DL

LABELSTAR OFFICE

User Manual

Version 4.30 Build 1010
May 15, 2015

Labelstar Office 4.30 Build 1010 Contents

Contents
o1 Y = TR @1 o= PP O PP PPPPPPTP 7
[V 1= 1 o] [T PO PPPPPPPPP 8
SYSIEM VArIiADIES ...t e e e e e 9
Date/Time Vari@bIes.............o et 10
CUITENt Date/TIME ...t e e e e e e e e e e e e e e 11
CUITENT DA ..ottt ettt e e e e e e e e e e e e e e e 12
(O8] o | S T 0= OO PPPPPPPPPRN 13
Date/TiImeE (SYSEEIM) ...ttt e e e e e e e e e e e e e e 14
Parse Date/TIME e e e e e 16
Calendar WEEK ...ttt a e e e e 17
DAY Of YA ...ttt a e e e e e e e 19
DAy Of WEEKt e e e e e e 21
Field VariabIEs ...t 23
Database Field. ... 24
Get Field CONtENt ... e e e e e e e 25
Get Field NAME ...t e e e e e e e e e e e 26
Path VariabIes.............e e 27
YAV o) o] D=1 =] B T R 28
YA o] o] RO 29
YA o) o] ==Y { o T 30
] ISR 31
] b SRR 32
R T T=Y NN F=T g SRS 33
R 0 0 E= o =Y I OSSR 34
BINSHAIIDIN ...t e s 35
R IE= o 1Y | I SRR 36
BLADEIPALN ... nean 37
SNG Vari@bIEs.....cooo it e e e e e e e e e 38
Get Leftmost Characters of @ Stringoooiiiiiiiii e 39
Get Rightmost Characters of @ String........ccccuuiiiiiiii e 40
Get Middle Characters of @ Stringcoooiiiiiiiiiii e 41
REMOVE CRArACLEISuuiiiiiiiiiiiii et e e e e e e e e e 42
REPIACE SHING ...t e e e e e e e e e e e 43
=T 0] F= Yot = 1 (=5 o 44
Regular EXpression Languagecooociiiiiiiiiiiiiieeeee e 46
Pad String from Left..... ..o 51
Pad String from RIGNt.........e e 52
REVEISE SHIING ...t e e e e e e e e e e e e e e e 53
Convert StriNg t0 LOWEICASEcoiiiiiiiiiiiiii e 54
Convert String 10 UPPEIrCASEooeiiiiiiiieeee et e e e e e e e 55
TIUNCALE SEINQ ..ot e e e e e e e e e e e e e e e en e e 56
Trim Leading CharacCterso 57
Trim Trailing Characters ..o 58
Trim Leading and Trailing Characters...........ie e 59
Convert ASCII String t0 HEX String.......cooiiiiiiiiiieeeeee e 60
Convert HEX String t0 ASCI String.......coooiiieiieeeeeee e 61
Calculate Text LeNGth....... ... e 62
(0718 0] (= g 5] V] (] 0 1) TP PPPPPPPPRT 63

Copyright © Carl Valentin GmbH 2

Labelstar Office 4.30 Build 1010 Contents

(€1 10] oF=1 I ©7o 10 o] (=T PRI 65
USEr INPUL (SYSTEM) .o e e e e e e e e e e e e e e e s 66
1T 0T U L 1Y/ = TP 67
Math VariabIEso oo e e e s 68
ADSOIULE ValUE.... ..o e e e e e e e e e e eeeees 69
MiINIMUM ValUE ... e e e e e e et e e e e e e e eaan e eaeaeees 70
MaXimUuM ValUEei e e e e e e et e e e e e e e e e e eeaenes 71
Calculate Mathematical FOrmuIla..............uueiiiiiiiiiii e 72
Mathematical OpPEeratorsoooiiiiiiiiie e 73

Check Digit CalCUIAtioNouiiuiiiiieeee eeeeeeanaeas 74
Check Digit (SYSIEM)o e 75
ApPeNd CheCK Digit.........uueeiiiiiii eeeeennaees 76
IS T oY= T =1 o[P 77
N[g 01T o] @ 0T o1 =TSSP 78

If.. Then..Else Statement oo e e e 79
Shift DefiNItiON......cco o a e e e e 80
Define Shift TIMESueiiii e 81

Label NUMDET ... e e e e e et e e e e e e e eaan e e eaeaeees 82
Page NUMDETt e e e e e e e e e e ea e e e e e e eeanna e eeeeenes 83

T (=T ol N =T o = RPN 84

L LYY N =T T RPN 85
User DOM@Ain NAMEot e et e e e e e e e ea e e e e e eeaana e eeeaenes 86
FOrmat ValUe ...t e e e e e e e e e e e e eeeees 87
FOrmMatting TYPES ..o e et e e e 89
Standard Numeric Format Strings..........uueuuiiiiiiiiee e 90

Custom Numeric Format StriNgS........ouvuuiiiiiiiiiie e 92

Standard Date and Time Format Strings ..., 93

Custom Date and Time Format Stringsccccooveeeiiiiiiiiiiie 95

Text Format StriNgSoooooiieeee e 97

(070101 a1 i VA O o o [= 1S USSP 99
o0 4 F= T = P 100
Printer VariabIEs oot aaeae 101
Date/TimeE (PrINTEI) .ot e e e e e e e e e e e e e e e e as 102
Printer-specific Date and Time Format Strings ..., 103
1Y Lo B I oL S € 1=) PP 105
USEr INPUL (PFINTEI) .. e e e e e e e e e e e e e as 106
(70101 o) (=T gl (o 411 (=1 o) I PRSP 108
Extended Counter (Printer)........ccoo oo 110
Check Digit (PrINTEI) ..ottt e e e e e e e e e e e aaaaaaes 112
BaAr COUES ...t e e e e e e e e e e e e e e e e e et e ——————— e aaaaaaaaaaaes 113
(D = 7= T O To [SO OO 117
(@7 0T =1 o - LR 118
(O 0o [T 2 PP PPEPPRPPR 119
Code 128 (SUDSEE A)...ei et —————————————— 120
Code 128 (SUDSEE B)....cooeeeeeeeeeeeeeeeee e ——————— 121
Code 2 Of 5 INAUSEAL........ccoiiieeeeeeee e e e e e e e e aaaeaas 122
Code 2 Of 5 INErlEAVEM ..o e 123
@70 [T 1 PP PPEPPRPPR 124
Code 39 (FUI ASCH) ...ttt e e e e e e e e e e e e et eeeeeeaaaaeeeeeeaannnns 125

Copyright © Carl Valentin GmbH 3

Labelstar Office 4.30 Build 1010 Contents

@700 [T X P SPEPPRPPR 126

Code 93 (FUI ASCIH) ...ttt e e e e e e e e e e e e et e e e e e e aaaaeeeeeaaannns 127
Deutsche Post 1dentCOAE i 128
Deutsche Post LEICOAEueiiiieee e e s 129

e N B T I | PP 130

e N B T 2 I o 1 P PEPPPRPRR 131

e N B T T I o 1 < P PEPPPRPR 132

EAN-8, GTIN-8 ..ottt e e e e e e e e e e e ettt e et e et aaaaeeeeeaaa s nnnseneeeeees 133

ITF =14, SC C-14 ettt e e e e e e e e e e e e sttt eeeeeaaaaeeeeeeaaaannesereeneees 134

o =50 0 = Voo o [P 135

A PP 136

8 O N I I | PRSP 137
] O TP 138

4B - | 0o o [PSPPSR 139
AZEEC GO ...t ettt e oottt a e e e e e e e e e aaaaaaaaeaeeareanaaraaaaaa_ 140

AZEEC RUNES ...t e ettt e e e e e et et e e e e e eeeta e e eeeeeatnnaeeeaeaenes 141
(70T =1 o] [Yo G =P 142

D F= = = 11) GO PP 143
MAXICOAE ... et eees s e e s e e e e e e e e e aaaaaaaaaes 144
Structured Carrier MESSAQEuvvuuiiiiieei et aaaaaaaaaas 145

3 g PRSP 146

(O] S 00T [T OO PP PEPPRRRRRR 147

What are the different types of QR Codes?..........ooooiiiiiiiiiiii 148

GST Bar COUES ... oottt et e et e e e e e e e e ettt et e e e et e e e e e e e e e aaaaaaaaaaeeeeraearrrrnnaa 149
GST DAtaBar ... ——————————————————— 150

GST DataMatriX ... e —————————————————— 151
L 122 P PPEPPRPPR 152

Check Digit CalCUlationouiiiiiiiiiiee eeaneeaanae 153
11T o 11 o Tt I 0 P EEPEPPPPP 154
Modulo 10 (Luhn AIGOIItRM) ... e e e e e e e e 155
11T Yo [o Tt e P EEPEPPRPPR 156

Global Trade Item NUMDBEr (GTIN)......uu i eeeananaes 157

D F=] = o 2= 1S =3RRI 158
NeW Data CONNECLIONccooiiiiiee et e e e e e e e e aaaaaeaaes 159
Create a Database Labeloeueeeeeeiiiiii e e e e 160
0T T [Vo 0P PPR 161
Activate and Deactivate LOGgiNg.......cuuuiiiiiiiiiiiii e 162
(o To T o1 [T e To= 1 (o) o I PSRRI 163
=T B o T =T 1< PP 164
FOood Allergen Labelling.........o oo e e e e e e e e e e e e e e e e e e eaanaaas 166
S F= 11 0] 0] PP SPPUPUPRRR 167
Supported Graphic and Vector FOrmMats ...t 169
(o Te =10 g @] o) (o] o 1< U PUPUPPPPRPP 171
T CT=T =T =1 O - | o LSRR 172

S 1101 (T e D = o PSPPI 173
«Label Preview» Tab ... aeae 174
KMEMOTY Card» Tabccooi it aaaaaaaaaas 175

2 Mo To o [T Te) SN -1 o PSPPI 176
«File LOCAtiONS® Tabcooeiiiiiie et e e e aaaeae 177

Copyright © Carl Valentin GmbH 4

Labelstar Office 4.30 Build 1010 Contents

T O o] OSSP PPTPPRRRRPPN 178
L1 2 PSSP 179
o Te = IS T=Y ui] o [PUPUPPPPRPP 180
=T aTo [0 E=To LIRS Y= 1] o SRR 181
L@ I] (o] .= 111 PRSP 182
Operating REQUITEMENTS........oeiiiiiiiiccec ettt e e e e e e e e e e e e aaaeaaaaeeeeeeeeeeenssannnes 184
Register Assembly for COM INTEIOP ...oovvvvieiiiic e e e e e e e e e 185
(o TU T T AN o o] o= [0 o PSPPI 186
V4= S Lol o] B T=Ta o] o] [USSR 189
ODbJECE REFEIENCEttt e e e e e e e e e e e e e e aaaaaeeeeeeeeeesesssannans 190
FaY o] o] [[or=1 o] g T @2 F= == ST 191

FaY o] ol ITez=1 (o] g I md ro] o=T =1 J PSSP 192
ACHVEPTINIEr PrOPEItYo e e 193

P o T e o 011 o Y 194

) {0 T o (0T 011 o 4P PUPPPPRRRNt 195

Y oY1= 1 74=To I o o] oT=T o |V 196

0= o= | I 1 o oY= o YR 197

0=] (= o gl 0] 0 1= o Y 198

I oToT o ES TSI o o] 01T o YR 200

PaY o] o[Tez=1 (o] o Y, 1= 1 4T Yo PSRRI 201
INItIAliZE MELNOM ... e eaaeeees 202
GetOpenFilename Methodooooriiiiiiii s 203
OpenLabel Methodoooiiiii e a e e e e e 205

o] g O = T RSP 206
o]l o 0] o T=T o 1 PP 207
DY =Y ES R o re] o= o P 208

ErrorCode ProPertY oottt e e ——————————— 209

o gl Y o TSI o o] o 7= o YR 210

Y TS T= o [T o ro] 0= o P 211

ErrorType ENUMEratioN..... ...t e e e e e e e e e e e e e e eeenes 212
1= o B4 =] SRR RPPP 213
T (o I ro o= 1= TSP 214

[T (o | NPT o g L= e o] o T=T o oY 215

o Te3 1C=To [l o Fo] 1= Y2 216

Printable Property oot 217

1Y (o I 1Y =1 1 T T £ PP 219
GetContent MEtNOMeeeiiiiieeeeeeee e e e e e e e e e e e e e e 220
GetPropertyValue Methodoooiiiiiiie e 222
SetContent MethOd.... ..o e e e e e 225
SetPropertyValue Method.............oveeiiiiiiiii e 226
ImageFormat ENUMEratioNcoooo e 228
0= o1 7 =] SRRSO 229

(1= o= B o 01T (=TSP 230
ACHVEPTINIEr PrOPEItY ... 231
CUrrentRECOrd PrOPEILY........cooiiiiiieeeeeeeee e et 234

[T (o [O7o TN | all o] 0 1= o Y2 PP S 235

[T (o | NPT g g =S e o 01T o P 236
IsDataAvailable Property ... 238

LabelPath Property ... 239

Copyright © Carl Valentin GmbH 5

Labelstar Office 4.30 Build 1010 Contents

1Y E= DYoo o I o fo] oT=T o Y/ 240

1Y ToTo L1 1Yo B = ro] 1= y 4V 2SSO PSS 241

PageName PrOPErtY ...t e e e e 242

Label METhOASo e e e e e e 243
GetFieldByIndex Methodooooiiiiiiiee e 244
GetFieldByName Methodoooiiiiiiie e 245

GetPreview Methoduiiiiiiiiiie e e e e e e e e e e 246
GetPropertyValue Methodoooiiiiiiie e 247

o T\ =11 T Yo PP 248

PrintTOFile Method........ oo 249

RS- VST 1Y 1= 1 o o RSP 250

SAVEAS METhOQ ... 251

SaVEPTEVIEW MEtNOUo e e e e e 252

SelectRecord MethOd ... e e e e e e 253

Filter EXPression SYNaX........ooocoiiiiiiiiiiieeeeeeeeee et e e 255

Filter EXpression FUNCLONSoooiiiiiiii e 259

SetPropertyValue Method.............oueeiiiiie e 261

[To =T g TS =1 [o T O = T TR 262
Licenselnfo Propertiescooo oottt a e 263
ISTHAIVEISION PrOPertY.....cccooeeiiii e 264

LICENSEKEY PrOPEITY i e e e e e e e e 265

LiCENSETYPE PrOPEITY ... e e e e e e e e e eanaa e e 266

PrintOptions ENUMEratioN............oooiiiie e e e e e e e e e e 267
VEISIONINTO ClaSSuueeiiiiiiiiiie ettt e e e e e e e e e e e e e e s et e e e eeeeeaaaeeens 268
VersionINfo Properti€su. i eareaanaaas 269
CompanyName Propertycooooiiiiiiiiiee et 270
CompiledVersion ProPertYooooiiiiiiieieiee et 271

(O70] o)V x{e] a1 Bl d o] o1=T o 428 PP 272
DisplayVersion PrOpertY oot e e 273

ProductName Property ... 274

Error Codes and MESSAQEScoooiiiiiiiiieiiie et e e e e e e e e e e e e e e e et e b e aaaaaaaaaas 275

[oTe =T gAY 2= T4 =T o £ PSR 277
(o= o 1531 T PSSP 278
SOfWArE UPAAteot e — i ———————————— 279
(@7] o] ¢= T £ PR 280
SYStEM REQUIFEMENES ...t eeeesraansanan s 281
1T o] o T S P P PR 282

Copyright © Carl Valentin GmbH 6

Labelstar Office 4.30 Build 1010 Labelstar Office

Labelstar Office

With this program you can design and print your own labels.
+" Simple operation by drag & drop

+" Support for all the most common bar code types
" Direct database connection possible

+" Individual label design through various printer and system variables

«" Mark ups for flexible text formatting

" Print preview, logging, memory card support and other features

Copyright © Carl Valentin GmbH 7

Labelstar Office 4.30 Build 1010 Variables

Variables

The purpose of variables is to insert certain changeable values on a label, e.g. current date.
$DateTime ("dd.MM.yyyy HH:mm", UpdateInterval=1, MonthOffset=10)

Certain characters within a printout signify and separate individual segments and permit a dismantling and processing of the
printout.

The following table describes the reserved characters.

$ Indicates the start of a variable.

INote: If the character is to be used directly, "$$" must be entered.
(Indicates the start of parameter list.
) Indicates the end of parameter list.

" Text identification
, Parameter separator
= Parameter value separator

\ Escape sign

See also

% System Variables

% Printer Variables

Copyright © Carl Valentin GmbH

Labelstar Office 4.30 Build 1010 System Variables

System Variables

With the help of these variables variable field contents for flexible label creation can be defined.
In contrast to Printer Variables, system variables are managed and calculated by the application.

Supported System Variables

Date/Time Variables

Field Variables
Path Variables

String Variables

Counter (System)

User Input (System)
Math Variables

WoW W Y Y

Check Digit Calculation

% Misc Variables

Copyright © Carl Valentin GmbH 9

Labelstar Office 4.30 Build 1010 Date/Time Variables

Date/Time Variables

With the help of these variables date and time values can be defined on the label.

Supported Date/Time Variables

% Current Date/Time

% Current Date
% Current Time

% Date/Time (System)

% Parse Date/Time

» Calendar Week

3 Day of Year
3 Day of Week

Copyright © Carl Valentin GmbH 10

Labelstar Office 4.30 Build 1010 Current Date/Time

Current Date/Time

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a value which contains the current date and current time in accordance with the system settings.
Syntax

$CurrentDateTime

Return value

Current date and current time according to the system settings.

Examples

$CurrentDateTime -> "15.10.2014 11:03:59"

$Format ($CurrentDateTime, "yyMMdd") -> "141015"
$Format ($CurrentDateTime, "hhmmss") -> "110359"

See also

% Current Date
3 Current Time

» Date/Time (System)

» Date/Time (Printer)

Copyright © Carl Valentin GmbH 11

Labelstar Office 4.30 Build 1010 Current Date

Current Date

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a value which contains the current date in accordance with the system settings
Syntax

$CurrentDate

Return value

Current date according to the system settings.

Examples

$CurrentDate -> "15.10.2014"
$Format ($CurrentDate, "yyMMdd") -> "141015"

See also

% Current Date/Time

% Current Time

% Date/Time (System)

» Date/Time (Printer)

Copyright © Carl Valentin GmbH 12

Labelstar Office 4.30 Build 1010 Current Time

Current Time

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a value which contains the current time in accordance with the system settings
Syntax

$CurrentTime

Return value

Current time according to the system settings.

Examples

$CurrentTime -> "11:03:59"
$Format ($CurrentTime, "hhmmss") -> "110359"

See also

% Current Date/Time

% Current Date
% Date/Time (System)

» Date/Time (Printer)

Copyright © Carl Valentin GmbH 13

Labelstar Office 4.30 Build 1010 Date/Time (System)

Date/Time (System)

Defines a date and time variable and converts the value with the indicated format in the correpsonding character string
presentation.

Syntax

$DateTime (format, [Prompt=prompt, UpdateInterval=updateInterval, MonthOffset=monthOffset,
DayOffset=dayOffset, MinOffset=minOffset, StartDate=startDate, Language=language])

Parameters

format
Indicates how the date and time is to be formatted.

The format parameter should either contain an individual format identifier (see Standard Date and Time Format
Strings) or a customized format example (see Custom Date and Time Format String), which defines the format of the
returned string. If format contains the value null or an empty string (*"), the general format identifier 'G'" is used.

prompt (optional, standard = empty)
If a prompt text is defined, the start date is queried at print start.

updatelnterval (optional, standard = 0)
Indicates how often the variable is to be updated during a print order.
0: At print start
1: After each label
n: After n labels
-1: At each change of data record

monthOffset (optional, standard = 0)
Month offset (is added to the current date)

dayOffset (optional, standard = 0)
Day offset (is added to the current date)

minOffset (optional, standard = 0)
Minute offset (is added to the current time)

startDate (optional, as default the current date and time according to the system settings is used)
Defines the start date and start time.

language (optional, as default the language set under Windows is used)
Language which is used for formatting the output. For more information, see Country Codes.

Return value
Formatted text.
Examples

$DateTime ("dd.MM.yyyy") -> "11.09.2013"

$DateTime ("dd.MM.yyyy", StartDate="15.06.2009", MonthOffset=2) -> "15.08.2009"

$DateTime ("D", UpdateInterval=0, DayOffset=2, Language="fr-Fr", StartDate=$ParseDateTime ("131012",
"yyMMdd")) -> "samedi 12 octobre 2013"

$DateTime ("HH:mm:ss") -> "13:20:35"

$DateTime ("hh:mm:ss") -> "01:20:35"

IDO1 = "260514"

Copyright © Carl Valentin GmbH 14

Labelstar Office 4.30 Build 1010 Date/Time (System)

$DateTime ("D", UpdateInterval=0, DayOffset=2, StartDate=$ParseDateTime (<<IDO1>>, "ddMMyy")) ->
"Montag, 26. Juni 2014"

See also

% Current Date/Time
% Current Date
% Current Time

» Date/Time (Printer)

Copyright © Carl Valentin GmbH 15

Labelstar Office 4.30 Build 1010 Parse Date/Time

Parse Date/Time

For more information, see Program Variants.

Converts the specified string representation its date and time equivalent using the specified format and culture-specific
format information. The format of the string representation must match the specified format exactly. Otherwise an error
occured.
Syntax

$ParseDateTime (text, format, [Language=language])

Parameters

text
A string that contains a date and time to convert.

format
A format specifier that defines the required format of text.

The format parameter is a string that contains either a single standard format specifier, or one or more custom
format specifiers that define the required format of text. For details about valid formatting codes, see Standard Date
and Time Format Strings or Custom Date and Time Format Strings.

language (optional, as default the language set under Windows is used)
Language which indicates which culture-specific format information is to used. For more information, see Country
Codes.

Return value

Date and time value.

Examples

IDO1 = "091410"

$ParseDateTime ("130910", "yyMMdd") -> "10.09.2013 00:00:00"
$ParseDateTime (<<ID@1>>, "MMyydd") -> "10.09.2014 00:00:00"

See also

% Date/Time (System)

Copyright © Carl Valentin GmbH 16

Labelstar Office 4.30 Build 1010 Calendar Week

Calendar Week

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Calculates the calendar week.
Syntax

$WeekOfYear (format, [UpdateInterval=updatelInterval, MonthOffset=monthOffset, DayOffset=dayOffset,
StartDate=startDate, Language=language])

Parameters

format
Indicates how the calendar week is to be formatted.

w Calendar week, from 1 to 53

ww Calendar week, from 01 to 53

www Calendar week, from 001 to 053

WWWW Calendar week, from 0001 to 0053

\ Escape character

Any other The character is copied to the result string
character unchanged.

updatelnterval (optional, standard = 0)
Indicates how often the variable is to be updated during a print order.
0: At print start
1: After each label
n: After n labels
-1: At each change of data record|

monthOffset (optional, Standard = 0)
Month offset (is added to the current date)

dayOffset (optional, Standard = 0)
Day offset (is added to the current date)

startDate (optional, as default the current date set in the system settings is used)
Defines the start date.

language (optional, as default the language set under Windows is used)
Language which is used for formatting the output. For more information, see Country Codes.

Return value
Formattes calendar week.
Examples

Current date: 01.02.2014

$WeekOfYear ("w") ->"5"

Copyright © Carl Valentin GmbH 17

Labelstar Office 4.30 Build 1010

Calendar Week

$WeekOfYear ("ww") -> "05"

$WeekOfYear ("www", DayOffset=5) -> "006"
$WeekOfYear ("Calendar \week: ww", StartDate="01.03.2014") -> "Calendar week: 09"

Copyright © Carl Valentin GmbH

18

Labelstar Office 4.30 Build 1010 Day of Year

Day of Year

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Calculates the day of year.
Syntax

$DayOfYear (format, [UpdateInterval=updateInterval, MonthOffset=monthOffset, DayOffset=dayOffset,
StartDate=startDate, Language=language])

Parameters

format
Indicates how the day of year is to be formatted.

d Day of year, from 1 to 366

dd Day of year, from 01 to 366

ddd Day of year, from 001 to 366

dddd Day of year, from 0001 to 0366

\ Escape character

Any other The character is copied to the result string
character unchanged.

updatelnterval (optional, standard = 0)
Indicates how often the variable is to be updated during a print order.
0: At print start
1: After each label
n: After n labels
-1: After each change of data record

monthOffset (optional, standard = 0)
Month offset (is added to the current data)

dayOffset (optional, standard = 0)
Day offset (is added to the current date)

startDate (optional, as default the current date and time according to the system settings is used)
Defines the start date.

language (optional, as default the language set under Windows is used)
Language which is used for formatting the output. For more information, see Country Codes.

Return value
Formatted day of year.
Examples

Current date: 01.02.2014

$DayOfYear ("d")->"5"

Copyright © Carl Valentin GmbH 19

Labelstar Office 4.30 Build 1010

Day of Year

$DayOfYear ("dd") -> "05"
$DayOfYear ("ddd", DayOffset=5) -> "006"
$DayOfYear ("Day of year: dd", StartDate="01.03.2014") -> "Day of year: 09"

Copyright © Carl Valentin GmbH

20

Labelstar Office 4.30 Build 1010 Day of Week

Day of Week

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Calculates the day of week.
Syntax

$DayOfWeek (format, [UpdateInterval=updateInterval, MonthOffset=monthOffset, DayOffset=dayOffset,
StartDate=startDate, Sunday=sunday, Language=language])

Parameters

format
Indicates how the weekday is to be formatted.

d Day of week, from O to 6

dd Day of week, from 00 to 06

ddd Day of week, from 000 to 006

dddd Day of week, from 0000 to 0006

\ Escape character

Any other The character is copied to the result string
character unchanged.

updatelnterval (optional, standard = 0)
Indicates how often the variable is to be updated during a print order.
0: At print start
1: After each label
n: After n labels
-1: At each change of data record

monthOffset (optional, standard = 0)
Month offset (is added to the current date)

dayOffset (optional, standard = 0)
Day offset (is added to the current date)

startDate (optional, as default the current date and time according to the system settings is used)
Defines the start date.

sunday (optional, standard = 0)
Defines which value is to be used for Sunday.

language (optional, as default the language set under Windows is used)
Language which is used for formatting the output. For more information, see Country Codes.

Return value
Formatted day of week.

Examples

Copyright © Carl Valentin GmbH 21

Labelstar Office 4.30 Build 1010 Day of Week

Current date: 01.02.2014 (Saturday)

$DayOfWeek ("d") -> "6"

$DayOfWeek ("dd") -> "06"

$DayOfWeek ("dd", DayOffset=5) -> "04"

$DayOfWeek ("d", DayOffset=5, Sunday=A) -> "E"

$DayOfWeek ("Day of week: d", StartDate="05.03.2014", Sunday=10) -> "Day of week: 14"

Copyright © Carl Valentin GmbH 22

Labelstar Office 4.30 Build 1010 Field Variables

Field Variables

With the help of field variables, linkings between individual elements can be defined on the label.

Supported Field Variables

% Database Field
% Field Link (System)

% Field Name

Copyright © Carl Valentin GmbH 23

Labelstar Office 4.30 Build 1010 Database Field

Database Field

For more information, see Program Variants.

Inserts a database field on the label.

Syntax

$DbField (dbName, columnName, [DBNullValue=dbNullValue, Format=format])

Parameters

dbName
Database name
Upper and lower case is considered

columnName
Column name
Upper and lower case is considered

dbNullValue (optional, Standard = empty)
Indicates which value is to be used if the appropriate database field is empty.

format (optional, Standard = empty)
Indicates how the contents of database field is to be formatted. For more information, see Formatting Types.

Return value
Contents of database field.
Examples

4 D Name Capital Area Population NativeMName Flag Copies

yo 7 Germany Berlin 357114 82220000 Deutschiand [>

$DbField ("Europe", "Area") -> "357114"

$DbField ("Europe", "Area", Format="0000000000") -> "0000357411"
$DbField ("Europe", "Capital", Format="LLLL") -> "Berl"

$ToUpper ($DbField ("Europe", "Capital")) -> "BERLIN"

Check whether a database field is empty

$1f ($Length ($DBField (...)) == @, "The database field is empty.", "The database field is not
emptry.")

See also

3 Databases

Copyright © Carl Valentin GmbH 24

Labelstar Office 4.30 Build 1010 Get Field Content

Get Field Content

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Defines a field link.
Syntax
$FieldLink (fieldName, [displayText])
or
<<fieldName>>
Parameters
fieldName
Field name
Note: Upper and lower case is considered
displayText (optional, Standard = empty)
Indicates whether another value for the screen display is to be used than the actual field contents.
Note: For the printout, the current field content is always used.

Return value

Field contents

Examples
IDO1 = "12345"
ID02 = "abcABC"

$FieldLink (ID@1) -> "12345"

$FieldLink (IDe1, "eee00") -> "00000"
$FieldLink (ID@2) -> "abcABC"
$FieldLink (IDB2, "XXXXXX") -> "XXXXXX"

<<ID@2>> -> "abcABC"

See also

» Field Link (Printer)

Copyright © Carl Valentin GmbH 25

Labelstar Office 4.30 Build 1010 Get Field Name

Get Field Name

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the field name.
Syntax

$FieldName

Return value

Field name

Copyright © Carl Valentin GmbH 26

Labelstar Office 4.30 Build 1010 Path Variables

Path Variables

With the help of the path variables, path strings can be read out and processed.

Supported Path Variables

% Application Data Folder

% Application Folder

% Application Path

Folder Name
File Extension
File Name
Image Folder
Label Folder
Label Path

oW W W

Installation Folder

Copyright © Carl Valentin GmbH 27

Labelstar Office 4.30 Build 1010 $AppDataDir

$AppDataDir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the full path to the file directory containing application data for all users.
Syntax
$AppDataDir

Return value

Windows XP: C:\Documents and Settings\All Users\Application Data\Labelstar Office
Windows 7/8: C:\ProgramData\Labelstar Office

Copyright © Carl Valentin GmbH 28

Labelstar Office 4.30 Build 1010 $AppDir

$AppDir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the current application folder.
Syntax

$AppDir

Return value

The path for the executable file that started the application, not including the executable name (e.g. "C:\Programs\Carl
Valentin GmbH\Labelstar Office").

See also

» Application Path

% Installation Folder

Copyright © Carl Valentin GmbH 29

Labelstar Office 4.30 Build 1010 $AppPath

$AppPath

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the complete path name of the application.
Syntax
$AppPath

Return value

The path for the executable file that started the application, including the executable name (e.g. "C:\Programs\Carl Valentin
GmbH\Labelstar Office\LabelDesigner.exe").

See also

» Application Folder

% Installation Folder

Copyright © Carl Valentin GmbH 30

Labelstar Office 4.30 Build 1010 $Dir

$Dir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the directory information for the specified path string.
Syntax

$Dir (path)

Parameters

path
The path of a file or directory.

Return value

Directory information for path, or null if path denotes a root directory or is null. Returns an empty string if path does not
contain directory information.

Examples

$Dir ("C:\Labels\Label.lbex") -> "C:\Labels"
$Dir ($AppPath) -> "C:\Programs\Carl Valentin GmbH"

See also

» Get file name

» Get file extension

Copyright © Carl Valentin GmbH 31

Labelstar Office 4.30 Build 1010

$Ext

$SExt

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the extension of the specified path string.
Syntax

$Ext (path)

Parameters

path

The path string from which to get the extension.

Return value

The extension of the specified path (including the period "."), or an empty string, if path does not have extension information.

Examples
$Ext ("C:\label.lbex") -> "lbex"

$Ext ($AppPath) -> ".exe"
$Ext ("C:\label") ->""

See also

» Get file name

» Get folder name

Copyright © Carl Valentin GmbH

32

Labelstar Office 4.30 Build 1010 $FileName

$FileName

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the file name of the specified path string.
Syntax

$FileName (path, [Ext=extension])
Parameters

path
The path string.

extension (optional, default = true)
true or 1: Returns file name with extension
false or 0: Returns file name without extension
Return value
The file name of the specified path string with or without extension.
Examples
$FileName ("C:\Labels\Label.lbex") -> "Label.lbex"
$FileName ($AppPath) -> "LabelDesigner.exe"
$FileName ($AppPath, Ext=false) -> "LabelDesigner"

$FileName ($LabelPath) -> "Label.lbex"
$FileName ($LabelPath, Ext=@) -> "Label"

See also

» Get folder name

» Get file extension

Copyright © Carl Valentin GmbH 33

Labelstar Office 4.30 Build 1010 $ImageDir

$IlmageDir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the current image folder.
Syntax

$ImageDir

Return value

Current image folder

See also

» Change image folder

» Get current label folder

Copyright © Carl Valentin GmbH 34

Labelstar Office 4.30 Build 1010 $InstallDir

$InstallDir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the full path to the directory in which Labelstar Office is installed.
Syntax
$InstallDir

Return value

The installation folder of Labelstar Office (e.g. "C:\Programs\Carl Valentin GmbH\Labelstar Office" or "C:\Programs (x86)\Carl
Valentin GmbH\Labelstar Office").

See also

» Application Folder

» Application Path

Copyright © Carl Valentin GmbH 35

Labelstar Office 4.30 Build 1010 $LabelDir

$LabelDir

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the current label folder.
Syntax

$LabelDir

Return value

Current label folder

See also

» Change label folder

» Get current image folder

Copyright © Carl Valentin GmbH 36

Labelstar Office 4.30 Build 1010 $LabelPath

$LabelPath

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the complete path of the current label file.
Syntax

$LabelPath

Return value

Path name of the current label file

See also

» Get current image folder

» Get current label folder

Copyright © Carl Valentin GmbH 37

Labelstar Office 4.30 Build 1010 String Variables

String Variables

With the help of this variables strings can be edited.

Supported String Variables

» Get Leftmost Characters of a String

» Get Rightmost Characters of a String

% Get Middle Characters of a String

Remove Characters

Replace String

Replace Pattern
Pad String from Left

Pad String from Right

VoW W

Reverse String

% Convert String to Lowercase

» Convert String to Uppercase

% Truncate String
% Trim Leading Characters

% Trim Trailing Characters

% Trim Leading and Trailing Characters

% Convert ASCII String to HEX String

% Convert HEX String to ASCII String

% Calculate String Length

% Format String

Copyright © Carl Valentin GmbH 38

Labelstar Office 4.30 Build 1010 Get Leftmost Characters of a String

Get Leftmost Characters of a String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a string containing a specified number of characters from the left side of a string.
Syntax

$Left (text, length)

Parameters

text
String expression from which the leftmost characters are returned.

length
Numeric expression indicating how many characters to return. If 0, a zero-length string (
than or equal to the number of characters in text, the entire string is returned.

) is returned. If greater

Return value

A string containing a specified number of characters from the left side of a string.

Examples

$Left ("abcDEF", @) -> "

$Left ("abcDEF", 2) -> "ab"
$Left ("abcDEF", 4) -> "abcD"
$Left ("abcDEF", 10) -> "abcDEF"
$Left ("abcDEF", -2) -> Error

See also

» Get Rightmost Characters of a String

» Get Middle Characters of a String

Copyright © Carl Valentin GmbH 39

Labelstar Office 4.30 Build 1010 Get Rightmost Characters of a String

Get Rightmost Characters of a String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a string containing a specified number of characters from the right side of a string.
Syntax

$Right (text, length)

Parameters

text
String expression from which the rightmost characters are returned.

length

Numeric expression indicating how many characters to return. If 0, a zero-length string (") is returned. If greater

than or equal to the number of characters in text, the entire string is returned.

Return value

A string containing a specified number of characters from the right side of a string.

Examples

$Right ("abcDEF", @) ->""
$Right ("abcDEF", 2) -> "EF"
$Right ("abcDEF", 4) -> "cDEF"
$Right ("abcDEF", 10) -> "abcDEF"
$Right ("abcDEF", -2) -> Error

See also

» Get Leftmost Characters of a String

» Get Middle Characters of a String

Copyright © Carl Valentin GmbH 40

Labelstar Office 4.30 Build 1010 Get Middle Characters of a String

Get Middle Characters of a String

For more information, see Program Variants.

Returns a string that contains a specified number of characters starting from a specified position in a string.
Syntax

$Mid (text, index, [Length=length])

Parameters

text
String expression from which characters are returned.

index
Starting position of the characters to return. If index is greater than the number of characters in text, the function
returns a zero-length string ().
The starting position is one based.
length (optional)

Number of characters to return. If omitted or if there are fewer than length characters in text (including the character
at position index), all characters from the start position to the end of the string are returned.

Return value

A string that consists of the specified number of characters starting from the specified position in the string.

Examples

$Mid ("abcDEF", 3) -> "DEF"
$Mid ("abcDEF", 3, Length=2) -> "DE"

See also

» Get Leftmost Characters of a String

% Get Rightmost Characters of a String

Copyright © Carl Valentin GmbH 41

Labelstar Office 4.30 Build 1010 Remove Characters

Remove Characters

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a string in which a specified number of characters, beginning at a specified position, have been deleted.
Syntax

$Remove (text, index, [Length=length])

Parameters

text
The string to be changed.

index
The zero-based position to begin deleting characters.

length (optional, standard = 0)
The number of characters to delete. If length is 0 a string is returned in which all characters, beginning at a specified
position and continuing through the last position, have been deleted.

Return value

The changed string.

Examples

$Remove ("abcDEF", 3) -> "abc"
$Remove ("abcDEF", 3, Length=2) -> "abcF"

Copyright © Carl Valentin GmbH 42

Labelstar Office 4.30 Build 1010 Replace String

Replace String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a string in which all occurrences of a specified string are replaced with another specified string.
Syntax

$Replace (text, oldValue, newValue, [oldValue, newValue, ...])

Parameters

text
The string to be changed.

oldValue
The string to be replaced.

newValue
The string to replace all occurrences of oldValue.

Return value

The changed string.

Examples

$Replace ("abcDEFabcDEF", "abc", "") -> "DEFDEF"

$Replace ("abcDEFabcDEF", "abc", "ABC") -> "ABCDEFABCDEF"
$Replace ("abcDEFabcDEF", "ab", "AB", "EF", "ef") -> "ABcDefABcDef"

See also

» Replace Pattern

Copyright © Carl Valentin GmbH 43

Labelstar Office 4.30 Build 1010 Replace Pattern

Replace Pattern

For more information, see Program Variants.

Replaces all strings that match a specified regular expression with a specified replacement string. Specified options modify
the matching operation.

Syntax

$ReplacePattern (string, pattern/filename, replacement, [IgnoreCase=ignorecase,
RightToLeft=rightToLeft])

Parameters

string
The string to search for a match.

pattern/filename
The regular expression pattern to match or the file name of a text file that contains the pattern definition. The
pattern parameter consists of regular expression language elements that symbolically describe the string to match.
For more information about regular expressions, see Regular Expression Language.
List of keywords you search (separated by |) or the file name of a text file that contains the keywords you
search.

replacement
The replacement string.

ignorecase (optional, default = false)
true or 1: Specifies case-insensitive matching.
false or 0: Specifies case-sensitive matching.

righttoleft (optional, default = false)
Change the search direction.

true or 1: Specifies that the search will be from right to left.
false or 0: Specifies that the search will be from left to right.

Return value
The changed string.
Examples

$ReplacePattern ("abcdefABCDEF", "abc|DEF", "$@") -> "abcdefABCDEF"
$ReplacePattern ("abcdefABCDEF", "abc", "<u>$0</u>", IgnoreCase=true) -> "abcdefABCDEF"

Strip Invalid Characters from a String

In this case, $ReplacePattern strips out all nonalphanumeric characters except periods (), at symbols (@), and hyphens (-),
and returns the remaining string.

$ReplacePattern ("<email>@example.com", "[~\w\.@-]1",) -> "email@example.com"”

For more examples, see Food Allergen Labelling.

Copyright © Carl Valentin GmbH 44

Labelstar Office 4.30 Build 1010 Replace Pattern

See also

3 Replace String

Copyright © Carl Valentin GmbH 45

Labelstar Office 4.30 Build 1010 Regular Expression Language

Regular Expression Language

A regular expression is a pattern that the regular expression engine attempts to match in input text. A pattern consists of one
or more character literals, operators, or constructs.

Character Escapes

The backslash character (\) in a regular expression indicates that the character that follows it either is a special character (as
shown in the following table), or should be interpreted literally.

\a Matches a bell character, \u0007. \a “Error!" + "\u0007"
"\u0007'
\b In a character class, matches a backspace, \u0008. |[\b]{3,} “\b\b\b\b" "\b\b\b\b"
\t Matches a tab, \u0009. (\w+)\t “itemT\titem2\t" |"item1\t",
"item2\t"
\r Matches a carriage return, \u0O0OD. (\r is not \r\n(\w+) "“\\nThese are “\"\nThese"
equivalent to the newline character, \n.) \ntwo lines."
\v Matches a vertical tab, \uOOOB. [\v1{2,} “WAVAV" "“\WAV\V"
\f Matches a form feed, \u00OC. [\f1{2,} "\ "\AR\f"
\n Matches a new line, \uOOOA. \r\n(\w+) "“\\nThese are “\\These"
\ntwo lines."
\e Matches an escape, \u0O01B. \e "\x001B" "\x001B"
\ nnn Uses octal representation to specify a character \w\040\w "a bc d" "ab", "cd"
(nnn consists of two or three digits).
\x nn Uses hexadecimal representation to specify a \w\x20\w "a bc d" "ab", "cd"
character (nn consists of exactly two digits).
\c X Matches the ASCII control character that is \cC "\x0003" (Strg-C) |"\x0003"
\c x specified by X or x, where X or x is the letter of
the control character.
\u nnnn Matches a Unicode character by using \w\uee20\w "a bc d" "ab", "cd"
hexadecimal representation (exactly four digits, as
represented by nnnn).
\ When followed by a character that is not \d+[\+-x*]\d+\d "(2+2) * 3*9" "2+2", "3*9"
recognized as an escaped character in this and +[\+-x*\d+
other tables in this topic, matches that character.
For example, * is the same as \x2A, and \. is the
same as \x2E. This allows the regular expression
engine to disambiguate language elements (such
as * or ?) and character literals (represented by *
or \?).

Character Classes

A character class matches any one of a set of characters. Character classes include the language elements listed in the
following table.

[character_group] |Matches any single character in [ae] "gray" "a"
character_group. By default, the match is case- “lane” "a", "e"
sensitive.

Copyright © Carl Valentin GmbH 46

Labelstar Office 4.30 Build 1010

Regular Expression Language

[~ character_group |Negation: Matches any single character thatis |[~aei] “reign" r","g", "n
1 not in character_group. By default, characters
in character_group are case-sensitive.
[first - last] Character range: Matches any single character in|[A-Z] "AB123" "A", "B"
the range from first to last.
Wildcard: Matches any single character except |a.e "nave" "ave"
\n. "water" “ate"
To match a literal period character (. or \u002E),
you must precede it with the escape character
(\).
\p{ name } Matches any single character in the Unicode \p{IsCyrillic} |"OXem" A, XK
general category or named block specified by
name.
\P{ name } Matches any single character that is not in the |\P{IsCyrillic} ["O>Xem" e’ "m"
Unicode general category or named block
specified by name.
\w Matches any word character. \w “ID A1.3" ‘", "D", "A", "1
II3II
\wW Matches any non-word character. \W “ID A1.3" R
\s Matches any white-space character. \w\s “ID A1.3" ‘D"
\S Matches any non-white-space character. \s\S "int __ctr" v
\d Matches any decimal digit. \d "4 = V" "4"
\D Matches any character other than a decimal \D "4 = V" R I
digit. v
Assertion

Atomic zero-width assertions, cause a match to succeed or fail depending on the current position in the string, but they do
not cause the engine to advance through the string or consume characters.

2 The match must start at the beginning of the ~\d{3} "901-333-" "901"
string or line.

$ The match must occur at the end of the string or |[-\d{3}$ "-901-333" "-333"
before \n at the end of the line or string.

\A The match must occur at the start of the string. \A\d{3} "901-333-" "901"

\Z The match must occur at the end of the string or |-\d{3}\z "-901-333" "-333"
before \n at the end of the string.

\z The match must occur at the end of the string. -\d{3}\z "-901-333" "-333"

\G The match must occur at the point where the \G\ (\d\) “(MAYOI7IO" (" "3, "(5)"
previous match ended.

\b The match must occur on a boundary between a | \b\w+\s\w+\b “them theme “them theme",
\w (alphanumeric) and a \W (nonalphanumeric) them them" "them them"
character.

\B The match must not occur on a \b boundary. \Bend\w*\b "end sends "ends", "ender"

endure lender"

Grouping Constructs

Grouping constructs delineate subexpressions of a regular expression and typically capture substrings of an input string.
Grouping constructs include the language elements listed in the following table.

Copyright © Carl Valentin GmbH

47

Labelstar Office 4.30 Build 1010

Regular Expression Language

(subexpression) |Captures the matched subexpression and (\w)\1 "deep"” "ee"
assigns it a one-based ordinal number.

(?< name > Captures the matched subexpression into a (?<double> "deep” "ee"

subexpression) |named group. \w) \k<double>

(?< namet
- name2 >
subexpression)

Defines a balancing group definition.

(((?'0open’\()
[A
\(\)1¥)+((?'Clo
Open'\))[*
\(\D)I¥)H)*(?
(Open) (2!))$

"342A((1-3)*(3-1))"

"((1-3)*(3-1))"

(?: subexpression

)

Defines a noncapturing group.

Write(?:Line)?

"Console.WriteLine

J'WriteLine"

(?imnsx-imnsx: | Applies or disables the specified options within |A\d{2}(?i:\w "A12xI A12XL "A12x1",
subexpression) | subexpression. +)\b al2xl" “A12XL"
(?= subexpression |Zero-width positive lookahead assertion. \w+(?=\.) "He is. The dog "is", "ran", "out"
) ran. The sun is

out."
(?! subexpression |Zero-width negative lookahead assertion. \b(?!un)\w+\b |"unsure sure unity |"sure", "used"
) used"
(?<= Zero-width positive lookbehind assertion. (?<=19)\d{2}\b |"1851 1999 1950 |"99", "50", "05"
subexpression) 1905 2003"
(?<! Zero-width negative lookbehind assertion. (?<!19)\d{2}\b |"1851 1999 1950 |51, "03"
subexpression) 1905 2003"
(?> subexpression [Nonbacktracking (or "greedy") subexpression. |[13579](?>A+B |"1ABB 3ABBC 5AB "1ABB", "3ABB",
) +) 5AC" "5AB"

Quantifiers

A quantifier specifies how many instances of the previous element (which can be a character, a group, or a character class)
must be present in the input string for a match to occur. Quantifiers include the language elements listed in the following

table.

* Matches the previous element zero or more times. |\d*\. \d *.0" "19.9",
"219.9"
+ Matches the previous element one or more times. |"be+" "been” "bee"
Ilbentll Ilbell
? Matches the previous element zero or one time. |["rai? n" “ran”, "rain"
{n} Matches the previous element exactly n times. ",\d{3}" *1,043.6" *,043"
"9,876,543,210" |", 876", ",543",
"210"
{n,} Matches the previous element at least n times. "\d{2,}" "166", "29",
"1930"
{n,m} Matches the previous element at least n times, but|"\d{3,5}" "193024" "19302"
no more than m times.
? Matches the previous element zero or more times, |\d? \. \d *.0" "19.9",
but as few times as possible. "219.9"
+? Matches the previous element one or more times, |"be+?" "been” "be"
but as few times as possible. "bent" "be"
7 Matches the previous element zero or one time, |"rai?? n" “ran”, "rain"
but as few times as possible.

Copyright © Carl Valentin GmbH

48

Labelstar Office 4.30 Build 1010 Regular Expression Language

{n})? Matches the preceding element exactly n times. |",\d{3}?" *1,043.6" *,043"
"9,876,543,210" |",876", ",543",
"210"
{n.,}2 Matches the previous element at least n times, but |"\d{2, }?" "166", "29",
as few times as possible. "1930"
{n,m}? Matches the previous element between nand m |"\d{3,5}?" "193024" "193", "024"
times, but as few times as possible.

Backreference Constructs

A backreference allows a previously matched subexpression to be identified subsequently in the same regular expression. The
following table lists the backreference constructs supported by regular expressions.

:

\ number Backreference. Matches the value of a numbered |(\w)\1 "seek" "ee"
subexpression.

\k< name > |Named backreference. Matches the value of a (?<char> "seek" "ee"
named expression. \w)\k<char>

Alternation Constructs

Alternation constructs modify a regular expression to enable either/or matching. These constructs include the language
elements listed in the following table.

| Matches any one element separated by the th(e|is|at) "This is the day. |"the", "this"
vertical bar (|) character. "
(?(expression |Matches yes if the regular expression pattern (?(A)A\d{2}\b|\b |"A10C103 910" |"A10", "910"
) yes | nein) |designated by expression matches; otherwise, \d{3}\b)
matches the optional no part. expression is
interpreted as a zero-width assertion.

(?(name) yes |Matches yes if name, a named or numbered (?<quoted>")?(? "Dogs.jpg "Yiska "Dogs.jpg",

| no) capturing group, has a match; otherwise, (quoted).+?"|\S+ |playingjpg"" ""Yiska
matches the optional no. \s) playing.jog™

Substitutions

Substitutions are regular expression language elements that are supported in replacement patterns. The metacharacters
listed in the following table are atomic zero-width assertions.

$ number Substitutes the substring matched by group \b (\w+) $3%2%1 "one two" “two one"
number. (\s) (\w
+)\b
${ name} Substitutes the substring matched by the named |\b(? ${word2} "one two" "two one"
group name. <wordi>\w |${word1}
+)(\s)(?
<word2>\w
+)\b
$$ Substitutes a literal "$". \b(\d+)\s? |$$$1 "103 USD" | "$103"
usD

Copyright © Carl Valentin GmbH 49

Labelstar Office 4.30 Build 1010 Regular Expression Language

$& Substitutes a copy of the whole match. \$? \d*\.? |*¥*$&** "$1.30" "xxg].30%*"
\d+
$ Substitutes all the text of the input string before |B+ $ "AABBCC" ["AAAACC"
the match.
$' Substitutes all the text of the input string after the|B+ $' "AABBCC" "AACCCC"
match.
$+ Substitutes the last group that was captured. B+(C+) $+ "AABBCCDD" |AACCDD
$_ Substitutes the entire input string. B+ $_ "AABBCC" "AAAABBCCCC"

Regular Expression Options

You can specify options that control how the regular expression engine interprets a regular expression pattern.

You can specify an inline option in two ways:

® By using the miscellaneous construct (?2imnsx-imnsx), where a minus sign (-) before an option or set of options turns
those options off. For example, (2i-mn) turns case-insensitive matching (i) on, turns multiline mode (m) off, and turns

unnamed group captures (n) off. The option applies to the regular expression pattern from the point at which the option
is defined, and is effective either to the end of the pattern or to the point where another construct reverses the option.

® By using the grouping construct (2imnsx-imnsx:subexpression), which defines options for the specified group only.

The regular expression engine supports the following inline options.

i Use case-insensitive matching. \b(?i)a(?-i)a\w+ "aardvark AAAuto "aardvark",
\b aaaAuto Adam | "aaaAuto"
breakfast"
m Use multiline mode. A and $ match the beginning

and end of a line, instead of the beginning and
end of a string.

n Do not capture unnamed groups.
Use single-line mode.

("]

"1 aardvark", "2
cats"

"1 aardvark 2 cats
IV centurions"

Ignore unescaped white space in the regular \b(?x) \d+ \s \w
expression pattern. +

X

Miscellaneous Constructs

Miscellaneous constructs either modify a regular expression pattern or provide information about it. The following table lists
the supported miscellaneous constructs.

(2imnsx- Sets or disables options such as case insensitivity \bA(?i)b\w+\b "ABA Able Act" "ABA", "Able"
imnsx) in the middle of a pattern. For more information,

see Regular Expression Options.
(# Inline comment. The comment ends at the first \bA(?#Matches
comment) |closing parenthesis. words starting with

AN\w+\b

[bis X-mode comment. The comment starts at an (?x)\bA\wW+
Zeilenende] |unescaped # and continues to the end of the \b#Matches words

line. starting with A

Copyright © Carl Valentin GmbH

Labelstar Office 4.30 Build 1010 Pad String from Left

Pad String from Left

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Increase the length of the string by adding spaces or a specified character to the beginning. Strings with length greater than
or equal to the required length will be unchanged.

Syntax
$PadLeft (text, totalWidth, [PaddingChar=paddingChar])
Parameter

text
The string to be changed.

totalWidth
The number of characters in the resulting string, equal to the number of original characters plus any additional
padding characters.

paddingChar (optional, standard = spaces)
A padding character.

Return value
The changed string.
Examples

$PadLeft ("abcDEF", 10) -> " abcDEF"
$PadLeft ("12345", 10, PaddingChar="0") -> "0000012345"

See also

» Pad string from right

Copyright © Carl Valentin GmbH 51

Labelstar Office 4.30 Build 1010 Pad String from Right

Pad String from Right

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Increase the length of the string by adding spaces or a specified character to the end. Strings with length greater than or
equal to the required length will be unchanged.

Syntax
$PadRight (text, totalWidth, [PaddingChar=paddingChar])
Parameter

text
The string to be changed.

totalWidth
The number of characters in the resulting string, equal to the number of original characters plus any additional
padding characters.

paddingChar (optional, standard = spaces)
A padding character.

Return value
The changed string.
Examples

$PadRight ("abcDEF", 10) -> "abcDEF
$PadRight ("12345", 10, PaddingChar="0") -> "1234500000"

See also

» Pad string from left

Copyright © Carl Valentin GmbH 52

Labelstar Office 4.30 Build 1010 Reverse String

Reverse String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a string in which the character order of a specified string is reversed.

Syntax

$Reverse (text)

Parameter

text
String expression whose characters are to be reversed. If text is a zero-length string (""), a zero-length string is
returned.

Return value

A string in which the character order of a specified string is reversed.

Examples

$Reverse ("abcDEF") -> "FEDcba"
$Reverse ("12345") -> "54321"

Copyright © Carl Valentin GmbH 53

Labelstar Office 4.30 Build 1010 Convert String to Lowercase

Convert String to Lowercase

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a copy of this string converted to lowercase.
Syntax

$ToLower (text)

Parameter

text
The string to be changed.

Return value
A string in lowercase.
Examples

$ToLower ("abcDEF") -> "abcdef"

See also

» Convert string to uppercase

Copyright © Carl Valentin GmbH 54

Labelstar Office 4.30 Build 1010 Convert String to Uppercase

Convert String to Uppercase

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns a copy of this string converted to uppercase.
Syntax

$ToUpper (text)

Parameter

text
The string to be changed.

Return value
A string in uppercase.
Examples

$ToUpper ("abcDEF") -> "ABCDEF"

See also

» Convert string to lowercase

Copyright © Carl Valentin GmbH 55

Labelstar Office 4.30 Build 1010 Truncate String

Truncate String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Restricts the maximum length of a string and cuts the string if it is too long.
Syntax

$Truncate (text, maxLength)

Parameter

text
The string to be changed.

maxLength
Maximum number of characters (including the caret "..."). If the number of characters in text greater than
maxLength, the string is cut and ".." is added.

Return value

The truncated string.

Examples

$Truncate ("Beispieltext", 8) -> "Beisp..."
$Truncate ($LabelPath, 20) -> "C\..\Label1.lbex"

Copyright © Carl Valentin GmbH 56

Labelstar Office 4.30 Build 1010 Trim Leading Characters

Trim Leading Characters

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Removes all leading occurrences of a set of characters specified in an array from the current string.
Syntax

$TrimLeft (text, [TrimChars=trimChars])

Parameter

text
The string to be changed.

trimChars (optional)
An array of characters to remove.

Return value

The string that remains after all occurrences of characters in the trimChars parameter are removed from the start of the
current string. If trimChars is not defined, white-space characters are removed instead.

Examples

$TrimLeft (" abcDEF ") -> "abcDEF "
$TrimLeft ("abcDEF", TrimChars="a") -> "bcDEF"

See also

» Remove leading and trailing characters

3 Remove trailing characters

Copyright © Carl Valentin GmbH 57

Labelstar Office 4.30 Build 1010 Trim Trailing Characters

Trim Trailing Characters

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Removes all trailing occurrences of a set of characters specified in an array from the current string.
Syntax

$TrimRight (text, [TrimChars=trimChars])

Parameter

text
The string to be changed.

trimChars (optional)
An array of characters to remove.

Return value

The string that remains after all occurrences of characters in the trimChars parameter are removed from the end of the
current string. If trimChars is not defined, white-space characters are removed instead.

Examples

$TrimRight (" abcDEF ") ->" abcDEF"
$TrimRight ("abcDEF", TrimChars="F") -> "abcDE"

See also

» Remove leading and trailing characters

» Remove leading characters

Copyright © Carl Valentin GmbH 58

Labelstar Office 4.30 Build 1010 Trim Leading and Trailing Characters

Trim Leading and Trailing Characters

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Removes all leading and trailing occurrences of a set of characters specified in an array from the current string.
Syntax

$Trim (text, [TrimChars=trimChars])

Parameter

text
The string to be changed.

trimChars (optional)
An array of characters to remove.

Return value

The string that remains after all occurrences of the characters in the trimChars parameter are removed from the start and
end of the current string. If trimChars is not defined, white-space characters are removed instead.

Examples

$Trim (" abcDEF ") -> "abcDEF"
$Trim ("abcDEF", TrimChars="aF") -> "bcDE"

See also

» Remove leading characters

3 Remove trailing characters

Copyright © Carl Valentin GmbH 59

Labelstar Office 4.30 Build 1010 Convert ASCII String to HEX String

Convert ASCII String to HEX String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Converts an ASCII string in a HEX string.
Syntax
$StringToHex (text)
Parameter
text
The ASCII string to be converted.
Note: Each individual character is converted in a two-digit hexadecimal value.
Return value
The HEX string.

Examples

$StringToHex ("12345") -> "3132333435"
$StringToHex ("abcXYZ") -> "61626358595A"

See also

» Convert HEX String to ASCII String

Copyright © Carl Valentin GmbH 60

Labelstar Office 4.30 Build 1010 Convert HEX String to ASCII String

Convert HEX String to ASCII String

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Converts a HEX string in an ASCII string.

Syntax

$HexToString (text)

Parameter

text
The HEX string to be converted.
Note: An individual hexadecimal value consists always of two digits and can contain only numbers (0-9) and letters
(a-f, A-F).

Return value

The ASCII string.

Examples

$HexToString ("3132333435") -> "12345"
$HexToString ("61626358595A") -> "abcXYZ"

See also

» Convert ASCII String to HEX String

Copyright © Carl Valentin GmbH 61

Labelstar Office 4.30 Build 1010 Calculate Text Length

Calculate Text Length

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Gets the number of characters in the current string.
Syntax

$Length (string)

Parameter

string
The string whose length is to be calculated.

Riickgabewert
The number of characters in the current string.
Beispiele

$Length ("abcDEF") -> 6
$Length ("")->0

Check whether a database field is empty

$1f ($Length ($DBField (...)) == O, "The database field is empty.", "The database field is not
empty.")

Copyright © Carl Valentin GmbH 62

Labelstar Office 4.30 Build 1010

Counter (System)

Counter (System)

Inserts a counter on the label.

Syntax

$Counter (value, [Prompt=prompt, UpdateInterval=updateInterval, Increment=increment,
MinValue=minValue, MaxValue=maxValue, TrimLeft=trimLeft, Mode=mode, Radix=radix])

Parameter

value
The current start value.
The number of digits determines the output format (maximum "999999999").

prompt (optional, standard = empty)
If a prompt text is defined, the start value is queried at print start.

updatelnterval (optional, standard = 1)
Indicates how often a variable is to be updated during a print order.
1: After each label
n: After n labels
-1: After each change of data record

increment (optional, standard = 1)
Increment.

minValue (optional, standard = empty)

Minimum value: If no minValue is defined, as default the number of start value digits is used to calculate a minimum

value.

0001 10 0000
001A 16 0000
ABC 1 AAA

maxValue (optional, standard = empty)

Maximum value: If no maxValue is defined, as default the number of start value digits is used to calculate a

maximum value.

0001 10 9999
001A 16 FFFF
ABC 1 777

trimLeft (optional, standard = false)
true or 1: Remove leading zeros at output
false or 0: Show leading zeros at the output

mode (optional, standard = 3)
Operating mode
0: Reset start value at print start
1: Reset start value at print start (automatic overflow)
2: Reset start value manually

Copyright © Carl Valentin GmbH

63

Labelstar Office 4.30 Build 1010 Counter (System)

3: Reset start value manually (automatic overflow)

radix (optional, standard = 10)
Radix, basis of counter (1-36)
1: Alphabetical (A-2)
2: Binary (0, 1)
8: Octal (0-7)
10: Decimal (0-9)
16: Hexadecimal (0-9, A-F)
36: Alphanumerical (0-9, A-Z)

Return value

The current counter value.

Examples

$Counter ("0001", MinValue="0000", MaxValue="0009", Increment=1, Radix=10) -> 0001, 0002, 0003, 0004,
0005, 0006, 0007, 0008, 0009, 0009, 00059, ...

$Counter ("0001", Increment=1, TrimLeft=true, Radix=10) ->1,2,3,4,56,7,8,9 10, 11,12, 13,14, 15, ...
$Counter ("0001", MinValue="0000", MaxValue="0009", Increment=-1, StartMode=0, Radix=10) -> 0009, 0008,
0007, 0006, 0005, 0004, 0003, 0002, 0001, 0000, 0000, 0000, ...

$Counter ("0001", MinValue="0000", MaxValue="0009", Increment=1, StartMode=1, Radix=10) -> 0000, 0001,
0002, 0003, 0004, 0005, 0006, 0007, 0008, 0009, 0000, 0001, ...

Number of copies = "200"

$Counter ($Copies, Increment=-1, Radix=10) -> 200, 199, 198, 197, 196, 195, 194, 193, 192, 191, 190, ...

Hexadecimal counter

$Counter ("0009", MinValue="0000", MaxValue="FFFF", Increment=1, Radix=16) -> 0009, 000A, 000B, 000C,
000D, 000E, 000F, 0010, 0011, 0012, ...

See also

% Global Counter
% Counter (Printer)

Copyright © Carl Valentin GmbH 64

Labelstar Office 4.30 Build 1010 Global Counter

Global Counter

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

The global counter is a special case of a System Counter. The start value becomes global, i.e. defined and saved across labels.
To define a global counter, please proceed as follows:

1. Select a text or bar code field.
2. Open the Variable Editor.
3. Define a new customized variable.

Custom Variable *®
Settings

Mame: Start

Description: | Counter start value

Value: |'D‘]1 0 IZH

[| Read only

a]4 Cancel

4. Define Counter (System) and insert as start value the new defined variable.

Examples

Start = "0010"

$Counter ($Start, Minvalue="0000", MaxValue="0009", Increment=1, Radix=10) -> 0010, 0011, 0012, 0013,
0014, 0015, 0016, 0017, 0018, 0019, 0020, ...

Copyright © Carl Valentin GmbH 65

Labelstar Office 4.30 Build 1010

User Input (System)

User Input (System)

Inserts a user input (system) on the label.
Syntax

$UserInput

Return value

The entered text.

Examples

Prompt text = "Enter start value:"
Start text = "0001"

User Input

Enter start value:

OK

Cancel

See also

% User Input (Printer)

Copyright © Carl Valentin GmbH

66

Labelstar Office 4.30 Build 1010 Input Mask

Input Mask

The input mask must be a string composed of one or more of the masking elements, as shown in the following table.

Digit (entry required)

Digit or space (entry optional)
Digit/Space/+/- (entry optional)
Letter (entry required)

Letter (entry optional)

Letter or digit (entry required)
Letter or digit (entry optional)
Any character (entry required)
Any character (entry optional)
Decimal placeholder
Thousands placeholder

Time separator

Date separator

N|lplo x>~ rlxvlo

Currency symbol
Shift down. Converts all characters thats follows to lowercase.
Shift up. Converts all characters thats follows to uppercase.

vV IAleal <"

Disable previous shift up or shift down.

\ Esacpe. Escapes a mask character, turning it into a literal.

All other Literals. All non-mask elements will appear as themselves. Literals always occupy
characters a static position in the input mask at run time, and cannot be moved or deleted
by the user.

Examples

00/00/0000 A date (day, numeric month, year) in international date format. The "/" character
is a logical date separator, and will appear to the user as the date separator
appropriate to the application's current culture.

00->L<LL-0000 |A date (day, month abbreviation, and year) in United States format in which
the three-letter month abbreviation is displayed with an initial uppercase letter
followed by two lowercase letters.

(999)-000-0000 |United States phone number, area code optional. If users do not want to enter

the optional characters, they can either enter spaces or place the mouse pointer
directly at the position in the mask represented by the first 0.

$999,999.00 A currency value in the range of 0 to 999999. The currency, thousandth, and
decimal characters will be replaced at run time with their culture-specific
equivalents.

Copyright © Carl Valentin GmbH 67

Labelstar Office 4.30 Build 1010 Math Variables

Math Variables

With the help of these variables numbers can be processed and mathematic formulas can be calculated.

Supported Math Variables

% Absolute Value

% Minumum Value

% Maximum Value

% Calculate Mathematical Formula

Copyright © Carl Valentin GmbH 68

Labelstar Office 4.30 Build 1010 Absolute Value

Absolute Value

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the absolute value of a specified number.
Syntax

$Abs (value)

Parameters

value
A number.

Return value
Absolute value of the specified number.
Remarks

The absolute value of a number is its numeric value without its sign. For example, the absolute value of both 1.2 and -1.2 is
1.2.

Examples
$Abs (12.00) -> "12"

$Abs (-12.25) -> "12.25"
$Format ($Abs (-144), "00000") -> "00144"

Copyright © Carl Valentin GmbH 69

Labelstar Office 4.30 Build 1010

Minimum Value

Minimum Value

O Required program variant BASIC, PROFESSIONAL

For more information, see Program Variants.

Returns the smaller of two numbers.
Syntax

$Max (valuel, value2)
Parameters

value1
The first of two numbers to compare.

value2
The second of two numbers to compare.

Return value
Parameter valuei1 or value2, whichever is smaller.
Examples

$Max (10, 20) -> "20"
$Max (10, 5) -> "10"

See also

» $Min

Copyright © Carl Valentin GmbH

70

Labelstar Office 4.30 Build 1010

Maximum Value

Maximum Value

O Required program variant BASIC, PROFESSIONAL

For more information, see Program Variants.

Returns the larger of two numbers.
Syntax

$Max (valuel, value2)
Parameters

value1
The first of two numbers to compare.

value2
The second of two numbers to compare.

Return value
Parameter value1 or value2, whichever is larger.
Examples

$Max (10, 20) -> "20"
$Max (10, 5) -> "10"

See also

» $Min

Copyright © Carl Valentin GmbH

71

Labelstar Office 4.30 Build 1010 Calculate Mathematical Formula

Calculate Mathematical Formula

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Defines a mathematic field.
Syntax

$MathField (formula)
Parameters

formula
Formular which is to be calculated. For more information, see Mathematical Operators.

Return value

Calculated value.

Examples
IDO1 = "-10.00"
ID02 = "12.00"

$MathField (12 * 12) -> "144"
$MathField (<<ID@1>> + <<ID@2>>) -> "2"
$MathField ($Abs (<<IDO1>>) + <<ID@2>>) -> "22"

$MathField ((12 * 12) / 1) -> "144"
$Format ($MathField ((12 * 12) / 1@), "0.00") -> "14,40"
$Format ($MathField ((12 * 12) / 1@), "@") -> "14"

4 D | Name Capital Area Population NativeMName Flag Copies
3 7 Germany Berlin 357114 82220000 Deutschland 3

$MathField ($DbField ("Europe", "Population") * 2.00) -> "164440000"

Copyright © Carl Valentin GmbH 72

Labelstar Office 4.30 Build 1010

Mathematical Operators

Mathematical Operators

An operator is a term of a symbol to which one or several expressions and/or operands are handed over as input and which

returns a value.

Unary Operators (operators with one operand)

+X Identity
-X Negation
Ix Logical negation

Arithmetic operators

X +y Addition, string concatenation

X-y Subtraction

x*Y Multiplication

x/y Division

X%y Modulus (calculates the remainder of the two operands)
XNy Power (calculates the y-th power of x)

Compate Operators

X=yorx==y Equal to

x!=yoderx <>y [Notequal to

X<y Less than

X <=y Less than or equal to

X >y Greater than

X>=y Greater than or equal to

Logical operators

X &&y Conditioned And (y is evaluated only if x is true)

x|y Conditioned Or (y is evaluated only if x is false)

Copyright © Carl Valentin GmbH

73

Labelstar Office 4.30 Build 1010 Check Digit Calculation

Check Digit Calculation

With the help of these variables check digits can be calculated.

Supported Variables

% Check Digit (System)

% Append Check Digit

Copyright © Carl Valentin GmbH 74

Labelstar Office 4.30 Build 1010 Check Digit (System)

Check Digit (System)

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Calculates a check digit.

Syntax

$CheckDigit (data, checkDigitMethod)
Parameters

data
Data for which the check digit is to be calculated.

checkDigitMethod
Method after according to which the check digit is to be calculated.

MOD10 Modulo 10
MOD10_LUHN|Modulo 10 (Luhn algorithm)
MOD11 Modulo 11
MODA43 Modulo 43

MOD47_15 Modulo 47 (weighting 15)
MOD47_20 Modulo 47 (weighting 20)

MOD103 Modulo 103

Return value

Calculated check digit.
Examples

NVE = "34012345123456789"

$CheckDigit ("12345", MOD1@) -> 7
$CheckDigit (<<NVE>>, MOD1©) -> 5

See also

% Append Check Digit

» Check Digit (Printer)

Copyright © Carl Valentin GmbH 75

Labelstar Office 4.30 Build 1010 Append Check Digit

Append Check Digit

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Calculates a check digit.

Syntax

$AppendCheckDigit (data, checkDigitMethod, [AppendTo=appendTo])
Parameters

data
Data for which the check digit is to be calculated.

checkDigitMethod
Method after according to which the check digit is to be calculated.

MOD10 Modulo 10
MOD10_LUHN|Modulo 10 (Luhn algorithm)
MOD11 Modulo 11
MODA43 Modulo 43

MOD47_15 Modulo 47 (weighting 15)
MOD47_20 Modulo 47 (weighting 20)

MOD103 Modulo 103

appendTo (optional, standard = Right)
Specifies where the calculated check digit is to be appended to the data.
Left: Indicates that the check digit is inserted at the beginning of the data.
Right: Indicates that the check digit is appended at the end of the data.

Return value

Data with the check digit appended to the start or the end.

Examples

NVE = "34012345123456789"

$AppendCheckDigit ("12345", MOD1©) -> 123457

$AppendCheckDigit (<<NVE>>, MOD10) -> 340123451234567895
$AppendCheckDigit (<<NVE>>, MOD10, AppendTo=Left) -> 534012345123456789

See also

% Check Digit (System)

Copyright © Carl Valentin GmbH 76

Labelstar Office 4.30 Build 1010 Misc Variables

Misc Variables

With the help of these variables different information can be defined on the label.

Supported Variables

Number of Copies

If.Then..Else Statement

Shift Definition
Label Number
Page Number
Printer Name
User Name

User Domain Name

Format Value

W W W Y Y Y Y Y Y

Format Text

Copyright © Carl Valentin GmbH 77

Labelstar Office 4.30 Build 1010 Number of Copies

Number of Copies

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Displays the current number of copies on the label.
Syntax

$Copies

Return value

Number of copies

Copyright © Carl Valentin GmbH 78

Labelstar Office 4.30 Build 1010 If.Then..Else Statement

If..Then..Else Statement

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Insert an If.then..else statement on the label. The If.then..else statements serves for evaluating a condition and depending on
the result to further proceed.

Syntax
$If (condition, thenValue, elseValue)
Parameters

condition
If the condition is true or 1, then value is returned otherwise elseValue. For more information, see Mathematical

Operators.

thenValue
Value which is returned if condition is true or 1.

elseValue
Value which is returned if condition is false or 0.

Return value
thenValue, if condition is true or 1, otherwise elseValue.

Examples

4D | Name Capital Area Population NativeMName Flag Copies
» 7 Germany Berlin 357114 82220000 Deutschland 3

$If ($DbField ("Europe", "Area") <= 250000, "*", "xx") _5 "kt
Check whether a database field is empty

$If ($Length ($DBField (...)) == @, "The database field is empty.", "The database field is not
empty.")

Copyright © Carl Valentin GmbH 79

Labelstar Office 4.30 Build 1010 Shift Definition

Shift Definition

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Displays the current shift definition on the label.
Syntax

$Shift

Return value

Shift definition of printer-specific variable definition.
Examples

Early shift -> 06:00 - 13:59

Late shift -> 14:00 - 21:59

Night shift -> 22:00 - 05:59

System variable (TrueType font)

$Shift -> "Early shift" (08:20)
$Shift -> "Late shift" (15:30)

Printer variable (Printer font)

$Shift -> "=SH()"

See also

% Define Shift Times

Copyright © Carl Valentin GmbH 80

Labelstar Office 4.30 Build 1010 Define Shift Times

Define Shift Times

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

To define the shift times, please proceed as follows:

1. Select the Label properties, and than click Shift Definitions.
The Shift Definitions dialog box opens.
2. Click on:

[]
+ to define a new shift.

— or @ to delete the selected shift.

L]
y or double-click the selected shift to change the shift settings.

*aL 8.0
A or + ! to move the selected shift one position upward.
v, 6.0
v or + ! to move the selected shift one position downward.

3. Click OK to save the modified settings.
Please note that the individual shift times are not allowed to overlap.
Wrong

Early shift -> 06:00 - 14:00
Late shift -> 14:00 - 22:00
Night shift -> 22:00 - 06:00

Right
Early shift -> 06:00 - 13:59

Late shift -> 14:00 - 21:59
Night shift -> 22:00 - 05:59

Copyright © Carl Valentin GmbH 81

Labelstar Office 4.30 Build 1010 Label Number

Label Number

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Displays the current label number within the print order on the label.
Syntax

$LabelNumber

Return value

Label number

Copyright © Carl Valentin GmbH 82

Labelstar Office 4.30 Build 1010 Page Number

Page Number

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Displays the current page number within a print order on the label.
Syntax

$PageNumber

Return value

Page number

Copyright © Carl Valentin GmbH 83

Labelstar Office 4.30 Build 1010 Printer Name

Printer Name

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Displays the current printer name on the label.
Syntax

$PrinterName

Return value

Printer name

Copyright © Carl Valentin GmbH 84

Labelstar Office 4.30 Build 1010 User Name

User Name

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the current user name.
Syntax

$UserName

Return value

User name

Copyright © Carl Valentin GmbH 85

Labelstar Office 4.30 Build 1010 User Domain Name

User Domain Name

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Returns the network domain name associated with the current user.
Syntax

$UserDomainName

Return value

Network domain name

Copyright © Carl Valentin GmbH 86

Labelstar Office 4.30 Build 1010 Format Value

Format Value

For more information, see Program Variants.

Formats a value.

Syntax

$Format (value, format, [Language=language, Type=type])
Parameters

value
Value which is to be formatted.

format
Indicates how the value is to be formatted. For more information, see Formatting Types.

language (optional, as default the language set under windows is used)
Language which is used to format the ouput. For more information, see Country Codes.

type (optional)
Indicates the type of value which is to be formatted. If no explicite type is indicated, it is first checked for number,
then date/time and then for text.
Number: value is interpreted as number
Date/Time: value is interpreted as date/time
Text: value is interpreted as text

Return value

Formatted text.

Examples

Show number with leading zeros

$Format (15, "00000") -> "00015"
$Format (-15, "@eeee") -> "-00015"
$Format (-15, "D5") -> "-00015"

Different formatting for negative numbers and zero

You can define special formats for negative numbers and zero. Use a semicolon “;" as separator in order to separate
the formatting in two or three sections. The second section is for negative numbers, the third section is for zero.

$Format (15, "#;minus #") -> "15"
$Format (-15, "#;minus #") -> "minus 15"
$Format (@, "#;minus #;zero") -> "zero"
Using different languages
The default language is German (de-DE) if language is not specified.
$Format (-1234.56, "N2") -> "-1.234,56"

$Format (1234.56, "N2", Language="en-US") -> "-1,234.56"
$Format (1234.56, "N2", Language="fr-FR") -> "1234,56"

Copyright © Carl Valentin GmbH 87

Labelstar Office 4.30 Build 1010

Format Value

$Format ($CurrentDateTime, "yyyy MMMM dddd") -> “2013 September Dienstag”
$Format ($CurrentDateTime, "yyyy MMMM dddd", Language="fr-FR") -> "2013 septembre mardi"

$Format ($CurrentDateTime, _"

"yyyy MMMM dddd", Language="zh-CN") ->"2013 LA EH#=

See also

» Format Text

Copyright © Carl Valentin GmbH

88

Labelstar Office 4.30 Build 1010 Formatting Types

Formatting Types

Formatting converts the value of a type into a string representation.

See also

% Standard Numeric Format Strings

% Custom Numeric Format Strings

% Standard Date and Time Format Strings

% Custom Date and Time Format Strings

% Text Format Strings

Copyright © Carl Valentin GmbH 89

Labelstar Office 4.30 Build 1010

Standard Numeric Format Strings

Standard Numeric Format Strings

Standard numeric format strings are used to format common numeric types. A standard numeric format string takes the form
Axx, where A is an alphabetic character called the format specifier, and xx is an optional integer called the precision specifier.

The precision specifier ranges from 0 to 99 and affects the number of digits in the result. Any numeric format string that
contains more than one alphabetic character, including white space, is interpreted as a custom numeric format string. For

more information, see Custom Numeric Format Strings.

The following table describes the standard numeric format specifiers.

Corc Currency Result: A currency value. 123.456 ("C", en-US) -> $123.46
Precision specifier: Number of decimal 123.456 ("C", fr-FR) -> 123,46 €
digits. 123.456 ("C", ja-JP) -> ¥123

-123.456 ("C3", en-US) -> ($123.456)
-123.456 ("C3", fr-FR) -> -123,456 €
-123.456 ("C3", ja-JP) -> -¥123.456

Dord Decimal Result: Integer digits with optional 1234 ("D") -> 1234
negative sign. -1234 ("D6") -> -001234
Precision specifier: Minimum number of
digits.

Eore Exponential Result: Exponential notation. 1052.0329112756 ("E", en-US) ->

(scientific) Precision specifier: Number of decimal 1.052033E+003
digits. 1052.0329112756 (“e", fr-FR) ->
1,052033e+003
-1052.0329112756 ("e2", en-US) ->
-1.05e+003
-1052.0329112756 (“E2", fr_FR) ->
-1,05E+003

Forf Fixed-point Result: Integral and decimal digits with 1234.567 ("F", en-US) -> 1234.57
optional negative sign. 1234.567 ("F", de-DE) -> 1234,57
Precision specifier: Number of decimal 1234 ("F1", en-US) -> 1234.0
digits. 1234 ("F1", de-DE) -> 1234,0

-1234.56 ("F4", en-US) -> -1234.5600
-1234.56 ("F4", de-DE) -> -1234,5000

Gorg General Result: The most compact of either fixed- |-123.456 ("G", en-US) -> -123.456
point or scientific notation. 123.456 ("G", sv-SE) -> -123,456
Precision specifier: Number of significant |123.4546 ("G4", en-US) -> 123.5
digits. 123.4546 ("G4", sv-SE) -> 123,5

-1.234567890e-25 ("G", en-US) ->
-1.23456789E-25
-1.234567890e-25 ("G", sv-SE) ->
-1,23456789E-25

N orn Number Result: Integral and decimal digits, group |{1234.567 ("N", en-US) -> 1,234.57
separators, and a decimal separator with | 1234.567 ("N", ru-RU) -> 1 234,57
optional negative sign. 1234 ("N1", en-US) -> 1,234.0
Precision specifier: Desired number of 1234 ("N1", ru-RU) -> 1 234,0
decimal places. -1234.56 ("N3", en-US) -> -1,234.560

-1234.56 ("N3", ru-RU) -> -1 234,560

Porp Percent Result: Number multiplied by 100 and 1 ("P", en-US) -> 100.00 %
displayed with a percent symbol. 1 ("P", fr-FR) -> 100,00 %

Precision specifier: Desired number of -0.39678 ("P1", en-US) -> -39.7 %
decimal places. -0.39678 ("P1", fr-FR) -> -39,7 %

Rorr Round-trip Result: A string that can round-trip to an |123456789.12345678 ("R") ->
identical number. 123456789.12345678
Precision specifier: Ignored.

Copyright © Carl Valentin GmbH

90

Labelstar Office 4.30 Build 1010 Standard Numeric Format Strings

-1234567890.12345678 ("R") ->
-1234567890.1234567

X or x Hexadecimal Result: A hexadecimal string. 255 ("X") -> FF
Precision specifier: Number of digits in the |-1 ("x") -> ff
result string. 255 ("x4") -> 00ff

-1 ("X4") -> OOFF

Any other single |Unknown
character specifier

Copyright © Carl Valentin GmbH 91

Labelstar Office 4.30 Build 1010 Custom Numeric Format Strings

Custom Numeric Format Strings

You can create a custom numeric format string, which consists of one or more custom numeric specifiers, to define how to
format numeric data. A custom numeric format string is any format string that is not a Standard Numeric Format Strings.

The following table describes the custom numeric format specifiers.

0 Zero placeholder |Replaces the zero with the corresponding |1234.5678 (*00000") -> 01235
digit if one is present; otherwise, zero 0.45678 ("0.00", en-US) -> 0.46
appears in the result string. 0.45678 ("0.00", fr-FR) -> 0,46
Digit placeholder |Replaces the pound sign with the 1234.5678 ("#####") -> 1235
corresponding digit if one is present; 0.45678 ("#.##", en-US) -> 46
otherwise, no digit appears in the result 0.45678 ("#.##", fr-FR) -> ,46
string.
Decimal point Determines the location of the decimal 0.45678 ("0.00", en-US) -> 0.46
separator in the result string. 0.45678 ("0.00", fr-FR) -> 0,46
, Group separator |Serves as both a group separator and Group separator specifier:
and number a number scaling specifier. As a group 2147483647 ("## #", en-US) ->
scaling separator, it inserts a localized group 2,147,483,647
separator character between each group. 2147483647 ("## #", es-ES) ->
As a number scaling specifier, it divides a 2.147.483.647
number by 1000 for each comma specified. |Scaling specifier:
2147483647 ("#4#,", en-US) -> 2,147
2147483647 ("##,", es-ES) -> 2.147
% Percentage Multiplies a number by 100 and inserts a 0.3697 ("%#0.00", en-US) -> %36.97
placeholder localized percentage symbol in the result |0.3697 ("%#0.00", el-GR) -> %36,97
string. 0.3697 ("##.0 %", en-US) -> 37.0 %
0.3697 ("##.0 %", el-GR) -> 37,0 %
%o Per mille Multiplies a number by 1000 and inserts 0.03697 ("#0.00%o0", en-US) ->
placeholder a localized per mille symbol in the result 36.97%o0
string. 0.03697 ("#0.00%o0", ru-RU) ->
36,97%o0
\ Escape character |Causes the next character to be interpreted |987654 (“\###00\#") -> #987654#
as a literal rather than as a custom format
specifier.
; Section separator |Defines sections with separate format 12.345 ("plus #0.0#;minus
strings for positive, negative, and zero #0.0#;null") -> plus 12.35
numbers. 0 ("plus #0.0#;minus #0.0#;null") ->
null
-12.345 ("plus #0.0#;minus
#0.0#;null") -> minus 12.35
Any other The character is copied to the result string |68 ("# °") -> 68 °
character unchanged.

Copyright © Carl Valentin GmbH

92

Labelstar Office 4.30 Build 1010

Standard Date and Time Format Strings

Standard Date and Time Format Strings

A standard date and time format string uses a single format specifier to define the text representation of a date and time
value. Any date and time format string that contains more than one character, including white space, is interpreted as a

custom date and time format strin. For more information, see Custom Date and Time Format Strings.

The following table describes the standard date and time format specifiers.

d Short date pattern.

15.06.2009 13:45:30 -> 6/15/2009 (en-US)
15.06.2009 13:45:30 -> 15/06/2009 (fr-FR)
15.06.2009 13:45:30 -> 2009/06/15 (ja-JP)

D Long date pattern.

15.06.2009 13:45:30 -> Monday, June 15, 2009 (en-
us)

15.06.2009 13:45:30 -> 15 mroHs 2009 r.(ru-RU)
15.06.2009 13:45:30 -> Montag, 15.Juni 2009 (de-DE)

f Full date/time pattern (short time).

15.06.2009 13:45:30 -> Monday, June 15, 2009 1:45
PM (en-US)

15.06.2009 13:45:30 -> Hohle 15 juni 2009 13:45 (sv-
SE)

15.06.2009 13:45:30 -> Asutépa, 15 lovviov 2009
1:45 pp (el-GR)

F Full date/time pattern (long time).

15.06.2009 13:45:30 -> Monday, June 15, 2009
1:45:30 PM (en-US)

15.06.2009 13:45:30 -> den 15 juni 2009 13:45:30 (sv-
SE)

15.06.2009 13:45:30 -> Aeutépa, 15 lovviou 2009
1:45:30 pp (el-GR)

g General date/time pattern (short time).

15.06.2009 13:45:30 -> 6/15/2009 1:45 PM (en-US)
15.06.2009 13:45:30 -> 15/06/2009 13:45 (es-ES)
15.06.2009 13:45:30 -> 2009/6/15 13:45 (zh-CN)

G General date/time pattern (long time).

15.06.2009 13:45:30 -> 6/15/2009 1:45:30 PM (en-US)
15.06.2009 13:45:30 -> 15/06/2009 13:45:30 (es-ES)
15.06.2009 13:45:30 -> 2009/6/15 13:45:30 (zh-CN)

M oder m Month/day pattern.

15.06.2009 13:45:30 -> June 15 (en-US)
15.06.2009 13:45:30 -> 15juni (da-DK)
15.06.2009 13:45:30 -> 15 Juni (id-ID)

R oder r RFC1123 pattern.

15.06.2009 13:45:30 - > Montag 15. Juni 2009
20:45:30 GMT

S Sortable date/time pattern.

15.06.2009 13:45:30 -> 2009-06-15T13:45:30

t Short time pattern.

15.06.2009 13:45:30 -> 1:45 PM (en-US)
15.06.2009 13:45:30 -> 13:45 (hr-HR)
15.06.2009 13:45:30 -> 01:45 » (ar-EG)

T Long time pattern.

15.06.2009 13:45:30 -> 1:45:30 PM (en-US)
15.06.2009 13:45:30 -> 13:45:30 (hr-HR)
15.06.2009 13:45:30 -> 01:45:30 o (ar-EG)

u Universal sortable date/time pattern.

15.06.2009 13:45:30 -> 2009-06-15 20:45:30Z

u Universal full date/time pattern.

15.06.2009 13:45:30 -> Monday, June 15, 2009
8:45:30 PM (en-US)

15.06.2009 13:45:30 -> den 15 juni 2009 20:45:30 (sv-
SE)

15.06.2009 13:45:30 -> Asutépa, 15 louviov 2009
8:45:30 pp (el-GR)

Y odery Year/month pattern.

15.06.2009 13:45:30 -> June, 2009 (en-US)

Copyright © Carl Valentin GmbH

93

Labelstar Office 4.30 Build 1010 Standard Date and Time Format Strings

15.06.2009 13:45:30 -> juni 2009 (da-DK)
15.06.2009 13:45:30 -> Juni 2009 (id-ID)

Copyright © Carl Valentin GmbH 94

Labelstar Office 4.30 Build 1010

Custom Date and Time Format Strings

Custom Date and Time Format Strings

A custom format string consists of one or more custom date and time format specifiers. Any string that is not a standard date
and time format string is interpreted as a custom date and time format string.

The following table describes the custom date and time format specifiers.

d

The day of the month, from 1 through 31.

01.06.2009 13:45:30 -> 1
15.06.2009 13:45:30 -> 15

dd

The day of the month, from 01 through 31.

01.06.2009 13:45:30 -> 01
15.06.2009 13:45:30 -> 15

ddd

The abbreviated name of the day of the week.

15.06.2009 13:45:30 -> Mon (en-US)
15.06.2009 13:45:30 -> [H (ru-RU)
15.06.2009 13:45:30 -> lun. (fr-FR)

dddd

The full name of the day of the week.

15.06.2009 13:45:30 -> Monday (en-US)
15.06.2009 13:45:30 -> noHegenbHuUk (ru-RU)
15.06.2009 13:45:30 -> lundi (fr-FR)

The hour, using a 12-hour clock from 1 to 12.

15.06.2009 01:45:30 -> 1
15.06.2009 13:45:30 -> 1

hh

The hour, using a 12-hour clock from 01 to 12.

15.06.2009 01:45:30 -> 01
15.06.2009 13:45:30 -> 01

The hour, using a 24-hour clock from 0 to 23.

15.06.2009 01:45:30 -> 1
15.06.2009 13:45:30 -> 13

HH

The hour, using a 24-hour clock from 00 to 23.

15.06.2009 01:45:30 -> 01
15.06.2009 13:45:30 -> 13

The minute, from 0 through 59.

15.06.2009 01:09:30 -> 9
15.06.2009 13:09:30 -> 9

mm

The minute, from 00 through 59.

15.06.2009 01:09:30 -> 09
15.06.2009 13:09:30 -> 09

The month, from 1 through 12.

15.06.2009 13:45:30 -> 6

MM

The month, from 01 through 12.

15.06.2009 13:45:30 -> 06

MMM

The abbreviated name of the month.

15.06.2009 13:45:30 -> Jun (en-US)
15.06.2009 13:45:30 -> juin (fr-FR)
15.06.2009 13:45:30 -> Jun (zu-ZA)

MMMM

The full name of the month.

15.06.2009 13:45:30 -> June (en-US)
15.06.2009 13:45:30 -> juni (da-DK)
15.06.2009 13:45:30 -> uJuni (zu-ZA)

The second, from 0 through 59.

15.06.2009 13:45:09 -> 9

SS

The second, from 00 through 59.

15.06.2009 13:45:09 -> 09

The year, from 0 to 99.

01.01.0001 00:00:00 -> 1
01.01.0900 00:00:00 -> 0
01.01.1900 00:00:00 -> 0
15.06.2009 13:45:30 -> 9

yy

The year, from 00 to 99.

01.01.0001 00:00:00 -> 01
01.01.0900 00:00:00 -> 00
01.01.1900 00:00:00 -> 00
15.06.2009 13:45:30 -> 09

yyy

The year, with a minimum of three digits.

01.01.0001 00:00:00 -> 001
01.01.0900 00:00:00 -> 900
01.01.1900 00:00:00 -> 1900
15.06.2009 13:45:30 -> 2009

yyyy

The year as a four-digit number.

01.01.0001 00:00:00 -> 0001

Copyright © Carl Valentin GmbH

95

Labelstar Office 4.30 Build 1010 Custom Date and Time Format Strings

01.01.0900 00:00:00 -> 0900
01.01.1900 00:00:00 -> 1900
15.06.2009 13:45:30 -> 2009

yyyyy The year as a five-digit number. 01.01.0001 00:00:00 -> 00001
15.06.2009 13:45:30 -> 02009
The time separator. 15.06.2009 13:45:30 -> : (en-US)

15.06.2009 13:45:30 -> .(it-IT)
15.06.2009 13:45:30 -> : (ja-JP)

/ The date separator. 15.06.2009 13:45:30 -> / (en-US)
15.06.2009 13:45:30 -> - (ar-DZ)
15.06.2009 13:45:30 -> .(tr-TR)

\ The escape character. 15.06.2009 13:45:30 (h\h) -> 1 h
Any other The character is copied to the result string 15.06.2009 01:45:30 (arr hh:imm t) -> arr 01:45 A
character unchanged.

Copyright © Carl Valentin GmbH 96

Labelstar Office 4.30 Build 1010

Text Format Strings

Text Format Strings

Format string must be a string composed of one or more of the masking elements, as shown in the following table.

0 Digit Replaces the placeholder by an abc-123-DEF ("00000") -> 12300
appropriated existing number (0-9); abc-123-DEF ("!100000") -> 00123
otherwise 0 is indicated in the result
string.

9 Digit or space Replaces the placeholder by an abc-123-DEF ("199999") -> 123
appropriate existing number (0-9);
otherwise a space is indicated in the
result string.

Digit (optional) Replaces the placeholder by an abc-123-DEF (####i#) -> -123
appropriate existing number (0-9) or by
an appropriate existing plus sign or minus
sign, otherwise no number is indicated in
the result string.

L Letter Replaces the placeholder by an abc-123-DEF (LLLLL) -> abc12
appropriate existing letter (a-Z); otherwise
a space is indicated in the result string.

? Letter (optional) Replaces the placeholder by an
appropriate existing letter (a-Z); otherwise
no letter is indicated in the result string.

& Character Replaces the placeholder by an abc-123-DEF (& &&& &) -> abc-1
appropriate existing character; otherwise
a space is indicated in the result string.

C Character (optional) |Replaces the placeholder by an
appropriate existing character; otherwise
no character is indicated in the result
string.

A Alphanumeric Replaces the placeholder by an abc-123-DEF (AAAAA) -> abc12

character appropriate existing alphanumeric
character (0-9, a-Z); otherwise a space is
indicated in the result string.

a Alphanumeric Replaces the placeholder by an

character (optional) |appropriate existing alphanumeric
character (0-9, a-Z); otherwise no
character is indicated in the result string.

< Convert into small Converts all following characters (a-Z) in |abcDEF (<LLLLLL) -> abcdef

letters small letters.

> Convert into capital |Converts all following characters (a-Z) in |abcDEF (>LLLLLL) -> ABCDEF

letters capital letters.
Deactivate Deactivates a preceding conversion in abcDEF (>LL<LL|LL) -> ABcdEF
conversion small letters or capital letters.

! Right-aligned output |Indicates the result string right-aligned. | 123 (!00000) -> 00123

A Deactivate right- Deactivates a preceding right-aligned

aligned output output.

\ Escape character The character which follows the escape |abcDEF (LLL\LLLL) -> abcLDEF
character is interpreted as literal and not
as customized format identifier.

Any other Literale abc (L-L-L) -> a-b-c

character abc (>L:L:L) -> AB:C

Copyright © Carl Valentin GmbH

97

Labelstar Office 4.30 Build 1010 Text Format Strings

Copyright © Carl Valentin GmbH 98

Labelstar Office 4.30 Build 1010

Country Codes

Country Codes
Countrycode language
zh-CN Chinese (People's Republic of China) g3z (kA R4FIE)
zh-Hans Chinese (simplifiedvereinfacht) b 3 (A4K)
da Danish dansk
de German Deutsch
de-DE German (Germany) Deutsch (Deutschland)
de-LlI German (Liechtenstein) Deutsch (Liechtenstein)
de-LU German (Luxembourg) Deutsch (Luxemburg)
de-CH German (Switzerland) Deutsch (Schweiz)
en English English
en-GB English (Great Britain) English (United Kingdom)
en-US English (US) English (United States)
fi Finnish suomi
fr FrenchFrench frangais
fr-BE French (Belgium) frangais (Belgique)
fr-FR French (France) frangais (France)
fr-LU French (Luxembourg) frangais (Luxembourg)
fr-CH French (Switzerland) frangais (Suisse)
el Greek eMNVIKG
he Hebrew Ny
nl Dutch Nederlands
nl-BE Dutch (Belgium) Nederlands (Belgié€)
nl-NL Dutch (Netherlands) Nederlands (Nederland)
it Italian italiano
it-IT Italian (Italy) italiano (ltalia)
it-CH Italien (Switzerland) italiano (Svizzera)
ja Jaamese AAR:E
pl Polish polski
pt-BR Portuguese (Brazil) Portugués (Brasil)
pt-PT Portuguese (Portugal) Portugués (Portugal)
ru Russian PYCCKUI
es Spanish espafiol
es-ES Spanish (Spain) espaniol (Espafa)
cs Czech Cestina
tr Turkish Tlrkce
hu Hungarian magyar

For a detailed list of all country codes, click here.

Copyright © Carl Valentin GmbH

99

http://msdn.microsoft.com/de-de/goglobal/bb896001.aspx

Labelstar Office 4.30 Build 1010 Format Text

Format Text

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Formats a text.

Syntax

$FormatText (value, format)
Parameters

value
Text which is to be formatted.

format
Indicates how the text is to be formatted. For more information, see Text Format Strings.

Return value
Formatted text.
Examples

$FormatText ("123456", "t ##") -> "1234,56"
$FormatText ("1234", "0©000-00") -> 0012-34

See also

» Format Value

Copyright © Carl Valentin GmbH 100

Labelstar Office 4.30 Build 1010 Printer Variables

Printer Variables

With the help of these variables printer-internal variables can be defined on the label.
In contrast to zu System Variables, printer-internal variables are managed and calculated during the print order by the printer.

® Printer variables can be used only in text boxes with printer fonts and barcodes which are not graphically
transferred.
e For each text or barcode field only one printer variable can be defined.

Supported Printer Variables

» Date/Time (Printer)
» Field Link (Printer)

» User Input (Printer)

» Counter (Printer)

» Extended Counter (Printer)

» Check Digit (Printer)

» Shift Definition

Copyright © Carl Valentin GmbH 101

Labelstar Office 4.30 Build 1010

Date/Time (Printer)

Date/Time (Printer)

For more information, see Program Variants.

Defines a printer-internal date and time variable.

Syntax

$PrnDateTime (format, [UpdateInterval=updateInterval, MonthOffset=monthOffset, DayOffset=dayOffset,

MinOffset=minOffset, CorrectMonth=correctMonth])
Parameters

format

Indicates how the value is to be formatted. For more information, see Printer-specific Date and Time Format String.

updatelnterval (optional, Standard = 0)
Indicates how often the variable is to be updated during a print order.
0: At print start
1: After each label

monthOffset (optional, Standard = 0)
Month offset (is added to the current date)

dayOffset (optional, Standard = 0)
Day offset (is added to the current date)

minOffset (optional, Standard = 0)
Minute offset (is added to the current time)

correctMonth (optional, Standard = false)
Month correction
false or 0: Change into next month
true or 1: Retain current month
Return value
Printer-specific variable definition.
Examples

Aktuelle Druckereinstellung: 25.02.2014 14:21:25

$PrnDateTime ("DD.MO.YYYY") -> "=CL(0;0;0;0;,0)<DD.MO.YYYY>" -> 25.02.2014

$PrnDateTime ("HH:MI:SS", UpdatelInterval=1l, MinOffset=-60) -> "=CL(0;0;1;-60;0)<HH:MI:SS>" -> 13:21:25

See also

% Date/Time (System)

Copyright © Carl Valentin GmbH

102

Labelstar Office 4.30 Build 1010 Printer-specific Date and Time Format Strings

Printer-specific Date and Time Format Strings

The format string is used to define the text presentation of a printer-internal date or time value.

The following table describes the date and time format identifiers.

HH Hour, from 00 to 23 (24-hours format) 15.06.2009 01:45:30 -> 01
15.06.2009 13:45:30 -> 13

HE Hour, from 00 to 23 (12-hours format) 15.06.2009 01:45:30 -> 01
15.06.2009 13:45:30 -> 01

Ml Minute, from 00 to 59 15.06.2009 01:09:30 -> 09
15.06.2009 13:09:30 -> 09

SS Second, from 00 to 59 15.06.2009 13:45:09 -> 09

AM, Am or am AM/PM output 15.06.2009 13:45:09 -> PM (AM)

15.06.2009 13:45:09 -> p.m. (Am)
15.06.2009 13:45:09 -> pm (am)

DD Day of month, from 01 to 31 01.06.2009 13:45:30 -> 01
15.06.2009 13:45:30 -> 15
MO Month, from 01 to 12 15.06.2009 13:45:30 -> 06
YYYY Year (four-digit) 15.06.2009 13:45:30 -> 2009
YY Year, from 00 to 99 15.06.2009 13:45:30 -> 09
Y Year, from 0 to 9 15.06.2009 13:45:30 -> 9
WW Calendar week 15.06.2009 13:45:30 -> 25
DW Day of week, from 0 (Sunday) to 6 (Saturday) 15.06.2009 13:45:30 -> 1
DW1 Day of week, from 1 (Sunday) to 7 (Saturday) 15.06.2009 13:45:30 -> 2
Dwx Day of week

For x any ASCII character can be used, from this is counted
consecutively started with Sunday.

DOWXXXXXXX Day of week (variable)
For x any ASCII character can be used. The first 'x' stands
for Sunday, the next for Monday etc. until Saturday.

For each weekday a sign must be indicated.

DOY Day of year, from 001 to 365 15.06.2009 13:45:30 -> 166
DY Day of year, from 000 to 364 15.06.2009 13:45:30 -> 165
\ Escape character

Any other character |The character is copied to the result string unchanged.

The following table describes the country-specific date and time formats.

xMO Shortened name of month 15.06.2009 13:45:30 -> JN (CMO)
15.06.2009 13:45:30 -> JUN (DMO)
15.06.2009 13:45:30 -> GUI (IMO)

xSO Full name of month 15.06.2009 13:45:30 -> June (ESO)
15.06.2009 13:45:30 -> Juin (FSO)
15.06.2009 13:45:30 -> Junio (SSO)

xSD Shortened name of weekday 15.06.2009 13:45:30 -> MO (GSD)
15.06.2009 13:45:30 -> MA (NSD)
15.06.2009 13:45:30 -> LUN (SSD)
xLD Full name of weekday 15.06.2009 13:45:30 -> Monday
(ELD)

Copyright © Carl Valentin GmbH 103

Labelstar Office 4.30 Build 1010 Printer-specific Date and Time Format Strings

15.06.2009 13:45:30 -> Montag
(GLD)
15.06.2009 13:45:30 -> Mandag
(OLD)

For x the country abbreviation of the desired language can be used.

C = Canadian
D = Danish

E = English

F = French

G = German

| = Italian

N = Dutch

O = Norwegian
S = Spanish
U = Finnish
W = Swedish

Copyright © Carl Valentin GmbH 104

Labelstar Office 4.30 Build 1010 Field Link (Printer)

Field Link (Printer)

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Defines a printer-internal field link.
Syntax

$PrnFieldLink (value, [value, ...])
Parameters

value
The designation of linking elements (field name or text constant). A text constant must be placed into quotation
marks ("). The quotation marks are not printed.
Note: For the linking only printer-internal fields can be used.

Return parameter

Printer-specific variable definition.

Examples

$PrnFieldLink (ID@1l, "Textkonstante", ID@2) -> "SC=(0;"Textkonstante";1)"

See also

» Field Link (System)

Copyright © Carl Valentin GmbH 105

Labelstar Office 4.30 Build 1010 User Input (Printer)

User Input (Printer)

For more information, see Program Variants.

Defines a printer-internal user input.
Syntax

$PrnUserInput (prompt, text, [StartPos=startPos, AllowableChars=allowableChars,
SkipSpecialChars=skipSpecialChars, PrintAlignment=printAlignment, InputAlignment=inputAlignment])

Parameters

prompt
The prompt text shown in the first line of the printer display.

text
The input text shown in the second line of printer display.

startPos (optional, Standard = 0)
Start position for the input. If start position is 0 then the text length is used as start position.

allowableChars (optional, Standard = 0)
Indicates which characters are allowed for the input.
0: Numeric
1: Alphanumeric

skipSpecialChars (optional, Standard = 0)
Indicates whether special characters are to be retained at the input or not.
0: Do not skip special characters
1: Skip special characters

printAlignment (optional, Standard = 0)
Print alignment
0: Right-aligned
1: Left-aligned

inputAlignment (optional, Standard = 0)
Input alignment
0: Right-aligned
1: Left-aligned

Return value

Printer-specific variable definition.

Examples

$PrnUserInput ("Enter text:", "Example text", StartPos=0, AllowableChars=1) -> "=UG(12;1;0;0;0;"Enter
text:")<Example text>"

Copyright © Carl Valentin GmbH 106

Labelstar Office 4.30 Build 1010 User Input (Printer)

Vario IITI 107712

Enter text:

Example texﬂ

See also

% User Input (System)

Copyright © Carl Valentin GmbH 107

Labelstar Office 4.30 Build 1010 Counter (Printer)

Counter (Printer)

For more information, see Program Variants.
Defines a printer-internal counter.

Syntax

$PrnCounter (value, [Prompt=prompt, UpdateInterval=updateInterval, Increment=increment, Pos=pos,
Radix=radix, Mode=mode, ResetTime=resetTime, ResetValue=resetValue])

Parameters

value
Current start value.
The number of digits specifies the output format (maximum "999999999").

prompt (optional, Standard = leer)
If a prompt text is defined, the start value is queried at print start.

updatelnterval (optional, Standard = 1)
Indicates how often the variable is to be updated during a print order.
1: After each label
n: After n labels

increment (optional, Standard = 1)
Increment.

pos (optional, Standard = 0)
Defines the position at which the counter starts to count. If the position is equal 0, the number of character in value
is used as start position.

radix (optional, Standard = 10)
Radix, basis of the counter (1-36)
1: Alphabetical (A-2)
2: Binary (0, 1)
8: Octal (0-7)
10: Decimal (0-9)
16: Hexadecimal (0-9, A-F)
36: Alphanumeric (0-9, A-2)

mode (optional, Standard = 1)
Operating mode
: Reset start value manually
: Reset start value manually (automatic overflow)
: Enter start value at printer
: Enter start value (= last end value) at printer
: Reset start value at cycle end
: Reset start value by 1/0 signal
: Reset start value time-controlled
: Reset start value time-controlled (enter start value at printer)

~Nou b~ WwWN = O

resetTime (optional, for operating mode 6 and 7 only)
Time to which the start value is to be reset.
Format: "HH:MM"

Copyright © Carl Valentin GmbH 108

Labelstar Office 4.30 Build 1010 Counter (Printer)

resetValue (optional, for operating mode 6 and 7 only)
Value to which the start value is to be reset. If no value is indicated, the counter is reset to its original start value.

Return value
Printer specific variable definition.

Examples

$PrnCounter ("0001", Mode=1) -> "=CN(10;1;4;+1;1)0001"
$PrnCounter ("1234", Mode=7, ResetTime="06:00", ResetValue="0001") -> "=CN(10;7;4;+1;1;06:00;,0001)1234"

See also

% Extended Counter (Printer)

% Counter (System)

Copyright © Carl Valentin GmbH 109

Labelstar Office 4.30 Build 1010 Extended Counter (Printer)

Extended Counter (Printer)

For more information, see Program Variants.

Defines a printer-internal counter.
Syntax

$PrnCounterExt (value, [Prompt=prompt, UpdateInterval=updateInterval, Increment=increment,
MinValue=minValue, MaxValue=maxValue, TrimLeft=trimLeft, Mode=mode])

Parameters

value
Current start value.
The number of digits specifies the output format (maximum "999999999").

prompt (optional, Standard = leer)
If a prompt text is defind, the start value is queried at print start.

updatelnterval (optional, Standard = 1)
Indicates how often the variable is to be updated during a print order.
1: After each label
n: After n labels

increment (optional, Standard = 1)
Increment.

minValue (optional, Standard = 0)
Minimum value.

maxValue (optional, Standard = leer)
Maximum value. If no maxValue is indicated, as default the number of start value digits is used to calculate the
maximum value.

0001 9999
01 99

trimLeft (optional, Standard = false)
true or 1: Enable leading zeros at output
false or 0: Show leading zeros at output

mode (optional, Standard = 5)
Operating mode
: Reset start value manually
: Reset start value manually (automatic overflow)
: Enter start value at printer
: Enter start value (= last end value) at printer
: Reset start value at cycle end
: Reset start value manually (to min/max)
: Reset start value manually (to start value)
: Reset start value manually (stop printing)

NoubhwWwN = O

Copyright © Carl Valentin GmbH 110

Labelstar Office 4.30 Build 1010 Extended Counter (Printer)

Return value

Printer-specific variable definition.

Examples

$PrnCounterExt ("0050", Increment=1, UpdateInterval=1, MinValue=1, MaxValue=999) ->
"=CC(+1,1,5,0,1,999)0050" -> 50, 51, ...999, 1, 2, ...

See also

» Counter (Printer)

% Counter (System)

Copyright © Carl Valentin GmbH 111

Labelstar Office 4.30 Build 1010 Check Digit (Printer)

Check Digit (Printer)

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

Defines a printer-internal check digit.

Syntax

$PrnCheckDigit (data, checkDigitMethod)

Parameters

data
Data (field name or text constant) for which the check digit is to be calculated. A text constant must be enclosed in
quotes ("). The quotation marks will not be printed.

Note: For the linking only printer-internal fields may be used.

checkDigitMethod
Method after according to which the check digit is to be calculated.

MOD10 Modulo 10
MOD11 Modulo 11
MOD43 Modulo 43

MOD47_15 |Modulo 47 (weighting 15)
MOD47_20 |Modulo 47 (weighting 20)

MOD103 Modulo 103

Return value
Printer-specific variable definition.
Examples

$PrnCheckDigit (ID@1, MOD1©) -> "CD=(0;0;0)"
$PrnCheckDigit ("123456789012", MOD1@) -> "=CD("123456789012";0;0)"

See also

% Check Digit (System)

Copyright © Carl Valentin GmbH 112

Labelstar Office 4.30 Build 1010

Bar Codes

Following is a list of supported bar code types:

Aztec Code

Aztec Runes

Codabar

Codablock F

Code 128

Code 128 (Subset
A)

Code 128 (Subset
B)

Code 2 of 5
Industrial

&

123456

ABRCabec

123456

Bar Codes

2D bar code, developed by Welch Allyn.

2D bar code based on the Aztec Code.

Numeric bar code, encoded digits and special characters.

2D bar code based on the Code 128.

Alphanumeric bar code, encoded ASCII character set.

Alphanumeric bar code, encoded digits, capital letters and
special characters.

Alphanumeric bar code, encoded digits, letters and special
characters.

Numeric bar code.

Copyright © Carl Valentin GmbH

113

Labelstar Office 4.30 Build 1010 Bar Codes

Code 2 of 5 Numeric bar code, with an even number of digits.
Interleaved W
123456
Code 39 Alphanumeric bar code, encoded digits, capital letters,
“ H “ “WH“‘“ ““ special characters and spaces.
* ARCDEF*
Code 39 (Full ASCII) Alphanumeric bar code based on Code 39, encoded ASCII
‘“H HH“HHH“ N HH““ ““ o
ARCabo
Code 93 Alphanumeric bar code, encoded digits, capital letters,
H‘ H “ special characters and spaces.
ABCDEF
Code 93 (Full ASCII) Alphanumeric bar code based on Code 93, encoded ASCII
character set.
This barcode is transmitted graphically.
ABCabo
DataMatrix L g 2D bar code, developed by Acuity Corp.
-~ K
Deutsche Post Numeric bar code based on Code 2/5 Interleaved with
Identcode “ different check digit calculation.
01.234 567.890 5
Deutsche Post Numeric bar code based on Code 2/5 Interleaved with
Leitcode H “ m “H different check digit calculation.
01234.567.8590.12 O
EAN-13, GTIN-13 Numeric bar code.

4567 7 890128
EAN 13 with 2-digit add on.

23
EAN-13 + 2 Stellen “

12
1" 234567 © 850128 “

Copyright © Carl Valentin GmbH 114

Labelstar Office 4.30 Build 1010 Bar Codes

EAN-13 + 5 Stellen “ H “ 12345 EAN 13 with 5-digit add on.
1" 234567 890128 ‘“‘
EAN-8, GTIN-8 “ H Numeric bar code.
1234 " 5670

GS1 DataBar

I ‘“ I| ‘ I ‘ “I‘ll “ Alphanumeric bar code.

(01} 00614141999996

GS1 DataMatrix ' 2D bar code.

GS1-128 “‘ |‘“ “ Alphanumeric bar code.

(01)00614141953906

ITF-14, SCC-14 Numeric bar code based on Code 2/5 Interleaved.

00614141993336

M LI Yy 2D bar code.

PDF417 2D bar code.
(g4 5t (] ——

Pharmacode Numeric bar code.

123456

PZN ‘H H H“‘ ““ m Hm m\ Numeric bar code based on Code 39.
PZHN

— 12345684

Copyright © Carl Valentin GmbH 115

Labelstar Office 4.30 Build 1010 Bar Codes

QR Code 2D bar code.

UPC-A, GTIN-12 Numeric bar code.
1 23456 " 78901 2

UPC-E “ Numeric bar code.

0" 123456 "' 3

Copyright © Carl Valentin GmbH 116

Labelstar Office 4.30 Build 1010 1D Bar Codes

1D Bar Codes

Linear (one dimensional) bar codes consist of a single row of parallel bars and spaces of varying widths that represent data.
The bars and spaces are arranged in a predetermined pattern defined by the symbology.

Supported Bar Codes

% Codabar

3 Code 128
» Code 128 (Subset A)

» Code 128 (Subset B)

» Code 2 of 5 Industrial

» Code 2 of 5 Interleaved
» Code 39

% Code 39 (Full ASCII)

» Code 93

» Code 93 (Full ASCII)

% Deutsche Post Identcode

% Deutsche Post Leitcode

» EAN-13
» EAN-13 + 2 Digits

» EAN-13 + 5 Digits

» EAN-8

» GTIN-8
» GTIN-12
» GTIN-13
> [TF-14

% Pharmacode
» PZN

» SCC-14
» UPC-A

» UPC-E

Copyright © Carl Valentin GmbH 117

Labelstar Office 4.30 Build 1010

Codabar

123456

Length Variable
Valid Digits 0-9

Codabar

The Codabar is mainly used in libraries, in photo sector and in medical

ranges (blood banks). The Codabar is a universal, numeric bar code that
contains 6 special characters additionally to the numbers 0 to 9. The number of
representable signs is not given of the code.

Additionally four different start/stop signs (A-D) are defined, i.e. each code must
begin and end with A, B, C or D. However, the start/stop signs cannot be used in
the bar code itself.

Each sign of the code consists of elf units, four bars and three spaces. A fourth
gap is always narrow.

characters |Special characters - $:/. +

Check Optional
digit Modulo 16

Copyright © Carl Valentin GmbH

118

Labelstar Office 4.30 Build 1010

Code 128

ABCabc

Length Variable

Code 128

Code 128 is a universal, alphanumeric bar code mainly used in shipping/
transport, on documents of identification and in warehousing/distribution.
Code 128 can encode the complete ASCII character set. This code uses an
internal check digit that won't be displayed in the text line under the code. By
the use of four different widths for bars and gaps. the information density is
very high.

The structure of a Code 128 consists of a start sign, data area, check digit and
a stop sign. Before the start sign and behind the stop sign a white zone (quiet
zone) with a width of at least 10 modules must be defined.

Valid ASCII character set including control characters
characters

Check Modulo 103

digit

See also

% Code 128 (Subset A)
» Code 128 (Subset B)
» GS1-128

Copyright © Carl Valentin GmbH

119

Code 128 (Subset A)

ABCDEF

Labelstar Office 4.30 Build 1010
Length Variable
Valid Digits 0-9

characters |Upper case letters A-Z
Control characters

Check Modulo 103
digit

See also

% Code 128
» Code 128 (Subset B)

Code 128 (Subset A)

Special type of Code 128.

Copyright © Carl Valentin GmbH

120

Labelstar Office 4.30 Build 1010 Code 128 (Subset B)

Code 128 (Subset B)

Sepcial type of Code 128.

ABCabc

Length Variable

Valid Digits 0-9
characters |Upper and lower case letters A-z

Check Modulo 103
digit

See also

% Code 128
» Code 128 (Subset A)

Copyright © Carl Valentin GmbH 121

Labelstar Office 4.30 Build 1010

Code 2 of 5 Industrial

Length Variable

123456

Valid Digits 0-9
characters

Check Optional
digit Modulo 10

Code 2 of 5 Industrial

The Code 2 of 5 Industrial is a very simple numeric code which is able to
display digits from 0 to 9. The code is mainly used in industrial sector and
particularly in transport and warehousing. Code 2 of 5 has no built in check
digit.

As the information density of the bar code is low and its space consumption
very high, it is barely used nowadays.

The bar code has its name because each number is coded in 5 bars, two broad
bars and three narrow bars. The spaces between the bars not contain any
information.

Modulo 10 (Luhn-Algorithmus)

Siehe auch

% Code 2 of 5 Interleaved

Copyright © Carl Valentin GmbH

122

Labelstar Office 4.30 Build 1010 Code 2 of 5 Interleaved

Code 2 of 5 Interleaved

Code 2 of 5 Interleaved is a special type of Code 2 of 5 Industrial that is also a numeric
code able to display digits from 0 to 9. The advantage of Code 2 of 5 Interleaved is that
the code uses self-checking and it is very compact so it does not need much space like the
simple Code 2 of 5 Industrial.

Code 2 of 5 Interleaved is only valid if there is a even number of digits. To display an odd
number of digits you have to add a zero to the beginning (123 becomes 0123) or you may
use your own check digit.

123456

Length Variable (even number of digits)

Valid Digits 0-9
characters

Check Optional
digit Modulo 10

Modulo 10 (Luhn-Algorithmus)

See also

% Code 2 of 5 Industrial

Copyright © Carl Valentin GmbH 123

Labelstar Office 4.30 Build 1010 Code 39

Code 39

Code 39 is an alphanumeric bar code mainly used in shipping/
transport, electronics and chemical industries, the health sector and
and in warehousing/distribution.

Each character is composed of nine elements: five bars and four spaces.
Three of the nine elements in each character are wide (binary value 1),
and six elements are narrow (binary value 0). The width ratio between
narrow and wide is not critical, and may be chosen between 1:2 and
1:3. The bar code itself does not contain a check digit, but it can be
ABCDEF considered self-checking on the grounds that a single erroneously
interpreted bar cannot generate another valid character.

Possibly the most serious drawback of Code 39 is its low data density:

It requires more space to encode data in Code 39 than, for example, in
Code 128.

Length Variable

Valid Digits 0-9

characters |Upper case letters A-Z
Special characters - . $/ + %

Space
Check Optional
digit Modulo 43

Modulo 11 (weighting 7)
Modulo 10 (Luhn-Algorithmus)

See also

% Code 39 (Full ASCII)

Copyright © Carl Valentin GmbH 124

Labelstar Office 4.30 Build 1010 Code 39 (Full ASCII)

Code 39 (Full ASCII)

Code 39 (Full ASCII) is an extended version of Code
39 that can encode the complete ASCII character set.
The additional characters (e.g. lower case letters) are

created using the existing characters of Code 39 by
combining two characters each.

ABCabc
Length Variable
Valid ASCII character set
characters
Check Optional
digit Modulo 43

Modulo 11 (weighting 7)
Modulo 10 (Luhn-Algorithmus)

% Code 39

Copyright © Carl Valentin GmbH 125

Labelstar Office 4.30 Build 1010 Code 93

Code 93

Code 93 is an alphanumeric code similar to Code 39 and can encode 48 different

characters.
By the use of various bar widths and gap widths it has a higher information density.
Each sign of the code consists of nine units, three bars and three spaces.

ABCDEF

Length Variable

Valid Digits 0-9
characters |Upper case letters A-Z
Special characters - . $/ + %

Space
Check Modulo 47
digit
See also

% Code 93 (Full ASCII)

Copyright © Carl Valentin GmbH 126

Labelstar Office 4.30 Build 1010 Code 93 (Full ASCII)

Code 93 (Full ASCII)

This barcode is transmitted graphically.

Code 93 (Full ASCII) is an extended version of Code 93 that can encode

|| the complete ASCII character set.
ABCabc

Length Variable

Valid ASCII character set

characters

Check Modulo 47

digit

» Code 93

Copyright © Carl Valentin GmbH 127

Labelstar Office 4.30 Build 1010

Deutsche Post Identcode

01.234 567.890 5

Length 12

Valid Digits 0-9
characters

Check Modulo 10
digit

See also

% Deutsche Post Leitcode

Deutsche Post Identcode

The Identcode is a variant of 2 of 5 Interleaved, but with a different check
digit. This code is used by the Deutsche Post AG (DHL) and serves the
automatic distribution of freight parcels in the post-office centres.

Structure of the Identcode:

1..2: Mail center (outgoing)
3..5: Customer code

6..11: Delivery number

12: Check digit

Copyright © Carl Valentin GmbH

128

Labelstar Office 4.30 Build 1010

Deutsche Post Leitcode

01234.567.8%90.12 8

Length 14

Valid Digits 0-9
characters

Check Modulo 10
digit

See also

» Deutsche Post Identcode

Deutsche Post Leitcode

The Leitcode is a variant of 2 of 5 Interleaved, but with a different
check digit. This code is used by the Deutsche Post AG (DHL) and
serves the automatic distribution of freight parcels in the post-office
centres.
Structure of the Leitcode:

e 1..5:ZIP code

e 6..8: Street's code number

® 9..11: House number
e 12..13: Product code
e 14: Check digit

Copyright © Carl Valentin GmbH

129

Labelstar Office 4.30 Build 1010

EAN-13, GTIN-13

1" 234567 " 890128

Length 13

Valid Digits 0-9
characters

Check Modulo 10
digit

See also

% EAN-13 + 2 Digits

% EAN-13 + 5 Digits

> EAN-8, GTIN-8

% Global Trade Item Number (GTIN)

EAN-13, GTIN-13

EAN-13 is used world-wide for marking retail goods. Each
packaging is uniquely identified by the GTIN (Global Trade Item
Number, formerly European Article Number - EAN).

The symbol encodes 13 characters: the first two or three are a
country code which identify the country in which the manufacturer
is registered (not necessarily where the product is actually made).
The country code is followed by 9 or 10 data digits (depending on
the length of the country code) and a single check digit.

2-digit and 5-digit supplemental barcodes may be added for a
total of 14 or 17 data digits.

Copyright © Carl Valentin GmbH

130

Labelstar Office 4.30 Build 1010 EAN-13 + 2 Digits

EAN-13 + 2 Digits

EAN 13 with two additional characters.

12

1" 234567 " 890128

Length 15

Valid Digits 0-9
characters

Check Modulo 10
digit

» EAN 13, GTIN-13
% EAN 13 + 5 Digits

Copyright © Carl Valentin GmbH 131

Labelstar Office 4.30 Build 1010 EAN-13 + 5 Digits

EAN-13 + 5 Digits

EAN 13 with five additional characters.

12345

1" 234567 " 890128

Length 18

Valid Digits 0-9
characters

Check Modulo 10
digit

» EAN 13, GTIN-13
3 EAN 13 + 2 Digits

Copyright © Carl Valentin GmbH 132

Labelstar Office 4.30 Build 1010 EAN-8, GTIN-8

EAN-8, GTIN-8

EAN-8 is a shortened version of the EAN-13 code.
It includes a 2 or 3 digit country code, 4 or 5 data digits (depending on the length
of the country code), and a check digit.

1234 " 5670
Length 8
Valid Digits 0-9
characters
Check Modulo 10
digit
See also

3 EAN-13, GTIN-13
% Global Trade Item Number (GTIN)

Copyright © Carl Valentin GmbH 133

Labelstar Office 4.30 Build 1010

ITF-14, SCC-14

ITF-14, SCC-14

00614141999996
Length 14
Valid Digits 0-9
characters
Check Modulo 10
digit

The ITF-14, which is based on Code 2 of 5
Interleaved, is used to create the Shipping
Container Code (SSQ). This code is used to mark
cartons and palettes that are including goods with
an EAN 13 code.
A SCC-14 number contains the following
information:

e 1: Package indicator

e 2..3: UPC numbering system/EAN country
prefix (GS1 country prefix)

4..8: GS1 Company Prefix (can be longer)

9..13: Item identification number
14: Check digit

Copyright © Carl Valentin GmbH

134

Labelstar Office 4.30 Build 1010 Pharmacode

Pharmacode

The Pharmacode is a simple, numeric bar code placed on the marked from company Laetus.
It is used in pharmaceutical industry for the control of packaging means and/or for the control
of packaging machines.

The Pharmacode applied on the packaging and on the package insert provides that the
correct package insert is sorted into the appropriate packaging. With the Pharmacode only
integers can be coded from 3 to 131070.

123456

Length Variable

Valid Digits 0-9
characters

Check None
digit

Copyright © Carl Valentin GmbH 135

Labelstar Office 4.30 Build 1010

PZN

PZN -
Length 7-8
Valid Digits 0-9
characters
Check Modulo 11
digit

12345684

PZN

The PZN (Pharmazentralnummer) serves for marking
of drugs and other pharmacy products according to
trademarks, dosage form, intensity and package size.
The PZN is assigned by the Informationsstelle fir
Arzneispezialitaten (IFA).

The PZNS8 replaces the old PZN7 from the 01.01.2013.
You will be able to convert old PZN7 code to PZN8 by
just adding a leading zero.

Copyright © Carl Valentin GmbH

136

http://www.ifaffm.de
http://www.ifaffm.de

Labelstar Office 4.30 Build 1010

UPC-A, GTIN-12

1 23456

Lange 12
Zeichensatz |Ziffern 0-9

Priifziffer Modulo 10

Siehe auch

» UPC-E

78901 “

% Global Trade Item Number (GTIN)

UPC-A, GTIN-12

The Universal Product Code (UPC) is a bar code symbology that
is widely used in the United States, Canada, the United Kingdom,
Australia, New Zealand and in other countries for tracking trade
items in stores.

Its most common form, the UPC-A, consists of 12 numerical
digits, which are uniquely assigned to each trade item. Along
with the related EAN-13 bar code, the UPC-A is the bar code
mainly used for scanning of trade items at the point of sale.

2 The symbol encodes 12 characters:

® 1: System identification
e 2..6: UPC ID number (manufacturer)

e 7..11: Individual article number (issued by the
manufacturer)

o 12: Check digit

Copyright © Carl Valentin GmbH

137

Labelstar Office 4.30 Build 1010 UPC-E

UPC-E

to use one of the other versions. The code is smaller because it drops out zeros
which would otherwise occur in the symbol. For example, the code 59300-00066
would be encoded as 593663. The last digit (3 in the example) indicates the type of

The UPC-E is intended to be used on packaging which would be otherwise too small
‘ ‘ compression.

0" 123456 ™5

Length 8
Valid Digits 0-9
characters

Check Modulo 10
digit

See also

3y UPC-A

Copyright © Carl Valentin GmbH 138

Labelstar Office 4.30 Build 1010 2D Bar Codes

2D Bar Codes

Most 2D bar codes consist of small black and white squares and encode information in the area. A distinction is made
between stacked bar codes, matrix codes, item codes and other special shapes.

Supported Bar Codes

% Aztec Code
% Codablock F
% DataMatrix
% MaxiCode
» PDF417

3 QR Code

Copyright © Carl Valentin GmbH 139

Labelstar Office 4.30 Build 1010

Aztec Code

Aztec Code

For more information, see Program Variants.

&];

Aztec Code is a 2D matrix bar code which is built on a square grid with a bulls-eye pattern

at its centre for locating the code. In the concentric square rings around the bulls-eye

pattern data is encoded. Aztec Code is used mainly in transportation e.g. for online tickets of
Deutsche Bahn.

Very small (starting from 12 characters) and large data volumes (up to 3067 alphanumeric
characters) can be coded.

Aztec Code consists of three fix and two variable components. The fix components are: the
central Finder Pattern, Orientation Pattern and Reference Grid. Mode Message and Data
Layers are the variable components of the code.

The Aztec Code is one of the few bar codes which do not need a quiet zone. Thanks to the
Reed-Solomon error correction the reconstruction of data contents is still possible even if the
code (25% with large codes and 40% with small codes) was destroyed. The so-called Core
Symbol of the Aztec Code contains the central Finder Pattern, Orientation Pattern and Mode
Message.

Length 3067 alphanumeric characters
3832 numeric characters

Valid ASCII
characters

Check Internal
digit

See also

» Aztec Runes

Copyright © Carl Valentin GmbH

140

Labelstar Office 4.30 Build 1010 Aztec Runes

Aztec Runes

For more information, see Program Variants.

Aztec Runes are a set of small barcode symbols that are used for special applications.

Length 3

Valid An integer between 0 and 255 (including the boundaries).
characters

Check Internal

digit

See also

» Aztec Code

Copyright © Carl Valentin GmbH 141

Labelstar Office 4.30 Build 1010

Codablock F

Codablock F

For more information, see Program Variants.

Codablock F is a 2D bar code with several stacked Code 128 one above the
other. The code is mainly used in health care.

The lines of Codablock F are marked by line numbers exactly as the total

character number of the code. With Codablock F 2 to 44 lines can be displayed.

Each individual line can have up to 62 characters according to Code 128.

The principle of Codablock bar code is the same like the line break of a text
editor - if the line is full it is wrapped to the next line, i.e. to each line the
line number is added and to the finished block the number of lines. For the
orientation of the reading device, each line contains a line indicator and
additionally two check digits to secure the contents of the total message.

Length In 2 to 44 lines each, 4 to 62 characters (max 2725 characters)

are encoded.

Valid ASCII
characters

Check Internal
digit

Copyright © Carl Valentin GmbH

142

Labelstar Office 4.30 Build 1010 DataMatrix

DataMatrix

For more information, see Program Variants.

Ll
- K

DataMatrix code is one of the most popular 2D bar codes. Many data can be coded onto a
small surface. For this reason it is often used for permanent marking with lasers in production
(e.g. circuit boards). Additionally the code is used in the automotive sector, with analyzers
and instruments (chemistry, medicine) and also increasingly as printed code image in
documentation (e.g. tickets, digital postmarks).
DataMatrix symbols consist of square modules arranged within black (active ->binary 1) and
white (inactive -> binary 0) cells.
Finder pattern as area of DataMatrix code has the width of a module and consists at the left
and upper sides of two lines, which contain only dark modules. The lines at the right and upper
side of the symbol are represented alternating in dark and bright modules. A quiet zone with
the width of one module surrounds the barcode.
The uniform symbol size and the firm symbol distance make reading and decoding of the code
very safe. A DataMatrix barcode symbol consists of the following four components:

e Data area: This area contains redundant data in codified form for data protection.

e Closed limitation line (finder pattern): This is the corner that is represented in normal
alignment to the left and below data area with an uninterrupted line. This boundary is
used for erection and rectification of the code in order to permit each reading angle.

e Open borderline (alternating pattern): This represents the opposite corner of the
‘closed limitation line'. These lines are on top and right sides and consist of white and
black dots (open lines). These are used to the determination of lines and columns while
scanning.

e Quiet zone: Zone around the code containing no information or pattern. This area must
be at least so wide as one column/line res. one dot of the code.

For the creation of DataMatrix code the Reed-Solomon error correction code ECC 200 is used.
With this error correction code a DataMatrix barcode is still readable even if up to 25% of the
code is covered or destroyed.

Length 2335 alphanumeric characters
3116 numeric characters

Valid ASCII
characters

Check Internal

digit

See also

% GS1 DataMatrix

Copyright © Carl Valentin GmbH 143

Labelstar Office 4.30 Build 1010

MaxiCode

MaxiCode

For more information, see Program Variants.

.-.ll--:-ll ----.-'
AR A AR AR R AR R RRLY

CRRPLHP TR0
WG e o0

rar N} @ DAL
"% o AXLL LA
L]

MaxiCode is a 2D bar code with a fixed size of 1in. x 1 in. (approx. 25,4 mm x
25,4 mm). In this area of 1 square in. (approx. 645 mm?) data can be coded. The
code is build of 884 hexagonal modules that show finder pattern.

MaxiCode is a machine-readable symbol system created and used by

United Parcel Service. The code is suitable for fast identification, tracking and
managing the shipment of packages and contains the UPS control number,
weight, kind of dispatch and address.

The code is easily identifiable at the bull's-eye pattern in the middle of the
symbol. By the Reed-Solomon error correction a reconstruction of the 2D bar
code is still possible even if up to 25% of the code were destroyed.

MaxiCode defines 6 modes that determines that how data should be
interpreted. The mode 0 and 1 are no longer used. Mode 4 and 5 are used to
encode "raw data" with mode 5 offers a slight higher data error correction.
Mode 2 and 3 are used to encode “structure message” which comprises
two parts: Primary Message and Secondary Message. The Primary Message
encodes a postal code, 3-digit country code and 3-digit class of service code.
The Second Message encodes other data.
Labelstar Office supports the following modes:
® Mode 2: Structured Carrier Message - Numeric Postal Code (up to 9
digits)
® Mode 3: Structured Carrier Message - Alphanumeric Postal Code (up to 6
characters)
e Mode 4: Raw Data, Standard Error Correction

Length 93 alphanumeric characters
138 numeric characters

Valid ASCII

characters

Check Internal

digit

Copyright © Carl Valentin GmbH

144

Labelstar Office 4.30 Build 1010 Structured Carrier Message

Structured Carrier Message

|

Postal/Zip Code Mode 2 (US Carrier): 5-digit zip code + 4-digit zip yes 000012345
code extension
Mode 3 (International Carrier): 6-alphanumeric
characters zip code (A through Z or 0 to 9)

Country Code numeric, 3 digits yes 276

Class of Service numeric, 3 digits yes 001

i

Tracking Number alphanumeric, 10 or 11 digits yes 9A00001234
Standard Carrier UPSN yes UPSN

Alpha Code

UPS Account alphanumeric, 6 digits yes 07X720
Number

Julian Day of numeric, 3 digits yes 155
Collection

Shipment ID Number |alphanumeric, up to 30 digits -

Package n/x numeric, up to 3 digits/numeric, up to 3 digits yes 1/1

Package Weight numeric, up to 3 digits yes 015

Address Validation |Yor N yes Y

Ship To Street alphanumeric, up to 35 digits - Muster GmbH
Address

Ship to City alphanumeric, up to 20 digits yes Musterstadt
Ship to State alpha, 2 digits yes DE

Example code

> evE, Py
SO TIRL 04
{:mt LA L L L - ""F:

Copyright © Carl Valentin GmbH 145

Labelstar Office 4.30 Build 1010

PDF417

For more information, see Program Variants.

MR T I
IR P

Length 1850 alphanumeric characters
2725 numeric characters

Valid ASCII
characters

Check Internal
digit

PDF417

The PDF417 is a stacked linear bar code based on a
rectangular field. PDF stands for Portable Data File. It is used
in a variety of applications, primarily identification cards,
transport, automobile industry, inventory management and

in administrative authority, e.g. Agentur fiir Arbeit to prevent
manipulation at questionnaires.

The bar code symbol consists of 3 to 90 lines and 1 to 30
columns. Each line has a left and a right Quiet Zone, a Start/
Stop Patterns, a left and a right indicator and 1 to 30 Symbol
Characters. A PDF417 symbol is formed of bar code data,
check digit and correction sign. The used characters are coded
in code words. A code word consists of 17 modules that are
formed of 4 bars and spaces.

The error correction is determined with the Reed Solomon
algorithm in 9 selectable Error Correction Levels. With
selected error correction level 0 an error can be recognized
but not corrected. With the error correction levels 1 to 8 errors
can also be corrected.

Use of the error correction:
® ECL 2: less than 41 code words

e ECL 3: 41 to 160 code words
e ECL 4: 161 to 320 code words
e ECL 5: more than 320 code words

Copyright © Carl Valentin GmbH

146

Labelstar Office 4.30 Build 1010 QR Code

QR Code

For more information, see Program Variants.

A QR Code (quick response code) is a type of 2D bar code that is used to provide easy
access to information through a smartphone.

In this process, known as mobile tagging, the smartphone’s owner points the phone
at a QR Code and opens a barcode reader app which works in conjunction with the
phone's camera. The reader interprets the code, which typically contains a call to
action such as an invitation to download a mobile application, a link to view a video
or an SMS message inviting the viewer to respond to a poll. The phone’s owner can
choose to act upon the call to action or click cancel and ignore the invitation.

Length 4296 alphanumeric characters
7089 numeric characters

Valid ASCII
characters

Check Internal
digit

Copyright © Carl Valentin GmbH 147

Labelstar Office 4.30 Build 1010

What are the different types of QR Codes?

QR Codes can trigger various actions on the smartphone where they are read. Directing a user to a website isn't the only
possible action and some of them are worth knowing (such as saving a business card or connecting to wireless networks).

What are the different types of QR Codes?

With Labelstar Office you can create the following types of QR Codes:

Plain text: This is the simplest QR Code type. A raw text is encoded and will be displayed on the screen after
scanning. You can write anything you like.

Business card: With these business card QR Codes, a contact card with the details you entered will be
automatically stored into the contact list of the smartphone. You can enter your names, address, phone number,
email and so on.

Add an event to a calendar: After scanning these QR Codes, you will be asked if you want to save the event in
your smartphone's calendar. By adding the event to your calendar, you will be reminded of the correct date.
Website: By scanning this type of QR Codes, users will be directed to a webpage and will discover the content
available. This is the most common QR Code type.

Call a phone number: Type in a phone number when you create the QR Code. When scanning, users will be
proposed to call the phone number.

Send an SMS: Save the content and the recipient's phone number of an SMS. After scanning, you will only have to
confirm before sending it.

Send an email: This works exactly like the SMS QR Code type. Only this time, you enter the email content, the
subject and the recipients to enable sending after scanning.

Geo location: Geographic co-ordinates are stored and when scanned will redirect to a static mobile google map of
your location.

e Wifi access information: Whoever scans the code will be able to access your Wi-fi.

Copyright © Carl Valentin GmbH

148

Labelstar Office 4.30 Build 1010 GS1 Bar Codes

GS1 Bar Codes

GS1 (Global Standard One) is a worldwide system, which facilitates unmistakable identification. Bar coded GS1 identifiers for
automated processing clearly label products/items, logistics units, reusable packaging/containers etc., as they are unique.
Scanners then read the GS1 symbols error-free and process them. The GS1 keys form the basis for efficient and cost-effective

goods flow management from the manufacturer to the end user.

Supported Bar Codes

% GS1 DataBar
% GS1 DataMatrix
» GS1-128

Copyright © Carl Valentin GmbH 149

http://www.gs1-germany.de/

Labelstar Office 4.30 Build 1010 GS1 DataBar

GS1 DataBar

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

GS1 DataBar is a family of symbols most commonly seen in the GS1 DataBar Coupon. Formerly known as Reduced Space
Symbology (RSS-14), this family of bar codes include:

All GS1 DataBar bar codes encode a GTIN-12 or GTIN-13 in a 14-digit data structure. In order to make the GTIN-12 or
GTIN-13 a 14-digit data structure, a leading zero or zeros is filled to the left of the GTIN. GS1 DataBar Omnidirectional, GS1
DataBar Stacked Omnidirectional, GS1 DataBar Expanded, and GS1 DataBar Expanded Stacked have omnidirectional
scanning capability. GS1 DataBar Truncated, GS1 DataBar Stacked and GS1 DataBar Limited can only be scanned by a
linear hand held or imaging scanning device: they cannot be scanned by omnidirectional scanners and are intended to be
read by handheld scanners.

GS1 DataBar Stacked Omnidirectional is designed to condense the GTIN information into a more compact and square bar
code suitable for use on smaller packages (such as the label stickers on fresh produce).

GS1 DataBar Limited, GS1 DataBar Stacked and GS1 DataBar Truncated are designed for very small item identification
and are mainly used in the healthcare industry. Each encodes a GTIN-12 or GTIN-13 in 14-digit data structure. Only GS1
DataBar Limited uses an indicator digit 1.

In addition to encoding Application Identifier (01) GTIN, GS1 DataBar Expanded and GS1 DataBar Expanded Stacked can
encode additional GS1 Application Identifiers such as sell-by date, weight, and lot number. Each symbol has a capacity of up
to 74 characters. These attributes can help in controlling shrinkage, optimizing product replenishment, and improving the
traceability of a product at the point of sale. They are seeing increased use in manufacturers' coupons.

This family of bar codes include:

Omnidirectional GS1 DataBar Symbols Small GS1 DataBar Symbols
"PoS compatible™ not "PoS compatible”

GS1 DataBar GS1 DataBar Truncated
Expanded

GS1 DataBar
Omnidirectional

GS1 DataBar Limited
GS1 DataBar

GS1 DataBar

Expanded Stacked
Stacked Omnidirectional

GS1 DataBar Stacked

Copyright © Carl Valentin GmbH 150

Labelstar Office 4.30 Build 1010 GS1 DataMatrix

GS1 DataMatrix

For more information, see Program Variants.

The GS1 DataMatrix is a 2D bar code with a high information density on relatively small
space. A GTIN can be represented e.g. already on a space of 5 x 5 mm.

In the GS1 DataMatrix it is possible to code several data at the same time. It is mainly
used in trade and industry particularly for labelling goods and pallets. It is usual to code
additionally to the product code e.g. the weight and minimum durability date.

The GS1 DataMatrix is compatible to the existing GS1 standard and is protected for all GS1
applications.

Length Variable

Valid ASCII
characters

Check None
digit

See also

% DataMatrix

Copyright © Carl Valentin GmbH 151

http://www.gs1-germany.de/

Labelstar Office 4.30 Build 1010

GS1-128

For more information, see Program Variants.

(01)00614141999996

Length Variable

Valid ASCII
characters

Check Modulo 103
digit

% Code 128

GS1-128

The GS1-128 is a special form of Code 128. This barcode is used

for goods and palettes mainly in commerce and industry. The name
GS1-128 replaces the old name EAN/UCC-128.

The length of GS1-128 is variable, however should not exceed the
maximum length of 165 mm. Altogether a maximum of 48 rated
character including the Application Identifier and FNC1 signs can be
coded.

Copyright © Carl Valentin GmbH

152

Labelstar Office 4.30 Build 1010 Check Digit Calculation

Check Digit Calculation

A check digit is a form of redundancy check used for error detection. It consists of a single digit (sometimes more than
one) computed by an algorithm from the other digits (or letters) in the sequence input. With a check digit, one can detect

simple errors in the input of a series of characters (usually digits) such as a single mistyped digit or some permutations of two
successive digits.

See also

% Modulo 10

% Modulo 10 (Luhn Algorithm)
% Modulo 11

Copyright © Carl Valentin GmbH 153

Labelstar Office 4.30 Build 1010

Modulo 10

Modulo 10

Modulo 10 is used by many bar code symbologies, for example, EAN-13, GTIN-13.

The check digit is calculated according to Modulo 10 with a weigthing of 3 from the right.

Example Code

47 012345 987652

Digit 13 12 11 10 9 8 7 6 5 4 3 2 1
position

Raw text 4 0 1 2 3 4 5 9 8 7 6 5 2
Check 2

digit

Digits 4 0 1 2 3 4 5 9 8 7 6 5
Weights 1 3 1 3 1 3 1 3 3 1 3
Multiply 4 0 1 6 3 12 5 27 8 21 6 15
digits by

weight

Add 4+0+1+6+3+12+5+27+8+21+6+15=108

results

Find the 108 Mod. 10 = 8 (108/10 = 10 Rest 8)

remainder

mod 10

Subtract 10-8=2

from 10

Check 2

digit

Copyright © Carl Valentin GmbH

154

Labelstar Office 4.30 Build 1010 Modulo 10 (Luhn Algorithm)

Modulo 10 (Luhn Algorithm)

The Luhn Algorithm or Luhn Formula, also known as the "modulus 10" or "mod 10" algorithm, is a simple checksum
formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, National Provider
Identifier numbers in US and Canadian Social Insurance Numbers. It was created in 1960 by IBM scientist Hans Peter Luhn.

The algorithm is in the public domain and is in wide use today. It is not intended to be a cryptographically secure hash
function; it was designed to protect against accidental errors, not malicious attacks. Most credit cards and many government
identification numbers use the algorithm as a simple method of distinguishing valid numbers from mistyped or otherwise
incorrect numbers.

4556737586899855%

Digit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
position

Raw text 4 5 5 6 7 3 7 5 8 6 8 9 9 8 5 5
Check 5

digit

Digits 4 5 5 6 7 3 7 5 8 6 8 9 9 8 5
Weights
Multiply
digits by
weight
Checksum 8 5 1 6 5 3 5 5 7 6 7 9 9 8 1
of

weighted

digits

Add 8+5+1+6+5+3+5+5+7+6+7+6+9+9+8+1=85
checksums

Find the 85 Mod. 10 = 8 (85/10 = 8 Rest 5)

remainder

mod 10

Check 5
digit

(BN \S)
Ul
N
o
o =
N
N
N
-
N
-
N
-

14 3 14 5 16 6 16 9 18 8 10

Copyright © Carl Valentin GmbH 155

Labelstar Office 4.30 Build 1010

Modulo 11

Modulo 11 is e.g. used by PZN.

Calculating the the check digit of PZN: Multiply the first digit by 2, the second digit by 3, ... the sixth digit by 7. Add the
results and divide it by 11 and the remainder (Modulo 11) is the check digit. If the check digit is a "10", the PZN is not

released as it is not considered valid.

Example Code

PZN - 63195429

Digit
position
Raw text
Check
digit
Digits
Multiply
by
Results
Add
results

Find the
remainder
mod 11
Check
digit

6 3 1 9 4 2
2 3 4 5 6 7

12 9 4 45 24 14
12+9+4+45+ 24 + 14 =108

108 Mod. 11 = 9 (108/11 = 9 Rest 9)

Modulo 11

Copyright © Carl Valentin GmbH

156

Labelstar Office 4.30 Build 1010 Global Trade Item Number (GTIN)

Global Trade Item Number (GTIN)

Global Trade Item Number (GTIN) is an identifier for trade items. Such identifiers are used to look up product information
in a database (often by inputting the number through a bar code scanner pointed at an actual product) which may belong
to a retailer, manufacturer, collector, researcher, or other entity. The uniqueness and universality of the identifier is useful

in establishing which product in one database corresponds to which product in another database, especially across
organizational boundaries.

GTINs may be 8, 12, 13 or 14 digits long, and each of these 4 numbering structures are constructed in a similar fashion,

combining Company Prefix, Item Reference and a calculated Check Digit (GTIN-14 adds another component - the Indicator
Digit, which can be 1-8).

GTIN-8 EAN-8

GTIN-12 UPC-A

GTIN-13 EAN-13
GTIN-14 -

The following table demonstrates the structure of GTINs in a GTIN-compliant database:

. GTNDigit
14

GTIN-8 0 |000O0O0ONNNNNNN C
GTIN-12 0 |]ONNNNNNNNNNN|C
GTIN-13 O INNNNNNNNNNNN C
GTIN-14 N NNNNNNNNNNNN, C

Copyright © Carl Valentin GmbH 157

Labelstar Office 4.30 Build 1010 Databases

Databases

For more information, see Program Variants.

A wealth of data which are outside the label can be used within the label. But how can | find and import these data in
Labelstar Office? The answer is very simple: You have to create and use a data connection.

Data on a label can come from two different locations. The data may be stored directly within the label, or it may be stored
in an external data source, such as a text file or a database. This external data source is connected to the label through a data
connection, which is a set of information that describes how to locate, log in to, and access the external data source.

The main benefit of connecting to external data is that you can periodically analyze this data without repeatedly copying the
data to your label, which is an operation that can be time consuming and prone to error.

To bring external data into Labelstar Office, you need access to the data. If the external data source that you want to access
is not on your local computer, you may need to contact the administrator of the database for a password, user permissions,
or other connection information. If the data source is a database, make sure that the database is not opened in exclusive
mode. If the data source is a text file or a spreadsheet, make sure that another user does not have it open for exclusive
access.

Many data sources also require an ODBC driver or OLE DB provider to coordinate the flow of data between Labelstar Office,
the connection file, and the data source.

The following diagram summarizes the key points about data connections.

pe— =

OLE DB provider 'S

Labelstar Office Data sources

Label
Data connection

First steps

3 Create a new data connection

3 Create a database label

Copyright © Carl Valentin GmbH 158

Labelstar Office 4.30 Build 1010 New Data Connection

New Data Connection
To specify a new data connection, proceed as follows:

1. Select Data Connections view.
2. Click on New Data Connection.

The Data Connection Wizard opens.
3. Select the data source you want to use.
4. Follow the instructions in the wizard.

5. After the successful definition, the new data connection is shown in the list and the associated database fields can
be used on a label.

Data Connections “
EE Mew Data Connection...

EL Import Data Connections..
& (F Europe

- Mame

- Capital

- Area

- Population
- MativeMame
- Flag

- User Input..,
----- Properties...

Barcodes
() Symbols

2l Data Connections

Copyright © Carl Valentin GmbH 159

Labelstar Office 4.30 Build 1010 Create a Database Label

Create a Database Label

To learn how you can create a database label and to see just how easy it is, click on this link to see our video tutorials.
The sample data used in the video can be found in the directory: %InstallDir%\Samples\Database.

Europe.accdb Database (Microsoft Access format)

Europe.lbex Label definition

Europe.txt Database (Text format)

Europe.xml Database (XML format)

Import Europe_accdv data connection.lbdx Import file for data connection Europe (Microsoft Access format)
Import Europe_txt data connection.lbdx Import file for data connection Europe (Text format)

Import Europe_xml data connection.lbdx Import file for data connection Europe (XML format)

United Kingdom
London

. ' 4 '
Area: 244 620 gm —
Population: 60440000 PP s,

\d

244820

Copyright © Carl Valentin GmbH 160

ftp://webftp.valentin-carl.de/Software/Labelstar%20Office/Videos

Labelstar Office 4.30 Build 1010 Logging

Logging

O Required program variant PROFESSIONAL
For more information, see Program Variants.

With the logging you can retrace which data when, by whom and on which printer was printed.
Which information is saved at logging?
The logging option contained in Labelstar Office logs the following features:

e Date/Time of printing
e Number of copies

e Page name

e Label name

® Printer name

User name

e Field contents

See also

% Activate and Deactivate Logging

% Log File Location

» «lLogging» Tab

Copyright © Carl Valentin GmbH 161

Labelstar Office 4.30 Build 1010 Activate and Deactivate Logging

Activate and Deactivate Logging
So aktivieren und deaktivieren Sie die Protokollierung

1. Select Label Properties and click Log print job.

Gap length 2,00 mm G
Label height &0,00 rmrm
Label type Adhesive labels
Label width 100,00 mm
Snap Lines...
4 Printing
Label rotation 180°

Log print job Marked fields only v

Print background image Mo

Printer All fields
Use temporary printer date B0 SR EGY
Page Setup...
Shift Definiticns...

Printing Preferences...

4 Settings
Preview image I:I (Moneg)
Save label preview Yes

Comment...

2. To activate logging select one of the following options:
® All fields All field contents are logged.

* Marked fields only Only the contents of the fields are logged, in which the Log option is enabled.

3. To deactivate logging select No.

See also

3 «lLogging» Tab

Copyright © Carl Valentin GmbH 162

Labelstar Office 4.30 Build 1010 Log File Location

Log File Location

In the «Logging» tab, you can specify the file path of the log files. Select only one path on which all users have access.

Select never only C:\ or C:\Windows. If at all, please create a new folder where the program can save its log files (e.g. C:
\Log).

Copyright © Carl Valentin GmbH 163

Labelstar Office 4.30 Build 1010 Markup Tags

Markup Tags

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

With the help of markup tags formatting instructions can be inserted into the text.

Markup tags must be well formatted. That means that all tags must be properly closed and all attributes must have
values enclosed in single quotes.

Supported Markup Tags

b Defines bold text. bold text -> bold text
br Defines a single line break. line 1
line2 -> line 1
line 2
em Defines emphasized text (same as italic | emphasized text -> emphasized text
text).
font Defines font, color, and size for text. Example text ->

Example text

Example text -

> Example text

Arributes:
® size: Font size

® name: Font name

e color: Font color

i Defines italic text. <i>italic text</i> -> italic text
rtl Right-to-left text. <rtl>Example text</rtl> -> txet elpmaxE
shadow Defines text with a shadow. <shadow style="'Blurred'>Example text</shadow> ->

Attributes: Example m

¢ color: Shadow color (Default: Black) | <shadow color="Black'>Example text</

e offset: Shadow offset (Default: 1,1) E)(a m p Ie text

e strength: Shadow size (Default: 1,1) Shadow> ->
e style: Shadow style (Default: Solid)

Solid
Blurred
strike Defines strikethrough text. . . , sHiteethrotgh-ies
<strike>strikethrough text</strike> ->
stroke Defines stroked text. <stroke color="#FF0000'>Example text</stroke> ->

Attributes: EXE mple t‘th
® width: Border width (Default: 1)
® color: Border color (Default: Black)

strong Defines important text. important text -> important text
sub Defines subscripted text. H₂0 -> Hy0
sup Defines superscripted text. footer¹ -> footer’

u Defines underlined text. <u>underlined text</u> -> underlined text

Copyright © Carl Valentin GmbH 164

Labelstar Office 4.30 Build 1010 Markup Tags

Supported entity characters:

! quotation mark "
single quote, apostrophe '
& ampersand sign &
< less than sign alt;
> greater than sign a&agt;
non-breaking space
© copyright sign ©
® registered trade mark sign ®
™ Registered Trademark sign ™

Copyright © Carl Valentin GmbH 165

Labelstar Office 4.30 Build 1010 Food Allergen Labelling

Food Allergen Labelling

The new EU Regulation 1169/2011 on the provision of food information to consumers changes existing legislation on food
labelling including:

Mandatory nutrition information on processed foods.

Mandatory origin labelling of unprocessed meat from pigs, sheep, goats and poultry.

Highlighting allergens e.g. peanuts or milk in the list of ingredients.

Better legibility i.e. minimum size of text.

Requirements on information on allergens also cover non pre-packed foods including those sold in restaurants and cafés.

The new rules will apply from 13 December 2014. The obligation to provide nutrition information will apply from 13
December 2016.

Foods that need to be labelled on pre-packed foods when used as ingredients are:

® Cereals containing gluten such as wheat, rye, barley, oats, spelt or khorasan
® Crustaceans for example prawns, crabs, lobster, crayfish

* Eggs

¢ Fish

® Peanuts

e Soybeans

e Milk

e Nuts such as almonds, hazelnuts, walnuts, cashews, pecan nuts, Brazil nuts, pistachio nuts, macadamia (or Queensland)
nuts

® Celery (including celeriac)

e Mustard

® Sesame seeds

e Sulphur dioxide and sulphites (>10mg/kg or 10mg/I)

¢ Lupin

® Mollusc for example clams, mussels, whelks, oysters, snails and squid

Copyright © Carl Valentin GmbH 166

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R1169&from=EN

Labelstar Office 4.30 Build 1010

Sample

Sample

This sample shows how you can create a database label, using the variable $ReplacePattern, to automatically highlight certain

words.

The example can be found in the samples folder: %InstallDir%\Samples\Allergens.

Allergens.txt This file contains the list of allergens that are being emphasized.

Cookies.accdb Microsoft Access database with the ingredients lists.

Cookies.lbex Label definition
Import Cookies data connection.lbdx Import file for data connection Cookies.

To open the sample label, proceed as follows:

1. Open Labelstar Office.

2. Select Data Connections view.
3. Click Import Data Connections and browse for the file Import Cookies data connection.lbdx.

Data Connections

. Mew Data Connection..,

EL Import Data Connections..

& F Cookies

- ProductCode
- ProductMame
- Ingredients
- Picture
- SaturatedFat
- TransFat
- Cholestercl
- Sodium
- Carbchydrate
- Fibre
- Sugars
- Protein
- Vitamind,

Bar Codes
() Symbols

2l Data Connections

4. Open the label Cookies.lbex.

“
FY

Copyright © Carl Valentin GmbH

167

Labelstar Office 4.30 Build 1010

Sample

-

Mutrition Facts

Per 1 cookie (28g)

Amount % Daily Value

Calories: 139

Fat7 g 11%
Satured Fat 3 g 15%
+Trans FatC g

Colesterol 45 mg 1584

Sodium 75 mg 3%

Carbohydrate 17 g 6%
FibreD g 0%
Sugars 99

Protein2 g

Witamin A 2% Vitamin C 0%

Calcium 2% lron 4%

Chocolate Cookie

INGREDIEMTS: organic pastry flour
{organic whole grain white wheat), organic
evaporated cane juice, organic butter
{cream, salt), oganic dark chocoolate chips
[organic cac30 Mass, ofganic evaporated
Cane juice, organic c©acat butter, may
contain non-GMO soy lecithin), organic
whole egns, organic sunflower oil, onganic
vanilla extract, organic molasses, baking
powrder, baking sods, ses ssl

Copyright © Carl Valentin GmbH

168

Labelstar Office 4.30 Build 1010 Supported Graphic and Vector Formats

Supported Graphic and Vector Formats

Which formats are supported depends on the program variant you use. For more information, see Program Variants.

® ANIMATED GIF - Graphics Interchange Format

¢ BMP - Standard Windows Bitmap

® CUT - Dr. Halo/Dr. Genius Clipboard Format

® DDS - Microsoft DirectDraw Surface Format

® DIB - Standard Windows Bitmap Format

® PCD - Kodak Photo-CD file

PCT, PICT, PIC - Macintosh PICT Format

e PCX - PC Paintbrush Format

e PDF/A - Document Format for long term preservation
e DICOM - Digital Imaging and Communications in Medicine
® EMF - Enhanced Windows Metaformat

e EXIF - Exchangable Image Format

® EXR - OpenEXR Format

® FAX, G3 - Group 3 Raw Fax Format

® GIF, Interlaced GIF - Graphics Interchange Format
HDR - High Dynamic Range Format

o IFF - Interchange Format

® 1CO (single and multi page) - Icone Format

e J2K, J2C - JPEG-2000 Codestream

® JB2, JBIG2 - Joint Bi-level Image Experts Group

o JIF, JFIF - JPEG File Interchange Format

® JNG - JPEG Network Graphics

e JP2 - JPEG-2000 Format

® JPEG, JPG, JPE - Joint Pointgraphic Expert Group
* JPEG progressive

e KOA - KOALA Format

e LBM - Interchange File Format-Interleaved Bitmap
e MNG - Multiple-image Network Graphics

e PBM - Portable Bitmap File

e PBM Raw - Portable Bitmap BINARY

* PDF Multi-page - Portable Document Format

e PFM - Portable Float Map

® PGM - Portable Graymap BINARY

e PGM RAW - Protable Graymap File

e PSD - Photoshop File

e PNG - Portable Network Graphics Format

¢ PNM - Portable Any Map

PPM - Portable Pixmap File

* PPM RAW - Portable Pixmap BINARY

® RAS - Sun Raster Format

Copyright © Carl Valentin GmbH 169

Labelstar Office 4.30 Build 1010

Supported Graphic and Vector Formats

® RAW camera image

* RAW memory bits - RAW bitmap

e RLE - Standard Windows Bitmap format
® SGI - Silicon Graphics Image Format

® TGA, TARGA - TARGA Image Format

e TIFF, TIF - Tagged Image Format

* TIFF Multi-page - Multi-page Tagged Image Format
e WBMP, WAP, WBM - Wireless Bitmap
® WEBP - WebP Image Format

o WMF - Standard Windows Metaformat
o XBM - X Bitmap Format

e XPM - X Pixmap Format

Copyright © Carl Valentin GmbH

170

Labelstar Office 4.30 Build 1010 Program Options

Program Options
In this dialog box, you can change several basic settings and customize the program to suit your personal preferences.
To change the program options, proceed as follows:

1. Select the File tab, an then click Options.
The Options dialog box opens.

2. Change the desired settings.

3. Click OK to save your changes.

See also

» «General» Tab

» «Printing» Tab
» «Label Preview» Tab

» «Memory Card» Tab

» «lLogging» Tab

» «File Locations» Tab

Copyright © Carl Valentin GmbH 171

Labelstar Office 4.30 Build 1010 «General» Tab

«General» Tab

In this tab, you can change various general settings.

Among other things, you can select how to Labelstar Office behaves when the program starts:

Empty label Opens a blank label.

Open recent label Shows the recently opened label.

Open label Opens a particular label. Click) to choose a file.
Show 'Open File' dialog box Displays the dialog box 'Open File' to choose a label.

Copyright © Carl Valentin GmbH 172

Labelstar Office 4.30 Build 1010 «Printing» Tab

«Printing» Tab

In this tab, you can change various printing options.

In this tab, you can change various printing options.

Labelstar Office uses at first the Windows default printer but you can select another default printer for the printouts. The
Windows default printer and the Labelstar Office default printer are independent. If you change one of the two default
printers this does not affect the other printer.

The default printer which you select for Labelstar Office is a program setting, i.e. all labels that you print with Labelstar
Office, were printed on this printer if you do not select another one with the label.

Copyright © Carl Valentin GmbH 173

Labelstar Office 4.30 Build 1010 «Label Preview» Tab

«Label Preview» Tab

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

In this tab you can specify different settings (size, output format and colour depth) of the preview image which is saved
paralled to the label.

Activate the option Save label preview for all labels if you want to save a preview to each label. Do you want to activate the
label preview only for particular labels then activate the option Save label preview in the label settings.

Gap length 2,00 mm =
Label height 80,00 mm
Label type Adhesive labels
Label width 100,00 mm
Snap Lines..,
4 Printing
Label rotation 180°
Leg print job Marked fields only
Print background image [Ne
Printer MWario NI 107/1.2)
Use terporary printer date [| Mo
Page Setup...
Shift Definitions..,

Printing Preferences...

4 Settings
Preview image I:I (Mone)

Save label preview Yes

Comment...

Copyright © Carl Valentin GmbH 174

Labelstar Office 4.30 Build 1010 «Memory Card» Tab

«Memory Card» Tab

O Required program variant BASIC, PROFESSIONAL
For more information, see Program Variants.

In this tab you can change different Memory Card options, e.g. the standard directory for printer drive and system drive.

Copyright © Carl Valentin GmbH 175

Labelstar Office 4.30 Build 1010 «Logging» Tab

«Logging» Tab

For more information, see Program Variants.

In this tab, you can change the log settings.
Log File

You can specify where the log file is to be saved.

Folder Enter the name of the folder in which the log file is to be created or click on [+ to browse the folder.

File Name Enter a fixed file name or use placeholder %date%, %time%, %labelname%, %printername%, which are replaced
by current values to define a variable file name (e.g. %labelname%%date%.log).

Select only one path on which all users have access. Select never only C: | or C:\Windows. If at all, please create a new
folder where the program can save its log files (e.g. C:\Log).

Overwrite existing log file Activate this check box if the log file should overwrite and replace the existing log file.

Use local time for file naming Activate this check box if the local time is to be used for creating the log file name. If this
option is not selected, the coordinated world time (Coordinated Universal Time/UTC) is used.

Log File Format

In this section you can define the file format. The log file is saved in CSV format. For more information about data to be
saved, see Logging.

Log File Rollover
In this section you specify if and when a new log file is to be commenced.

Maximum file size (in MB) Select this option to permit the creation of aditional log files if the maximum file size is reached.
Each new file name consists of the original name of the log file with an ascending number.

Do not create new log file All information is logged in an only one ever growing file.

Copyright © Carl Valentin GmbH 176

Labelstar Office 4.30 Build 1010 «File Locations» Tab

«File Locations» Tab
In this tab, you can change the location of the directories and files used in the program.
To change the location, proceed as follows:

1. Select an entry.

2- Click [x),

The dialog box Select File is opened.
3. Choose a new location.

Copyright © Carl Valentin GmbH 177

Labelstar Office 4.30 Build 1010 Print Only

Print Only

With this program you can open and print labels.

& | Labelstar Office Print Only - 0 x
PRINTERS LABELS VIEW v @
Printers « || O Label |ki) Label Info |§ Printer Info |
. COCKIES \i
Vario Il 107/12
Ready X ags " -
= [earch Q| Nutrition Facts ‘gl
- A ProductCode ProductMame Per 1 cookie (28g) ' .
4 Compa104/8 > 32500 Chocolate Coo... Amount % Daily Value e
P Ready 32505 Double Chocol... Calories: 139
Fat7 1% H
33200 Orange Chocol...) C hocolate C Ookle
— Satured Fat3g 15%
= Compa Il 106/12 33300 Lemon Chocol... +TransFat0 g
Mot available : TS: i
33500 Peppermint Ch... INGREDIENTS: organic pastry fiour
m [Colesterol 45 mg 15% (organic whole grain white wheat). organic
34100 Caramel Choco... Sodium 75 mg 3% evaporsted cane juice, ongamc butter
{cream, salt), oganic dark chocolate chips
Carbohydrate 17 ¢ 8% (organic cacao mass. organic evaporated
Fibre0 g 0% cane juice, organic cacao butter, may
contain non-GMO soy lecithin), organic
Sugars 9g whole eggs, organic sunflower oil, organic
i vanilla extract, organic molasses, baking
Protein2 g powder, taking soda, e sak
Vitamin A2% Vitamin C 0%
Calcium2% lron 4%

NUMBER OF COPIES
[|
«1H »

Version 4.30 Build 1010

Copyright © Carl Valentin GmbH 178

Labelstar Office 4.30 Build 1010 Tools

Tools
The LABELSTAR OFFICE provides various tools to manage and change program data.
Installed Tools

License Wizard
K With this application you can license Labelstar Office. For more information, see Licensing.

Program Settings
With this application, the internal program settings can be changed.

Language Settings
With this application you can select the language which is used for the user interface (e.g. in the menus,
dialog boxes and help files).

Copyright © Carl Valentin GmbH 179

Labelstar Office 4.30 Build 1010

Program Settings

Program Settings

e With this application, the internal program settings can be changed.

e By default, the program settings are stored

in the directory C:\ProgramData\Labelstar Office

e To open the program, click Start > Programs > Labelstar Office > Tools > Program Settings.

| Labelstar Office Program Settings - x
HOME @
‘ 1 Mote: You should not change any setting without having a specific reason to do so. Incorrect settings can make the program unusable.
EA General settings |E Label Designer Settings |H Print-Cnly Settings

4 File Locations (3
DefaultFontDir Ch\ProgramData\Labelstar Office\Fonts
Defaultlmagelir ChUsers\awittner, VALENTIN-CARL\Documents'Labelstar Office\lmages
DefaultLabelDir C\Users\awittner, VALENTIN-CARL\Documents\Labelstar Office\Labels
DefaultLogDir Ch\Users\awittner VALENTIN-CARL\Documents'\Labelstar Office\Log
DefaultsymbolDir Ch\ProgramData\Labelstar Office\Symbols
DefaultTemplateDir Ch\Users\awittner, VALENTIN-CARL\Documents\Labelstar Office\ Templates
DefaultVariableFile C:\ProgramData\Labelstar Office\Variables.lbwx
FontDir Ch\ProgramData\Labelstar Office\Fonts
ImageDir ChUsers\awittner. VALENTIN-CARL\Documents\Labelstar Office\lmages

Ch\Users\awittner, VALENTIN-CARL\Documents'Labelstar Office\Labels

LogDir C\Users\awittner, VALENTIN-CARL\Documents\Labelstar Office\Log
Recentlabel CA\Users\awittner. VALENTIN-CARL\Documents\Labelstar Office\Labels\Test Aztec Code.lbex
SymbuolDir Ch\ProgramData\Labelstar Office\Symbols
T. [EX ¥ aH Ll A it VALERITIRL «ARLY D, #e\ | sk alet e OFFcaL T, 1 57

LabelDir

Folder to store label files,

Version 4.30 Build 1010

Copyright © Carl Valentin GmbH

180

Labelstar Office 4.30 Build 1010 Language Settings

Language Settings

® With this application you can change the language of the Labelstar Office user interface.
® To open the program, click Start > Programs > Labelstar Office > Tools > Language Settings.

Labelstar Office Language Settings 7 X

User Interface

;3 You can change the language Labelstar Office uses in elements such as menus and dialeg
@ bowes,

After selecting a new language, you must quit and restart any Labelstar Office applications
you are currently using.

Display Labelstar Office in:

(Same as the systemn) |Z||

Create backup file before saving changes 0K Cancel

In order to transfer the new settings you have to close all opened Labelstar Office applications, close the program
and restart it.

Copyright © Carl Valentin GmbH 181

Labelstar Office 4.30 Build 1010 OLE Automation

OLE Automation

For more information, see Program Variants.

OLE Automation provides a way for OLE-compliant applications to interact with Labelstar Office. Using OLE, another
program can start a Labelstar Office session, open a label, place data into a field, print a label, and save the updated label.

Quick Reference

Application Class
Represents the Labelstar Office application. This is the top level object from which all other objects will originate.

Label Class
Provides access to an individual label.

Field Class
Provides access to an individual field on the label.

Your development computer must have a copy of the OLE automation's application before you can test your
application. Also, your user must have a copy of the OLE automation application. Without Labelstar Office you
cannot use OLE automation to open and print a label.

What is OLE Automation?

In Microsoft Windows applications programming, OLE Automation (later renamed by Microsoft to just Automation,
although the old term remained in widespread use), is an inter-process communication mechanism based on Component
Object Model (COM) that is intended for use by Scripting Languages -originally Visual Basic, but now many languages that
run on Windows. It provides an infrastructure whereby applications called automation controllers can access and manipulate
(i.e. set properties of or call methods on) shared automation objects that are exported by other applications. It supersedes
Dynamic Data Exchange (DDE), an older mechanism for applications to control one another. As with DDE, in OLE Automation
the automation controller is the "client" and the application exporting the automation objects is the "server".

What is COM?

Component Object Model (COM) is an interface standard for software componentry introduced by Microsoft in 1993. It is
used to enable interprocess communication and dynamic object creation in any programming language that supports the
technology. The term COM is often used in the software development industry as an umbrella term that encompasses the
OLE, OLE Automation, and ActiveX, COM+DCOM technologies.

The essence of COM is a language-neutral way of implementing objects that can be used in environments different from the
one they were created in, even across machine boundaries. For well-authored components, COM allows reuse of objects with
no knowledge of their internal implementation, as it forces component implementers to provide well-defined interfaces that
are separate from the implementation. The different allocation semantics of languages are accommodated by making objects
responsible for their own creation and destruction through reference-counting. Casting between different interfaces of an
object is achieved through the Querylnterface() function. The preferred method of inheritance within COM is the creation of
sub-objects to which method calls are delegated.

Although the interface standard has been implemented on several platforms, COM is primarily used with Microsoft Windows.
COM is expected to be replaced at least to some extent by the Microsoft .NET framework, and support for Web Services
through the Windows Communication Foundation (WCF). However, COM objects can still be used with all .NET languages
without problems. Networked DCOM uses binary proprietary formats, while WCF encourages the use of XML-based

SOAP messaging. COM is very similar to other component software interface standards, such as CORBA and Java Beans,
although each has its own strengths and weaknesses. It is likely that the characteristics of COM make it most suitable for the
development and deployment of desktop applications, for which it was originally designed.

Copyright © Carl Valentin GmbH 182

Labelstar Office 4.30 Build 1010 OLE Automation

Copyright © Carl Valentin GmbH 183

Labelstar Office 4.30 Build 1010 Operating Requirements

Operating Requirements

The OLE Automation Interface of Labelstar Office runs on Microsoft Windows operating systems family, it has been proven
working on Windows 7, Windows 8 and Windows 8.1 in both 32-bit and 64-bit versions.

Labelstar Office requires the .NET Framework 4.0 or higher. Please visit http://www.microsoft.com/net/ for additional
information and download links.

Labelstar Office core is compiled using the x86 Platform target. This means the project is intended to run only as a 32-bit

process. A 64-bit process will be unable to call into an assembly set as x86. Applications and assemblies marked for x86 can
still run on 64-bit Windows. However they run under WOW64.

Copyright © Carl Valentin GmbH 184

http://www.microsoft.com/net/

Labelstar Office 4.30 Build 1010 Register Assembly for COM Interop

Register Assembly for COM Interop

Labelstar Office includes an OLE Automation Interface that can be used like a COM component with IntelliSense support in
environment supporting this technology such as Visual Basic 6, html pages, Delphi and Visual FoxPro.

This assembly is automatically registered on your computer when installing the Labelstar Office package.

The dll is located in the installation folder and can be registered on other computers by using the regasm command with
admin privileges:

%SystemRoot%\Microsoft. NET\Framework\v4.0.30319\regasm.exe LSOffice.dll /codebase

Where %SystemRoot% is the path to your Windows installation, what is typically C:\Windows or C:\WINNT. The above
examples assume that LSOffice.dll is in current working directory. Otherwise you need to specify an absolute path to the .dIL

When deploying the assembly, make sure that Labelstar Office is installed along with the assembly on the target
system.

Copyright © Carl Valentin GmbH 185

Your First Application

Labelstar Office 4.30 Build 1010

Your First Application

Open the 32-bit version of the Visual Basic script editor.

Labelstar Office core is compiled using the x86 Platform target. This means the project is intended to run only as a
32-bit process.
Referencing the Labelstar Office Type Library

To use Labelstar Office in a Visual Basic project, you must first add a reference to the Labelstar Office type library to the

project.

To reference the Labelstar Office type library, proceed as follows:

1. From the Tools menu, select Reference.
2. If the interface is already listed as an available refrence, select it, otherwise click Add/Browse.

3. Select the LSOffice.tlb file which is located in the installation folder of Labelstar Office and click Open.

Now you can view the LSOffice objects, their methods, properties, parameters, and constant values online using the Visual
Basic object browser.

Copyright © Carl Valentin GmbH

186

Labelstar Office 4.30 Build 1010 Your First Application

Object Browser
< Search> W

&4 Host

=59 LSOffice

E,»{g Application

..... # ActivePrinter

- o

..... ‘ip GetOpenFilename
..... i GEtT}fFIE
..... # HasError

..... ﬁ Info

..... i Initialize
..... # |slnitialized
..... & LabelDir
..... A LastError
..... e License

..... ‘ip OpenlLabel
..... # ToString
¢ Error

=7 ErrorType

¢ Field
¢ Label

“# Licenselnfo
=7 PrintOpticns
-2 Versionlnfo
4] WMI Classes

-
-
-
-
-
-
E

:ig Function OpenlLabel(By'al path As String) As Label

Launch Labelstar Office runtime

Labelstar Office OLE Automation is exposed by the way of a COM object named LSOffice.Application. To call Labelstar
Office, you first have to create an LSOffice.Application object.

Dim objApp
objApp = CreateObject ("LSOffice.Application")

The first thing to do now is to initialize the Labelstar Office runtime.
objApp.Initialize()

Example (VBScript)

' Open And Print Label Sample Code

Copyright © Carl Valentin GmbH 187

Labelstar Office 4.30 Build 1010 Your First Application

Option Explicit

' Object variables
Dim objApp
Dim objLabel

' Open and print label

Set objApp = CreateObject("LSOffice.Application™)

Application must be initialized before OpenLabel is called
objApp.Initialize()

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Browse file name

Dim fileName

fileName = objApp.GetOpenFilename("Labels|*.1lbex|All Files|*.*")

If (Len(fileName) = ©) Then
WScript.Quit
End If

' Open label
Set objLabel = objApp.OpenLabel(fileName)

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Print label
objLabel.Print(1)

Copyright © Carl Valentin GmbH 188

Labelstar Office 4.30 Build 1010 VBScript Samples

VBScript Samples

Labelstar Office core is compiled using the x86 Platform target. Running Labelstar Office on 64-bit machines
requires 32-bit script host, which is located in the SYSWOWA64 folder. By default, Windows 64-bit starts the 64-bit
version of wscript.exe (the VBS interpreter). This results in the "800a01ad Active X component can't create object”
error message.

The sample scripts demonstrate how to open, modify and print labels. The scripts are located in the following directory:
%InstallDir%\Samples\COM Interop\VBScript.

Sample Script Description
Open and print Shows a file dialog to choose a label, opens and prints it.
label.vbs

Application.GetOpenFilename method
Application.OpenLabel method
Label.Print method

Change printer Opens label ..\label1.lbex and shows a message box to choose the active printer.
name.vbs

Label.ActivePrinter property
Change field Opens label ..\label1.lbex and shows a message box to change the field content of Text1.
content.vbs

Label.GetFieldByName method
Field.GetContent method
Field.SetContent method

Set printable Opens label ..\label1.lbex and shows a message box to select if the field Barcode1 is printed or
property.vbs not.

Field.Printable property

Change text Opens label ..\label4.lbex and shows a message box to select text alignment of field Text1.
alignment.vbs
Field.SetPropertyValue method

Display field Displays a message box to show the fields defined on ..\label1.lbex, ..\label2.lbex and ..
names.vbs \label3.lbex.

Label.FieldNames property

Display last Demonstrates error handling.
errorvbs
Application.LastError property

Print record.vbs Opens database label ..|\label3.lbex and shows a message box to enter search string.
Data connection Europe must be defined in Labelstar Office.

Label.SelectRecord method

Copyright © Carl Valentin GmbH 189

Labelstar Office 4.30 Build 1010

Object Reference

Object Reference

The Labelstar Office application programming interface consists of OLE Automation objects that are created and referenced
by client applications. These objects provide properties and methods that client applications can utilize.

LSOffice Object Hierachy

Application Class

OpenlLabel Method

Info Property

Label Class

GetFieldBylndex Method
GetFieldByName Method

Field Class

License Property

Versionlnfo Class

LastError Property

Licenselnfo Class

Error Class

Copyright © Carl Valentin GmbH

190

Labelstar Office 4.30 Build 1010 Application Class

Application Class
An Application object represents the Labelstar Office application. This is the top level object from which all other objects
will originate. Its members usually apply to Labelstar Office as a whole. You can use its properties and methods to control
the Labelstar Office environment.

You create an Application object from scratch like this:

Dim objApp
Set objApp = CreateObject ("LSOffice.Application™)

objApp.Initialize ()

You must make sure that its lifetime exceeds the lifetimes of all other OLE Automation objects because all the other objects
belong to the Application object. This means that you almost always delcare the Application object at project global scope.

There is no reason for any other project to use more than one Application object because any number of other OLE
Automation objects can share a single Application object.

Properties
& |ActivePrinter Returns the name of the active printer.
& |HasError Gets a value that indicates whether an error occurred during the last call to a
method or property.
& |Info Refers to the VersionInfo object representing the version information.
& |IsInitialized Gets a value that indicates whether the Initialize method has been called.
& |LabelDir Returns the path of the current label folder.
& |LastError Retrieves the calling method's or property's last-error code value.
& |License Refers to the Licenselnfo object representing the license information.
Methods
Initialize Initializes the current instance.
GetOpenFilename Displays the standard Open dialog box and gets a file name from the user without
actually opening any files.
Openlabel Opens the specified label.
See also

% Object Reference

Copyright © Carl Valentin GmbH 191

Labelstar Office 4.30 Build 1010 Application Properties

Application Properties

The Application type exposes the following members.

Properties

& |ActivePrinter Returns the name of the active printer.

& |HasError Gets a value that indicates whether an error occurred during the last call to a
method or property.

a |Info Refers to the VersionInfo object representing the version information.

& |IsInitialized Gets a value that indicates whether the Initialize method has been called.

& LabelDir Returns the path of the current label folder.

& |LastError Retrieves the calling method's or property's last-error code value.

& |License Refers to the Licenselnfo object representing the license information.

See also

» Application Class

» Object Reference

Copyright © Carl Valentin GmbH 192

Labelstar Office 4.30 Build 1010

ActivePrinter Property

ActivePrinter Property
Returns the name of the active printer. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objApp.ActivePrinter
Type

String

Example (VBScript)

This example displays the name of the active printer.

1

2 Dim objApp

3} S5et objApp = CreateCbject ("L30ffice.hpplication™)
4

5 objhpp.Initialize()

6

7 If (objhpp.HasError) Then

3 M=gBox objApp.LastError.Message

5 WScript.Quit

10 End If

11

12 M=gBox "The name of the active printer i= " & objhpp.ActivePrinter
13

The name of the active printer is Yario 11 10712

..

See also

» Application Class

% Object Reference

Copyright © Carl Valentin GmbH

193

Labelstar Office 4.30 Build 1010 HasError Property

HasError Property

Gets a value that indicates whether an error occurred during the last call to a method or property. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objApp.HasError
Type

Boolean
Remarks

For more information, see LastError property.

See also

» Application Class

» Object Reference

Copyright © Carl Valentin GmbH 194

Labelstar Office 4.30 Build 1010 Info Property

Info Property
Refers to the VersionInfo object representing the version information. Read-only property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objApp.Info
Type

LSOffice.VersionInfo

See also

% Versioninfo Class

» Application Class
% Object Reference

Copyright © Carl Valentin GmbH 195

Labelstar Office 4.30 Build 1010 IsInitialized Property

IsInitialized Property

Gets a value that indicates whether the Initialize method has been called. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objApp.IsInitialized
Type

Boolean

Remarks

Use this property to check whether the Application object has already been initialized. The Initialize method should be called
once and only once.

See also

» Application Class

» Object Reference

Copyright © Carl Valentin GmbH 196

Labelstar Office 4.30 Build 1010 LabelDir Property

LabelDir Property

Returns the path of the current label folder. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objApp.LabelDir

Type

String

See also

» Application Class

% Object Reference

Copyright © Carl Valentin GmbH 197

Labelstar Office 4.30 Build 1010 LastError Property

LastError Property

Retrieves the calling method's or property's last-error code value. Read-only property.
Namespace: LSOffice

Assembly: LSOffice.dll

Version: 4.10.1010

Usage

objApp.LastError

Type

LSOffice.Error

Remarks

After method or property calls on all OLE Automation objects, this property is updated with the return status information of
the call. To check whether the request has been successful, check HasError property.

For more information, see Error Codes and Messages.

Example (VBScript)

' Display Last Error Sample Code

Option Explicit

' Object variables
Dim objApp
Dim objLabel

' Constants LSOffice.ErrorType

(4]
1

Const ErrorType_Success
Const ErrorType_Warning
Const ErrorType_Error =

N

DisplaylLastError
Purpose:
Shows a message box displaying the last error.

Sub DisplaylLastError()

If (objApp.LastError.ErrorType = ErrorType_Success) Then
Exit Sub
End If

Copyright © Carl Valentin GmbH 198

Labelstar Office 4.30 Build 1010 LastError Property

Dim title
title = "Error”

If (objApp.LastError.ErrorType = ErrorType_Warning) Then
title = "Message"”
End If

MsgBox objApp.LastError.Message, vbOKOnly, title

End Sub

' Open and print label

Set objApp = CreateObject("LSOffice.Application™)
' Application must be initialized before OpenlLabel is called
objApp.Initialize()
DisplaylLastError()

If (objApp.HasError) Then
WScript.Quit
End If

' Open label
Set objLabel = objApp.OpenLabel("..\Labell0.lbex")

If (objLabel is Nothing) Then
DisplayLastError()
WScript.Quit

End If

See also

% Error Class

% Application Class

% Object Reference

Copyright © Carl Valentin GmbH 199

Labelstar Office 4.30 Build 1010 License Property

License Property
Refers to the Licenselnfo object representing the license information. Read-only property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objApp.License
Type

LSOffice.LicenselInfo

Remarks

In the trial version an evaluation mode watermark will be put onto each image and all 'e' are replaced by 'x' and all '5' by '0".

See also

» Licenselnfo Class

» Application Class

» Object Reference

Copyright © Carl Valentin GmbH 200

Labelstar Office 4.30 Build 1010

Application Methods

Application Methods

The Application type exposes the following members.

Methods

Initialize

Initializes the current instance.

GetOpenFilename

Displays the standard Open dialog box and gets a file name from the user without
actually opening any files.

Openlabel

Opens the specified label.

See also

% Application Class

» Object Reference

Copyright © Carl Valentin GmbH

201

Labelstar Office 4.30 Build 1010 Initialize Method

Initialize Method

Initializes the current instance.
Namespace: LSOffice

Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objApp.Initialize ()
Remarks

This method ensures that the current instance is properly initialized before it is used to open labels. It should only be called
once. Check IsInitialized property before calling the method. This method sets the IsInitialized property to true.

Check LastError property to see if the function was completed successfully,

For more information and a detailed example, see OLE Automation -> Your First Application.

See also

% Application Class

3 Object Reference

Copyright © Carl Valentin GmbH 202

Labelstar Office 4.30 Build 1010 GetOpenFilename Method

GetOpenFilename Method

Displays the standard Open dialog box and gets a file name from the user without actually opening any files.
Namespace: LSOffice

Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objApp.GetOpenFilename (filter, [filterIndex], [title])
Parameters

filter
Type: String
A string specifying file filtering criteria.
This string consists of pairs of file filter strings followed by the MS-DOS wildcard file filter specification, with each
part and each pair separated by a vertical bar (|). Each separate pair is listed in the Files of type drop-down list box.
For example, the following string specifies two file filters: "Labels|*.Ibex|All Files|*.*".

To use multiple MS-DOS wildcard expressions for a single file filter type, separate the wildcard expressions with
semicolons; for example, "Visual Basic Files|*.bas;*.txt".

Do not put spaces before or after the vertical bars in the filter string. This will cause incorrect behavior in the
filter.

filterIndex (optional)
Type: Integer
Specifies the index numbers of the default file filtering criteria, from 1 to the number of filters specified in filter. If
this argument is omitted or greater than the number of filters present, the first file filter is used.

title (optional)

Type: String
Specifies the title of the dialog box. If this argument is omitted, the title is "Open".

Return Type
String
Remarks

Returns the selected file name or the name entered by the user. The returned name may include a path specification. Returns
an empty string ("") if the user cancels the dialog box.

This method may change the current drive or folder.

For more information and a detailed example, see OLE Automation -> Your First Application.

See also

% Application Class

» Object Reference

Copyright © Carl Valentin GmbH 203

Labelstar Office 4.30 Build 1010 GetOpenFilename Method

Copyright © Carl Valentin GmbH 204

Labelstar Office 4.30 Build 1010

OpenlLabel Method

Opens the specified label.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objApp.OpenLabel (path)
Parameters
path

Type: String

The path of the label.
Return Type

LSOffice.Label

Remarks

OpenLabel Method

Returns a Label object if opened successfully, otherwise null. To get extended error information, check the value of the

LastError property.

For more information and a detailed example, see OLE Automation -> Your First Application.

See also

3 Label Class

» Application Class

» Object Reference

Copyright © Carl Valentin GmbH

205

Labelstar Office 4.30 Build 1010 Error Class

Error Class

An Error object holds information about the current error state. You can get a reference to an Error object through the
Application.LastError property.

Properties

& Details Detailed message describing the error occurred.
& |ErrorCode Numeric code indicating which error occurred.
& |ErrorType Code indicating the type of the error occurred.
& |Message Message describing the error occurred.

See also

» Object Reference

Copyright © Carl Valentin GmbH 206

Labelstar Office 4.30 Build 1010 Error Properties

Error Properties

The Error type exposes the following members.

Properties

& Details Detailed message describing the error occurred.
& |ErrorCode Numeric code indicating which error occurred.
& |ErrorType Code indicating the type of the error occurred.
& |Message Message describing the error occurred.

See also

% Error Class
» Object Reference

Copyright © Carl Valentin GmbH 207

Labelstar Office 4.30 Build 1010 Details Property

Details Property
Detailed message describing the error occurred. Read-only property.
Namespace: LSOffice

Assembly: LSOffice.dll
Version: 4.10.1010

Usage

objError.Details

Type

String

Remarks

Returns a representation of the current error that is intended to be understood by humans. The detailed message obtains the

Message property, further information about the error, and the stack trace. If any of these members is null, its value is not
included in the return string.

If there is no error or if it is an empty string ("), then no error message is returned.

See also

% Error Class
» Object Reference

Copyright © Carl Valentin GmbH 208

Labelstar Office 4.30 Build 1010 ErrorCode Property

ErrorCode Property

Numeric code indicating which error occurred. Read-only property.
Namespace: LSOffice

Assembly: LSOffice.dll

Version: 4.10.1010

Usage

objError.ErrorCode

Type

Int32

Remarks

If this property is 0, it indicates that no error occured during the last call of a method or property. For more information, see
Error Codes and Messages.

See also

% Error Class
» Object Reference

Copyright © Carl Valentin GmbH 209

Labelstar Office 4.30 Build 1010 ErrorType Property

ErrorType Property
Code indicating the type of the error occurred. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objError.ErrorType

Type

LSOffice.ErrorType

Remarks

If this property is ErrorType.Success, it indicates that no error occurred during the last call of a method or property.

For more information and a detailed example, see Application.LastError property.

See also

% Error Class

% ErrorType Enumeration

» Object Reference

Copyright © Carl Valentin GmbH 210

Labelstar Office 4.30 Build 1010 Message Property

Message Property
Message describing the error occurred. Read-only property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objError.Message
Type
String
Remarks

Returns a representation of the current error that is intended to be understood by humans. If there is no error or if it is an
empty string (""), then no error message is returned. For more information, see Error Codes and Messages.

For more information and a detailed example, see Application.LastError property.

See also

% Error Class
» Object Reference

Copyright © Carl Valentin GmbH 211

Labelstar Office 4.30 Build 1010

ErrorType Enumeration

Specifies the error types.

Namespace: LSOffice
Assembly: LSOffice.dll

Version: 4.10.1010

Members

ErrorType Enumeration

Success 0 (0x00) No error occurred.
Warning 1(0x01) The call succeeded, but there is a potentional problem.
Error 2 (0x02) The call failed.

Remarks

The Error.ErrorType property use this enumeration.

For more information and a detailed example, see Application.LastError property.

See also

% Error Class
% Object Reference

Copyright © Carl Valentin GmbH

212

Labelstar Office 4.30 Build 1010

Field Class

Field Class

A Field object represents a field on the label. It can be used to get information about the field, and to get and set its content

and properties. You can get a reference to a Field object through the Label.GetFieldBylndex or Label.GetFieldByName

method.

Properties

& FieldName Gets the name of the field.

fa] Locked Gets a value that indicates whether the field can be modified.
Printable Gets or sets a value that indicates whether the field is printed.

Methods

GetContent

Gets the content of the field.

GetPropertyValue

Gets the value of the specified property.

SetContent

Sets the content of the field.

SetPropertyValue

Sets the value of the specified property.

See also

» Object Reference

Copyright © Carl Valentin GmbH

213

Labelstar Office 4.30 Build 1010 Field Properties

Field Properties

The Field type exposes the following members.

Properties
& FieldName Gets the name of the field.
fa] Locked Gets a value that indicates whether the field can be modified.
Printable Gets or sets a value that indicates whether the field is printed.
See also
% Field Class

» Object Reference

Copyright © Carl Valentin GmbH 214

Labelstar Office 4.30 Build 1010 FieldName Property

FieldName Property

Gets the name of the field. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objField.FieldName

Type

String

See also

% Field Class

% Object Reference

Copyright © Carl Valentin GmbH 215

Labelstar Office 4.30 Build 1010 Locked Property

Locked Property
Gets a value that indicates whether the field can be modified. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objField.Locked

Type

Boolean

See also

% Field Class

% Object Reference

Copyright © Carl Valentin GmbH 216

Labelstar Office 4.30 Build 1010

Printable Property

Printable Property

Gets or sets a value that indicates whether the field is printed.
Namespace: LSOffice

Assembly: LSOffice.dll

Version: 4.10.1010

Usage

objField.Printable

Type

Boolean

Example (VBScript)

Set Printable Property Sample Code

Option Explicit

Object variables

Dim objApp
Dim objLabel
Dim objField

Set printable property

objApp.Initialize()

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Open label

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

Get field by name

Set objApp = CreateObject("LSOffice.Application™)

Set objLabel = objApp.OpenLabel("..\Labell.lbex")

Set objField = objLabel.GetFieldByName("Barcodel™)

Application must be initialized before OpenLabel is called

Copyright © Carl Valentin GmbH

217

Labelstar Office 4.30 Build 1010

Printable Property

If (objField Is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

Set property and print label
Dim msg
msg = MsgBox("Print barcode?", vbYesNo, objField.FieldName)

objField.Printable = (msg = vbYes)
objLabel.Print(1)

See also

» Field Class
» Object Reference

Copyright © Carl Valentin GmbH

218

Labelstar Office 4.30 Build 1010 Field Methods

Field Methods

The Field type exposes the following members.

Methods
GetContent Gets the content of the field.
GetPropertyValue Gets the value of the specified property.
SetContent Sets the content of the field.
SetPropertyValue Sets the value of the specified property.
See also
% Field Class

» Object Reference

Copyright © Carl Valentin GmbH 219

Labelstar Office 4.30 Build 1010

GetContent Method

Gets the content of the field.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objField.GetContent()
Return Type

String

Remarks

If the method succeeds it returns the content of the field, otherwise an empty string (

information about possible errors.

Example (VBScript)

GetContent Method

). Call Application.LastError for

' Change Field Content Sample Code

Option Explicit

Object variables

Dim objApp
Dim objLabel
Dim objField

Change field content

objApp.Initialize()
If (objApp.HasError) Then

WScript.Quit
End If

' Open label

If (objLabel is Nothing) Then

WScript.Quit

WScript.Echo objApp.LastError.Message

WScript.Echo objApp.LastError.Message

Set objApp = CreateObject("LSOffice.Application™)

Set objLabel = objApp.OpenLabel("..\Labell.lbex")

Application must be initialized before OpenLabel is called

Copyright © Carl Valentin GmbH

220

Labelstar Office 4.30 Build 1010

GetContent Method

End If
' Get field by name
Set objField = objLabel.GetFieldByName("Text1l")

If (objField Is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

" Enter new field content

Dim result

result = InputBox("Field content:", objField.FieldName, objField.GetContent())

Evaluate the user input
If result <> "" Then
' Set field content and print label
objField.SetContent(result)
objLabel.Print(1)
End If

See also

3 Field Class
3 Object Reference

Copyright © Carl Valentin GmbH

221

Labelstar Office 4.30 Build 1010 GetPropertyValue Method

GetPropertyValue Method

Gets the value of the specified property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objField.GetPropertyValue(propertyName)
Parameters
propertyName

Type: String

The name of the property.

The following table describes some possible property names.

Printable Type: Boolean

false or 0: field is not printed
true or 1: field is printed

See also: Printable Property

Locked Type: Boolean
false or O: field is not locked
true or 1: field is locked

See also: Locked Property

TextAlignment Text/Barcode only
Type: Integer

0: Left

1: Center

2: Right

3: Justify

HumanReadable Barcode only

Type: Boolean

false or 0: Don't show plain text
true or 1: Show plain text

Return Type
Object
Remarks

If the method succeeds it returns the value of the property, otherwise null. Call Application.LastError for information about
possible errors.

Example (VBScript)

Change Text Alignment Sample Code

Copyright © Carl Valentin GmbH 222

Labelstar Office 4.30 Build 1010

GetPropertyValue Method

Option Explicit

' Object variables
Dim objApp

Dim objLabel

Dim objField

Select text alignment
Purpose:
Displays a message box to select the text alignment option.

Function SelectTextAlignment

SelectTextAlignment = -1

Dim text

text = "Text alignment:" & vbCrLf & vbCrLf

text = text & "0" & vbTab & "Left aligned” & vbCrLf
text = text & "1" & vbTab & "Centered" & vbCrLf
text = text & "2" & vbTab & "Right aligned”

' Show all available printers and allow a user selection
Dim tmp
tmp = InputBox(text, "Select text alignment"”, "0")

If tmp = "" Then
WScript.Echo "No user input, aborted"
Exit Function

End If

tmp = CInt(tmp)

If (tmp < ©) Or (tmp > 2) Then
WScript.Echo "Wrong value, aborted”
Exit Function

End If

' Set text alignment

SelectTextAlignment = tmp

End Function

' Change text alignment

Set objApp = CreateObject("LSOffice.Application™)

Application must be initialized before OpenLabel is called
objApp.Initialize()

If (objApp.HasError) Then

Copyright © Carl Valentin GmbH

223

Labelstar Office 4.30 Build 1010 GetPropertyValue Method

WScript.Echo objApp.LastError.Message
WScript.Quit
End If

' Open label
Set objLabel = objApp.OpenLabel("..\Label4.lbex")

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Get field by name

Set objField = objLabel.GetFieldByName("Text1l")

If (objField is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Select text alignment

Dim textAlignment

textAlignment = SelectTextAlignment()

If (textAlignment < ©) Then
WScript.Quit

End If

' Set text alignment and print label

objField.SetPropertyValue "TextAlignment", textAlignment

objLabel.Print(1)

See also

» Field Class
» Object Reference

Copyright © Carl Valentin GmbH 224

Labelstar Office 4.30 Build 1010 SetContent Method

SetContent Method

Sets the content of the field.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objField.SetContent(content)
Parameters
content

Type: String

The new content.

Remarks

Call Application.LastError for information about possible errors.

For more information and a detailed example, see Field.GetContent method.

See also

% Field Class
» Object Reference

Copyright © Carl Valentin GmbH 225

Labelstar Office 4.30 Build 1010 SetPropertyValue Method

SetPropertyValue Method

Sets the value of the specified property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objField.SetPropertyValue(propertyName, value)
Parameters
propertyName
Type: String
The name of the property.

The following table describes some possible property names.

Printable Type: Boolean

false or 0: field is not printed
true or 1: field is printed

See also: Printable property

Locked Type: Boolean

false or O: field is not locked
true or 1: field is locked

See also: Locked property

TextAlignment Text/Barcode only
Type: Integer

0: Left

1: Center

2: Right

HumanReadable Barcode only

Type: Boolean

false or 0: Don't show plain text
true or 1: Show plain text

value

Type: Object

The value to set the property to.
Remarks

Call Application.LastError for information about possible errors.

For more information and a detailed example, see Field.GetPropertyValue method.

See also

% Field Class

Copyright © Carl Valentin GmbH 226

Labelstar Office 4.30 Build 1010 SetPropertyValue Method

» Object Reference

Copyright © Carl Valentin GmbH 227

Labelstar Office 4.30 Build 1010

ImageFormat Enumeration

Specifies file save format.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.20.1040

Members

ImageFormat Enumeration

Bmp 0 (0x00) Saves the image as a bitmap (BMP).
Gif 1(0x01) Saves the image using the GIF image format.
Jpeg 2 (0x02) Saves the image using the Joint Photographic Experts Group (JPEG) image
format.
Png 3 (0x03) Saves the image using the W3C Portable Network Graphics (PNG) image
format.
See also

3 SavePreview Method

» Object Reference

Copyright © Carl Valentin GmbH

228

Labelstar Office 4.30 Build 1010

Label Class

Label Class

A Label object represents an opened label. You can get a reference to a Label object by calling the Application.OpenLabel

method.

Properties

ActivePrinter Gets or sets the name of the active printer.
CurrentRecord Gets or sets the one-based index of the current record to be printed.
& FieldCount Gets the number of fields defined on the label.
& |FieldNames Gets the list of field names defined on the label.
& |IsDataAvailable Determines if there are database fields defined on the label.
& |LabelPath Gets the path to the opened label.
& MaxRecord Returns the maximum number of records in the database.
& |Modified Gets a value that indicates that the label has been modified.
PageName Gets or sets the current page name.
Methods
GetFieldBylndex Gets the field with the given index.
GetFieldByName Searches for the field with the specified name.
GetPreview Retrieves a preview image of the current label content.
GetPropertyValue Gets the value of the specified property.
Print Prints the label.
PrintToFile Prints the label to a file.
Save Saves changes to the label.
SaveAs Saves changes to the label in a different file.
SavePreview Saves a preview of the current label.
SelectRecord Sets the current record to the first record matching the filter expression.
SetPropertyValue Sets the value of the specified property.
See also

» Object Reference

Copyright © Carl Valentin GmbH

229

Labelstar Office 4.30 Build 1010 Label Properties

Label Properties

The Label type exposes the following members.

Properties
ActivePrinter Gets or sets the name of the active printer.
CurrentRecord Gets or sets the one-based index of the current record to be printed.
& FieldCount Gets the number of fields defined on the label.
fa] FieldNames Gets the list of field names defined on the label.
fa] IsDataAvailable Determines if there are database fields defined on the label.
& |LabelPath Gets the path to the opened label.
fa] MaxRecord Returns the maximum number of records in the database.
fa] Modified Gets a value that indicates that the label has been modified.
PageName Gets or sets the current page name.
See also
% Label Class

» Object Reference

Copyright © Carl Valentin GmbH 230

Labelstar Office 4.30 Build 1010 ActivePrinter Property

ActivePrinter Property
Gets or sets the name of the active printer.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.ActivePrinter
Type

String

Example (VBScript)

' Change Printer Name Sample Code

Option Explicit

' Object variables
Dim objApp
Dim objLabel

Select printer
Purpose:
Displays a message box to select one of the available printers.

Function SelectPrinter(activePrinter)

SelectPrinter =

' Read all printers
Dim wshNetwork, objPrinters
Set wshNetwork = WScript.CreateObject("WScript.Network™)

Set objPrinters = wshNetwork.EnumPrinterConnections
Dim text, i, j, index

text = "Available printers:" & vbCrLf & vbCrLf
j = objPrinters.Count
index = ©

For i =0 To j - 1 Step 2
If (objPrinters(i+l) = activePrinter) Then

index = i/2
End If

Copyright © Carl Valentin GmbH 231

Labelstar Office 4.30 Build 1010

ActivePrinter Property

text
text

text & (i/2) & vbTab
text & objPrinters(i+l) & vbCrLf

Next
' Show all available printers and allow a user selection
Dim tmp

tmp = InputBox(text, "Select printer", index)

If tmp = "" Then
WScript.Echo "No user input, aborted"
Exit Function

End If

tmp = CInt(tmp)

If (tmp < @) Or (tmp > (j/2 - 1)) Then
WScript.Echo "Wrong value, aborted”
Exit Function

End If

' Set printer name

SelectPrinter = objPrinters(tmp*2 + 1)

End Function

' Change printer name

Set objApp = CreateObject("LSOffice.Application™)
" Application must be initialized before OpenlLabel is called
objApp.Initialize()

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Open label
Set objLabel = objApp.OpenLabel("..\Labell.lbex")

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

' Select printer

Dim activePrinter

activePrinter = SelectPrinter(objLabel.ActivePrinter)

If (activePrinter = "") Then
WScript.Quit
End If

Set active printer and print label

Copyright © Carl Valentin GmbH

232

Labelstar Office 4.30 Build 1010 ActivePrinter Property

objLabel.ActivePrinter = activePrinter
objLabel.Print(1)

See also

% Label Class
% Object Reference

Copyright © Carl Valentin GmbH 233

Labelstar Office 4.30 Build 1010 CurrentRecord Property

CurrentRecord Property

Gets or sets the one-based index of the current record to be printed.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.CurrentRecord
Type

Integer

Remarks

To check if database fields are defined on the label use IsDataAvailable property.

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 234

Labelstar Office 4.30 Build 1010 FieldCount Property

FieldCount Property
Gets the number of fields defined on the label. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.FieldCount

Type

Integer

See also

% Label Class

% Object Reference

Copyright © Carl Valentin GmbH 235

Labelstar Office 4.30 Build 1010

FieldNames Property

FieldNames Property

Gets the list of field names defined on the label. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.FieldNames
Type

String[]

Example (VBScript)

' Display Field Names Sample Code

Option Explicit

' Object variables

Dim objApp

DisplayFieldNames
Purpose:

' label.
Sub DisplayFieldNames(labelName)

' Open label
Dim objLabel
Set objLabel = objApp.OpenLabel(labelName)

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
Exit Sub

End If

Format field names
Dim fieldNames
fieldNames = objlLabel.FieldNames

Dim text, i, j

j = UBound(fieldNames)

text = "Available fields:" & vbCrLf & vbCrLf

A message box is displayed showing all fields defined on the

Copyright © Carl Valentin GmbH

236

Labelstar Office 4.30 Build 1010

FieldNames Property

For i = 0 To j Step 1

text = text & i & vbTab

text = text & fieldNames(i) & vbCrLf
Next

MsgBox labelName & vbCrLf & vbCrLf & text, vbOKOnly, "Field names”

End Sub

Display field names

Set objApp = CreateObject("LSOffice.Application™)

" Application must be initialized before OpenLabel is called
objApp.Initialize()

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Message
WScript.Quit
End If
' Display field names
DisplayFieldNames "..\Labell.lbex"
DisplayFieldNames "..\Label2.lbex"
DisplayFieldNames "..\Label3.lbex"

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH

237

Labelstar Office 4.30 Build 1010 IsDataAvailable Property

IsDataAvailable Property
Determines if there are database fields defined on the label. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.IsDataAvailable

Type

Boolean

See also

% Label Class

% Object Reference

Copyright © Carl Valentin GmbH 238

Labelstar Office 4.30 Build 1010 LabelPath Property

LabelPath Property

Gets the path to the opened label. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.LabelPath

Type

String

See also

% Label Class

% Object Reference

Copyright © Carl Valentin GmbH 239

Labelstar Office 4.30 Build 1010 MaxRecord Property

MaxRecord Property
Returns the maximum number of records in the database. Read-only property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objLabel.MaxRecord
Type
Integer

Remarks

Returns the maximum number of records in the database, or 0 if no database fields are defined on the label. To check if
database fields are defined on the label use IsDataAvailable property.

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 240

Labelstar Office 4.30 Build 1010 Modified Property

Modified Property
Gets a value that indicates that the label has been modified. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.Modified

Type

Boolean

See also

% Label Class

% Object Reference

Copyright © Carl Valentin GmbH 241

Labelstar Office 4.30 Build 1010 PageName Property

PageName Property
Gets or sets the current page name.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.20.1040

Usage
objLabel.PageName
Type

String

Remarks

The page name is displayed in the printer display during printing.

Varic IITI 107712

Lakbell Erint
E 00100 D O000o03=

See also

% Label Class
» Object Reference

Copyright © Carl Valentin GmbH 242

Labelstar Office 4.30 Build 1010

Label Methods

Label Methods

The Label type exposes the following members.

Methods

GetFieldBylndex

Gets the field with the given index.

GetFieldByName

Searches for the field with the specified name.

GetPreview

Retrieves a preview image of the current label content.

GetPropertyValue

Gets the value of the specified property.

Print Prints the label.

PrintToFile Prints the label to a file.

Save Saves changes to the label.

SaveAs Saves changes to the label in a different file.

SavePreview

Saves a preview of the current label.

SelectRecord

Sets the current record to the first record matching the filter expression.

SetPropertyValue

Sets the value of the specified property.

See also

% Label Class
» Object Reference

Copyright © Carl Valentin GmbH

243

Labelstar Office 4.30 Build 1010 GetFieldBylndex Method

GetFieldBylndex Method

Gets the field with the given index.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objLabel.GetField (index)
Parameters
index
Type: Integer
Zero-based index of the field.

Return Type

LSOffice.Field

Remarks

This method returns a Field object on the indicated field, if found; otherwise, null. To get extended error information, check
the value of the Application.LastError property.

See also

3 GetFieldByName Method
» Label Class

» Object Reference

Copyright © Carl Valentin GmbH 244

Labelstar Office 4.30 Build 1010 GetFieldByName Method

GetFieldByName Method

Searches for the field with the specified name.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objLabel.GetField (fieldName)
Parameters
fieldName
Type: String
The string containing the name of the field to get.

Return Type

LSOffice.Field

Remarks

Returns a Field object representing the field with the specified name, if found; otherwise, null. To get extended error
information, check the value of the Application.LastError property.

For more information and a detailed example, see Field.GetContent method.

See also

3 GetFieldBylndex Method

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 245

Labelstar Office 4.30 Build 1010 GetPreview Method

GetPreview Method

Retrieves a preview image of the current label content.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.GetPreview ()
Return Type

object

Remarks

Returns a Bitmap object representing the preview, if a valid label is opened; otherwise, null.

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 246

Labelstar Office 4.30 Build 1010 GetPropertyValue Method

GetPropertyValue Method

Gets the value of the specified property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.20.1040
Usage
objLabel.GetPropertyValue (propertyName)
Parameter
propertyName
Type: String
The name of the property.

The following table describes some possible property names.

LabelRotation Type: Integer
0, 90, 180, 270
LabelType Type: Integer

0 : Adhesive labels
1 : Continuous labels

Return type

Object

See also

3 Label Class
3 Object Reference

Copyright © Carl Valentin GmbH 247

Labelstar Office 4.30 Build 1010 Print Method

Print Method

Prints the label.
Namespace: LSOffice

Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.Print (copies, [options])
Parameters
copies
Type: Integer
Number of copies to print. If copies > 0 the Print dialog box will not be shown.
options (optional)

Type: LSOffice.PrintOptions
Print options

Remarks

Check Application.LastError property to see if the function was completed successfully,

For more information and a detailed example, see OLE Automation -> Your First Application or SelectRecord method.

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 248

Labelstar Office 4.30 Build 1010 PrintToFile Method

PrintToFile Method

Prints the label to a file.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.20.1040

Usage
objLabel.PrintToFile (fileName, copies, [options])
Parameters
fileName
Type: String
File name
copies
Type: Integer
Number of copies to print. If copies > 0 the Print dialog box will not be shown.
options (optional)

Type: LSOffice.PrintOptions
Print options

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH 249

Labelstar Office 4.30 Build 1010 Save Method

Save Method

Saves changes to the label.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage

objLabel.Save ()

Remarks

Check Application.LastError property to see if the function was completed successfully,

See also

% Label Class

3 Object Reference

Copyright © Carl Valentin GmbH 250

Labelstar Office 4.30 Build 1010

SaveAs Method

Saves changes to the label in a different file.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objLabel.SaveAs (path)
Parameters
path

Type: String

The name of the file to be saved.

Remarks

Check Application.LastError property to see if the function was completed successfully,

See also

% Label Class
» Object Reference

SaveAs Method

Copyright © Carl Valentin GmbH

251

Labelstar Office 4.30 Build 1010 SavePreview Method

SavePreview Method

Saves a preview of the current label.
Namespace: LSOffice

Assembly: LSOffice.dll
Version: 4.20.1040

Usage
objLabel.SavePreview (fileName, [format])
Parameters
fileName
Type: String
File name
format (optional, Standard = Bmp)

Type: LSOffice.ImageFormat
File format

See also

% Label Class

% Object Reference

Copyright © Carl Valentin GmbH 252

Labelstar Office 4.30 Build 1010

SelectRecord Method

SelectRecord Method

Sets the current record to the first record matching the filter expression.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLabel.SelectRecord (filterExpression)
Parameters

filterExpression
Type: String

The criteria to use to filter the records. For examples on how to filter records, see Filter Expression Syntax.

Remarks

Check Application.LastError property to see if the function was completed successfully,

Example (VBScript)

' Print Record Sample Code

Option Explicit

' Object variables
Dim objApp
Dim objLabel

' Constants LSOffice.PrintOptions

Const PrintOptions_PrintCurrentRecord = 1
Const PrintOptions_PrintAllRecords = 2
Const PrintOptions_Default = ©

Print record

objApp.Initialize()
If (objApp.HasError) Then

WScript.Quit
End If

WScript.Echo objApp.LastError.Message

Set objApp = CreateObject("LSOffice.Application™)

Application must be initialized before OpenLabel is called

Copyright © Carl Valentin GmbH

253

Labelstar Office 4.30 Build 1010 SelectRecord Method

' Open label
Set objLabel = objApp.OpenLabel("..\Label3.lbex")

If (objLabel is Nothing) Then
WScript.Echo objApp.LastError.Message
WScript.Quit
End If
' Enter selection string
Dim tmp
tmp = InputBox("Native name starts with:" & vbCrLf & vbCrLf & "de" & vbTab & "Deutschland" &
vbCrLf & "fr" & vbTab & "France" & vbCrLf & "it" & vbTab & "Italia" & vbCrLf & "es" & vbTab &
"Espana" & vbCrLf & "..." & vbCrLf, "Select Record"”, "de")

If tmp = "" Then
WScript.Echo "No user input, aborted”
WScript.Quit
End If
' Select record and print label
objLabel.SelectRecord("NativeName LIKE """ & tmp & "%'")

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Message
WScript.Quit

End If

objLabel.Print 1, PrintOptions_PrintCurrentRecord

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH

254

Labelstar Office 4.30 Build 1010 Filter Expression Syntax

Filter Expression Syntax

This example describes syntax of filter expression. It shows how to correctly build aexpression string (without ,SQL injection”)
using methods to escape values.

Column Names

If a column name contains any of these special characters ~ () #\/=> < +-*% & | ~ ' "[], you must enclose the column
name within square brackets []. If a column name contains right bracket] or backslash \, escape it with backslash (\] or \\).

Filter = "id = 10" No special character in column name "id".
Filter = "$id = 10" No special character in column name "$id".
Filter = "[#id] = 10" Special character "#" in column name "#id".
Filter = "[[id\]] = 10" Special characters in column name "[id]".
Literals

String values are enclosed within single quotes ' '. If the string contains single quote *, the quote must be doubled.

Filter = "Name = 'John" String value.
Filter = "Name = 'John "A"™" String with single quotes "John 'A™.

Number values are not enclosed within any characters. The values should be formatted in English locale format.

i

Filter = "Year = 2008" Integer value.
Filter = "Price = 1199.9" Float value.

Date values are enclosed within sharp characters # #. The date format is the same as for English culture.

Filter = "Date = #12/31/2008#" Date value (time is 00:00:00).
Filter = "Date = #2008-12-31#" | Also this format is supported.

Filter = "Date = #12/31/2008 Date and time value.
16:44:58#"

Alternatively you can enclose all values within single quotes ' '. It means you can use string values for numbers or date time
values. In this case the current culture is used to convert the string to the specific value.

Filter = "Date = '12/31/2008 Current culture is English.
16:44:58"
Filter = "Date = '31.12.2008 Current culture is German.
16:44:58"
Filter = "Price = '1199.90™" Current culture is English.
Filter = "Price = '1199,90™ Current culture is German.

Comparison Operators

Equal, not equal, less, greater operators are used to include only values that suit to a comparison expression. You can use
these operators = <> < <= > >=,

Copyright © Carl Valentin GmbH 255

Labelstar Office 4.30 Build 1010

Filter Expression Syntax

Note: String comparison is culture-sensitive.

i

Filter = "Num = 10" Number is equal to 10.
Filter = "Date < #1/1/2008#" Date is less than 1/1/2008.
Filter = "Name <> 'John" String is not equal to 'John'.
Filter = "Name >="Jo" String comparison.

Operator IN is used to include only values from the list. You can use the operator for all data types, such as numbers or
strings.

Filter = "Id IN (1, 2, 3)" Integer values.

Filter = "Price IN (1.0, 9.9, 11.5)" |Float values.

Filter = "Name IN (‘John', 'Jim’, String values.

‘Tom")"

Filter = "Date IN (#12/31/2008#, |Date time values.
#1/1/2009#)"

Filter = "Id NOT IN (1, 2, 3)" Values not from the list.

Operator LIKE is used to include only values that match a pattern with wildcards. Wildcard character is * or %, it can be at
the beginning of a pattern "*value', at the end 'value*', or at both "*value*'. Wildcard in the middle of a patern 'va*lue' is not

allowed.

Filter = "Name LIKE ‘j**" Values that start with 'j'.
Filter = "Name LIKE '%jo%"" Values that contain 'jo'.
Filter = "Name NOT LIKE 'j**" Values that don't start with 'j'.

If a pattern in a LIKE clause contains any of these special characters * % [], those characters must be escaped in brackets []
like this [*], [%], [[] or [I].

Filter = "Name LIKE '[*]*"" Values that starts with '*'.
Filter = "Name LIKE '[[]*"" Values that starts with '['.

Boolean Operators

Boolean operators AND, OR and NOT are used to concatenate expressions. Operator NOT has precedence over AND
operator and it has precedence over OR operator.

Filter = "City = 'Tokyo' AND (Age Operator AND has precedence over OR operator, parenthesis are needed.
< 20 OR Age > 60)"
Filter = "City <> 'Tokyo' AND City | These examples do the same.
<> 'Paris';

Filter = "NOT City = 'Tokyo' AND
NOT City = 'Paris";

Filter = "NOT (City = 'Tokyo' OR

City = 'Paris’)";
Filter = "City NOT IN (‘Tokyo,
'Paris')";

Copyright © Carl Valentin GmbH

256

Labelstar Office 4.30 Build 1010 Filter Expression Syntax

Arithmetic and String Operators

Arithmetic operators are addition +, subtraction -, multiplication *, division / and modulus %.

Filter = "MotherAge - Age < |People with young mother.
20"

Filter = "Age % 10 = 0" People with decennial birthday.

There is also one string operator concatenation +.
Parent-Child Relation Referencing

A parent table can be referenced in an expression using parent column name with Parent. prefix. A column in a child table
can be referenced using child column name with Child. prefix.

The reference to the child column must be in an aggregate function because child relationships may return multiple rows. For
example expression SUM(Child.Price) returns sum of all prices in child table related to the row in parent table.

If a table has more than one child relation, the prefix must contain relation name. For example expression

Child(OrdersToItemsRelation).Price references to column Price in child table using relation named
OrdersToltemsRelation.

Aggregate Functions

There are supported following aggregate functions SUM, COUNT, MIN, MAX, AVG (average), STDEV (statistical standard
deviation) and VAR (statistical variance).

Filter = "Salary > Select people with above-average salary.
AVG(Salary)"
Filter = Select orders which have more than 5 items.

"COUNT(Child.IdOrder) > 5"

Filter = "SUM(Child.Price) Select orders which total price (sum of items prices) is greater or equal $500.
>= 500"

Functions

There are also supported following functions. Detailed description can be found here Filter Expression Functions.

CONVERT — converts particular expression to a specified type

LEN — gets the length of a string

ISNULL — checks an expression and either returns the checked expression or a replacement value

IIF — gets one of two values depending on the result of a logical expression

TRIM - removes all leading and trailing blank characters like \r, \n, \t, ,
SUBSTRING — gets a sub-string of a specified length, starting at a specified point in the string

See also

» Filter Expression Functions

% SelectRecord Method

Copyright © Carl Valentin GmbH 257

Labelstar Office 4.30 Build 1010 Filter Expression Syntax

% Label Class
» Object Reference

Copyright © Carl Valentin GmbH 258

Labelstar Office 4.30 Build 1010

Filter Expression Functions

Filter Expression Functions

The following functions are supported:

CONVERT

Description
Syntax
Arguments

Example

Converts particular expression to a specified type.
CONVERT (expression, type)
expression -- The expression to convert.

type -- The type to which the value will be converted.
Expression = "Convert (total, 'System.Int32')"

All conversions are valid with the following exceptions: Boolean can be coerced to and from Byte, SByte, Int16, Int32,
Int64, UInt16, Uint32, UInt64, String and itself only. Char can be coerced to and from Int32, UInt32, String, and itself only.
DateTime can be coerced to and from String and itself only. TimeSpan can be coerced to and from String and itself only.

LEN

Description
Syntax
Arguments
Example

ISNULL

Description
Syntax
Arguments

Example
IF

Description
Syntax
Arguments

Example
TRIM

Description
Syntax
Arguments

SUBSTRING

Gets the length of a string.

LEN (expression)

expression -- The expression to evaluated.
Expression = "Len (item)"

Checks an expression and either returns the checked expression or a replacement value.
ISNULL (expression, replacementvalue)
expression -- The expression to check.

replacementuvalue -- If expression is Nothing, replacementvalue is returned.
Expression = "IsNull (price, -1)"

Gets one of two values depending on the result of a logical expression.
IIF (expression, truepart, falsepart)
expression -- The expression to evaluated.

truepart -- The value to return if the expression is true.

falsepart -- The value to return if the expression is false.
Expression = "lIF (total>1000, 'expensive’, ‘dear’)

Removes all leading and trailing blank characters like \r, \n, \t, " ".
TRIM (expression)
expression -- The expression to trim.

Copyright © Carl Valentin GmbH 259

Labelstar Office 4.30 Build 1010 Filter Expression Functions

Description Gets a sub-string of a specified length, starting at a specified point in the string.
Syntax SUBSTRING (expression, start, length)
Arguments expression -- The source string for the substring.

start -- Integer that specifies where the substring starts.

length -- Integer that specifies the length of the substring.
Example Expression = "SubString (phone, 7, 8)"

See also

3 Filter Expression Syntax

% SelectRecord Method

% Label Class
» Object Reference

Copyright © Carl Valentin GmbH 260

Labelstar Office 4.30 Build 1010 SetPropertyValue Method

SetPropertyValue Method

Sets the value of the specified property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.20.1040
Usage
objLabel.SetPropertyValue (propertyName, value)
Parameter
propertyName
Type: String
The name of the property.

The following table describes some possible property names.

LabelRotation Type: Integer
0, 90, 180, 270
LabelType Type: Integer

0 : Adhesive labels
1 : Continuous labels

value
Type: Object
The value to set the property to.

See also

% Label Class
» Object Reference

Copyright © Carl Valentin GmbH 261

Labelstar Office 4.30 Build 1010 Licenselnfo Class

Licenselnfo Class

A Licenselnfo object represents the license information. You can get a reference to a Licenselnfo object through the
Application.License property.

Properties

& IsTrialVersion Gets a value that indicates whether the application is in trial mode.
& |LicenseKey Gets the license key used to to activate Labelstar Office.

& LicenseType Gets the license type.

See also

% Object Reference

Copyright © Carl Valentin GmbH 262

Labelstar Office 4.30 Build 1010 Licenselnfo Properties

Licenselnfo Properties

The Licenselnfo type exposes the following members.

Properties

& IsTrialVersion Gets a value that indicates whether the application is in trial mode.
& |LicenseKey Gets the license key used to to activate Labelstar Office.

& LicenseType Gets the license type.

See also

% Licenselnfo Class

» Object Reference

Copyright © Carl Valentin GmbH 263

Labelstar Office 4.30 Build 1010 IsTrialVersion Property

IsTrialVersion Property
Gets a value that indicates whether the application is in trial mode. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLicense.IsTrialVersion
Type

Boolean

Remarks

In the trial version an evaluation mode watermark will be put onto each image and all 'e' are replaced by 'x' and all '5' by '0".

See also

» Licenselnfo Class

» Object Reference

Copyright © Carl Valentin GmbH 264

Labelstar Office 4.30 Build 1010 LicenseKey Property

LicenseKey Property

Gets the license key used to to activate Labelstar Office. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objLicense.LicenseKey

Type

String

See also

% Licenselnfo Class

% Object Reference

Copyright © Carl Valentin GmbH 265

Labelstar Office 4.30 Build 1010 LicenseType Property

LicenseType Property
Gets the license type. Read-only property.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010
Usage
objLicense.LicenseType
Type
String
Remarks

Possible license types are TRIAL, LITE, BASIC or PROFESSIONAL.

For more information, see Program Variants.

See also

» Licenselnfo Class

» Object Reference

Copyright © Carl Valentin GmbH 266

Labelstar Office 4.30 Build 1010

PrintOptions Enumeration

Specifies the print options.
Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Members

PrintOptions Enumeration

Default 0 (0x00) Default settings

PrintAllRecords 1 (0x01) Prints all records. Select Record dialog box will not be shown.

PrintCurrentRecord 2 (0x02) Prints the current selected record. Select Record dialog box will no be
shown.

ShowPrintingDialog 4 (0x04) Shows a Printing dialog box as long as labels are sent to the printer. If you

click the Cancel button in this Printing dialog box to stop the operation.

Printing X

Page 1 of Labell

Cancel

decide to cancel the printing process - and you're quick enough - you can

ShowNotificationMessage

8 (0x08)

Shows a notification at the bottom-right of your screen when a label is
printed.

(%]
IE] Labelt is printed...

Vario Il 10712
29.07.201410:22:30

Remarks

This enumeration allows a bitwise combination of its member values.

The Label.Print method use this enumeration.

For more information and a detailed example, see Label.SelectRecord method.

See also

» Label Class
» Object Reference

Copyright © Carl Valentin GmbH

267

Labelstar Office 4.30 Build 1010 VersionInfo Class

Versionlnfo Class

A VersionInfo object represents the version information about the APl on top of which the application runs. You can get
a reference to a VersionlInfo object through the Application.Info property. The version information is useful to ensure the
application is using the proper version of the API.

Properties

& |CompanyName Gets the company name associated with the API.

& CompiledVersion Internal version number of the API (this field is for internal use only - see
DisplayVersion property for the version string that is displayed to the users).

& | Copyright Gets the copyright notice associated with the API.

& |DisplayVersion Version to be displayed to the users.

& ProductName Gets the product name associated with the API.

See also

» Object Reference

Copyright © Carl Valentin GmbH 268

Labelstar Office 4.30 Build 1010 VersionInfo Properties

Versioninfo Properties

The VersionInfo type exposes the following members.

Properties

& |CompanyName Gets the company name associated with the API.

& | CompiledVersion Internal version number of the API (this field is for internal use only - see
DisplayVersion property for the version string that is displayed to the users).

& | Copyright Gets the copyright notice associated with the API.

& |DisplayVersion Version to be displayed to the users.

& ProductName Gets the product name associated with the API.

See also

» Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 269

Labelstar Office 4.30 Build 1010 CompanyName Property

CompanyName Property
Gets the company name associated with the API. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objVersion.CompanyName
Type

String

Example

CompanyName: "Carl Valentin GmbH"

See also

% Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 270

Labelstar Office 4.30 Build 1010 CompiledVersion Property

CompiledVersion Property

Internal version number of the API (this field is for internal use only - see DisplayVersion property for the version string that is
displayed to the users). Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll

Version: 4.10.1010

Usage
objVersion.CompiledVersion
Type

String

Example

CompiledVersion: "4.10.1010"

See also

% Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 271

Labelstar Office 4.30 Build 1010 Copyright Property

Copyright Property
Gets the copyright notice associated with the API. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objVersion.Copyright
Type

String

Example

Copyright: "Copyright © Carl Valentin GmbH, 2012-2014"

See also

% Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 272

Labelstar Office 4.30 Build 1010 DisplayVersion Property

DisplayVersion Property
Version to be displayed to the users. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objVersion.DisplayVersion
Type

String

Example

DisplayVersion: "Version 4.10 Build 1010"

See also

% Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 273

Labelstar Office 4.30 Build 1010 ProductName Property

ProductName Property

Name of the product. Read-only property.

Namespace: LSOffice
Assembly: LSOffice.dll
Version: 4.10.1010

Usage
objVersion.ProductName
Type

String

Example

ProductName: "Labelstar Office"

See also

% Versioninfo Class

» Object Reference

Copyright © Carl Valentin GmbH 274

Labelstar Office 4.30 Build 1010 Error Codes and Messages

Error Codes and Messages
Labelstar Office follows the standard OLE Automation approach for generating errors.
Runtime Error Handling

When handling errors, determine if the error was caused by using OLE Automation incorrectly, or if the error was returned
from an OLE Automation feature API call. When the error was returned from an OLE Automation feature API call use
Application.LastError property to get further error information. Each call to an OLE Automation feature API (expect LastError)
resets the error information, so that Application.LastError property obtains error information only for the most recent OLE
Automation feature API call.

Runtime Error Codes

1000 Generic error. Error
1001 The application is alread initialized. Warning
1002 Invalid license key. Warning
1003 Invalid license type; Professional license expected. Warning
1004 Application not initialized; call Initialize() first. Error
1005 No label opened. Error
1006 Invalid field name. Error
1007 No field defined. Error
1008 Field index out of range. Error
1009 Invalid property name. Error
1010 No database fields defined on the label. Error
1011 No record found. Error
1012 Multiple database connections. Error

Sample Runtime Error Handling (VBScript)

Copyright © Carl Valentin GmbH 275

Labelstar Office 4.30 Build 1010

Error Codes and Messages

' Open and print label

Set objApp = CreateCbject ("L30ffice.Application™)

ocbjApp.Initialize ()

If (objApp.HasError) Then
WScript.Echo objApp.LastError.Mez=sage
WScript.Quit

End If

= O LN e L R — LD WD CD

' Browse file name
Dim fileName
fileName = objipp.GetOpenFilename ("Labels|*.1lkbhex|R1]1 Files

If (Len(fileName) = 0) Then
WScript.Quit
End If

- O LN e L R — D D 0D

Open label
Set objLabel = objApp.Openlabel (fileName)

If {(objLabel is NHothing) Then
WScript.Echo objApp.LastError.Mez=sage
WScript.Quit

End If

L = TS (R S o B e R i

' Print label
objLabel.Print (1)

EM N &N N En fn ot En En in e b B e e e e e B dm G B3 G G G B3 B GO L £ Pud P P

[r=Jy =]

' Application must be initialized before Openlabel i= called

Copyright © Carl Valentin GmbH

276

Labelstar Office 4.30 Build 1010

Program Variants

Labelstar Office is available in three versions. In the LITE verson, the software is primarily intended for designing simple

Program Variants

labels. For professional requirements, there is the BASIC or PROFESSIONAL version. This makes a broad selection of formats
and variables available so that the requirements of almost all industries can be fulfilled.

and user input)

(e.g. date, time,
counter, user input,
link field, check
digit, If.Then.Else

Texts
TrueType fonts ° ° °
Printer fonts . .
Text formatting (Markup Tags) ° .
Curved text .
Barcodes
1D bar codes) ° .
2D bar codes ° .
GS1 bar codes . .
Images Limited (only BMP) |More than 90 graphic .
and vector formats
(e.g. TIFF, GIF,
JPEG, PNG, WMF,
BMP, ICO ..)
Variables
System variables Limited (only date, More than Complex variable
time, counter, 30 variables definitions (e.g.

custom check
digit calculation)

statement)

Printer variables ° .
Databases ° .
Loggin .
Memory Card Support) .
Symbols ° .
Printing

Internal printer protocoll (CVPL)) .

(Carl Valentin Printer Drivers Version 2.3.1 or
higher)

Print preview ° .

Printing preferences ° .

Two-color printing) .
Print Only .
OLE Automation .
Import of Labelstar PLUS labels ° .

Copyright © Carl Valentin GmbH

277

http://www.carl-valentin.de/downloads/druckertreiber/

Labelstar Office 4.30 Build 1010 Licensing

Licensing

The following information should help you to activate your program. If you have problems, please contact Labelstar Office
Support.

How do | activate my program?

You can activate your program by using the License Wizard. Thereto you need a license key which you can find on the
license label in your program CD.

How can | notice if my software was already activated?

1. Open Labelstar Office.
2. Click Help on the File tab.
3. See About Labelstar Office to find the product information.

To receive further information to licensing click on Additional Version and Copyright Information. The About dialog
box opens. Click on the Program Information key and select Licensing.

What is a trial version?

A trial version allows you to test the program. In the trial version some functions are limited, all e are replaced by x and all 0
by 5. All images are marked with a watermark. In the trial version certain functions or programs are possibly activated which
are not included in the scope of delivery of the product bought by you. After you have entered a valid license key only the
programs and features bought by you are shown.

What is "Converting"?

You can delete a license key to use it e.g. on another computer. After deleting the license key the program runs as trial
version. You can also enter another license key to release additional features and programs.

Copyright © Carl Valentin GmbH 278

mailto:support@valentin-carl.de
mailto:support@valentin-carl.de

Labelstar Office 4.30 Build 1010

Software Update

Software Update

To perform a Labelstar Office update, proceed as follows:

1. Open Labelstar Office.
2. Click Help on the File tab, and then click Check for Updates.

The Update Wizard opens.
3. Follow the instructions in the wizard.

or visit our Updates website to download the latest program version.

Copyright © Carl Valentin GmbH

279

http://www.valentin-carl.com/downloads/labelstar-office2/labelstar-office.html

Labelstar Office 4.30 Build 1010 Contacts

Contacts

Product Website

You may find additional information and the latest program version on or website: www.carl-valentin.de

Email

Technical support: support@carl-valentin.de
Ordering and licensing requests: order@carl-valentin.de
General requests: info@valentin-carl.de

Copyright © Carl Valentin GmbH 280

http://www.carl-valentin.de
mailto:support@carl-valentin.de
mailto:order@carl-valentin.de
mailto:info@valentin-carl.de

Labelstar Office 4.30 Build 1010 System Requirements

System Requirements

Minimal system requirements

Microsoft Windows 7/8/8.1 x86/x64

.Net Framework 4.0 or higher (download from http://www.microsoft.com/net/)
Microsoft Visual C++ 2010 Redistributable (x86)

Microsoft Access Database Engine 2010 (x86)

Recommended printer drivers: Carl Valentin Printer Drivers Version 2.3.1 or higher

Copyright © Carl Valentin GmbH 281

http://www.microsoft.com/net/
http://www.carl-valentin.de/downloads/druckertreiber/

Labelstar Office 4.30 Build 1010 Imprint

Imprint
Carl Valentin GmbH
Neckarstrasse 78-86 u. 94
78056 Villingen-Schwenningen

Phone: +49 (0) 77209712 -0
Email: info@carl-valentin.de

Copyright © 2014 Carl Valentin GmbH

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written permission.

Disclaimer

These descriptions however do not constitute any guaranteed characteristics in a legal sense or in the sense of any product
liability. The authors reserve the right to make changes to the software, to announce any person without obligation these
changes. No warranty is accepted for the correctness of the contents of this document. As errors can never be completely
avoided, despite all efforts made, we are grateful for any information regarding errors.

Trademark Notifications

All product names mentioned in this document may be trademarks or registered trademarks of their respective owners.

Copyright © Carl Valentin GmbH 282

mailto:info@carl-valentin.de

	User Manual
	Contents
	Labelstar Office
	Variables
	System Variables
	Date/Time Variables
	Current Date/Time
	Current Date
	Current Time
	Date/Time (System)
	Parse Date/Time
	Calendar Week
	Day of Year
	Day of Week

	Field Variables
	Database Field
	Get Field Content
	Get Field Name

	Path Variables
	$AppDataDir
	$AppDir
	$AppPath
	$Dir
	$Ext
	$FileName
	$ImageDir
	$InstallDir
	$LabelDir
	$LabelPath

	String Variables
	Get Leftmost Characters of a String
	Get Rightmost Characters of a String
	Get Middle Characters of a String
	Remove Characters
	Replace String
	Replace Pattern
	Regular Expression Language

	Pad String from Left
	Pad String from Right
	Reverse String
	Convert String to Lowercase
	Convert String to Uppercase
	Truncate String
	Trim Leading Characters
	Trim Trailing Characters
	Trim Leading and Trailing Characters
	Convert ASCII String to HEX String
	Convert HEX String to ASCII String
	Calculate Text Length

	Counter (System)
	Global Counter

	User Input (System)
	Input Mask

	Math Variables
	Absolute Value
	Minimum Value
	Maximum Value
	Calculate Mathematical Formula
	Mathematical Operators

	Check Digit Calculation
	Check Digit (System)
	Append Check Digit

	Misc Variables
	Number of Copies
	If..Then..Else Statement
	Shift Definition
	Define Shift Times

	Label Number
	Page Number
	Printer Name
	User Name
	User Domain Name
	Format Value
	Formatting Types
	Standard Numeric Format Strings
	Custom Numeric Format Strings
	Standard Date and Time Format Strings
	Custom Date and Time Format Strings
	Text Format Strings

	Country Codes

	Format Text

	Printer Variables
	Date/Time (Printer)
	Printer-specific Date and Time Format Strings

	Field Link (Printer)
	User Input (Printer)
	Counter (Printer)
	Extended Counter (Printer)
	Check Digit (Printer)

	Bar Codes
	1D Bar Codes
	Codabar
	Code 128
	Code 128 (Subset A)
	Code 128 (Subset B)

	Code 2 of 5 Industrial
	Code 2 of 5 Interleaved
	Code 39
	Code 39 (Full ASCII)
	Code 93
	Code 93 (Full ASCII)
	Deutsche Post Identcode
	Deutsche Post Leitcode
	EAN-13, GTIN-13
	EAN-13 + 2 Digits
	EAN-13 + 5 Digits

	EAN-8, GTIN-8
	ITF-14, SCC-14
	Pharmacode
	PZN
	UPC-A, GTIN-12
	UPC-E

	2D Bar Codes
	Aztec Code
	Aztec Runes
	Codablock F
	DataMatrix
	MaxiCode
	Structured Carrier Message

	PDF417
	QR Code
	What are the different types of QR Codes?

	GS1 Bar Codes
	GS1 DataBar
	GS1 DataMatrix
	GS1-128

	Check Digit Calculation
	Modulo 10
	Modulo 10 (Luhn Algorithm)
	Modulo 11

	Global Trade Item Number (GTIN)

	Databases
	New Data Connection
	Create a Database Label

	Logging
	Activate and Deactivate Logging
	Log File Location

	Markup Tags
	Food Allergen Labelling
	Sample

	Supported Graphic and Vector Formats
	Program Options
	«General» Tab
	«Printing» Tab
	«Label Preview» Tab
	«Memory Card» Tab
	«Logging» Tab
	«File Locations» Tab

	Print Only
	Tools
	Program Settings
	Language Settings

	OLE Automation
	Operating Requirements
	Register Assembly for COM Interop
	Your First Application
	VBScript Samples
	Object Reference
	Application Class
	Application Properties
	ActivePrinter Property
	HasError Property
	Info Property
	IsInitialized Property
	LabelDir Property
	LastError Property
	License Property

	Application Methods
	Initialize Method
	GetOpenFilename Method
	OpenLabel Method

	Error Class
	Error Properties
	Details Property
	ErrorCode Property
	ErrorType Property
	Message Property

	ErrorType Enumeration
	Field Class
	Field Properties
	FieldName Property
	Locked Property
	Printable Property

	Field Methods
	GetContent Method
	GetPropertyValue Method
	SetContent Method
	SetPropertyValue Method

	ImageFormat Enumeration
	Label Class
	Label Properties
	ActivePrinter Property
	CurrentRecord Property
	FieldCount Property
	FieldNames Property
	IsDataAvailable Property
	LabelPath Property
	MaxRecord Property
	Modified Property
	PageName Property

	Label Methods
	GetFieldByIndex Method
	GetFieldByName Method
	GetPreview Method
	GetPropertyValue Method
	Print Method
	PrintToFile Method
	Save Method
	SaveAs Method
	SavePreview Method
	SelectRecord Method
	Filter Expression Syntax
	Filter Expression Functions

	SetPropertyValue Method

	LicenseInfo Class
	LicenseInfo Properties
	IsTrialVersion Property
	LicenseKey Property
	LicenseType Property

	PrintOptions Enumeration
	VersionInfo Class
	VersionInfo Properties
	CompanyName Property
	CompiledVersion Property
	Copyright Property
	DisplayVersion Property
	ProductName Property

	Error Codes and Messages

	Program Variants
	Licensing
	Software Update
	Contacts
	System Requirements
	Imprint

