

DeltaV ROConnect

Version 1.1

User Manual

August 13, 2009

Disclaimers

©MYNAH Technologies 2007. All rights reserved.

Designs are marks of MYNAH Technologies; Emerson Process Management, DeltaV, and the DeltaV design are marks of Emerson Process Management. All other marks are property of their respective owners.

While this information is presented in good faith and believed to be accurate, MYNAH Technologies does not guarantee satisfactory results from reliance upon such information. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding the performance, merchantability, fitness or any other matter with respect to the products, nor as a recommendation to use any product or process in conflict with any patent. Mynah Technologies reserves the right, without notice, to alter or improve the designs or specifications of the products described herein. All sales are governed by MYNAH Technologies' terms and conditions, which are available on request.

Table of Contents

1	OVERVIEW	ERROR! BOOKMARK NOT DEFINED.
Delta	aV and ROConnect Integration	6
Limit	tations	8
Appl	ications	
R	ocConnect Communication Suite	9
D	eltaV RocConnect Configuration Util	i ty 9
D	eltaV App Station Module Templates	
2	THE MAIN WINDOW	
3	BUILDING A CONFIGURATIO	N12
Netv	vorks	
Scan	Threads	
Area	S	
Devi	ces	
Colle	ections	
Poin	ts	
Poin	t Parameter	
Histo	orian	
4 N	EXPORTING THE CONFIGUR	ATION22
5	THE BANDWIDTH REPORT	
6	IMPORTING THE CONFIGUR	ATION24
7	THE IMPORTED ELEMENTS.	25
8	ASSIGNING MODULES AND E	VENTS25

			۲.		
ROConnect User Manual	Μ	Υ	Ν	Α	H
Using the Function Blocks					
Point and Parameter Function Blocks					28
ROC and History Function Blocks					29
Network and Scan Thread Function Blocks					31
9 FUNCTION BLOCK QUICK REFERENCE					33
Configuration Blocks					
ROC_SCAN_INTERVAL					
ROC_UNIT_LOGON					40
ROC_HISTORY					41
Point Parameter Blocks				•••••	41
Point Blocks	•••••		•••••	•••••	

Index of Tables

Table 1 - Interval Parameters	15
Table 2–ROC_NETWORK_CFG Function Block	39
Table 3–ROC_SCAN-INTERBAL Function Block	40
Table 4–ROC_UNIT_LOGON Function Block	41
Table 5–ROC_HISTORY Function Block	41
Table 6–ROC_PARAM_UINT8 Function Block	42
Table 7–ROC_ <point_type> Function Block</point_type>	42

Index of Figures

Figure 1 – DeltaV ROConnect Integration Architecture	8
Figure 2 – DeltaV ROConnect Architecture and Applications	9
Figure 3 - The Main Window	11
Figure 4 - Network Properties: Misc	12
Figure 5- Network Properties: Addressing	13
Figure 6- Network Properties: Time Sync	14
Figure 7- Scan Thread Properties	15

			۲.		
ROConnect User Manual	м	Y	Ν	Α	H
Figure 8- Area Properties		1	5		
Figure 9- New ROC Source		1	6		
Figure 10- ROC Device Properties: Misc		1	7		
Figure 11- ROC Device Properties: Address		1	7		
Figure 12- ROC Device Properties: Data Source		1	8		
Figure 13- ROC Device Properties: Time Sync		1	8		
Figure 14- ROC Device Properties: Retries		1	9		
Figure 15- Collection Properties		1	9		
Figure 16- Add Point		2	0		
Figure 17- Point Properties		2	0		
Figure 18- Point Parameter Properties		2	1		
Figure 19- Historian Properties		2	2		
Figure 20- Name Conflicts		2	3		
Figure 21- Bandwidth Report		2	4		
Figure 22– Imported Configuration		2	4		
Figure 23– Modules and Events Assigned		2	7		
Figure 24– Module A2G2_COL001		2	9		
Figure 25– ROC Function Block		3	0		
Figure 26– History Function Block		3	1		
Figure 27– Network and Scan Thread Function Blocks		3	2		
Figure 28– Control Strategies Areas		3	4		
Figure 29– ROC_NETWORKS Area		3	5		
Figure 30– Modules for each ROC		3	6		
Figure 31– Function Blocks Defining each ROC		3	7		
Figure 32– Point Type Function Blocks and Parameter Function Block	ks	3	8		

1. Introduction

1.0. Scope

This document is the User Manual for the ROC communications interface application (RocConnect) for the Emerson Process Management (EPM) DeltaV AppStation or ProPlus. It provides information required to install, configure, and maintain the interface. The reader should be familiar with EPM's DeltaV modules and ROC objects.

The section *Document Format* briefly describes the contents of each section of this manual. *System Specifications* outlines hardware and software requirements for the Ethernet/IP Driver firmware.

1.1. Document Format

This document is organized as follows:

Introduction	Describes the scope and purpose of this document.
Theory of Operation	Provides a general functional overview of the ROC communications Driver.
DeltaV serial card Configuration	Describes procedures and guidelines for configuring and importing the DeltaV modules.
ROC network configuration	Describes ROC devices in the network configuration.
Operational Check	Provides tips and assistance to ensure the ROC connection is properly setup and configured.
Technical Support	Describes who to call if you need assistance.

1.2. System Specifications

The following table lists the minimum system requirements for the Ethernet/IP Driver:

RocConnect Driver	System DLL for RocConnect		
RocExplorer Utility	Windows PC resident configuration utility.		
Protocol Compatibility	DeltaV ROC Interface Function Blocks		
	ROC Plus Protocol Specifications Manual (d301180x012.pdf)		
	ROC Polling Service User Manual (d301229x012.pdf)		
Software Requirements	DeltaV System Software (Release 6.3 or later)		
	Installed on a hardware-appropriate windows		

	workstation configured as a ProfessionalPlus for DeltaV
Minimum DeltaV Hardware	DeltaV AppStation or ProPlus
Requirements	ROC Controller(s), ROC Gateway Controller(s) or field server(s)
Network Hardware Requirements	Multiport 10/100BaseT Switch connected to ROC network, not shared with DeltaV Control Network.

2. Theory of Operation

The ROConnect provides a native integration of ROC809 point data into DeltaV function blocks. The product provides a complete integration application and includes:

- Intuitive ROConnect configuration utility that allows the user to browse ROC809 data and select points or values that will be integrated with DeltaV.
- Auto-generation of DeltaV function block configuration using the ROConnect Utility's FHX file generation capability.
- Scheduling, and storing of ROC Electronic Flow Measurement (EFM) files for custody transfer applications. Conversion of EFM data to Coastal Flow and P-Gas files can also be automatically scheduled.
- Time synchronization control of the ROCs with the DeltaV host time clock.
- All data and functions can be read and controlled via an OPC v2.0 Server interface.

2.0. Prerequisites

- The ROConnect Suite must be installed on either a DeltaV Professional Plus or Application workstation. DeltaV software v7.2 or later is required.
- 0

2.1. DeltaV and ROConnect Integration

DeltaV ROConnect 1.1 provides a native integration of ROC809 point data into DeltaV function blocks. The ROConnect Application can be used in systems with or without DeltaV Controllers. The DeltaV and ROC Integration is a "true" integration, meaning it is not an OPC interface, and mapping is not required. The application allows various communications: hard-wires, wireless, and dialup. It also supports HART pass-through for AMS interfaces. The application can read ROC EFM data for storage and conversion to Coastal Flow and PGAS custody transfer file formats. Additionally, the ROConnect Application supports all ROC809 point types, data tables, and user-defined data types. Data from custom ROC firmware applications (like the Danload 8000) can also be integrated with DeltaV using the ROConnect application.

Figure 1 – DeltaV ROConnect Integration Architecture

2.8. Limitations

ROConnect does not allow configuration of ROC devices. Users will need to use the ROCLink800 (RL800) application to configure the ROCs the same as any other installation. Additionally, ROConnect only supports ROCPlus protocol and does not currently support ROC protocol.

2.9. Applications

ROConnect allows seamless integration of process plants controlled by the DeltaV Process System with wellhead and pipelines controlled with ROCs. It allows connectivity of Inside Battery Limit (ISBL) Systems with Outside Battery Limit (OSBL) Controllers. With its tight integration with DeltaV, users may want to consider ROCs for applications normally served with PLCs. The application functions through native DeltaV function blocks (no OPC mapping). ROCPlus Network Integration uses a third NIC in an App Station. It provides a complete solution for integration of ROC Point, and Electronic Flow Measurement History data.

The ROConnect Application has three functional parts as shown in Figure 2.

Figure 2 – DeltaV ROConnect Architecture and Applications

RocConnect Communication Suite

ROConnect uses ROCPlus Protocol, handles poling of individual scan threads, and passes data to DeltaV App Station Modules and OPC Server. The application reads EFM Reports and writes to MS Access databases. It converts EFM data to Coastal Flow and PGAS report formats. It allows for time synchronization of ROCs with DeltaV Systems.

DeltaV RocConnect Configuration Utility

The DeltaV ROConnect Configuration allows users to configure all DeltaV Modules. It reads ROCLink 800 databases or reads directly from the ROCs via a network. With the configuration utility, users can browse to data of interest and configure scan threads. Users can export DeltaV function block definitions to .FHX files. Users can also schedule network time synchronization. Configuration files are saved in XML.

DeltaV App Station Module Templates

DeltaV App Station Module Templates are provided to allow custom modules for integration of ROC data. This provides secure, tight integration with ROC. The templates are supported in DeltaV version 7.2 or greater.

4. 2The Main Window

The main window of the application (Figure 3) is divided into two panes. On the left is a tree view which organizes all of the items in the configuration. On the right is a listing of properties for the currently selected item.

The toolbar along the top allows you to create, save and open configuration files. Buttons for creating and deleting configuration items are also found in the toolbar.

Figure 3 - The Main Window

4.0.

5. 3Building a Configuration

Items are added to a configuration either by right-clicking on the left pane of the main window, selecting the item to add from the Edit menu, or clicking on the item to add on the toolbar. Items are added as children to the currently selected item. Only items which are valid children of the selected item will therefore be available for addition. You can modify the properties of an item in the tree by double-clicking on it or by selecting Edit Item from either the item's context menu or the Edit menu.

5.0. Networks

Each configuration must start with a network item. The network item is used to specify which network adapter should be used to communicate with the ROCs. It also holds some global information that applies to all ROCs. A network can be added by right-clicking the empty region of the left pane, selecting New Network from the Edit menu or clicking on the network button on the toolbar.

When a new network is added, you will be presented with the dialog show in Figure 4. On this tab of the dialog, a unique name must be given to the network. This name must be a valid DeltaV identifier (only capital letters, number, and underscores are allowed with a maximum length of 16 characters).

Networ	k Properties	×
Misc	Addressing Time Sync	
Name	CIROCNETWORK	
	OK Cancel Apply	

Figure 4 - Network Properties: Misc

On the addressing tab (Figure 5), the ROC group and unit address of the host machine (the application station) must be entered. Additionally, the IP address assigned to the network card that should be used to communicate with the ROCs must be specified. If ROC Explorer is being run on the host machine, then its adapters can be selected from the list.

Network Properties				
Misc Addressing Time Sync				
Host Group 1 Host Unit 1				
Host Network Adapter				
0.0.0.0				
IP Address Name				
10.4.0.6 Wireless Network Connection 10.16.5.73 Local Area Connection				
Cancel Apply				

Figure 5- Network Properties: Addressing

The Time Sync tab (Figure 6) is used to configure time synchronization. Max Average Latency and Max Latency Variance specify preconditions that must be met for time synchronization to proceed. The scanner will make one or more network latency sensing reads from the ROC before attempting time synchronization. If the average of latency is greater than Max Average Latency or the standard deviation is greater than Max Latency Variance then time synchronization will not be performed. If synchronization does proceed, then Allowed Error specifies the maximum allowed difference between the host and ROC times after synchronization takes place for the synchronization to be considered successful. If Auto Sync Enabled is checked, then synchronization will be performed whenever the selected scan thread runs.

If auto synchronization is used, you should attempt to assign it to a scan thread which runs when no other threads are running, and use that thread only for time synchronization. If other threads are running during time synchronization, this can cause fluctuations in the network latency, which will negatively affect the precision of the synchronization.

		₹
ROConnect User Manual		MYNAH
	Network Properties	×
	Misc Addressing Time Sync	
	Max Averge Latency 1000 MS	
	Max Latency Variance 50 MS	
	Allowed Error 250 MS	
	Auto Sync Enabled	
	Scan Thread No Scan threads defined	
	OK Cancel	Apply

Figure 6- Network Properties: Time Sync

5.1. Scan Threads

Scan threads are defined intervals or schedules at which work is done by the scanner. At least one scan thread must be created per network for any work to be accomplished. A scan thread can be added by right-clicking a network in the left pane, selecting New Scan Thread from the Edit menu or clicking on the scan thread button on the toolbar.

When a new scan thread is created, you will be presented with the dialog shown in Figure 7. Each scan thread must be given a unique name that is a valid DeltaV identifier. The type of interval must also be chosen. Depending upon the selected interval type there will be other parameters needed to further define the interval. These parameters are described in Table 1. The Secondary Interval parameter available to some types is a higher rate scan that can be enabled on a per function block basis in DeltaV. This is intended to be used as a troubleshooting feature.

ROConnect User Manual		MYNAH
	Scan Thread Properties	
	Name INTERVAL	
	Type Hours	
	0 Hours	
	0 Minute of hour	
	0 Secondary Interval (in seconds)	
	ОК	

Figure 7- Scan Thread Properties

Туре	Parameter 1	Parameter 2	Parameter 3
100 MS	Number of 100 MS ticks		
Seconds	Number of seconds		
Hours	Number of hours	The minute in the hour at which to trigger	Secondary interval (MS)
Days	Number of days	The hour in the day at which to trigger	Secondary interval (MS)
Aperiodic			Secondary interval (MS)

Table 1 - Interval Parameters

5.2. Areas

Areas translate directly to DeltaV areas. They are provided as both an organizational tool, and to allow an efficient way to assign events to different stations. An area can be added by right-clicking a network in the left pane, selecting New Area from the Edit menu or clicking on the area button on the toolbar.

When a new area is created, you will be presented with the dialog shown in Figure 8. Each area must be given a unique name that is a valid DeltaV identifier.

Area Properties	×
Name AREA001	
ОК	

Figure 8- Area Properties

5.3. Devices

Devices represent the physical ROCs the scanner will be connecting to. A device can be added by right-clicking an area in the left pane, selecting New Device from the Edit menu or clicking on the device button on the toolbar.

When a new device is added, you will first be presented with the dialog shown in Figure 9. This dialog allows you to select the data source that ROC Explorer will use to limit configuration options to only a valid set of points.

The default option is to acquire this data from an offline database (.800 file) generated by ROCLINK800. For this option you must supply the .800 filename and associated group security file (this should be the ROCLINK.mdw file in the ROCLINK800 program folder).

Another option is to pull the data directly from an online ROC. This option is only recommended if you have a low-latency, high-speed connection to the ROC as it can take a long time to retrieve the configuration. If this option is selected you must provide the IP address and port number used to access the ROC; the ROC group and unit address; and the user ID and password used to log in.

If neither of these options is feasible, select "None" for the data source. You will have to manually enter additional information and ensure your point selections are valid.

Open ROC Configuration	×
Configuration Data Source	
Offline Config file: Browse	
Group file: Browse	
Online ROC IP Address; 10 . 0 . 0 . 2 Port Number; 4000	
Group: 240 Unit: 240 User: LOI Password: 1000	
OK Cancel	

Figure 9- New ROC Source

Once you have selected the data source, the device will be added and the dialog show in Figure 10 will be displayed. Each device must be given a unique name that is a valid DeltaV identifier. The login and password used to connect to the device must also be supplied. A default scan thread can also be specified. This scan thread will be used by all child items of the device which do not specify their own thread.

ROC Device Properties
Misc Address Data Source Time Sync Retries
Name D001
Login User ID LOI Password 1000
Default Scan Thread (1) 3_SEC
OK Cancel Apply

Figure 10- ROC Device Properties: Misc

On the address tab (Figure 11), you must enter the IP address and port as well as the ROC group and unit address used to connect to the device.

ROC Device Properties
Misc Address Data Source Time Sync Retries
IP Address 10 . 16 . 6 . 11 Port 4000
Group 2 Unit 2
, , ,
OK Cancel Apply

Figure 11- ROC Device Properties: Address

On the Data Source tab (Figure 12), you may change what configuration source ROC Explorer is using for the ROC. The Offline Database option is only available if the device was originally created via that method.

DOC 4 U Manual	м	
ROConnect User Manual	ROC Device Properties	
	Misc Address Data Source Time Sync Retries	
	Online ROC Offline Database Omline ROC Manual Entry	
	Config File	
	Group File	
	OK Cancel Apply	

Figure 12- ROC Device Properties: Data Source

On the Time Sync tab (Figure 13), time synchronization can be enabled for the device, and the number of latency sensing reads can be specified.

ROC Device Properties	×
Misc Address Data Source	Time Sync Retries
Test Reads 1	
ОК	Cancel Apply

Figure 13- ROC Device Properties: Time Sync

On the Retries tab (Figure 14), the number of communications retries and the base interval between retries can be specified. If a response is not received from a ROC within the interval specified, the communication library will assume the message was dropped and it will resend the request. The interval starts at the specified base interval, but doubles for each consecutive retry until it reaches 16 times the original interval (4 retries). The interval is reset to the base interval at the start of each initial send attempt.

		. .
ROConnect User Manual		MYNAH
	ROC Device Properties	×
	Misc Address Data Source Time Sync Retries	
	Number of retries	
	Base Interval 5 ×100MS	
	OK Cancel	Apply

Figure 14- ROC Device Properties: Retries

5.4. Collections

Collections exist primarily to provide organization of items within the devices. Additionally, DeltaV has a limitation of 250 function blocks per module. Collections circumvent this limitation by providing multiple modules per device. The number of function blocks within a collection is displayed in the left pane in parenthesis after the collection name. A collection can be added by right-clicking a device in the left pane, selecting New Collection from the Edit menu or clicking on the collection button on the toolbar.

When a new collection is created, you will be presented with the dialog shown in Figure 15. Each area must be given a unique name that is a valid DeltaV identifier. The name of the module that will be created in DeltaV is actually the parent device's name with the collection name concatenated on the end. This helps maintain uniqueness of module names, but it further restricts the length of the collection names.

Collection Properties	×
Name COL001	
ОК	

Figure 15- Collection Properties

5.5. Points

A point represents all (or a significant portion of) a logical point within the ROC. A point can be added by right-clicking a collection in the left pane, selecting New Point from the Edit menu or clicking on the point button on the toolbar.

When a new point is added, the dialog shown in Figure 16 will be displayed. From this dialog you can select which point to add to the configuration. If a valid data source was selected when the device was added, the list of point types and logical points will be limited to only those actually available in the ROC. By default the point will be added with only the most frequently used parameters included. This greatly reduces clutter and bandwidth requirements, but the parameter(s) you require may not be included in this set. Selecting "Include infrequently used parameters" will add the point with all of its parameters. Some points (such as the system point) have no frequently used parameters so this check box will be set and disabled for those points.

Add Point	×
 (098) Soft Point Parameters (099) Configurable Opcode (100) Power Control Parameters (109) System Analog Inputs SAI1 SAI2 SAI3 SAI4 SAI5 	
(110) PID Control Parameters	<u> </u>
Include infrequently used parameters	
OK Cancel	

Figure 16- Add Point

After you have selected the point type and which parameters to include, you will be presented with the dialog in Figure 17. This dialog allows you to select which scan thread should update the point's function block in DeltaV. "(0) Inherit from <device name>" is the default option and assigns the point to whatever thread was specified in the device configuration.

Point Properties	×
Scan Thread (1) 3_SEC	
ОК	

Figure 17- Point Properties

5.6. Point Parameter

It may be more efficient to request a single parameter from a logical point if the available point function blocks request much more data than you require. The point parameter item fulfills this need. A point parameter can be added by right-clicking a collection in the left pane, selecting New Point Parameter from the Edit menu or clicking on the point parameter button on the toolbar.

Adding a new point parameter brings up the dialog shown in Figure 18 The point parameter must be given a unique name which is a valid DeltaV identifier. The TLP address of the parameter can be selected from the drop lists provided. If a valid data source was selected when the device was added, the list of point types and logical points will be limited to only those actually available in the ROC. You can also select which scan thread should update the point parameter's function block in DeltaV. "(0) Inherit from <device name>" is the default option and assigns the point parameter to whatever thread was specified in the device configuration.

Point Parameter Properties	×
Name POINT_PARAM	
TLP Type (114) ORFV V Logical ORF	V #1
Parameter (3) ENGHR	•
Scan Thread (0) Inherit from D001	•
ОК	

Figure 18- Point Parameter Properties

5.7. Historian

The historian allows for the collection of historical data and the generation of reports. An historian can be added by right-clicking a device in the left pane, selecting New Historian from the Edit menu or clicking on the historian button on the toolbar.

MYNAH

When a new historian is added, the dialog shown in Figure 19 is displayed. You can select which scan thread should trigger history collection. "(0) Inherit from <device name>" is the default option and assigns the historian to whatever thread was specified in the device configuration. Unless "Collect History on Scan" is selected, history collection will not happen when the thread runs. In this case it will only run when manually triggered by writing to the trigger attribute of the function block. You can elect to generate Coastal Flow and PGAS report by setting their respective checkboxes. You must also specify where the history and report files will be generated. The history files will be named after the station tag in the ROC's system point.

Historian Properties 🗙			
Scan Thread (0) Inherit from D001			
Collect History on Scan			
Reports Flow-Cal V PGAS			
Directory C:\DeltaVHistory Browse			
ОК			

Figure 19- Historian Properties

6. 4Exporting the Configuration

Once the configuration has been built, you must export it into an .FHX file that can be imported into DeltaV. To export the entire configuration, select Export... from the File menu. You can also click on the export button on the toolbar. If you have already imported the configuration into DeltaV and only wish to update one area, device or collection, you can export only that portion of the configuration. In the left pane, select the item you want to update. You can either right-click the item and select Export Item... or choose Export Item... from the File menu. Whether you export the entire configuration or just a portion, you need only specify a filename to export to.

Name Conflicts

DeltaV modules and areas share one namespace. For this reason all items that will become an area or module are checked for name conflicts prior to export. If conflicts are detected, the dialog in Figure 20 will be displayed. The dialog allows you to see all of the items which are causing a conflict, grouped by their names. Note that there are certain reserved names (AREA_A, ROC_NETWORKS) which should not be used. These will also be listed in the dialog.

Selecting an item allows you to change its name and correct any naming conflicts right within the dialog. You may click on Continue at any time to export the configuration, even if you have not resolved all of the name conflicts. Continuing while there are still conflicts remaining is not recommended since DeltaV will not be able to import the generated .FHX file. You may also click on Cancel to abort the export altogether.

Name Conflicts
The configuration contains objects which will produce modules and/or function blocks which the same name when exported. This will cause the DeltaV import to fail. You should correct these conflicts before continuing.
AREA_A CIROCNETWORK/AREA_A NORTH CIROCNETWORK/NORTH CIROCNETWORK/AREA_A/NORTH
New Name: NORTH Continue Cancel

Figure 20- Name Conflicts

7. 5The Bandwidth Report

In order to determine approximately how long it will take for a scan thread to retrieve data from a ROC, a bandwidth report can be viewed. Selecting Bandwidth Report from the View menu brings up the dialog show in Figure 21. This dialog displays a table listing both the number of bytes of data from each ROC assigned to each thread and the number of opcodes it will take to retrieve that data (in parenthesis). Each row represents a ROC, and each column represents a scan thread.

This report can help you determine if the scan threads will be able to complete their work in the time allotted. For high-rate threads in particular, you should seek to minimize the amount of data and number of opcodes. You will obtain the largest time savings if you can reduce the amount of data enough to decrease the number of opcodes required.

Note that this report does not account for the data needed to do time synchronization or history collection. History collection in particular may take a long time and involve a large amount of data.

Ċ	Bandwidth Report 🗙					
I	Network: C1ROCNE	TWORK	•			
1	ROC	3S	2H_15	Total		
	A2G2	4B (1)	222B (1)	226B (2)		
	A3G2	4B (1)	222B (1)	226B (2)		
	A4G2	79B (1)	222B (1)	301B (2)		
	A5G2	5B (1)	222B (1)	227B (2)		
	Total	92B (4)	888B (4)	980B (8)		
	•					

Figure 21- Bandwidth Report

8. 6Importing the Configuration

Once your configuration has been exported to an FHX file, you are ready to import it into DeltaV. Start DeltaV Explorer, then select Import > Standard DeltaV Format... from the File menu. Pick the FHX file you generated in the Open File Dialog, then click on OK. The configuration will then be imported into DeltaV. The results of the import can be seen in Figure 22.

Figure 22– Imported Configuration

9. 7The Imported Elements

If you compare **Error! Reference source not found.** to **Error! Reference source not found.** you can see how the different elements of the configuration translate into DeltaV elements.

First, the network that was created (C1ROCNETWORK) is added as a module in the ROC_NETWORKS area (E). Within this module you can see a C1ROCNETWORK function block which contains the configuration details for that network, as well as function blocks for the scan threads that were created (2H_15 and 3S) (F).

Next, note the other areas that we created to organize our ROCs: AREA001 (A) and AREA002. Within these areas you will find modules for each of the ROCs that were created in that area (B).

Within each ROC module you will find a function block which contains the configuration of that ROC (B). If you added a historian for the ROC you will also find a function block for the history collection here (G). The last thing you will find within the ROC module are sub-modules for any collections you added to the ROC (C).

Inside a collection module you will find the function blocks that correspond to the ROC points and parameters you added to that collection (D).

At this point the function blocks are nearly ready to use. You should not have to manually edit any of the function blocks in order to use them. If you find that the imported configuration is not what you intended, it is recommended that you edit the configuration in ROC Explorer, export the changed module(s), and import those changes. Modifying or adding function blocks by hand is a time-consuming and error-prone task.

10. 8Assigning Modules and Events

After import the function blocks are nearly ready for use. To complete the setup and begin polling data from the ROCs, you must assign the modules to the station, assign the area's events, and download the affected stations.

When assigning modules to a station, there are two important constraints. First, the network module must be assigned to the station. Second, in order to use the function blocks in a collection module, the ROC module which owns that collection must also be assigned. In other words, if you want to use function blocks that are in A2G2_COL001, you must also have A2G2 assigned to the same station.

The most efficient way to assign modules is to assign an entire area. This can be accomplished by browsing down to \<Database>\SystemConfiguration\Physical Network\Control Network\<Station>\Assigned Modules. Right-click on Assigned Modules and pick Assign > Area.... This will open a dialog that allows you to choose one area to assign. After you select the area you want and click OK, all of the modules in the area are assigned to the station.

If you do not want an entire area, you can right-click Assigned Modules and pick Assign > Module.... This allows you to pick an individual module to assign. Note that assigning a ROC module does not also assign the collections that it contains. You must manually add each individual collection module if you choose to assign by module instead of by area.

To assign an area's events, first browse down to

\<Database>\SystemConfiguration\Control Strategies\<Area>. Right-click on the area and pick Assign > Events to Station.... From the dialog that appears assign the area's events to the station from which you will be using the data. Do this for each area that has an assigned module.

After assigning the modules and events, right-click on each station that was assigned a module or events and select the appropriate download option. Once the download has been completed, the ROConnect scanner will immediately begin populating the function blocks with data.

Figure 23 demonstrates how your system might look after assigning and downloading the modules. In this example, we are only interested in the function blocks residing in A2G2_COL001, so we have assigned that module, the ROC module which contains it (A2G2) and the network (C1ROCNETWORK).

Figure 23– Modules and Events Assigned

10.0.Using the Function Blocks

Now that all of the assignments have been made and the function blocks are being updated by the scanner, we can begin using those function blocks. Of primary interest are the collection modules since these contain the function blocks for our ROC points and parameters. Right-clicking on A2G2_COL001 and selecting Open > Open Online with Control Studio will bring up a window similar to Figure 24. The window has been resized in this screen capture, so not all of the configured modules are visible.

Point and Parameter Function Blocks

First look at the top block named SAI5. This is the System Analog Input #5 that was added to the configuration. It was added without the infrequently used parameters, so this block has only a few nubs. The first nub on the left (EU_IN) and on the right (EU) both represent the EU parameter of this point. EU_IN is an input nub that allows you to write to the ROC, which EU is an output nub allowing you to read from the ROC. Not all ROC parameters are writeable, so not every parameter will appear as a pair like this.

The ALARM parameter on the right has a data type of BIN (binary), which means it is a bit array with separate definitions for each bit. Rather than require a Boolean fan to extract these bits, they have been added as individual nubs. Nubs LO through SCANDIS are actually derived from bits in ALARM. This allows you to wire off of individual alarm bits, or off of the entire ALARM parameter.

The bottom left parameter on the SAI5 block (SEC_SCAN) is present on all point and parameter type function blocks. This is the secondary scan flag. As mentioned in the section on creating scan threads, a long interval thread can have a much shorter secondary interval defined. Setting the SEC_SCAN nub to True causes that block to be updated during this secondary interval. This can be useful, for instance, when trying to troubleshoot a problem which requires finer grained monitoring of a parameter.

Below the block SAI5 is a parameter block named TIME. Note that these parameter blocks are very generic. It is important to give them meaningful names when configuring the blocks or it will be very difficult to tell them apart in DeltaV. The block type visible above the block itself (in this case ROC_PARAM_UINT32) tells you what the data type of the parameter is. The VALUE_IN and VALUE nubs allow you to read and write to the parameter. Note that every parameter block will have a VALUE_IN nub, but if the ROC parameter is read-only then writing to VALUE_IN will have no effect.

The GET_TIME block was added after import simply to demonstrate that you can add any of the built-in DeltaV blocks to the modules after import and wire the function blocks just as you normally would.

	[ARE/	4001	/A2G2/A2G2_	COL00	1 [On-Li	ne l	Mode] Running 🗆 🗙
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>O</u> n-line/Debug	<u>T</u> ools	<u>G</u> raphics	<u>W</u> ir	<u>'i</u> ndow <u>H</u> elp
		_	ROC	_SAI			A
			S/	415			
	28.4	314	_IEU_IN		EL	ı 🗆	28.4314
L	Fa	alse	SEC_SCAN		ALARN	4 🗆	0
					LC	۶D	False
					LOLO	םי	False
					н		False
					ни		False
					RATEALRN	A 🗆	False
					PNTFAI	L	False
					SCANDI	s 🗌	False
						#1]
			ROC_PAR		F32	(110	
		ſ	т	ME			69215296 CL_TIME
11	69215	296	VALUE_IN		VALUE	E 🗌	(1169215296)
	Fa	alse	SEC_SCAN				
						#3	
•							

Figure 24– Module A2G2_COL001

ROC and History Function Blocks

The ROC and history function blocks are contained in ROC modules. In this example, right-clicking on the module A2G2 in DeltaV Explorer and selecting Open > Open Online with Control Studio will bring up a window similar to Figure 25.

The ROC function block will have the same name as the module that contains in (A2G2 in this case). The SYNC_ENABLE nub allows you to control whether or not the ROC will have its time synchronized automatically. If this nub is set to True, the ROC will be synchronized when the time sync scan thread executes. In this example, this is not enabled and time synchronization has not been performed on this ROC. This is why the top five nubs on the right side of the block have bad statuses. These nubs relate information about the last time synchronization and will have a bad status if no time synchronization has occurred.

The top three nubs on the left report on connection status. REQUESTS reports the total number of opcodes that the scanner has attempted to send to the ROC. FAILURES reports the number of those attempts that have failed. Note that each retry counts as a separate attempt. COMM_STATUS reports the overall state of the connection (see the ROC_UNIT_LOGON description for more details).

The bottom two nubs on the right side of the block report on the network conditions. LATENCY_AVG is a running average of the one-way network latency experienced for the last 100 commands. LATENCY_SD shows the standard deviation from the mean of these latency samples. If you have short intervals timers (such as 100MS timers) this information can help you determine if it is physically possible to update the function blocks at the desired rate.

👍 [AREA00	I/A2G2 [On-Line Mod	le] Running]	C – 🗆 🗙
<u>File E</u> dit <u>V</u> ier	ı <u>O</u> n-line/Debug <u>T</u> ools	<u>G</u> raphics <u>W</u> ind	ow <u>H</u> elp
	ROC_UNIT_LOC	GON	<u>^</u>
	A2G2	<	
Fals	SYNC_ENABLE		38
		FAILURES	0
		COMM_STATUS 🗌	0
		SYNC_TIME	0×
		SYNC_LATENCY	0 X (
		SYNC_STD_DEV	0 X (
		SYNC_DIFF	0×
		SYNC_STATUS	0×
		LATENCY_AVG	2
		LATENCY_SD	0
		#1	

Figure 25– ROC Function Block

The history block can be seen in Figure 26. SCAN_ENABLE is set to true if the historian should be trigger when the assigned scan thread executes. If you don't want automatic collection, it can be manually triggered by writing a True to TRIGGER.

After the history has been collected (whether it was trigger manually or automatically), a PGAS report will be created from the EFM file if PGAS is True, and a Coastal Flow report will be generated if FLOW_CAL is True. The time period covered by the PGAS and Coastal Flow reports depends up whether the history collection was triggered manually or automatically. If you manually triggered the history collection, the REPORT_START and REPORT_END values must be set to the ROC timestamps that delimit the time period you want to generate a report for. If the collection was automatically triggered by the scan thread, the report will cover everything after LAST_END. After automatic history collection, LAST_START and LAST_END will be updated to reflect the start and end times of the reports.

Visible at the bottom of Figure 26 is the module whose contents we saw in Figure 24.

Figure 26– History Function Block

Network and Scan Thread Function Blocks

The network and scan thread function blocks reside in the network module. In this example, right-clicking on the module C1ROCNETWORK in DeltaV Explorer and selecting Open > Open Online with Control Studio will bring up a window similar to Figure 27.

Like the ROC function block, the network function block has the same name as the module containing it (here C1ROCNETWORK). SYNC_ENABLE is a global setting that enables or disables time synchronization on every ROC in the network. In order to synchronization to occur on a particular ROC, SYNC_ENABLE must be true on both the network and ROC function blocks. Time synchronization can also be done on demand by writing True to SYNC_TRIGGER. This causes all ROCs that have time synchronization enable to immediately perform synchronization.

The final parameter, CPU_LOAD, is the percentage of processor time that the ROConnect scanner is consuming.

The scan thread function blocks have only two parameters. STATUS is set to 1 if the scan thread exits prematurely due to an error. If this occurs, the DeltaV ROC Scanner service must be restarted to restore functionality. LAST_SCAN_TIME is the total real-world time it took to perform the last scan in milliseconds. For threads with a short interval, if this time begins to approach or exceed the interval time, this indicates that you are in danger of losing updates. This would likely be caused by simply requesting too much data for the ROCs or network to deliver on time.

🔶 [ROC_N	IETWORKS/C1ROCNETWORK [On-Line 💶 🗷
<u>File E</u> dit <u>V</u> i	ew <u>O</u> n-line/Debug <u>T</u> ools <u>G</u> raphics <u>W</u> indow <u>H</u> elp
	ROC_NETWORK_CFG
	C1ROCNETWORK 😜
True	SYNC_ENABLE CPU_LOAD 0
False	SYNC_TRIGGER
	#1
	ROC_SCAN_INTRVAL
	2H_15 😜
	STATUS 🗌 0
	LAST_SCAN_TIME 47.4599
	#3
	<u>•</u>
L _	

Figure 27– Network and Scan Thread Function Blocks

11. 9Function Block Quick Reference

11.0.

11.1.Imported Areas, Modules and Function Blocks

- Control Strategies
 - 1x[Area] ROC_NETWORKS
 - Nx [Module] <Network Name>
 - 1x [Function Block] <Network Name>
 - Nx [Function Block] <Scan Thread Name>
 - Nx[Area] <Area Name>
 - Nx[Module] <Device Name>
 - 1x[Function Block] <Device Name>
 - 1×[Function Block] Historian
 - Nx[Module] <Collection Name>
 - Nx[Function Block] <Point Name>
 - Nx[Function Block] <Parameter Name>

After importing the .FHX generated by ROC Explorer into DeltaV, several new areas will be added under the Control Strategies section. There will be on area named "ROC_NETWORKS" which is added, as well as one for each of the areas explicitly defined in ROC Explorer.

Figure 28– Control Strategies Areas

The ROC_NETWORKS area contains a module for each network. In each network module is a function block for the network definition, and a function block for each scan thread in that network.

Figure 29– ROC_NETWORKS Area

The areas defined in ROC Explorer contain modules for each ROC defined within the area.

Figure 30– Modules for each ROC

The ROC modules contain a function block defining the ROC, an optional block defining history capture, and one or more collection modules which group the ROC points and parameters.

🎄 Exploring DeltaV	- 🗆 🗙
<u>File Edit View Object Applications Tool</u>	s <u>H</u> elp
RIPE1	- 🕺 🚜 🍇 🖌 🛍 🖺 🗙 🚱 💷 🎟 🎞 📼 🗩 ! !
All Containers	Contents of 'PIPE1'
Test5 Library System Configuration Setup Control Strategies Unassigned I/O References AREA_A NORTH PIPE1 PIPE1 PIPE1_COL001 PIPE1_COL002 HISTORIAN PIPE2 ROC_NETWORKS SOUTH Physical Network	PIPE1 ABNORM_ACTIVE BAD_ACTIVE BLOCK_ERR EXEC_TIME MCOMMAND MERROR MERROR MERROR_MASK MSTATE MSTATUS MSTATUS_MASK VERSION PIPE1_COL001 PIPE1_COL002 HISTORIAN
For Help, press F1	User: DELTAVADMIN 15 object(s) Confic //

Figure 31– Function Blocks Defining each ROC

Within each collection will be point type function blocks and parameter function blocks.

Figure 32– Point Type Function Blocks and Parameter Function Blocks

11.2.Configuration Blocks

ROC_NETWORK_CFG

This function block defines which adapter to use to access the ROC network, and global network configuration information.

Name	Data Type	Use
NETWORK_NAME	DT_WCHAR_PTR	A descriptive name for the network.
NETWORK_ID	DT_UNSIGNED8	The numeric ID for the network.
GROUP	DT_UNSIGNED8	The ROC group number for the host computer.
UNIT	DT_UNSIGNED8	The ROC unit number for the host computer.
IP_ADDRESS	DT_WCHAR_PTR	The IP address of the adapter to use for
		communication.
SYNC_SCAN_ID	DT_UNSIGNED8	The ID of the scan thread to use for time
		synchronization.
SYNC_ENABLE	DT_UNSIGNED8	A global enable flag for time synchronization. Set to
		zero
		to disable time sync.
SYNC_TRIGGER	DT_UNSIGNED8	A manual trigger for time synchronization. Write a
		one to
		this attribute to trigger time sync.
SYNC_MAX_ERROR	DT_UNSIGNED32	The maximum allowed difference between host and
		ROC
		times (in milliseconds) for time synchronization to be
		declared a success.
MAX_SYNC_LATENCY	DT_UNSIGNED16	The maximum average network latency permitted for
		time synchronization to occur
MAX_SYNC_STD_DEV	DT_UNSIGNED16	The maximum standard deviation in network latency
		permitted for time synchronization to occur
CPU_LOAD	DT_UNSIGNED8	The percentage of system processor time consumed
		by
		the scanner service over the past second.

Table 2–ROC_NETWORK_CFG Function Block

ROC_SCAN_INTERVAL

This function block defines a scan thread.

Name	Data Type	Use
SCAN_ID	DT_UNSIGNED8	The numeric ID for the scan thread.
SCAN_TYPE	DT_UNSIGNED8	The type of interval:
		0: 100ms
		1: Seconds
		2: Hours
		3: Days
		4: Aperiodic
SCAN_TIME1	DT_UNSIGNED8	The base interval multiplier ¹
SCAN_TIME2	DT_UNSIGNED8	The scheduled time ²
SEC_INTERVAL	DT_UNSIGNED8	The secondary scan time in seconds
STATUS	DT_UNSIGNED8	The status of the thread:

		0: The thread is running1: The thread terminated unexpectedly
LAST_SCAN_TIME	DT_FLOAT	The amount of time required to complete the last scan, in milliseconds.

Table 3–ROC_SCAN-INTERBAL Function Block

- 1. example: SCAN_TYPE = 1, SCAN_TIME1 = 5; the thread will run every 5 Seconds
- example: SCAN_TYPE = 2, SCAN_TIME1 = 6, SCAN_TIME2 = 15; the thread will run every 6 hours at 15 minutes past

ROC_UNIT_LOGON

This function block specifies the connection information for a ROC.

CONNECTION_NAMEDT_WCHAR_PTRA descriptive ROC name.NETWORK_IDDT_UNSIGNED8The ID of the network to which the ROC belongsIP_ADDRESSDT_WCHAR_PTRThe IP address of the ROCPORTDT_UNSIGNED16The port on the ROC to connect toGROUPDT_UNSIGNED8The ROC's group numberUNITDT_UNSIGNED8The ROC's unit numberRETRIESDT_UNSIGNED8The number of times to retry a failed operationRETRY_INTERVALDT_UNSIGNED16The base interval at which retries are triggered1REQUESTSDT_UNSIGNED32A cumulative count of requests sent to the ROCFAILURESDT_UNSIGNED32A cumulative count of failed requests since the scanner was started	Name	Data Type	Use
NETWORK_IDDT_UNSIGNED8The ID of the network to which the ROC belongsIP_ADDRESSDT_WCHAR_PTRThe IP address of the ROCPORTDT_UNSIGNED16The port on the ROC to connect toGROUPDT_UNSIGNED8The ROC's group numberUNITDT_UNSIGNED8The ROC's unit numberRETRIESDT_UNSIGNED8The number of times to retry a failed operationRETRY_INTERVALDT_UNSIGNED16The base interval at which retries are triggered1REQUESTSDT_UNSIGNED32A cumulative count of requests sent to the ROC since the scanner was startedFAILURESDT_UNSIGNED32A cumulative count of failed requests since the scanner was started	CONNECTION_NAME	DT_WCHAR_PTR	A descriptive ROC name.
IP_ADDRESS DT_WCHAR_PTR The IP address of the ROC PORT DT_UNSIGNED16 The port on the ROC to connect to GROUP DT_UNSIGNED8 The ROC's group number UNIT DT_UNSIGNED8 The ROC's unit number RETRIES DT_UNSIGNED16 The number of times to retry a failed operation RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	NETWORK_ID	DT_UNSIGNED8	The ID of the network to which the ROC belongs
PORT DT_UNSIGNED16 The port on the ROC to connect to GROUP DT_UNSIGNED8 The ROC's group number UNIT DT_UNSIGNED8 The ROC's unit number RETRIES DT_UNSIGNED8 The number of times to retry a failed operation RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	IP_ADDRESS	DT_WCHAR_PTR	The IP address of the ROC
GROUP DT_UNSIGNED8 The ROC's group number UNIT DT_UNSIGNED8 The ROC's unit number RETRIES DT_UNSIGNED8 The number of times to retry a failed operation RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	PORT	DT_UNSIGNED16	The port on the ROC to connect to
UNIT DT_UNSIGNED8 The ROC's unit number RETRIES DT_UNSIGNED8 The number of times to retry a failed operation RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	GROUP	DT_UNSIGNED8	The ROC's group number
RETRIES DT_UNSIGNED8 The number of times to retry a failed operation RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	UNIT	DT_UNSIGNED8	The ROC's unit number
RETRY_INTERVAL DT_UNSIGNED16 The base interval at which retries are triggered ¹ REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	RETRIES	DT_UNSIGNED8	The number of times to retry a failed operation
REQUESTS DT_UNSIGNED32 A cumulative count of requests sent to the ROC since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	RETRY_INTERVAL	DT_UNSIGNED16	The base interval at which retries are triggered ¹
since the scanner was started FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the scanner was started	REQUESTS	DT_UNSIGNED32	A cumulative count of requests sent to the ROC
FAILURES DT_UNSIGNED32 A cumulative count of failed requests since the			since the scanner was started
scanner was started	FAILURES	DT_UNSIGNED32	A cumulative count of failed requests since the
			scanner was started
SCAN_ID DT_UNSIGNED8 The default scan thread associated with the ROC	SCAN_ID	DT_UNSIGNED8	The default scan thread associated with the ROC
COMM_STATUS DT_UNSIGNED8 The communications status with the ROC	COMM_STATUS	DT_UNSIGNED8	The communications status with the ROC
OPERATOR ID DT_WCHAR_PTR The operator ID used when connecting to the	OPERATOR ID	DT_WCHAR_PTR	The operator ID used when connecting to the
ROC			ROC
PASSWORD DT_UNSIGNED16 The password used when connecting to the ROC	PASSWORD	DT_UNSIGNED16	The password used when connecting to the ROC
ACCESS_LEVEL DT_UNSIGNED8 The access level used when connecting to the	ACCESS_LEVEL	DT_UNSIGNED8	The access level used when connecting to the
ROC			ROC
SYNC_ENABLE DT_UNSIGNED8 Set to 1 to enable time synchronization for the	SYNC_ENABLE	DT_UNSIGNED8	Set to 1 to enable time synchronization for the
ROC			ROC
SYNC_READS DT_UNSIGNED8 Specifies the number of network latency sensing	SYNC_READS	DT_UNSIGNED8	Specifies the number of network latency sensing
reads to perform as part of time synchronization			reads to perform as part of time synchronization
SYNC_TIME DT_UNSIGNED32 The timestamp at which the last time	SYNC_TIME	DI_UNSIGNED32	The timestamp at which the last time
synchronization was performed			synchronization was performed
SYNC_LATENCY DI_UNSIGNED16 The average network latency measured for the	SYNC_LATENCY	DI_UNSIGNED16	The average network latency measured for the
			last time synchronization
SYNC_SID_DEV DI_UNSIGNED16 The standard deviation of network latency	SYNC_SID_DEV	DI_UNSIGNED16	The standard deviation of network latency
measured for the last time synchronization			measured for the last time synchronization
SYNC_DIFF DI_UNSIGNED32 I ne difference in between the ROC and nost	SYNC_DIFF	DI_UNSIGNED32	The difference in between the ROC and nost
Unes after the last time synchronization			The result and for the last time synchronization
STINC_STATUS DT_UNSIGNED8 The result code for the last time synchronization LATENCY_AVC DT_UNSIGNED46 A running everyon of the network latency to the	ATENCY AVC		A running overage of the network leters to the
		טועשאוטופאוט_וע	ROC

ROConnect	User Manual

LATENCY_SD DT_UNSIGNED16 A running standard deviation of the network latency to the ROC

Table 4–ROC_UNIT_LOGON Function Block

1. Exponential doubling (up to 16 times the original interval) is used. For example, if 6 retries are specified with a base interval of 250ms, retries will occur at times 250ms, 750ms, 1,750ms, 3,750ms, 7,750ms and 11,750ms.

ROC_HISTORY

This function block is used to configure and control history collection for a ROC.

Name	Data Type	Use
NETWORK_ID	DT_UNSIGNED8	The ID of the network to which the ROC belongs
GROUP	DT_UNSIGNED8	The ROC's group number
UNIT	DT_UNSIGNED8	The ROC's unit number
SCAN_ID	DT_UNSIGNED8	The scan thread associated with the historian (set to 0 to use the ROC's default)
SCAN_ENABLE	DT_UNSIGNED8	Set to 1 to have the history captured each time the scan thread runs
TRIGGER	DT_UNSIGNED8	Write to this attribute to manually trigger a history capture
PGAS	DT_UNSIGNED8	Set to 1 to have a PGAS report generated after each capture
FLOW_CAL	DT_UNSIGNED8	Set to 1 to have a Coastal Flow report generated after each capture
DIRECTORY	DT_WCHAR_PTR	The directory into which the history and report files will be placed
REPORT_START	DT_UNSIGNED32	The earliest timestamp covered by the last history acquisition. Also, when triggering a manual history capture, this should be the beginning of the history range to report on.
REPORT_END	DT_UNSIGNED32	The last timestamp covered by the last history acquisition. Also, when triggering a manual history capture, this should be the end of the history range to report on.

Table 5–ROC_HISTORY Function Block

11.3.Point Parameter Blocks

ROC_PARAM_<DataType>

These function blocks are used to access a single parameter of a single point. There is one for each data type, and the name of the function block corresponds to that type (e.g., ROC_PARAM_UINT8 is used for unsigned, 8-bit integer parameters).

Name	Data Type	Use
TLP_T	DT_UNSIGNED8	The point type component of the parameter's TLP address
TLP_L	DT_UNSIGNED8	The logical point component of the parameter's TLP address

MYNAH

TLP_P	DT_UNSIGNED8	The parameter component of the parameter's TLP address	
PARAM_NAME	DT_WCHAR_PTR	A descriptive name for the parameter	
WRITE_ENABLE	DT_UNSIGNED8	Set to 1 if the parameter is writeable	
VALUE_IN	<datatype></datatype>	The input for writing to the parameter	
VALUE	<datatype></datatype>	The current value of the parameter	
NETWORK_ID	DT_UNSIGNED8	The ID of the network to which the parameter's ROC	
		belongs	
GROUP	DT_UNSIGNED8	The parameter's ROC's group number	
UNIT	DT_UNSIGNED8	The parameter's ROC's unit number	
SCAN_ID	DT_UNSIGNED8	The scan thread associated with the parameter (set to 0 to	
		use the ROC's default)	
SEC_SCAN	DT_BOOLEAN	Set to true to have the block update at the secondary scan	
		rate of the scan thread it is assigned to	
COMM_STATUS	DT_UNSIGNED8	The communications status during the last update of the	
		function block	

Table 6-ROC	_PARAM_	UINT8	Function Block
-------------	---------	-------	----------------

11.4.Point Blocks

ROC_<POINT_TYPE>

These function blocks represent a point type in the ROC. The parameters in this group are limited to only the most frequently used parameters. The name of the function block is derived from the point types' standard abbreviations (e.g., ROC_SYS is the function block for the system point type).

Name	Data Type	Use
NETWORK_ID	DT_UNSIGNED8	The ID of the network to which the parameter's ROC
		belongs
GROUP	DT_UNSIGNED8	The parameter's ROC's group number
UNIT	DT_UNSIGNED8	The parameter's ROC's unit number
SCAN_ID	DT_UNSIGNED8	The scan thread associated with the parameter (set
		to 0 to use the ROC's default)
SEC_SCAN	DT_BOOLEAN	Set to true to have the block update at the secondary
		scan rate of the scan thread it is assigned to
COMM_STATUS	DT_UNSIGNED8	The communications status during the last update of
		the function block
<parameter< td=""><td></td><td>Each frequently used parameter from the point type</td></parameter<>		Each frequently used parameter from the point type
Abbreviation>		will be included as an attribute. The name of the
		attribute matches the standard abbreviation for the
		parameter.

Table 7–ROC_<POINT_TYPE> Function Block

ROC_<POINT_TYPE>_FULL

These function blocks represent a complete point type in the ROC. The function blocks in this group are identical to their counterparts from the previous section except that they contain all of the point type's parameters.