PROGRAMMABLE CONTROLLER PROSEC T2

COMMUNICATION INTERFACE MODULE CF211 USER'S MANUAL

TOSHIBA CORPORATION

Important Information

Misuse of this equipment can result in property damage or human injury. Because controlled system applications vary widely, you should satisfy yourself as to the acceptability of this equipment for your intended purpose. In no event will Toshiba Corporation be responsible or liable for either indirect or consequential damage or injury that may result from the use of this equipment.

No patent liability is assumed by Toshiba Corporation with respect to use of information, illustrations, circuits, equipment or examples of application in this publication.

Toshiba Corporation reserves the right to make changes and improvements to this publication and/or related products at any time without notice. No obligation shall be incurred other than as noted in this publication.

This publication is copyrighted and contains proprietary material. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means — electrical, mechanical, photocopying, recording, or otherwise — without obtaining prior written permission from Toshiba Corporation.

Copyright © 1995 by Toshiba Corporation Tokyo, Japan All rights reserved

Publication number: UM-TS02***-E013 1st edition June 1995, 2nd edition July 1995

Safety Precautions

Safety Precautions

- This module (CF211) has been designed for Toshiba's Programmable Controller PROSEC-T2 (hereafter called T2). Use this module only on the T2's rack.
- Read the Safety Precautions described on the T2 User's Manual before using the T2 and this module.
- Follow the instructions described on this manual and on the T2 User's Manual when installing and wiring the T2 and this module.
- Do not touch the connector pins or components on the printed circuit board of this module.
- The maximum number of CF211s that can be controlled by one T2 is limited by internal 5 Vdc power capacity. This module consumes maximum 0.55 A of internal 5 Vdc power. Confirm that the total 5 Vdc consumed current per one power supply module is within the limit (2.5 A).
- The CF211 can work with the T2 CPU version 1.2 or later. Confirm that your T2 CPU is correct verson.

Symbols Used In This Manual

Pay attention to information preceded by the following symbols.

Refers to helpful suggestions on how to operate effectively.

Refers to information considered essential for full understanding of operation. And refers to conditions that could damage the equipment or render it temporarily inoperative.

About This Manual

About This Manual

This manual explains the specifications and operations of the Communication Interface module (CF211) for Programmable Controller T2. Read this manual carefully before using the CF211 module.

Inside This Manual

This manual consists of six sections and an appendix as follows.

Section 1 Overview

Introduces The CF211. Outline of the function, applications and the external features are provided in this section. Read this section at first to understand the general operation of the CF211. The switch settings of this module are also explained in this section.

Section 2 Specifications

Provides the functional and the transmission specifications of the CF211. Refer to this section to confirm the application limitations.

Section 3 Cable Connections

Provides the information for hardware preparations. The transmission cable connection is explained in this section.

Section 4 Register Configuration

Explains the memory contents of the CF211. This information is important to interchange data between T2 and CF211.

Section 5 Operation Procedure

Provides the information to design the T2 program for using the CF211. Some sample programs are provided in this section. Read this section carefully for programming.

Section 6 RAS Information

Provides the helpful information for RAS (Reliability, Availability and Serviceability). Also, lists the check points in case of unexpected operations.

Appendix

The specifications of READ and WRITE instructions are described. These instructions are used for interchanging data between T2 and CF211.

Related Manuals

The following related manuals are available for T2. Besides this manual, read the following manuals for your better understanding.

T2 User's Manual

This manual explains the hardware specifications, installation, wiring and maintenance of the T2 and I/O modules. Also this manual explains the functions of the T2 and how to use them. The necessary information to create user program is covered in this manual.

T-series Instruction Set

This manual provides the detailed specifications of instructions for Toshiba's T-series Programmable Controllers.

T-PDS (Ver. 1.4) Basic Operation Manual

This manual explains how to install the T-series program development system (T-PDS) into your computer and provides basic programming operations.

T-PDS (Ver. 1.4) Command Reference Manual

This manual explains the T-series program development system (T-PDS) in detail.

T-PDS (Ver. 1.6) Expanded Functions

This manual explains the expanded functions on the T-PDS version 1.6. This manual supplements the T-PDS (Ver.1.4) Command Reference Manual.

Handy Programmer (HP911) Operation Manual

This manual explains the functions and the key operations of the T-series Handy Programmer HP911.

T-series Computer Link Function

This manual provides the information for a computer to communicate with T2 through the T-series Programmable Controller's Computer Link function.

Terminology

The following terms and abbreviations are used in this manual.

• ASCII: American Standard Code for Information Interchange

• EIA: Electronic Industries Association

• I/O: Input/Output

• LED: Light Emitting Diode

• RS-232C: An EIA standard for data transmission

Contents

Contents

Safety Precautions	1
About This Manual	2
1. CF211 Overview	7
1.1 Introduction	8
1.2 CF211 functions	9 10
2. Specifications	13
2.1 General specifications	14
2.2 Functional specifications	14
2.3 Transmission specifications	15
3. Cable Connections	17
3.1 RS-232C connection	18
4. Register Configuration	19
4.1 I/O allocation and I/O registers	20
4.2 CF211 buffer memory	22
4.2.1 Memory map	22
4.2.2 Buffer memory access	23
4.2.3 Parameter area	25
4.2.4 Receiving and transmitting data area	30
5. Operation Procedure	31
5.1 Transmission message format	32
5.2 Received message read sequence	33
5.2.1 Flag control timing	33
5.2.2 T2 sample program for message receiving	
5.3 Write sequence for message transmitting	37
5.3.1 Flag control timing	37
5.3.2 T2 sample program for message transmitting	38
5.4 Checking the CF211 operation status	41
5.5 Resetting the CF211 by software5.6 Setting the trailing code	42 43
5.7 Setting the training code	43 44

Contents

6.	RAS Information	45
6.1	LED indication	46
6.2	Buffer memory information	47
6.2.1	Module status	47
6.2.2	Switch setting status	48
6.2.3	Error information for data receiving	49
6.2.4	Error information for data transmitting	50
6.3	Trouble shooting	51
Apper	ndix	53
A.1	Specification of the READ instruction	54
A.2	Specification of the WRITE instruction	56

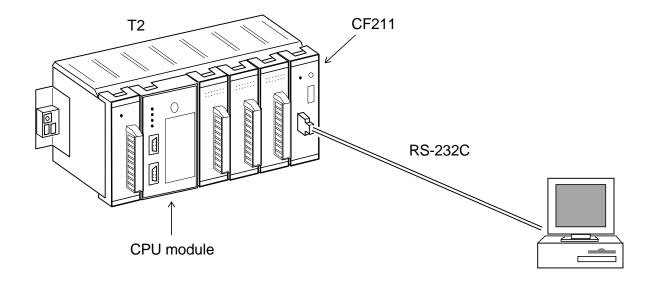
Section 1 CF211 Overview

- 1.1 Introduction
- 1.2 CF211 functions
- 1.3 External features

1. CF211 Overview

1.1 Introduction

PROSEC-

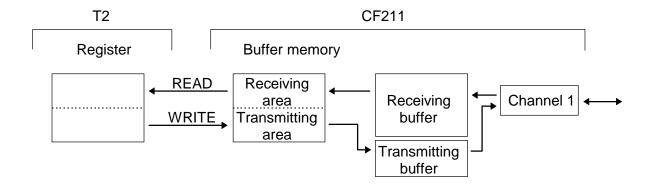

The Communication Interface module CF211 (hereafter called CF211) is a general purpose data communication module for Toshiba's Programmable Controller

T2 (hereafter called T2). By using the CF211, T2 can communicate with external devices, such as a micro computer, bar code reader, printer, display device, sensor, etc., through the serial interface RS-232C.

The CF211 has one port of RS-232C serial interface.

The transmission is asynchronous (start-stop system). ASCII is used as the transmission data code.

The figure below shows the typical system configuration.


NOTE The maximum number of CF211s that can be controlled by one T2 is limited by internal 5 Vdc power capacity. The CF211 consumes maximum 0.55 A of internal 5 Vdc power. Confirm that the total 5 Vdc consumed current per one power supply module is within the limit (2.5 A).

1.2 CF211 functions

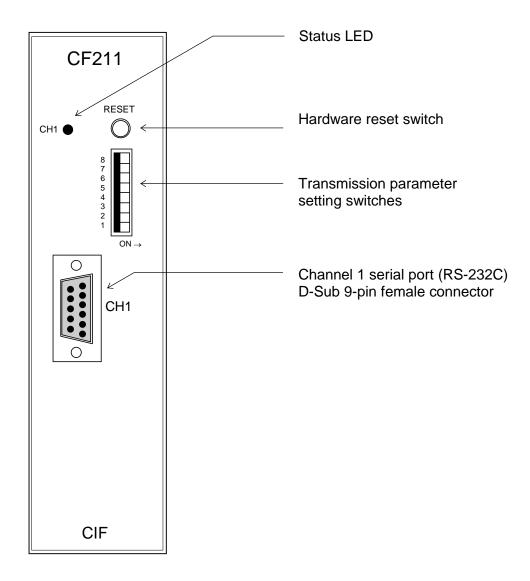
From the point of view of T2, the CF211 works as communications driver. The followings are the simplified explanations for T2 and CF211 functions.


When a message (one set of transmission characters) is received by CF211, the flag which indicates the receiving complete will come ON. T2 can check the flag status then read the message from the CF211 by using the READ instruction.

In case of transmitting a message (one set of transmission characters) from T2 through CF211, T2 writes the message into the CF211 by using the WRITE instruction, then sets the flag which instruct the CF211 to start transmitting the message.

Here, a message (one set of transmission characters) means a string of ASCII characters which is ended by specified trailing code. The default setting of the trailing code is CR (carriage return code = H0D).

Applicable message format (default trailing code):



N: message length = 320 bytes max.

In other words, the CF211 cannot be used for the data communication in which the transmission message is ended by two or more types of trailing code.

1. CF211 Overview

1.3 External features


Status LED

Indicates the transmission status.

CH1 Lit while transmitting or receiving data through channel 1

Transmission parameter setting switches

Used to set the transmission parameters.

Baud rate

No.8	OFF	OFF	OFF	OFF	ON	ON	ON
No.7	OFF	OFF	ON	ON	OFF	OFF	ON
No.6	OFF	ON	OFF	ON	OFF	ON	OFF
Baud rate	300	600	1200	2400	4800	9600	19200

- (1) When stop bit is set as 2 bits, the data bit length must be 7 bits.
- (2) When none parity is used, the data bit length must be 8 bits.
- (3) The factory settings are all OFF. Set these switches as required before using this module.
- (4) The switch setting status is recognized at module initialization by turning power on, pressing the hardware reset switch or issuing the software reset command (cold reset).

1. CF211 Overview

Hardware reset switch

When this switch is pressed, the CF211 will be reset. Use this switch when you have changed the switch settings.

Channel 1 serial port

Used to connect the serial transmission line (RS-232C). D-Sub 9-pin female connector is provided on the CF211.

The pin assignment is as follows.

Channel 1 (RS-232C)

1		
2	RXD	←
3	TXD	\rightarrow
4	DTR	\rightarrow
5	SG	\leftrightarrow
6	DSR	←
7	5 Vdc	\rightarrow
8		
9		

- The arrow on the above figure shows the signal direction.
- DTR is ON while power is on.
- DSR has no effect for transmission.
- Pin 7 (5 Vdc) can be used to supply 5 Vdc power to external devices. (max. 50 mA)

Section 2

Specifications

- 2.1 General specifications
- 2.2 Functional specifications
- 2.3 Transmission specifications

2. Specifications

2.1 General specifications

Item	Specifications	Remarks
Power voltage	5 Vdc (supplied from back plane bus)	
Current consumption	0.55 A (5 Vdc) maximum	Note (1)
Environmental conditions	Conforms to T2 specifications	
Insulation	None	Note (2)
Size	T2 I/O module size (1 slot)	
Weight	250 g	

- Note (1) The T2's power supply module can supply maximum 2.5 A of internal 5 Vdc. Check that the internal 5 Vdc current consumption per one power supply module does not exceed the limit.
- Note (2) Between interface connector pins and internal circuit.

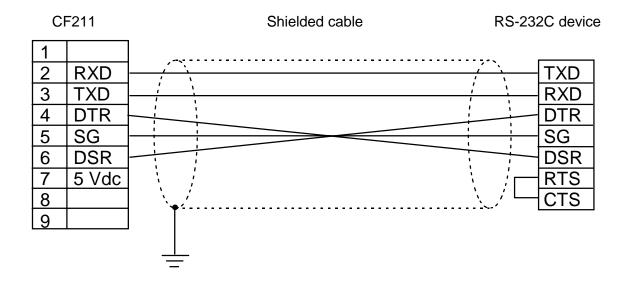
2.2 Functional specifications

Item	Specifications
Module type	Serial communication interface
I/O allocation type	iX+Y 4W
Buffer memory capacity	160 words x 2
	(accessed from T2 by READ/WRITE instruction)
Transmission interface	RS-232C, 1 channel
Display	Transmission status LED;
	CH1 lit while transmitting or receiving data
	through the transmission port.
Connectable devices	Computer, bar code reader, display device, sensor,
	printer, or other serial ASCII device
RAS function	Self diagnosis, watch dog timer, transmission error
	check, etc.

2.3 Transmission specifications

Item	Specifications
Interface	Conforms to RS-232C
Transmission mode	Full-duplex
Synchronizing	Start-stop method (asynchronous)
Transmission speed	300, 600, 1200, 2400, 4800, 9600, 19200 bps
Frame format	Start bit 1 bit
	Data 7 or 8 bits
	Parity even / odd / none
	Stop bit 1 or 2 bits (Note)
Transmission code	ASCII
Message length	Max. 320 bytes
Configuration	One to one
Transmission distance	Max. 15 m
Connector	D-sub 9-pin female

Note) When none parity is selected, the data bit length must be 8 bits. When stop bit is selected as 2 bits, the data bit length must be 7 bits.


Section 3 Cable Connections

3.1 RS-232C connection

3. Cable Connections

3.1 RS-232C connection

The following figure shows the RS-232C connection.

- (1) Allowable maximum cable length is 15 m.
- (2) Use shielded cable. The cable shield should be connected to grounding point at one end.
- (3) It is recommended to use twisted cable for noise immunity.
- (4) DTR is ON while power is on.
- (5) DSR has no effect for transmission. (monitor only)
- (6) Connect SG each other.
- (7) RTS and CTS signals are not supported by the CF211. If necessary, short these signals at the connected device end.

Do not connect or remove the connector while the CF211 is powered. Otherwise, it will cause damage to the CF211.

Section 4 Register Configuration

- 4.1 I/O allocation and I/O registers
- 4.2 CF211 buffer memory

4.1 I/O allocation and I/O registers

The CF211 should be allocated as 'i X+Y 4W' for I/O allocation.

However, when the automatic I/O allocation is performed with mounting the CF211, the CF211 is allocated as 'X+Y 4W'. You should change the allocation to 'i X+Y 4W' by using the manual I/O allocation function.

(T-PDS screen example - in the case that CF211 is mounted on Slot 0 of Unit 0)

When the automatic I/O allocation is performed.

<1/0 All	ocation>	
Unit #0	Unit #1	 Unit #3
Slot I/O	Slot I/O	Slot I/O
PU []	Ø []	0 []
Ø [X+Y 4W]	1 []	1 []
1 []	2 []	2 []
2 []	3 []	3 []
3 []	4 []	4 []

Change the allocation to 'i X+Y 4W' by using the manual I/O allocation.

<i 0="" allo<="" th=""><th>ocation></th><th></th><th></th></i>	ocation>		
Unit #0 Slot I/O PU [] 0 [iX+Y 4W] 1 [] 2 []	Unit #1 Slot I/O 0 [] 1 [] 2 []	Unit #2 Slot I/O 0 [] 1 [] 2 [] 3 []	Unit #3 Slot I/O Ø [] 1 [] 2 [] 3 []

Then, 4 I/O registers, XW(n), XW(n+1), YW(n+2) and YW(n+3), are assigned to the

In the above example, XW000, XW001, YW002 and YW003 are assigned.

Note that the I/O type has 'i' designation. It means that the T2 will not update the assigned I/O registers in the batch I/O processing. To read or write data through the I/O registers, the Direct I/O instruction (FUN235) or the direct I/O designation (I/IW and O/OW instead of X/XW and Y/YW) is necessary.

The reason of that is because the reading and writing timings are important for handshaking between T2 and CF211. Refer to section 5.

The following table shows the functions of I/O registers assigned to the CF211.

XW(n) XW(n+1) No use (reserved) No use No use No use Command		<u>_F</u>	<u>E</u>	D	С	В	Α	9	8	7	6	5	4	3	2	1	0	
XW(n+1) No use (reserved)	XW(n)											N	o us	е				Status
` ' No and the second of the s	` '		No use (reserved)															
YVV(n+z) 110 ddd 110 mman(YW(n+2)		١	lo us	se						Ν	o us	е					Command
YW(n+3) No use (reserved)	` ,						N	lo us	se (r	ese	rved)						Command

Register	Bit	Name	Description
	F	Write ready	1: ready to write data (transmit)
	Е	Transmit complete	1: transmitting has been completed normally
	D	Transmit error	1: transmitting has been canceled by error
XW(n)	С	ı	No use (always 0)
(Status)	В	Read ready	1: ready to read the received data
	Α	Receive complete	1: receiving has been completed
	9	Receive error	1: receiving error has occurred
	8 - 0		No use (always 0)
XW(n+1)		-	No use (always 0)
	F	Transmit start	Set to 1 to start transmitting
YW(n+2)	E - C		No use (set to 0)
(Command)	В	Read start	Set to 1 to start reading
	A - 0	_	No use (set to 0)
YW(n+3)		_	No use (set to 0)

These bits are used for handshaking between T2 and CF211. The detailed function and timing are explained in section 5.

4.2 CF211 buffer memory

As explained in the previous section, the I/O registers that are assigned to CF211 are used to control the reading and writing timings (handshake) between T2 and CF211.

On the other hand, for exchanging the transmission data between T2 and CF211, the CF211's buffer memory is used.

This section explains the buffer memory contents and how to access the buffer memory.

4.2.1 **Memory map**

The CF211 has the buffer memory that is used to exchange data with T2. The overall map of the buffer memory is as follows.

Address	Word data	
H8000 H800F	Parameter	16 words - transmission parameters, etc.
H8010		
H80AF	Reading (receiving) data area	160 words
H80B0		
	Writing (transmitting) data area	160 words
H814F		

4.2.2 **Buffer memory access**

T2 can read the CF211's buffer memory contents by using READ instruction (FUN237). Also, T2 can write data into the buffer memory by using WRITE instruction (FUN238).

READ instruction (FUN237)

Expression:

$$\longrightarrow$$
 (A) READ (B) \rightarrow (C) \longrightarrow

Operands:

I/O register (XW/YW) assigned to the CF211 (A): Starting address of the buffer memory to be read. (B): (B)+1: Number of words to be read (max. 160 for CF211)

Starting register of the destination (C):

Example:

```
-[H8010 MOV D3000]-[00064 MOV D3001]-
-[XW000 READ D3000 \rightarrow D1000}—
```

When R0100 is ON, 64 words of buffer memory data starting with address H8010 are read from the CF211 which is allocated to XW000. And the data are stored in D1000 and after.

WRITE instruction (FUN238)

Expression:

```
-[ (A) WRITE (B) \rightarrow (C) ]-
```

Operands:

(A): Starting register of the source

(B): Starting address of the buffer memory to be written (B)+1: Number of words to be written (max. 160 for CF211)

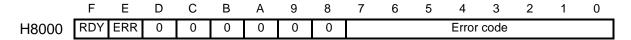
I/O register (XW/YW) assigned to the CF211 (C):

Example:

```
R0101
| H80B0 MOV D3010 | 00100 MOV D3011 |
    -[D2000 WRITE D3010 → YW002]---
```

When R0101 is ON, 100 words of data starting with D2000 (D2000 to D2099) are written into the buffer memory address H80B0 and after of the CF211 which is allocated to YW002.

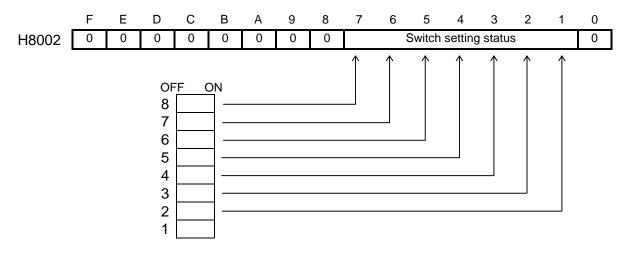
4.2.3 Parameter area


The parameter area of the buffer memory contains the following contents.

Address	Word data
H8000	Status 1
01	
02	Switch setting status
03	
04	
05	Command 1
06	
07	Receive error information
08	Transmit error information
09	Channel status
0A	Receive length
0B	
0C	Trailing code
0D	Time-out check time
0E	
0F	

Note: Blanks are for future use. (Reserved)

Status 1 (H8000)


The address H8000 shows the CF211 module status. If an error has occurred in the CF211, the error code is stored here.

Bit F	RDY (Ready)	1 = operating normally
		0 = under initialization or error state
Bit E	ERR (Error)	1 = error state
		0 = no error (normal)
Bit 7-0	Error code	Shows the detected error item if ERR is 1.
		(H00 when normal)
		See section 6.2.1 for details.

Switch setting status (H8002)

The address H8002 stores the setting status of the transmission parameter setting switches.

ON: 1 OFF: 0

Command 1 (H8005)

The address H8005 is used to reset the CF211 by T2 program.

Two types of reset commands are available, hot reset and cold reset.

The hot reset is used to change the trailing code and the time-out check time settings. The cold reset is used to initialize the CF211. The trailing code and the time-out check time will be reset to the default setting. The operation of the cold reset is the same as the

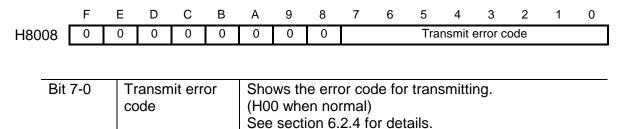
hardware reset switch and power on initialization. Refer to sections 5.5, 5.6 and 5.7 for these functions.

	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
H8005	RST	0	0	0	0	0	0	0			Co	mman	d numl	ber		

Bit F	RST (Reset)	1 = reset request 0 = normal (no reset request)
Bit 7-0	Command number	HFE = hot reset HFF = cold reset

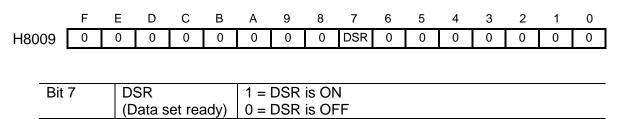
Receive error information (H8007)

The address H8007 indicates the error contents if an error has been detected in receiving a message. This information is set during the received message read sequence.

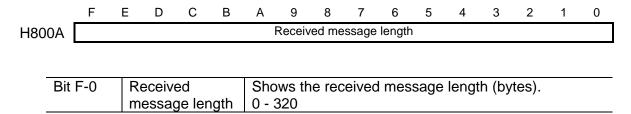

Refer to section 6.2.3 for details.

	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
H8007	0	0	0	0	0	PE	0	0			Re	ceive e	error co	ode		

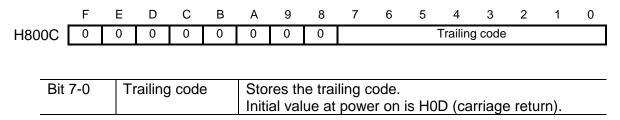
Bit A	PE (Parity error)	1 = parity error 0 = normal
Bit 7-0	Receive error code	Shows the error code regarding received message. (H00 when normal) See section 6.2.3 for details.


Transmit error information (H8008)

The address H8008 indicates the error contents if an error has occurred during message transmitting. This information is set during the write sequence for message transmitting. Refer to section 6.2.4 for details.

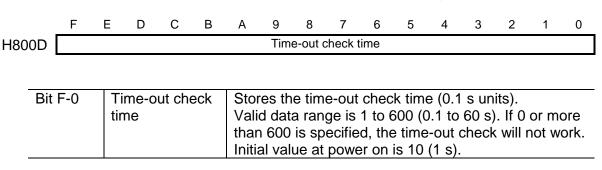

Channel status (H8009)

The address H8009 indicates the control signal status. This information is always updated.

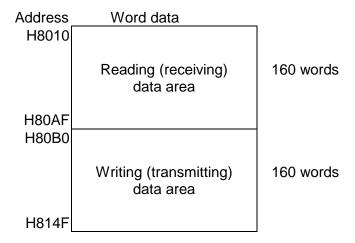

Receive length (H800A)

The address H800A indicates the length of the received message (number of bytes). This information is set during the received message read sequence.

Trailing code (H800C)


The address H800C stores the trailing codes. The default setting is H0D (CR code). To change the trailing code, write the desired code into this address then write the hot reset command into the Command 1 (H8005). See section 5.6 for this procedure.

Time-out check time (H800D)


The address H800D stores the time-out check time. If the time between each transmitting or receiving character exceeds the specified time-out check time, it becomes the time-out error. The default setting is 1 second.

To change the setting, write the desired data into this address then write the hot reset command into the Command 1 (H8005). See section 5.7 for this procedure.

4.2.4 Receiving and transmitting data area

The receiving and transmitting data area is provided to exchange the communication characters between T2 and CF211. The address ranges in the CF211 buffer memory are as follows.

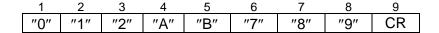
When CF211 receives a message (one set of transmission characters), CF211 sets the characters into the receiving data area starting with the address H8010. Then T2 can read these characters from the receiving data area by using READ instruction.

When T2 attempts to send a message via CF211, T2 writes the characters into the transmitting data area starting with the address H80B0 by using WRITE instruction, and instructs CF211 to start transmitting. CF211 recognizes from the character stored in the starting address (H80B0) to the trailing code character as the one set of transmitting message.

Refer to section 5 for message receiving/transmitting procedure.

Section 5

Operation Procedure


- 5.1 Transmission message format
- 5.2 Received message read sequence
- 5.3 Write sequence for message transmitting
- 5.4 Checking the CF211 operation status
- 5.5 Resetting the CF211 by software
- 5.6 Setting the trailing code
- 5.7 Setting the time-out check time

5. Operation Procedure

5.1 Transmission message format

The transmission message is composed by ASCII characters and a specified trailing code. The default setting of the trailing code is CR (carriage return code = H0D). Refer to section 5.6 for setting the trailing code other than CR.

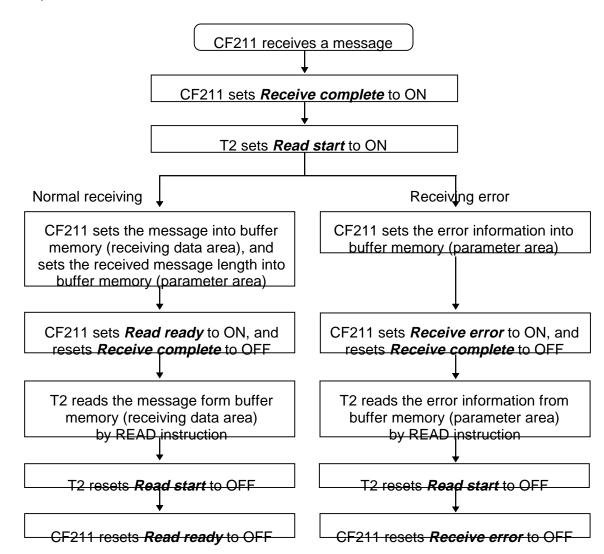
The maximum length of a message is 320 bytes. An example of the message is shown below.

In the above figure, "x" means an ASCII character. For example, "0" is H30.

When the above message is received or transmitted, the data arrangements in the T2 registers are as follows.

Register	F 8	7 0	Trar	smission message
n	"1"	"0"		"0"
n+1	"A"	"2"		"1"
n+2	"7"	"B"	_	"2"
n+3	"9"	"8"		"A"
n+4		CR		"B"
				"7"
				"8"
				"9"
				CR

5.2 Received message read sequence


5.2.1 Flag control timing

In case of receiving a message, the following flags are used for handshaking between T2 and CF211. These flags are the bits of the I/O registers assigned to the CF211. Refer to section 4.1.

Bit B of XW(n) Read ready Receive complete Bit A of XW(n) Receive error Bit 9 of XW(n)

Read start Bit B of YW(n+2)

The message receiving procedure is as follows. It is called "received message read sequence".

5.2.2 T2 sample program for message receiving

A sample program for the "received message read sequence" is shown below. This sample program is for the CF211 that is allocated to XW000 - YW003.

(Main program)

```
R0100 R0200 R0300

    Operation for normal received message

   !
!
  { RST R0200}-

    Operation for receiving error

    └[ RST R0300]
```

(Subroutine No. 0)

```
1⊢[ SUBR(000)]——
2-[ I/O (02) XW000]-
 X000A Y002B
 — | ├──── | SET Y002B]—
 Y002B X000B (H8010)
4 --- | --- [-32752 MOV D4000]-[ 00064 MOV D4001]---
           |--[XN000 READ D4000 → D0000]------
           └[ RST Y002B] | SET R0200]
       X0009 (H8007)
        |--[XN000 READ D4000 → D3000]---
           └_ RST Y002B]<del>-</del> SET R0300]--
5-[ I/O (02) YW002]-
```

In this sample program, the following devices/registers are used.

R0100 R0200 R0300	Receivi	1 status (ON when ready) - Refer to section 5.4 ving normal complete (comes ON when receiving is complete normally) ving error complete (comes ON when receiving error has occurred)					
X000A X000B X0009 Y002B	Read re	e complete flag eady flag e error flag tart flag					
D0000 - D3000 D4000 -		Received message is stored here Receiving error information is stored here Parameters for READ instruction					

This sample program works as follows.

Main program

- Rung 1: Calls Subroutine No. 0 when the CF211 is normal and both R0200 and R0300 are OFF.
- Rung 2: When R0200 comes ON (normal receiving), performs the necessary operation for the received message, then resets R0200 to OFF.
- Rung 3: When R0300 comes ON (receiving error has occurred), performs the error processing, then resets R0300 to OFF.

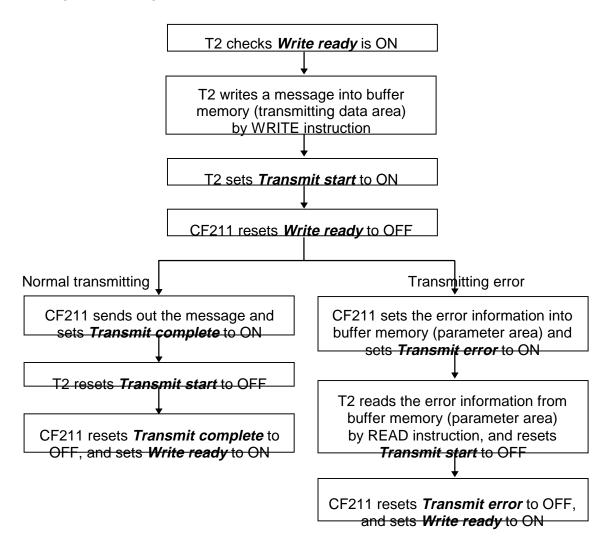
Subroutine No. 0

- Rung 1: Indicates the entry of Subroutine No. 0.
- Rung 2: Reads XW000 and XW001 from the CF211 by direct I/O instruction.
- Rung 3: Sets Y002B (Read start flag) to ON if X000A (Receive complete flag) is ON.
- Rung 4: When X000B (Read ready flag) comes ON, reads the received message from the CF211's buffer memory, 64 words starting with address H8010, by READ instruction, and stores it into D0000 and after. Then resets Y002B (Read start flag) to OFF, and sets R0200 to ON.
- When X0009 (Receive error flag) comes ON, reads the error information from the CF211's buffer memory, 1 word of address H8007, by READ instruction, and stores it into D3000. Then resets Y002B (Read start flag) to OFF, and sets R0300 to ON.
- Rung 5: Writes YW002 and YW003 into the CF211 by direct I/O instruction.
- Rung 6: Indicates the return of Subroutine No. 0.

Explanation for this sample program:

- (1) The "received message read sequence" is programmed on Subroutine No. 0.
- (2) The Subroutine No. 0 is called from Main program with resetting R0200 and R0300 to OFF.
- (3) When a message is received normally, R0200 will come ON and the message (ASCII characters) will be stored in D0000 to D0063. In this sample program, the received message length information (buffer memory address H800A) is not used. The maximum length of a message is 128 bytes (64 words) because the number of read words of the READ instruction is programmed as 64 words.
- (4) When an error has occurred in receiving the message, R0300 will come ON and the error information will be stored in D3000. For details of the error information, refer to section 6.2.3.

5.3 Write sequence for message transmitting


5.3.1 Flag control timing

In case of transmitting a message, the following flags are used for handshaking between T2 and CF211. These flags are the bits of the I/O registers assigned to the CF211. Refer to section 4.1.

Write ready Bit F of XW(n) Transmit complete Bit E of XW(n) Transmit error Bit D of XW(n)

Transmit start Bit F of YW(n+2)

The message transmitting procedure is as follows. It is called "write sequence for message transmitting".

5.3.2 T2 sample program for message transmitting

A sample program for the "write sequence for message transmitting" is shown below. This sample program is for the channel 1 of the CF211 that is allocated to XW000 -YW003.

(Main program)

```
R0110
→ Set the transmission message into
 D0200 - D0263, and set R0110 to ON __ SET R0110]—
R0100 R0110
R0301 _....
```

(Subroutine No. 1)

```
1- SUBR(001)
2├[ I/O (02) XW000]
X000F Y002F (H80B0)
    -[D0200 WRITE D4010 → XW000]-----
       -[ SET Y002F]------
Y002F X000E
    X000D (H8008)
    -[XW000 READ D4000 → D3010]------
      └[ RST Y002F]-[ SET R0301]-
 { I/O (02) YW002}-----
```

In this sample program, the following devices/registers are used.

R0100 R0110 R0201	CF211 status (ON when ready) - Refer to section 5.4 Internal flag to start transmitting Transmitting normal complete (comes ON when transmitting is complete normally)						
R0301	Transmi	Transmitting error complete (comes ON when transmitting error has occurred)					
X000F	Write re	ady flag					
X000E	Transmi	t complete flag					
X000D	Transmi	t error flag					
Y002F	Transmi	t start flag					
D0200 - E D3010 D4010 - E D4000 - E	04011	Transmitting message is set here Transmitting error information is stored here Parameters for WRITE instruction Parameters for READ instruction					

This sample program works as follows.

Main program

- Rung 1: Prepares a transmission message and sets it into D0200 and after (maximum 64 words in this sample). Then sets R0110 to ON.
- Rung 2: Calls Subroutine No. 1 when the CF211 is normal and R0110 is ON.
- Rung 3: When R0201 comes ON (normal transmitting), resets R0110 and R0201 to OFF.
- Rung 4: When R0301 comes ON (transmitting error has occurred), performs the error processing, then resets R0110 and R0301 to OFF.

Subroutine No. 1

- Rung 1: Indicates the entry of Subroutine No. 1.
- Rung 2: Reads XW000 and XW001 from the CF211 by direct I/O instruction.
- Rung 3: When X000F (Write ready flag) is ON, writes the message that is stored in D0200 to D0263 into the CF211's buffer memory, 64 words starting with address H80B0, by WRITE instruction, and sets Y002F (Transmit start flag) to ON.
- Rung 4: When X000E (Transmit complete flag) comes ON, resets Y002F (Transmit start flag) to OFF, and sets R0201 to ON. When X000D (Transmit error flag) comes ON, reads the error information from the CF211's buffer memory, 1 word of address H8008, by READ instruction, and stores it into D3010. Then resets Y002F (Transmit start flag) to OFF, and sets R0301 to ON.
- Rung 5: Writes YW002 and YW003 into the CF211 by direct I/O instruction.
- Rung 6: Indicates the return of Subroutine No. 1.

Explanation for this sample program:

- (1) The "write sequence for message transmitting" is programmed on Subroutine No. 1.
- (2) To start transmitting, set the message (ASCII characters) into D0200 and after. Then set R0110 to ON.
 - The message length is maximum 128 bytes (64 words) in this sample program.
- (3) When R0110 is set to ON while the CF211 is ready, the Subroutine No. 1 will be called and the message transmitting will be started.
- (4) When the message is transmitted normally, R0201 will come ON. Then R0110 will be reset to OFF.
- (5) When an error has occurred in transmitting the message, R0301 will come ON and the error information will be stored in D3010. For details of the error information, refer to section 6.2.4.

5.4 Checking the CF211 operation status

CF211 operation status information is stored in the CF211's buffer memory address H8000 (Status 1). T2 can read this information by using READ instruction. A sample program is shown below. This sample program is for the CF211 that is allocated to XW000 - YW003.

```
(H8000)
  -{ RST S0051}--32768 MOV D4000}- 00001 MOV D4001}-
2-XW000 READ D4000
                           RW050]-
 S0051 R050F
                                                                       RØ100
```

The above sample program works as follows.

- Rung 1: Resets S0051 (Instruction error flag) to OFF, and sets parameters for the READ instruction.
- Rung 2: Reads the operation status information from the CF211's buffer memory address H8000 (Status 1).
- Rung 3: When S0051 (Instruction error flag) is OFF and R050F (Ready) is ON, turns R0100 to ON.

It means that the CF211 is operating normally when R0100 is ON. If R050E (Error) is ON, the CF211 is in error state. In that case, the error code is stored in the lower 8 bits of RW050. For the error code, refer to section 6.2.1. If S0051 (Instruction error flag) is ON, it means that an error has occurred during the READ instruction execution.

5.5 Resetting the CF211 by software

CF211 can be reset by T2 program. Two types of resetting are available, cold reset and hot reset.

The cold reset is used to reset the CF211 error state. When the cold reset is executed, the CF211 will be initialized. The trailing code and the time-out check time are also

reset to the default settings. This function is the same as pressing the hardware reset switch and power on initialization.

On the other hand, the hot reset is used to change the trailing code and/or the time-out check time.

For executing these functions, write the following data into the CF211's buffer memory address H8005 (Command 1). The data writing into this address must be one-shot.

Clod reset: H80FF Hot reset: H80FE

The written data will be cleared to 0 by CF211 when the operation is completed.

A sample program for the cold reset is shown below. This sample program is for the CF211 that is allocated to XW000 - YW003.

In this sample program, the cold reset operation will be started by setting R0120 to ON.

(Main program)

```
-|↑|----[CALL N.002]-
```

(Subroutine No. 2)

```
1├-[ SUBR(002)]--
   (H80FF)
  -{-32513 MOV DØ300}—
| (H8005)
3|-[-32763 MOV D4010]-[ 00001 MOV D4011]---
4-D0300 WRITE D4010 → XW000]-
```

For the hot reset, refer to sections 5.6 and 5.7.

5.6 Setting the trailing code

The default setting of the trailing code is CR (carriage return code = H0D). The trailing code can be changed by T2 program.

To do this, write desired trailing code into the CF211's buffer memory address H800C (Trailing code), and execute the hot reset (refer to section 5.5).

A sample program is shown below. This sample program is for the CF211 that is allocated to XW000 - YW003.

In this sample program, the trailing code changing routine will be executed once when the CF211 status is changed to ready (R0100 comes ON - refer to section 5.4), and the trailing code will be changed to H03.

If the time-out check time are also changed, write these data on the Main program Rung 2 before calling Subroutine No. 3 in the same manner.

```
(Main program)
   R0100
                RØ130
                      -[ SET R0130]--
                  北—
   RØ130
                  (H0003)
                -[ 00003 MOV D0400]---
     \dashv \vdash
                 (H800C)
                -{-32756 MOV D4010}- 00001 MOV D4011}---
                -{D0400 WRITE D4010 → XW000}---
          -{CALL N.003}-
   R0100 R0132
               —[ RST R0130]— RST R0132]—
           \dashv \vdash \vdash
```

```
(Subroutine No. 3)
```

```
1⊢[ SUBR(003)]-
 RØ131 RØ132 (H80FE)
  -{-32763 MOV D4010}-{ 00001 MOV D4011}-
         -{D0310 WRITE D4010 → XW000}---
        └-[ SET RØ131]<del>-------</del>
 RØ131 (H8005)
 -TXW000 READ D4000
                  → RW051]———
     R051F
     -{ RET}
```

5.7 Setting the time-out check time

The default setting of the time-out check time is 1 second. The time-out check time can be changed by T2 program. The valid setting range is 0.1 to 60.0 seconds in 0.1 second units. Refer to section 4.2.3.

To change the time-out check time, write desired value into the CF211's buffer memory address H800D (Time-out check time), and execute the hot reset (refer to section 5.5).

T2 program for this purpose is almost same as that for setting the trailing code (refer to section 5.6). Only the difference is writing the time-out check time instead of the trailing code. See Rung 2 of the following sample. In this sample, the time-out check time is changed to 5 seconds.

If the trailing code are also changed, write these data on the Main program Rung 2 before calling Subroutine No. 3 in the same manner.

```
(Main program)
  R0100
             RØ130
             ----/⁻ SET R0130]---
   \dashv \vdash
  R0130
            —[ 00050 MOV D0400]—
              (H800D)
             -{-32755 MOV D4010}- 00001 MOV D4011}-
             -[D0400 WRITE D4010 → XW000]----
        -{CALL N.003}---
  R0100 R0132
```

Section 6 RAS Information

- 6.1 LED indication
- 6.2 Buffer memory information
- 6.3 Trouble shooting

6. RAS Information

6.1 LED indication

On the CF211, a status LED is provided as follows. This LED is useful to check the CF211 communication status.

CH1 ●

CH1	Indicates the serial port communication status.
	Lit while some data is transmitting from or receiving into
	the CF211.

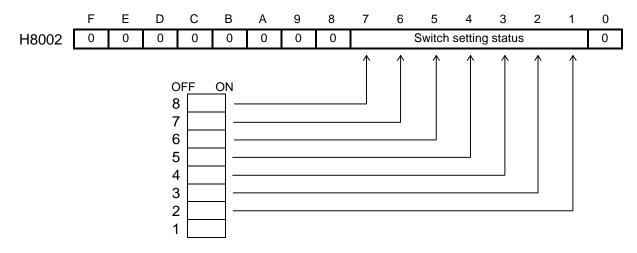
6.2 Buffer memory information

Useful RAS information is stored in the CF211's buffer memory. The information can be read by READ instruction. When your CF211 does not work as expected, check the RAS information.

6.2.1 **Module status**

Address H8000 of the buffer memory stores the CF211 module status.

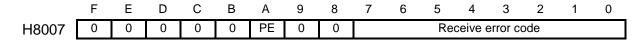
	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
H8000	RDY	ERR	0	0	0	0	0	0				Error	code			


Bit F	RDY (Ready)	1 = operating normally 0 = under initialization or error state
Bit E	ERR (Error)	1 = error state 0 = no error (normal)
Bit 7-0	Error code	Shows the detected error item if ERR is 1. See the table below (H00 when normal)

Error code	Type of error	Description	Status
H01	CPU error	CPU error has been detected during initialization.	Operation is stopped.
H02	ROM error	ROM error has been detected during initialization.	Operation is stopped.
H03	RAM error	Work RAM error has been detected during initialization.	Operation is stopped.
H04	Buffer memory error	Buffer memory error has been detected during initialization.	Operation is stopped.
H05	Switch setting illegal	Illegal switch setting has been detected during initialization.	Operation is stopped.
H10	Watchdog timer error	Watchdog timer error has occurred during operation.	Operation is stopped. Cold reset will be effective.

6. RAS Information

6.2.2 Switch setting status

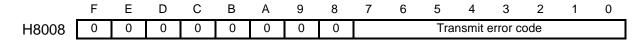

Addresses H8002 of the buffer memory store the switch setting status. Check that the information agrees with the physical setting status if CF211 does not work as expected.

ON: 1 OFF: 0

6.2.3 Error information for data receiving

Address H8007 stores the error information for data receiving.

Bit A	PE (Parity error)	1 = parity error 0 = normal When parity error has occurred in a receiving message, the entire message is disabled. The next message can be received.
Bit 7-0	Receive error code	Shows the error code regarding received message. See the table below. (H00 when normal)

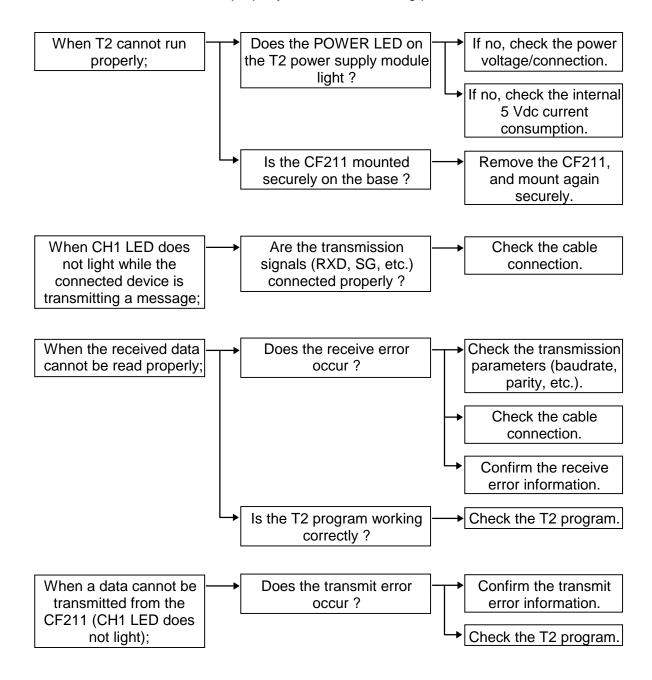

Error code	Type of error	Description	Status
H01	Receive time- out error	Specified time-out check time has elapsed between characters.	The rest of the message will be received as the next message.
H02	Message length error	The message length has exceeded the limit. (320 bytes)	The message is disabled. The next message can be received.
H03	Receive buffer overflow	Receive buffer overflow has occurred.	The message is disabled. The next message can be received.

NOTE When T2 is in HALT mode, the T2 cannot read any received message from the CF211. Therefore, if CF211 has received some messages while the T2 is in HALT mode, the receive buffer overflow may occur when the T2 is changed to RUN mode.

6. RAS Information

6.2.4 Error information for data transmitting

Address H8008 stores the error information for data transmitting.



Bit 7-0	Transmit error	Shows the error code for transmitting.
	code	See the table below. (H00 when normal)

Error code	Type of error	Description	Status
H01	Transmit time- out error	Specified time-out check time has elapsed between characters.	The next message can be transmitted.
H02	Trailing code missing	The trailing code has not been written into the buffer memory.	The message is disabled. The next message can be transmitted.

6.3 Trouble shooting

When CF211 does not work properly, check the following points.

Appendix

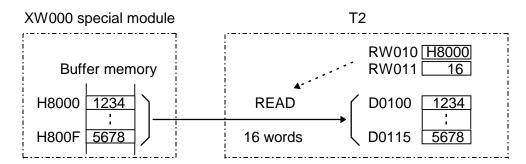
- A.1 Specification of the READ instruction A.2 Specification of the WRITE instruction

A.1 Specification of the READ instruction

FUN 237 Special module data read (READ) Reads designated range of data from the special module. Input **Execution output** $-[A READ B \rightarrow C]$

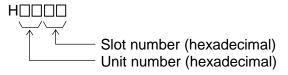
Function

- This instruction reads data from the buffer memory of the special module that is designated by operand A, and stores them in T2's registers starting with operand C.
- The transfer source address (buffer memory address) is designated by operand B.
- The transfer size (number of words) is designated by operand B+1.


Input	Action	Output	ERF
OFF	No execution	OFF	
ON	Normal execution	ON	
	Error (see Note 2)	ON	ON

Index **Operand** Constant Device Register O XWYWSWLWRW W T C D F IWOW I Opr Name Y | S | L | R | Z | T. | C. Special $\sqrt{}$ module Transfer $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ parameter Top register of destination

Program example


```
R0000
          -[XW000 READ RW010 
ightarrow D0100 
ightarrow
```

- When R0000 is ON, the buffer memory data of the size indicated by RW011, starting with the address indicated by RW010 of the special module allocated to XW000, are read and stored in D0100 and after.
- The maximum number of words to be read is 160 words. (For CF211)

Note 1) The special module can be designated not only by the assigned register, but also by the mounting position. The mounting position is designated by a constant data for the operand A as follows.

(Unit number) \times 256 + (Slot number)

Unit number	Hexadecimal
0	H00
1	H01
2	H02
3	H03

Slot number	Hexadecimal					
0	H00					
1	H01					
2	H02					
3	H03					
4	H04					
5	H05					
6	H06					
7	H07					

For example, if a special module is mounted on Slot-4, Unit-0 (basic unit) and allocated to XW008 - YW011, the following two READ instructions function the same.

$$\longrightarrow$$
 [XW008 READ RW010 \rightarrow D0100] \longrightarrow [H0004 READ RW010 \rightarrow D0100] \longrightarrow

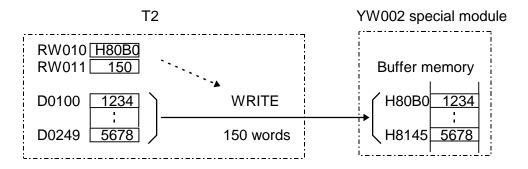
- Note 2) The READ instruction is not executed as error in the following cases. In these cases, ERF (instruction error flag = S0051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to OFF by user program.
 - When the operand A is other than a valid constant (see Note 1) or XW/YW
 - When no answer error occurs with the designated special module.
 - When the number of words transferred exceeds 256 words.
 - When the source table of transfer is out of the valid range.
 - When the destination table of transfer is out of the valid range.

A.2 Specification of the WRITE instruction

FUN 238 Special module data write (WRITE) Writes designated range of data into the special module. Input **Execution output** $-[A WRITE B \rightarrow C]$

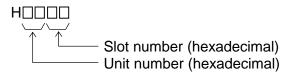
Function

- This instruction transfers data stored in T2's registers starting with operand A into the buffer memory of the special module that is designated by operand C.
- The destination address (buffer memory address) is designated by operand B.
- The transfer size (number of words) is designated by operand B+1.


Input	Action	Output	ERF
OFF	No execution	OFF	
ON	Normal execution	ON	
	Error (see Note 2)	ON	ON

Ope	erand																										Inc	xeb
_																									Co	nst	ant	
						De	vice	;										Re	egis	ter							l	
Opr	Name	Х	Υ	S	L	R	Z	T.	C.	-	0	XW	ΥW	SW	LW	RW	W	Т	С	D	F	IW	OW	_	J	K	l	
Ā	Top register of source											1	1	1						1	1							
В	Transfer parameter												1			1	1	1		1	1							
	Special module																											

Program example


```
-[ D0100 WRITE RW010 \rightarrow YW002 -
```

- When R0000 is ON, the register data of the size indicated by RW011, starting with D0100, are transferred to the buffer memory starting with the address indicated by RW010 of the special module allocated to YW002.
- The maximum number of words to be transferred is 160 words. (For CF211)

Note 1) The special module can be designated not only by the assigned register, but also by the mounting position. The mounting position is designated by a constant data for the operand C as follows.

(Unit number) \times 256 + (Slot number)

Unit number	Hexadecimal
0	H00
1	H01
2	H02
3	H03

Slot number	Hexadecimal
0	H00
1	H01
2	H02
3	H03
4	H04
5	H05
6	H06
7	H07

For example, if a special module is mounted on Slot-2, Unit-1 (expansion unit #1) and allocated to XW020 - YW023, the following two WRITE instructions function the same.

— [D0100 WRITE RW010
$$\rightarrow$$
 XW020 }
— [D0100 WRITE RW010 \rightarrow H0102 }

- Note 2) The WRITE instruction is not executed as error in the following cases. In these cases, ERF (instruction error flag = S0051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to OFF by user program.
 - When the operand C is other than a valid constant (see Note 1) or XW/YW
 - When no answer error occurs with the designated special module.
 - When the number of words transferred exceeds 256 words.
 - When the source table of transfer is out of the valid range.
 - When the destination table of transfer is out of the valid range.