
“Free Libre OpenSource Software” implications in Computer Science

education

Andrea TRENTINI
Dipartimento di Informatica e Comunicazione, Università di Milano

Milan, Italy

Abstract
This article reasons about the positive influence “Free,
Libre and OpenSource Software” philosophy has (or
should have) on the approach to Computer Science
education, it is based on the author’s experience in
teaching “Operating Systems” and ”Programming”
for quite a few years. The rationale can be summa-
rized by the following: guided Piaget constructivism
(human knowledge is continuously and iteratively
refined by the interaction between an internal repre-
sentation of the world and the direct experience of
the world itself, helped by a facilitator) is recognized
as a good mechanism for learning and should be
favored; FLOSS (Free Libre OpenSource Software) is
a software philosophy that strongly encourages inter-
action with the internals of any (free) system; thus a
FLOSS attitude (involving both method and subject)
should be incorporated in teaching. After a short
chronology of “freedom” in the world of software and
documentation this article will compare the two main
teaching approaches (traditional and constructivist),
analyze how FLOSS may help teaching and describe
an object model explicitation to help students better
understand their learning process.
Keywords: Free Software, Teaching, Learning, Edu-
cational model, Constructivism

1. INTRODUCTION
Teaching is not always easy. A teacher should combine
many qualities... and knowledge about the subject
taught is just one of them.
The author works as assistant professor at the Uni-
versity of Milano (Italy), Department of Computer
Science, and has taught topics such as Object Oriented
Analysis & Design, Operating Systems, Programming
for a few years (since 1996). During these years his
teaching style has changed, a lot. If such a change can
be considered positive will be left to the judgement
of his students and colleagues of course, but some
considerations and reflections can be gathered here to
be evaluated by the reader. The following thoughts
strictly reflect the author’s environment and may not
be applicable to other countries or universities, it
would be interesting to collect experiences from all

over the world...
Any teacher has probably started his career as a
“traditional teacher”: someone who sees himself as
special, someone chosen to represent knowledge, to
be a master among would-be adepts, an authority
deserving respect... and so on. A “top-down” teacher,
referring to the prevalent direction of interaction, who
leaks knowledge to his students at his pace.
But, soon, the very same teacher will face the dif-
ficulties of his role: preparation of course material,
confronting many students (in Italy we may have
classes with hundreds of them), exams, self motivation
and students motivation, keeping up with the subject,
many questions and, last but not least, trying not to
loose authority over students.
Any student entering university has to face a com-
pletely new environment, a big switch from high
school. He must learn a new way to study, he has more
independence, he is less directed, he can self-allocate
study resources, timeframes, exams order, etc.
It’s a suitable time to help him in his learning career,
attitude and method. A traditional teacher would
ignore this aspect and would probably try to keep the
“distance” between himself and the students as big as
possible, seeing them just as receptacles, knowledge
receivers. Maybe there is a different approach.
The rationale of this article is that since some form of
Constructivism-based teaching/learning (see Sections
2 and 6) is the most effective way to transfer knowl-
edge while the Free Software philosophy (see Sections
4 and 5) implies constructivism, the conclusion is that
FLOSS (and a FLOSS attitude) should be widely used
in teaching. Roles (teacher, learner) are changing,
authority on any freed topic is more evenly spread,
no one can declare himself “ultimate expert” since
information is public and can be used openly. The
educational approach should change towards a more
open and abstract system/object model, towards the
reification of a meta model in the process.
This article argues that the teaching process should
constructively take into account this difference in
object models: capitalize it by reifing the model
during teaching and giving students the means to
“learn to learn”. It is a change in teaching style:
in classroom the model should be explicitly explained

1



and the role of the teacher should drift from “teacher
of contents” to “teacher of methods” (with an explicit
and dynamic object model). Of course, this meta-
method is already exercised by any good teacher...
this article wants to assess that FLOSS environments
naturally ease this transition.

2. LEARNING AND
CONSTRUCTIVISM

One of the definitions of Constructivism is the fol-
lowing: “a theory of knowledge (epistemology) that
argues that humans generate knowledge and mean-
ing from an interaction between their experiences
and their ideas.” Jean Piaget[10] (http://www.
archivesjeanpiaget.ch) formalized it at the end of
the fifties, according to this theory every person grows
knowledge through the processes of accommodation
and assimilation. Accommodation is the mechanism
by which failure leads to learning: when we expect
some behavior from a system we are examinating and
the expected behavior does not happen we say that
we have failed, our mind failed, so that we need to
accomodate (reframe) our model of the system. i.e.
we refine our model on failures. Assimilation occurs
when our mind model does not fail on the real system,
in this case we are fixating our model more and more.
Constructivism is usually associated with teaching
approaches promoting active learning, or learning by
doing, by trial and error. Studies such as [6] found
that in academic environments some form of con-
structivism influences positively the learning process,
above all for the motivation injected into students.
Another study [3] found that constructivism brings
“better retention”. Pure constructivism (without
external intervention) is seen as not effective[7], some
form of help from a teacher or a “facilitator” is
always needed. “According to the social construc-
tivist approach, instructors have to adapt to the
role of facilitators and not teachers”[1]. Some also
argue that the responsibility of learning should re-
side increasingly with the learner[14]. And “Social
constructivism”[9] emphasizes the importance of the
learner being actively involved in the learning process,
unlike previous educational viewpoints where the re-
sponsibility rested with the instructor to teach and
where the learner played a passive, receptive role.
Although some criticism[5] arose in the pedagogical
community all the researchers agree on the fact that a
good shift away from the traditional/top-down/from-
pedestal teacher is needed towards a more modern and
efficient new/bottom-up/social facilitator.
“A teacher tells, a facilitator asks; a teacher lec-
tures from the front, a facilitator supports from
the back; a teacher gives answers according to a
set curriculum, a facilitator provides guidelines and
creates the environment for the learner to arrive at

his or her own conclusions; a teacher mostly gives a
monologue, a facilitator is in continuous dialogue with
the learners”[12].

3. THE STORY SO FAR...

From the beginning[8], Computer Science has greatly
evolved (http://en.wikipedia.org/wiki/List_of_
timelines#Computer_science) from both the theo-
retical and the applied points of view. Also from the
legislative point of view, many changes, not always
positive (goal was meant to be positive but actual use
is distorted), have been introduced, such as copyright,
patenting and licensing.
During the early eighties a pioneer created
a legislative innovation that influenced, and
still influences today, all of us: the copyleft
(http://www.gnu.org/copyleft/copyleft.html)
concept. Copyleft gives rights to users instead of
taking them away. A “copylefted” product can be
used, studied, copied, modified and redistributed
(with few constraints) over the net (often) for free.
This innovation has not, however, disrupted the world
of software... On the contrary, it has taken (and still
has to) a long time to spread and pervade.
In the beginning of the copyleft era almost nobody
outside a small fraction of highly involved people
(“geeks” - http://en.wikipedia.org/wiki/Geek)
even knew about this innovation.
In the nineties, with the advent of Web and
GNU/Linux, more people began to know about
“free” software since they could use it on their
own computers, but they were still very few while
others were stuck on MSDOS and early version of
Windows... and most of the software was still bought
at high prices and came with documentation in
heavy printed manuals.
The first quantum leap began with the new century,
when the first “easy” or “end-user” distributions
(collection of a free operating system, applications
and easy installer software) appeared on the market.
These products were, from the users’ point of view,
evenly comparable at worst and far better at best
with their “proprietary” counterparts (MSDOS,
Windows, MacOS, etc.).
Today, again from the user point of view, the
distinction between (almost) any proprietary product
and its “open” counterpart resides (almost) only in
its... license (and price, because the “free/open”
product is usually also free).

4. FREEDOM OF
SOFTWARE

Author’s hope is that a section of this kind will no
longer be required in the near future, as more and
more people will know and understand what Free
Software is. Any reader already aware about Free

2



Software may skip to the next section.
Free (as in “Freedom”) Software (http://www.gnu.
org/philosophy/free-sw.html) is a way of giving
rights to users. Users of Free Software have:

0: The freedom to run the program, for any purpose.
1: The freedom to study how the program works, and

change it to make it do what you wish. Access to
the source code is a precondition for this.

2: The freedom to redistribute copies.
3: The freedom to distribute copies of your modified

versions to others. By doing this you can give
the whole community a chance to benefit from
your changes. Access to the source code is a
precondition for this.

The two more interesting freedoms for the purpose of
this article are #0 and #1.
#0 lets the user run the program any times he wants,
in any condition (purpose), so that the program
can be tested at will, thus fully reverse engineered
(if there is no interest for the source code) without
any legal limitation. By contrast, there are many
proprietary EULAs (End User Licence Agreement)
that explicitly prohibit reverse engineering practices
(http://en.wikipedia.org/wiki/Software_
license_agreement#Reverse_engineering) or
even study the performance of a program.
#1 lets the user study the internals of the program
without even running it, i.e. by reading the source
code, thus giving the user the ability to fully analyze
it and to “construct” an internal representation in his
mind (more in Section 6).
The fourth (#3) freedom is also important because of
motivation. The possibility to modify the program
and then redistribute it is a good incentive, albeit the
reward is just a slice of fame and not money.

5. OBJECT MODEL

In computer programming “object model”[4] has a
well defined meaning, here we will use it in a lighter
way, i.e.: “a collection of objects (with attributes,
behavior and relationships, often described in a formal
language) representing a system to be described in an
abstract way”.
From the educational approach point of view,
there’s an interesting distinction in “object model”
between open and closed products. Different licensing
implies a different set of objects. Even the matching
names in the two sets may have slightly different
meanings or importance, e.g., the “manual” in open
products may be more outdated than in the case
of closed software. For the sake of this article it
is enough to define a list of objects related to the
context of computer science education with a minimal
description, because the interesting aspects are the
differences between the world of proprietary software
and the free one, differences in:

• meaning
• source of authority (battled between the producer

and the users)

The following list is not complete of course, it is just
a “start of discussion”, it is also not related to a
particular product in mind, the author tried to think
as generally as he could. The list of definitions below
has the following structure/format:

term: general definition
libre: applicability and semantics in FLOSS
prop: applicability and semantics in proprietary

Definitions are taken mainly from wikipedia or wik-
tionary.

author/owner (person): “The originator or cre-
ator of a work, especially of a literary compo-
sition.” - in software is the person (programmer)
who actually writes code
libre: the author is the one holding the copyright
prop: usually not known, copyright is held by the
firm who pays the programmers

owner/producer/distributor (firm): an entity
that creates goods and services and sells/delivers
them to customers
libre: sometimes nonexistent if the author
delivers by itself (usually through its own
website), sometimes an organization (often
nonprofit) that packages (with an installation
program) collections of software to be distributed
(e.g. http://debian.org), often by download
prop: the firm that owns the brand (MicroSoft
for Windows, Oracle/Sun for Java) and physically
packages and sells a software product (and maybe
support services) to customers

version: “A specific form or variation of something.”
libre: programmers set the version number
prop: not related to the revision of source
code, often not even a number but a name,
usually decided by the marketing division to be
“appealing” (such as “Vista”) for customers

source code: text, written in some programming
language, that originates the actual program
(binary) to be run in a computer
libre: completely available
prop: not available, the end user cannot even
know the original programming language of the
product

binary program: the final form of a program, tho
only one understandable by a computer libre:
can be generated from the sources
prop: the only form of the product available

license: textual agreement describing what rights are
given to the user of a software product
libre: they usually specify what the user can do
with the product (see also section 4)
prop: also called EULAs (End User Licence

3



Agreement), they usually specify what the user
cannot do with the product

course: a learning program, sequence of lessons
libre: anybody can study enough to build a
course about a product, usually no certification is
involved, authority of source is defined by actual
content/ability/etc.
prop: the producer is usually also the supplier
of courses about a software product and it often
set up a certification program for the would-be
teachers/experts

manual: a (possibly printed) document that explain
how to use a particular product
libre: sometimes the documentation of free prod-
ucts is less exaustive than for proprietary ones,
there is a tendency to push towards the “hands-
on” approach or other forms of documentation
(forums, FAQs, etc.)
prop: manuals are often the “presentation” of
the product, they are elegantly packaged and are
usually accurate

knowledge base (KB): an “automated” system to
collect and retrieve systematic information about
a product/system/context
libre: this term is almost never used, see below
(“forum”, “wiki”, etc.)
prop: many big/complex products generate
problems and questions from the users, software
producers sometimes create and manage these
KBs to solve problems once and for all,
one notable example is the Microsoft KB
(http://support.microsoft.com)

frequently asked questions (FAQ): a less “auto-
mated” (it’s almost always a static web page) sys-
tem (than KB) to collect and retrieve systematic
information about a product/system/context
libre: usually compiled by the user themselves
(see “wiki” below)
prop: preferred to a KB for smaller products and
for a narrower user base

forum: a (virtual) place for discussion, usually or-
ganized in topics and subtopics - there is no
technical difference in forums about libre or
proprietary products, but some distinction should
be made in perceived authority depending on
who is hosting the forum: if the host is also
the author/producer of the product the perceived
authority is usually higher

wiki: a collaborative website, editable by the readers
themselves - same consideration as “forum” above

bug: a “defect” (deviation from expected behavior)
in a software product - the meaning is the same
in the two worlds, but:
libre: a bug may be corrected by any user able to
read and modify the source code - the discovery
of a bug is seen as a POSITIVE fact: one of
the advantages of FLOSS is that “given enough

eyeballs, all bugs are shallow”[11] - the author
THANKS you if you send him the full description
of a bug you found!
prop: a bug can be notified to the producer
in the hope it will be corrected - the discovery
of a bug is seen as a NEGATIVE fact: bugs
depreciate any product and the producer does
not want to let users about the “bugginess”
of its product - there are even some cases in
wich exposing bugs is considered a criminal act
(cryptography algorithms, cellphones: see http:

//lwn.net/Articles/368861) - you may even be
arrested if you publish a bug description!

bug tracking system: a software system to keep
track of bugs - the meaning is the same in the
two worlds, but the associated information may
be very different:
libre: the user who notifies a bug may also
suggest where in the source the bug may originate
prop: the user can only describe the sequence of
operations that brought out the defect, no clues
about the origin

price: cost to get possession of something - the
meaning is the same but:
libre: almost always free, voluntary donations
are often solicited, also notifications of bugs (see
above) or suggestions for better code are welcome
- professional support is not free
prop: almost always > 0, sometimes a free
(but stripped down of functionalities) version is
available for download as a “try before you buy”
item - professional support may be included in
the price of product

There is one last object in the model that is only
somewhat part of the model itself, it is an aspect of
many items listed above. The questions are: “Who
has authority over a particular object?”, “Where
this authority comes from?”, “Can this authority be
trusted?”. We may define authority such as:

authority: an entity accepted as a source of reli-
able information on a subject
libre: can be anyone, anyone can study a product
and prove to be expert by demonstrating it in the
battlefield, his/her knowledge is always verifiable
(remember you can study the source code!)
prop: can be almost anyone, BUT his/her
authority derives directly from some kind of
certification by the owner/producer/distributor
and his knowledge can be verified up to a certain
border: the industrial secret border - anything
that resides beyond this border cannot be verified
(maybe partially through reverse engineering)
and must be taken from granted, you must believe
the product owner - a very famous example is
the case of Windows suspected of sending private
data back to MicroSoft servers, users unaware...

4



Figure 1: Constructivism: proprietary context

if a MicroSoft expert/teacher is asked about this
“feature” he will tell you the “official truth”
MicroSoft has told him, so you will have to trust
the complete chain of information

As you can see in the case of FLOSS authority is
questionable, verifiable, dynamic while in the case
of proprietary software authority must be trusted,
the only choice you have is whether to use the
product or not. Of course this is an exaggeration, an
extremization, but it summarizes the opposite direc-
tions, trends, tendencies of FLOSS and proprietary:
the former is based on verification, the latter on
“secretization”.

6. CONSTRUCTIVISM AND
FREE SOFTWARE

Following the definition of constructivism given in
Section 2 we may depict a schematic diagram of the
learning process, in Figure 1 and in Figure 2 the
reader will find the author’s interpretation. The goal
of knowledge is to create a mind map of a “thing”
(a physical object, a software product, anything) we
want to know so that we may reason about it, expect
some kind of behavior and in general usefully interact
with it.
On the left side of the diagrams there is an “internal
representation”: a set of abstract objects that we can
play with in our brain, this set of objects should mimic
the real thing as closely as possible if we want to
know the real system. The curved arrows on both
figures represent the possible interactions/connections
between the mind map and the real system. On
the right side of Figure 1 is depicted a black-box
object, since in the proprietary world no internal
details are available. The only way to know a black
box-object is by stressing/testing it, i.e. reverse
engineer[2] it, by trial and error: your mind, based on

Figure 2: Constructivism: FLOSS context

the current abstract map, hypothesizes an (expected)
behavior so that by actually trying it on the real
object you can verify your mind’s hypothesis. By
iterating this cycle many times your mind should at
last create a satisfactory internal representation of
the object. How many iterations are necessary to
reach a correct model (if a correct model can even
be reached...)? Probably not many for simple objects
(e.g. a pair of scissors), but what about a complex
system such as a word processor or a programming
language compiler? The reader may argue that
some kind of documentation (user manual, techincal
manual) should be available in complex cases. Of
course, but who can check document correctness in
a proprietary context? On the right side of Figure
2 is depicted a white-box object, since in the FLOSS
world all internal details are available. You may still
use a reverse engineering approach to create your mind
map, but at any time you can study the source code
to actually see the real object structure. It’s up to
the learner. Of course any teacher can propose his
own model, but he will have to let students compare
it to the model they can create by themselves while
freely studying the inner details of the object (software
system) under examination.
An example of this attitude, closely tied to the teach-
ing of Java, happened to the author. One day a stu-
dent asked about the internals of the java.lang.Vector
class (sources of all library classes are available), the
author had only a partial answer. In a proprietary
context a smart teacher could have packaged a FUD
(Fear, Uncertainty & Doubt) response, pretty sure
about the impossibility to be contradicted.
The FLOSS attitude led the author to the explici-
tation of the whole process: formulate a behavioral
hypothesis (the add() method execution speed is not
constant, from time to time it takes longer because
the inner array has to be cloned), test it black-box

5



and also check it in the source code. Students were
impressed and they demonstrated afterwards to have
learned the lesson (method).

7. METHOD PROPOSAL

“Do not believe what I say.” This is the first phrase
the author pronounces at the beginning of the first
lesson of every course. It is meant to shock students
out of their prejudices about professors and encourage
them to verify information. The goal is to lower the
“authority gap” to help participate in the learning
process. The next thing they hear is: “Please do
make questions! The worst thing that can happen
is that I don’t know the answer... but I’ll have the
meta-answer!”, i.e. the teacher presents himself as a
facilitator, one who can help in the constructivist pro-
cess of learning. Then they are presented with the
differences between proprietary and FLOSS
worlds and they are explained why they will be offered
to study mainly FLOSS artifacts (motivations in
Section 6). Then the course flows in what may appear
as traditional (front lessons, website for materials,
etc.) but it is not.
Front lessons in classroom are supported by the
use of a collaborative editor (gobby - http://gobby.
0x539.de) where any student can edit the very same
source code the teacher is showing, and in fact they do,
a lot, even anticipating what the teacher is explaining
(sometimes the author has to stop them by voice
because he wants to explain the whole sequence of
common mistakes in programming before getting to
the correct solution).
The course website is in fact a wiki (http://
en.wikipedia.org/wiki/Wiki) so that any student
(even anonymously) can edit, add, remove, pages.
They are also encouraged to interact with the
teacher (but also among them) by being offered many
communication channels, such as email (of course),
chat (Msn, Facebook, skype), microblogging (twitter,
identi.ca). The choice of many “modern” channels
tries to lower the “energy barrier”, so that everyone
can participate, the hope is that any student can find
his suitable way of interaction. And they do: some
of them use classical email, some twitter, some chat,
some ask during/after lesson, etc.
Please be aware that this is not a (criticized[7])
“minimal guidance” or “pure discovery-based teaching
technique” approach since students are not “left by
themselves to try and understand”, they are well
guided, they are protected from “misconceptions or
incomplete or disorganized knowledge”; author’s goal
is to let them be as active (in the learning process)
as they can, inside a coherent knowledge framework.
Is there any problem with this approach? Yes of
course. Teachers must jump down from pedestal
and let students participate, somewhat loosing their
“given” authority while deserving it “in the field”

(i.e. proving to be a reliable source). Moreover, in
the FLOSS world knowledge runs fast[13], so the new
teacher must keep up with the pace or his students
will rapidly overcome his knowledge and he will loose
respect, i.e. he must run (metaphorically) to remain
in the same place.

References
[1] H. Bauersfeld. Constructivism in Education,

chapter The Structuring of the Structures:
Development and Function of Mathematizing as
a Social Practice. Lawrence Erlbaum Associates
Publishers, 1995.

[2] E.J. Chikofsky and J.H. Cross II. Reverse
engineering and design recovery: A taxonomy.
IEEE software, pages 13–17, 1990.

[3] M. Dogru and S. Kalender. Applying the Subject
“Cell” through Constructivist Approach during
Science Lessons and the Teacher. Journal of
Environmental & Science Education, page 11,
2007.

[4] Martin Fowler. Analysis Patterns. Addison-
Wesley, Boston, 1997.

[5] J.H. Holloway. Caution: constructivism ahead.
Educational Leadership, 57(3):85–86, 1999.

[6] J.S. Kim. The effects of a constructivist teaching
approach on student academic achievement, self-
concept, and learning strategies. Asia Pacific
Education Review, 6(1):7–19, 2005.

[7] P.A. Kirschner, J. Sweller, and R.E. Clark. Why
minimal guidance during instruction does not
work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and
inquiry-based teaching. Educational psychologist,
41(2):75–86, 2006.

[8] Steven Levy. Hackers: Heroes of the Computer
Revolution. Dell Publishing Co., Inc., New York,
NY, USA, 1994.

[9] C.H. Liu and R. Matthews. Vygotsky’s
philosophy: Constructivism and its criticisms
examined. Published by Shannon Research
Press Adelaide, South Australia ISSN 1443-1475
http://iej. cjb. net, 6(3):386–399, 2005.

[10] J. Piaget. The psychology of intelligence.
Routledge, 1999.

[11] Eric S. Raymond. The Cathedral & the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly Media, Inc.,
revised & expanded ed. edition, 2001.

[12] L.K. Rhodes and G.T. Bellamy. Choices
and Consequences in the Renewal of Teacher
Education. Journal of Teacher Education,
50(1):17–18, 1999.

[13] Andrea Trentini. The Borg “architecture” as a
metaphor for FLOSS. In IADIS International
Conference Applied Computing, Rome (IT), Nov
2009. IADIS.

[14] E. Von Glasersfeld. Cognition, construction of
knowledge, and teaching. Synthese, 80(1):121–
140, 1989.

6


