
Assembler Manual

THE COMMODORE PET ASSEMBLER DEVELOPMENT SYSTEM

Copyright 1979, Commodore Business Machines
Professional Computer Division
1200 Wilson Drive
West Chester, PA 19380

COPYRIGHT

This software product is copyrighted and all rights reserved. The
distribution and sale of this product are intended for the use of the
original purchaser only. Lawful users of this program are hereby
licensed only to read the program, from its medium into memory of a
computer, solely for the purpose of executing the program. Duplicating,
copying, selling or otherwise distributing this product is a violation
of the law.

This manual is copyright and all rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Commodore Business Machines
(CBM).

PREFACE

The Commodore PET ASSEMBLER DEVELOPMENT SYSTEM software package
allows you to program in the native 6500 series Assembly language code,
directly on the Commodore PET computer. It provides you with a very
powerful assembler, editor and loader. These development tools
operate like and provide the same level of direct machine interface as
the assemblers on much larger computers.

This package contains everything that you will need to create, assemble,
load and execute 6500 series Assembly language code. You will notice
that like the software, this user's manual is directed towards the
experienced computer user that already has some familiarity with the
6500 series Assembly language and the operations of the Commodore PET
computer.

This product is not intended to provide the knowledge of 'how to' in
assembly language, but provides the software tools for the experienced
assembly language programmer.

It is recommended that the user obtain one or more of the reference
manuals listed below for a more detailed description of 6502 assembly
language and the Commodore PET. (The publisher is listed in
parenthesis.)

o 6502 Assembly Language Subroutines, Leventhal and Saville
 (Osborne/McGraw-Hill)
o 6502 Software Design, Scanlon (Howard W. Sams & Co.)
o 6502 Assembly Language Programming, Leventhal (Osborne/McGraw-Hill)
o Commodore Programmer's Reference Guide (Commodore/Howard W. Sams
 & Co.)
o Programming in 6502, Rodnay Zaks (Sybex)

This manual has been divided into five parts for easier reference. Part
One, "Introduction" provides a brief description of how an assembler
works along with some basic terminology used throughout this manual. It
is recommended that the novice user read this section first to obtain a
feel for the level of knowledge needed to program in assembly language
and use this manual.

Part Two, "PET Assembler Capabilities and Conventions", is composed of
Sections 1-3 and describes those capabilities and conventions used by

Seite 1

Assembler Manual
this assembler.

Part Three, "Creating and Editing Assembly Source Files", is composed of
Section 4 and describes how to create and edit an assembly language
source file. Section 4 contains the operating instructions for loading
and running the Editor program. This program allows the user to create
and edit assembly source files.

Part Four of the manual, "Assembling and Testing a Program", is composed
of Sections 5-6 and contains information on the programs that allow the
user to assemble and test object programs. Section 5 describes the
operation of the assembler program; Section 6 describes the program that
must be used to load an object program into memory.

Finally, Part Five, "Appendices", includes those charts and tables that
can be used as a reference to other sections. It also provides a quick
reference to the commands available when running certain programs.

USER CONVENTIONS

Throughout this manual there are certain conventions used to help make
explanations less ambiguous. A list of these conventions is given
below. We recommend that the user become familiar with these.

() Parentheses are used to denote an option. The only
 exceptions to this rule are in those sections where
 indirect indexed and indexed indirect addressing are
 explained. In these cases the parentheses are required.

label This is used to denote a label reference in an assembler
 source program. The actual label used is determined by the
 programmer.

opcode This is used to denote one of the 6502 instructions as
 specified in Appendix II.

operand This is used to denote the operand, or argument portion of
 an instruction.

comments This is used to specify user comments.

filename This is used to specify a filename on disk. The actual
 name is determined by the user.

filename* This is used to denote a wild card filename (i.e., a
 filename that begins with the characters preceding the
 "*").

lower case Generally, lower case variables specify that it is up to
variable you to supply the actual data.

UPPER CASE Generally, UPPER CASE NAMES are the actual input to be
NAMES typed.

TABLE OF CONTENTS

PET ASSEMBLER CAPABILITIES AND CONVENTIONS
1.0 INSTRUCTION FORMAT CONVENTIONS
 1.1 Symbolic
 1.2 Constants
 1.3 Relative
 1.4 Implied
 1.5 Indexed Indirect
 1.6 Indirect Indexed
2.0 ASSEMBLER DIRECTIVES
3.0 OUTPUT FILES GENERATED BY THE ASSEMBLER

Seite 2

Assembler Manual

CREATING AND EDITING ASSEMBLY SOURCE FILES
4.0 CREATING AND EDITING A SOURCE FILE
 4.1 Loading the Editor Program
 4.2 Using the Editor Program
 4.3 Editor Program Commands

ASSEMBLY AND TESTING A PROGRAM
5.0 ASSEMBLING A SOURCE FILE
 5.1 Loading the Assembler Program
 5.2 Using the Assembler Program
6.0 LOADING AN OBJECT FILE
 6.1 Loading the Loader Program
 6.2 Using the Loader Program

APPENDICES
Appendix I DESCRIPTION OF FILES
Appendix II 6500 SERIES MICROPROCESSOR INSTRUCTION SET OPCODES
Appendix III A SAMPLE OUTPUT LISTING OF THE COMMODORE PET ASSEMBLER
Appendix IV EXPLANATION OF ERROR MESSAGES
Appendix V EDITOR COMMAND SUMMARY

INTRODUCTION

This manual describes the Assembly Language and assembly process for
Commodore PET programs which use one of the 6500 series microprocessors.
Several assemblers are available for 6500 series program development,
each is slightly different in detail of use, yet all are the same in
principle. The 6500 series processors include the 6502 through the 6515
(the instruction sets are identical).

The process of translating a mnemonic or symbolic form of a computer
program to actual machine code is called assembly, and a program which
performs the translation is an assembler. We refer to the symbolic form
of the program as source code and the actual association for those
symbols are the Assembly Language. In general, one Assembly Language
statement will translate into one machine instruction. This
distinguishes an assembler from a compiler which may produce many
machine instructions from a single statement. An assembler which
executes on a computer other than the one for which code is generated,
is called a cross-assembler. Use of cross-assemblers for program
development for microprocessors is common because often a microcomputer
system has fewer resources than are needed for an assembler. However,
in the case of the Commodore PET, this is not true. With a floppy disk
and printer, the system is well suited for software development.

Normally, digital computers use the binary number system for
representation of data and instructions. Computers understand only ones
and zeros corresponding to an 'ON' or 'OFF' state. Users, on the other
hand, find it difficult to work with the binary number system and hence,
use a more convenient representation such as octal (base 8), decimal
(base 10), or hexadecimal (base 16). Two representations of the 6500
series operation to 'load' information into an 'accumulator' are:

 10101001 (binary)
 A9 (hexadecimal)

An instruction to move the value of 21 (decimal) to the accumulator is:

 A9 15 (hexadecimal)

Users still find numeric representations of instructions tedious to work
with, and hence, have developed symbolic representations. For example,
the preceding instruction might be written as:

 LDA #21

Seite 3

Assembler Manual
In this example, LDA is the symbol for A9, Load the Accumulator. An
assembler can translate the symbolic form LDA to the numeric form A9.

Each machine instruction to be executed has a symbolic name referred to
as an operation code (opcode). The opcode for "store accumulator" is
STA. The opcode for "transfer accumulator to index x" is TAX. The 56
opcodes for the 6500 series processors are detailed in Appendix II.
A machine instruction in Assembly Language consists of an opcode and
perhaps operands, which specify the data on which the operation is to
be performed.

A label is a 'name' for a line of code. Instructions may be labelled
for reference by other instructions, as shown in:

 L2 LDA #12

The label is L2, the opcode is LDA, and the operand is #12. At least
one blank must separate the three parts (fields) of the instruction.
Additional blanks may be inserted by the programmer for ease of reading.
Instructions for the 6500 series processors have at most one operand and
may have none. In these cases, the operation to be performed is totally
specified by the opcode as in CLC (Clear the Carry Bit).

Programming in Assembly Language requires learning the instruction set
(opcodes), addressing conventions for referencing data, the data
structures within the processor, as well as the structure of Assembly
Language programs. The user will be aided in this by reading and
studying the 6500 series hardware and programming manuals supplied with
this development package.

1.0 INSTRUCTION FORMAT CONVENTIONS

Assembler instructions for the Commodore PET Assembler are of two basic
types according to function:

o Machine instructions, and
o Assembler directives

Machine instructions correspond to the 56 operations implemented on the
6500 series processors. The instruction format is:

 (label) opcode (operand) (comments)

Fields are bracketed to indicate that they are optional. Labels and
comments are always optional and many opcodes such as RTS (Return from
Subroutine) do not require operands. A line may also contain only a
label or only a comment.

A typical instruction showing all four fields is:

 LOOP LDA BETA,X ;FETCH BETA INDEXED BY X

A field is defined as a string of characters separated by a space.

A label is an alphanumeric string of from one to six characters, the
first of which must be alpha. A label may not be any of the 56 opcodes,
nor any of the special single characters, i.e. A, S, P, X or Y. These
special characters are used by the assembler to reference the:

o Accumulator (A)
o Stack pointer (S)
o Processor status (P)
o Index registers (X and Y)

A label may begin in any column provided, it is the first field of an
instruction. Labels are used on instructions as branch targets and on
data elements for reference in operands.

Seite 4

Assembler Manual

The operand portion of an instruction specifies either an address or a
value. An address may be computed by expression evaluation and the
assembler allows considerable flexibility in expression formation. An
Assembly Language expression consists of a string of names and constants
separated by operators, +, -, *, and / (add, subtract, multiply, and
divide). Expressions are evalued by the assembler to computer operand
addresses. Expressions are evaluated left to right with no operator
precedence and no parenthetical grouping. Note that expressions are
evaluated at assembly time and not execution time.

Any string of characters following the operand field is considered a
comment and is listed, but not further processed. If the first nonblank
character of any record is a semi-colon (;), the record is processed as
a comment. On instructions which require no operand, comments may
follow the opcode. At least one space must separate the fields of an
instruction.

Appendix III presents a sample output listing from the assembler. Various
examples of instruction format are included.

1.1 Symbolic

Perhaps the most common operand addressing mode is the symbolic form as
in:

 LDA BETA ;PUT BETA VALUE IN ACCUMULATOR

In this example, BETA is a label referencing a byte in memory that
contains the value to be loaded into the accumulator. BETA is a label
for an address at which the value is located. Similarly, in the
instruction:

 LDA ALPHA + BETA

the address ALPHA + BETA is computed by the assembler, and the value at
the computer address is loaded into the accumulator.

Memory associated with the 6500 series processors is segmented into
pages of 256 bytes each. The first page, page zero, is treated
differently by the assembler and processor for optimization of memory
storage space. Many of the instructions have alternate operation codes
if the operand address is in page zero memory. In those cases, the
address is only one byte rather than the normal two. For example:

 LDA BETA

If BETA is located at byte 4B in page zero memory, then the code
generated is A5 B4. This is called page zero addressing. If BETA is at
013C, which is located in memory page one, the code generated is AD 3C
01. This is an example of 'absolute' addressing. Thus, to optimize
storage and execution time, a programmer should design with data areas
in page zero memory whenever possible. (Please avoid assembling code in
page zero, as problems may be encountered.) Remember, the assembler
makes decisions on which form to use, based on operand address
computation.

1.2 Constants

Constant values in Assembly Language can take several forms. If a
constant is other than decimal, a prefix character is used to specify
type:

 $ (Dollar sign) specifies hexadecimal
 @ (Commercial at) specifies octal
 % (Percent) specifies binary

Seite 5

Assembler Manual
 ' (Apostrophe) specifies an ASCII literal character in immediate
 instructions.

The absence of a prefix symbol indicates decimal a value. In the
statement:

 LDA BETA + 5

the decimal number 5 is added to BETA to compute the address.
Similarly,

 LDA BETA + $5F

denotes that the hexadecimal value of 5F is to be added to BETA for the
address computation.

The immediate mode of addressing is signified by a # (pound sign)
followed by a constant. For example:

 LDA #2

specifies that the decimal value 2 is to be put into the accumulator.
Similarly,

 LDA #'G

will load the ASCII value of character G into the accumulator. Since
the accumulator is one byte, the value loaded must be in the range of 0
to 255 (decimal).

Note that constant values can be used in address expressions and as
values in immediate mode addressing. They can also be used to
initialize locations as explained in a later section as assembler
directives.

1.3 Relative

There are eight conditional branch instructions available to the user.
In this example:

 BEQ START ;IF EQUAL BRANCH TO START

If the values compared are equal, a transfer to the instruction labelled
START is made. The branch address is a one byte positive or negative
offset which is added to the program counter during execution. At the
time the addition is made, the program counter is pointing to the next
instruction beyond the branch instruction. The offset is based on the
location of the next instruction. A branch address must be within 127
bytes forward or 128 bytes backward from the conditional branch
instruction. An error will be flagged at assembly time if a branch
target falls outside the bounds for relative addressing. Relative
addressing is not used for any instructions other than branch.

1.4 Implied

Twenty-five instructions such as TAX (Transfer Accumulator to Index X)
require no operand, and hence, are single byte instructions. Thus, the
operand addresses are implied by the operation code.

Four instructions, ASL, LSR, ROL, and ROR, are special in that the
accumulator, A, can be used as an operand. In this special case, these
four instructions are treated as implied mode addressing and only an
operation code is generated.

1.5 Indexed Indirect

Seite 6

Assembler Manual

In this mode, the operand address is computed by first adding the X
register (the index) to the argument in the operand (in the example
below, BETA). The resulting value is the indirect page zero address
which contains the actual operand address. In this example:

 LDA (BETA,X)

the parentheses around the operand indicates indirect mode. In the
above example, the value in index register X is added to BETA. That sum
must reference a location in page zero memory. During execution, the
high order byte of the address is ignored; thus, forcing a page zero
address. The two bytes starting at that location in page zero memory
are taken as the address of the operand in low byte, high byte format.
For purposes of illustration, assume the following:

 BETA contains $12
 X contains $04
 Locations $0017 and $0016 contain $01 and $25
 Location $0125 contains $37

Then BETA + X is $16, the address at location $16 is $0125, the value at
$0125 is $37, and hence the instruction LDA (BETA,X) loads the value $37
into the accumulator. (This addressing mode is often used for accessing
a table of address vectors in page zero.) This form of addressing is
shown in the following illustration.

 LDA (BETA,X)

 Address Value

 +---------+
 BETA | $12 | + $04 = $0016
 +---------+

 +---------+
 $0016 | $25 | Treated as Low Byte
 +---------+
 $0017 | $01 | Treated as High Byte, result is $0125
 +---------+

 +---------+
 $0125 | $37 | This value is loaded into the Accumulator
 +---------+

1.6 Indirect Indexed

Another mode of indirect addressing uses index register Y and is
illustrated by:

 LDA (GAMMA),Y

In this case, GAMMA references a page zero location at which an address
is to be found. The value in index Y is added to that address to
compute the actual address of the operand. Suppose for example that:

 GAMMA contains $38
 Y contains $07
 Locations $0039 and $0038 contain $00 and $54
 Location $005B contains $26

The address at $38 is $0054; seven is then added to this, giving an
effective address $005B. The value at $005B is $26 which is loaded into
the accumulator.

In indexed indirect, the index X is added to the operand prior to the
indirection. In indirect indexed, the indirection is done and then the

Seite 7

Assembler Manual
index Y is added to compute the effective address. Indirect mode is
always indexed except for a JMP instruction which allows an absolute
indirect address, as exemplified by JMP (DELTA) which causes a branch to
the address contained in locations DELTA and DELTA + 1. The indirect
indexed mode of addressing is shown in the following illustration.

 LDA (GAMMA),Y

 Address Value

 +---------+
 GAMMA | $38 |
 +---------+

 +---------+
 $0038 | $54 | Treated as low byte
 +---------+
 $0039 | $00 | Treated as high byte, result is $0054
 +---------+ Add $07 from Y, result is $005B

 +---------+
 $005B | $26 | This value is loaded into the Accumulator
 +---------+

2.0 ASSEMBLER DIRECTIVES

There are eleven assembler directives used to reserve storage and direct
information to the assembler. Nine have symbolic names with a period as
the first character. The tenth, a symbolic equate, uses an equals sign
(=) to establish a value for a symbol. The eleventh, asterisk (*),
means the value of the current location counter. This corresponds to
the ORG directive in some assemblers. It is sometimes read as "here" or
"this location". Some equate examples are "RED = 5", "BLUE = $FF", and
"* = $0200". A list of the directives is given below (their use is
explained in this section):

 .BYTE .WORD .DBYTE .PAGE .SKIP
 .OPT .END .FILE .LIB
 =
 *

Labels and symbols other than directives may not begin with a period.

Examples of assembler directives can be seen in the sample Assembler
program in Appendix III.

If desired, all directives which are preceded by the period may be
abbreviated to the period and three characters, e.g., '.BYT'.

.BYTE is used to reserve one byte of memory and load it with a value.
The directive may contain multiple operands which will store values in
consecutive bytes. ASCII strings may be generated by enclosing the
string with quotes. (All quotes are "single" quotes, i.e., SHIFT 7.)
It should be noted, however, that there is a limitation of 40 ASCII
characters that can be stored in each .BYTE directive.

 HERE .BYTE 2
 THERE .BYTE 1, $F, @3, %101, 7
 ASCII .BYTE 'ABCDEFH'

Note that numbers may be represented in the most convenient form. In
general, any valid 6500 series expression which can be resolved to eight
bits, may be used in this directive. If it is desired to include a
quote in an ASCII string, insert two quotes in the string. For example:

 .BYTE 'JIM''S CYCLE'

Seite 8

Assembler Manual
could be used to store:

 JIM'S CYCLE

It should be noted that the use of arithmetic operations in the .BYTE
directive is not supported in this version of the package.

.WORD is used to reserve and load two bytes of data at a time. Any
valid expression, except for ASCII strings, may be used in the operand
field. For example:

 HERE .WORD 2
 THERE .WORD 1, $FF03, @3
 WHERE .WORD HERE, THERE

The most common use for .WORD is to generate addresses as shown in the
previous example labelled "WHERE", which stores the 16 bit address of
"HERE" and "THERE". Addresses in the 6500 series are fetched from
memory in the order low-byte, then high-byte. Therefore, .WORD
generates the value in this order.

The hexadecimal portion of the example ($FF03) would be stored $03, $FF.
If this order is not desired, use .DBYTE rather than .WORD.

.DBYTE is exactly like .WORD, except the bytes are stored in high-byte,
low-byte order. For example:

 .DBYTE $FF03

will generate $FF, $03. Thus, fields generated by .DBYTE may not be
used as indirect addresses.

An advanced technique is to set up vector tables under the assembler
directive .DBYTE and to push the starting vector address onto the stack,
then execute an RTS instruction to access your routine. Remember that
the addresses for the operands should be the actual address location
minus one. When constructing a JUMP table in the usual way using an
indirect jump instruction (opcode JMP ($6C)), do not subtract one from
the address of the operand.

Equal (=) is the EQUATE directive and is used to reserve memory
locations, reset the program counter (*), or assign a value to a symbol.

 HERE * = * + 1 ;RESERVE ONE BYTE
 WHERE * = * + 2 ;RESERVE TWO BYTES
 * = $200 ;SET PROGRAM COUNTER
 NB = 8 ;ASSIGN VALUE
 MB = NB + %101 ;ASSIGN VALUE

The '=' directive is very powerful and can be used for a wide variety of
purposes.

Asterisk (*) directive is used to change the program counter. To create
an object code program that starts assembly at any address greater than
zero, the '*' directive must be used. For example, '* = $200' starts
assembling at address $200.

Expressions must not contain forward references or they will be flagged
as an error. For example:

 * = C + D - E + F

would be legal if C, D, E and F are all defined, but would be illegal if
any of the variables were defined later on in the program. Note also
that expressions are evaluated in strict left to right order.

.PAGE is used to cause an immediate jump to the top of page on the
output listing and may also be used to generate or reset the title

Seite 9

Assembler Manual
printed at the top of the output listing.

 .PAGE 'THIS IS A TITLE'
 .PAGE
 .PAGE 'NEW TITLE'

If a title is defined, it will be printed at the top of each page until
it is redefined or cleared. A title may be cleared with:

 .PAGE ' '

.SKIP is used to generate blank lines in a listing. The directive will
not appear, but its position may be found in a listing. The directive
is treated as a valid input "list" and the list number printed on the
left side of the listing will jump by two when the next line is printed.

 .SKIP 2 ;SKIP TWO BLANK LINES
 .SKIP 3 * 2 - 1 ;SKIP FIVE LINES
 .SKIP ;SKIP ONE LINE

.OPT is the most powerful directive and is used to control the
generation of output fields, listings and expansion of ASCII strings in
.BYTE directives. The options available are: ERRORS, NOERRORS, LIST,
NOLIST, GENERATE, NOGENERATE, SYM, and NOSYM.

 .OPT ERRORS, LIST, GENERATE
 .OPT NOE, NOL, NOG

Also valid is:

 .OPT LIST, ERR

Default Settings are:

 .OPT LIST, ERR, NOGEN

Here are descriptions for each of the options:

ERRORS, NOERRORS:
 Used to control creation of a separate error file. The error file
 contains the source line in error and the error message. This
 facility is normally of greatest use to time-sharing users who have
 limited print capacity. The error file may be turned on and examined
 until all errors have been corrected. This listing file may then be
 examined. Another possibility is to run with:

 .OPT ERROR, NOLIST

 until all errors have been corrected, and then make one more run with:

 .OPT NOERRORS, LIST

LIST, NOLIST:
 Used to control the generation of the listing file which contains
 source input, errors/warnings, code generation, symbol table and
 instruction count if enabled.

GENERATE, NOGENERATE:
 Used to control printing of ASCII strings in the .BYTE directive. The
 first two characters will always be printed, and subsequent characters
 will be printed (normally two bytes per line), if GENERATE is used.

.END should be the last directive in a file and is used to signal the
physical end of the file. Its use is optional, but highly recommended
for program documentation.

.LIB allows the user to insert source code from another file into the
assembly. When the assembler encounters this directive, it temporarily

Seite 10

Assembler Manual
ceases reading source code from the current file and starts reading from
the file named in the .LIB. Processing of the original source file
resumes when end-of-file (EOF) or .END is encountered in the library
file. The control file containing the .LIB can contain other assembler
directives to turn the listing function on and off, etc.

.FIL can be used to link another file to a current one during assembly.
A library file called by a .LIB may not contain another .LIB, but it may
contain a .FIL. A '.FIL' terminates assembly of the file containing it
and transfers source reading to the file named on the OPERAND. There
are no restrictions on the number of files which may be linked by .FIL
directives. Caution should be exercised when using this directive to
ensure that no circular linkages are created. An assembler pass can
only be terminated by (EOF) or the .END directive.

3.0 OUTPUT FILES GENERATED BY THE ASSEMBLER

There are three output files genereated by the assembler. Each file is
optional and can be created through the use of the .OPT assembler
directive. The listing file contains the program list with errors and
the symbol table. The error file contains all error lines and errors
(as included in the listing file). The interface file contains the
object code for the loader.

Listing File

The listing file will be produced unless the NOLIST option is used on
the .OPT assembler directive. This file is make up of two sections:
Program and Error List, and Symbol Table.

o Program and Error List

This listings will always be produced unless the NOLIST option is
selected. It contains the source statement of the program along with
the assembled code. Errors and warnings appear after erroneous
statements. (An explanation of error codes is presented in Appendix
VI.) A count of the errors and warnings found during the assembly is
presented at the end of the program.

o Symbol Table

The symbol table will always be produced unless the NOSYM option is
used. It contains a list of all symbols used in the program, and their
addresses.

Interface File

This file does not contain true object code, but data which can be
loaded and converted to machine code by the loader. The format for the
first and all succeeding records, except for the last record, is as
follows:

 ; n1n0 a3a2a1a0 (d1d0)1 (d1d0)2 ... (d1d0)23 x3x2x1x0

Where the following statements apply:

1. All characters (n,a,d,x) are the ASCII characters zero through F,
 each representing a hexadecimal digit.

2. The semicolon is a record mark indicating the start of a record.

3. n1n0 The number of bytes of data in this record (in
 hexadecimal). Each pair of hexadecimal characters (d1d0)
 represents a single byte.

4. a3a2a1a0 The hexadecimal starting address for the record. The a3
 represents address bits 15 through 12, etc. The 8-bits

Seite 11

Assembler Manual
 represented by (d1d0)1 is stored in address a3a2a1a0;
 (d1d0)2 is stored in (a3a2a1a0)+1, etc.

5. (d1d0) Two hexadecimal digits representing an 8-bit byte of data.
 (d1=high-order 4 binary bits and d0=low-order 4 bits). A
 maximum of 18 (hex) or 24 (decimal) bytes of data per
 record is permitted.

6. x3x2x1x0 Record check sum. This is the hexadecimal sum of all
 characters in the record, including the n1n0 and a3a2a1a0,
 but excluding the record mark and the check sum of
 characters. To generate the check sum, each byte of data
 (represented by two ASCII characters) is treated as 8
 binary bits. The binary sum of these 8-bit bytes is
 truncated to 16 binary bits (4 hexadecimal digits) and is
 then represented in the record as four ASCII characters
 (x3x2x1x0).

The format for the last record in a file is as follows:

 ; 00 c3c2c1c0 x3x2x1x0

1. ; 00 Zero bytes of data are in this record. The zeros identify
 this as the final record in a file.

2. c3c2c1c0 This represents the total number of records (in
 hexadecimal) in this file, NOT including the last record.

3. x3x2x1x0 Check sum for this record.

4.0 CREATING AND EDITING A SOURCE FILE

The editor is used to enter and modify source files for the assembler.
The editor retains all of the features of the BASIC screen editor and
allows AUTOmatic line numbering, FIND, CHANGE, DELETE within a range,
and reNUMBER. Other commands include COLD, GET, PUT, BREAK, KILL and
FORMAT. All of the commands are detailed in the summary at the end of
this section.

The editor commands operate in a similar fashion to the commands already
existing in the computer's BASIC. For practice, we suggest that you try
to create short example files using the editor commands.

The data files on which the assembler operates are made up of CBM ASCII
characters with each line terminated by a carriage return. The only
restriction on data lines is in naming. Due to the method in which the
assembler parses, spaces are not allowed in filenames. The files are
sequential and must be terminated by a zero byte $00. When listing a
directory, these files will show as file type SEQ.

Each file's format is sequential, with a terminating zero byte ($00).

4.1 Loading the Editor Program

The editor must be loaded with the BASIC SYS command:

 SYS 59648

After typing the SYS command, the editor has been loaded. At this point,
type a NEW command to clear the text pointers. You are now ready to edit
or enter assembler source files.

4.2 Using the Editor Program

When the Editor Program is in operation, any BASIC statement typed

Seite 12

Assembler Manual
such as:

 10 FOR I = 1 TO 10

will not be tokenized (converted into BASIC keyword tokens). Thus, you
cannot type a BASIC line with the editor turned on. To avoid this
problem, disable the editor with the 'KILL' command or reset the
computer with the 'COLD' command to return to BASIC.

Source files are loaded with the 'GET' command. As the file is loaded,
the editor generates the line numbers automatically starting at 1000.
After editing the file, ensure that the last line in the file is a .FILE
or a .END assembler directive. Then, save the file on the disk with the
'PUT' command.

Important: Be sure to save your completed file using the PUT command
BEFORE loading the assembler or your file will be lost.

Refer to Appendix V for an Editor Command Summary.

4.3 Editor Program Commands

AUTO Line Numbering

The AUTO command generates new line numbers while entering a new source
code file. To enable the AUTO command, type the following:

 AUTO n1

where n1 is the optional increment between line numbers printed. To
disable the AUTO function, type the AUTO command without an increment.

BREAK Command

Calls the built-in TIM-Monitor

CHANGE string

The CHANGE command automatically locates and replaces one string with
another (multiple occurrences). This command is entered in the
following format:

 CHANGE/str1/str2/(,n1-n2)

 / Delimits the str1 and str2 (use any character not in either
 string)
 str1 Search string
 str2 Replacement string
 n1-n2 Range parameters. The format is the same as the LIST command
 in BASIC. If omitted, the whole file is searched.
 (Optional)

COLD Command

Performs a cold-start of the PET

CPUT Command

The CPUT command outputs source files with no unnecessary spaces to the
disk for later assembly. The syntax for this command is the same as the
PUT command.

DELETE

The DELETE command allows the user to delete several lines at a time.
Simply input the range of lines to be deleted (n1 through n2). (The
format is the same as the LIST command in BASIC).

Seite 13

Assembler Manual

 DELETE n1-n2

To delete a single line, enter the line number alone on a blank line and
press RETURN.

FIND string

The FIND command is used to search for and locate specific character
strings in text. Each occurrence of the string is printed on the CRT.
You can pause the printing with the space bar. Printing can then be
continued with the space bar, or terminated with the RUN/STOP key. The
format of the FIND command is:

 FIND/str1/(,n1-n2)

 / Delimiter (use a character not in the string)
 str1 Search string
 n1-n2 Range parameter. Same as the LIST command in BASIC.
 (Optional)

FORMATted Print

The FORMAT command is used to print the text file in tabbed format like
the assembler. For this function to work correctly, you must type
mnemonics in column two, or one space from labels.

 FORMAT (n1-n2)

 n1-n2 Range parameters of the same format as LIST. (Optional)

Note: This command has the same controls as FIND. For example, press
space bar to halt printing and press it again to restart printing.
Press the RUN/STOP key to terminate the listing.

GET Command

This command is used to load assembler source text files into the editor
from disk. It can also be used to append to files already in memory.

 GET "filename"(,n1)(,n2)(,n3)

 n1 Begins inputting source at this line in the file currently in
 memory (Optional)
 n2 Device number, default is 8 (Optional)
 n3 Secondary address, default is 8 (Optional)

Note: GET starts numbering lines at 1000 and incrementing the line
numbers by 10. If n1 is greater than any line number in memory, the
file being loaded is appended to the end of the current file.

KILL Command

This command causes the editor to disengage. To restart the editor,
type the same command used to start the editor (SYS 59648).

LIST Command

The editor LIST command works in the same manner as the LIST command in
BASIC.

 LIST (n1)-(n2)

where n1-n2 specifies a range of lines. Valid parameters also include
'n1-' (which will list all lines from n1 to the end) and '-n2' (which
will list all lines from the beginning up to and including n2).

ReNUMBER Lines

Seite 14

Assembler Manual

The NUMBER command allows the user to renumber all or part of the file
in memory.

 NUMBER (n1),(n2),(n3)

 n1 Old start line number
 n2 New start line number
 n3 Step size for resequence

PUT Command

The PUT command outputs source files to the disk for later assembly.
PUT has the ability to output all or part of the memory resident file.

 PUT "filename",(n1-n2),(n3),(n4)

 n1 Starting line number (Optional)
 n2 Ending line number (Optional)
 n3 Device number, default is 8 (Optional)
 n4 Secondary address, default is 8 (Optional)

If n1-n2,n3,n4 are left out, the whole file is output to the disk.

5.0 ASSEMBLING A SOURCE FILE

Once a source file is ready to assemble, you must first save it on disk
(by using the PUT command). Please be sure to do this before loading
the assembler program. Once this is completed, you will load the
assembler which will reside in the same area that BASIC programs do.

5.1 Loading the Assembler Program

To load the assembler, type:

 SYS 36864

The assembler will print a copyright notice and the first user prompt
when execution begins.

5.2 Using the Assembler Program

When a program is being assembled, the user has the option of creating
an object file which contains the data necessary to create a machine
code program (by the loader). The name of this file is specified by the
user before assembly starts.

It should be noted, however, that the assembler program will not
overwrite any files. If you wish to use the same object filename each
time you assemble a program, you must "scratch" the old object file
before you run the assembler.

When the assembler starts, the first prompt will be:

 OBJECT FILE (CR OR D:NAME):

If you want the assembler to create an object file enter the filename
and press RETURN. If not, press RETURN.

Next you will be prompted with:

 HARD COPY (CR/Y OR N)?

If you want a hardcopy printout, enter Y and press RETURN or simply
press RETURN. If not, enter N and press RETURN. This will cause the

Seite 15

Assembler Manual
output to be listed to the screen.

Finally, you will be prompted with:

 SOURCE FILE NAME?

Enter the name of the source file that you wish to assemble.

After entering this last prompt, the assembler program begins to
execute. If, during this assembly, the symbol table overflows, the
assembly process will stop.

HALTING THE ASSEMBLER

When the assembler is running, operation may be halted by pressing the
RUN/STOP key. If this is done, the assembly process will be stopped and
the program will wait for the user to either continue the assembly or to
terminate it completely. Press the B key to terminate the assembly and
return to BASIC. Pressing any other key will continue the assembly
process. This feature is useful for users without printers, as the
screen listing can be examined during assembly.

6.0 LOADING AN OBJECT FILE

The Commodore PET Assembler produces protable output in an ASCII format
that can not be directly executed. This output must be LOADED so the
program can be executed. This is the function of a Loader.

6.1 Loading the Loader Program

To load the Loader program, type:

 SYS 44421

6.2 Using the Loader Program

When activated, the loader prints a copyright notice and prompts the user
for a load offset. The offset is used to place object code into an address
range other than the one that it was assembled into. This allows the user
to assemble for an area where there is no RAM and load into a RAM area.
The object can then be programmed into EPROM, etc.

The offset is a two byte hexadecimal address that is added to the
program addresses. If the program address plus the offset is greater
than $FFFF, the address wraps around through $0000. The following
examples show how offset works.

 Program Address Offset Address of Object Code
 $0400 $0000 $0400
 $3000 $0000 $3000
 $0400 $2000 $2400
 $9000 $9000 $2000
 $E000 $4000 $2000

After the offset is entered, the loader will prompt the user for the
object filename to be loaded. The loader will then initialize the
drive, search for the file, and start the load. As the data is laoded,
the program will print the input data to the CRT. This is for user
feedback only. When the load is completed, the loader prints the
message 'END OF LOAD' and returns to BASIC.

There are three errors that can occur during a load (each is self
documenting):

 BAD RECORD COUNT

Seite 16

Assembler Manual
 NON-RAM LOAD
 CHECKSUM ERROR

Errors are considered fatal; the load is terminated, the object file is
closed, and control is returned to BASIC.

APPENDIX I DESCRIPTION OF FILES

ASSEMBLER See Section 5. This is the actual assembler program which
 assembles the files which were created by the EDITOR program.
 To load the ASSEMBLER, type SYS 36864. Any source text files
 not previously saved will be lost since the assembler loads
 into the same area used.

EDITOR See Section 4. This program is used to create and modify
 the source code files which will later be assembled. To
 load the EDITOR, type SYS 59648. Then type NEW to clear the
 pointers before proceeding to create or edit any files.
 Be sure to save the source code file using the PUT command
 before loading the assembler.

LOADER See Section 6. This program is used to load the sequential
 records which are created by the assembler as its output or
 object file. When this program is run, it loads the object
 file into memory in the specified location as true machine
 code which can be executed.
 To load the LOADER, type SYS 44421.

APPENDIX II 6500 SERIES MICROPROCESSOR INSTRUCTION SET OPCODES

ADC Add with Carry to Accumulator
AND "AND" to Accumulator
ASL Shift Left One Bit (Memory or Accumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Zero Result
BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force an Interrupt or Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One
EOR Exclusive-Or Memory with Accumulator
INC Increment Memory by One
INX Increment X by One
INY Increment Y by One
JMP Jump to New Location
JSR Jump to New Location, Saving Return Address
LDA Transfer Memory to Accumulator
LDX Transfer Memory to Index X
LDY Transfer Memory to Index Y
LSR Shift One Bit Right (Memory or Accumulator)
NOP Do Nothing - No Operation
ORA "OR" Memory with Accumulator
PHA Push Accumulator on Stack

Seite 17

Assembler Manual
PHP Push Processor Status on Stack
PLA Pull Accumulator From Stack
PLP Pull Processor Status From Stack
ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return From Interrupt
RTS Return From Subroutine
SBC Subtract Memory and Carry From Accumulator
SEC Set Carry Flag
SED Set Decimal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer index Y to Accumulator

Appendix III A SAMPLE OUTPUT LISTING OF THE COMMODORE PET ASSEMBLER

LINE# LOC CODE LINE
00161 CCE1 ;
00162 CCE1 ; INIT THE MEMORY MANAGER (STARTUP COMES HERE)
00163 CCE1 ;
00164 CCE1 GOOO
00165 CCE1 A202 LDX #$02 ;MOVE THREE BYTES
00166 CCE3 BD DE CC WEDGE LDA JUMP,X
00167 CCE6 95 7C STA CHRGOT+3,X
00168 CCE8 CA DEX
00169 CCE9 10 F8 BPL WEDGE
00170 CCEB ;
00171 CCEB A5 BA LDA FA ;USE CURRENT FA FOR
 DEVICE ADDRESS
00172 CCED 8D 77 CC STA SVFA
00173 CCF0 ;
00174 CCF0 ; SAY HELLO AND EXIT
00175 CCF0 ;
00176 CCF0 4C 4B CF JMP MSG ;PRINT HELLO (JSR/RTS)
00177 CCF3 ;
00178 CCF3 ; THIS IS WHERE WE COME TO DO THE WORK
00179 CCF3 ;
00180 CCF3 START
00181 CCF3 85 A6 STA BUFPT ;SAVE .A, .X
00182 CCF5 86 A7 STX BUFPT+1
00183 CCF7 BA TSX ;ACTIVATED CALL IN 'GONE'
00184 CCF8 BD 01 01 LDA $0101,X
00185 CCFB C9 E6 CMP #<GONE ;FROM A RUNNING PROGRAM??
00186 CCFD F0 04 BEQ TRYTWO
00187 CCFF C9 8C CMP #<MAIN ;FROM DIRECT MODE??
00188 CD01 D0 17 BNE NOTCMD
00189 CD03 BD 02 01 TRYTWO LDA $0102,X
00190 CD06 C9 A7 CMP #>GONE ;PROGRAM?
00191 CD08 F0 04 BEQ FINDIT
00192 CD0A C9 A4 CMP #>MAIN ;DIRECT?
00193 CD0C D0 0C BNE NOTCMD
00194 CD0E A5 A6 FINDIT LDA BUFPT ;GET THE COMMAND BACK
00195 CD10 A2 08 LDA #NCMD-1
00196 CD12 FINDC ;FIND THE COMMAND
00197 CD12 D0 19 CC CMP CMD,X
00198 CD15 F0 11 BEQ CALL10
00199 CD17 CA DEX
00200 CD18 10 F8 BPL FINDC
00201 CD1A ;
00202 CD1A NOTCMD

Seite 18

Assembler Manual
00203 CD1A A5 A6 LDA BUFPT ;RESTORE REGS
00204 CD1C A6 A7 LDX BUFPT+1
00205 CD1E C9 3A CMP #': ;COMPLETE CHRGOT
00206 CD20 B0 03 BCS STRTS
00207 CD22 4C 80 00 JMP CHRGOT+7
00208 CD25 4C 8A 00 STRRTS JMP CHRGOT+17 ;TO THE END OF CHRGOT
00209 CD28 ;
00210 CD28 CALL10
00211 CD28 86 A9 STX CNTDN ;SAVE INDEX
00212 CD2A 8D 7A CC STA FLAG ;SAVE THE COMMAND FOR LATER
00213 CD2D 20 A3 CE LSR RDFILE ;GET FILENAME AND LENGTH
00214 CD30 A6 A5 LDX CNTDN ;RESTORE INDEX
00215 CD32 A9 27 LDA #<FILE ;SET FILENAME ADDRESS

APPENDIX IV EXPLANATION OF ERROR MESSAGES

Error messages are given in the program listing accompanying the
statements in error. The following is a list of all error messages
which might be produced during assembly.

 **A MODE NOT ALLOWED

Following the legal opcode, and one or more spaces, is the letter A
followed by one or more spaces. The assembler is trying to use the
accumulator (A = accumulator mode) as the operand. However, the opcode
in the statement is one which does not allow reference to the
accumulator. Check for a statement labelled A (an illegal statement),
which this statement is referencing. If you were trying to reference
the accumulator, look up the valid operands for the opcode used.

 **A,X,Y,S,P RESERVED

A label on a statement is one of the five reserved names (A, X, Y, S and
P). They have special meaning to the assembler and therefore cannot be
used as labels. Use of one of these names will cause this error message
to be printed. No code will be generated for the statement. The label
does not get defined and will appear in the symbol table as an
undefined variable. Reference to such a label elsewhere in the program
will cause error messages to be printed as if the label were never
declared.

 **BRANCH OUT OF RANGE

All of the branch instructions (excluding the two jumps) are assembled
into two bytes of code. One byte is for the opcode and the other for
the address to branch to. The branch is taken relative to the address
of the beginning of the next instruction. If the value of the byte is
0-127, the branch is forward; if the value is 128-255, the branch is
backward. (A negative branch is in two's complement form). Therefore,
a branch instruction can only branch forward 127 or backward 128 bytes
relative to the beginning of the next instruction. If an attempt is
made to branch further than these limits, this error message will be
printed. To correct, restucture the program.

 **CAN'T EVAL EXPRESSION

In evaluating an expression, the assembler found a character it couldn't
interpret as being part of a valid expression. This can happen if the
field following an opcode contains special characters not valid within
expressions (i.e. parentheses). Check the operand field and make sure
only valid special characters are within a field (between commas).

 **DUPLICATE SYMBOL

The first field on the card is not an opcode so it is interpreted as a
label. If the current line is the first line in which that symbol
appears as a label (or on the left side of an equals sign), it is put

Seite 19

Assembler Manual
into the symbol table and tagged as defined in that line. However, if
the symbol has appeared as a label, or on the left of an equate prior
to the current line, the assembler finds the label already in the
symbol table. The assembler does not allow redefinitions of symbols and
will, in this case, print this error message.

 **FILE EXISTS

The FILE EXISTS error message occurs when the object file named already
exists on the diskette. This error can be corrected by scratching the
old file or changing the diskette.

 **FILE NOT FOUND

The FILE NOT FOUND error message is displayed when one of the following
occurs:

o The source file was not found.
o A .LIB specifies a nonexistant file.
o A .FIL specifies a nonexistant file.

The user should make sure that the filename is not misspelled, or that
the wrong diskette was placed in the disk drive.

 **FORWARD REFERENCE

The expression on the right side of an equals sign contains a symbol
that hasn't been defined previously. One of the operations of the
assembler is to evaluate expressions or labels, and assign addresses or
values to them. The assembler processes the input Source Code
sequentially, which means that all of the symbols that are encountered
fall into two classes, i.e., already-defined symbols and non-previously-
encountered symbols. The assembler assigns defined values and builds a
table of undefined symbols. When a previously defined symbol is
discovered, it is substituted into the table. The assembler then
processes all of the input statements a second time using currently
defined values.

A label or expression which uses a yet undefined value is considered to
be referenced forward to the to-be-defined value.

To allow for conformity of evaluating expressions, this assembler allows
for one level of forward reference so that the following code is
allowed.

 Card Sequence Label Opcode Operand
 100 BNE NEWONE
 200 NEWONE LDA #5

The following is not allowed:

 Card Sequence Label Opcode Operand
 100 BNE NEWONE
 200 NEWONE INC NEXT+5
 300 NEXT LDA #5

This feature should not disturb the normal use of labels. The
correction for this problem in this example is:

 Card Sequence Label Opcode Operand
 100 BNE NEWONE
 300 NEXT LDA #5
 301 NEWONE INC NEXT+5

This error may also mean that a value on the right side of the '=' is
not defined at all in the program, in which case, the cure is the same
as for undefined values.

Seite 20

Assembler Manual
The assembler cannot process more than one level of computed forward
reference. All expressions with symbols that appear on the right side
of any equal sign must refer only to previously defined symbols for the
equate to be processed.

 **ILLEGAL OPERAND TYPE

After finding an opcode that does not have an implied operand, the
assembler passes the operand field (the next non-blank field following
the opcode) and determines what type of operand it is (indexed,
absolute, etc.). If the type of operand found is not valid for the
opcode, this error message will be printed.

Check to see what types of operands are allowed for the opcode and make
sure the form of the operand type is correct (see the section 1.1 on
addressing modes).

Check for the operand field starting with a left parenthesis. If it is
supposed to be an indirect operand, recheck the correct format for the
two types available. If the format was wrong (missing right parenthesis
or index register), this error will be printed. Also check for missing
or wrong index registers in an indexed operand (form: expression, index
register).

 **IMPROPER OPCODE

The assembler searches a line until it finds the first non-blank
character string. If this string is not one of the 56 valid opcodes, it
assumes it is a label and places it in the symbol table. It then
continues parsing for the next non-blank character string. If none are
found, the next line will be read in and the assembly will continue.
However, if a second field is found, it is assumed to be an opcode
(since only one label is allowed per line). If this character string is
not a valid opcode, the error message is displayed.

This error can occur if opcodes are misspelled, in which case the
assembler will interpret the opcode as a label (if no label appears on
the card). It will then try to assemble the next field as the opcode.
If there is another field, this error will be printed.

Check for a misspelled opcode or for more than one label on a line.

 **INDEXED MUST BE X OR Y

After finding a valid opcode, the assembler looks for the operand. In
this case, the first character in the operand field is a left
parenthesis. The assembler interpretes the next field as an indirect
addrses which, with the exception of the jump statement, must be
indexed by one of the index registers, X or Y. In the erroneous case,
the character that the assembler was trying to interpret as an index
register is not X or Y and this error message is printed.

Check for the operand field starting with a left parenthesis. If it is
supposed to be an indirect operand, recheck the correct format for the
two types available. If the format is wrong (missing right parenthesis
or index register), this error will be printed. Also, check for missing
or wrong index registers in an indexed operand (form: expression, index
register).

 **INDIRECT OUT OF RANGE

The assembler recognizes an indirect address by the parentheses that
surround it. If the field following an opcode has parentheses around
it, the assembler will try to assemble it as an indirect address. If
the operand field extends into absolute mode, i.e., larger than 255
(two bytes would be required to specify the address), this error will be
printed.

Seite 21

Assembler Manual
This error will only occur if the operand field is in correct form
(i.e., an index register following the address), and the address field
is out of page zero. To correct this, the address field must refer to
page zero memory. (The implied high order byte is 00.)

 **INVALID ADDRESS

An address referenced in an instruction, or the address in one of the
assembler directives (.BYTE, .DBYTE, .WORD), is invalid. In the case of
an instruction, the operand that is generated by the assembler must be
greater than or equal to zero, and less than or equal to $FFFF (2 bytes
long). (This excludes relative branches which are limited to +127 or
-128 from the next instruction.) If the operand generates more than two
bytes of code or is less than zero, this error message will be printed.
For the .BYTE directive, each operand is limited to one byte. All
address references must be greater than or equal to zero.

This validity is checked after the operand is evaluated. Check for
values of symbols used in the operand field (see the symbol table for
this information).

 **LABEL START NEED A-Z

The first non-blank field is not a valid opcode. Therefore, the
assembler tried to interpret it as a label. However, the first
character of the field does not begin with an alphabetic character and
the error message is printed.

Check for an unlabelled statement with only an operand field that does
not start with a special character. Also check for an illegal label in
the instruction.

 **LABEL TOO LONG

All symbols are limited to six characters in length. When parsing, the
assembler looks for one of the separating characters (usually a blank)
to find the end of a label or string. If other than one of these
separators is used, the error message will be printed providing that the
illegal separator causes the symbol to extend beyond six characters in
length. Check for no spacing between labels and opcodes. Also, check
for a comment card with a long first word that doesn't begin with a
semicolon. In this case the assembler is trying to interpret part of
the comment as a label.

 **NON-ALPHANUMERIC

Labels are made up of one to six alphanumeric digits. The label field
must be separated from the opcode field by one or more blanks. If a
special character or other separator is between the label and the
opcode, this error message might be printed.

Each of the 56 valid opcodes are made up of three alphabetic characters.
They must be separated from the operand field (if one is necessary) by
one or more blanks. If the opcode ends with a special character (such
as a comma), this error message will be printed.

In the case of a lone label or an opcode that needs no operand, they can
be followed directly by a semicolon to denote the rest of the card as a
comment (use of a semicolon tabs the comment out to the next tab
position).

 **PC NEGATIVE--RESET 0

An assembled program is loaded into core in the range of position 0 to
64K (65535). This is the extent of the machine. A maximum of two bytes
can be used to define an address. Because there is no such thing as
negative memory, an attempt to reference a negative position will cause
this error and the program counter (or pointer to the current memory

Seite 22

Assembler Manual
location) to be reset to zero.

When this error occurs, the assembler continues assembling the code
with the new value of the program counter. This could cause multiple
bytes to be assembled into the same locations. Therefore, care should
be taken to keep the program counter within the proper limits.

 **RAN OFF END OF CARD

This error message will occur if the assembler is looking for a needed
field and runs off the end of the card (or line image) before the field
is found. The following should be checked for: a valid opcode field
without an operand field on the same card; an opcode that was thought to
take an implied operand, which in fact needed an operand; an ASCII
string that is missing the closing quote (make sure any embedded quotes
are doubled; to have a quote at the end of the string, there must be
three quotes, two for the embedded quote and one to close off the
string); a comma at the end of the operand field indicates there are
more operands to come; if there aren't other operands, the assembler
will run off the current line looking for them.

 **READ ERROR

This message refers to a disk drive read error. Refer to your disk
drive manual for a description of these errors and their causes.

 **UNDEFINED DIRECTIVE

All assembler directives begin with a period. If a period is the first
character in a non-blank field, the assembler interprets the following
character string as a directive. If the character string that follows
is not a valid assembler directive, this error message will be printed.

Check for a misspelled directive or a period at the beginning of a field
that is not a directive.

 **UNDEFINED SYMBOL

This error is generated by the second pass. If in the first pass the
assembler finds a symbol in the operand field (the field following the
opcode or an equals sign) that has not been defined yet, the assembler
puts the symbol into the table and flags it for interpretation by pass
two. If the symbol is defined (shows up on the left of an equate or as
the first non-blank field in a statement), pass one will define it and
enter it in the symbol table. Therefore, a symbol in an operand field,
found before the definition, will be defined with a value when pass two
assembles it. In this case, the assembly process can be completed.
This is what is meant by one level of forward reference (See Forward
Reference Error).

However, if pass one doesn't find the symbol as a label or on the left
of an equate, the assembler never enters it in the symbol table as a
defined symbol. When pass two tries to interpret the operand field the
symbol is in, there is no corresponding value for the symbol and the
field cannot be interpreted. Therefore, the error message is printed
with no value for the operand.

This error will also occur if a reserved symbol A, X, Y, S, or P, is
used as a label and referred to elsewhere in the program. On the
statement that references the reserved symbol, the assembler sees it as
a symbol that has not been defined. Check for use of reserved symbols,
misspelled labels or missing labels to correct this error.

Note: When the assembler finds an expression (whether it is in an
OPERAND field or on the right of an equals sign) it tries to evaluate
the expression. If there is a symbol within the expression that hasn't
been defined yet, the assembler will flag it as a forward reference and
wait to evaluate it in the second pass. If the expression is on the

Seite 23

Assembler Manual
right side of an equal sign, the forward reference is a severe error and
will be flagged as such. However, if the expression is in an OPERAND
field of a valid OPCODE, the first pass will set aside two bytes for the
value of the expression and flag it as a forward reference. When the
second pass fills in the value of the expression, and the value of the
expression is one byte long i.e., 256, the instruction is one byte
longer than required. This is because the forward reference to page
zero memory wastes one byte of memory (the extra one that was saved).
During the first pass, the assembler didn't know how large the value
was, so it saved for the largest value which was two bytes.

APPENDIX V EDITOR COMMAND SUMMARY

Command Description
AUTO n1 Starts automatic line numbering
AUTO Shuts off auto
BREAK Calls the Monitor-Routine
CHANGE/s1/s2/,n1-n2 Change string in line range
CHANGE/s1/s2/ Change string in entire file
COLD Performs a cold-start of the PET
CPUT"file" Compacted PUT, unnecessary spaces are removed
DELETE n1-n2 Delete range
FIND/s1/,n1-n2 Find string in line range
FIND/s1/ Find string in entire file
FORMAT n1-n2 Print formatted
GET"file",n1-n2,n3 Bring in text from disk file
GET"file" Short form GET
KILL Disable the editor
LIST List lines of text
NUMBER n1,n2,n3 Renumber text
PUT"file",n1-n2,n3,n4 Save text on disk drive
PUT"file" Save text, short form

Seite 24

