
CCAPI
Release 14 Jun 2006

Software manual

C-Cam Camera Systems

Implementation for the:

Windows NT/2000/XP

and

Linux

operating systems

C-Cam Technologies

a division of Vector International

1

Copyright

C-Cam Technologies is a division of Vector International.
This document contains proprietary and confidential information of C-Cam Technologies, division of vector International.
No part of this document may be translated or reproduced in any form without prior written permission from Vector
International.

All rights reserved.

Disclaimer
The information contained within this document has been carefully checked and is believed to be entirely reliable and
consistent with the product that it describes. However, no responsibility is assumed for inaccuracies. C-Cam Technologies
division of Vector International assumes no liability arising from of the application or use of any product or circuit described
herein. C-Cam Technologies reserves the right to make changes to any product and product documentation in an effort to
improve performance, reliability or design.

Trademarks
IBM, PC/AT, VGA and SVGA are registered trademarks of International Business Machine Corporation. MS-DOS is a
registered trademark of Microsoft Corporation.

Restriction
This code is restricted in reproduction, use and transfer. See the Vector International conditions of use. The license is
granted for use of the software on a single computer. By using the software, the user implies agreement to the conditions of
use and agrees to settle all disputes through the court in Leuven Belgium.

Distribution
Distribution is only allowed through registered representatives. A list of these representatives can be found on our web site.

Contact address

C-Cam Technologies
division of

Vector International

Interleuvenlaan 46,
B-3001 Leuven

Belgium

Tel. +32 (0)16 40 20 16
Fax +32 (0)16 40 03 23

email info@vector-international.be
http://www.vector-international.be

2

Table of Contents

1 Introduction.. 5

2 Function summary... 6

3 API Functions – in alphabetical order.. 7

3.1 CC_CameraManagement.. 7

3.2 CC_CamStatus.. 9

3.3 CC_CaptureAbort.. 10

3.4 CC_CaptureAbortEx.. 11

3.5 CC_CaptureArm.. 12

3.6 CC_CaptureBackground.. 14

3.7 CC_CaptureBackgroundAbort... 15

3.8 CC_CaptureBackgroundEx.. 16

3.9 CC_CaptureData.. 18

3.10 CC_CaptureSequence.. 20

3.11 CC_CaptureSingle... 23

3.12 CC_CaptureStatus.. 26

3.13 CC_CaptureWait.. 27

3.14 CC_Close... 28

3.15 CC_GetDLLVersion... 29

3.16 CC_GetDriverVersion... 30

3.17 CC_GetPCIBoardInfo.. 31

3.18 CC_GetPushedLastError.. 32

3.19 CC_LoadCamera... 33

3.20 CC_LoadCameraEx... 34

3.21 CC_LoadInterface... 37

3.22 CC_MapPhysMem... 38

3.23 CC_Open.. 40

3

3.24 CC_OpenEx... 42

3.25 CC_RegisterErrorHandler... 46

3.26 CC_SetParameter.. 48

3.27 CC_SetWOI.. 54

3.28 CC_StrError... 56

3.29 CC_UnMapPhysMem.. 57

4 Error handling.. 58

4.1 Error codes.. 58

5 Include files for Visual Basic and other programming languages... 60

4

1 Introduction
This document describes the Application Program Interface for all cameras, controlled via our PCI Interface, via
our USB-connection, and in the future also over the IEEE1394-bus.

The aim of CCAPI is to present the user with a stable API for all cameras, current and future. Keeping this API
up to date with new cameras and interfaces will be substantially easier than creating and maintaining separate
APIs for every camera/interface combination.

Rebuilding your source code for this new API is relatively straightforward.

New acquisition modes have been added. In the past acquisition and data processing was only performed
sequentially as image acquisition was ‘synchronous’, which means you had to wait for the call to return with the
image data. Now you can perform ‘asynchronous IO’ by specifying this on the CC-Open call. The API then uses
the “OVERLAPPED’ mode as documented in the Windows documentation. This ‘Overlapped’ mode allows the
application program to attend to other functions while the IO operation finishes in the background. This can
enhance overall program speed significantly.

Also new is the possibility to specify a Window of Interest (WOI) in different ways. In the former version, the first
and last pixels of the WOI were the basic references as co-ordinates. In the new CCAPI it is also possible to
address the WOI using a pixel position together with the relative size of the WOI. This simplifies calculations
when the WOI is moved over the sensor area.

If you have questions regarding this document, please e-mail to c-cam@vector-international.be. We will be glad
to help you.

The engineering team of C-Cam hopes you enjoy their effort in enhancing the industrial digital camera
revolution.

C-Cam Technologies

Leuven, August 26th, 2005.

5

2 Function summary
Management Functions
CC_Close... 27
CC_GetDLLVersion... 28
CC_GetDriverVersion.. 29
CC_GetPCIBoardInfo... 30
CC_LoadCamera... 32
CC_LoadCameraEx... 33
CC_LoadInterface.. 36
CC_Open... 39
CC_OpenEx... 41

Camera Control Functions
CC_CamStatus.. 7
CC_SetParameter.. 45
CC_SetWOI... 51

Capture Functions
CC_CaptureAbort.. 8
CC_CaptureArm.. 9
CC_CaptureBackground.. 11
CC_CaptureBackgroundAbort... 12
CC_CaptureBackgroundEx.. 13
CC_CaptureData... 15
CC_CaptureSequence... 17
CC_CaptureSingle... 20
CC_CaptureStatus... 23
CC_CaptureWait.. 24

Miscellaneous Functions
CC_MapPhysMem... 37
CC_ UnMapPhysMem... 57

Error Handling Functions
CC_GetPushedLastError... 31
CC_RegisterErrorHandler.. 45
CC_StrError... 56

6

3 API Functions – in alphabetical order
3.1 CC_CameraManagement

•Function:
Reads and writes various information to the camera.
Applicable to USB cameras only.
This function is documented here for completeness and is for internal use or advanced use only.

•Return value:
FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CameraManagement(Handle Cam ,
int flags ,
unsigned long offset ,
unsigned long size ,
char * srcdst ,
enum CC_PROGRESS_FLAGS Flags ,
void * Arg1 ,
long Arg2
) ;

Variable C Type Range Purpose

Cam Handle
A 32 bit number
returned by
CC_Open

Handle to previous opened
device (= camera)

flags int See list below Defining operation modes

offset unsigned long Start address

size unsigned long Count of bytes to be
written or read

srcdst char *
Pointer to buffer holding
data to be written or
receiving data to be read

Flags enum
CC_PROGRESS_FLAGS

Arg1 void *

Arg2 long

Currently not used.
Intended to be used as
shown in CC_OpenEx.

7

• flags

Index Application

 CC_CM_WRITE_I2C * To write to the I2C Eeprom holding the firmware for
the USB-Controller to laod on boot

CC_CM_READ_I2C * To read from the I2C Eeprom holding the firmware
for the USB-Controller to laod on boot

CC_CM_WRITE_INFO *
To write to the area in I2C Eeprom where 112 bytes
are reserved for user storage of camera parameters
and such

CC_CM_READ_INFO
To read from the area in I2C Eeprom where 112
bytes are reserved for user storage of camera
parameters and such

CC_CM_WRITE_SDF * To write the Serial Data Flash on selected cameras.

CC_CM_READ_SDF * To read the Serial Data Flash on selected cameras.

CC_CM_READ_FIRMWARE * To write directly into the Program/Data RAM of the
USB-Controller.

CC_CM_WRITE_FIRMWARE * To read directly into the Program/Data RAM of the
USB-Controller.

Operations marked with a '*' are not allowed in standard Camera Applications.

•Example code

CC_CameraManagement(Cam , CC_CM_READ_INFO, 0 , 4 , & user_info1 ,
CC_PROGRESS_FLAGS_NONE , NULL , NULL) ;

8

3.2 CC_CamStatus
•Function:

Returns status data from camera.

•Return value:
FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CamStatus(Handle Cam ,
CCCAM_STATUS Index ,
long * Status
);

Variable C Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

Index CC_CAM_STATUS Enumeration type Selects the type of
information

Status * long
Depends on camera
and on requested
information

Actual value of requested
status

•Index
Depending up on the interface and camera option, the camera or the interface can return some status
about the camera attached:

Index Application

CC_CAM_STATUS_PCI

When not transmitting valid data, the camera may
transmit auxiliary data over the image transfer
channel. The resulting data depends on the actual
camera attached. See corresponding camera
manual.

CC_CAM_STATUS_CAMERA
Some cameras will transmit a status back while
receiving a command. The resulting data depends
on the actual camera attached.

typedef enum {CC_CAM_STATUS_PCI = 0x0,
 CC_CAM_STATUS_CAMERA

} CC_CAM_STATUS ;

•Example code

CC_CamStatus(camhandle, CAM_STATUS_PCI , &status);

9

3.3 CC_CaptureAbort
•Function: Function to abort the acquisition procedure in the asynchronous1 mode.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Related functions: CC_CaptureWait, CC_CaptureStatus, CC_CaptureSequence

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureAbort(Handle Cam);

Variable C Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

•Example code:

CC_CaptureAbort(camhandle);

1 Asynchronous mode: image acquisition in parallel with the software application.

10

3.4 CC_CaptureAbortEx
•Function: Function to abort the acquisition procedure in the asynchronous2 mode.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Related functions: CC_CaptureAbort, CC_CaptureWait, CC_CaptureStatus, CC_CaptureSequence

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureAbort(Handle Cam ,
enum CC_CAPTUREABORT Flags);

Variable C Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

Flags unsigned int See list below Defining operation modes

Depending up on the application, the different things can be reset in the camera, these are:

Flag Application

CC_CA_AUXILIARIES See camera information.

CC_CA_USBRESET
Clears the Endpoint in the USB controller in the
camera and clears the USB stack for this
device

CC_CA_MAIN
Resets the camera logic. Issuing a
CC_CaptureAbortEx() with only this flag equals
issuing a CC_CaptureAbort()

Although these Flags are defined as an enumeration, they are meant to be bit-wise OR-ed to make up
the Flags-specification in the CC_CaptureAbortEx call.

 enum CC_CAPTUREABORT {
CC_CA_AUXILIARIES = 0x01 ,
CC_CA_USBRESET = 0x02 ,
CC_CA_MAIN = 0x04
} ;

• Example code:

CC_CaptureAbortEx(camhandle , CC_CA_MAIN | CC_CA_USBRESET);

2 Asynchronous mode: image acquisition in parallel with the software application.

11

3.5 CC_CaptureArm3

•Function: Acquisition with trigger mode with single image transfer.

•Related function: CC_CaptureData

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureArm(HANDLE Cam ,
CC_TRIGGER_MODE TriggerMode) ;

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

TriggerMode CC_TRIGGER_
MODE Enumeration type

Trigger type. Modes are listed in
a type structure, see this
paragraph below.

•TriggerMode :

Depending on the interface and camera option, the camera and/or the interface can work in several
trigger modes. These modes are:

Trigger mode Application

CC_NO_TRIGGER

Camera runs in normal mode. As soon as the
capture function is called, the acquisition is started
immediately. Only a single image will be captured.
Software trigger.

CC_INTERFACE_TRIGGER_SINGLE
The interface will wait until the interface gets a
trigger pulse. The interface will not respond to
other successive triggers. Hardware trigger.

CC_INTERFACE_TRIGGER_CONTINUOUS
Camera expects a remote trigger that will be
generated by the PCI interface and will capture an
image for every trigger. Hardware trigger.

CC_CAMERA_TRIGGER_SINGLE
The camera will wait until the camera gets a
trigger pulse. The camera will not respond to a
successive trigger. Hardware trigger.

CC_CAMERA_TRIGGER_CONTINUOUS The camera will capture an image for every trigger
pulse. Hardware trigger.

3 Only supported for USB cameras

12

Trigger mode Application

CC_CAMERA_CONTINUOUS Successive single shots - as fast as it goes.
Software trigger.

CC_CAMERA_CONTINUOUS_TIMED Successive single shots – timed. Software trigger.

CC_CAMERA_CONTINUOUS_ROLLING Continuous rolling shutter operation. Software trigger.

typedef enum { CC_NO_TRIGGER = 0x0 ,

 CC_INTERFACE_TRIGGER_SINGLE ,

 CC_INTERFACE_TRIGGER_CONTINUOUS ,

 CC_CAMERA_TRIGGER_SINGLE ,

 CC_CAMERA_TRIGGER_CONTINUOUS ,

 CC_CAMERA_CONTINUOUS ,

 CC_CAMERA_CONTINUOUS_TIMED ,

 CC_CAMERA_CONTINUOUS_ROLLING

 } CC_TRIGGER_MODE;

Error handling:

•The camera handle input is not checked. It must be obtained from CC_Open or CC_OpenEx.
•CC_ERROR_CAPTURE_ARM_INVALID : An unknown trigger mode was specified.

•Example code:

CC_CaptureArm (cam , // load camera location
 CC_CAMERA_TRIGGER_SINGLE // trigger mode
);

13

3.6 CC_CaptureBackground4

•Function: Acquires images in the background using physical memory freed at boot time.

•Related functions: CC_CaptureBackgroundEx, CC_CaptureBackgroundAbort

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureBackground(HANDLE Cam ,
unsigned long Physaddr ,
unsigned long TransferSize) ;

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

Physaddr Unsigned long Hardware Start address of
available physical memory

TransferSize Unsigned long

Buffer size, must be smaller
or equal to the size of the
freed / reserved physical
memory

•Example code:

see MapPhysMem() example

4Only supported for PCI-based camera systems

14

3.7 CC_CaptureBackgroundAbort5

•Function: Function to abort the background acquisition.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Related functions: CC_CaptureBackground

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureBackgroundAbort(Handle Cam);

Variable C Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previously opened
device (= camera)

•Example code:

CC_CaptureBackgroundAbort(camhandle);

5Only supported for PCI-based camera systems

15

3.8 CC_CaptureBackgroundEx6

•Function: Acquires images in the background using physical memory freed at boot time.

•Related functions: CC_CaptureBackgroundEx, CC_CaptureBackgroundAbort

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureBackgroundEx(HANDLE Cam ,
unsigned long Physaddr ,
unsigned long TransferSize ,
unsigned long Flags) ;

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

Physaddr Unsigned long Hardware Start address of
available physical memory

TransferSize Unsigned long

Buffer size, must be smaller
or equal to the size of the
freed / reserved physical
memory

Flags Unsigned long Defines the acquisition mode

•Flags:

Flag Application

CC_CBG_SINGLE Fill the supplied buffer once

CC_CBG_CONTINUOUS
The hardware will continuously fill up the buffer,
wrapping around to the beginning upon reaching
the end of the buffer

CC_CBG_NO_DMA_INTS
Block the hardware from issuing interrupts to the
Operating System / Driver. This lets the
acquisition run with zero CPU overhead.

Although these Flags are defined as an enumeration, they are meant to be bit-wise OR-ed to make up
the Flag-specification in the CC_CaptureBackgroundEx call.

6Only supported for PCI-based camera systems

16

enum CC_CAPTURE_BACKGROUND_FLAGS {
CC_CBG_SINGLE = 0 ,
CC_CBG_CONTINUOUS = 0x01 ,
CC_CBG_NO_DMA_INTS = 0x02
} ;

•Example code:

see MapPhysMem() example

17

3.9 CC_CaptureData7

•Function: Acquisition with trigger mode with single image transfer.

•Related function: CC_CaptureArm

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureData(HANDLE Cam ,
 PVOID Buffer ,
 ULONG TransferSize ,
 USHORT TimeOut ,
 OVERLAPPED * pUserOverlapped) ;

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

Buffer PVOID Not applicable Pointer to array of unsigned char
to store the image data.

TransferSize ULONG Exact amount of data
expected

Size of data to be transferred,
depending on image size in
pixels and ADC resolution

TimeOut USHORT

0 = no time-out

1 to 99 = seconds

 > 100 = 10-3 sec.

Time-out period. Started when
this function is called, ended
when image has been
transferred or when the time-out
period is exceeded.

Only applicable when using
LIBUSB driver

pUserOverlapped OVERLAPPED NULL

Pointer to an optional
OVERLAPPED structure
managed by the user application.

Not used in USB systems

Error handling:

•The camera handle input is not checked. It must be obtained from CC_Open or CC_OpenEx.
•CC_ERROR_IMAGE_UNDERRUN : The operation has ended, but less data than requested was
returned.

7 Only supported for USB cameras

18

•Example code:

CC_CaptureData (cam , // camera handle
 buffer , // destination buffer
 transfers , // amount to be transferred – in bytes
 500 , // 500 msec
 NULL // do not overlap
);

19

3.10 CC_CaptureSequence8

•Function: Acquisition with trigger mode and background operation mode.

•Related function: CC_CaptureSingle

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureSequence(HANDLE Cam, PVOID Buffer,
ULONG BufferSize, ULONG NumberOfFrames ,ULONG Framesize,
ULONG NotificationInterval , void (*CallBack)(void) ,
CC_TRIGGER_MODE TriggerMode, USHORT TimeOut);

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

Pbuffer PVOID Not applicable Pointer to array of unsigned char
to store the image data.

BufferSize ULONG Min. 2 times the size of the
image

Circular buffer to be filled with
images in sequence

NumberOfFrames LONG Actual number of images
to be taken (-1) for indefinite sequence

FrameSize ULONG Specifies size of each
image to be taken

NotificationInterval ULONG Number of frames between
callbacks 0 for no callback

CallBack void (*)(void)
Function pointer

NULL if no callback
required

Routine to be called whenever
the number of frames as
specified by the Notification
interval has been transferred into
the Buffer

TriggerMode CC_TRIGGER_
MODE Enumeration type

Trigger type. Modes are listed in
a type structure, see this
paragraph below. Not all modes
as defined in CC_CaptureSIngle
are valid

8 Only supported on PCI-based cameras

20

Variable name C Type Range Purpose

Timeout
 USHORT

(16-bit)

0 = no time-out

1 to 99 = seconds

 > 100 = milliseconds

Time-out period. Started when
this function is called, ended
when image has been
transferred or when the time-out
period is exceeded.

•TriggerMode :

Depending up on the interface and camera option, the camera or the interface can work in several
trigger modes. These modes are:

Trigger mode Application

CC_INTERFACE_TRIGGER_CONTINUOUS
The interface will wait until the interface gets a
trigger pulse. The interface will keep responding
to sequential trigger pulses send to the camera.

CC_CAMERA_TRIGGER_CONTINUOUS

The camera will wait until the camera gets a
trigger pulse. The camera will keep responding
to sequential trigger pulses send to the camera.
Only applicable in capture continuous mode.

CC_CAMERA_CONTINUOUS The camera will continuously transmit images
until halted by the user application

typedef enum { CC_NO_TRIGGER = 0x0 ,
CC_INTERFACE_TRIGGER_SINGLE ,
CC_INTERFACE_TRIGGER_CONTINUOUS ,
CC_CAMERA_TRIGGER_SINGLE ,
CC_CAMERA_TRIGGER_CONTINUOUS ,
CC_CAMERA_CONTINUOUS
} CC_TRIGGER_MODE ;

•Error handling:

•The camera handle input is not checked. It must be obtained from CC_Open
•The size of the data to be transferred is not checked. The user is able to download less data than
specified in the WOI.
•CC_ERROR_TRIGGER_MODE_NOT_DEFINED: An unknown trigger mode was specified.
•CC_ERROR_TRIGGER_MODE_NOT_APPLICABLE: A trigger has been asked which was not
applicable for this camera or interface.
•CC_ERROR_CAPTURE_TIMEOUT: Time-out period has been expired.
•CC_ERROR_CAPTURE_IN_PROGRESS: Acquisition was still in progress.

21

•Remarks:

This call is not supported on the PCI-LVDS interface (CCi4 LVDS)

The camera must have been opened in CAPTURE_NO_WAIT. However, this is a synchronous call
and will not return until:

•the number of frames specified have been transferred
•an error came up
•an indefinite sequence has been halted by CC_Abort()

The optional CallBack routine should take as little processing time as possible, because
CC_CaptureSequence waits for the return of the call back before it can queue the next image
transfer.

•Example code:

CC_CaptureSequence(cam, // load camera location
 Buffer, // image data buffer
 BufferSize, //
 -1, // forever and a day
 Yheight * Xwidth * 2, // image size for 10 or 12 bit
 1, // notify for every frame
 MyCallBack, // call back function
 CC_INTERFACE_TRIGGER_CONTINUOUS, // trigger mode
 300 // Time-out period of 300 milli seconds
) ;

22

3.11 CC_CaptureSingle
•Function: Acquisition with trigger mode with single image transfer.

•Related function: CC_SetWOI, CC_CaptureWait, CC_CaptureArm, CC_CaptureData

•Function return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureSingle(HANDLE Cam,
PVOID Buffer,
ULONG TransferSize,
CC_TRIGGER_MODE TriggerMode,
USHORT TimeOut,
OVERLAPPED * pUserOverlapped);

Variable name C Type Range Purpose

Cam HANDLE A 32 bit number returned
by CC_Open

Handle to previous opened
device (= camera)

Pbuffer PVOID Not applicable Pointer to array of unsigned char
to store the image data.

TransferSize ULONG Exact amount of data
expected

Size of data to be transferred,
depending on image size in
pixels and ADC resolution

TriggerMode CC_TRIGGER_
MODE Enumeration type

Trigger type. Modes are listed in
a type structure, see this
paragraph below.

Timeout
 USHORT

(16-bit)

0 = no time-out

1 to 99 = seconds

 > 100 = 10-3 sec.

Time-out period. Started when
this function is called, ended
when image has been
transferred or when the time-out
period is exceeded.

pUserOverlapped
OVERLAPPED

(windows
structure)

See note [1].
Pointer to an optional
OVERLAPPED structure
managed by the user application.

Note [1] : pUserOverlapped
1. Camera opened with CC_CAPTURE_WAIT argument

1. The CC_CaptureSingle call will be executed synchronously and will only return at the end
of the operation.

2. Windows then doesn’t require this structure. We advise to specify a NULL value.

23

2. Camera opened with CC_CAPTURE_NO_WAIT argument
1. The CC_CaptureSingle call will return immediately after the requested operation has been

registered inside the Windows IO Manager. The effective operation will be executed
asynchronously to the calling thread.

2. If NULL, no event is signalled (directly) to the user. Use CC_CaptureStatus() or
CC_CaptureWait() to detect if capture has finished. CCAPI.DLL will use an internal
OVERLAPPED structure to satisfy Windows.

3. If the user supplies this structure himself, he also must manage it himself. He may e.g. use
the windows function WaitForSingleObject to be signalled if done.

•The user can request multiple operations by repeatedly executing this call. Windows IO
Manager will queue the operations internally and will serialise the requests to the hardware until
this queue becomes empty. He must take proper care in supplying different user-managed
OVERLAPPED structures to effectively serialise the operations.

•TriggerMode :

Depending on the interface and camera option, the camera and/or the interface can work in several
trigger modes. These modes are:

Trigger mode Application

No trigger
Camera runs in normal mode. As soon as the
capture function is called, the acquisition is started
immediately. Only a single image will be captured

Interface trigger single
The interface will wait until the interface gets a
trigger pulse. The interface will not respond to other
successive triggers.

Camera trigger single
The camera will wait until the camera gets a trigger
pulse. The camera will not respond to a successive
trigger.

typedef enum { CC_NO_TRIGGER = 0x0 ,

 CC_INTERFACE_TRIGGER_SINGLE ,
 CC_INTERFACE_TRIGGER_CONTINUOUS ,
 CC_CAMERA_TRIGGER_SINGLE ,

 CC_CAMERA_TRIGGER_CONTINUOUS ,
 CC_CAMERA_CONTINUOUS

 } CC_TRIGGER_MODE ;

•Error handling:

•The camera handle input is not checked. It must be obtained from CC_Open.
•The size of the data to be transferred is not checked. The user is able to download less data than
specified in the WOI.
•CC_ERROR_TRIGGER_MODE_NOT_DEFINED: An unknown trigger mode was specified.
•CC_ERROR_TRIGGER_MODE_NOT_APPLICABLE: A trigger has been asked which was not
applicable for this camera or interface.
•CC_ERROR_CAPTURE_TIMEOUT: Time-out period has been expired.

24

•CC_ERROR_CAPTURE_IN_PROGRESS: Acquisition was still in progress.

•Example code:

CC_CaptureSingle(cam, // load camera location
Buffer, // image data buffer
ImageSize * 2, // image data transferred (16-bit)
CC_INTERFACE_TRIGGER_SINGLE, // trigger mode
300, // Time-out period of 300 milli seconds
NULL) ; // no overlapped operation

25

3.12 CC_CaptureStatus
•Function:

Function to check the acquisition procedure in the asynchronous mode. The acquisition continues
during the call of this function.

•Return value:
•As ynchronous mode:

•FALSE when the acquisition is still busy or has failed, check with GetLastError to see the
status.
•TRUE if acquisition ended successfully.

•S ynchronous mode:
Do not use in synchronous mode, status may be incorrect. Use GetLastError after
CC_CaptureSingle returns to check the status.

•Related functions:
•CC_CaptureAbort
•CC_CaptureWait

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureStatus(Handle Cam);

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

•Error handling:

•CC_ERROR_CAPTURE_TIMEOUT:
•Not enough data was released by the camera.
•No camera present or bad cable connection.
•WOI was inverse or incorrect.

•CC_ERROR_CAPTURE_NOT_FINISHED:
•Still waiting for an image as time-out is not yet active.
•Still waiting for trigger.

•CC_ERROR_CAPTURE_ABORTED:
•The function CC_CAPTURE_ABORTED was called before the capture status was checked.

•Example code:

CC_CaptureStatus(camhandle);

26

3.13 CC_CaptureWait
•Function:

Function to wait until the acquisition in the asynchronous mode finished. If the function is used in
synchronous mode, the function may wait forever!

•Return value:
TRUE when acquisition operation succeeds. FALSE if acquisition fails, check with GetLastError

•Related functions:
•CC_CaptureAbort
•CC_CaptureStatus

•Syntax definition:

DLLINOUT BOOL WINAPI CC_CaptureWait(Handle Cam);

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

•Error handling:

•CC_ERROR_CAPTURE_TIMEOUT:
•Not enough data was released by the camera.
•No camera present or bad cable connection.
•WOI was inverse or incorrect.

•CC_ERROR_CAPTURE_ABORTED:
•The function CC_CAPTURE_ABORTED was called before the capture status was checked.

•Example code:

CC_CaptureWait(camhandle);

27

3.14 CC_Close
•Function:

To close the device.
This function must be called before your application ends. After this, no other functions in CCAPI can
be called.

•Related function: CC_Open , CC_OpenEx

•Return value: FALSE when operation was not successful9. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_Close (Handle Cam);

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

•Error handling:

•CC_ERROR_NONE: no error occurred.
•CC_ERROR_INVALID_HANDLE: handle to close was not valid or it was closed earlier.

•Example code:

CC_Close(camhandle); // camera location

9 Usually when the device was not opened in the first place.

28

3.15 CC_GetDLLVersion
•Function:

Function to retrieve the version number of CC API-library.

•Related function: CC_GetDriverVersion.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_GetDLLVersion(DWORD * pVersionNumber);

Variable Type Range Purpose

pVersionNumber DWORD * Not applicable To receive the DLL version
number

•Error handling:

•CC_ERROR_NONE: This is always returned. No error occurred.

•Format of release:

The VersionNumber is filled with the release number, followed by the version number. Returned is a
32-bit Hex format with the upper 16 bits containing the Major Release Number and the lower 16 bits
containing the Minor Release Number

E.g.: 0001 0000 Hex means : Version 1.0

•Example code:

CC_GetDLLVersion(pVersionNumber);

29

3.16 CC_GetDriverVersion
•Function: Function to retrieve the release and version numbers of the CC driver.

•Related function: CC_GetDLLVersion.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_GetDriverVersion(Handle Cam ,
DWORD * pVersionNumber);

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Device location

pVersionNumber DWORD * Not applicable To receive the Driver version
number

•Error handling: none

•Format of release:

 Returned is a 32-bit number with the upper 16 bits containing the Major Release Number and the
lower 16 bits containing the Minor Release Number

E.g.: 0002 0003 (in Hex) means : Version 2.3

•Example code:

CC_GetDriverVersion(pVersionNumber);

30

3.17 CC_GetPCIBoardInfo
•Function: Function to retrieve the PCI board type and board revision number.

•Related function: -

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_GetPCIBoardInfo(Handle Camhandle ,
char * pBoardType ,
char * pBoardRev) ;

Variable Type Range Purpose

Camhandle Handle A 32 bit number
returned by CC_Open

Device location

pBoardType char * To receive the PCI board
type

pBoardRev char * To receive the PCI board
revision number

•Error handling: none

•Format of returned strings:

The strings are returned as 2 character strings terminated with a zero character. The PCI board type
can be any of the following :
L1 for PCI-LVDS card
CL for PCI-CL card (camera link)
LS for PCI-LS card (serial LVDS)

The first character of the board revision number is always a letter (A .. Z) indicating major update, the
second character is always a number (0 .. 9) indicating a minor update.

•Example code:

CC_GetPCIBoardInfo(CameraNumber , pBoardType , pBoardRev) ;

31

3.18 CC_GetPushedLastError
•Function: Function to retrieve the more error information.

•Related function: GetLastError (Windows API), ernno (Linux API)

•Return value: Returns a possible native OS Error code, especially when using Class Drivers, like USB
of IEEE systems. Returns 0 if no native OS Error code available for the preceding action.

•Syntax definition:

DLLINOUT int WINAPI CC_GetLastPushedError(Handle Camhandle) ;

Variable Type Range Purpose

Camhandle Handle A 32 bit number
returned by CC_Open

Device location

•Error handling: none

•Example code:

CC_GetPushedLastError(Camhandle) ;

32

3.19 CC_LoadCamera
•Function:

Function to load the C-Cam camera with its logic program, before operation. The logic is retrieved
from a *.ttb logic file. This operation should be performed whenever a power-down occurred.

! Note that in PCI-systems a CC_LoadCamera is only possible when a valid CC_LoadInterface has
been performed first.

! Note that not all cameras need a CC_LoadCamera e.g. the CCf15 is operated on the PCI-LVDS
interface itself. If this is the case the function will return without indicating an error.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_LoadCamera(Handle Cam , char * FileSpec) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

FileSpec Char * A valid FileSpec for the
*.ttb file name

To locate the logic file. A
path + file name may be
entered or only a file name.
In the last case, the current
working directory is
searched for the file, if not
found; the ‘FPGA Logic’
directory is searched where
the C-Cam package has
been installed.

•Error handling:

•CC_ERROR_FUNCTION_NOT_APPLICABLE
•Logic not applicable for this kind of camera.

•CC_ERROR_FILE_NOT_FOUND
•File name does not exist.
•Wrong directory.

•CC_ERROR_NOT_ENOUGH_MEMORY
•Logic was too large to be stored into the PC’s memory

•CC_ERROR_CAN_NOT_OPEN_FILE
•File might be damaged.
•File is not a logic file.

•Example code:

CC_LoadCamera(camhandle , “Cci4c.ttb”) ;

33

3.20 CC_LoadCameraEx
•Function:

Function to load the C-Cam camera with its logic program, before operation. The logic is retrieved
from a *.ttb logic file. This operation should be performed whenever a power-down occurred.

! Note that in PCI-systems a CC_LoadCamera is only possible when a valid CC_LoadInterface has
been performed first.

! Note that not all cameras need a CC_LoadCamera e.g. the CCf15 is operated on the PCI-LVDS
interface itself. If this is the case the function will return without indicating an error.

This function allows the user to pass the address of a callback function that will be called at various
times while CCAPI is performing the actual LoadCamera operation.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_LoadCameraEx(Handle Cam , char * FileSpec ,
unsigned int Target ,
enum CC_PROGRESS_FLAGS Flags
void * Arg1 , unsigned long Arg2) ;

Variable Type Range Purpose

Cam Handle
A 32 bit number
returned by
CC_Open

Handle to previous opened
device (= camera)

FileSpec Char * A valid FileSpec for
the *.ttb file name

To locate the logic file. A
path + file name may be
entered or only a file name.
In the last case, the current
working directory is
searched for the file, if not
found, the ‘FPGA Logic’
directory is searched where
the C-Cam package has
been installed.

Target Unsigned int 0 ..

See specific
camera manual

Specifies which FPGA in
the camera to load, for
most cameras this is 0

Flags enum
CC_PROGRESS_FLAGS

enumeration

34

Variable Type Range Purpose

Arg1 void * Call-back function

Arg2 unsigned long Size indicator. FileSize
divided by this Size
determines the number of
callbacks with block info.

•Flags:
enum CC_PROGRESSFLAGS {

CC_PROGRESSFLAGS_NONE = 0x0 ,
CC_PROGRESSFLAGS_CALL_BACK
} ;

Application

CC_PROGRESSFLAGS_NONE No extra functionality over CC_LoadCamera()

CC_PROGRESSFLAGS_CALL_BACK CC_LoadCameraEx will call back with progress
codes

•CallBack function:
This function has the following prototype:

void ProgressCallBack(enum PROGRESS_CODE pc , int value) ;

•Progress codes:
enum CC_PROGRESSSTATE {

CC_PROGRESS_INFO_FILEOK = 0 ,
CC_PROGRESS_INFO_CONFIGOK ,
CC_PROGRESS_INFO_BLOCKOK ,
CC_PROGRESS_INFO_ADDRESS ,
CC_PROGRESS_INFO_ENDED
} ;

Application

CC_PROGRESS_INFO_FILEOK Indicated file was found and loaded in memory

CC_PROGRESS_INFO_CONFIGOK Download of FPGA logic started.

CC_PROGRESS_INFO_BLOCKOK
A block of data was sent to the camera, the
integer value indicates the current count of
blocks. If this count is 0 the last block was sent.

CC_PROGRESS_INFO_ADDRESS An address was sent to the camera

CC_PROGRESS_INFO_ENDED Operation ended successfully. This code is
typically sent before successfully returning.

35

•Error handling:

•CC_ERROR_FUNCTION_NOT_APPLICABLE
•Logic not applicable for this kind of camera.

•CC_ERROR_FILE_NOT_FOUND
•File name does not exist.
•Wrong directory.

•CC_ERROR_NOT_ENOUGH_MEMORY
•Logic was too large to be stored into the PC’s memory

•CC_ERROR_CAN_NOT_OPEN_FILE
•File might be damaged.
•File is not a logic file.

•CC_ERROR_PROGRESS_FLAGS_INVALID
•Invalid Progress Info requested

•Example code:

CC_LoadCameraEx(Camhandle , “bci4-3u20nf.ttb” , 0 ,
CC_PROGRESSFLAGS_CALL_BACK ,
DisplayProgressBarCB , 4096) ;

36

3.21 CC_LoadInterface
•Function:

Function to load the C-Cam interface with its logic program, before operation. The logic is retrieved
from a *.ttb logic file. This operation should be performed whenever a power-down occurred.

! Note that accessing the PCI interface without a successful CC_LoadInterface will or may hang the
PC as the C-Cam interface card will not respond or time-out on the IO operation.

! Note that loading an incompatible logic file to a PCI interface may hang the PC and could provoke a
‘latch-up’ condition in the hardware possible causing malfunction to the card. If this happens, power
off the PC immediately to relieve the ‘latch-up’ condition.

! Functions returns without error when being called for a non-PCI camera system.

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_LoadInterface(Handle Cam , char * FileSpec) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

FileSpec Char * Any *.ttb file name To locate the logic file. A
path + file name may be
entered or only a file name.
In the last case, the current
working directory is
searched for the file, if not
found, the ‘FPGA Logic’
directory is searched where
the C-Cam package has
been installed.

•Error handling:

•CC_ERROR_FUNCTION_NOT_APPLICABLE
•Logic not applicable for this kind of camera.

•CC_ERROR_FILE_NOT_FOUND
•File name does not exist.
•Wrong directory.

•CC_ERROR_NOT_ENOUGH_MEMORY
•Logic was too large to be stored into the PC’s memory

•CC_ERROR_CAN_NOT_OPEN_FILE
•File might be damaged.
•File is not a logic file.

•Example code:

CC_LoadInterface(Camhandle , ”CCLVDS.ttb”) ;

37

3.22 CC_MapPhysMem
•Function:

This function is used to map physical memory, reserved from main memory at boot time, into the
applications address space in order to be able to access this memory via the standard Windows
methods.

•Related function: CC_UnMapPhysMem

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_MapPhysMem(Handle Cam ,
 ULONG PhysicalAddress,

 ULONG Size ,
 void * * UserAddress) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previously opened
device (= camera)

PhysicalAddress ULONG
Unsigned 32-bit
number

Indicates the hardware address
of the 'to be mapped' physical
memory

Size ULONG Unsigned 32-bit
number

The length of the block to be
mapped

Useraddress void * *
pointer The user address where the

physical memory can be
mapped to for user access.

•Example code:

// Map a buffer for 3 images (of 1280 * 1024 at 12 bit pixel depth)
// in physical memory on a 128Mbyte system where 8Mbyte have been
// reserved for physical memory access.
// The reservation was done at boot time by adding the /MAXMEM=120
// in the boot.ini file.

#define PHYSMEMSTART 0x07800000
#define PHYSMEMMAXSIZE 0x00800000
#define BUFSIZE 3 * 1280 * 1024 * 2

38

Handle camhandle ;
unsigned short * pBuffer ;

ASSERT(BUFSIZE <= PHYSMEMMAXSIZE) ; // check that it will fit

// open the device
Camhandle = CC_OpenEX(“BCi4 LS” , CC_FLAG_NONE , NULL , NULL) ;
// now can map the physical buffer to a virtual address we can use
CC_MapPhysMem(Camhandle , PHYSMEMSTART , BUFSIZE , &pBuffer) ;
// load interface and camera
CC_LoadInterface(Camhandle , “pcilshu.ttb”) ;
CC_LoadCamera(Camhandle , “bci4-3ls20nf”) ;
// set everything up using CC_SetParameter() and others
...
// then start the background capture
CC_CaptureBackgroundEx(Camhandle , PHYSMEMSTART , BUFSIZE ,

CC_CBG_SINGLE) ;

// now images are being acquired in the background

...
// no need to do a CC_CaptureBackgroundAbort() as we didn't ask for
// our buffer to be continuously filed with new images, but rather
// restricted it to a single sweep of 3 images, or i.e. for just BUFSIZE
// data

// free the memory descriptors for the buffer
CC_UnMapPhysMem(Camhandle , pBuffer) ;

39

3.23 CC_Open
•Function:

When this function is called, it opens a camera with a specific name and assigns specific minimum
and maximum parameters to the handle. This identifier must be used to access the device. Nearly all
other functions refer to this identifier and make use of the parameter limits.

This function must be used before your application can access the specified camera. After this, other
functions in CCAPI can be called.

•Related function: CC_Close, CC_OpenEx

•Return value: FALSE when operation was not successful10. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_Open(LPCSTR CameraName ,
 ULONG CameraNumber ,

 CC_CAPTURE_MODE CaptureMode) ;

Variable Type Range Purpose

CameraName LPCSTR List of C-Cam cameras Camera identification

CameraNumber ULONG 0 to # of cameras
attached to PC Camera identification

CaptureMode CC_CAPTURE_MODE See list below Acquisition method

•Camera names:

To open a camera, a specific camera name is needed. We direct you to the camera's user manual to
retrieve the proper name.

e.g.

Camera name Description

“CCi4 LVDS” CCi4 camera with PCI-LVDS interface

“CChs13” CChs13 high speed camera

10 Usually when the driver was not installed or activated. Also make sure the CCAPI dll / shared object is in the same directory as your
software application, or in the appropiate system directory

40

•CaptureMode:

Depending up on the application, the camera is able to work in different acquisition modes. These
modes are:

Capture mode Application

CC_CAPTURE_WAIT

Snapshot mode. The camera captures an image
and delivers it to the image buffer. After this action,
the camera will wait until a command is given for the
next acquisition. The CC_CaptureSingle function
returns if the image is in the PC’s memory or if an
error occurred.

CC_CAPTURE_NO_WAIT

Overlapped operation mode. The camera captures
an image and the CC_CaptureSingle function
returns immediately returning FALSE. During the
acquisition, the program is able to perform other
calculations. Acquisition and processing can be
performed in parallel. The program can detect when
the acquisition is ended.
This mode is also necessary to enable use of the
CC_CaptureSequence method.
This mode is currently only supported for our PCI-
card based camera systems.

typedef enum { CC_CAPTURE_WAIT = 0x0,
 CC_CAPTURE_NO_WAIT
} CC_CAPTURE_MODE ;

•Example code:

CC_Open(“CCi4 LVDS” , 0 , CC_CAPTURE_NO_WAIT) ;

41

3.24 CC_OpenEx
•Function:

This function is called instead of CC_Open when more functionality is required, especially when using
USB cameras.

This function (or CC_Open()) must be used before your application can access any camera. After
this, the other functions from the CCAPI can be called.

•Related function: CC_Close, CC_Open

•Return value: FALSE when operation was not successful11. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_OpenEx(LPCSTR CameraName ,
 ULONG CameraNumber ,

 ULONG OpenFlags ,
 void * Arg1 ,
 void * Arg2) ;

Variable Type Range Purpose

CameraName LPCSTR List of C-Cam cameras Camera identification

CameraNumber ULONG 0 to # of cameras
attached to PC Camera identification

OpenFlags ULONG See list below Defining operation modes

Arg1 void * - Either a buffer structure or
call-back function

Arg2 void * - Currently not used

•Camera names:

To open a camera, a specific camera name is needed. We direct you to the camera's user manual to
retrieve the proper name.

e.g.

11 Usually when the driver was not installed or activated. Also make sure the CCAPI dll / shared object is in the same directory as your
software application or in the appropriate system directory.

42

Camera name Description

“CCi4 LVDS” CCi4 camera with PCI-LVDS interface

“BCi4-3 USB” BCi4 USB2.0 camera

•OpenFlags:

Depending up on the application, the camera is able to work in different acquisition modes. These
modes are:

Flag Application

CC_FLAG_NONE Empty flags, implies a CC_CAPTURE_WAIT

CC_FLAG_CAPTURENOWAIT

Overlapped operation mode. The camera
captures an image and the CC_CaptureSingle
function returns immediately returning FALSE.
During the acquisition, the program is able to
perform other calculations. Acquisition and
processing can be performed in parallel. The
program can detect when the acquisition is
ended.
This mode is also necessary to enable use of
the CC_CaptureSequence method.
This mode is currently only supported for PCI
based systems.

CC_FLAG_VIRTUALCAMERA

Translate camera commands only. Used to
control Camera Link based cameras and to
obtain Command lists to store in e.g. .ini files.
 Needs either a buffer structure (void *) or a
call-back (void(*)(unsigned short)) in Arg1.
This flag is mutually exclusive with
CC_FLAG_LOG_CAMERA_COMMANDS

CC_FLAG_VC_CALLBACK
Use callback instead of buffer. Only valid when
CC_FLAG_VIRTUALCAMERA has also been
specified.

CC_FLAG_USB_LIBWIN
Force use LIBWIN-USB to connect USB
Camera in case both drivers (CCUSB.SYS and
LIBUSB0.SYS) are active.

CC_FLAG_USB_ENDPOINT0
Force use of ENDPOINT0 to control USB
Camera. Has only effect for USB cameras with
both In- and OUT- endpoints.

CC_FLAG_USE_UNIQUE_ID Search for the camera with its Unique ID. This
is very effective if there is a mix of cameras
connected to the system.

CC_FLAG_USE_ALIAS
Search for the camera using the given Alias.
This is an alternate way of recognising cameras
in the system.

43

Flag Application

CC_FLAG_LOG_CAMERA_COMMANDS

Logs camera control commands into a user
supplied buffer.
Needs a buffer structure (void *) in Arg1.
This flag is mutually exclusive with
CC_FLAG_VIRTUALCAMERA

CC_ FLAG_DISABLE_OPENFAILMSGBOX Disables the pop-up MessageBox when trying
to open a non-existing (or not-present) camera.

Although these Flags are defined as an enumeration, they are meant to be bit-wise OR-ed to make up
the Flag-specification in the CC_OpenEx call.

typedef enum {
CC_FLAG_NONE = 0x0 ,
CC_FLAG_CAPTURENOWAIT = 0x01 ,
CC_FLAG_VIRTUALCAMERA = 0x02 ,
CC_FLAG_VC_CALLBACK = 0x04 ,
CC_FLAG_USB_LIBWIN = 0x08 ,
CC_FLAG_USB_ENDPOINT0 = 0x10 ,
CC_FLAG_USE_UNIQUE_ID = 0x20 ,
CC_FLAG_USE_ALIAS = 0x40 ,
CC_FLAG_LOG_CAMERA_COMMANDS = 0x80 ,
CC_FLAG_DISABLE_OPENFAILMSGBOX = 0x100
} CC_OPENFLAGS ;

The following structure uses an open array (e.g. buffer[1]) to specify the buffer. This avoids scattering
the data over the structure and a separate allocated buffer. See the examples. (Also see the BMP
structure as used by Windows.)

typedef struct {
int idx ; // where we are
int nel ; // number of elements
unsigned short buffer[1] ;
} translated_commands ;

•Example code:
#define BUFENTRIES 128
translated_commands * MyVCBuffer ;
FILE * fd ;

MyvCBuffer = malloc(sizeof(translated_commands) + BUFENTRIES *
sizeof(unsigned short)) ;

MyVCBuffer->idx = 0 ;
MyVCBuffer->nel = BUFENTRIES ;
CC_OpenEx(“BCi4-3 USB”, 0, CC_FLAG_VIRTUALCAMERA, MyVCBuffer, NULL) ;

... various operations fill up the MyVCBuffer

//saving the buffer

44

fd = fopen(“VCCommands.bin”, “wb”) ;
fwrite(MyVCBuffer, sizeof(translated_commands) + MyVCBuffer->idx *

sizeof(unsigned short), 1, fd) ;
fclose(fd) ;

•Another example

#define BUFENTRIES 10000
translated_commands * MTCBuffer ;
FILE * fd ;

MTCBuffer = calloc(sizeof(translated_commands) + BUFENTRIES *
sizeof(unsigned short)) ;

MTCBuffer->idx = 0 ;
MTCBuffer->nel = BUFENTRIES ;
CC_OpenEx(“BCi4-3 USB”, 0, CC_FLAG_LOG_CAMERA_COMMANDS , MTCBuffer,

 NULL) ;

... various operations fill up the MTCBuffer, if the buffer overflows it
restarts from the first entry. The 'idx' member of the structure tells us
whether it overflowed or not. As we used 'calloc' to allocate the
structure, all elements are cleared (set to '0').
If MTCBuffer->buffer[MTCBuffer->idx] points to a non-zero value there has
been a wraparound

45

3.25 CC_RegisterErrorHandler
•Function:

This function can be used to simplify the use of Error Handling (see description in chapter 3).
The CC_RegisterErrorHandler can only be called after a successful CC_Open call.
Not all error conditions are trapped, e.g. The capture functions returns the standard error code in case
of a Time Out and do not invoke the selected Error Handler. An asynchronous call always returns
with a Failure, the GetLastError() indicates the actual state of the operation. This situation is also not
trapped.

•Related function:

•Return value: FALSE when operation was not successful12, TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_RegisterErrorHandler(HANDLE Cam,
CC_ERROR_NOTIFICATION Operation ,
void (* CallbackFunction)(int));

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

Operation CC_ERROR_
NOTIFICATION

Enumeration What to do when an error
occurs

CallbackFunction Void (*) (int)
Function pointer

NULL if no call-back
required

Function to be called when an
error occurs if activated in
operation

•Special type structure:

Depending on the type of error handler, operation can be defined as:

CC_ERROR_
NOTIFICATION

Operation

CC_ERROR_NOTIFICATION_HANDLED_
BY_APPLICATION

If an error occurs, the error will be handled by the
application. No action will be done by the error
handler function. (Default)

CC_ERROR_NOTIFICATION_HANDLED_
BY_CALLBACK

If an error occurs, the user specified callback
function will be called.

CC_ERROR_NOTIFICATION_HANDLED_
BY_API_MESSAGEBOX13

If an error occurs, a message box will be
displayed with the error code translation.

typedef enum { CC_ERROR_NOTIFICATION_HANDLED_BY_APPLICATION = 0 ,

12 Usually when the driver was not installed or activated. Also make sure the CCAPI.dll is in the same directory as your software
application.
13 Not for Linux OS

46

CC_ERROR_NOTIFICATION_HANDLED_BY_CALLBACK ,
CC_ERROR_NOTIFICATION_HANDLED_BY_API_MESSAGEBOX
} CC_ERROR_NOTIFICATION ;

•Example code:

CC_RegisterErrorHandler(Cam ,
 CC_ERROR_NOTIFICATION_HANDLED_BY_CALLBACK ,

 MyCallbackFunction) ;

47

3.26 CC_SetParameter
•Function:

This function is to set the camera’s parameters.

•Related function: CC_SetWOI , CC_CaptureSingle

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_SetParameter(HANDLE Cam,
 CC_PARAMETER Par,
 ULONG Value);

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

Par CC_PARAMETER Enumeration Parameter type

Value ULONG
Depending on
parameter type
checking will be done

Value for parameter

Although a ULONG is specified,
a number of settings only use
the 16 or 8 lower bits of this
value.

•Camera parameters:

Depending up on the camera type, several parameters can be controlled:

Some of the parameters are only partially explained. Refer to the camera User Manual for specific
information.

Parameter Description

CC_PAR_INTEGRATION_TIME
Exposure time. This is the time between the first reset (=
opening of the row) and the readout or closing of this row.
Value in µ seconds.

CC_PAR_GAIN Gain control of the analogue signal before the ADC.

CC_PAR_OFFSET Offset control of the analogue signal before the ADC.

48

Parameter Description

CC_PAR_PIXEL_PRECHARGE
Sensor well depth control. The value controls the reset
voltage of the pixels
Value: 0...255

CC_PAR_ANAVAL0
CC_PAR_ANAVAL1
CC_PAR_ANAVAL2
CC_PAR_ANAVAL3

Various analogue settings in the camera. 8 bit values. See
the specific camera information documents

CC_PAR_ANAVAL01P
CC_PAR_ANAVAL23P

16 bit analogue camera settings using combined transfer of 2
successive 8bit values. See the specific camera information
documents

CC_PAR_CAMERA_MODE
Camera readout mode. With this parameter, one can toggle
between several camera or interface test images and the
image from the image sensor.
Value: Enumeration (see below).

CC_PAR_DATA_MODE
Output data format. This defines the ADC resolution and the
data position of the image.
Value: enumeration. See below.

CC_PAR_YSTART
First row of WOI14.
Value between 0 and sensor pixel height – 1.
Value must be smaller or equal than CC_PAR_YEND.

CC_PAR_YINC Row increment pitch, also known as sub-sample resolution.
Value: 1..32.

CC_PAR_YEND
Last row of WOI.
Value between 0 and sensor pixel height – 1.
Value must be equal or larger than CC_PAR_YSTART.

CC_PAR_XSTART
First column of WOI.
Value between 0 and sensor pixel width – 1.
Value must be smaller or equal than CC_PAR_XEND.

CC_PAR_XINC
Column increment pitch, also known as sub-sample
resolution.
Value: 1..32.

14 WOI = Window of interest. Rectangle part of the sensor area defined by the camera user.

49

Parameter Description

CC_PAR_XEND
Last column of WOI.
Value between 0 and sensor pixel width – 1.
Value must be equal or larger than CC_PAR_XSTART.

CC_PAR_PWM
Brightness control by means of Pulse Width Modulation. Only
a part of the dynamic range is visualised. This part is shifted
over the whole dynamic range of the sensor15.
Value: 0..255.

CC_PAR_ADC_DELAY ADC stabilisation delay

CC_PAR_Y_DELAY

CC_PAR_X_DELAY1

CC_PAR_X_DELAY2

CC_PAR_CORRECTION_MODE Calibration correction

CC_PAR_CTRLBIT

Sets/Resets Single Control bits in the camera. Uses a 16 bit
value that is a combination of 2 8bit values. The upper 8 bits
define the bit number (0 to 7) and the lower 8 bits specify
whether it is on or off. See applicable camera documents for
usage.

CC_PAR_SENSOR_RESET Reset sensor (or camera) before operation.

CC_PAR_INTERFACE_FLASH_DELAY

CC_PAR_INTERFACE_FLASH_WIDTH

CC_PAR_INTERFACE_FLASH_SETTINGS

CC_PAR_SKIP_XNCS_WAIT

CC_PAR_OFFSET_B_FINE

CC_PAR_INTSEL

CC_PAR_CAMERA_FLASH_DELAY

15 In case of a CCf15 camera, 4-decade range is moved over the 6-decade full dynamic range of the sensor.

50

Parameter Description

CC_PAR_CAMERA_FLASH_WIDTH

CC_PAR_CAMERA_TRIGGER_SETTINGS

CC_PAR_OFFSET_RED

CC_PAR_OFFSET_GREEN

CC_PAR_OFFSET_BLUE

CC_PAR_REPEAT_TIME

CC_PAR_DLS_OPERATION

CC_PAR_DLS_SET_PIXEL_PER_LINE

CC_PAR_DLS_SET_LRATE

CC_PAR_FRAME_COUNT Specifies how many frames the camera is to generate. In the
case of LineScan mode a selection of a single line equals a
frame.

CC_PAR_CAMERA_CONTROL

[1] = Implemented

[2] = Not yet implemented

[3] = (ADC_DELAY + X_DELAY1) AND (ADC_DELAY + X_DELAY2) ≥ 4 , to function properly.

[4] = minimum integration time is the readout time of 2 lines. The readout time of one line is a function
of the size of the line. See the respective documentation of the cameras on how to calculate the line
time.

51

•CC_PAR_DATA_MODE:

A camera can work internally in 8, 10, 12 mode – or more if specified – depending on its ADC
resolution of the camera. An 8-bit ADC camera will operate internally in 8 bit. A camera with 10 or
12 bit ADC resolution is handled by the interface as 16 bit data. Optionally only a part of the
camera data can be selected and transferred to the buffer on the PC. The range of data selected
for this transfer is to be defined by the Data mode parameter.
Some cameras or interfaces can/will perform a ‘ceiling’ operation when selecting 8 bits out of 10
or 12 input bits to avoid wrapping around: e.g. a 12 bit value of 301 will be ‘ceiled’ to 255 when
selecting bits 7..0 as output. See the applicable camera documents. Selecting 8 bits out of 10 or
12 input bits effectively performs a ‘digital’ gain on the image data.

Data mode Application

CC_DATA_8BIT_7_DOWNTO_0 The interface transfers his data from bit 7 down
to bit 0 to the 8 bit buffer on the PC.

CC_DATA_8BIT_8_DOWNTO_1 The interface transfers his data from bit 8 down
to bit 1 to the 8-bit buffer on the PC.

CC_DATA_8BIT_9_DOWNTO_2 The interface transfers his data from bit 9 down
to bit 2 to the 8 bit buffer on the PC.

CC_DATA_8BIT_10_DOWNTO_3
The interface transfers his data from bit 10
down to bit 3 to the 8-bit buffer on the PC.
Only applicable for a 12 bit camera.

CC_DATA_8BIT_11_DOWNTO_4 The interface transfers his data from bit 11
down to bit 4 to the 8-bit buffer on the PC.

CC_DATA_16BIT_9_ DOWNTO_0 The interface transfers his data from bit 9 down
to bit 0 to the 16-bit buffer on the PC.

CC_DATA_16BIT_11_DOWNTO_2 The interface transfers his data from bit 11
down to bit 2 to the 16-bit buffer on the PC.

CC_DATA_16BIT_11_DOWNTO_0 The interface transfers his data from bit 11
down to bit 0 to the 16-bit buffer on the PC.

typedef enum {CC_DATA_8BIT_7_DOWNTO_0 = 0x0,
 CC_DATA_8BIT_8_DOWNTO_1,
 CC_DATA_8BIT_9_DOWNTO_2,
 CC_DATA_8BIT_11_DOWNTO_4,
 CC_DATA_16BIT_9_DOWNTO_0,
 CC_DATA_16BIT_11_DOWNTO_2,

 CC_DATA_16BIT_11_DOWNTO_0
 CC_DATA_8BIT_10_DOWNTO_3

 } CC_DATA_MODE ;

52

•CC_PAR_CAMERA_MODE:

A camera can also work in different modes. During the process of writing software or testing the camera,
it is a help to use a test pattern. Depending up on the camera type, they can come from the camera or
interface. Of cause, one can always select the image sensor itself.

Camera mode Application

CC_CAMERA_NORMAL Image is coming from the sensor.

CC_CAMERA_DIAG_X Diagnostic data change in the X direction

CC_CAMERA_DIAG_Y Diagnostic data change in the Y direction

CC_CAMERA_DIAG_X_XOR_Y C-Cam test pattern in two directions

typedef enum { CC_CAMERA_NORMAL,
CC_CAMERA_DIAG_X,
CC_CAMERA_DIAG_Y,
CC_CAMERA_DIAG_X_XOR_Y

 } CC_CAMERA_MODE ;

•Error handling:
•CC_ERROR_PARAMETER_NOT_APPLICABLE:

•The requested parameter is not applicable for this type of camera.
•CC_ERROR_PARAMETER_NOT_DEFINED

•The requested parameter does not exist
•The requested parameter is misspelled.

•CC_ERROR_DATA_MODE_NOT_DEFINED
•The requested data mode does not exist
•The requested data mode is misspelled.

•CC_ERROR_CORRECTION_MODE_NOT_APPLICABLE
•This type of camera does not accept correction

•CC_ERROR_CORRECTION_MODE_NOT_DEFINED
•The requested parameter does not exist
•The requested parameter is misspelled.

•CC_ERROR_OUT_OF_RANGE_PAR_3
•Check limits of the parameter selected.

•Example code:

CC_SetParameter(Cam,
 CC_DATA_MODE,

 CC_PIXEL_8BIT_7_DOWNTO_0
);

53

3.27 CC_SetWOI
•Function:

This function sets the Window Of Interest (WOI) for the camera sensor device.

•Related function:
•CC_SetParameter
•CC_CaptureSingle

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_SetWOI(HANDLE Cam ,
 USHORT Xpar1 ,
 USHORT Ypar1 ,
 USHORT Xpar2 ,
 USHORT Ypar2 ,
 USHORT Xinc ,
 USHORT Yinc ,
 CC_WOI_MODE WOIMode ,
 ULONG * FrameSize) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

Xpar1 USHORT 0 to horizontal sensor
size – 1 First horizontal pixel reference

Ypar1 USHORT 0 to vertical sensor size
– 1 First vertical pixel reference

Xpar2 USHORT 0 to horizontal sensor
size – 1

Second horizontal pixel
reference

Ypar2 USHORT 0 to vertical sensor size
– 1 Second vertical pixel reference

Xinc USHORT 1 to 32 Horizontal sub-sample
resolution16

Yinc USHORT 1 to 32 Vertical sub-sample resolution

WOIMode CC_WOI_MODE Enumeration Reference of WOI

16 If camera is able to do so, else the increment value defaults to the value 1.

54

Variable Type Range Purpose

FrameSize ULONG * Not applicable Frame size in pixels as
calculated by the API

•Special type structure:

Depending up on the application, the Window Of Interest (WOI) can be defined as:

WOI mode Application Full frame example
(1280x1024)

Left Top / Right
Bottom

First and last pixels of the rectangle shaped
WOI are given. 0, 0, 1279, 1023

Left Top / Width
Height

The first pixel of the WOI is given. Then the
two dimensional size of the WOI is given. 0, 0, 1280, 1024

Centre / Width
Height

The gravity point of the WOI is given. Then
the two dimensional size of the WOI is given. 639, 511, 1280, 1024

Right Bottom /
Width Height

The last pixel of the WOI is given. Then the
two dimensional size of the WOI is given. 1279,1023,1280,1024

typedef enum { CC_WOI_LEFTTOP_RIGHTBOTTOM = 0x0 ,
 CC_WOI_LEFTTOP_WIDTHHEIGHT ,

 CC_WOI_CENTER_WIDTHHEIGHT ,
 CC_WOI_RIGHTBOTTOM_WIDTHHEIGHT

 } CC_WOI_MODE ;

•Example code:

CC_SetWOI(Cam,
 Xstart,Ystart,
 Xend, Yend,
 1, 1,
 CC_WOI_LEFTTOP_RIGHTBOTTOM,
 &FrameSize);

55

3.28 CC_StrError
•Function:

This function is returns a pointer to string representation of an error code. If the function cannot map
the error code to a CCAPI defined value, it will chain on to strerror() provided by the C-run time library.

•Related function: strerror()

•Return value: pointer to string.

•Syntax definition:

DLLINOUT char * WINAPI CC_StrError(HANDLE Cam, int errorcode) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

NULL is accepted to allow
decoding of errors when

CC_Open() or CC_OpenEx()
returns an invalid handle.

errorcode int
A number returned by a call
to GetLastError() or by
CC_GetLastPushedError().

•Example code:

char * pes ;
char msg[256] ;

pes = CC_StrError(Cam, GetLastError()) ;
strcpy(msg , “verbose Error Message : “) ;
strcat(msg , pes) ;
MessageBox(NULL , NULL , msg , 0) ;

56

3.29 CC_UnMapPhysMem

•Function:

This function is used to unmap physical memory, reserved from main memory at boot time, from the
applications address space in order to be able to access this memory via the standard Windows
methods.

•Related function: CC_MapPhysMem

•Return value: FALSE when operation was not successful. TRUE if successful.

•Syntax definition:

DLLINOUT BOOL WINAPI CC_UnMapPhysMem(HANDLE Cam,,
 void * UserAddress) ;

Variable Type Range Purpose

Cam Handle A 32 bit number
returned by CC_Open

Handle to previous opened
device (= camera)

UserAddress void ** pointer The virtual address of the
previously mapped data

•Example code:

// Map a buffer for 3 images (of 1280 * 1024 at 12 bit pixel depth)
// in physical memory on a 128Mbyte system where 8Mbyte have been
// reserved for physical memory access.
// The reservation was done at boot time by adding the /MAXMEM=120
// in the boot.ini file.
#define PHYSMEMSTART 0x07800000
#define PHYSMEMMAXSIZE 0x00800000
#define BUFSIZE 3 * 1280 * 1024 * 2

unsigned short * pBuffer ;

ASSERT(BUFSIZE <= PHYSMEMMAXSIZE) ; // check that it will fit
CC_MapPhysMem(Camhandle , PHYSMEMSTART , BUFSIZE , &pBuffer) ;

...

CC_UnMapPhysMem(Camhandle , pBuffer) ;

57

4 Error handling
Every function in this DLL returns a Boolean value indicating success or failure, except for the CC_Open
function that returns a handle.
If a function succeeds, then the return value will be non-zero. If a function fails, the return value will be
FALSE.
If the CC_Open function fails, then a handle with value zero will be returned. The application can not call
CCAPI functions if CC_Open returned a failure, except the CC_StrError() call which ignores the handle.
To get more information when a function fails, you have to call the Windows function GetLastError(), or
check the errno variable in Linux..
This function returns a DWORD value that indicates what went wrong. Below is a summary of all possible
Error Codes. If GetLastError() returns a value below 0x1000, then the error code is a WIN32 error code.
When using Microsoft Visual Basic for the main application, you have to use the Err object to find out what
went wrong in a failed function. The LastDLLError property of the Err object holds the error code.

4.1 Error codes

When a function is successful, GetLastError returns CC_ERROR_NONE.
CC_ERROR_NONE = 0x0000

When any of the parameters is out of range, the following codes will be generated:

CC_ERROR_OUT_OF_RANGE_PAR_1 = 0x1000
CC_ERROR_OUT_OF_RANGE_PAR_2 = 0x1001
CC_ERROR_OUT_OF_RANGE_PAR_3 = 0x1002
CC_ERROR_OUT_OF_RANGE_PAR_4 = 0x1003
CC_ERROR_OUT_OF_RANGE_PAR_5 = 0x1004
CC_ERROR_OUT_OF_RANGE_PAR_6 = 0x1005
CC_ERROR_OUT_OF_RANGE_PAR_7 = 0x1006
CC_ERROR_OUT_OF_RANGE_PAR_8 = 0x1007
CC_ERROR_WOI_SIZE_NOT_ALLOWED = 0x1010

 CC_ERROR_WOI_MODE_UNKNOWN = 0x1011

CC_ERROR_FUNCTION_NOT_APPLICABLE = 0x2000
CC_ERROR_PARAMETER_NOT_APPLICABLE = 0x2001
CC_ERROR_PARAMETER_NOT_DEFINED = 0x2002
CC_ERROR_WOI_MODE_NOT_DEFINED = 0x2003
CC_ERROR_CAMERA_MODE_NOT_DEFINED = 0x2004
CC_ERROR_CAMERA_MODE_NOT_APPLICABLE = 0x2005
CC_ERROR_TRIGGER_MODE_NOT_DEFINED = 0x2006
CC_ERROR_TRIGGER_MODE_NOT_APPLICABLE = 0x2007
CC_ERROR_CAPTURE_MODE_NOT_DEFINED = 0x2008
CC_ERROR_CAPTURE_MODE_NOT_APPLICABLE = 0x2009
CC_ERROR_CORRECTION_MODE_NOT_DEFINED = 0x200a
CC_ERROR_CORRECTION_MODE_NOT_APPLICABLE = 0x200b
CC_ERROR_DATA_MODE_NOT_DEFINED = 0x200c
CC_ERROR_DATA_MODE_NOT_APPLICABLE = 0x200d
CC_ERROR_OPENEX_FLAGS_INVALID = 0x200e

58

The following codes deal with camera management:
CC_ERROR_CAMERA_UNKNOWN = 0x3000
CC_ERROR_NOT_ENOUGH_MEMORY = 0x3001
CC_ERROR_DEV_NOT_EXIST = 0x3002
CC_ERROR_GEN_FAILURE = 0x3003
CC_ERROR_INVALID_HANDLE = 0x3004
CC_ERROR_FILE_NOT_FOUND = 0x3005
CC_ERROR_CAN_NOT_OPEN_FILE = 0x3006
CC_ERROR_INTERFACE_LOAD_FAILURE = 0x3007
CC_ERROR_BUFFER_TOO_SMALL = 0x3008
CC_ERROR_INCOMPATIBLE_DRIVER_VERSION = 0x3009
CC_ERROR_INCORRECT_PCIBOARD_TYPE = 0x300a
CC_ERROR_INCORRECT_PCIBOARD_REVISION = 0x300b
CC_ERROR_NV_WRITE = 0x300c
CC_ERROR_PCIBOARD_MANDATORY = 0x300d
CC_ERROR_INCORRECT_LOGIC_FILE = 0x300e
CC_ERROR_INTERFACE_LOGIC_NOT_FOUND = 0x300f
CC_ERROR_CAMERA_LOGIC_NOT_FOUND = 0x3010
CC_ERROR_FUNCTION_NOT_SUPPORTED = 0x3011
CC_ERROR_INVALID_ARG1 = 0x3012
CC_ERROR_INVALID_ARG2 = 0x3013
CC_ERROR_WRITE_SDF = 0x3014
CC_ERROR_READ_SDF_POST = 0x3015
CC_ERROR_READ_SDF = 0x3016
CC_ERROR_READ_SDF_CNT = 0x3017
CC_ERROR_INVALID_ARG = 0x3018
CC_ERROR_PROGRESS_FLAGS_INVALID = 0x3019
CC_ERROR_LOCK_FAILED = 0x301a
CC_ERROR_USB_CONFIGURATION = 0x301b
CC_ERROR_UNKNOWN_PCIBOARD_TYPE = 0x301c
CC_ERROR_DEV_OPEN_FAILURE = 0x301d
CC_ERROR_LOAD_TARGET_ERROR = 0x301e
CC_ERROR_CAMERA_MANAGEMENT_FLAGS_INVALID = 0x301f
CC_ERROR_CAMERA_MANAGEMENT_ARGS_INVALID = 0x3020
CC_ERROR_CAMERA_MANAGEMENT_READ = 0x3021
CC_ERROR_CAMERA_MANAGEMENT_WRITE = 0x3022

The following codes are generated when using capture functions:

CC_ERROR_CAPTURE_TIMEOUT = 0x4000
CC_ERROR_CAPTURE_IN_PROGRESS = 0x4001
CC_ERROR_CAPTURE_NOT_FINISHED = 0x4002
CC_ERROR_CAPTURE_ABORTED = 0x4003
CC_ERROR_BUFFER_OVERRUN = 0x4004
CC_ERROR_INVALID_CAPTURE_MODE = 0x4005
CC_ERROR_CONTINUOUS_CAPTURE_FAILED = 0x4006
CC_ERROR_CONTINUOUS_CAPTURE_ABORTED = 0x4007
CC_ERROR_CAPTURE_ARM_INVALID = 0x4008
CC_ERROR_IMAGE_UNDERRUN = 0x4009
CC_ERROR_CAPTURE_INVALID_ARG = 0x400a

59

5 Include files for Visual Basic and other programming
languages

See corresponding directories in the release file package.

60

Alphabetical Index

CC_CAMERA_MODE.. 53
CC_CamStatus.. 7, 9
CC_CAPTURE_MODE.. 41
CC_CaptureAbort...10, 11, 12
CC_CaptureBackground.. 14
CC_CaptureData..18
CC_CaptureSequence... 20
CC_CaptureSingle... 23
CC_CaptureStatus... 26
CC_CaptureWait..27
CC_Close... 28
CC_DATA_MODE..52
CC_ERROR_NOTIFICATION..47
CC_GetDLLVersion... 29
CC_GetDriverVersion.. 30
CC_LoadCamera... 33
CC_LoadCameraEx... 34
CC_LoadInterface.. 37
CC_MapPhysMem... 38
CC_Open... 40
CC_OpenEx... 42
CC_OPENFLAGS.. 44
CC_SetParameter..48
CC_SetWOI... 54
CC_TRIGGER_MODE... 12
CC_WOI_MODE.. 55
Error codes...58
Error handling...58
Introduction.. 5
translated_commands..44

61

	1 Introduction
	2 Function summary
	3 API Functions – in alphabetical order
	3.1 CC_CameraManagement
	3.2 CC_CamStatus
	3.3 CC_CaptureAbort
	3.4 CC_CaptureAbortEx
	3.5 CC_CaptureArm3
	3.6 CC_CaptureBackground4
	3.7 CC_CaptureBackgroundAbort5
	3.8 CC_CaptureBackgroundEx6
	3.9 CC_CaptureData7
	3.10 CC_CaptureSequence8
	3.11 CC_CaptureSingle
	3.12 CC_CaptureStatus
	3.13 CC_CaptureWait
	3.14 CC_Close
	3.15 CC_GetDLLVersion
	3.16 CC_GetDriverVersion
	3.17 CC_GetPCIBoardInfo
	3.18 CC_GetPushedLastError
	3.19 CC_LoadCamera
	3.20 CC_LoadCameraEx
	3.21 CC_LoadInterface
	3.22 CC_MapPhysMem
	3.23 CC_Open
	3.24 CC_OpenEx
	3.25 CC_RegisterErrorHandler
	3.26 CC_SetParameter
	3.27 CC_SetWOI
	3.28 CC_StrError
	3.29 CC_UnMapPhysMem

	4 Error handling
	4.1 Error codes

	5 Include files for Visual Basic and other programming languages

