markup language for the TeX. LaTeX provides a
high-level language that uses the power of TeX. TeX is a typesetting system that produces high-quality text

Thttp://cacoo.com/
Bhttp://www.dropbox.com/
http://www.latex-project.org/

21

documents using a reasonable amount of effort, and to provide a system that would give the same results

on every computer. Since TeX is low-level, LaTeX have gotten popular because it provides a system that is

IFIEX

Figure 2.18: LaTex’s logo

easier to use.

22

Chapter 3

Project planning

This chapter will discuss how the team plans to conduct the application. This includes the team organization,
the chosen development method, the project work- and time scope and architectural design. Screen shots of

the prototype are also included.

3.1 Team organization

Haakon: Leader

Mathilde: Vice chairman, Customer relations
Daniel: Scrum-master

Anders: Development manager

Thomas: Test manager

Astrid: Product owner, Report manager

3.1.1 The roles

Here follows is a description of the team members roles and responsibilities. Figure show the organization

chart for the team hierarchy.

Leader: The leader’s main task is to ensure overall progress and making sure deadlines are kept. The leader

will also be the main contact point with the supervisor and convene meetings with the team. Haakon got

23

the leader position because of his focus on early initiating structure in the project and his ability to create

a good working environment for the rest of the team.

Vice chairman: The tasks of the vice chairman will be to take the leader’s responsibility when the leader
is not present. Mathilde is the vice chairman because she is responsible, and likes to have an overview of the

project.

Customer relations: The task of the customer relations is to be responsible for keeping contact with the
customer and schedule meetings. Because Mathilde worked for the customer, it is natural that she has this

responsibility.

Scrum-master: The tasks consist of leading scrum meetings prior to and after each sprint. New tasks will
be evaluated and the team will try to estimate the time needed to complete them. The scrum master will
in addition have an overview of the scrum process. Daniel got the role of scrum-master in this project due
to his experience with scrum the previous summer, his leader role in a committee in the student association
and his knowledge about the chosen scrum process tool: JIRA. In addition to the technical foundation that

this roles requires he had the positive attitude towards doing scrum in a rightful way.

Development manager: The tasks of the development manager is to keep track of the development process
and take necessary actions if needed to maintain the planned progression throughout the project. Anders
got chosen as development manager because his ability to quickly acquire new knowledge, especially within

technologies.

Test manager: The tasks of the test manager are to make sure that tests will be performed during the
development process. This is done to uncover errors and fix them as soon as possible. Thomas has experience

working with JUnit 4.0 and has the structured mind needed to ensure a good final product.

Report manager: The report manager will have an overview of the content of the report, make sure the
content is updated and consistent. Astrid was chosen as the report manager because of her good English

skills and ability to delegate.

Product owner: The product owner has the responsibilities to make decisions on behalf of the customer
when he is not reachable. In normal projects this person also has the responsibility to ensure that the team
delivers value to the business. During this project the team has mainly collaborated on the decisions made
without the customer, but Astrid was appointed official product owner to make sure someone could make

hard decisions if necessary.

Secretary: Consists of writing notes during meetings and if necessary a whole summary. The team will

share this role.

24

Vice
chairman

Mathilde
1 1 1 1
Customer Development .
- . - Test manager
relations manager
Mathilde Daniel Anders Thomas

Figure 3.1: Organization chart for the team hierarchy

I 1
Report Product

manager owner
Astrid Astrid

3.2 The team’s development model

The chosen development method will be based on agile development, mainly Scrum (section 2.2.4) with
small parts of extreme programming (section 2.2.3) such as pair programming. Several of the team members
have practical experience with this method through school projects and summer internships with positive
experiences. Several weekly meetings are required to ensure that everyone does their job, and to make sure
that it is achievable to complete the project. Frequent customer contact is important to satisfy the customer
and remove any uncertainty in the software’s design and functionality. Small iterations with duration of
two weeks will minimize risks and give the team members deadlines to complete tasks for each iteration.
The figure 3.2 illustrate the team’s backlog, the team’s sprint backlog, and the team’s iterations. The sprint
usually last two weeks, and there is usually 48 hours between every stand-up. It is important that the project
is finished on time, and estimation though the sprint planning is an important feature from Scrum. The
report is essential in this course and it is important to work with the report throughout the whole semester
to meet the courses deadlines. To solve difficult tasks a good solution is to work in pairs or ask the other

team members for assistance. To keep track of all the tasks, the web based project management solution

JIRA will be used.

Some of the development technology in this project are unknown for several of the team members, and much
time will be used read and learn how to do tasks correctly. Due to unknown development technology, the
need for breaks and a lot of meetings, the focus factor for this project will be set to 0.65. This means that
65 % of the 20 hours a week per team member is meant to be efficiently used to do specific tasks (from the

agile task board).

25

Figure 3.2: The team’s development model

3.3 Work scope

In this section the work scope of the project will be discussed.

3.3.1 Risk analysis

Creating a risk analysis is a good way for the team members to be prepared for eventual problems during
the project. In the first meeting as a team problems that may occur were discussed. The result is shown in
the table below Probability and consequence are numbered in the range of one to five, where five is the

most serious.

Discovery of unknown tasks

Throughout the project the team is likely to find new tasks that previously were not contemplated. Therefore
the probability of this problem is set to 5. To prevent this from having an effect on the finished product the
team should plan the work in a way that would give some extra time at the end. The team could use this
extra time to complete the unpredicted tasks. The consequence is set to 3, and this gives a sum of 15, which

is the highest sum in this risk analysis.

Wrong time estimate

It is not easy to estimate the correct use of time when problems not encountered before were to be solved.
Therefore probability of this risk is set to 5. With good planning and good discussions during planning,
hopefully the estimates will not turn out completely wrong. To avoid a catastrophic outcome the team need

to take precautions by being flexible and agile minded. The consequence is set to 3 which gives a sum of 10.

26

Description Proba- Conse- Sum Prevention Measures
bility quence (P*C)
Discovery 5 3 15 Good planning, | Structure new tasks and
of unknown margin for errors | put them into sprint.
tasks while estimating.
Wrong time | 5 2 10 Good planning, dis- | Work hard when a prob-
estimate cuss every task with | lem occurs. Allocate
the team. tasks.
Loss of data 2 5 10 Backup data. Rewrite lost code.
Customer/ 3 3 9 Make appointments | Continue with existing
supervisor in advance. tasks.
not reachable
Short term | 4 2 8 Keep a good dialog. Share
sickness knowledge.
Internal strife | 3 2 6 Talk about prob- | Internal meeting.
lems at an early
stage.
Motivational 2 3 6 Team building, and | Work with smaller and
problems let team members | simpler tasks for a while.
work with what | Increased sense of achieve-
they like as much | ment leads to increased
as possible. motivation.
Miss the | 1 5 5 Good planning. Communicate with the
deadline customer and supervisor.
Prolonged 1 4 4 Keep a good dialog. Share
sickness knowledge.

Table 3.1: Risk analysis

Loss of data

Losing data will have huge consequences but is easy to prevent. The probability is set to 2 and the conse-
quence is set to 5. This gives a sum of 10. Using tools like GIT or SVN would almost completely abolish
the possibility of losing data.

Customer /supervisor not reachable

27

Customer or supervisor not being reachable could delay the development if the team is dependent on asking
the customer/supervisor questions when encounters a crossroad. Both the probability and the consequence
are set to 3, which gives a sum of 9. Figuring out problems at an early stage and not postponing hard tasks

would help the team to prevent this to happen.

Short term sickness

The consequence of sickness over a time period of just some days are not severe, but can influence the work
flow if it occurs regularly. But through having a good dialog and by sharing knowledge the team hopes to
reduce the consequence of this risk, causing the probability to be set to 4 and the consequence to 2. This

gives a sum of 8.

Internal strife
Some disagreements always occur, but it is not a problem if it is handled the right way. By internal strife
the team means problems within that may have an effect on the team member’s ability to work together.

The probability is set to 3 and the consequence is set to 2. This gives a sum of 6.

Motivational problems

Having a low motivation is going to affect the team’s ability to deliver a good product to the customer. It
is important that everyone in the team feels included and is working on something interesting. Getting to
know each other would make the overall motivation of the team increase. If a team member is stuck on one
problem he/she could take a break, and switch tasks with other team members. The probability of this risk

is set to 2, and the consequence is set to 3. This gives a sum of 6.

Miss the deadline

There are three ways that could lead to missing the deadline: Bad planning on the team’s part, the customer
changing the requirements at the last minute, or serveral of the risks described occurs. Good planning and
continuous communication with the customer throughout the project are necessary countermeasures. The

probability of this risk is set to 1, and the consequence is set to 5. This gives a sum of 5.

Prolonged sickness
It is impossible to prevent sickness from happening, but the team can keep the overall damage low by sharing
knowledge and not having only one person working on each part of the system. The probability of this risk

is set to 1 and the consequence is set to 4. This gives a sum of 4.

28

3.3.2 Work breakdown structure

The work structure is represented by a work breakdown structure. This gives a better overview of the
total work of the project, and will be helpful in organizing and structuring the rest of the project. Figure
show an overall work breakdown structure, based on the Gantt diagram The work packages in
this WBS is explained in more detail in figure [3:4 Here the work packages are divided according to how
the team envisioned the development of the project. This is based on how the planning, development and

implementation, testing and how the report should be handled.

DIFI
"KVRS"
Sprint 1.1 Sprint 2.1 Sprint 2.2 Sprint 3.1 Sprint 3.2 Sprint 4.1 Sprint 4.2
Preliminary Development Development Project Report
study
Project Project Report i i
management Testing Final touch

Figure 3.3: Overall work breakdown structure

29

uonos|yey -
Bunse) -
Juswabeuew joalold -
uofNIIsUoY -

X8L1e7

uonejuaws|dw) - xoqdolq
sjooy - :m>m_>_ ToSsAN -
R R wir - s,00p 2j6oog IdV 20oUE)sIsald ener - R
B,uﬂ.ﬂ.;.ﬁ%%ﬂ N s.20p v_”wGa\m, _ adAyg - aQnHIe - 20p BAB[- uonipg eoudiejuz eaer - 183y - ,mu:“n_ R
AnHYO - asdijog - 1o
$]00) Juswebeuew 5|00} $]00} $9SIN00
podey UOIBISHS vopEdIuUNUILIoD 1oloig uoljejusLIN0Q juswdojansg Sdn3sUYRLY |eussju|
1
yodai josfoid Apms
: Aeuiwneig
sajnuI -
pouad jxau ay) ueld -
pouad snoiraid sajnuy|
oy} jo Alswwing -| SUOAN|OS JUBSAId -
yoddns [enBulyinpy aoueydeody - ueid asnng auy - sneis - saiBojouluus)
(SO 2ewf wasAS - AnHG - JanIag - sadA) elpayy - swajqo.d sabusijeyo ssnosig -
XIUM/XNUIT/SMOPUIAN) uopesbau| - DI - wand - |epow ﬂu,mEO - Aue aie asay | - ssnasiq - sjuswalinbai ayy
wuojeyd ssolQ - wun - Jopener - . MBIAIBNO 581601 - S01|JUOD B|PUBH - ssnosiq -
[euonouny [euonaun g uonEIuBWNB0g sieMy0g uonejuasaidal yodoy Bunaaw Bunsew
JON : - 20Jn0saYy wneg Jawo)sng
—|L T I
Bupsa, awdojara JusLeBevew
nse 19Aeq 108f01d
WSHAM.

141a

Detailed work breakdown structure

Figure 3.4

30

3.4 Time scope

In this section the time scope of the project will be discussed.

3.4.1 Project milestones

It is important to have several milestones to work against during the project. This is a general overview of

the milestones in this project.

Date Description

6. February Delivery of preliminary report

2. March Customer demo

9. March Delivery of midterm report

16. April Final delivery of report for feedback
7. May Customer demo

25. May Delivery of final report

Table 3.2: Milestones

3.4.2 Gantt chart

The Gantt chart represents the project plan (see figure [3.5). This gives a good overview over the project
planning, milestones and the projects duration. The Gantt chart is divided into sprints, with start and stop

dates, and important milestones such as report deliveries and customer demos.

31

jove 2042 fetr 2012 | mar 2012 apr 2012 muy 2012
i Task Nome Start Finish Duration
JJ.'|?'.|I| 52 |.‘7.?|I-'J.J|Jﬁ}|-1.i |II.? IJ'HlJﬁ..? 4 | B4 | 154 ??.4‘|.“-14| 65 |.'?.i|)€|§
1 |Sprint 1.1 23.01.2012 03.02.2012 2w [
2 | Milestone: Delvery of preliminary report 06.02.2012 06.02.2012 O ’
3 |sprint 2.1 06.02.2012 17.02.2012 2w []
4 | Milestane: Customer demo 02.03.2012 02.03.2012 D &
5 | sprint2.2 20.02,2012 09.03.2012 3w
6 | Milestone: Delivery of midberm report 09.03.2012 09.03.2012 Ow L
7 | sprint3.1 12.03.2012 23.03.2012 2w |]
8 [sprint3.2 26.03.2012 13.04.2012 3w i
S e e 16.04,2012 16.04.2012 O *
10 | Sprint 4.1 16.04.2012 27.04.2012 2w ==
11 | Milestane: Customer demo 07.05.2012 07.05.2012 Ow L
12 | Sprint 4.2 30.04.2012 25.05.2012 aw —
13 | Milestone: Delivery of final report 25.05.2012 25.05.2012 O ﬂ

Figure 3.5: Gantt chart

3.5 Architectural design

3.5.1 Drupal

There are two ways of implementing the wanted functionality in Drupal. The next two chapters explain the

different methods roughly.

Content pages

One is to create a content page module for each of the entities (see figure 3.12) and use the ‘hooks’ provided by
Drupal. Hooks are automatically called methods (by following a name convention) by the Drupal application
when specific actions take place (for example push the save button). One of the advantages are that it is easy
to install a module specified based on needs, and combine a module with others (both self made and made
by others). A content page can be compared to an object that may contain different values and properties.
However, in the given assignment a disadvantage appear. Drupal automatically stores information in a local
(local to the server running Drupal) relation database when any changes are made. As the assignment
describes, the team was to create an own server which would store the information. Even though duplication
is messy, it is not catastrophic. In addition to the duplication it was harder to find good documentation
for how to avoid getting the duplicated (and not guaranteed identical) information from the local Drupal

database instead of the created REST server. Creating the installation file (belonging to each module) could

32

as well be a real time-consuming task. Figure shows an example of using the hook structure.

Snode->title = $result->name;
drupal_set_title[Sresult—>namej;

Snode—>e_group_id:‘;:d"".‘:_‘?a;;e‘: = intwval ($result->id);

Snode->e group active[" '] = Sresult-ractive;

['wvalue'] = createdInMillisToText ($result->created):

Figure 3.6: Example of setting values using the hook structure

Drupal as a view

Another way to use the Drupal framework is by creating one module (divided in different files though), and
use Drupal as a pure view for representing and saving data to the external (REST) server. This avoid the
problem of duplication and two databases. This solution consists in a larger scale of PHP and lesser use of
the Drupal framework. Even though the use of Drupal’s framework is smaller there are still forms and fields
custom to Drupal with own hooks to use. The disadvantage is that all functionality is in one module, and

extracting only part of the functionality may be hard. Figure shows an example of using PHP.

']1} ? %evaluationgroup|['nams'] : '',

Figure 3.7: Example of creating a form not using the hook structure

3.5.2 Architectural diagrams

This section will discuss how the team envisioned the implementation to be in the beginning of the project.

Class diagram

The class diagram is roughly divided into three parts (see figure . At the bottom of the system is
the model. This model consists of six entities which is generated in the MySQL database by JPA. The
entities describe how data should be stored in the database, which attribute that is a primary key, and
relations to other entities. In true JPA spirit the named queries are defined in the entities. Above the

model is the logic part. Here are business logic that handle queries and synchronizes data between the

33

database and the REST server. Since the logic classes have some common methods and attributes, an
interface called AbstractJPAHandler, was created. Resource is the final part in the back-end of the system.
Resource contains the six resource classes, which mainly manages the communication between Drupal and
the database. To do this, every resource class needs to handle encoding and decoding of JSON strings to its

respective Java object. The front end of the system is not yet in the class diagram.

34

Model

EvaluationGroup

- oreated
- evalustionSsts

tong

Li

File
Evaluation
“igint
Option -id :int - uplosded : Calendar
- aiteris : Sting -name : Sting
o - int xt : Sting -de:
wvslustionlD : int ~file File

Getters/Satiers

GetterySaters

- svalustioniD : int
- commentiD

GettersSetters

EvaluationSet Comment
“idint
nt
et Stin - usenD: String
it “osated ;o
tec - lang - dmaplon Sking
- subjeat : String deledbodl
valustion : Evaluation - - evalustion : Evalustion
FileManager
GeitersiSatters
GettersSetters
REST arcitechture
[« 0
Resource

- get(int): EvaluationGroup
- getalifsaclean): List

- get(int): Evaluation

- gatalliinty: List List

-gatal

- get(int): EvaluationSat

- getiint;: Comment
- getAllint: List

- gating
- getAlllint): List

- getlint): Gption

h-level class diagram

oup! voi void - - put(File): void
void - removafint) void - removafint) vold - removeling voia remoueint) void
- removafing void
T T
l Logic \
T T 1
]] i I 3 {EJB FileEJB OptionEJB
~getall: List " File ,

_

Absiract/PAHandler

- EntityMsnager em

- abstract JPAEntity getByIDlint)

- abstract a

<(int) - boolean

- abstract savelPAEntity) : JPAEntity

- ramove (JFAENtity) | JFAENity

Figure 3.8: Class diagram

35

Entity relation diagram

Entity relation diagram shows the tables in the database and how they are connected (see figure .
This ER diagram is based on the domain model received by the customer (see figure . Every table
has their own identifier to easily keep track of all the different rows in the tables. The table ”evaluation
group” has none or many evaluation groups (Appendix This means that in the database, the evaluation
set (Appendix table has an evaluationgroupid field for the relation. Evaluation set has none or many
evaluations (Appendix . This is because an evaluation is done on basis of a criteria set from evaluation
set. Evaluation can have one or many options. These options are created on the basis of the criteria set from
evaluation set. The evaluation table has none or many comments, so that it is possible to write a comment
for every evaluation. Both evaluation and comment can have none or many files. This makes it possible for

anyone who either has the ability to comment or create an evaluation, to upload a relevant file.

Because of the functional requirements the application needs to save each evaluation ever made. A new
evaluation is a revision (Appendix of itself, else when a user update an evaluation, the application creates
a new evaluation and sets the 'RevisionOf’ field to the same value as the 'RevisionOf’ field of the old
evaluation. This way the application can group the original evaluation and all its new versions together
based on the 'RevisionOf’ value. The auto incremented id and the created attribute of each evaluation with

the same 'RevisionOf’ value, will tell in what order the evaluations were made.

Flow chart

The flow chart shows how all the different parts in the application are connected and how the data flows
between them (see ﬁgure. In the bottom of the application is the MySQL database to store information.
Using SQL queries from the Java Persistence API solves communication with the database. The Java
Persistence API converts database information into Java objects. This makes it easy to manipulate or
pass the information to the REST component. The REST component retrieve or send information with
simple http URLs. The REST component converts Java objects to and from simple JSON strings. The
actual website which users interact with, uses these JSON strings from the REST component to show and
save data. The website is based on the open-source content management system and content management

framework Drupal.

36

Evaluationgroup

EGrouplD
Mame
Active
Created
1,1
has
a.n

Evaluation Set

ESetlD

CriteriaSet
Active
Created
Subject

Figure 3.9: Domain model from the customer

hss<

>

a.n

has

File

FilelD
Options g.n

Uploaded
OptionsID MName

Content

Description

has
> a.n
< has
Evaluation
EvaluationlD 1.1
1.1

Criteria has
Text 1.1 O.n Comment
Created .
Active Comment/D
Edited _
Deleted Time
UserlD Comment
SelectedOptionlD Deleted
RevisionOf LseriD

37

Figure 3.10: Entity relation diagram

HTTP with

R \ Website JSON

MySCL queries and
MySCL responses

Figure 3.11: Flow chart

Sequence diagram

Sequence diagrams easily shows how the user interacts with the application on a logic level. The diagrams

shown below describe how the team envisioned the different sequences.

Figure describes the sequence when a user add a new file to an evaluation. First the user needs to
select the evaluation. Then the application will display this evaluation and the user can click on the newFile
button. The user then sees the file uploader view and selects the file to upload. The system stores the file

in the database and goes back to the evaluation view, with the recently uploaded file below.

Figure [3.13] describes the sequence when the user displays all evaluations groups. The user then clicks on the
button “Display all evaluation groups”. Drupal then calls the REST server’s getAll method, which returns
all the evaluation groups as a JSON string. The evaluation group view in Drupal will then show all the

evaluation groups in a nice GUIL

Figure describes the sequence when a user creates a new evaluation group. The user then clicks on the
newGroup-button, and the form for creating a new evaluation group appears. Then the user fills out the

form and saves the group. Then the system will show the evaluation group just created.

Figure describes the sequence when a user creates a new revision of an evaluation. The user clicks on

38

Add file to evaluation

Redtl] :Controller Ewvaluation File
addFileToEvaluation i i i
: displayEvaluation() H !
findEwvaluation{Evalustion} i
addFila()
User bool >H
Evaluation R
showEvaluation|) T
Figure 3.12: Sequence diagram, Add file to evaluation
Display all ewvaluation groups
Rell] Controller :EvaluationGroup

Q evaluaticnGroups

displayEvaluationGroups{)
getallEvaluationGroups()

User EvaluaticnGroups
EvaluaticnGroups

/N

Figure 3.13: Sequence diagram, Display all evaluation groups

the newEvaluation-button, and the form to create a new evaluation appears. This trigger the setCurrentE-
valuationInactive() method, which set the marked evaluation as inactive. The new information about the

evaluation is saved, and the system shows the evaluation.

39

Create new evaluation group

7]
=
['s]
[=]

a

2
E
T

:EwvaluationGroup

newGroup-button

| e

displayMewEvaluationGroupForm{)

showMewEvaluationGroupForm{)

User

inputlata

displayMewEvaluationGroup)

' newEvaluationGroup)

EwvaluationGroup -‘

MewEvaluationGroup

|

Figure 3.14: Sequence diagram, Create new evaluation group

Create new revision of evaluation

[n}
=

‘Controller :Ewvaluation

neawEvaluation-buttan

|.________.

displayMewEvaluationForm{)

setCumrentEvaluationinactivel)

=]

User showNewEvaluationFormd) T
=

inputCata

displayMewEvaluation

h oreateMewEvaluation])

MewEvaluation
MewEwvaluation

Figure 3.15: Sequence diagram, Create new revision of evaluation

40

3.6 Prototype

These images are the teams interpretation of the customers requirements, and the expectations to the final
look of the system.The team realizes that there most likely will be changes to this prototype, as more

knowledge is gain about the assignment. These images will however be a good guideline for future work.

Direktoratet for
I I forvaltning og IKT

Hjem i Vurdersingsett Vurclering

Vurderingsgruppe - Gruppel

Navn Oprettet Endre

Gruppel 03.65.95 Slett

Vurderingsett

Emne Opprettet
Vurderingssett] 14.02.23
Vurderingsett2 45.05.48
Vurderingsett3 02.03.65
Vurderingsettd 02.35.05
Oprett Vurderingsett

Figure 3.16: Evaluation group

This screen shows a selected evaluation group and all its containing evaluation sets. There is also a button

for adding new sets and for editing and deleting the selected group.

41

Direktoratet for
forvaltning og IKT

Hijzm Vurderingsgrup per Yurdering
Vurderingsett - Sett1
Emne Ungdom | Endre |
Opprettet 04.05.90 Slett
Kriteriesett K1
Vurderingsgruppe Gruppel
Vurderinger
Emne Poeng Vurdert av
Vurdering 1 admin
Vurdering 2 userNr32
Vurdering 1 admin
Vurdering 3 userNR43
Oprett Vurdering

Figure 3.17: Evaluation set

This screen shows a selected evaluation set and all its containing evaluations. There is also a button for

adding new evaluations and for editing and deleting the selected set.

42

Direktoratet for
forvaltning og IKT

Hjem Wurderingsgrupper Wurdersing sett

Vurdering — Vurdering1

Beskrivelse Ungdom | Endre |
Opprettet 04.05.90 Slatt
Kriterie MNavnPakKriterie

Valgt alternativ 1

Bruker userd3

Revisioner

04.0590-11.32 [Endre
04.0590-11.33 | Endre

040590-11.35 [Endre
04.0590-11.29 | Endre

Kemmentarer

Kommentar Oprettet Bruker
Ko mmentar] 051265 user
Kemmentar2 04.11.32 userds
Foemmentar 23.02.25 user6

Legg til kommentar

Nawvn: |

Kommentar:

Leog i

Figure 3.18: Evaluation

This screen shows a selected evaluation and all its containing comments. There is also a button for editing
and deleting the selected evaluation, and a comment form that can be used to add new comments to this

evaluation. All revisions of this evaluation is shown in a list.

43

QAo
Direktoratet for
forvattning og IKT

Hjem Wurderingsgrupper Wurdersing sett

Vurdering — Vurdering1- Kommentar?

Beskrivelse kommentar1 Endre

Opprettet 04.05.90
Alctiv true
Vurdering ID 1
Bruker userd3
Filer file_jpg

enAnnenfil_gif

Figure 3.19: Comment,

This screen shows a selected comment, with edit and delete buttons, and a list of all files on this comment.

44

Chapter 4

Requirements

This chapter will discuss the functional and non-functional requirements from the customer. This includes

the prioritization of the requirements and textual use cases that reflect the requirements.

The goal for the project is to replace the current management of evaluations in KVRS and add selected

functionality for a broader utilization in the long run. The functional requirements are from the customer.

4.1 Functional sub-goals

e FR-1 - Establish a REST service for evaluation set.

e FR-2 - Create the user interface in Drupal towards the REST service, which will replace functionality

in KVRS.

4.2 Functional requirements

e FR-1 - REST service

FR-1.1 - List all active/inactive evaluation groups
The user needs to have the possibility to list all active and inactive evaluation groups. The list will
display the attributes ‘active’, ‘created’, ‘id’ and ‘name’ for every evaluation group. The user can filter

on active and inactive groups. Every group can contain zero or several evaluation set.

FR-1.2 — Create evaluation group (logical unit)

45

The user can create a new, empty evaluation group. The attribute ‘name’ must be specified when

P

created. ‘Creation date’, ‘id’ and ‘active’ are set automatically by the system.

FR-1.3 - Update evaluation group
The user can edit an existing evaluation group. ‘Name’ is the only attribute available for change. The

PS4

values of ‘creation date’, ‘id” and ‘active’ are unaltered.

FR-1.4 — Set evaluation group inactive
The user can mark a group as inactive. The ‘active’ attribute will change from 1 to 0 and the group

will not be shown under FR-1.1. The user cannot undo this operation.

FR-1.5 — List all existing evaluation set
The user has the possibility to list all evaluation set. The list will display the attributes ‘active’,
‘creation date’; ‘id’; ‘subject’ and ‘criteriaSet’ for every evaluation set. The user can filter on active

and inactive. Every set can contain zero or several evaluations.

FR-1.6 — Create evaluation set (logical unit)
The user can create a new, empty evaluation set. Every set has the attributes ‘active’, ‘created’,
‘criteriaSet’, ‘id’, ‘subject’ and a foreign key to the evaluation group it belongs to. The user needs to
specify the values of ‘criteriaSet’, and subject. The rest of the attributes will be set by the system.

Every evaluation set can contain zero or several evaluations.

FR-1.7 — Update evaluation set
The user can edit an existing evaluation set. ‘Subject’ is the only attribute available for change. The

v . . v o
alues of ‘creation date’, ‘id’, ‘active’, ‘criteriaSet’, and foreign key to evaluation set are unaltered

FR-1.8 — Set evaluation set inactive
The user can mark a set as inactive. The ‘active’ attribute will change from 1 to 0 and the set will not

be shown under FR-1.5. The user cannot undo this operation.

FR-1.9 — List all active/inactive evaluations in an evaluation set
The user has the possibility to list all active and inactive evaluations in an evaluation set. The list will

display all the attributes attached to the set and the user can filter on active and inactive evaluations.

FR-1.10 — List all revisions of evaluation
The user has the possibility to list all revisions of an evaluation. The list will display all the attributes
attached to an evaluation, a foreign key to the evaluation it is a revision of and a foreign key to the

evaluation set it belongs to. Every evaluation can contain zero or several revisions.

FR-1.11 - Get revision of evaluation
The user can select a revision of an evaluation and get all the associated values of the revision, including

foreign keys to evaluation set and evaluation. It does not matter if the revision is active or inactive.

46

FR-1.12 — Create evaluation in evaluation set
The user can create a new, empty evaluation. Every evaluation has the attributes ‘active’, ‘created’,
‘criteria’, ‘id’, ‘text’, ‘revisionOf’, ‘userld’, ‘selectedOptionld’ and a foreign key to the evaluation set
it belongs to. The user needs to specify the values of ‘criteria’, ‘selectedOptionld’ and text. The rest
of the attributes will be set by the system. Every evaluation can contain zero or several comments or

files attached to it.

FR-1.13 - Create a new revision of evaluation
The user can edit an existing evaluation. The edited evaluation should then be newest revision of the

evaluation, and therefore the only one possible for editing.

FR-1.14 — Mark evaluation deleted
The user needs to have the possibility to delete an evaluation. The ‘active’ attribute will change from
‘1’ to ‘0’. The operation is not possible to undo. Only the newest revision of an evaluation is possible
to mark as deleted, and if there are several revisions of an evaluation then all the revisions of the

evaluation should be marked as deleted. The evaluation will not be listed in FR-1.10.

FR-1.15 — Get point distribution for a given criteria and evaluation set

This requirement has been canceled, since it requires data from the other Difi group, group 6 .

FR-1.16 — List all comments on evaluation
The user has the possibility to list all active and inactive comments of an evaluation. The list will
display all the attributes attached to a comment, and foreign key to the evaluation it belongs to. Every

evaluation can contain zero or several comments.

FR-1.17 — List all comments on revision of evaluation
The user has the possibility to list all comments of a revision of an evaluation. The list will display
all the attributes attached to the revision, and foreign key to the revision it belongs to. Every revision

can contain zero or several comments.

FR-1.18 — Add comment on revision of evaluation
The user can comment on a revision of an evaluation. The user needs to specify the attribute ‘de-
scription’, the attributes ‘created’, ‘active’, ‘id’, ‘userld’ and a foreign key to the evaluation is set

automatically by the system.

FR-1.19 — Mark comment deleted
The user needs to have the possibility to delete a comment. The attribute ‘active’ will then change

from ‘1’ to ‘0’. The operation is not possible to undo. The comment will not be listed in FR-1.16.

FR-1.20 — Add file(s) on comment

The user has the possibility to upload a file on a comment.

47

FR-1.21 — Add file(s) on revision of evaluation

The user has the possibility to upload a file on a revision of an evaluation.

FR-1.22 — List all files on comment
The user has the possibility to list all files on a comment of an evaluation. The list will display all the
attributes attached to the file, the file itself and a foreign key to the comment it belongs to. Every

comment has zero or several files attached to it.

FR-1.23 — List all files on evaluation
The user has the possibility to list all files on an evaluation. The list will display all the attributes
attached to the file, the file itself and a foreign key to the evaluation it belongs to. Every evaluation

has zero or several files attached to it.

FR-1.24 — List all files on revision of evaluation
The user has the possibility to list all files on a comment of an evaluation. The list will display all
the attributes attached to the file, the file itself and a foreign key to the revision it belongs to. Every

revision has zero or several files attached to it.

e FR-2 - Drupal integration; below is the initial Drupal requirement from the customer. The plan is
to make one commentator- and one admin-user. The customer later suggested that the team should
concentrate on making the admin-user’s functionality first, and if there were time at the end of the

project, add the other user as well.

FR-2.1 — Create a privilege and functionality that makes it possible to do all actions against the
REST service.
The system needs a user that has the possibilities to manage everything. No restrictions at all, available

to control every part of the system. This is a root/admin user.

4.3 Non-functional requirements

e NFR-1.1 — Usability: Although the customer asked the team not to prioritize usability, it is still
important that the system is usable by non-technical users. The team has chosen not to do advanced

user testing but still considered whether the product will be understandable to the average user.

e NFR-1.2 — Compatibility: The system must also be usable on different platforms and browsers.
Since the system is written in Java, it is portable to several platforms. Drupal also helps to make sure

that the system will work in different browsers.

e NFR-1.3 — Implementation: This system must be installable on a UNIX-server.

48

e NFR-1.4 — Security: The data that is processed by the system is not too sensitive, so this is not

something that needs high priority. However there can never be too much security.

4.4 Prioritization of the functional- and non-functional require-
ments
In relation with the product backlog, a prioritization of the requirement is necessary. These tables are

developed in collaboration with the customer, and give an overview of the dependencies and the prioritization

of the different requirements.

Table gives an overview of the prioritization the functional requirements, sorted after the id of the

requirement.

49

Requirements Priority / Importance Dependencies
FR-1.1 High None
FR-1.2 High None
FR-1.3 High FR-1.2
FR-14 Medium FR-1.2
FR-1.5 High None
FR-1.6 High None
FR-1.7 High FR-1.6
FR-1.8 Medium FR-1.6
FR-1.9 High None
FR-1.10 Medium None
FR-1.11 Medium FR-1.12
FR-1.12 High FR-1.6
FR-1.13 Medium None
FR-1.14 Medium FR-1.12
FR-1.15 Low FR-1.6
FR-1.16 Low None
FR-1.17 Low None
FR-1.18 Medium FR-1.12
FR-1.19 Low FR-1.18
FR-1.20 Low FR-1.18
FR-1.21 Medium FR-1.13
FR-1.22 Low FR-1.20
FR-1.23 Low FR-1.21
FR-1.24 Low FR-1.21

Table 4.1: Prioritization of functional requirements

Table gives an overview of the prioritization the Drupal integration requirements, and the third table
gives an overview of the prioritization the non-functional requirements. The tables are sorted after the id of

the requirement.

50

Requirements Priority / Importance Dependencies
FR-2.1 High None
Table 4.2: Prioritization of drupal integration
Requirements Priority / Importance Dependencies
NFR-1.1 Low None
NFR-1.2 Low None
NFR-1.3 Low None
NFR-1.4 Low None

Table 4.3: Prioritization of non-functional requirements

51

4.5 Use cases

This section contains the textual use cases of the system. The reason why only textual use cases are included
is because they are more detailed, and more relevant for the report than use case diagrams. The use case
diagrams only include one user, which has all the rights, and will be connected to all the requirements. The

textual use cases will look like table [4.4}

Use case ID UseCaselD

Use case name The name of the use case

Scope The scope of the use case

Description The goal of the use case, and sources of requirement

Preconditions The preconditions that must be met before the use case can begin

Assumptions The conditions that must be met for the use case to terminate success-
fully

Steps The steps between the actor and the system that are necessary to achieve
the goal

Variations The different variations of the flow of the use case

Table 4.4: Use case, example

The use cases are designed in connection to how the team envisioned to solve the requirements. They are
described through the front-end design (Drupal). The reason why only use cases from the front-end are

described is because if the front-end works, it ensures that the REST server is functioning.

The use cases below are connected to the functional requirements through their numbers. For example use
case with ID UC-1.1 (Appendix correspond to FR-1.1. In some cases a letter will follow the usual naming
convention of the ID. For example UC-1.21A and UC-1.21B . This means that there are different
ways of doing the corresponding requirement. Below are two examples of the textual use cases. The rest of

the textual use cases is located in Appendix E, Extended textual use cases.

The actor in all the use cases is the admin, which has no limitations.

52

Use case ID

UC-1.21A

Scope

Evaluation and file

Description

Add file(s) on revision of evaluation

Preconditions

. Running system

. An existing evaluation

Assumptions

. There exist an evaluation group
. There exist an evaluation set

. There exist an evaluation

Steps

. Select a revision of an evaluation
. Click edit
. Select add file

. Select a file from your device (A new link add file will occur below

the previous one)

. Jump to step 2 as many times as wanted

. Click save

Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(c¢) If no evaluation exists, create one and do step 1 again

Table 4.5: Use case, UC-1.21A

53

Use case ID

UC-1.21B

Scope

Evaluation and file

Description

Add file(s) on revision of evaluation

Preconditions

. Running system

. An existing evaluation

Assumptions

. There exist an evaluation group
. There exist an evaluation set

. There exist an evaluation

Steps

. Click on new evaluation
. Fill in the required fields
. Click add file

. Select a file from your device (A new link add file will occur below

the previous one)

. Jump to step 2 as many times as wanted

. Click save

Variations

If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

If no evaluation set exists, create one with and evaluation. Then do

step 1 again

If no evaluation exists, create one and do step 1 again

Table 4.6: Use case, UC-1.21B

54

Chapter 5

Testing

This chapter will discuss the testing of the product. Several flaws and bugs can be discovered through
thorough testing. Different modules and classes will be continuously tested when they are integrated in the

system. The components will be tested through unit-, integration-, system and usability testing.

5.1 Test plan

Below is a description of the different types of tests the team has planned to use in the project. The team
has decided to handle the tests as Scrum tickets. Before a development-ticket is set to “completed” in JIRA,
it is moved from ”in progress” to "ready for testing”. That way, it is guaranteed that everything that needs
to be tested, will be tested. It is easy for other team members to see what parts of the system that are ready

for testing.

Test cases for unit testing were created for every functionality the team members implemented. Since each
unit test focuses on testing a small and individual part of the system, it has resulted in a lot of tests. The
team has chosen not to include all the unit tests in the report, this because many of the tests are very similar

and unnecessary to include.

5.1.1 Unit testing

Unit testing will be used to test the smallest components of the system. This will be a form of white box

testing, because it requires some knowledge of the actual code. These tests will be performed as the different

55

Test ID TestID

Test name The name of the test

Purpose The purpose of the test, and the aspects of the system being
tested

Requirements The different requirements that must be fulfilled for the test
to pass

Test description | This is the description of what the input and output should
be for the test to pass.

1. The different points may be linked to requirements

from the customer.

Test result This is the status of the test - if the test passed of failed.

Table 5.1: General test case

parts are finished, by someone with knowledge in the area being tested. Important and complex methods
will be tested thoroughly with JUnit 4.0 framework. Drupal offers unit testing by their integrated module

”SimpleTest”. See section 5.2.1 for the results of the unit testing.

5.1.2 Integration testing

As the unit testing completes and becomes approved for the minor components, there is also the need to test
whether they can be merged and run smoothly together. Since different team members are developing the
components in parallel, merging of code and integration tests should be performed in groups consisting of
the creators. All tests are performed outside the source environment to test the integration between different
modules. cURL will be used to test the pairing of Drupal and the REST server. See figure 5.1 for these

results. Other test results from the integration testing will be discussed in the iteration they were performed.

5.1.3 System testing

System testing is used to test the overall functionality and response time of the system. To be sure that
all the functional and non-functional requirements given to us by the customer are covered, each of the use
cases/criterias will be put into a test. This means to reformulate them into steps, equivalent to the action

that needs to be taken by the user to perform the different tasks. System testing is a form of black box

56

testing and should not require any knowledge of the logic or design. The team as a group will preform the

system testing. See section 6.2.2 for results of the system testing.

5.1.4 Usability testing

This is a system that will be used by real people in their work, and usability should be an important part
of the development. However the customer has specified that the focus should be on the functionality of
the system, and not the looks. The actual appearance of the program will be designed and made by the
customer’s employees when they receive the final product. The team could however be creative and make
something that was possible within the time limit. Because of this usability is not the main focus, but it is
still an aspect of the project that the team should keep in mind. The results from the usability testing will

be discussed in the iteration they were performed.

5.2 Test results

This section displays the results from the different tests.

5.2.1 Unit testing results

The Drupal unit testing was executed through the integrated Drupal module “SimpleTest”. The result
is shown in figure [5.1 The ’kvrs test function’ tests some internal assist functions, while the 'kvrs test
integration’ tests the actual methods for inserting, getting and delete. The team chose to write tests for

evaluation group. The tests for evaluation set, evaluation, comment and file would have a similar structure.

57

RESULTS
10 passes, O fails, and 0 exceptions

= KWR5 TEST FUNESION

Tester KVRS funksjoner
4 passes, 0 falls, and 0 exceptions

- KEWRS TEST INTEGRASJON

Tester KVES mot restserver
6 passes, 0 falls, and O exceptions

Figure 5.1: An image of testing in Drupal via SimpleTest

5.2.2 System testing results

The results from the system testing is displayed below through test cases.

Test and [5.7 show the tests done on the evaluations in an evaluation set. The rest of

the test cases can be found in Appendix F.

Test ID ST-08
Test name Evaluation 1
Purpose To test if the requirement FR-1.9, List all active/inactive evalua-

tions in evaluation set, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set

3. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group

3. Click on the desired evaluation set

A list of the active evaluations appear

4. Click on ”Show deleted”

A list of the deleted evaluations appear

Test result PASSED

Table 5.2: Evaluation test, list all active/inactive evaluations in evaluation set

59

Test ID

ST-9

Test name

Evaluation 2

Purpose

To test if the requirement FR-1.10, List all revisions of evaluation,

is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

A list of the different revisions of the evaluation appear

Test result

PASSED

Table 5.3: Evaluation test, list all revisions of evaluation

60

Test ID ST-10

Test name Evaluation 3

Purpose To test if the requirement FR-1.11, Get revision of evaluation, is

met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

A list of the different revisions of the evaluation appear

5. Click on the desired revision

The information about the revision of the evaluation

appear

Test result PASSED

Table 5.4: Evaluation test, get revisions of evaluation

61

Test ID ST-11

Test name Evaluation 4

Purpose To test if the requirement FR-1.12; Create evaluation in evaluation

set, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set

3. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on ” Add new evaluation”

5. Choose criteria and option

6. Enter an explanation of the evaluation

A note confirms that the evaluation is added

Test result PASSED

Table 5.5: Evaluation test, create evaluation in evaluation set

62

Test ID ST-12

Test name Evaluation 5

Purpose To test if the requirement FR-1.13, Create new revision of evalu-

ation, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”

2. Click on the desired evaluation group

3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on 7Edit”

6. Choose a different option, and write an explanation

7. Click on ”Save”

A note confirms that the evaluation is updated appear

Test result PASSED

Table 5.6: Evaluation test, create a new revision of evaluation

63

Test ID

ST-13

Test name

Evaluation 6

Purpose

To test if the requirement FR-1.14, Mark evaluation deleted, is

met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on ”Delete”

A note confirms that the evaluation is deleted

Test result

PASSED

Table 5.7: Evaluation test, mark evaluation deleted

64

5.3 Test evaluation

Overall the testing has been very rewarding for the project. It has given the team valuable input, not only

as to finding errors, but also for improving the functionality of the system.

During the development of the Java part of the project the team made a lot of JUnit tests, but because
of a complicated error these tests refused to run properly. After days with no progress on this error and
even after consulting the customer, the team decided to set the task on hold. Finding the solution could
take any amount of time, and there was no guarantee that it would work in the end. Instead these methods
where tested manually, adding, removing and updating data through the different methods and checking the

database to see if the changes happened correctly.

At the end of the project the team also had some simple usability testing where the team members where
given different tasks to complete, like adding, editing and deleting an evaluation group. This made it possible

to do some last minute improvements on buttons and the flow between the screens.

65

Chapter 6

Iterations

This chapter is a summary of the different iterations that have been completed during the project. This
includes the backlog of each sprint, project management, the result of the sprint, and the product backlog

at the end of each sprint.

The solution can roughly be divided into 3 parts; Drupal, REST and JPA. Since the team consists of six
people a decision was made to put two team members on each part. Typically after each sprint, the team
members switched parts so everyone got to know all parts of the system. To preserve the progress it was
always made sure that one of the original members stayed on the task, to teach and help the new person, by
for example pair programming. Since all the team members have different experience and knowledge, it was
discussed how this could be beneficial. It resulted in a Git course and internal teaching. Skype (Appendix
was used to communicate within the team, and pair programming for knowledge transfer. This way, not
only the competence was transferred between several members, but it was also a good introduction to a new

theme or code bit.

Throughout the whole semester, except the holidays, the team has met three times a week, on Mondays,
Wednesdays and Fridays. Every meeting has started with a stand-up where everyone explains what they
have done since the last meeting, if they had any problems and what they are planning to work on until

next meeting.

At the beginning of a new sprint the team always meets for a scrum meeting. This implies an evaluation of
the last sprint, overall status, and estimating of new tasks from the backlog. If anyone had any preferences

about what kind of task they wanted, this was taken into account.

66

The sprints are divided into separate numbers mainly to represent different deliveries. Sprint 1.1 aims
towards first milestone which is the delivery of the preliminary report. Sprint 2.1 aims towards the customer
demonstration and the sprint 2.2 towards the midterm report. Sprint 3.1 and sprint 3.2 aim to the delivery
of the last report with feedback. Sprint 4.1 focuses on the second customer demonstration and end of sprint
4.2 is the final delivery. The team decided early that these milestones would be a good basis for the sprint
length, and because of this there has been a tight connection between the sprints and milestones throughout

the project.

6.1 Sprint 1.1

Sprint 1.1 Dates
Sprint planning Monday, January 23rd
Timeline January 23rd - February 3rd

Table 6.1: Dates, Sprint 1.1

Monday, January 23rd the team had their first meeting. Everyone told about themselves; what kind of
experience they had, working patterns and their ambitions for this course. The task description was read and
the team tried to understand main aspects. The entity relationship diagram and class diagram was roughly
sketched. It was obvious that the team needed to contact the customer for a more detailed description. The

team then decided to meet three times every week, at 10.15 am.

At Wednesday January 25rd, the team had their first Skype meeting with the customer contact. He explained
the task very thorough and answered our other questions about the requirements, programs and technologies.
The team now had a basic understanding of the structure of the project, and then started on modeling

diagrams and the preliminary version of the report.

6.1.1 Sprint backlog

The sprint goal were to get an overview over the tasks and the how the complete application finally would
look like. The team needed to get this right in order to start on the first version of the report. Due to new
reading, setting up environments, and establishing contact with the customer and understanding the given

project, the estimate is set to 81 hours of efficient work that can point to result.

The ticket names are generated from JIRA, the tool for tracking issues. The reason that tickets start at

67

DIFI-9 is due to earlier testing in JIRA.

Ticket: DIFI-9

Task: Report, delivery 1

Description: Create diagrams and write the necessary content in the report, as
defined in the subtasks.

Subtasks: Estimate:
DIFI-10: Create risk analysis 8h
DIFI-11: Create role descriptions 5h
DIFI-12: Write about programs used in project 6h
DIFI-13: Create high level class diagram 13h
DIFI-14: Create use case diagrams 9h
DIFI-15: Create sequence diagram 7h
DIFI-16: Create flow diagram 5h
DIFI-17: Setting up workbench (Git, Eclipse, Glassfish) 17h
DIFI-19: Create ER-diagram 11h

Total estimate: 81h

Table 6.2: Tasks, sprint 1.1

68

6.1.2 Project management

With a basic understanding of the planning process and the sketching of different diagrams started. The
team realized that the understanding of the tasks were incomplete. Therefore the team had a Skype meeting
with the customer, read books and browsed the Web for answers. Soon the team was back on track and
able to finish early drafts of diagrams. The different tickets for the next sprint were made. To be able to
estimate the team played ”planning poker”. This was an interesting exercise the team was excited to see

how well planning poker structured the next two weeks.

13 8 13 || 20 || 13

Haakon MrD Mathilde iversen Oggli

3 3 5 5 8

iversen Haakon MrD Mathilde Oggli

8 5 8 3 5

Mathilde Mr.D Haakon iversen Oggli

13 8 8 13 || 13

Mr.D Mathilde Haaken iversen Oggli

Figure 6.1: Planning poker, estimating tickets while planning the sprint

Planning poker is used to estimate the time to implement, test and document a ticket. The person with
the most knowledge presents the task and what it implies. Individually each of the team member estimate,
followed by an open board were all members get to see what the rest of the team has estimated as well.
The point of Planning Poker to ensure that everyone’s opinion is heard. After the estimates are revealed
everyone gives proof of their estimation in order to discuss and set the most appropriate estimate or, if there

are huge variations, a re-run.

The customer contact is an accomplished programmer. This resulted in requirements as to what the system
should do and what it should look like and requirements and recommendations as to what technologies to
use. This left the team with less options as to how the system should be developed. Time that otherwise
would be needed to research different developing tools and software could then be used to get started with
the technical work. The customer also provided the team with relevant reading material that helped the

development get started.

69

6.1.3 Result

The sprint is over and the preliminary report is delivered. The first drafts of the diagrams were created,
and the understanding of the tasks increased. Still there are some problems understanding the connection
between an ”evaluation” and an ”option”. The team plans to solve this at the next customer meeting.
Besides the problem with the architecture, the team had some struggle setting up the environment regarding
Eclipse with Glassfish, selecting the correct development tool versions, configure Git and other administrative

problems.

Throughout this first sprint the main challenge was to understand the assignment given from the customer.
The good communication with the customer contact was important to get more understanding about the
problem. This meant first of all to understand the concept of the application, and secondly how to approach

the tasks.

6.1.4 Product backlog

After the sprint is over, the remaining tasks in the product backlog are:

70

Task ID Task Priority 1-
5
DIFI-21 JPA: Create JPQL queries 3
DIFI-22 JPA: Database connection 4
DIFI-23 JPA: Create database 4
DIFI-24 JPA: Create the JPA classes 5
DIFI-27 REST: Create the OptionResource class 3
DIFI-29 REST: Create the EvaluationGroupResource class 3
DIFI-31 REST: Create the EvaluationSetResource class 3
DIFI-33 REST: Create the FileResource class 1
DIFI-35 REST: Create the CommentResource class 3
DIFI-37 REST: Create the EvaluationResource class 3
DIFI-40 JPA: Create connection between Drupal and REST 2
DIFI-67 REST: JSON communication with objects 3
DIFI-68 REST: Connect beans and Glassfish 3
DIFI-69 Create prototype to GUI 3

Table 6.3: Product backlog

71

6.2 Sprint 2.1

Sprint 2.1

Dates

Sprint planning

Wednesday, February 1st

Timeline

February 6th - February 17th

Table 6.4: Dates, Sprint 2.1

6.2.1 Sprint backlog

The goal this sprint was to start the implementation. This included a lot of self study.

Ticket: DIFI-20

Task: JPA

Description: The JPA classes are the classes that are equivalent with the tables
in the database. Create the database and JPA classes, and set
up a persistent connection between the database and the JPA
classes. This will create the database tables on the basis of the
JPA classes. The creation of the JPA classes will also involve
creating JPQL-queries so that is possible to retrieve information
from the database.

Subtasks: Estimate:
DIFI-21: Create JPQL-queries 8
DIFI-22: Establish the database connection 8
DIFI-23: Create a database 8
DIFI-24: Create JPA classes for creating attributes and tables 8
Sum, DIFI-20 32h

72

Ticket:

DIFI-64

Task: REST: Create resource classes

Description: The resource classes are the classes that is is going to be the
REST implementation. Create methods for dealing with http re-
quest (PUT, GET and DELETE). These classes are going to use
the Enterprise Java Beans to submit/retrieve data from the JPA
entities.

Subtasks: Estimate:
DIFI-27: Create OptionResource 5
DIFI-29: Create EvaluationGroupResource 10
DIFI-31: Create EvaluationSetResource 10
DIFI-35: Create CommentResource 10
DIFI-37: Create EvaluationResource 15
Sum, DIFI-64 50h

Ticket: DIFI-67

Task: REST: JSON communication with objects

Description: Create working code that handles JSON in the rest architecture.
Figuring out how JSON communicate, both sending and receiving
JSON as strings.
Sum, DIFI-67 16h

Ticket: DIFI-68

Task: JPA - Create and connect EJBs to our MySQL database with
Glassfish

Description: Enterprise Java Beans (EJBs) was selected to manage the
database, and this EJB is connected through an entity in our
MySQL database. One EJB is necessary for each object, which
gives a total of 6 EJBs.
Sum, DIFI-68 25h

Total estimate: 123h

Table 6.5: Tasks, sprint 2.1

73

6.2.2 Testing

Visual testing was used to test if the database and the EJBs worked as intended. This was done thoroughly

by testing code written by other team member’s.

6.2.3 Design and implementation

During the sprint the MySQL database was created. The database was easy to create at one of NTNU’s
MySQL servers.

The team read about Java Persistence API (JPA) and used the new knowledge to set up the entities using
JPA. The Enterprise Java Beans (EJB) was created, and used to manage the connection and synchronization
with the database. The team also created the parts of the REST service, and configured this to fetch and
insert data through the EJB’s via HTTP requests. JPA is a very easy and smart way to handle database
mappings. It is very commonly used when developing a Java Enterprise application and is often combined
with Enterprise Java Beans (EJB). Creating the persistence.xml file and setting up the Glassfish server
correctly were the most challenging tasks. The persistence file contains the necessary information to set up

the connection with the database and which classes that should be persisted.

JPA objects are mostly simple objects with private fields used by get and set methods. What makes the
objects special are the “@Entity” annotation that specifies that the object is a database entity. They are
mostly very easy to set up like a simple java object, just with a few extra annotations.

f@Id

[GeneratedValue (strategy = GenerationType.IDENTITY)
private int id;

[@Column{name = "Text"™, length = 2088)
private String text;

Figure 6.2: Example of JPA code

In the example in figure [6.2] the first annotation is the ”@ID” tag. This annotation specifies that the
attribute ”id” is going to be the primary key in the database table. The annotations defines that the id is
automatic incremental, which means that the id number increases by one with every new row that is added
to the database. The second one is a normal text column, and the annotation defines that column can have

a maximum length of 2000 characters.

The objects can also contain queries to get specific information from the database. These are not ordinary

74

SQL queries but Java Persistence Query Language (JPQL) queries. The main difference between normal
SQL and JQPL is that normal SQL uses the tables and columns in the database in the query, but JQPL
uses the entity name and fields from JPA object. Figure [6.3 shows an example of a JPQL query.

@NamedQueries ({
[@NamedQuery(name = Evaluation.BY_ID, query = "SELECT e FROM Evaluation e WHERE e.id = :id")
b

Figure 6.3: Example of JPQL query

Enterprise JavaBeans (EJB) contains the logic of a Java Enterprise application. In this project the EJBs
are used to perform queries, save objects to database and delete them. There were a lot of changes in the
Enterprise JavaBeans the last years, and therefore it was not that easy to find good examples of how to use
the newest version of EJB, version 3.1. EJB 3.0 used some extra interfaces to do the work, but in version
3.1 these interfaces were not longer necessary. Even though it was not easy to find a good example, the
JavaBeans were fairly simple to set up and use. The stateless annotation let us use the EJB class from other
classes without the need to instantiate the EJB in each class it would be used. This is done by using the

“@QEJB” annotation in another class.

[@EIE EwaluationElB ewvaluationEIlEB;

Figure 6.4: Example of declaration of EJB

By calling the code in figure from another class it let us use all of the EJB’s methods.

To be able to persist the objects to the database there is a class that all the EJBs extends. This class

contains the EntityManager which is defined with the annotation showed in figure [6.5}

@PersistenceContext{unitMame = “kvrs-vurdering")
protected EntityManager em;

Figure 6.5: Example of declaration of the EntityManager

In the beginning of the project the team had a superclass with the most common methods like delete and
save, that all the EJBs used. Later the team realized that the EJBs had to get their own methods, because

there were different requirements in terms of validation of which fields in an object that needed data.

The team’s impression of Enterprise JavaBeans is that they are easy to use as long as you know some small

lines of code that defines the EJB.

75

Java API for RESTful Web Services (JAX-RS) is an API that provides support for creating web services
according to the Representational State Transfer architectural style. In the beginning of the project the team
looked at this part as the most demanding and time-consuming part of the REST-service implementation.
The team was prepared to create all the necessary methods to get the REST service up and running, but
soon realized that most of the functionality needed was already given to us by JAX-RS. When the team
understood how the REST service worked, the classes were fairly easy to set up. The REST classes contains
methods for using the GET, PUT and DELETE HTTP methods. This is set up by using the appropriate

annotations.

@GET

@Path("{id}"}

@Produces (MediaType . APPLICATION JSON)

public Evaluation get(@PathParam("id"} int id} {
Evaluation evaluation;

try {

evaluation = (Evaluaticn)evaluaticnElB.getByID(id);
} catch (Exception e) {

throw new WebApplicationException(588);
¥

if (evaluation == null) {
throw new WebfpplicationException(4e4);
I else return evaluation;

Figure 6.6: Example of a method in the RESTful API

The example in figure shows a GET method for getting a specific object defined by an id. The ?@QGET”
annotations expresses that this is a method that would get called if the HTTP method GET with the path
leading to this class. The path is defined by the ”@Path” annotation. The "@Produces” annotation specifies
what the method returns. In this project JavaScript Object Notation (JSON) was used to represent the data
when transferring through the HTTP protocol. Therefore the ”@Produces(MediaType. APPLICATION_JSON)”

was used in all the methods that was suppose to return something.

The customer required the user interface to be in Norwegian. Since the paths used to query the REST-service

are the user interface of the service, we chose to implement the paths in Norwegian instead of English.

The team’s impression is that the RESTful web service is elegant and simple when passing information over
the Internet. The team had no problems developing the web service, but at first made it more complicated
than necessary. In the beginning the conversion from java objects to JSON strings were manually done by
using an external library, this was before the team discovered the “@Produces” annotation that does the job

automatic. JAX-RS caused a minor problem; the format of the JSON string is dependent of the number

76

of elements being sent. If the team is supposed to list all the evaluations and there is only one, the JSON
string does not contain any list, just the one element. If there are several elements, the JSON string contains
a list with the elements. Ideally the format of the JSON string would be the same despite on one or several

elements, but this problem was solved by checking if the JSON string was a list or not in the front-end client.

Prototypes of the main components in the design were drawn, and the team planned how the front-end layers

should be structured.

6.2.4 Project management

The team underestimated the tasks this sprint (more discussed in the sprint result section), and wondered
if it was their own work and effort that lacked. Had the team actually worked as much as promised? The
team discussed it, and it turned out that almost everyone had met some problems during this sprint. The
problems had not been easy to solve, which again decreased the motivation. The team discussed how to
solve these kind of problems and agreed that at some point, it is a lot easier to team up with someone else
and solve the problem together, by for example pair programming. To keep the motivation up, the team

scheduled a team building.

During the first sprint, and the beginning of the second, the team had some problems with members that
were late to meetings. The rest of the team had to wait for the other members since they had not heard from
them. As a result, it were decided to make a collaboration contract. The highlights of the agreement is that
all team members must be ready for the stand-up 10.30, tell in advance about absence, and if some are not
present at a meeting they have to make sure they are updated on the work. If the points in the agreement
are broken, the team will decide if the member should be punished. The punishment is either one bottle of
beer (0.33 1) for each team member, or to buy something the team can enjoy at a meeting (equivalent the

cost of beer). A copy of the contract is attached, Appendix B.

6.2.5 Result

The team had estimated 20 hours per person, and the sprint lasted for two weeks. With a focus factor on
0,65 there was a total of 156 hours to allocate the tickets. At the end of the sprint, the team had only
finished 65% of the tasks planned. It was obvious that the tickets were underestimated, and the remaining
tasks had to be moved over to sprint 2.2. The wrong time estimate was a good experience for the team
to bring on further in the project. The team needs to calculate more time for reading books, and handle

problems that occur more often than hoped. It was a big mistake to only estimate the main tasks, and not

77

the subtasks. For example was the tickets DIFI-20 and DIFI-64 divided into several sub tasks, but only the
main tasks were estimated. The team could have chosen whether or not to include the different tasks if the
estimates on the workload had been more accurate. Task DIFI-20 will be moved to sprint 2.2 because of the

underestimation. This causes changes to the original plan.

6.2.6 Product backlog

After this sprint, the remaining tasks in the product backlog are:

Task ID Task Priority 1-
5
DIFI-33 Create the FileResource class 1
DIFI-40 Create connection between Drupal and REST 4
DIFI-41 Implement a way to transfer data between REST and JPA 4
DIFI-64 REST: Complete the rest of resource classes 4
DIFI-66 HTTP methods between machines 4
DIFI-69 Create prototype to GUI 5
DIFI-73 Create schema to create EvaluationSet 3
DIFI-74 Show all data on Evaluation 3
DIFI-76 Show all data on EvaluationSet 3
DIFI-78 Drupal: Create comment module 3
DIFI-79 Show all comments 2
DIFI-80 Create scheme to create EvaluationGroup 3
DIFI-81 Create scheme to create Evaluation 2
DIFI-83 Get the collaboration agreement signed and scanned 1
DIFI-86 Get an overview and create a plan to fill the report 3
DIFI-87 Solve the id crash between REST and Drupal 2
DIFI-88 Write the needed information in the report according to the plan | 2
DIFI-91 Change PUT methods to use JAX-RS 3
DIFI-92 Change variables and method names to be more consistent 1

Table 6.6: Product backlog

78

6.3 Sprint 2.2

Sprint 2.2 Dates
Sprint planning Monday, February 20th
Timeline February 20th - March 9th

Table 6.7: Dates, Sprint 2.2

6.3.1 Sprint backlog

During this sprint is was two main goals; to create the first Drupal module and to have a running application

to show the customer contact at Friday March 2nd.

Ticket: DIFI-40

Task: REST/Drupal - Implement a way to transfer data be-
tween REST and Drupal

Description: Java objects have to be parsed into strings so they are
easier to send over the Internet. A method that parses
objects to string, and that parse strings back to the
object it belonged, must be implemented in the resource
classes. In Drupal the team need to figure out how to
make a JSON string from the data in the PHP fields,
and how to decode JSON strings that comes from the

resource classes.

Sum, DIFI-40 14h
Ticket: DIFI-41
Task: REST/JPA - Implement a way to transfer data between

REST and JPA

Description: EJBs need to have some kind of receive method and
a persist method to store the JSON strings in the
database.

Sum, DIFI-41 14h

79

Ticket:

DIFI-64

Task: REST - Fix the resource classes we did not finish in
sprint 2.1
Description: Implement the methods put, get, getAll and delete in
the 6 resource classes. All these methods need to use
JSON as interchange format. Only put and get in the re-
source classes evaluationGroup, evaluationSet and com-
ment was implemented in sprint 2.1, so the rest of the
logic must be implemented in this sprint.
Sum, DIFI-64 19h
Ticket: DIFI-66
Task: HTTP methods between machines.
Description: Use HTTP methods (GET, PUT, DELETE) to get, set
and change data on other machines.
Sum, DIFI-66 6h
Ticket: DIFI-69
Task: Create prototype for the Drupal interface
Description: Create a prototype to help develop the graphical user
interface in Drupal.
Sum, DIFI-69 9h

80

Ticket:

DIFI-80

Task:

Drupal - Create module for evaluation group

Description:

A logged in user can create a new evaluation group.
Name is the only required field, created and id is gen-
erated by the system, active is default ”true”. After an
evaluation group is created, the user will go to the eval-
uation group view and see the new evaluation group. A
logged in user can also list all evaluation groups, expand
one group and see all the evaluation sets inside a group,

and sort this list by created date, active and name.

Sum, DIFI-80

21h

Total estimate:

83h

Table 6.8: Tasks, sprint 2.2

81

6.3.2 Testing

As an early test stage the team used the web-browser to see if the REST server returned correct responses.

6.3.3 Design

After consulting the customer contact the team had an architectural choice to make. Either the data could
be viewed as pure information in Drupal or the team could create the structure in Drupal as well (by creating
content pages). This was the team and group 6’s (Appendix decision to make. A requirement was to
solve this in the same way as group 6 which worked on another part of the same system. To use Drupal
as a pure view is less scalable than if one wanted to use other modules combined with the data. On the
other hand this solution will most probably be the easiest one (regarding code). After a discussion the team

decided to try to build up the content pages from scratch - group 6 agreed to this.

6.3.4 Project management

The customer contact visited Trondheim in conjunction with a Drupal course he was holding. The team took
this opportunity to give a short presentation of the project in addition to taking the course. The customer
was pleased with the result of the application so far and he was also impressed by the progress made in the

amount of time.

The supervisor asked for weekly status reports. The reports should contain an overview over which tasks
that was planned and which tasks that were finished. In addition, progress according to the plan, how
the cohesion in the team had been and how the weekly meeting with the customer contact went should be

included.

6.3.5 Result

The team managed to meet the two main goals this sprint. The team had a running application, as well as
a plan to solve the remaining tasks. The customer contact was comfortable to know that the architecture
and the planning were up to speed. Further the team will focus on expanding previous work to meet the
requirements. The team had some problems with the implementation of Drupal, there was a lot to read up

on and implementation was not as easy as expected.

82

6.3.6 Product backlog

After this sprint, the remaining tasks in the product backlog are:

Task ID Task Priority 1-5
DIFI-33 Create the FileResource class 2
DIFI-73 Create schema to create EvaluationSet 3
DIFI-74 Show all data on Evaluation 3
DIFI-76 Show all data on EvaluationSet 3
DIFI-78 Drupal: Create comment module 3
DIFI-79 Show all comments 2
DIFI-81 Create scheme to create Evaluation 2
DIFI-83 Get the collaboration agreement signed and scanned 1
DIFI-85 Drupal - Manage date field in all modules 3
DIFI-86 Get an overview and create a plan to fill the report 3
DIFI-87 Solve the id crash between REST and Drupal 2
DIFI-88 Write the needed information in the report according to the plan | 2
DIFI-91 Change PUT methods to use JAX-RS 3
DIFI-92 Change variables and method names to be more consistent 1
DIFI-93 Get the project running with maven 4
DIFI-94 Create GANT diagram 3
DIFI-95 Fix “save” bug in JPA 5
DIFI-96 Drupal: Change the edit field to retrieve data from the REST | 3
server
DIFI-97 Drupal: Hide the fields ID and created in form 1
DIFI-98 REST: Add the possibility to change an object without the need | 3
of all the relations
DIFI-99 Drupal: Get a object in return when a new object is stored in the | 3
database
DIFI-100 Drupal: Get all nodes from RESTserver and not from Drupal’s | 4
database

Table 6.9: Product backlog

83

6.4 Sprint 3.1

Sprint 3.1

Dates

Sprint planning

Monday, March 12th

Timeline

March 12th - March 23rd

Table 6.10: Dates, Sprint 3.1

6.4.1 Sprint backlog

Ticket: DIFI-76
Task: Drupal - Show all data on EvalutionSet.
Description: Make methods in Drupal to show all data in an EvaluainoSet.
Sum, DIFI-76 5h
Ticket: DIFI-85
Task: Drupal - Manage field “date” in all the modules.
Description: Make the field “date” invisible in the add form, and visible in
views.
Sum, DIFI-85 8h
Ticket: DIFI-86
Task: Make an overview of what the content in the final report should
be.
Description: Make an overview of what the content in the final report should
be, and make a plan on how the work in the next weeks must be
to meet this goal.
Sum, DIFI-86 10h

84

Ticket: DIFI-91

Task: REST: Change the put method in the resource classes.

Description: The REST put methods are now using an external jar file to re-
ceive a JSON-string as input. The methods to utilize JAX-RS
built-in conversion from JSON string to Java objects need to be
changed. The task includes making an adapter for handling rela-
tions between entities during marshalling/unmarshalling.

Sum, DIFI-91 17h

Ticket: DIFI-92

Task: Change method- and variable names to be more consistent.

Description: Makes cleaner code, and the code easier to read later.

Sum, DIFI-92 2h

Ticket: DIFI-93

Task: JPA - Maven implementation.

Description: Up to this point the team have used a normal dynamic web project
in eclipse. The customer required Maven for easy packaging. The
team needs to find out how dependencies in maven work, how to
make a eclipse project in maven, how to redeploy the .war file on
the Glassfish server after compiling.

Sum, DIFI-93 5h

Ticket: DIFI-94

Task: Gantt chart.

Description: Make a gantt chart to illustrate start and finish dates of the most
important parts of the system.

Sum, DIFI-94 4h

85

Ticket:

DIFI-95

Task: REST: Fix the “save”-bug in JPA.

Description: When the system saves a new entity to REST the many-to-one
relations do not update. Example: If the system saves a new
instance of EvaluationSet, the parent EvaluationGroup does not
update. The evaluation group does not get the new evaluation set
in its list of evaluation set before the server has been restarted.

Sum, DIFI-95 6h

Ticket: DIFI-96

Task: Drupal: Change where to retrieve data from.

Description: Change the fields in edit to get data from REST and not from
Drupal’s own database.

Sum, DIFI-96 8h

Ticket: DIFI-97

Task: Drupal: Hide fields in form.

Description: Make the fields ID and created hidden in form, but still visible in
view.

Sum, DIFI-97 3h

Ticket: DIFI-98

Task: REST: Change an entity without sending all information.

Description: Add the ability to change an entity without the need to send all
relational data.

Sum, DIFI-98 2h

Ticket: DIFI-99

Task: REST: Return the inserted object when PUT is used

Description: When the system creates a new object or edited an old object,
the group want to return the object from the REST-server.

Sum, DIFI-99 4h

86

Ticket: DIFI-100

Task: Drupal: Show nodes from REST-server instead of Drupal

Description: When creating an object via Drupal and displaying it to the user
is the data from Drupal’s own database used. This should be the
data from the REST-server, but Drupal is closely integrated with

it’s own database.

Sum, DIFI-100 15h

Total estimate: 84h

Table 6.11: Tasks, sprint 3.1

87

6.4.2 Testing

The team tried to make some unit testing for the EJB’s. Because of problems connecting the test classes to

another test database the team could not proceed to execute any automatic tests.

6.4.3 Design

The customer required the team to use JAX-RS API to convert Java objects to and from JSON. This would
make the logical code easier. This was the original solution, but because of problems with relations regarding
Java objects, the team had chosen to manually try to do the conversion. In Drupal the focus was still on

expanding the first module.

The team struggled with fixing bugs related to relations between Java objects, especially during cascading
updates. Up until now Java objects had lists containing all related objects, e.g an evaluation group would
contain a list of all it’s evaluation sets, as well as evaluation sets having the related evaluation group as an
attribute. During this sprint the team figured out that this was not necessary, since these lists were never
in use. We solved the bugs by removing the lists and implementing simple integer attributes containing the
primary key (id) of the related object, e.g all evaluation sets will contain the primary key of the evaluation
group it belongs to. If we ever need to know all the evaluation sets in an evaluation group we just query the

database instead of using the lists.

There were problems when starting to use maven, first the team had to restructure all the folders holding
the classes to be more maven friendly, and second the pom.xml file needed to be configured. This was very

time-consuming to get right.

6.4.4 Project management

Because of a lot of dependencies within the project, problems with Glassfish installations, and the customer’s

wish, the team started to use Maven to build and manage the project.

Since the customer is established in Sogndal the communication has mainly been over Skype, email and
phone. This could have caused difficulties regarding progress during the develop process, but granting the
customer access to the Git repository solved this. The Skype meetings were also vital since this was the

team’s main communication with the customer.

88

Figure 6.7: Skype meeting with the customer contact

6.4.5 Result

The plan the team made for the rest of the report became redundant because of the feedback from the
supervisor. Since the team got some constructive criticism on the mid-term delivery the team chose to focus
more on writing the report. To set up Maven and use it together with Eclipse turned out to be some struggle

at first but was solved by an eclipse plugin.

The team did not manage to finish DIFI-100 during sprint 3.1. The task is therefore transferred back to the

product backlog.

6.4.6 Product backlog

After this sprint, the remaining tasks in the product backlog are:

89

Task ID Task Priority 1-5
DIFI-33 Create the FileResource class 2
DIFI-73 Create schema to create EvaluationSet 3
DIFI-74 Show all data on Evaluation 3
DIFI-78 Drupal: Create comment module 3
DIFI-79 Show all comments 3
DIFI-81 Create scheme to create Evaluation 4
DIFI-83 Get the collaboration agreement signed and scanned 1
DIFI-87 Solve the id crash between REST and Drupal 2
DIFI-88 Write the needed information in the report according to the plan | 2
DIFI-100 Drupal: Get all nodes from RESTserver and not from Drupal’s | 4
database
DIFI-102 Report: Product 4
DIFI-103 Report: Documentation 4
DIFI-104 Report: Customer 4
DIFI-105 Report: Group 4
DIFI-106 Report: Process 4
DIFI-107 File handler 3
DIFI-129 Write tests to EJB 2

Table 6.12: Product backlog

90

6.5 Sprint 3.2

Sprint 3.2

Dates

Sprint planning

Monday, March 26th

Timeline

March 26th - April 13th

Table 6.13: Dates, Sprint 3.2

6.5.1 Sprint backlog

Ticket: DIFI-73
Task: Drupal - Create module for evaluation set
Description: A logged in user can create a new evaluation set. Title is the only
required field, created and id is generated by the system, subject
is optional and active is default set ‘true’. After an evaluation set
is created, the user will go to the evaluation set view and see the
new evaluation set. A logged in user can also list all evaluation
sets in an evaluation group, and sort this list by created date and
title.
Sum, DIFI-73 18h
Ticket: DIFI-74
Task: Drupal - Show all data on Evaluation
Description: A logged in user needs to have the possibility to list all evaluations
and the data associated to it. The attributes wanted are created,
name, criteria, selectedOptionID, and revisionOf.
Sum, DIFI-74 5h

91

Ticket:

DIFI-78

Task:

Drupal - Create module for comment.

Description:

A logged in user can create a new comment on an evaluation.
Name is the only required field, the attribute created, id, and
userlID is generated by the system, and deleted is default ‘false.
After a comment is created, the user will go to the comment view
and see the evaluation with the new comment bellow. A logged in

user will also be able to see all the comments inside an evaluation.

Sum, DIFI-78

14h

Ticket:

DIFI-79

Task:

Drupal - Show all comments

Description:

Each comment has a relation to an evaluation. According to the
FR-1.16, needs the user to have the possibility to show all com-

ments based on an evaluation.

Sum, DIFI-79

5h

Ticket:

DIFI-81

Task:

Drupal - Create module for evaluation

Description:

A logged in user can create, edit, delete a new evaluation inside
an evaluation set. Name and selectedOption are required fields,
created, id, edited, deleted, userID, revisionOf is generated by
the system, active is default ‘true’ and text is optional. After
an evaluation is created, the user will go to the evaluation view
and see the new evaluation. A logged in user can also list all
evaluations inside an evaluation set, and sort this list by created

date, active and title.

Sum, DIFI-81

18h

Ticket:

DIFI-83

Task:

Translate, sign and scan the collaboration agreement

Description:

The team has created a collaboration agreement between the
group members and this needs to be translated from norwegian

to english, signed by the group members and scanned.

Sum, DIFI-83

2h

92

Ticket: DIFI-100
Task: Drupal: Show nodes from REST-server instead of Drupal
Description: When creating an object via Drupal and displaying it to the user
is the data from Drupal’s own database used. This should be the
data from the REST-server, but Drupal is closely integrated with
it’s own database.
Sum, DIFI-100 15h
Ticket: DIFI-102
Task: Report: Product
Description: After feedback from the customer the team needed to provide a
more detailed requirement description. Be more consequent on the
ID and prioritization between tasks. Create an overall architecture
diagram and provide more detailed information about each task
in the iterations
Sum, DIFI-102 10h
Ticket: DIFI-103
Task: Report: Documentation
Description: After feedback from the customer we needed to implement some
new features in the documentation phase. The comments were
introduction, pre-study, project management, requirements, ap-
pendixes, and other minor improvements.
Sum, DIFI-103 4h
Ticket: DIFI-104
Task: Report: Customer
Description: After feedback from the customer the team needed to improve
the information about the customer management and supervisor
interaction.
Sum, DIFI-104 4h

93

Ticket: DIFI-105

Task: Report: Group

Description: After feedback from the customer the team needed to improve the
information about each member and the collaboration agreement

be translated form norwegian til english.

Sum, DIFI-105 6h
Ticket: DIFI-106
Task: Report: Process
Description: After feedback from the customer the team needed to improve

their documentation about the process. The tickets were inte-
gration testing in the teat plan, introducing other development
methods possible, GANTT diagram, activity plan and a updated

risk analysis.

Sum, DIFI-106 12h

Total estimate: 79h

Table 6.14: Tasks, sprint 3.2

94

6.5.2 Testing

Visual testing was used when creating Drupal modules and group members testing others group members

functions when issues were finished. Especially cURL was tested thoroughly.

6.5.3 Design

The work with Drupal continued. As everything else was nearing completion, Drupal had main focus together
with the report. Not much progress was made, which in turn caused some frustration. In between the sprint
3.2 and 4.1 new tasks were added and old tasks removed. One of the tasks removed was DIFI-100 because
of a design change in Drupal. Explanation about this and the new tasks in the product backlog is located

in section 4.1.

6.5.4 Project management

The team was informed that Difi had, and would be doing, some internal changes. This had some effect
on the progress. For 3-4 weeks during the development the team had almost no contact with the customer.
This could have resulted in a very negative impact on the development, but since this happened towards the
end of the project, combined with the fact that it was somewhat expected, the team managed to keep up
the workflow. This was solved by working on tasks that the team knew how to finish, and postponed things

that needed guidance.

It was clear from the start that although the team was doing well with the practical work, the report still
needed a lot of work. Through out the first meetings this was the main feedback, but the team also got
the impression that the supervisor was satisfied with the work done and the teamwork. The feedback has
gradually gotten more specific as to what parts of the report that need improvement. After the third delivery
we got an extensive list of good and bad things with the report, and this feedback was essential for how the

work with the report continued.

6.5.5 Product backlog

After this sprint, the remaining tasks in the product backlog are:

95

Task ID Task

Priority 1-5

DIFI-33 Create the FileResource class 3
DIFI-88 Write the needed information in the report according to the plan | 2
DIFI-107 File handler 4
DIFI-108 Drupal: Evaluation 4
DIFI-109 Drupal: Evaluation set 4
DIFI-110 Drupal: Evaluation group 5
DIFI-111 Drupal: Comment 3
DIFI-112 Drupal: Data flow 3
DIFI-125 Fix error handling 2
DIFI-126 Implement revision functionality 3
DIFI-127 Fix errors when running tests on server 2
DIFI-129 Write tests to EJB 3
DIFI-130 Transfer data from REST-server to Drupal 5
DIFI-131 Remove all active an id fields 2
DIFI-136 Show inactive evaluation groups 3

6.6 Sprint 4.1

Table 6.15: Product backlog

Sprint 4.1

Dates

Sprint planning

Monday, April 16th

Timeline

April 16th - April 27th

6.6.1 Sprint backlog

Table 6.16: Dates, Sprint 4.1

96

Ticket:

DIFI-108

Task: Drupal: Evaluation.

Description: Create the evaluation.inc file in Drupal by using php. This file
includes forms, tables and all the functionality needed in the Eval-
uation section.

Sum, DIFI-108 16h

Ticket: DIFI-109

Task: Drupal: EvaluationSet.

Description: Create the evaluationset.inc file in Drupal by using php. This
file includes forms, tables and all the functionality needed in the
EvaluationSet section.

Sum, DIFI-109 11h

Ticket: DIFI-110

Task: Drupal: EvaluationGroup.

Description: Create the evaluationgroup.inc file in Drupal by using php. This
file includes forms, tables and all the functionality needed in the
EvaluationGroup section.

Sum, DIFI-110 11h

Ticket: DIFI-111

Task: Drupal: Comment.

Description: Create the comment.inc file in Drupal by using php. This file in-
cludes forms, tables and all the functionality needed in the com-
ment section.

Sum, DIFI-111 13h

Ticket: DIFI-112

Task: Drupal: Data flow.

Description: Implement all needed buttons to navigate between the pages. This
also includes passing the needed data to the next page.

Sum, DIFI-112 4h

97

Ticket:

DIFI-125

Task: Fix error handling.
Description: Handle all possible errors in an appropriate way.
Sum, DIFI-125 2h
Ticket: DIFI-126
Task: Drupal - Implement revision functionality.
Description: Add the possibility to show all revisions of an Evaluation. This
also includes the functionality to add new revisions.
Sum, DIFI-126 20h
Ticket: DIFI-127
Task: Fix errors when running tests on the server.
Description: Find a way to solve the errors.
Sum, DIFI-127 15h
Ticket: DIFI-129
Task: Write tests to EJB.
Description: Write all remaining tests to check if the EJB classes are working.
Sum, DIFI-129 20h
Ticket: DIFI-130
Task: Transfer data from REST-server to Drupal
Description: Find a fast en stable way to transfer JSON strings from REST to
Drupal
Sum, DIFI-130 8h
Ticket: DIFI-131
Task: Remove all visible id and active fields.
Description: Remove all the fields showing id and active in all pages in Drupal.
Sum, DIFI-131 2h

98

Ticket: DIFI-136
Task: Show inactive Evaluation Groups.
Description: Add a button to show all inactive Evaluation Groups.
Sum, DIFI-136 3h
Total estimate: 123h

Table 6.17: Tasks, sprint 4.1

6.6.2 Testing

Testing in this sprint mostly consisted of testing the functionality through the newly created interface in

Drupal by clicking around in the web browser.

6.6.3 Design and implementation

To communicate between Drupal and the REST-server the team chose to use cURL. Using URL syntax,
cURL makes it possible to get and send information over HTTP. With ¢cURL sending/receiving the JSON
string to/from the rest server will ensure that the system gets a fast, stable and easy way of transferring
data. Figure shows an example of a cURL request where you try to get an evaluation group by an id,
extracts the http code and the data and decode the JSON string to an array, called evaluationgroup. All

the associated values to an evaluation group is now inside the array and are available for use.

As you can see in figure the team is using a method called kvrs_curl in the file kvrs.curl. Below is
kvrs_curl, which is the actual cURL request, with the variable ‘KVRS_BASE’ being the IP address of the

rest server and port number.

In this sprint some major changes in the Drupal code were necessary, as described below. This meant that

the team had to throw away nearly all of the current Drupal code and start over.

99

function kvrs curl(furl, Smethod, Sdata='"') {

Ecurl = corl _init('htcp:// variable get ('EVRS _BASE')
curl setopt ($curl, CURLOPFT CUSTCMEEQUEST, fmethod):
curl_setopt($curl, CURLOFT RETURNTRANSFER, TRUE):

if (Smethod = 'PUT'")} {
£jison = json_encode ($data):
curl setopt ($curl, CURLOPFT POSTFIELDS, £json);:
cur;_setopti$curl, CURLOPT HTITPHEADER, array |
'Content-Type: application/json',

'Content-Length: gtrlen(%j=son))

¥

Sresponse = curl exec($curl):;

fhttp_code = curl getinfo(fcurl, CURLINFC HITF CODE)
curl close ($curl):

return array ($http code, Sresponse);

Figure 6.8: The teams implementation of cURL

£data = Evrs_curl ('vurderingsgruppe/ . Eid,
$http code = $datal0]:

£930n = Sdata[l]:

fevaluationgroup = jsnn_decnde($jsnn, truoe) ;

Figure 6.9: Example of how to use curl in php

100

Zurl):

6.6.4 Project management

The team had some problems getting in touch with the customer and needed to get a confirmation on the
Drupal progress so far. After a few weeks the team managed to get contact with the customer and he
explained that it did not matter which of the implementation ways used, as long as the team collaborated

with the other Difi group, group6, and implemented Drupal with the same structure and approach.

The team called a meeting with group 6 for a discussion and clarification, and the team members must admit
the high frustration level. Still the team kept an open mind before the meeting. Even though group 6 made
a huge mistake (from our team’s point of view) not to discuss their decision or at least inform the team,
the result of the meeting was to change the Drupal code structure (see section 5.2.2). The customer agreed
upon this decision. The team and group 6 decided to create a convention agreement to simplify the work

for the people working at Difi when the two systems are merged together.

Since the team now had gotten information about the structure, from the convention agreement, the work
on the evaluation group started again. Things went good and the first of five entities in our module were
finished quite quickly. Developing the rest of the entities and connecting them together was now the teams
new goal. This worked out without any huge problems and things started to actually look and act like a real
system. Next focus is making the site more user friendly, like inserting buttons, redirecting to the correct
page after an action, creating navigation bars, sorting tables and all the rest of the little issues that takes a
lot more time than estimated. Concurrent, everyone reported back if they experienced some errors, bugs, or

some functionality that should be different.

The major changes in Drupal resulted in several of the Scrum tickets expire (both in the product backlog
and the completed tickets in earlier sprints). New ones had to be added. The teams reconciled and the team

invited group 6 to the next team building.

6.6.5 Result

The team managed to create all the planned pages in Drupal. Although not all the functionalities were
working as well as they should, the pages were visually looking very good. It turned out that it was a lot

easier to work with PHP in Drupal, rather than using nodes and hooks.

6.6.6 Product backlog

After this sprint, the remaining tasks in the product backlog are:

101

Task ID Task Priority 1-5
DIFI-33 Create the FileResource class 5
DIFI-88 Write the needed information in the report according to the plan | 2
DIFI-107 File handler 5
DIFI-128 Fix methods in FileResource, FileEJB and File to get the fileu- | 5
ploader working
DIFI-133 The code fails when an element no longer is returned as a list 3
DIFI-138 Multiupload of files to comment and evaluation 2
DIFI-148 Links to show where you are and the possibility to go back (bread- | 3
crumbs)
DIFI-149 Drupal: Bugfixing 3
DIFI-150 Drupal: Final testing 4

Table 6.18: Product backlog

102

6.7 Sprint 4.2

Sprint 4.2

Dates

Sprint planning

Monday, April 30

Timeline

April 30 - May 25

Table 6.19: Dates, Sprint 4.2

6.7.1 Sprint backlog

Ticket: DIFI-33
Task: REST: FileResource.
Description: Create FileResource class in REST server. This class includes the
functionality to use HT TP methods to GET, PUT, and DELETE
files between the REST server and database.
Sum, DIFI-33 12h
Ticket: DIFI-88
Task: Improve the report.
Description: Read through the report and find out what needs improvement,
if there should be any changes, and where the report need more
information.
Sum, DIFI-88 40h
Ticket: DIFI-107
Task: Drupal: File manager.
Description: Create the file manager functionality in Drupal to handle down-
loading and uploading files from and to the REST server.
Sum, DIFI-107 10h

103

Ticket:

DIFI-128

Task: Fix FileResource, FileEJB and File to get the FileUploader work-
ing.

Description: Fix all the respective Java classes to to make the fileUploader
functionality work.

Sum, DIFI-128 10h

Ticket: DIFI-133

Task: Drupal: Code fails when an element no longer is returned as a
list.

Description: Find a way to handle the inconsistent way of transferring JSON
objects from JAX-RS when the sending list only contains one
element.

Sum, DIFI-133 4h

Ticket: DIFI-138

Task: Drupal: MultiUpload of files.

Description: Handle multiupload of files in Drupal by extending the existing
form.

Sum, DIFI-138 20h

Ticket: DIFI-148

Task: Drupal: Navigation bar

Description: Create a navigation tree that gives the user an overview over the
structure in the system, for easy navigation and interaction.

Sum, DIFI-148 5h

Ticket: DIFI-149

Task: Drupal: Bug fixing

Description: Fix all known bugs reviled by the Final testing
Sum, DIFI-149 36h

104

Ticket:

DIFI-150

Task:

Drupal: Final testing

Description:

Test all features in the system by integration, system and user

testing to make sure the system is properly quality assured

Sum, DIFI-150

26h

Total estimate:

163h

105

6.7.2 Testing

The team has conducted unit-, integration-, system-, and usability testing this sprint. Because new compo-
nents and functionality was created, unit testing was necessary. The new components needed to be integrated
with the system, and this was tested through integration testing. The usability was tested at the same time
as the system testing — one team member went through all the requirements and tested them in Drupal.
Parts of the design on the Drupal site was changed because the members thought it would be more user-
friendly to do it in another way. Some errors were discovered through the system testing, but they were

quickly corrected.

6.7.3 Project management

Sunday 6th of May the team had an extraordinarily meeting where the customer demonstration was thor-

oughly planned.

The 7th of May the demonstration of the completed application was conducted through Skype. Four people
represented the customer at the meeting: the customer contact, and three employees who will use the
application in their work. The presentation was done together with group 6 (the other team working for
the customer), and consisted of giving the customer a “tour” through the application. Starting with data
flow diagrams, followed by sending HTTP request to the REST server, and analyzing the output. Further
was the graphical user interface in Drupal demonstrated, this showed that all the requirements was met.
The customer contact and the customer representatives were very satisfied with the demonstration and the

application. They requested that the final product should be delivered to them as soon as possible.

6.7.4 Result

During the sprint 4.2, the team successfully completed the fileuploader and the tasks related to the functional
requirements FR-20 - FR-24. In addition, comprehensive testing and solid bug prevention was completed.
Improving the report and giving the code a final touch has required a lot of effort but the goals for this

sprint was reached with satisfying results.

Working with Drupal for the last 3 months, the team has experienced Drupal’s advantages and disadvantages.
The impression is that as long as you use Drupal’s predefined GUI and the click and drag features everything
works as a charm. When you try to implement the functions on your own, it gets trickier. Drupal does not

support manipulating functions programmatically very well, and the documentation is incomplete. Drupal

106

has been a lot more work than the team first estimated, and has caused a lot of frustration in times, but as
the time went by and the team got more and more knowledge about how Drupal actually work, things went

of course better. We are very pleased with our final result and hoping that the customer is too.

6.7.5 Git

The team has worked on several branches, and the merging when the task is completed has been a fantastic
feature. The team is pleased with Git and it’s functionalities and many of the team members have got a

new favorite version control system.

Sl

Figure 6.10: Graph of different branches evolving and merging back to master (Black)

6.7.6 Updated system architecture diagrams

An updated version of the class diagram in figure [6.11]

An updated version of the entity relation diagram in figure [6.12

107

Model

EvaluationGroup

Getters/Satiers

Evaluation Set

-id:int
- oiteriasat : String
- act

ted long
-subject - String
- svaluationGroup : int

File

Evaluation

ol
- suslustionSat : int

-iaint
- uplosded

- desaription
- content : byt
- evaluation - int
ment : int

long
String

String

Getters/Satiers

Gatters/Setiers

Comment

option

REST arcitechture

Resource

- get(int): EvaluationGroup
- getalifsaclean): List

- get(int): Evaluation
- gatalliint, oal): List

- get(int): EvaluationSat
- gatalliint, oal): List

- getiint;: Comment
- getAll(int, bool] : List

gatCantentlint)
Response

EvaluationGro

- removeint

Evaluation
moveint)

EvaluationSet
Evaluation - removeing

- getByForaigniafint, int):
List

[

Logic | I\

h-level class diagram

EvaluationGroupEJB EvaluationE.JB JB [HEJB FileEJB OptionEJB
- geiByla(ini; File
ey Lt - geiByEvalustionSetAndAciive | | -getall List List —
acmiaing . Beelomtiondrous colesn) List X o Comment - geiByComment(int) List ~getByldiint : Option
B List cupling : List - - getFileLstint - List
=48,IDint): Evalustien - 9=iByEvalustionAndAciivelint | | - svaiFile) : Fi
EvalustionGioup. List eletelint : F
Zdeletefing - EveluationGroup -getallg : List t, bool) List - Valid(File
- oup) : boal Lt List - ForeignKeysValiofFile)
it = - oo bool
-save(Evalustion) - Evalustion -
- deletefing): Evalustion - sevelEualustionsety isForeignieysValid(Comment
- Evalustionsst }: bosl
Evalus
- valid(Evaluation) - bool
isForeignkeysValidEvelustion)
]

AbstractJPAHandler

- Entitylanager em

Figure 6.11: The final version of the class diagram

108

Evaluationgroup

File

EGrouplD FilelD
0.
Options "
Name 1.n Uploaded
Active OptionsID Name
Created Content
Description
has
0.n
1.1
has
has has
Evaluation
1,1 | EvaluationlD 1.1
0.n — 11
. Criteria has

Evaluation Set 14 on | Text 4,1 0.0 somment

Created —<>__§
ESetiD + Active CommentiD
CriteriaSet "~ UseriD
Active SelgqedOptiunlD Description

RevisionOf Active
Created
Subject Created

UserlD

Figure 6.12: The final version of the Entity Relation diagram

109

Chapter 7

Closure

This chapter sums up the team’s conclusions, lessons learnt and a discussion of the result.

7.1 Challenges summary

Drupal was the largest challenge during the project. The amount of work required to complete Drupal
tasks was higher than expected. None of the team members had any experience with Drupal or with PHP,
and the time needed to get the required knowledge was underrated by the team. This occasionally caused
frustration. To fix this problem the entire team attended a course arranged by the student organization,
Online. This course covered the basics of Drupal. The team was provided with a book about Drupal by the
customer that was helpful [I1]. Drupal remained a challenge, and as the development went on it was decided
to delegate more people to work intensively with Drupal. At the end of the project, when the application was
nearing completion, only the parts involving Drupal was lagging behind. In the last months of the project
the team did some changes to the overall design of the Drupal part. Up until then the architectural plan
had been complicated. After a meeting with the customer and the other Difi group, it was decided to go for

an alternative solution.

7.2 Group structure

At the start of the project the team appointed different roles to different members. All of these roles has

been executed as planned but some more than others. In meetings where everyone is present, the roles as

110

leader, Scrum master and secretary were working fine. However everyone cannot attend all meetings at all
times, and in cases where different roles were missing other members would fill in. The same applies to
the more programming relevant roles. This is a example of how agile development can be used to keep the
project going, since all members share responsibility and knowledge of the progress at all time. This has
at least given the different team members a taste of the different roles. In the end it was a good choice
to appoint responsibility to different members. The impact has been positive since this helped to keep
all aspects (customer, supervisor, testing, report and more) of the project up to date. The team made a
good call as to who were suited for which roles, and no roles where switched between members during the

development.

7.3 Risk management

One of the risks rated highest was ”Wrong time estimate”, and although the team worked hard to avoid
this, it still occurred. Estimating is hard, and the only way to make it easier is with more experience and
knowledge about the area that is to be estimated. Although this has been a small frustration for the team,
it has not been too hard to get through. As planned in the risk analysis this was solved by working hard
when a problem occurred and allocating tasks. The other high rated risk was the ”Discovery of unknown
tasks”, and this has become more apparent later in the development. The consequences is that tasks that
was estimated to require a given amount time suddenly is extended or postponed, which in turn means
delays. ”Loss of data”, ”Internal strife”, ”"Miss the deadline” and ”Prolonged sickness” are all risks that

where completely avoided.

7.4 Customer relations

In the beginning of the project the communication with the customer happened regularly, mainly over email
and Skype. This was vital in the starting phase since the team needed time to get to know the assignment.
For the first three weeks during the planning phase the team required a continues communication with the
customer to make sure the development was on the right track. During the project, the customer and the
team had some communication problems. This was due to internal changes at the customer, which in turn
meant that the customer contact had a lot of other important tasks to managed. Since the team and the
customer contact had a common understanding, due to good communication the first weeks, the downtime

in meetings did not effect the development as much as it would if it had occurred earlier in the development.

111

7.5 Supervisor interaction

The team has gotten important feedback and advises from the supervisor through regular meetings during
the semester. Since the teamwork has gone smoothly it has mainly been the report the team needed and
received help with. The supervisor assisted the team with the interaction and collaboration towards the

other Difi group, and made sure the team followed the overall plan.

7.6 Development method

The team chose to use a customization of the Scrum method. The team had three stand up-meetings every
week. Although this has gone well the team believe Scrum will work best if one has the opportunity to meet
every day. The team has experienced that Scrum is well suited for smaller projects. Tracking progress and
the possibility to monitor remaining work during the project were key factors of Scrum for the project. One

of the challenges with Scrum was the estimation of the tickets, which was at times hard to do correctly.

7.7 Social relations

The team arranged meetings outside of the project, involving activities like Playstation tournaments and
bowling. The decision to do this was made in order to become better acquainted and more confident at
the workplace. This has certainly been successful, and although the team started out with a good work-
relationship, this has evolved and become even better. These activities has helped to motivate and keep
the moral high. The team had no real conflicts, only mild discussions on development issues. This is most
likely due to the good starting point, the good working environment described above, and the effort made
to have fun, as well as getting work done. For some meetings members would bring snacks like fruit and
chocolate and the team arranged team-building exercises like pizza night, waffles and bowling with group 6.
The teams opinion is that the collaboration agreement has worked as planned and made the group members
more structured. Some of the group members has expressed their disapproval of the early meeting time,

however they have fulfilled their obligations mentioned in the contract.

112

7.8 Further development

The first and necessary part is merging the project with the other Difi group, group 6. The customer will
use their own CSS style schemas and fitting the criteria sets, criteria and options attributes from group
6. There is a bit of work, but the groups have collaborated to some extent to make the overall structure
and conventions more similar. The customer will then possess a fully working system for evaluating public

websites.

Further on, there are a lot of possibilities for expanding the application. With small modifications the system
can be used to evaluate other self-imposed type of websites. There may of course be some modifications of
the fields and changing of the criteria sets and criteria’s. The file and comment functionality is separated
from the rest of the functionality, to make it easy to implement comment and file functionality wherever it is
wanted. An example is the possibility to implement the functionality of adding a comment on an evaluation
set, adding a file to an evaluation group, and so on. With some larger changes the system may be used to

evaluate other items, not necessary websites. Examples are programs, apps and documents.

7.9 Conclusion

The whole project has been a huge learning experience for all of the members in the team. Every member
has worked hard and learned a lot of new technology, with specific knowledge in Java EE6, JPA 2.0, RESTful
web services and Drupal. In addition to the new technical knowledge the project has been a real-life example

of how to use Scrum as a development method and how to organize a project of this size.

In the beginning of the project, the team wanted to rotate the group members on the different technologies,
but as the project evolved the team experienced that this was hard to accomplish. It was inefficient and

since there always were two experts on each technology.

The team is very pleased with the result. All the requirements from the customer are ticked and done in a
way that every member can be proud of what they have produced. It has been a lot of work, and of course
there have been some complex tasks which have reduced the efficiency in periods, but the overall throughput
has been good. The members have motivated each other and the social gatherings have exclusively been a

positive effect on the cooperation between members.

113

7.9.1 Evaluation from the customer

After approval from the customer the team has translated the customer’s evaluation of the project. The

original can be found in Appendix H.

Difi, earlier Norge.no, has for years held ”Kvalitetskonferansen” (Conference of Quality), a conference where
the best websites of the public sector gets awarded. This is a visible tool that helps to improve websites and
services of the public sector, and one sees clearly how the criteria sets developed by Difi has implications for

development and acquisition of public sites and services.

Through all the years, Difi has used an internal task system called ”KVRS”, and even though the current
tool still works okey, we see the advantage in a new tool making the job easier. We saw this as a great
project for students taking this subject and divided the system into two separate tasks: One for criteria set
and one for evaluation. This group has implemented the system for Evaluation, a system that is required to
communicate both via REST-full web-services for future fully automatically testing on some criterias, but
also be easy to use for the many consultants we hire to perform the evaluations. We also see a huge potential

for the product in connection with establishing a competence center for universal design inside Difi.

Demonstration and code review show that we have got delivered a product that is almost ready for release.
The product meets all our needs. It has sometimes been difficult to find time to follow up the project, but
since requirements have been unchanged from day one, it does not appear to us that the product has been

affected by the lack of time.

The time for activating the product has not been determined yet, but it expects to be in use well before
the evaluations will be carried out in the spring. (The quality conference has got a new cycle his year, and
next time will be spring 2013.) We are very satisfied with the product and the product owners are looking

forward to starting using the program.

114

Bibliography

[10]
[11]

[12]

Andrew Burgess, Getting good with git. Rockable press, 2010.

Antonio Goncalves, Beginning Java™ EE 6 Platform with GlassFish™ 3: From Novice to Professional.

Apress Inc, 2009.

Barry W. Boehm, A spiral model of software development and enhancement,

http://dl.acm.org/citation.cfm?doid=12944.12948. August 1986.

Don Wells, Extreme Programming, A gentle introduction, http://www.extremeprogramming.org/.

September 2009.

Dr. Winston W. Royce, Managing the development of large software systems,

http://www.cs.umd.edu/class/ spring2003/cmsc838p/Process/waterfall.pdf. 1970.
Drupal, www.drupal.org. retrieved in February 2012.

Extreme Programming: A gentle introduction http://www.extremeprogramming.org/ retrieved in April

2012.

Karl Scotland, Aspects of Kanban, http://agilemanagement.net/index.php/Blog/
the_principles_of_the_kanban_method/. Summer 2010.

Ken Schwaber and Jeff Sutherland, The Scrum Guide, http://www.scrum.org/storage/scrumguides/
Scrum_Guide.pdf. October 2011.

Java XML & JSON binding, http://blog.bdoughan.com/. retrieved in February 2012.
Todd Tomlinson and John VanDyk , Pro Drupal 7 Development. 3rd Edition, Apress Inc, 2010.

Waterfall Model, ADVANTAGES, EXAMPLES, PHASES AND MORE ABOUT SOFTWARE DE-
VELOPMENT hitp://www.waterfallmodel.com/ retrieved in April 2012.

115

Appendix A

Glossary

Some words used in the report may need some more explanation.

Difi - Agency of Public Management and eGovernment, has the task to develop and renew the public

sector.

Evaluation - An evaluation as what is produced when an evaluator answers a criteria. This consists of

a chosen alternative and a explanation why this is alternative selected.

Evaluation set - This is a collection of evaluations. This will often be for a given website. For example,
a website will be considered at the three main topics ” Availability”, ”Customization” and ”Useful

content”, which again contains 10 to 12 evaluations.

Evaluation group - This is used to group sites/evaluationsets. An example of a evaluation group may

be ”"Best pages 2012”.

Group 6 - This is one of the other groups in the course IT2901. They chose to work with the other
half of the system this project applies to.

PHP - This is a general-purpose server-side scripting language.
Revision - Another version of the same evaluation.

Skype - This is a proprietary voice-over-Internet Protocol service and software application, used by the

team for most distance communication.

Ticket - A description of one work task, used in Scrum (further explanation at page 13).

116

Appendix B

Agreement

Cooperation agreement for group 8, Project II

Attitudes

Take responsibility for your own actions.

Constructive criticism should always be encouraged. Be open for constructive criticism.

Give compliments; build up each other’s confidence.

Ask if you have any questions. There are no stupid questions.

Everybody has responsibility for their own, and the groups’ activity.

Avoid alliances.

Meeting time, absence and duties

e Working hours are standardized from 10.15-11.00 Monday, Wednesday and Friday, and after that the
members of the group can work wherever they want. All the group members must be ready for stand-up

10.30.
e In the beginning of each sprint, 4 hours are set of for sprint planning.

e Everybody should notify the group in advance about absence, and if they are late. A buffer on possibly

5 minuets can be accepted.

117

e In case of absence, the absent must make sure to catch up on work and decisions that are made. But
at the same time, the rest of the group should also inform the absent about important information and

events.

e If the agreement/meeting points are broken the guilty group member should be punished. The person
may choose to buy a snack to bring to the meeting (equivalent to the cost of a 6-pack) — which must
be brought within the current sprint, or a round of beer (6-pack) that the group member must bring

to team building.
Work rules
e All group members shall be included in joint decisions. Those who are not present when a decision is

made will be able to express their opinion during the next group meeting.

e Group log/minutes from meetings with the customer, supervisor and scrum meetings, should be pre-

pared before the next meeting.

e The group must plan a team building/socialization night to strengthen the team spirit. Preferably

once a month.
e The members of the group must present any problems regardless of the significance.
e The group members should not exclude any problems.

e Group relevant conflicts should solved within the group.

118

Revisjon 01

Dato: C(}\-:F' Ocr:l L ' Sted:T(D(‘d (Lo DAL
Underskrift
: Fil T Ay
| @Zé?ﬁ%/% ’ _mmm)W@,{r\
| Haakon Sgnsteb Daniel Tandberg Abrahamsen Thomas Iversen

Al A~ /) 1 B
kel Agurg fend Mecca
Uﬁé%grd Oftedal ‘i%‘?alfr Astrid Klgve-Graue T

Appendix C

Minutes with customer

As an example of minutes with the customer, the team have selected two minutes; The first meeting, at

30.01.2012, and the demo when the customer was in Trondheim 02.03.2012.

C.1 Meeting with the customer, 02.03.12

e Agenda
Issue 1. A status update wanted both by the customer and the group.
Issue 2. Get clarification around how our group can work with the other group.

Issue 3. The group got some technical questions concerning drupal.

e Summery
Issue 1.
— The customer gave us an update about their situation; Because of internal reorganization at Difi,

the project has been given a low priority. The group got promised that the situation will be better

SO01.

— The customer wants us to send him a reminder mail where we tell him our meeting times. Re-

member this at the meeting 5. March!

— We have a working application with the database at the base level, and Drupal on the top level.

We manage to retrieve, add, and delete from Drupal - and at the same time update the database.

120

— We are yet to complete the first module in Drupal. When this is done we can use it as a template

for the remaining modules. There is a lot of work remaining in this area.

— We are missing all the the classes in REST, except EvaluationGroup. We have completed the

EvaluationGroup class in our REST-service, but the other classes are not finished yet.
— We are yet to complete the connection between Drupal and REST so that the resource classes
can be used by other methods as well.

Issue 2.

— Both the customer and the group want to work together with the other group (group 6) on some of
the project. The customer is going to talk to the course manager about this. He also explains the

connection between our groups. He draws both groups ER-diagrams, and explaining the context.
Issue 3.

— The customer gave us some tips on how we could use drupal:

*x Best practice is to create the code from scratch.

x We have to decide, in cooperation with the other group, how we want to use drupal; A content

page with all information, or basic pages where we have to handle the views etc. ourselves.

121

C.2 Skype meeting with the customer, 30.01.12

e Agenda
Issue 1. The group got questions regarding the use cases.
Issue 2. The group got questions regarding the domain model.
Issue 3. The group got questions regarding the usage of Virtual Box.
Issue 4. The group and the customer got to agree on what kind of documentation that should be
delivered along with the product.
e Summery

Issue 1.

— Should a logged in user see every evaluation with content?

* Everybody should see everything.

* The group should not use a user table, but an identifier (String) in the database to keep track

of users.

x The REST-service should not not have any form of user control.

— Criteriaset; Should this be generic for each page to be evaluated, or should the criteria set limit

which fields are visible?

* Criteriaset is just an identifier and should not limit the evaluation set.

* There should be an evaluation set for every page evaluated.

— Who have access to create and update evaluation groups? Only administrator, or also an evalua-

tor?
* The product should only have one user who is able to do everything, a role (administrator)
that has every right.

Issue 2.

— Can evaluation set consist of several evaluations from different web pages?

x The evaluation consists of the options that are selected. The evaluation must be saved. One

evaluation set contains evaluations only for one web page.
— The customer explains the domain model in more detail

x Files can be linked to a comment or to an evaluation. It is desirable to see which revision the

file was uploaded to.

122

x If the group needs any examples of how evaluation groups, evaluation sets and evaluations
should look like or how they are connected, there are plenty of examples at the website

kvalitet.difi.no, their previous webpages for the project we are developing.
— What is the option entity for?

x This not apart of this groups product, but an example is;
Case: find contact information on the page:
Optl — at the bottom of the page, 2 points.
Opt2 — on a separate page, 1 point.
Not possible to find, 0 point.

x It is Difi’s job to integrate, not part of the project.
Issue 3.

— Why should the group use Virtual Box? What are the pros and cons?

* With Virtual Box you do not have to mess up the operating system on your computer.
* The environment is the same across the computers.
x Need only to test against Ubuntu, as this is the operative system Difi uses.

x The operative environment is similar to Difis environment. This simplifies the workspace.
Issue 4

— Only minor documentation is required, but the customer would like to have;

* How to install glassfish

+* How to install the .jar files

123

Appendix D

Minutes with supervisor

We have selected the two most important minutes from the meeting with the supervisor:

D.1 Meeting with the supervisor 26.03.12

e Agenda
Issue 1. The supervisor is going to give feedback on the report delivered 9th of March.

Issue 2. Talk about the possibility of cooperation with the other group that develop to the other
part of the product.

Issue 3. General status update.

e Summery

Issue 1.

— The report needs more structure

* Minutes of meetings must be in the report.
- The supervisor want to see how we cooperate with the customer.

* The supervisor wants us to send a weekly status report to him every Monday. By doing this

the supervisor will get a better insight of the group’s progression.
Issue 2.

124

— The superivsor said it is important that the group meet the requirements of the course. As long
as the group do this it is no problem to work together with group 6 on some parts of the product.

It is important that we distinguish between what have been done in cooperation with the other
group.

Issue 3.

— The supervisor asked some questions;

*x How are the progress?
- Still a lot to do, but now the groups main fucos is on drupal.

x Do the group have any internal deadlines?
- The group have come to an agreement to get the product done in the beginning of May,

aswell as some minor deadlines when it comes to Drupal.

x How are the communication with the customer?

- The customer is very busy at the moment, but the group wants to have weekly meetings

with the customer.

— A new meeting with the supervisor is scheduled for 13th of April. The supervisor wants a new

version of the report on the 11th of April.

D.2 Meeting with the supervisor 30.01.12

e Agenda

Startup meeting with the supervisor.
e Summery

— The groups supervisor is Anh Nguyen Duc.
— The group and the supervisor want to meet every other week. Anh prefers Fridays at 11.00.

— The group presents each member to the supervisor, and explains what the group think of the
task.

— The supervisor explains the group it is not just the project that counts on the grade it is the
process as well!

— The supervisor tells the group that the group need to make a plan. If the project is to large
we have to notify the customer as early as possible. It is important that the group prioritize

requirements.

125

Appendix E

Extended textual use cases

Use case ID UC-1.1

Scope Evaluation group

Description List all active/inactive evaluation groups
Preconditions

1. A browser capable of opening Drupal sites installed

2. Server running

Assumptions None

Steps

1. Click on the evaluation group link
2. Click on the ”Show all all evaluation groups” button

3. Click on the ”Show deleted” button

Variations None

Table E.1: Use case, UC-1.1

126

Use case ID

UC-1.2

Scope Evaluation group

Description Create evaluation group

Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running

Assumptions None

Steps
1. Click on ”Create new evaluation group”
2. Fill in the required fields
3. Click save

Variations None

Table E.2: Use case, UC-1.2

127

Use case ID

UC-1.3

Scope Evaluation group
Description Update evaluation group
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exists an evaluation group
Steps
1. Click on the evaluation group to change
2. Click edit
3. Fill in the required fields
4. Click save
Variations

(a) If no evaluation group exists, create one and do step 1 again

Table E.3: Use case, UC-1.3

128

Use case ID

UC-1.4

Scope Evaluation group
Description Set an evaluation group as inactive
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
Steps
1. Select the wanted evaluation group
2. Click edit
3. Uncheck the active checkbox
4. Click save
Variations

(a) If no evaluation group exists, create one and do step 1 again

Table E.4: Use case, UC-1.4

129

Use case ID

UC-1.5

Scope Evaluation set
Description List all existing evaluation set
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
Steps
1. Click the wanted group
Variations

(a) If no evaluation group exists, create one and do step 1 again

Table E.5: Use case, UC-1.5

130

Use case ID

UC-1.6

Scope Evaluation set
Description Create evaluation set
Preconditions
1. A browser capable of opening Drupal sites installed.
2. Server running
Assumptions
1. There exist an evaluation group
Steps
1. Click on the wanted group
2. Click on new evaluation set
3. Fill in the required fields
4. Click save
Variations

(a) If no evaluation group exists, create one and do step 1 again

Table E.6: Use case, UC-1.6

131

Use case ID

UcC-1.7

Scope Evaluation set
Description Update evaluation set
Preconditions
1. A browser capable of opening Drupal sites installed.
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
Steps
1. Select the evaluation set to change
2. Click edit
3. Fill in the required fields
4. Click save
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set and do step 1 again

(b) If no evaluation set exists, create one and do step 1 again

Table E.7: Use case, UC-1.7

132

Use case ID

UC-1.8

Scope Evaluation set
Description Set an evaluation set as inactive
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
Steps
1. Select the evaluation set
2. Click edit
3. Uncheck the active checkbox
4. Click save
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set and do step 1 again

(b) If no evaluation set exists, create one and do step 1 again

Table E.8: Use case, UC-1.8

133

Use case ID

UC-1.9

Scope Evaluation set and evaluation
Description List all active/inactive evaluations in evaluation set
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
Steps
1. Click on the wanted evaluation group
2. Click on the wanted evaluation set.
3. Click on ”Show deleted”
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set and do step 1 again

(b) If no evaluation set exists, create one and do step 1 again

Table E.9: Use case, UC-1.9

134

Use case ID ucC-1.10
Scope Evaluation
Description List all revisions of evaluations
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Click on the evaluation link
2. Select an evaluation
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(¢) If no evaluation exists, create one and do step 1 again

Table E.10: Use case, UC-1.10

135

Use case ID UcC-1.11
Scope Evaluation
Description Get revision of evaluation
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Click on the evaluation link
2. Click on an evaluation
3. Click on the wanted evaluation from the list
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(c) If no evaluation exists, create one and do step 1 again

Table E.11: Use case, UC-1.11

136

Use case ID

UC-1.12

Scope Evaluation set and evaluation
Description Create evaluation in evaluation set
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
Steps
1. Select wanted set
2. Click on ”New evaluation”
3. Fill in the required fields
4. Select the evaluation set from a list
5. Click save
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set and do step 1 again

(b) If no evaluation set exists, create one and do step 1 again

Table E.12: Use case, UC-1.12

137

Use case ID UC-1.13
Scope Evaluation
Description Create new revision of evaluation
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Select the wanted evaluation
2. Click on "Edit”
3. Change the some data
4. Click save
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again.

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 agai

(¢) If no evaluation exists, create one and do step 1 again

Table E.13: Use case, UC-1.13

138

Use case ID UcC-1.14
Scope Evaluation
Description Mark evaluation deleted
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Select the wanted evaluation
2. Click delete
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(¢) If no evaluation exists, create one and do step 1 again

Table E.14: Use case, UC-1.14

139

Use case ID

UcC-1.16

Scope Evaluation and comment
Description List all comments on evaluation
Preconditions

1. A browser capable of opening Drupal sites installed

2. Server running
Assumptions

1. There exist an evaluation group

2. There exist an evaluation set

3. There exist an evaluation
Steps

1. Select an evaluation
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(¢) If no evaluation exists, create one and do step 1 again

Table E.15: Use case, UC-1.16

140

Use case ID

UC-1.17

Scope Evaluation and comment
Description List all comments on revision of evaluation
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Select the wanted evaluation
2. Select the wanted revision
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(¢) If no evaluation exists, create one and do step 1 again

Table E.16: Use case, UC-1.17

141

Use case ID

UC-1.18

Scope Evaluation and comment
Description Add comments on revision of evaluation
Preconditions
1. A browser capable of opening Drupal sites installed
2. Server running
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
Steps
1. Select the wanted evaluation
2. Select the wanted revision
3. Fill in the required fields in the comment section
4. Click on add comment
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(¢) If no evaluation exists, create one and do step 1 again

Table E.17: Use case, UC-1.18

142

Use case ID UC-1.19
Scope Comment
Description Mark comment deleted
Preconditions
1. UC-1.11
2. An existing comment on the evaluation
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
4. There exist a comment
Steps
1. Select the wanted comment
2. Click on ”Delete comment”
Variations

(a) If no evaluation group exists, create one. Then create an evaluation
set with and an evaluation, and then create a comment. Do step 1

again

(b) If no evaluation set exists, create one with and evaluation and a

comment. Then do step 1 again
(c¢) If no evaluation exists, create one and a comment. Do step 1 again

(d) If no comment exists, create one and do step 1 again

Table E.18: Use case, UC-1.19

143

Use case ID

UC-1.20

Scope Comment and file
Description Add file(s) on comment
Preconditions
1. Running system
2. An existing evaluation
Assumptions
1. There exist an evaluation group
2. There exist an evaluation set
3. There exist an evaluation
4. There exist a comment
Steps
1. Fill in the required fields in the comment section
2. Click add file in comment section
3. Select a file from your device
4. Jump to step 2 as many times as wanted
5. Click add comment
Variations

(a) If no evaluation group exists, create one. Then create an evaluation
set with and an evaluation, and then create a comment. Do step 1

again

(b) If no evaluation set exists, create one with and evaluation and a

comment. Then do step 1 again
(¢) If no evaluation exists, create one and a comment. Do step 1 again

(d) If no comment exists, create one and do step 1 again

Table E.19: Use case, UC-1.20
144

Use case ID

UC-1.22

Scope Evaluation and file
Description List all files on comment
Preconditions

1. Running system

2. An existing evaluation
Assumptions

1. There exist an evaluation group

2. There exist an evaluation set

3. There exist an evaluation

4. There exist a comment
Steps

1. Select the wanted evaluation
Variations

(a) If no evaluation group exists, create one. Then create an evaluation
set with and an evaluation, and then create a comment. Do step 1

again

(b) If no evaluation set exists, create one with and evaluation and a

comment. Then do step 1 again
(¢) If no evaluation exists, create one and a comment. Do step 1 again

(d) If no comment exists, create one and do step 1 again

Table E.20: Use case, UC-1.22

145

Use case ID

UC-1.23

Scope Evaluation and file
Description List all files on evaluation
Preconditions

. Running system

. An existing evaluation
Assumptions

. There exist an evaluation group

. There exist an evaluation set

. There exist an evaluation
Steps

. Select the wanted evaluation
Variations

If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

If no evaluation set exists, create one with and evaluation. Then do

step 1 again

If no evaluation exists, create one and do step 1 again

Table E.21: Use case, UC-1.23

146

Use case ID

UC-1.24

Scope Evaluation and file
Description List all files on revision of evaluation
Preconditions

1. Running system

2. An existing evaluation
Assumptions

1. There exist an evaluation group

2. There exist an evaluation set

3. There exist an evaluation
Steps

1. Select the wanted evaluation

2. Select the wanted revision
Variations

(a) If no evaluation group exists, create one. Then create an evaluation

set with and an evaluation, and do step 1 again

(b) If no evaluation set exists, create one with and evaluation. Then do

step 1 again

(c) If no evaluation exists, create one and do step 1 again

Table E.22: Use case, UC-1.24

147

Appendix F

Extended test results

Test and show the tests done on the evaluation groups.

Test ID

ST-01

Test name

Evaluation group 1

Purpose To test if the requirement FR-1.1, List all active/inactive evalua-
tion groups, is met through the Drupal site
Requirements Running system

Test description

1. Click on ”Show all evaluation groups”

All the active evaluation groups appear

2. Click on ”Show deleted”

All the deleted (inactive) evaluation groups appear

Test result

PASSED

Table F.1: Evaluation group test, show all evaluation groups

148

Test ID

ST-02

Test name

Evaluation group 2

Purpose To test if the requirement FR-1.2, Create evaluation group, is met
through the Drupal site
Requirements Running system

Test description

—_

. Click on ”Show all evaluation groups”

[\

. Click on ” Add new evaluation group”

3. Write the name of the new evaluation group

N

. Click on ”Add”

A note confirms that the evaluation group is added, and

the details about the evaluation group appear

Test result

PASSED

Table F.2: Evaluation group test, create evaluation group

149

Test ID

ST-03

Test name

Evaluation group 3

Purpose

To test if the requirement FR-1.3, Update evaluation group, is

met through the Drupal site

Requirements

1. Running system

2. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”
2. Choose the evaluation group to be edited
3. Click on ”Edit”

4. Edit the name of the evaluation group

A note confirms that the evaluation group is updated

Test result

PASSED

Table F.3: Evaluation group test, edit evaluation group

150

Test ID

ST-04

Test name

Evaluation group 4

Purpose

To test if the requirement FR-1.4, Set evaluation group inactive,

is met through the Drupal site

Requirements

1. Running system

2. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”
2. Choose the evaluation group to be deleted

3. Click on ”Delete”

A note confirms that the evaluation group is deleted

Test result

PASSED

Table F.4: Evaluation group test, delete evaluation group

151

Test and show the tests done on the evaluation set.

Test ID ST-05
Test name Evaluation set 1
Purpose To test if the requirement FR-1.6, Create evaluation set, is met

through the Drupal site

Requirements

1. Running system

2. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”

2. Click on the evaluation group the evaluation set should be-

long to
3. Click on ”Add new evaluation set”
4. Enter the subject of the evaluation set
5. Choose a criteria set

6. Click on ”Save”

A note confirms that the evaluation set is added, and

the details about the evaluation set appear

Test result PASSED

Table F.5: Evaluation set test, create evaluation set

152

Test ID ST-06

Test name Evaluation set 2

Purpose To test if the requirement FR-1.7, Update evaluation set, is met

through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set

3. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”

2. Click on the evaluation group the evaluation set belongs to
3. Choose the evaluation set to be edited

4. Click on ”Edit”

5. Edit the name of the evaluation set

6. Click on ”Save”

A note confirms that the evaluation set is updated, and

the details about the evaluation set appear

Test result PASSED

Table F.6: Evaluation set test, edit evaluation set

153

Test ID

ST-07

Test name

Evaluation set 3

Purpose

To test if the requirement FR-1.8, Set evaluation set inactive, is

met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set

3. There exist an evaluation group

Test description

1. Click on ”Show all evaluation groups”
2. Click on the evaluation group the evaluation set belongs to
3. Choose the evaluation set to be deleted

4. Click on "Delete”

A note confirms that the evaluation set is deleted

Test result

PASSED

Table F.7: Evaluation set test, delete evaluation set

154

Test and show the tests done on comment.

Test ID

ST-14

Test name

Comment 1

Purpose

To test if the requirement FR-1.16, List all comments on evalua-

tion, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

)

1. Click on ”Show all evaluation groups’
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

A list of the comments on the evaluation appear

Test result

PASSED

Table F.8: Evaluation test, list all comments on evaluation

155

Test ID

ST-15

Test name

Comment 2

Purpose

To test if the requirement FR-1.17, List all comments on revision

of evaluation, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on the desired revision of evaluation

A list of the comments on the evaluation appear

Test result

PASSED

Table F.9: Evaluation test, list all comments on revision of evaluation

156

Test ID

ST-16

Test name

Comment 3

Purpose

To test if the requirement FR-1.18, Add a comment on revision

of evaluation, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”

2. Click on the desired evaluation group

3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Add a comment on the revision of the evaluation

6. Click on ”Save”

A note confirms that the comment is added

Test result

PASSED

Table F.10: Evaluation test, add a comment on revision of evaluation

157

Test ID

ST-17

Test name

Comment 4

Purpose

To test if the requirement FR-1.19, Mark comment deleted, is met
through the Drupal site

Requirements

1. Running system

2. There exist an evaluation set

3. There exist an evaluation group
4. There exist an evaluation

5. There exist a comment

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on the desired comment

6. Click on ”Delete”

A note confirms that the comment is deleted

Test result

PASSED

Table F.11: Evaluation test, mark comment deleted

158

Test [F.12] [F.13] [F.14], [F.15] and [F.16] show the tests done on adding files.

Test ID

ST-18

Test name

Purpose

To test if the requirement FR-1.20, Add file(s) on comment, is

met through the Drupal site

Requirements

. Running system

. There exist an evaluation set

. There exist an evaluation group
. There exist an evaluation

. There exist a comment

Test description

. Click on ”Show all evaluation groups”
. Click on the desired evaluation group
. Click on the desired evaluation set

. Click on the desired evaluation

. Add a comment

. Click on 7+ Add files”

It is possible to attach several files, by clicking on 7+
Add files” again

. Choose the desired file and add a description

. Click on ”Save”

A note confirms that the comment, and the file is added.

And the information about the file appears.

Test result

PASSED

Table F.12: Evaluation test, add file(s) on comment

159

Test ID

ST-19

Test name

File 2

Purpose

To test if the requirement FR-1.21, Add file(s) on revision of eval-

uation, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on ”Edit”

6. Click on "+ Add files”

It is possible to attach several files, by clicking on 7+
Add files” again

7. Choose the desired file and add a description

8. Click on ”Save”

A note confirms the file is added. The information

about the file appears.

Test result

PASSED

Table F.13: Evaluation test, add file(s) on revision of evaluation

160

Test ID

ST-20

Test name

File 3

Purpose

To test if the requirement FR-1.22; List all files on comment, is

met through the Drupal site

Requirements

1. Running system

2. There exist an evaluation set

3. There exist an evaluation group
4. There exist an evaluation

5. There exist a comment

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on the desired comment

The file(s) attached the comment is listed

Test result

PASSED

Table F.14: Evaluation test, list all files on comment

161

Test ID

ST-21

Test name

File 4

Purpose

To test if the requirement FR-1.23, List all files on evaluation, is

met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

The file(s) attached the evaluation is listed

Test result

PASSED

Table F.15: Evaluation test, list all files on evaluation

162

Test ID ST-22

Test name File 5

Purpose To test if the requirement FR-1.24, List all files on revision of
evaluation, is met through the Drupal site

Requirements

1. Running system
2. There exist an evaluation set
3. There exist an evaluation group

4. There exist an evaluation

Test description

1. Click on ”Show all evaluation groups”
2. Click on the desired evaluation group
3. Click on the desired evaluation set

4. Click on the desired evaluation

5. Click on the desired revision of the evaluation

The file(s) attached to the revision of the evaluation is

listed

Test result

PASSED

Table F.16: Evaluation test, list all files on revision of evaluation

163

Appendix G

User guides

G.1 Drupal

This guide consists of screenshots of each page on the Drupal website. Each screenshot got comments

explaining what all the buttons and forms do.

Home

e Difi KVRS
o Difi KVRS
» Visalle Serverstatus
vurderingsgrupper Server IP: 78.91.10.162
Port: 8080
. Server status: Online
User login
TSeEamer IEnd.re server (admin only)l
Password #

Change the REST-service ip and port

* Create new account
» Request new password

Log in

Figure G.1: Page showing server status

164

Home

Fome This table shows an overview of all active
evaluationgroups
Navigation : :
= Vis alle vurderingsgrupper
o Difi KVRS
e
vurderingsgrupper Beste netisteder 2011 07.05.2012- K. 12:21
o Opprett
vurderi e || |
S Legg til ny vurderingsgruppe Vis slettede
User login
u : Redirects to the page where a new
evaluationgroup can be added
Password *

| Changes the table of all active evaluationgroups to all
deleted evaluationgroups

+ Create new account
+ Request new password

Log in

Figure G.2: Page showing all evaluationgroups

Home

Home » Vis alle vurderingsgrupper The input form for adding an evaluationgroup

Navigatios 4

B Opprett vurderingsgruppe
o Difi KVRS
- Visalle Tittel

vurderingsgrupper

o Opprett _—m

vurderingsgruppe
Lagre Avbryt
User login
Redirects to all evaluationgroups without

Username * saving the evaluationgroup
Password *

Adds a new evaluationgroup. Redirects to the
» Create new account evaluationgroup just created.

» Request new password

Log in

Figure G.3: Page for adding an evaluationgroup

165

Home

Home » Vis alle vurderingsgrupper

Nawvigation

« Difi KVES
> Visalle
vurderingsgrupper
o Opprett
vurderingsgruppe

User login

Username *

Password *

+ Create new account
+ Request new password

Log in

Overview of the evaluationgroup

Vurderingsgruppe

O

MNavn Beste netisteder 2011
Opprettet 07.05.2012- K. 12:21
Rediger || Slett ——Deletes this evaluationgroup
Vurderingsett

Brukervennlighet 08.05.2012 -kl 16:48

Legg til nytt vurderingsett

| Vis slettede |

Redirects to the page where an
evaluationset can be added

Changes the table of active
evaluationsets to display deleted
evaluationsets

Redirects to the page where this evaluationgroup can be

Table of active evaluationsets in this
evaluationgroup

Figure G.4: Page for viewing an evaluationgroup

166

Home

Home » Vis alle vurderingsgrupper » Vurderingsgruppe The input form for adding an evaluationset

Navigatio .
B — Opprett vurderingsett |
= Difi KVES
» Visalle Emne
vurderingsgrupper
Kriteriesett
User login Kriteriesett] IZ|
ST Vurderingsgruppe
Beste nettsteder 2011
Password *
Lagre | Avbryt |

* Create new account
+ Request new password Redirects to the evaluationgroup ths evaluationset would
have belonged to if it was added, without saving the
evaluationset
Log in

Adds a new evaluationset. Redirects to the
evaluationset just created.

Figure G.5: Page for adding an evaluationset

167

Home

Home » Vis alle vurderingsgrupper » Vurderingsgruppe
Overview of this evaluationset

Navigation]
e Vurderingsett
o Difi KVRS
vt I S
vurdenngsgrupper Emne Brukervennlighet
Opprettet 08.05.2012 - kl. 16:48
) Kriteriesett Kriterieset3
User login
‘urderingsgruppe Beste nettsteder 2011
Username *
e Rediger slett eletes this The overall score of this evaluationset
evaluationset I
Password #

| Summering av oppnadde poeng

5 av 12 (hardkodet verdier - dynamisk status bar)

+ Createnew account P 7%

+ Request new password

Vurderinger
Log in
e I N
Kriterie Havy 09.05.2012-K. 11:13 Gjest
Legg til ny vurdering Vis slettede

Redirects to the page where an
evaluation can be added

Changes the table of active
evaluations to display deleted
evaluations

Redirects to the page where this
evaluationset can be edited

Table of active evaluations in this evaluationset

Figure G.6: Page for viewing an evaluationset

168

Home

Home » Vis alle vurderingsgrupper » Vurderingsgruppe » Vurderingsett

Navigation

+ Difi KVRS
v Visalle
vurderingsgrupper

User login

Username *

Password *

« Create new account
s Request new password

Log in

Add afile to the
evaluation being created

The input form for adding an evaluation

Opprett vurdering |

Kriteri
Kriteriel E

Valgt alternativ
@ Alternativ1
@ Alternativ 2
@) Alternativ g
@ Alternativ 4

Begrunnelse

Bruker

Gjest

+ Legag til filer || Lagre Avbryt [————————————" Redirects to the evaluationset

this evaluation would belong
to if it was created, without
saving the the evaluation

Adds a new evaluation. Redirects to the evaluation
just created

Figure G.7: Page for adding an evaluation

169

_

Home » Vis alle vurderingsgrupper » Vurderingsgruppe » Vurderingsett

Navigation

s Difi EVRS

» Viz alle
vurderingssrupper

User login

Username *

+ Create new acconnt
+ Request new password

Log in

Redirects to the page

Vurdering

Overview of this evaluation

Beskrivelse HEHEHEHE

Opprettet 09.05.2012 - bl. 11:13

Kriterie Hritesiad Links to_ the overview
of the file

Walgt slternativ 2

Bruker Gjest Download file

Last ned

Filer Hydrangesas.jpg

Soreen shot 2012-05-08 at 10.42.52 PM.png

{ Mer info)

Revisjoner:
@ o9.05.2012 -kl 1z

™ ob.os.zo1z - Kl 19:56

) oB.05.2010 - KL 17:57

where this evaluatior
can be edited

Table of active
comments on this
evaluation

Add a commenton
this evaluation

Add a file to the
comment thats being
created

|
S || o I_Deletesthis Table of files which

evaluation belongs to this evaluation

List of all revisions of this
evaluation

Kommentarer

Dette er en kemmentar!

e
Gijest 1

09.05.2012 - kl. 14:08

Vis slettede kommentarer

Changes the table of active comments to

display deleted comments

Legg til kommentar

Eruker

Cjest

+ Legg til filer

Avbryt

Figure G.8: Page for viewing an evaluation and adding a comment

170

Home

Home » Vis alle vurderingsgrupper » Vurderingsgruppe » Vurderingsett » Vurdering

Navigation
« Difi KVRS

+ Visalle
vurderingsgrupper

User login

Username *

Password *

* Create new account
+ Request new password

Log in

Overview of the comment

Kommentar |
e
Beskrivelse Dette er en kommentar!
Opprettet 09.05.2012 - kl. 14:08
Bruker Gjest
teas I
Hydrangeas.jpg I(Mer info)I
Slett || Tilbake til vurdering |
Delete this comment Download file Links to the overview of the

file

Redirects to the
evaluation this
comment belong to

Table of files which belongs to this
comment

Figure G.9: Page for viewing a comment

Home

Home » Vis alle vurderingsgrupper » Vurderingsgruppe » Vurderingsett » Vurdering » Kommentar

Navigation
o Difi KVRS

» Visalle
vurderingsgrupper

User login

Username *

Password #

* Create new account
+ Request new password

Log in

Overview of this file

Fil

Filnavn Hydrangeas jpg
Lastet opp 09.05.2012 - K. 14:.08
Filbeskrivelse Bilde!

Vedlegg ILast ned Hydrangeas.jpgl

Download file

Redirects to this files evaluation if the file
belongs to an evaluation, or to this files
comment if it belongs to a comment.

Figure G.10: Page for viewing a file

171

G.2 REST-service

This guide gives an overview of all the valid queries which the REST-service offers. The queries are split
into groups based on what type of entity that is handled during the processing of the query. The queries
are also listed based on the HT'TP method it uses (GET, PUT or DELETE). The parts of the urls that
is marked with [integer] is suppose to be replaced with an integer value, as well as the [boolean] should be
replaced with either true or false. Setting the boolean parameter to true will make the service return active

entities, false will return inactive entities.

e Evaluation group

- GET
* vurderingsgruppe/alle
Returns all evaluation groups in the system.

* vurderingsgruppe/alle?aktiv=[boolean]

Returns all active or inactive evaluation groups based on the parameter.
* vurderingsgruppe/[integer]
Returns the evaluation group with the same primary key as the integer given in the url.

- PUT

* vurderingsgruppe/
This query either updates or adds a new evaluation group. If the json string contains
an id it will update the evaluation group with the same primary key as the id, else a new

evaluation group will be added. Returns the new/updated evaluation group.
— DELETE

* vurderingsgruppe/|[integer]
This query will set the evaluation group, with the given integer as primary key, inactive.

Returns this evaluation group.
e Evaluation set

- GET

* vurderingsett/alle

Returns all evaluation sets in the system.

* vurderingsett/alle?aktiv=[boolean]

Returns all active or inactive evaluation sets based on the parameter.

172

x vurderingsett/alle?aktiv=[boolean]&vurderingsgruppe=|[integer]
Returns all active or inactive evaluation sets with evaluation group id equal to the pa-
rameter.
* vurderingsett/[integer]

Returns the evaluation set with the same primary key as the integer given in the url.
- PUT

* vurderingsett/
This query will either update or add a new evaluation set. If the JSON string contains
an id it will update the evaluation set with the same primary key as the id, if not a new

evaluation set will be added. Returns the new/updated evaluation set.
— DELETE

*x vurderingsett/[integer]
This query will set the evaluation set, with the given integer as primary key, inactive.

Returns this evaluation set.
e Evaluation

- GET

* vurdering/alle
Returns all evaluations in the system.
*x vurdering/alle?aktiv=[boolean]
Returns all active or inactive evaluations based on the parameter.
*x vurdering/alle?aktiv=[boolean]&vurderingsett=[integer]
Returns all active or inactive evaluations with evaluation set id equal to the parameter.
* vurdering/[integer]
Returns the evaluation with the same primary key as the integer given in the url.
*x vurdering/revisjonsgruppe/[integer]
Returns all evaluations with ”"revisionOf” attribute equal to the integer given in the url.

- PUT

* vurdering/

This query will always add a new evaluation. If the JSON string contains an id it will
set the evaluation with that id to inactive, and a new evaluation will be added. The new
evaluation’s "revisionOf” attribute will be a copy of the old evaluations "revisionOf” attribute.
If the JSON string does not contain an id, a new evaluation will be added and it’s ”revisionOf”

attribute will be a copy of its new primary key (id). Returns the new evaluation.

173

— DELETE

*x vurdering/[integer]
This query will set the evaluation, with the given integer as primary key, inactive. Re-

turns this evaluation.
¢ Comment

- GET
* kommentar/alle
Returns all comments in the system.

* kommentar /alle?aktiv=[boolean)]

Returns all active or inactive comments based on the parameter.

* kommentar/alle?aktiv=[boolean]&vurdering=|[integer]

Returns all active or inactive comments with evaluation id equal to the parameter.
* kommentar/[integer]
Returns the comment with the same primary key as the integer given in the url.

- PUT

* kommentar/
This query will either update or add a new comment. If the JSON string contains an id
it will update the comment with the same primary key as the id, if not a new comment will

be added. Returns the new/updated comment.
— DELETE

* kommentar/[integer]
This query will set the comment, with the given integer as primary key, inactive. Returns

this comment.
o File

- GET
x fil/[integer]/vis
Returns the file with the same primary key as the integer given in the url.
x fil/alle?vurdering=[integer]
Returns the metadata of the files with evaluation id equal to the parameter.

* fil/alle?kommentar=[integer]

Returns the metadata of the files with comment id equal to the parameter.

174

- PUT

x fil/filopp
This query will either update or add a new file. If the JSON string contains an id it
will update the file with the same primary key as the id, if not a file comment will be added.
Returns the new/updated file’s metadata.
x fil/kopierfil/[integer|?vurdering=[integer|
This query makes a copy of the file with primary key equal to the given integer in the
url. The new files evaluation id gets set to the integer taken as the last parameter. Returns

the new file’s metadata.
— DELETE

x fil/[integer]
This query will remove the file with primary key equal to the id given in the url. Returns

the deleted file.
e Option

- GET

* alternativ/[integer]

Returns the option with primary key given in the url.

G.3 Installation

1. Install glassfish (http://glassfish.java.net/)

2. Install mysql driver for java on the glassfish server (http://dev.mysql.com/downloads/connector/j/).
3. Add a jdbc resource in glassfish named jdbc/kvrs-vurdering.

4. Deploy the WAR file onto the glassfish server.

5. Install drupal server http://drupal.org.

6. Add the product’s drupal modules to you drupal server’s modules folder.

Preferred path is ”../sites/all/modules”.

7. Set the ip and port of the REST-service by logging in to drupal and browsing
"http://[drupal-server-ip]:[port] /drupal /main#overlay=admin/config /kvrs/settings”.

175

8. Testing drupal

(a) Go in to drupal’s GUL

(b) Click modules at the top bar.

(¢) Find ”Testing” (simple test) and enable that module by checking the box and clicking save.
(d) Click configuration.

(e) Choose ”Testing” in the ”Development” section.

(f) Check KVRS.

(g) Click run tests.

176

Appendix H

Evaluation from the customer

Direktoratet for forvaltning og IKT, og tidligere som Norge.no, har i en arrekke arrangert Kvalitetskonfer-
ansen, en konferanse hvor de beste nettstedene i offentlig sektor kares. Dette er et synlig virkemiddel som
bidrar til bedre nettsider og tjenester mot publikum, og man ser tydelig hvordan kriteriesett som er utviklet

av Difi far folger for utvikling og anskaffelse av nettsider og tjenester i den enkelte kommune og etat.

T alle ar har vi brukt et internt fagsystem som vi kaller for KVRS, og selv om verktgyet fungerer helt fint
ser vi behov for nytt verktgy pa omradet. Vi sa dette som en flott oppgave for studenter i dette faget, og
vi delte systemet i to oppgaver, en for kriteriesett, og en for vurdering. Denne gruppen har laget systemet
for vurdering, et system som har krav om a kunne kommunisere bade via REST-grensesnitt for fremtidige
helautomatisert test pa enkelte kriterier, men ogsa veere enkelt & bruke for de mange konsulentene vi leier inn
for gjennomfgring av evalueringene. Vi ser ogsa stort potensiale for produktet i forbindelse med etablering

av kompetansesenter for universell utforming i Difi.

Demonstrasjon og kodegjennomgang viser at vi har fatt levert et produkt som sa a si er klart til produksjon-
ssetting. Produktet oppfyller alle vare gnsker og behov, som er kommunisert til studentene. Det har tidvis
veert vanskelig a finne tid til a fglge opp prosjektet, men siden kravspesifikasjonen er uendret fra dag én ser

det ikke ut til at dette har gatt ut over produktet.

Produksjonssettingstidspunkt for produktet er ikke fastsatt enda, men det ventes & veere i produksjon i god
tid for evalueringene skal gjennomfgres pa varen (Kvalitetskonferansen har fatt ny syklus i ar, og vil komme

neste gang pa varen 2013). Vi er godt forngyd, og systemeierne ser frem til & ta i bruk produktet.

177

	Introduction
	Problem description
	Description of requirements, high-level
	Motivation
	Customer
	The team
	Supervisor
	Project report structure

	Pre-study
	Technical solutions
	Development framework
	Development tools

	Project planning
	Team organization
	The team's development model
	Work scope
	Time scope
	Architectural design
	Prototype

	Requirements
	Functional sub-goals
	Functional requirements
	Non-functional requirements
	Prioritization of the functional- and non-functional requirements
	Use cases

	Testing
	Test plan
	Test results
	Test evaluation

	Iterations
	Sprint 1.1
	Sprint 2.1
	Sprint 2.2
	Sprint 3.1
	Sprint 3.2
	Sprint 4.1
	Sprint 4.2

	Closure
	Challenges summary
	Group structure
	Risk management
	Customer relations
	Supervisor interaction
	Development method
	Social relations
	Further development
	Conclusion

	Glossary
	Agreement
	Minutes with customer
	Meeting with the customer, 02.03.12
	Skype meeting with the customer, 30.01.12

	Minutes with supervisor
	Meeting with the supervisor 26.03.12
	Meeting with the supervisor 30.01.12

	Extended textual use cases
	Extended test results
	User guides
	Drupal
	REST-service
	Installation

	Evaluation from the customer

