Simple Network Management
Protocol (SNMP)

version 3.4

Typeset in IATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 SNMP User's Guide

11

1.2

13

14

15

SNMP Introduction
1.1.1 Scopeand PUrpOSe o v vt e e
1.1.2 Prerequisites e e
1.1.3 AboutThisManual
1.1.4 Where to Find More Information
Functional Description L
1.2.1 Definitions e
1.22 Features e
1.2.3 SNMPv1, SNMPv2and SNMPV3
124 Operation e
1.2.5 Subagentsand MIB Loading
1.2.6 Contextsand Communities
1.2.7 Management of the Agent
1.2.8 Notifications e
Instrumentation Functions
1.3.1 Instrumentation Functions
1.3.2 Using the ExtraArgument
1.3.3 Default Instrumentation
1.3.4 AtomicSet e
The MIB Compiler e
1.4.1 Operation o e
1.4.2 Importing MIBS e
1.4.3 MIB Consistency Checking e
1.4.4 _.hrlFile Generation e
1.45 EmacsiIntegration. L
1.4.6 Compiling from a Shell ora Makefile
1.4.7 Deviations fromthe Standard
Running the Agent e
1.5.1 Configuringthe Agent e

Simple Network Management Protocol (SNMP)

© © 0 Ul A D W WDNDNEFLPPFP PP

1.6

1.7

18

19

1.10

111

1.12

1.13

1.5.2 Modifying the Configuration Files 28

1.5.3 Startingthe Agent 29
154 Debuggingthe Agent 30
Implementation Example L 31
1.6.1 MIB . . . e 31
1.6.2 Default Implementation 32
1.6.3 Manual Implementation 34
Advanced TOPICS 39
1.7.1 WhentouseaSubagent 39
1.7.2 AgentSemantiCs e e 40
1.7.3 Subagents and Dependencies e 41
1.7.4 Distributed Tables 41
1.75 FaultTolerance e 41
1.7.6 Using Mnesia Tablesas SNMP Tables 42
1.7.7 Audit Trail Logging 45
1.7.8 Deviations fromthe Standard 45
Definition of Configuration Files 46
1.8.1 AgentInformation 46
1.82 ContextS. e 47
1.8.3 SystemInformation. 47
1.84 Communities e 47
1.85 MIBViewsfor VACM e 48
1.8.6 Securitydatafor USM 48
1.8.7 Notify Definitions 49
1.8.8 Target Address Definitions 49
1.8.9 Target Parameters Definitionso oo oL 50
Definition of Instrumentation Functions 50
1.9.1 \Variable Instrumentation 50
1.9.2 Table Instrumentation 52
Definition of Netif 55
1.10.1 Mandatory Functions 56
1.10.2 MESSAQGES .+« v v o e e e e e e e e e 56
SNMP AppendixX A e 58
1.11.1 AppendixX A . . . L 58
SNMP Appendix B e 59
1.12.1 Appendix B 59
SNMP Release Notes 68
1.13.1 SNMP Development Toolkitv3.4.12 68
1.13.2 SNMP Development Toolkitv3.4.11 68
1.13.3 SNMP Development Toolkitv3.4.10 69

Simple Network Management Protocol (SNMP)

1.13.4 SNMP Development Toolkitv3.4.9, 69

1.13.5 SNMP Development Toolkitv3.4.8, 70
1.13.6 SNMP Development Toolkitv3.4.7 70
1.13.7 SNMP Development Toolkitv3.4.6 71
1.13.8 SNMP Development Toolkitv3.4.5 71
1.13.9 SNMP Development Toolkitv3.4.4 72
1.13.105NMP Development Toolkitv3.4.3 72
1.13.11SNMP Development Toolkitv3.4.2 73
1.13.12SNMP Development Toolkitv3.4.1 74
1.13.135NMP Development Toolkitv3.4 74
1.13.14SNMP Development Toolkitv3.3.8 75
1.13.155NMP Development Toolkitv3.3.7 75
1.13.16SNMP Development Toolkitv3.3.6 75
1.13.17SNMP Development Toolkitv3.3.5 76
1.13.18NMP Development Toolkitv3.3.4 77
1.13.19SNMP Development Toolkitv3.3.3 77
1.13.20SNMP Development Toolkitv3.3.2 77
1.13.21SNMP Development Toolkitv3.3.1 78
1.13.22SNMP Development Toolkitv3.3.0 78
1.13.235NMP Development Toolkitv3.2.2 79
1.13.24SNMP Development Toolkitv3.2.1 80
1.13.255NMP Development Toolkitv3.2.0 80
1.13.26SNMP Development Toolkitv3.1.4 80
1.13.27SNMP Development Toolkitv3.1.3 81
1.13.285NMP Development Toolkitv3.1.2 82
1.13.29SNMP Development Toolkitv3.1.1 83
1.13.30SNMP Development Toolkitv3.1 84

Simple Network Management Protocol (SNMP) v

2 SNMP Reference Manual

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

SIMP & . v v e et e e e
snmp_community_mib
SMMP_EITON © . o o o o e e e e e e e e e e e e
SNMP_EITOr_i0 . . . o o o et e e e e e e e
SNMP_EITOrrEPOIt o e e e e e e e e e
snmp_framework_mib L
SNMP_gENEIIC o o e e e
SNMP-INOEX . . o o
snmp_local_db
SNIMP_MOE .+ . o o o e e e e e e e e e e
snmp_mpd ..o e
snmp_notification_mibo
SNMP_PAUS . . . o o e
snmp_standard_mib
SIMP_SUPEIVISOT . . o o v o o e e e e e e e e
snmp_targetmib L
snmp.user_based_sm_mib L
snmp.view_based_acm_mib

List of Figures

List of Tables

Vi

Simple Network Management Protocol (SNMP)

85

96

98
110
112
113
114
115
117
121
125
128
133
135
137
140
142
144
147
149

153

155

Chapter 1

SNMP User's Guide

A multilingual Simple Network Management Protocol Extensible Agent, featuring a MIB compiler and
facilities for implementing SNMP MIBs etc.

1.1 SNMP Introduction

The SNMP development tool provides an environment for rapid agent prototyping and construction.
With the following information provided, this tool is used to set up a running multi-lingual SNMP
agent:
e a description of a Management Information Base (MIB) in Abstract Syntax Notation One (ASN.1)
¢ instrumentation functions for the managed objects in the MIB, written in Erlang.
The advantage of using an extensible agent toolkit is to remove details such as type-checking, access
rights, Protocol Data Unit (PDU), encoding, decoding, and trap distribution from the programmer, who
only has to write the instrumentation functions, which implement the MIBs. The get-next function

only has to be implemented for tables, and not for every variable in the global naming tree. This
information can be deduced from the ASN.1 file.

1.1.1 Scope and Purpose

This manual describes the SNMP development tool, as a component of the Erlang/Open Telecom
Platform development environment. It is assumed that the reader is familiar with the Erlang
Development Environment, which is described in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisites is required for understanding the material in the SNMP User's Guide:

¢ the basics of the Simple Network Management Protocol version 1 (SNMPv1)

e the basics of the community-based Simple Network Management Protocol version 2 (SNMPv2c)
¢ the basics of the Simple Network Management Protocol version 3 (SNMPv3)

e the knowledge of defining MIBs using SMIv1 and SMIv2

o familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.

Simple Network Management Protocol (SNMP) 1

Chapter 1: SNMP User's Guide

1.1.3 About This Manual

In addition to this introductory chapter, the SNMP User's Guide contains the following chapters:

Chapter 2: “Functional Description” describes the features and operation of the SNMP
development toolkit. It includes topics on Subagents and MIB loading, Internal MIBs, and Traps.

Chapter 3: “Instrumentation Functions” describes how instrumentation functions should be
defined in Erlang for the different operations.

Chapter 4: “The MIB Compiler” describes the features and the operation of the MIB compiler.

Chapter 5: “Running the Agent” describes how to start and configure the agent. Topics on how to
debug the agent are also included.

Chapter 6: “Implementation Example” describes how an MIB can be implemented with the
SNMP Development Toolkit. Implementation examples are included.

Chapter 7: “Advanced Topics” describes subagents, agent semantics, audit trail logging, and the
consideration of distributed tables.

Chapter 8: “Definition of Configuration Files” is a reference chapter, which contains more
detailed information about the configuration files.

Chapter 9: “Definition of Instrumentation Functions” is a reference chapter which contains more
detailed information about the instrumentation functions.

Chapter 10: “Definition of Net if” is a reference chapter, which describes the Net if function in
detail.

Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.
Appendix B contains the RFC1903 text on RowStatus.

1.1.4 Where to Find More Information

Refer to the following documentation for more information about SNMP and about the Erlang/OTP
development system:

Marshall T. Rose (1991), “The Simple Book - An Introduction to Internet Management”,
Prentice-Hall

Evan McGinnis and David Perkins (1997), “Understanding SNMP MIBs”, Prentice-Hall
RFC1155, 1157, 1212 and 1215 (SNMPv1)

RFC1901-1907 (SNMPv2c)

RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)

RFC2271, RFC2273 (SNMP std MIBs)

the Mnesia User's Guide

the Erlang 4.4 Extensions User's Guide

the Reference Manual

the Erlang Embedded Systems User's Guide

the System Architecture Support Libraries (SASL) User's Guide

the Installation Guide

the Asnl User's Guide

Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

Simple Network Management Protocol (SNMP)

1.2: Functional Description

1.2 Functional Description

The SNMP development toolkit contains the following parts:

e An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157), SNMPv2c
(RFC1901, 1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and 2275), or any
combination of these protocols.

e A MIB compiler, which understands SMIv1l (RFC1155, 1212, and 1215) and SMIv2 (RFC1902,
1903, and 1904).

e A multi-lingual SNMP manager, which can be used for simple interactive testing and for writing
test suites.
The SNMP agent system consists of one Master Agent and optional Subagents.

The tool makes it easy to dynamically extend an SNMP agent in runtime. MIBs can be loaded and
unloaded at any time. It is also easy to change the implementation of an MIB in runtime, without
having to recompile the MIB. The MIB implementation is clearly separated from the agent.

To facilitate incremental MIB implementation, the tool can generate a prototype implementation for a
whole MIB, or parts thereof. This allows different MIBs and management applications to be developed
at the same time.

1.2.1 Definitions

The following definitions are used in the SNMP User’s Guide.

MIB The conceptual repository for management information is called the Management Information
Base (MIB). It does not hold any data, merely a definition of what data can be accessed. A
definition of an MIB is a description of a collection of managed objects.

SMI The MIB is specified in an adapted subset of the Abstract Syntax Notation One (ASN.1)
language. This adapted subset is called the Structure of Management Information (SMI).

ASN.1 ASN.1 is used in two different ways in SNMP. The SMI is based on ASN.1, and the messages in
the protocol are defined by using ASN.1.

Managed object A resource to be managed is represented by a managed object, which resides in the
MIB. In an SNMP MIB, the managed objects are either:

e scalar variables, which have only one instance per context. They have single values, not
multiple values like vectors or structures.

¢ tables, which can grow dynamically.
e atable element, which is a special type of scalar variable.

Operations SNMP relies on the three basic operations: get (object), set (object, value) and get-next
(object).

Instrumentation function An instrumentation function is associated with each managed object. This is
the function, which actually implements the operations and will be called by the agent when it
receives a request from the management station.

Manager A manager generates commands and receives notifications from agents. There usually are only
a few managers in a system.

Agent An agent responds to commands from the manager, and sends notification to the manager. There
are potentially many agents in a systrem.

Simple Network Management Protocol (SNMP) 3

Chapter 1: SNMP User's Guide

1.2.2 Features

To implement an agent, the programmer writes instrumentation functions for the variables and the
tables in the MIBs that the agent is going to support. A running prototype which handles set, get, and
get-next can be created without any programming.

The toolkit provides the following:

e multi-lingual multi-threaded extensible SNMP agent

e easy writing of instrumentation functions with a high-level programming language
¢ basic fault handling such as automatic type checking

e access control

e authentication

e privacy through encryption

¢ loading and unloading of MIBs in runtime

¢ the ability to change instrumentation functions without recompiling the MIB

e rapid prototyping environment where the MIB compiler can use generic instrumentation
functions, which later can be refined by the programmer

¢ asimple and extensible model for transaction handling and consistency checking of set-requests
e support of the subagent concept via distributed Erlang

¢ a mechanism for sending notifications (traps and informs)

e support for implementing SNMP tables in the Mnesia DBMS.

1.2.3 SNMPv1, SNMPv2 and SNMPv3

The SNMP development toolkit works with all three versions of Standard Internet Management
Framework; SNMPv1, SNMPv2 and SNMPv3. They all share the same basic structure and components.
And they follow the same architecture.

The versions are defined in following RFCs

e SNMPv1 RFC 1555, 1157 1212, 1213 and 1215
e SNMPv2 RFC 1902 - 1907
e SNMPv3 RFC 2570 - 2575
Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3 the

definitions of each of these architectural components have become richer and more clearly defined, but
the fundamental architecture has remained consistent.

The main features of SNMPv2 compared to SNMPv1 are:

e The get-bulk operation for transferring large amounts of data.
e Enhanced error codes.
e A more precise language for MIB specification

4 Simple Network Management Protocol (SNMP)

1.2: Functional Description

The standard documents that define SNMPv2 are incomplete, in the sense that they do not specify how
an SNMPv2 message looks like. The message format and security issues are left to a special
Administrative Framework. One such framework is the Community-based SNMPv2 Framework
(SNMPv2c), which uses the same message format and framework as SNMPv1. Other experimental
frameworks as exist, e.g. SNMPv2u and SNMPv2*,

The SNMPv3 specifications take a modular approach to SNMP. All modules are separated from each
other, and can be extended or replaced individually. Examples of modules are Message definition,
Security and Access Control. The main features of SNMPv3 are:

e Encryption and authentication is added.
e MIBs for agent configuration are defined.

All these specifications are commonly referred to as “SNMPv3”, but it is actually only the Message
module, which defines a new message format, and Security module, which takes care of encryption and
authentication, that cannot be used with SNMPv1 or SNMPv2c. In this version of the agent toolkit, all
the standard MIBs for agent configuration are used. This includes MIBs for definition of management
targets for notifications. These MIBs are used regardless of which SNMP version the agent is configured
to use.

The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3. Recall that
SNIMP consists of two separate parts, the MIB definition language (SMI), and the protocol. On the
protocol level, the agent can be configured to speak v1, v2c, v3 or any combination of them at the same
time, i.e. a v1 request gets an v1 reply, a v2c request gets a v2c reply, and a v3 request gets a v3 reply.
On the MIB level, the MIB compiler can compile both SMIv1 and SMIv2 MIBs. Once compiled, any of
the formats can be loaded into the agent, regardless of which protocol version the agent is configured to
use. This means that the agent translates from v2 notifications to v1 traps, and vice versa. For example,
v2 MIBs can be loaded into an agent that speaks v1 only. The procedures for the translation between
the two protocols are described in RFC 1908 and RFC 2089.

In order for an implementation to make full use of the enhanced SNMPV2 error codes, it is essential
that the instrumentation functions always return SNMPv2 error codes, in case of error. These are
translated into the corresponding SNMPv1 error codes by the agent, if necessary.

Note:

The translation from an SMIv1l MIB to an SNMPv2c or SNMPV3 reply is always very straightforward,
but the translation from a v2 MIB to a v1 reply is somewhat more complicated. There is one data
type in SMIv2, called Counter64, that an SNMPv1 manager cannot decode correctly. Therefore, an
agent may never send a Counter64 object to an SNMPv1 manager. The common practice in these
situations is to simple ignore any Counter64 objects, when sending a reply or a trap to an SNMPv1
manager. For example, if an SNMPv1 manager tries to GET an object of type Counter64, he will get
a noSuchName error, while an SNMPv2 manager would get a correct value.

1.2.4 Operation

The following steps are needed to get a running agent:

1. Write your MIB in SMI in a text file.

2. Write the instrumentation functions in Erlang and compile them.

3. Put their names in the association file.

4. Run the MIB together with the association file through the MIB compiler.

Simple Network Management Protocol (SNMP) 5

Chapter 1: SNMP User's Guide

5. Configure the agent.
6. Start the agent.
7. Load the compiled MIB into the agent.

The figures in this section illustrate the steps involved in the development of an SNMP agent.

MIB in ASN.1 file.mib
sysContact OBJECT-TYPE Association file file.funcs
SYNTAX DisplayString {sysContact, {mymod, sysCFunc, []}}.
MIB
Compiler

Y
Binary| filebin |

Representation

Figure 1.1: MIB Compiler Principles

The compiler parses the SMI file and associates each table or variable with an instrumentation function
(see the figure MIB Compiler Principles [page 6]). The actual instrumentation functions are not needed
at MIB compile time, only their names.

The binary output file produced by the compiler is read by the agent at MIB load time (see the figure
Starting the Agent [page 6]). The instrumentation is ordinary Erlang code which is loaded explicitly or
automatically the first time it is called.

Instrumentation mymod.jam
sysCFunc(get, ...) ->
<code>;
Binary| file.bin sysCFunc(set, ...) ->
Representation <code>.

Figure 1.2: Starting the Agent

6 Simple Network Management Protocol (SNMP)

1.2: Functional Description

The SNMP agent system consists of one Master Agent and optional subagents. The Master Agent can
be seen as a special kind of subagent. It implements the core agent functionality, UDP packet
processing, type checking, access control, trap distribution, and so on. From a user perspective, it is
used as an ordinary subagent.

Subagents are only needed if your application requires special support for distribution from the SNMP
toolkit. A subagent can also be used if the application requires a more complex set transaction scheme
than is found in the master agent.

The following illustration shows how a system can look in runtime.

Standard
MIB

Master
Agent

/Erlang

Mi:mager UDP | Distributed Erlang |

Network

Figure 1.3: Architecture

A typical operation could include the following steps:

1. The Manager sends a request to the Agent.
2. The Master Agent decodes the incoming UDP packet.

3. The Master Agent determines which items in the request that should be processed here and
which items should be forwarded to its subagent.

Step 3 is repeated by all subagents.

Each subagent calls the instrumentation for its loaded MIBs.

The results of calling the instrumentation are propagated back to the Master Agent.
The answer to the request is encoded to a UDP Protocol Data Unit (PDU).

N o g A

Simple Network Management Protocol (SNMP) 7

Chapter 1: SNMP User's Guide

The sequence of steps shown is probably more complex than normal, but it illustrates the amount of
functionality which is available. The following points should be noted:

e An agent can have many MIBs loaded at the same time.

e Subagents can also have subagents. Each subagent can have an arbitrary number of child
subagents registered, forming a hierarchy.

e One MIB can communicate with many applications.
¢ Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple MIBs loaded at the
same time.

1.2.5 Subagents and MIB Loading

Since applications tend to be transient (they are dynamically loaded and unloaded), the management of
these applications must be dynamic as well. For example, if we have an equipment MIB for a rack and
different MIBs for boards, which can be installed in the rack, the MIB for a card should be loaded when
the card is inserted, and unloaded when the card is removed.

In this agent system, there are two ways to dynamically install management information. The most
common way is to load an MIB into an agent. The other way is to use a subagent, which is controlled by
the application and is able to register and de-register itself. A subagent can register itself for maniging a
sub-tree (not to be mixed up with erlang:register). The sub-tree is identified by an Object Identifier.
When a subagent is registered, it receives all requests for this particular sub-tree and it is responsible for
answering them. It should also be noted that a subagent can be started and stopped at any time.

Compared to other SNMP agent packages, there is a significant difference in this way of using
subagents. Other packages normally use subagents to load and unload MIBs in runtime. In Erlang, it is
easy to load code in runtime and it is possible to load an MIB into an existing subagent. It is not
necessary to create a new process for handling a new MIB.

Subagents are used for the following reasons:

e to provide a more complex set-transaction scheme than master agent

e to avoid unnecessary process communication

e to provide a more lightweight mechanism for loading and unloading MIBs in runtime

e to provide interaction with other SNMP agent toolkits.
Refer to the chapter Advanced Topics [page 39] in this User's Guide for more information about these
topics.

The communication protocol between subagents is the normal message passing which is used in
distributed Erlang systems. This implies that subagent communication is very efficient compared to
SMUX, DPI, AgentX, and similar protocols.

8 Simple Network Management Protocol (SNMP)

1.2: Functional Description

1.2.6 Contexts and Communities

A context is a collection of management information accessible by an SNMP entity. An instance of a
management object may exist in more than one context. An SNMP entity potentially has access to
many contexts.

Each managed object can exist in many instances within a SNMP entity. To identify the instances,
specified by an MIB module, a method to distinguish the actual instance by its 'scope’ or context is
used. Often the context is a physical or a logical device. It can include multiple devices, a subset of a
single device or a subset of multiple devices, but the context is always defined as a subset of a single
SNMP entity. To be able to identify a specific item of management information within an SNMP entity,
the context, the object type and its instance must be used.

For example, the managed object type ifDescr from RFC1573, is defined as the description of a
network interface. To identify the description of device-X's first network interface, four pieces of
information are needed: the snmpEnginelD of the SNMP entity which provides access to the
management information at device-X, the contextName (device-X), the managed object type
(ifDescr), and the instance (“1”).

In SNMPv1 and SNMPv2c, the community string in the message was used for (at least) three different
puUrposes:

¢ to identify the context
¢ to provide authentication
¢ to identify a set of trap targets

In SNMPV3, each of these usage areas has its own unique mechanism. A context is identified by the
name of the SNMP entity, contextEngineID, and the name of the context, contextName. Each
SNMPv3 message contains values for these two parameters.

There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a contextEngineID
and contextName. Thus, each message, an SNMPv1, SNMPv2c or an SNMPv3 message, always
uniquely identifies a context.

For an agent, the contextEngineID identified by a received message, is always equal to the
snmpEngineID of the agent. Otherwise, the message was not intended for the agent. If the agent is
configured with more than one context, the instrumentation code must be able to figure out for which
context the request was intended. There is a function snmp: current_context/0 provided for this
purpose.

By default, the agent has no knowledge of any other contexts than the default context, "". If it is to
support more contexts, these must be explicitly added, by using an appropriate configuration file
Configuration Files [page 27].

1.2.7 Management of the Agent

There is a set of standard MIBs, which are used to control and configure an SNMP agent. All of these
MIBs, with the exception of the optional SNMP-PROXY-MIB (which is only used for proxy agents), are
implemented in this agent. Further, it is configurable which of these MIBs are actually loaded, and thus
made visible to SNMP managers. For example, in a non-secure environment, it might be a good idea to
not make MIBs that define access control visible. Note, the data the MIBs define is used internally in the
agent, even if the MIBs not are loaded. This chapter describes these standard MIBs, and some aspects of
their implementation.

Any SNIMP agent must implement the system group and the snmp group, defined in MIB-IIl. The
definitions of these groups have changed from SNMPv1 to SNMPv2. MIBs and implementations for
both of these versions are Provided in the distribution. The MIB file for SNMPv1 is called

Simple Network Management Protocol (SNMP) 9

Chapter 1: SNMP User's Guide

STANDARD-MIB, and the corresponding for SNMPv2 is called SNMPv2-MIB. If the agent is
configured for SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise, the SNMPv2-MIB
is loaded by default. It is possible to override this default behavior, by explicitly loading another version
of this MIB, for example, you could choose to implement the union of all objects in these two MIBs.

An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These
MIBs are loaded by default, if the agent is configured for SNMPv3. These MIBs can be loaded for other
versions as well.

There are five other standard MIBs, which also may be loaded into the agent. These MIBs are:

¢ SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for
configuration of management targets, i.e. receivers of notifications (traps and informs). These
MIBs can be used with any SNMP version.

e SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control. This MIB
can be used with any SNMP version.

¢ SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1 and
SNMPv2c with SNMPv3. This MIB is only useful if SNMPv1 or SNMPv2c is used, possibly in
combination with SNMPv3.

¢ SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and privacy.
This MIB is only useful with SNMPv3.

All of these MIBs should be loaded into the Master Agent. Once loaded, these MIBs are always
available in all contexts.

The ASN.1 code, the Erlang source code, and the generated .hr1 files for them are provided in the
distributionand are placed in the directories mibs, src, and include, respectively, in the snmp
application.

The .hrl files are generated with snmp:mib_to_hrl/1. Include these files in your code as in the
following example:

-include_lib("snmp/include/SNMPv2-MIB.hrl").

The initial values for the managed objects defined in these tables, are read at startup from a set of
configuration files. These are described in Configuration Files [page 27].

STANDARD-MIB and SNMPv2-MIB

These MIBs contain the snmp- and system groups from MIB-II which is defined in RFC1213
(STANDARD-MIB) or RFC1907 (SNMPv2-MIB). They are implemented in the snmp_standard mib
module. The snmp counters all reside in volatile memory and the system and snmpEnableAuthenTraps
variables in persistent memory, using the SNMP built-in database (refer to the Reference Manual,
section snmp, module snmp_local_db for more details).

If another implementation of any of these variables is needed, e.g. to store the persistent variables in a
Mnesia database, an own implementation of the variables must be made. That MIB will be compiled
and loaded instead of the default MIB. The new compiled MIB must have the same name as the original
MIB (i.e. STANDARD-MIB or SNMPv2-MIB), and be located in the SNMP configuration directory
(see Configuration Files [page 27].)

One of these MIBs is always loaded. If only SNMPv1 is used, STANDARD-MIB is loaded, otherwise
SNMPv2-MIB is loaded.

10 Simple Network Management Protocol (SNMP)

1.2: Functional Description

Data Types There are some new data types in SNMPv2 that are useful in SNMPv1 as well. In the
STANDARD-MIB, three data types are defined, RowStatus, TruthValue and DateAndTime. These data
types are originally defined as textual conventions in SNMPv2-TC (RFC1903).

SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed objects,
which is used in the generic SNMP framework defined in RFC2271 and the generic message processing
and dispatching module defined in RFC2272. They are generic in the sense that they are not tied to any
specific SNMP version.

The objects in these MIBs are implemented in the modules snmp_framework mib and
snmp_standard mib, respectively. All objects reside in volatile memory, and the configuration files are
always reread at startup.

If SNMPv3 is used, these MIBs are loaded by default.

SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB

The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for configuration
of notification receivers. They are described in detail in RFC2273. Only a brief description is given here.

The SNMP-NOTIFICATION-MIB is implemented according to snmpNotifyBasicCompliance. It
means, the notification filtering is not implemented.

All tables in these MIBs have a column of type StorageType. The value of this column specifies how
each row is stored, and what happens in case of a restart of the agent. The implementation supports the
values volatile and nonVolatile. When the tables are initially filled with data from the configuration
files, these rows will automatically have storage type nonVolatile. Should the agent restart, all
nonVolatile rows survive the restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.

These MIBs are not loaded by default.

snmpNotifyTable An entry in the snmpNotifyTable selects a set of management targets, which
should receive notifications, as well as the type (trap or inform) of notification that should be sent to
each selected management target. When an application sends a notification using the function

send notification/5 or the function send_trap the parameter NotifyName, specified in the call, is
used as an index in the table. The notification is sent to the management targets selected by that entry.

snmpTargetAddrTable An entry in the snmpTargetAddrTable defines transport parameters (such as
IP address and UDP port) for each management target. Each row in the snmpNotifyTable refers to
potentially many rows in the snmpTargetAddrTable. Each row in the snmpTargetAddrTable refers to
an entry in the snmpTargetParamsTable.

snmpTargetParamsTable An entry in the snmpTargetParamsTable defines which SNMP version to
use, and which security parameters to use.

Which SNMP version to use is implicitly defined by specifying the Message Processing Model. This
version of the agent handles the models v1, v2c and v3.

Each row specifies which security model to use, along with security level and security parameters.

Simple Network Management Protocol (SNMP) 11

Chapter 1: SNMP User's Guide

SNMP-VIEW-BASED-ACM-MIB

The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the managed
objects for the managers. The View Based Access Control Module (VACM) can be used with any
SNMP version. However, if it is used with SNMPv1 or SNMPv2c, the SNMP-COMMUNITY-MIB
defines additional objects to map community strings to VACM parameters.

All tables in this MIB have a column of type StorageType. The value of this column specifies how each
row is stored, and what happens in case of a restart of the agent. The implementation supports the
values volatile and nonVolatile. When the tables are initially filled with data from the configuration
files, these rows will automatically have storage type nonVolatile. Should the agent restart, all
nonVolatile rows survive the restart, while the volatile rows are lost. The configuration files are not
read at restart by default.

This MIB is not loaded by default.
VACM is described in detail in RFC2275. Here is only a brief description given.

The basic concept is that of a MIB view. An MIB view is a subset of all the objects implemented by an
agent. A manager has access to a certain MIB view, depending on which security parameters are used,
in which context the request is made, and which type of request is made.

The following picture gives an overview of the mechanism to select an MIB view:

_ - securityModel -

who |- groupName

L~ securityName]

where contexrName

- viewName

- securityModel

who

L~ securityLevel

why viewType (read/write/notify)

Figure 1.4: Overview of the mechanism of MIB selection

vacmContextTable The vacmContextTable is a read-only table that lists all available contexts.

12 Simple Network Management Protocol (SNMP)

1.2: Functional Description

vacmSecurityToGroupTable The vacmSecurityToGroupTable maps a securityModel and a
securityName 10 a groupName.

vacmAccessTable The vacmAccessTable maps the groupName (found in
vacmSecurityToGroupTable), contextName, securityModel, and securityLevel to an MIB view for
each type of operation (read, write, or notify). The MIB view is represented as a viewName. The
definition of the MIB view represented by the viewName is found in the vacmViewTreeFamilyTable

vacmViewTreeFamilyTable The vacmViewTreeFamilyTable is indexed by the viewName, and
defines which objects are included in the MIB view.

The MIB definition for the table looks as follows:

VacmViewTreeFamilyEntry ::= SEQUENCE

{
vacmViewTreeFamilyViewName SnmpAdminString,
vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
vacmViewTreeFamilyMask OCTET STRING,
vacmViewTreeFamilyType INTEGER,
vacmViewTreeFamilyStorageType StorageType,
vacmViewTreeFamilyStatus RowStatus

}

INDEX { vacmViewTreeFamilyViewName,
vacmViewTreeFamilySubtree
}

Each vacmViewTreeFamilyViewName refers to a collection of sub-trees.

MIB View Semantics An MIB view is a collection of included and excluded sub-trees. A sub-tree is
identified by an OBJECT IDENTIFIER. A mask is associated with each sub-tree.

For each possible MIB object instance, the instance belongs to a sub-tree if:
e the OBJECT IDENTIFIER name of that MIB object instance comprises at least as many
sub-identifiers as does the sub-tree, and

e each sub-identifier in the name of that MIB object instance matches the corresponding
sub-identifier of the sub-tree whenever the corresponding bit of the associated mask is 1 (0 is a
wild card that matches anything).

Membership of an object instance in an MIB view is determined by the following algorithm:
¢ If an MIB object instance does not belong to any of the relevant sub-trees, then the instance is not

in the MIB view.

¢ If an MIB object instance belongs to exactly one sub-tree, then the instance is included in, or
excluded from, the relevant MIB view according to the type of that entry.

¢ If an MIB object instance belongs to more than one sub-tree, then the sub-tree which comprises
the greatest number of sub-identifiers, and is the lexicographically greatest, is used.

Simple Network Management Protocol (SNMP) 13

Chapter 1: SNMP User's Guide

Note:

If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type in the MIB,
it refers to object instances. Because of this, it is possible to control whether or not particular rows in
a table shall be visible.

SNMP-COMMUNITY-MIB

The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence between
SNMPv1 and SNMPv2c with SNMPv3. Specifically, it contains objects for mapping between
community strings and version-independent SNMP message parameters. In addition, this MIB provides
a mechanism for performing source address validation on incoming requests, and for selecting
community strings based on target addresses for outgoing notifications.

All tables in this MIB have a column of type StorageType. The value of this column specifies how each
row is stored, and what happens in case of a restart of the agent. The implementation supports the
values volatile and nonVolatile. When the tables are initially filled with data from the configuration
files, these rows will automatically have storage type nonVolatile. Should the agent restart, all
nonVolatile rows survive the restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.

This MIB is not loaded by default.

SNMP-USER-BASED-SM-MIB

The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the User-Based Security
Model.

All tables in this MIB have a column of type StorageType. The value of the column specifies how each
row is stored, and what happens in case of a restart of the agent. The implementation supports the
values volatile and nonVolatile. When the tables are initially filled with data from the configuration
files, these rows will automatically have storage type nonVolatile. Should the agent restart, all
nonVolatile rows survive the restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.

This MIB is not loaded by default.

OTP-SNMPEA-MIB

The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard MIBs existed for
access control, MIB views, and trap target specification. All objects in this MIB are now obsolete.

14 Simple Network Management Protocol (SNMP)

1.2: Functional Description

1.2.8 Notifications

Notifications are defined in SMIv1 with the TRAP-TYPE macro in the definition of an MIB (see
RFC1215). The corresponding macro in SMIv2 is NOTIFICATION-TYPE. When an application
decides to send a notification, it calls one of the following functions:

snmp:send_notification(Agent,Notification,Receiver
[,NotifyName,ContextName,Varbinds])
snmp: send_trap(Agent ,Notification,Community [,Receiver,Varbinds])

providing the registered name or process identifier of the agent where the MIB, which defines the
notification is loaded and the symbolic name of the notification.

If the send notification/3,4 function is used, all management targets are selected, as defined in
RFC2273. The Receiver parameter defines where the agent should send information about the
delivery of inform requests.

If the send notification/5 function is used, an NotifyName must be provided. This parameter is used
as an index in the snmpNotifyTable, and the management targets defined by that single entry is used.

The send notification/6 function is the most general version of the function. A ContextName must
be specified, from which the notification will be sent. If this parameter is not specified, the default
context ("") is used.

The function send_trap is kept for backwards compatibility and should not be used in new code.
Applications that use this function will continue to work. The snmpNotifyName is used as the
community string by the agent when a notification is sent.

Notification Sending

The simplest way to send a notification is to call the function snmp:send notification(Agent,
Notification, no_receiver). In this case, the agent performs a get-operation to retrieve the object
values that are defined in the notification specification (with the TRAP-TYPE or
NOTIFICATION-TYPE macros). The notification is sent to all managers defined in the target and
notify tables, either unacknowledged as traps, or acknowledged as inform requests.

If the caller of the function wants to know whether or not acknowledgements are received for a certain
notification (provided it is sent as an inform), the Receiver parameter can be specified as {Tag,
ProcessName} (refer to the Reference Manual, section snmp, module snmp for more details). In this
case, the agent send a message {snmp notification, Tag, {got_response, ManagerAddr}} or
{snmpnotification, Tag, {no_response, ManagerAddr}} for each management target.

Sometimes it is not possible to retrieve the values for some of the objects in the notification
specification with a get-operation. However, they are known when the send notification function is
called. This is the case if an object is an element in a table. It is possible to give the values of some
objects to the send notification function snmp:send notification(Agent, Notification,
Receiver, Varbinds). In this function, Varbinds is a list of Varbind, where each Varbind is one of:

e {Variable, Value}, where Variable is the symbolic name of a scalar variable referred to in the
notification specification.

e {Column, RowIndex, Value}, where Column is the symbolic name of a column variable.
RowIndex is a list of indices for the specified element. If this is the case, the OBJECT
IDENTIFIER sent in the trap is the RowIndex appended to the OBJECT IDENTIFIER for the
table column. This is the OBJECT IDENTIFIER which specifies the element.

e {0ID, Value}, where 0ID is the OBJECT IDENTIFIER for an instance of an object, scalar
variable or column variable.

Simple Network Management Protocol (SNMP) 15

Chapter 1: SNMP User's Guide

For example, to specify that sysLocation should have the value "upstairs" in the notification, we
could use one of:

e {sysLocation, "upstairs"}or

e {[1,3,6,1,2,1,1,6,0], "upstairs"}

It is also possible to specify names and values for extra variables that should be sent in the notification,
but were not defined in the notification specification.

The notification is sent to all management targets found in the tables. However, make sure that each
manager has access to the variables in the notification. If a variable is outside a manager's MIB view, this
manager will not receive the notification.

Note:

By definition, it is not possible to send objects with ACCESS not-accessible in notifications.
However, historically this is often done and for this reason we allow it in notification sending. If a
variable has ACCESS not-accessible, the user must provide a value for the variable in the
Varbinds list. It is not possible for the agent to perform a get-operation to retrieve this value.

Subagent Path

If a value for an object is not given to the send notification function, the subagent will perform a
get-operation to retrieve it. If the object is not implemented in this subagent, its parent agent tries to
perform a get-operation to retrieve it. If the object is not implemented in this agent either, it forwards
the object to its parent, and so on. Eventually the Master Agent is reached and at this point all
unknown object values must be resolved. If some object is unknown even to the Master Agent, this is
regarded as an error and is reported with a call to user_err/2 of the error report module. No
notifications are sent in this case.

For a given notification, the variables, which are referred to in the notification specification, must be
implemented by the agent that has the MIB loaded, or by some parent to this agent. If not, the
application must provide values for the unknown variables. The application must also provide values
for all elements in tables.

1.3 Instrumentation Functions

A user-defined instrumentation function for each object attaches the managed objects to real resources.
This function is called by the agent on a get or set operation. The function could read some hardware
register, perform a calculation, or whatever is necessary to implement the semantics associated with the
conceptual variable. These functions must be written both for scalar variables and for tables. They are
specified in the association file, which is a text file. In this file, the 0BJECT IDENTIFIER, or symbolic
name for each managed object, is associated with an Erlang tuple {Module, Function,
ListOfExtraArguments}.

When a managed object is referenced in an SNMP operation, the associated {Module, Function,
ListOfExtraArguments} is called. The function is applied to some standard arguments (for example,
the operation type) and the extra arguments supplied by the user.

Instrumentation functions must be written for get and set for scalar variables and tables, and for
get-next for tables only. The get-bulk operation is translated into a series of calles to get-next.

16 Simple Network Management Protocol (SNMP)

1.3: Instrumentation Functions

1.3.1 Instrumentation Functions
The following sections describe how the instrumentation functions should be defined in Erlang for the

different operations. In the following, RowIndex is a list of key values for the table, and Column is a
column number.

These functions are described in detail in Definition of Instrumentation Functions [page 50].

New / Delete Operations

For scalar variables:

variable_access(new [, ExtraArgl, ...])
variable_access(delete [, ExtraArgl, ...])

For tables:

table_access(new [, ExtraArgl, ...])
table_access(delete [, ExtraArgl, ...])

These functions are called for each object in an MIB when the MIB is unloaded or loaded, respectively.

Get Operation

For scalar variables:

variable_access(get [, ExtraArgl, ...])
For tables:
table_access(get,RowIndex,Cols [,ExtraArgl, ...])

Cols is a list of Column. The agent will sort incoming variables so that all operations on one row (same
index) will be supplied at the same time. The reason for this is that a database normally retrieves
information row by row.

These functions must return the current values of the associated variables.
Set Operation

For scalar variables:

variable_access(set, NewValue [, ExtraArgl, ...])

For tables:

table_access(set, RowIndex, Cols [, ExtraArgl,..])

Cols is a list of tuples {Column, NewValue}.
These functions returns noError if the assignment was successful, otherwise an error code.

Simple Network Management Protocol (SNMP) 17

Chapter 1: SNMP User's Guide

Is-set-ok Operation

As a complement to the set operation, it is possible to specify a test function. This function has the
same syntax as the set operation above, except that the first argument is is_set_ok instead of set. This
function is called before the variable is set. Its purpose is to ensure that it is permissible to set the
variable to the new value.

variable_access(is_set_ok, NewValue [, ExtraArgl, ...])
For tables:
table_access(set, RowIndex, Cols [, ExtraArgil,..])

Cols is a list of tuples {Column, NewValue}.

Undo Operation

A function which has been called with is_set_ok will be called again, either with set if there was no
error, or with undo, if an error occurred. In this way, resources can be reserved in the is_set_ok
operation, released in the undo operation, or made permanent in the set operation.

variable_access(undo, NewValue [, ExtraArgl, ...])
For tables:
table_access(set, RowIndex, Cols [, ExtraArgil,..])

Cols is a list of tuples {Column, NewValue}.

GetNext Operation

The GetNext Operation operation should only be defined for tables since the agent can find the next
instance of plain variables in the MIB and call the instrumentation with the get operation.

table_access(get_next, RowIndex, Cols [, ExtraArgl, ...])

Cols is a list of integers, all greater than or equal to zero. This indicates that the instrumentation should
find the next accessible instance. This function returns the tuple {Next0id, NextValue}, Or
end0fTable. Next0id should be the lexicographically next accessible instance of a managed object in
the table. It should be a list of integers, where the first integer is the column, and the rest of the list is
the indices for the next row. If end0fTable is returned, the agent continues to search for the next
instance among the other variables and tables.

RowIndex may be an empty list, an incompletely specified row index, or the index for an unspecified
row.

This operation is best described with an example.

18 Simple Network Management Protocol (SNMP)

1.3: Instrumentation Functions

GetNext Example A table called myTable has five columns. The first two are keys (not accessible),
and the table has three rows. The instrumentation function for this table is called my_table.

key 1 key 2 col 3 col 4 col 5
1 1 a b c
1 2 d e f
2 1 o] N/A i

Figure 1.5: Contents of my_table

Note:
N/A means not accessible.

The manager issues the following getNext request:

getNext{ myTable.myTableEntry.3.1.1,
myTable.myTableEntry.5.1.1

}
Since both operations involve the 1.1 index, this is transformed into one call to my_table:

my_table(get_next, [1, 1], [3, 5])

In this call, [1, 1] is the RowIndex, where key 1 has value 1, and key 2 has value 1, and [3, 5] is the
list of requested columns. The function should now return the lexicographically next elements:

({03, 1, 21, d¥, {05, 1, 2], £f}]

This is illustrated in the following table:

Simple Network Management Protocol (SNMP) 19

Chapter 1: SNMP User's Guide

key 1 key 2 col 3 col 4 col 5
: = O) b |)
1 2 | W, e [T
2 1 g N/A i
Figure 1.6: GetNext from [3,1,1] and [5,1,1].
The manager now issues the following getNext request:
getNext{ myTable.myTableEntry.3.2.1,
myTable.myTableEntry.5.2.1 }
This is transformed into one call to my_table:
my_table(get_next, [2, 1], [3, 5])
The function should now return:
[({[4, 1, 1], b}, endOfTable]
This is illustrated in the following table:
key 1 key 2 col 3 col 4 col 5
1 1 a (—b\,‘ c
1 2 d /' e f
2 1 @) || wa A0

S~

'

endOfTable

Figure 1.7: GetNext from [3,2,1] and [5,2,1].

The manager now issues the following getNext request:

20 Simple Network Management Protocol (SNMP)

1.3: Instrumentation Functions

getNext{ myTable.myTableEntry.3.1.2,
myTable.myTableEntry.4.1.2 }

This will be transform into one call to my_table:
my_table(get_next, [1, 2], [3, 41)

The function should now return:

{03, 2, 11, g}, {5, 1, 11, c}]

This is illustrated in the following table:

key 1 key 2 col 3 col 4 col 5
1 1 a b (—c\,‘
1 2 d e / f

oMol
2 1 ‘g / N/A / i

_

Figure 1.8: GetNext from [3,1,2] and [4,1,2].

The manager now issues the following getNext request:

getNext{ myTable.myTableEntry,
myTable.myTableEntry.1.3.2 }

This will be transform into two calls to my_table:

my_table(get_next, [], [0]) and
my_table(get_next, [3, 2], [1])

The function should now return:

({03, 1, 11, a}] and
({03, 1, 11, a}]

In both cases, the first accessible element in the table should be returned. As the key columns are not

accessible, this means that the third column is the first row.

Note:

Normally, the functions described above behave exactly as shown, but they are free to perform other
actions. For example, a get-request may have side effects such as setting some other variable, perhaps

a global 1astAccessed variable.

Simple Network Management Protocol (SNMP)

21

Chapter 1: SNMP User's Guide

1.3.2 Using the ExtraArgument

The ListOfExtraArguments can be used to write generic functions. This list is appended to the
standard arguments for each function. Consider two read-only variables for a device, ipAdr and name
with object identifiers 1.1.23.4 and 1.1.7 respectively. To access these variables, one could implement
the two Erlang functions ip_access and name_access, which will be in the MIB. The functions could
be specified in a text file as follows:

{ipAdr, {my_module, ip_access, [1}}.
% Or using the oid syntax for ’name’
{[1,1,7], {my_module, name_access, []}}.

The ExtraArgument parameter is the empty list. For example, when the agent receives a get-request for
the ipAdr variable, a call will be made to ip_access(get). The value returned by this function is the
answer to the get-request.

If ip_access and name_access are implemented similarly, we could write a generic_access function
using the ListOfExtraArguments:

{ipAdr, {my_module, generic_access, [’IPADR’]}}.
% The mnemonic ’name’ is more convenient than 1.1.7
{name, {my_module, generic_access, [’NAME’]}}.

When the agent receives the same get-request as above, a call will be made to generic_access(get,
'IPADR’).

Yet another possibility, closer to the hardware, could be:

{ipAdr, {my_module, generic_access, [16#2543]}}.
{name, {my_module, generic_access, [16#A2B3]}}.

1.3.3 Default Instrumentation

When the MIB definition work is finished, there are two major issues left.

¢ Implementing the MIB
e Implementing a Manager Application.

Implementing an MIB can be a tedious task. Most probably, there is a need to test the agent before all
tables and variables are implemented. In this case, the default instrumentation functions are useful. The
toolkit can generate default instrumentation functions for variables as well as for tables. Consequently, a
running prototype agent, which can handle set, get, get-next and table operations, is generated
without any programming.

The agent stores the values in an internal volatile database, which is based on the standard module ets.
However, it is possible to let the MIB compiler generate functions which use an internal, persistent
database, or the Mnesia DBMS. Refer to the Mnesia User Guide and the Reference Manual, section
SNMP, module snmp_generic for more information.

When parts of the MIB are implemented, you recompile it and continue on by using default functions.
With this approach, the SNMP agent can be developed incrementally.

The default instrumentation allows the application on the manager side to be developed and tested
simultaneously with the agent. As soon as the ASN.1 file is completed, let the MIB compiler generate a
default implementation and develop the management application from this.

22 Simple Network Management Protocol (SNMP)

1.3: Instrumentation Functions

Table Operations

The generation of default functions for tables works for tables which use the RowStatus textual
convention from SNMPv2, defined in STANDARD-MIB and SNMPv2-TC.

Note:

We strongly encourage the use of the RowStatus convention for every table that can be modified
from the manager, even for newly designed SNMPv1 MIBs. In SNMPv1, everybody has invented
their own scheme for emulating table operations, which has led to numerous inconsistencies. The
convention in SNMPV2 is flexible and powerful and has been tested successfully. If the table is read
only, no RowStatus column should be used.

1.3.4 Atomic Set

In SNMP, the set operation is atomic. Either all variables which are specified in a set operation are
changed, or none are changed. Therefore, the set operation is divided into two phases. In the first
phase, the new value of each variable is checked against the definition of the variable in the MIB. The
following definitions are checked:

e the type

¢ the length

e the range

e the variable is writable and within the MIB view.

At the end of phase one, the user defined is_set_ok functions are called for each scalar variable, and for
each group of table operations.

If no error occurs, the second phase is performed. This phase calls the user defined set function for all
variables.

If an error occurs, either in the is_set_ok phase, or in the set phase, all functions which were called
with is_set_ok but not set, are called with undo.

There are limitations with this transaction mechanism. If complex dependencies exist between
variables, for example between month and day, another mechanism is needed. Setting the date to 'Feb
31" can be avoided by a somewhat more generic transaction mechanism. You can continue and find
more and more complex situations and construct an N-phase set-mechanism. This toolkit only contains
a trivial mechanism.

The most common application of transaction mechanisms is to keep row operations together. Since our
agent sorts row operations, the mechanism implemented in combination with the RowStatus
(particularly ‘createAndWait' value) solve most problems elegantly.

Simple Network Management Protocol (SNMP) 23

Chapter 1: SNMP User's Guide

1.4 The MIB Compiler

The chapter The MIB Compiler describes the MIB compiler and contains the following topics:

e Operation

e Import

Consistency checking between MIBs
.hrl file generation

Emacs integration

Deviations from the standard

Note:
When importing MIBs, ensure that the imported MIBs as well as the importing MIB are compiled
using the same version of the SNMP-compiler.

1.4.1 Operation

The MIB must be written as a text file in SMIv1 or SMIv2 using an ASN.1 notation before it will be
compiled. This text file must have the same name as the MIB, but with the suffix .mib. This is
necessary for handling the IMPORT statement.

The association file, which contains the names of instrumentation functions for the MIB, should have
the suffix . funcs. If the compiler does not find the association file, it gives a warning message and uses
default instrumentation functions. (See Default Instrumentation [page 22] for more details).

The MIB compiler is started with a call to snmp: c (<mibname>) . For example:
snmp: c ("RFC1213-MIB").

The output is a new file which is called <mibname>.bin.

The MIB compiler understands both SMIv1l and SMIv2 MIBs. It uses the MODULE-IDENTITY
statement to determinate if the MIB is written in SMI version 1 or 2.

1.4.2 Importing MIBs

The compiler handles the IMPORT statement. It is important to import the compiled file and not the
ASN.1 file. A MIB must be recompiled to make changes visible to other MIBs importing it.

The compiled files of the imported MIBs must be present in the current directory, or a directory in the
current path. The path is supplied with the {i, Path} option, for example:

snmp: c("MY-MIB",
[{i, ["friend_mibs/", "../standard_mibs/"]}]).

It is also possible to import MIBs from OTP applications in an "include 1ib" like fashion with the il
option. Example:

24 Simple Network Management Protocol (SNMP)

1.4: The MIB Compiler

snmp: c ("MY-MIB",
[{il, ["snmp/priv/mibs/", "myapp/priv/mibs/"1}]1).

finds the lastest version of the snmp and myapp applications in the OTP system and uses the expanded
paths as include paths.

Note that an SMIv2 MIB can import an SMIv1l MIB and vice versa.

The following MIBs are built-ins of the Erlang SNMP compiler: SNMPv2-SMI, RFC-1215, RFC-1212,
SNMPVv2-TC, SNMPv2-CONF, and RFC1155-SMI. They cannot therefore be compiled separately.

1.4.3 MIB Consistency Checking

When an MIB is compiled, the compiler detects if several managed objects use the same 0BJECT
IDENTIFIER. If that is the case, it issues an error message. However, the compiler cannot detect Oid
conflicts between different MIBs. These kinds of conflicts generate an error at load time. To avoid this,
the following function can be used to do consistency checking between MIBs:

erl>snmp:is_consistent (ListOfMibNames) .

ListO0fMibNames is a list of compiled MIBs, for example ["RFC1213-MIB", "MY-MIB"]. The function
also performs consistency checking of trap definitions.

1.4.4 .hrl File Generation

It is possible to generate an .hr1 file which contains definitions of Erlang constants from a compiled
MIB file. This file can then be included in Erlang source code. The file will contain constants for:

e object ldentifiers for tables, table entries and variables
e column numbers

e enumerated values

o default values for variables and table columns.

Use the following command to generate a .hrl file from an MIB:

erl>snmp:mib_to_hrl(MibName) .

1.4.5 Emacs Integration

With the Emacs editor, the next-error (C-X ¢) function can be used indicate where a compilation
error occurred, provided the error message is described by a line number.

Use M-x compile to compile an MIB from inside Emacs, and enter:

erl -s snmp ¢ <MibName> -noshell

An example of <MibName> is RFC1213-MIB.

Simple Network Management Protocol (SNMP) 25

Chapter 1: SNMP User's Guide

1.4.6 Compiling from a Shell or a Makefile

The erlc commands can be used to compile SNMP MIBs. Example:

erlc MY-MIB.mib

All the standard erlc flags are supported, e.g.

erlc -I mymibs -o mymibs -W MY-MIB.mib

The flags specific to the MIB compiler can be specified by using the + syntax:

erlc +’{group_check,false}’ MY-MIB.mib

1.4.7 Deviations from the Standard

In some aspects the Erlang MIB compiler does not follow or implement the SMI fully. Here are the
differences:

26

Tables must be written in the following order: tableObject, entryObject, columni, ..., columnN
(in order).

Integer values, for example in the SIZE expression must be entered in decimal syntax, not in hex
or bit syntax.
Symbolic names must be unique within a MIB and within a system.

Hyphens are allowed in SMIv2 (a pragmatic approach). The reason for this is that according to
SMIv2, hyphens are allowed for objects converted from SMIv1, but not for others. This is
impossible to check for the compiler.

If a word is a keyword in any of SMIv1 or SMIv2, it is a keyword in the compiler (deviates from
SMIv1 only).

Indexes in a table must be objects, not types (deviates from SMIv1 only).

A subset of all semantic checks on types are implemented. For example, strictly the TimeTicks
may not be sub-classed but the compiler allows this (standard MIBs must pass through the
compiler) (deviates from SMIv2 only).

The MIB.0Object syntax is not implemented (since all objects must be unique anyway).
Two different names cannot define the same OBJECT IDENTIFIER.

The type checking in the SEQUENCE construct is non-strict (i.e. subtypes may be specified).
The reason for this is that some standard MIBs use this.

A definition has normally a status field. When the status field has the value deprecated, then the
MIB-compiler will ignore this definition. With the MIB-compiler option {deprecated, true} the
MIB-compiler does not ignore the deprecated definitions.

An object has a DESCRIPTIONS field. The descriptions-field will not be included in the
compiled mib by default. In order to get the description, the mib must be compiled with the
option {description,true}.

Simple Network Management Protocol (SNMP)

1.5: Running the Agent

1.5 Running the Agent

The chapter Running the Agent describes how the agent is configured and started. The topics include:

e configuration directories and parameters
e modifying the configuration files

e starting the agent

e debugging the agent.

Refer also to the chapter Definition of Configuration Files [page 46] which contains more detailed
information about the configuration files.

1.5.1 Configuring the Agent

The following two directories must exist in the system:

e the configuration directory stores all configuration files (refer to the chapter Definition of
Configuration Files [page 46] for more information).

¢ the database directory stores the internal database files.

The agent uses application configuration parameters to find out where these directories are located. The
parameters should be defined in an Erlang system configuration file. The following configuration
parameters are defined for the SNMP application:

audit_trail log = false | writelog | read write_ log <optional> Specifies if an audit trail
log should be used. The disk_log module is used to maintain a wrap log. If write_log is
specified, only set requests are logged. If read write_log, all requests are logged. Default is
false.

audit_trail_log dir = string() <optional> Specifies where the audit trail log should be stored.
If audit_trail log specifies that logging should take place, this parameter must be defined.

audit_trail log size = {MaxBytes, MaxFiles} <optional> Specifies the size of the audit trail
log. This parameter is sent to disk log. If audit_trail log specifies that logging should take
place, this parameter must be defined.

bind to_ip_address = bool() <optional> If true the agent binds to the agent IP adress. If false
the agent listens on any IP address on the host where it is running. Default is false.

force_config load = bool() <optional> If true the configuration files are re-read during startup,
and the contents of the configuration database ignored. Thus, if true, changes to the
configuration database are lost upon reboot of the agent. Default is false.

no_reuse_address = bool() <optional> If true the agent does not specify that the IP and port
address should be reusable. If false the agent the address is set to reusable. Default is false.

snmp_agent_type = master | sub <optional> If master, one master agent is started. Otherwise,
no agents are started. Default is master.

snmp_config dir = string() <mandatory> Defines where the SNMP configuration files and the
compiled master agent MIB files are stored.

snmp_db_dir = string() <mandatory> Defines where the SNMP internal db files are stored.

snmp master_agent mibs = [string()] <optional> Specifies a list of MIB names and defines
which MIBs are initially loaded into the SNMP master agent. These MIBs are loaded from
snmp_config dir.

Simple Network Management Protocol (SNMP) 27

Chapter 1: SNMP User's Guide

snmp_multi_threaded = bool() <optiomnal> If true, the agent is multi-threaded, with one thread
for each get request. Default is false.

snmp_req_limit = integer() | infinity <optional> The number of simultaneous requests (get,
get-next and get-bulk) the agent will allow. Default is infinity.

snmp_priority = atom() <optional> Defines the Erlang priority for all SNMP processes. Default is

normal.
vl = bool() <optional> Defines if the agent shall speak SNMPv1. Default is true.
v2 = bool() <optional> Defines if the agent shall speak SNMPv2c. Default is true.
v3 = bool() <optional> Defines if the agent shall speak SNMPv3. Default is true.

snmp_local db_auto repair = false | true | true verbose <optional> When starting
snmp_local_db it always tries to open an existing database. If false, and some errors occur, a new
datebase is created instead. If true, erroneous transactions (in the logfile) are ignored. If
true_verbose, erroneous transactions (in the logfile) are igored and an error message is written.
Default is true.

snmp_mibentry_ override = bool() <optional> If this value is false, then when loading a mib each
mib- entry is checked prior to installation of the mib. The perpose of the check is to prevent that
the same symbolic mibentry name is used for in different oid’s. Default is false.

snmp_trapentry_override = bool() <optional> If this value is false, then when loading a mib each
trap is checked prior to installation of the mib. The perpose of the check is to prevent that the
same symbolic trap name is used for in different trap's. Default is false.

snmp_error_report.mod = atom() <optional> Defines an error report module, other then the
default. Two modules are provided with the toolkit: snmp_error and snmp_error_io. Default is
sSnmp_error.

snmp _master_agent verbosity = silence | info | log | debug | trace <optional> Specifies
the startup verbosity for the SNMP master agent. Default is silence.

snmp_symbolic_store verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP symbolic store. Default is silence.

snmp_note_store_verbosity = silence | info | log | debug | trace <optional> Specifies
the startup verbosity for the SNMP note store. Default is silence.

snmp net_if verbosity = silence | info | log | debug | trace <optional> Specifies the
startup verbosity for the SNMP net if. Default is silence.

snmp mibserver_verbosity = silence | info | log | debug | trace <optional> Specifies
the startup verbosity for the SNMP mib server. Default is silence.
snmp_mib_storage = ets | {dets,Dir} | {dets,Dir,Action} | {mnesia,Nodes} | {mnesia,Nodes,Action} <optior
Specifies how info retrieved from the mibs will be stored. Default is ets.
Dir = string(). Dir is the directory where the (dets) files will be created.
Nodes = [node()]. If Nodes =[] then the own node is assumed.
Action = clear | keep. Default is keep. Action is used to specify what shall be done if the
mnesia table already exist.

1.5.2 Modifying the Configuration Files

To to start the agent, the agent configuration files must be modified and there are two ways of doing
this. Either edit the files manually, or run the configuration tool as follows.

If authentication or encryption is used (SNMPv3 only), start the crypto application.

1> application:start(crypto).

28 Simple Network Management Protocol (SNMP)

1.5: Running the Agent

ok
2> snmp:config().

Simple SNMP configuration tool (v3.0)
Note: Non-trivial configurations still has to be done manually.
IP addresses may be entered as dront.ericsson.se (UNIX only) or 123.12.13.23

System name (sysName standard variable) [mbj’s agent]
Engine ID (snmpEngineID standard variable) [mbj’s engine]
The UDP port the agent listens to. (standard 161) [4000]
IP address for the agent (only used as id
when sending traps) [dront.ericsson.se]
5. IP address for the manager (only this manager will have access
to the agent, traps are sent to this one) [dront.ericsson.se]
6. To what UDP port at the manager should traps
be sent (standard 162)7 [5000]
7. What SNMP version should be used (1,2,3,1&2,1&2&3,2&%3)7 [3]
7b. Should notifications be sent as traps or informs? [trap]
8. Do you want a none- minimum- or semi-secure configuration?
Note that if you chose vl or v2, you will not get any security for these
requests (none, minimum, semi) [minimum]
8b. Give a password of at least length 8. It is used to generate
private keys for the configuration.secretpasswd
9. Where is the configuration directory (absolute)? [/home/mbj/snmp_conf]
10. Current configuration files will now be overwritten. Ok [y]/n?

DWW NN -

Info: 1. SecurityName "initial" has noAuthNoPriv read access and authenticated
write access to the "restricted" subtree.
2. SecurityName "all-rights" has noAuthNoPriv read/write access
to the "intermet" subtree.
3. Standard traps are sent to the manager.
The following files were written: agent.conf, community.conf,
standard.conf, target_addr.conf, target_params.conf,
notify.conf vacm.conf, sys.config, usm.conf

1.5.3 Starting the Agent

Start Erlang with the command:
erl -config /home/mbj/snmp_conf/sys

If authentication or encryption is used (SNMPv3 only), start the crypto application. If this step is
forgotten, the agent will not start, but report a {config error, {unsupported_crypto,_}} error.

1> application:start(crypto).
ok

Simple Network Management Protocol (SNMP) 29

Chapter 1: SNMP User's Guide

2> application:start(snmp).
ok

1.5.4 Debugging the Agent

It is possible to debug every process of the agent (possibly with the exception of the net_if module,
which could be supplied by a user of the application). This can be done in two ways. Either by calling
the snmp: verbosity/2 function or using configuration parameters [page 27]. The verbosity itself has
several levels: silence | info | log | debug | trace. For the lowest verbosity silence, nothing is
printed. The higher the verbosity, the more is printed. Default value is always silence.

The old debugging is still available and produces more or less the same output, i.e. the debug flag can be
turned on to verify that the configuration is correct and that the instrumentation functions behave as
expected. The agent then shows all network communication (incoming/outgoing traffic), and calls to
the instrumentation functions.

3> snmp:debug(snmpmaster_agent, true).
ok
4>
%% Example of output from the agent when a get-next-request arrives:
*x SNMP NET-IF LOG:
got paket from {147,12,12,12}:5000

** SNMP NET-IF MPD LOG:
vl, community: all-rights

*% SNMP NET-IF LOG:
got pdu from {147,12,12,12}:5000 {pdu, ’get-next-request’,
62612569 ,noError, 0,
[{varbind, [1,1],’NULL’, ’NULL’,1}1}

*% SNMP MASTER-AGENT LOG:
apply: snmp_generic,variable func, [get,{sysDescr,persistent}]

** SNMP MASTER-AGENT LOG:
returned: {value,"Erlang SNMP agent"}

** SNMP NET-IF LOG:
reply pdu: {pdu,’get-response’,62612569,noError,0,
[{varbind, [1,3,6,1,2,1,1,1,0],
’OCTET STRING’,
"Erlang SNMP agent",1}]1}

** SNMP NET-IF INFO: time in agent: 19711 mysec
Another useful function for debugging is snmp_local db:print/0,1,2. For example, this function can
show the counters snmpInPkts and snmpOutPkts. Enter the following command:

4> snmp_local_db:print().
%% A lot of information.

30 Simple Network Management Protocol (SNMP)

1.6: Implementation Example

1.6 Implementation Example

The section Implementation Example describes how an MIB can be implemented with the SNMP
Development Toolkit. The example shown can be found in the toolkit distribution.

The agent is configured with the configuration tool, using default suggestions for everything but the
manager node.

1.6.1 MIB

The MIB used in this example is called EX1-MIB. It contains two objects, a variable with a name and a
table with friends.

EX1-MIB DEFINITIONS ::= BEGIN

IMPORTS
RowStatus FROM STANDARD-MIB
DisplayString FROM RFC1213-MIB
OBJECT-TYPE FROM RFC-1212

)

examplel OBJECT IDENTIFIER ::= { experimental 7 }

myName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"My own name"
::= { examplel 1 }

friendsTable OBJECT-TYPE
SYNTAX SEQUENCE OF FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of friends."
::= { examplel 4 }

friendsEntry OBJECT-TYPE
SYNTAX FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

nn

INDEX { fIndex }
::= { friendsTable 1 }

FriendsEntry ::=
SEQUENCE {
fIndex
INTEGER,
fName

Simple Network Management Protocol (SNMP) 31

Chapter 1: SNMP User's Guide

DisplayString,
fAddress
DisplayString,
fStatus
RowStatus }

fIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"number of friend"
::= { friendsEntry 1 }

fName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Name of friend"
::= { friendsEntry 2 }
fAddress OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Address of friend"
::= { friendsEntry 3 }
fStatus OBJECT-TYPE

SYNTAX RowStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION

"The status of this conceptual row."

::= { friendsEntry 4 }
fTrap TRAP-TYPE

ENTERPRISE examplel

VARIABLES { myName, fIndex }

DESCRIPTION

"This trap is sent when something happens to

the friend specified by fIndex."

=1

END

1.6.2 Default Implementation
Without writing any instrumentation functions, we can compile the MIB and use the default

implementation of it. Recall that MIBs imported by “EX1-MIB.mib” must be present and compiled in
the current directory (“./STANDARD-MIB.bin",“./RFC1213-MIB.bin”) when compiling.

unix> erl -config ./sys
1> application:start(snmp) .

32 Simple Network Management Protocol (SNMP)

1.6: Implementation Example

ok

2> snmp:c("EX1-MIB").

No accessfunction for ’friendsTable’, using default.
No accessfunction for ’myName’, using default.
{ok,"EX1-MIB.bin"}

3> snmp:load mibs(snmp.master_agent, ["EX1-MIB"]).
ok

This MIB is now loaded into the agent, and a manager can ask questions. As an example of this, we start
another Erlang system and the simple Erlang manager in the toolkit:

1> snmp.mgr:start_link([{agent,"dront.ericsson.se"},{community,"all-rights"},
%% making it understand symbolic names: {mibs, ["EX1-MIB","STANDARD-MIB"]}]).

{0k,<0.89.0>}

%% a get-next request with one 0ID.

2> snmp.mgr:gn([[1,3,6,1,3,7]1]).

ok

* Got PDU:

[myName,0] = []

%% A set-request (now using symbolic names for convenience)

3> snmpmgr:s([{[myName,0], "Martin"}]).

ok

* Got PDU:

[myName,0] = "Martin"

%% Try the same get-next request again

4> snmpmgr:gn([[1,3,6,1,3,7]]1).

ok

* Got PDU:

[myName,0] = "Martin"

%% ... and we got the new value.

%% you can event do row operations. How to add a row:
5> snmp.mgr:s([{[fName,0], "Martin"}, {[fAddress,0],"home"}, {[fStatus,0],4}]1).
%% createAndGo

ok

* Got PDU:

[fName,0] = "Martin"
[fAddress,0] = "home"
[fStatus,0] = 4

6> snmp.mgr:gn([[myName,0]]).
ok

* Got PDU:

[fName,0] = "Martin"

7> snmpmgr:gn().

ok

* Got PDU:

[fAddress,0] = "home"

8> snmpmgr:gn().

ok

* Got PDU:

[fStatus,0] = 1

9>

Simple Network Management Protocol (SNMP) 33

Chapter 1: SNMP User's Guide

1.6.3 Manual Implementation

The following example shows a “manual” implementation of the EX1-MIB in Erlang. In this example,
the values of the objects are stored in an Erlang server. The server has a 2-tuple as loop data, where the
first element is the value of variable myName, and the second is a sorted list of rows in the table
friendsTable. Each row is a 4-tuple.

Note:
There are more efficient ways to create tables manually, i.e. to use the module snmp_index.

Code

-module (ex1) .

—author(’mbj@erlang.ericsson.se’).

%% External exports

-export([start/0, my_name/1, my_name/2, friends_table/3]).
%% Internal exports

—export ([init/0]).

-define(status_col, 4).

-define(active, 1).

-define(notInService, 2).

-define(notReady, 3).

-define(createAndGo, 4). % Action; written, not read
-define(createAndWait, 5). % Action; written, not read
-define(destroy, 6). % Action; written, not read
start() ->

spawn(ex1l, init, [1).
Rttt

%% Instrumentation function for variable myName.
%% Returns: (get) {value, Name}
Doth (set) noError

my_name (get) ->
exl_server ! {self(), get_my_name},
Name = wait_answer(),
{value, Name}.
my_name (set, NewName) ->
exl_server ! {self(), {set_my_name, NewNamel}},

noError.
Y= =
%% Instrumentation function for table friendsTable.
e

friends_table(get, RowIndex, Cols) ->
case get_row(RowIndex) of
{ok, Row} ->
get_cols(Cols, Row);
->
{noValue, noSuchInstance}
end;
friends_table(get_next, RowIndex, Cols) ->

34 Simple Network Management Protocol (SNMP)

1.6: Implementation Example

case get_next_row(RowIndex) of

{ok, Row} —>
get_next_cols(Cols, Row);
_ >
case get_next_row([]) of
{ok, Row} ->

% Get next cols from first row.
NewCols = add_one_to_cols(Cols),
get_next_cols(NewCols, Row);

->

end_of_table(Cols)

end

end;

Ioh=——m
%% If RowStatus is set, then:
YAA *) If set to destroy, check that row does exist
YA x) If set to createAndGo, check that row does not exist AND
YA that all columns are given values.
YA *) Otherwise, error (for simplicity).

%% Otherwise, row is modified; check that row exists.

== = = =

friends_table(is_set_ok, RowIndex, Cols) ->
RowExists =
case get_row(RowIndex) of
{ok, _Row} -> true;
_ —> false
end,
case is_row_status_col_changed(Cols) of
{true, 7destroy} when RowExists == true ->
{noError, 0};
{true, ?createAndGo} when RowExists == false,
length(Cols) == 3 ->
{noError, 0};
{true, _} —>
{inconsistentValue, ?status_col};
false when RowExists == true ->
{noError, 0};
->
[{Col, _NewVal} | _Cols] = Cols,
{inconsistentName, Col}
end;
friends_table(set, RowIndex, Cols) ->
case is_row_status_col_changed(Cols) of
{true, ?destroy} ->
exl_server ! {self(), {delete_row, RowIndex}};
{true, 7?createAndGo} ->
NewRow = make_row(RowIndex, Cols),
exl_server ! {self(), {add_row, NewRowl}};
false —>
{ok, Row} = get_row(RowIndex),
NewRow = merge_rows(Row, Cols),
exl_server ! {self(), {delete_row, RowIndex}},
exl_server ! {self(), {add_row, NewRowl}}

Simple Network Management Protocol (SNMP)

35

Chapter 1: SNMP User's Guide

end,
{noError, 0}.

get_cols([Col | Cols], Row) ->

[{value, element(Col, Row)} | get_cols(Cols, Row)];
get_cols([], _Row) —->

.
ettt
%% As get_cols, but the Cols list may contain invalid column
%% numbers. If it does, we must find the next valid column,
%% or return endOfTable.
Rttt
get_next_cols([Col | Cols], Row) when Col < 2 ->

[{[2, element(1, Row)], element(2, Row)} |

get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) when Col > 4 ->

[endOfTable |

get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) ->

[{[Col, element(1l, Row)], element(Col, Row)} |

get_next_cols(Cols, Row)];
get_next_cols([], _Row) ->

.

end_of_table([Col | Cols]) —>
[endOfTable | end_of_table(Cols)];
end_of_table([]) ->
.
add_one_to_cols([Col | Cols]) ->
[Col + 1 | add_one_to_cols(Cols)];
add_one_to_cols([]) ->
.
is_row_status_col_changed(Cols) ->
case lists:keysearch(?status_col, 1, Cols) of
{value, {?status_col, StatusVall}} ->
{true, StatusVal};
_ —> false
end.
get_row(RowIndex) ->
exl_server ! {self(), {get_row, RowIndex}},
wait_answer ().
get_next_row(RowIndex) ->
exl_server ! {self(), {get_next_row, RowIndex}},
wait_answer().
wait_answer() ->
receive
{ex1_server, Answer} ->
Answer

36 Simple Network Management Protocol (SNMP)

1.6: Implementation Example

init () ->
register(exl_server, self()),
100p("", []) .

loop(MyName, Table) ->

receive

{From, get_my_name} ->
From ! {exl_server, MyNamel},
loop(MyName, Table);

{From, {set_my_name, NewName}} ->
loop(NewName, Table);

{From, {get_row, RowIndex}} ->
Res = table_get_row(Table, RowIndex),
From ! {exl_server, Res},
loop(MyName, Table);

{From, {get_next_row, RowIndex}} ->

Res = table_get_next_row(Table, RowIndex),

From ! {exl_server, Res},
loop(MyName, Table);
{From, {delete_row, RowIndex}} —>

NewTable = table_delete_row(Table, RowIndex),

loop(MyName, NewTable) ;

{From, {add_row, NewRow}} ->
NewTable = table_add_row(Table, NewRow),
loop(MyName, NewTable)

end.

=== === =

%%h% Functions for table operations. The table is represented as

%%% a list of rows.

T

table_get_row([{Index, Name, Address, Status} | _], [Index]) ->

{ok, {Index, Name, Address, Statusl}};
table_get_row([H | T], RowIndex) ->
table_get_row(T, RowIndex);
table_get_row([], _RowIndex) ->
no_such_row.
table_get_next_row([Row | T], [1) ->
{ok, Row};
table_get_next_row([Row | T], [Index | _])
when element (1, Row) > Index ->
{ok, Row};
table_get_next_row([Row | T], RowIndex) ->
table_get_next_row(T, RowIndex);
table_get_next_row([], RowIndex) ->
endOfTable.

table_delete_row([{Index, _, _, _} | T], [Index]) —->

T;
table_delete_row([H | T], RowIndex) —>
[H | table_delete_row(T, RowIndex)];

Simple Network Management Protocol (SNMP) 37

Chapter 1: SNMP User's Guide

table_delete_row([], _RowIndex) ->
J.
table_add_row([Row | T], NewRow)
when element(1, Row) > element(1l, NewRow) —->
[NewRow, Row | T];
table_add_row([H | T], NewRow) ->
[H | table_add_row(T, NewRow)];
table_add_row([], NewRow) ->
[NewRow] .
make_row([Index], [{2, Namel}, {3, Address} | _]) ->
{Index, Name, Address, 7active}.
merge_rows (Row, [{Col, NewVal} | T]) ->
merge_rows (setelement (Col, Row, NewVal), T);
merge_rows (Row, [1) ->
Row.

Association File

The association file EX1-MIB. funcs for the real implementation looks as follows:

{myName, {exl, my_name, []}}.
{friendsTable, {exl1l, friends_table, []}}.

Transcript

To use the real implementation, we must recompile the MIB and load it into the agent.

1> application:start (snmp) .

ok

2> snmp:c("EX1-MIB").

{ok,"EX1-MIB.bin"}

3> snmp:load mibs(snmpmaster_agent, ["EX1-MIB"]).

ok

4> exl:start().

<0.115.0>

%% Now all requests operates on this "real" implementation.
%% The output from the manager requests will *look* exactly the
%% same as for the default implementation.

Trap Sending

How to send a trap by sending the £Trap from the master agent is shown in this section. The master
agent has the MIB EX1-MIB loaded, where the trap is defined. This trap specifies that two variables
should be sent along with the trap, myName and fIndex. fIndex is a table column, so we must provide
its value and the index for the row in the call to snmp: send trap/4. In the example below, we assume

that the row in question is indexed by 2 (the row with fIndex 2).
we use a simple Erlang SNMP manager, which can receive traps.

38 Simple Network Management Protocol (SNMP)

1.7: Advanced Topics

[MANAGER]

1> snmp.mgr:start_link([{agent,"dront.ericsson.se"},{community,"public"}
%% does not have write-access

1> {mibs, ["EX1-MIB","STANDARD-MIB"]1}]).

{0k,<0.100.0>}

2> snmp.mgr:s([{[myName,0], "Klas"}]).

ok
* Got PDU:
Received a trap:
Generic: 4 %% authenticationFailure
Enterprise: [iso,2,3]
Specific: O

Agent addr: [123,12,12,21]
TimeStamp: 42993
2>
[AGENT]
3> snmp:send_trap(snmpmaster_agent, fTrap,"standard trap", [{fIndex,[2],2}]).
[MANAGER]
2>
* Got PDU:
Received a trap:
Generic: 6
Enterprise: [examplel]
Specific: 1
Agent addr: [123,12,12,21]
TimeStamp: 69649
[myName,0] = "Martin"
[fIndex,2] = 2
2>

1.7 Advanced Topics

The chapter Advanced Topics describes the more advanced features of the SNMP development tool.
The following topics are covered:

¢ When to use a Subagent

e Agent semantics

e Subagents and dependencies

e Distributed tables

e Fault tolerance

e Using Mnesia tables as SNMP tables

e Audit Trail Logging

e Deviations from the standard

1.7.1 When to use a Subagent

The section When to use a Subagent describes situations where the mechanism of loading and unloading
MIBs is insufficient. In these cases a subagent is needed.

Simple Network Management Protocol (SNMP) 39

Chapter 1: SNMP User's Guide

Special Set Transaction Mechanism

Each subagent can implement its own mechanisms for set, get and get-next. For example, if the
application requires the get mechanism to be asynchronous, or needs a N-phase set mechanism, a
specialized subagent should be used.

The toolkit allows different kinds of subagents at the same time. Accordingly, different MIBs can have
different set or get mechanisms.

Process Communication

A simple distributed application can be managed without subagents. The instrumentation functions can
use distributed Erlang to communicate with other parts of the application. However, a subagent can be
used on each node if this generates too much unnecessary traffic. A subagent processes requests per
incoming SNMP request, not per variable. Therefore the network traffic is minimized.

If the instrumentation functions communicate with UNIX processes, it might be a good idea to use a
special subagent. This subagent sends the SNMP request to the other process in one packet in order to
minimize context switches. For example, if a whole MIB is implemented on the C level in UNIX, but
you still want to use the Erlang SNMP tool, then you may have one special subagent, which sends the
variables in the request as a single operation down to C.

Frequent Loading of MIBs

Loading and unloading of MIBs are quite cheap operations. However, if the application does this very
often, perhaps several times per minute, it should load the MIBs once and for all in a subagent. This
subagent only registers and de-registers itself under another agent instead of loading the MIBs each
time. This is cheaper than loading an MIB.

Interaction With Other SNMP Agent Toolkits

If the SNMP agent needs to interact with subagents constructed in another package, a special subagent
should be used, which communicates through a protocol specified by the other package.

1.7.2 Agent Semantics

The agent can be configured to be multi-threaded, or to process one incoming request at a time. If it is
multi-threaded, read requests (get, get-next and get-bulk) and traps are processed in parallel with
each other and set requests. However, all set requests are serialized, which means that if the agent is
waiting for the application to complete a complicated write operation, it will not process any new write
requests until this operation is finished. It processes read requests and sends traps, concurrently. The
reason for not parallelize write requests is that a complex locking mechanism would be needed even in
the simplest cases. Even with the scheme described above, the user must be careful not to violate that
the set requests are atoms. If this is hard to do, do not use the multi-threaded feature.

The order within an request is undefined and variables are not processed in a defined order. Do not
assume that the first variable in the PDU will be processed before the second, even if the agent
processes variables in this order. It cannot even be assumed that requests belonging to different
subagents have any order.

If the manager tries to set the same variable many times in the same PDU, the agent is free to improvise.
There is no definition which determines if the instrumentation will be called once or twice. If called
once only, there is no definition that determines which of the new values is going to be supplied.

40 Simple Network Management Protocol (SNMP)

1.7: Advanced Topics

When the agent receives a request, it keeps the request ID for one second after the response is sent. If
the agent receives another request with the same request ID during this time, from the same IP address
and UDP port, that request will be discarded. This mechanism has nothing to do with the function
snmp: current request_id/0.

1.7.3 Subagents and Dependencies

The toolkit supports the use of different types of subagents, but not the construction of subagents.

Also, the toolkit does not support dependencies between subagents. A subagent should by definition be
stand alone and it is therefore not good design to create dependencies between them.

1.7.4 Distributed Tables

A common situation in more complex systems is that the data in a table is distributed. Different table
rows are implemented in different places. Some SNMP toolkits dedicate an SNMP subagent for each
part of the table and load the corresponding MIB into all subagents. The Master Agent is responsible for
presenting the distributed table as a single table to the manager. The toolkit supplied uses a different
method.

The method used to implement distributed tables with this SNMP tool is to implement a table
coordinator process responsible for coordinating the processes, which hold the table data and they are
called table holders. All table holders must in some way be known by the coordinator; the structure of
the table data determines how this is achieved. The coordinator may require that the table holders
explicitly register themselves and specify their information. In other cases, the table holders can be
determined once at compile time.

When the instrumentation function for the distributed table is called, the request should be forwarded
to the table coordinator. The coordinator finds the requested information among the table holders and
then returns the answer to the instrumentation function. The SNMP toolkit contains no support for
coordination of tables since this must be independent of the implementation.

The advantages of separating the table coordinator from the SNMP tool are:
¢ We do not need a subagent for each table holder. Normally, the subagent is needed to take care of
communication, but in Distributed Erlang we use ordinary message passing.

e Most likely, some type of table coordinator already exists. This process should take care of the
instrumentation for the table.

e The method used to present a distributed table is strongly application dependent. The use of
different masking techniques is only valid for a small subset of problems and registering every row
in a distributed table makes it non-distributed.

1.7.5 Fault Tolerance

The SNMP toolkit gets input from three different sources:

e UDP packets from the network
e return values from the user defined instrumentation functions
e return values from the MIB.

Simple Network Management Protocol (SNMP) 41

Chapter 1: SNMP User's Guide

The agent is highly fault tolerant. If the manager gets an unexpected response from the agent, it is
possible that some instrumentation function has returned an erroneous value. The agent will not crash
even if the instrumentation does. It should be noted that if an instrumentation function enters an
infinite loop, the agent will also be blocked forever. The supervisor ,or the application, specifies how to
restart the agent.

Using the SNMP Agent in a Distributed Environment

The normal way to use the agent in a distributed environment is to use one master agent located at one
node, and zero or more subagents located on other nodes. However, this configuration makes the
master agent node a single point of failure. If that node goes down, the agent will not work.

One solution to this problem is to make the snmp application a distributed Erlang application, and that
means, the agent may be configured to run on one of several nodes. If the node where it runs goes
down, another node restarts the agent. This is called failover. When the node starts again, it may
takeover the application. This solution to the problem adds another problem. Generally, the new node
has another IP address than the first one, which may cause problems in the communication between the
SNMP managers and the agent.

If the snmp application is configured as a distributed Erlang application, it will during takeover try to
load the same MIBs that were loaded at the old node. It uses the same filenames as the old node. If the
MIBs are not located in the same paths at the different nodes, the MIBs must be loaded explicitly after
takeover.

1.7.6 Using Mnesia Tables as SNMP Tables

The Mnesia DBMS can be used for storing data of SNMP tables. This means that an SNMP table can be
implemented as a Mnesia table, and that a Mnesia table can be made visible via SNMP. This mapping is
largely automated.

There are three main reasons for using this mapping:

o We get all features of Mnesia, such as fault tolerance, persistent data storage, replication, and so
on.

e Much of the work involved is automated. This includes get-next processing and RowStatus
handling.

e The table may be used as an ordinary Mnesia table, using the Mnesia API internally in the
application at the same time as it is visible through SNMP.

When this mapping is used, insertion and deletion in the original Mnesia table is slower, with a factor
O(log n). The read access is not affected.

A drawback with implementing an SNMP table as a Mnesia table is that the internal resource is forced
to use the table definition from the MIB, which means that the external data model must be used
internally. Actually, this is only partially true. The Mnesia table may extend the SNMP table, which
means that the Mnesia table may have columns which are use internally and are not seen by SNMP.
Still, the data model from SNMP must be maintained. Although this is undesirable, it is a pragmatic
compromise in many situations where simple and efficient implementation is preferable to abstraction.

42 Simple Network Management Protocol (SNMP)

1.7: Advanced Topics

Creating the Mnesia Table

The table must be created in Mnesia before the manager can use it. The table must be declared as type
snmp. This makes the table ordered in accordance with the lexicographical ordering rules of SNMP. The
name of the Mnesia table must be identical to the SNMP table name. The types of the INDEX fields in
the corresponding SNMP table must be specified.

If the SNMP table has more than one INDEX column, the corresponding Mnesia row is a tuple, where
the first element is a tuple with the INDEX columns. Generally, if the SNMP table has N INDEX
columns and C data columns, the Mnesia table is of arity (C-N)+1, where the key is a tuple of arity N if
N > 1, or asingle term if N = 1.

Refer to the Mnesia User's Guide for information on how to declare a Mnesia table as an SNMP table.

The following example illustrates a situation in which we have an SNMP table that we wish to
implement as a Mnesia table. The table stores information about employees at a company. Each
employee is indexed with the department number and the name.

empTable OBJECT-TYPE

SYNTAX SEQUENCE OF EmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table with information about employees."
t:= { emp 1}
empEntry OBJECT-TYPE
SYNTAX EmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
nn
INDEX { empDepNo, empName }
::= { empTable 1 }
EmpEntry ::=
SEQUENCE {
empDepNo INTEGER,
empName DisplayString,
empTelNo DisplayString
empStatus RowStatus
X

The corresponding Mnesia table is specified as follows:

mnesia:create_table([{name, employees},
{snmp, [{key, {integer, string}}]1},
{attributes, [key, telno, row_status]l}]).

Note:

In the Mnesia tables, the two key columns are stored as a tuple with two elements. Therefore, the
arity of the table is 3.

Simple Network Management Protocol (SNMP) 43

Chapter 1: SNMP User's Guide

Instrumentation Functions

The MIB table shown in the previous section can be compiled as follows:

1> somp:c("EmpMIB", [{db, mnesia}l).

This is all that has to be done! Now the manager can read, add, and modify rows. Also, you can use the
ordinary Mnesia API to access the table from your programs. The only explicit action is to create the
Mnesia table, an action the user has to perform in order to create the required table schemas.

Adding Own Actions

It is often necessary to take some specific action when a table is modified. This is accomplished with an
instrumentation function. It executes some specific code when the table is set, and passes all other
requests down to the pre-defined function.

The following example illustrates this idea:

emp_table(set, RowIndex, Cols) ->
notify_internal_resources(RowIndex, Cols),
snmp_generic:table_func(set, RowIndex, Cols, {empTable, mnesial);
emp_table(Op, RowIndex, Cols) ->
snmp_generic:table_func(0Op, RowIndex, Cols, {empTable, mnesial}).

The default instrumentation functions are defined in the module snmp_generic. Refer to the Reference
Manual, section SNMP, module snmp_generic for details.

Extending the Mnesia Table

A table may contain columns that are used internally, but should not be visible to a manager. These
internal columns must be the last columns in the table. The set operation will not work with this
arrangement, because there are columns that the agent does not know about. This situation is handled
by adding values for the internal columns in the set function.

To illustrate this, suppose we extend our Mnesia empTable with one internal column. We create it as
before, but with an arity of 4, by adding another attribute.

mnesia:create_table([{name, employees},
{snmp, [{key, {integer, string}}]},

{attributes, {key, telno, row_status, internal_col}}]).

The last column is the internal column. When performing a set operation, which creates a row, we
must give a value to the internal column. The instrumentation functions will now look as follows:

44 Simple Network Management Protocol (SNMP)

1.7: Advanced Topics

-define(createAndGo, 4).
-define(createAndWait, 5).

emp_table(set, RowIndex, Cols) ->
notify_internal_resources(RowIndex, Cols),
NewCols =
case is_row_created(empTable, Cols) of
true -> Cols ++ [{4, "intermal"}]; % add internal column
false -> Cols % keep original cols
end,
snmp_generic:table_func(set, RowIndex, NewCols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
snmp_generic:table_func(0Op, RowIndex, Cols, {empTable, mnesial).

is_row_created (Name, Cols) ->
case snmp_generic:get_status_col(Name, Cols) of
{ok, 7createAndGo} -> true;
{ok, 7createAndWaitl} -> true;
_ —> false
end.

If a row is created, we always set the internal column to "internal".

1.7.7 Audit Trail Logging

The agent can be configured to log incoming requests and outgoing responses and traps. It uses the
Erlang standard log mechanism disk_log for logging. The size and location of the log files are
configurable. A wrap log is used, which means that when the log has grown to a maximum size, it starts
from the beginning of the log, overwriting existing log records.

The log can be either awrite_log or a read write_log. Inawrite_log, all set requests and their
responses are stored. No get requests or traps are stored in a write log. In a read write log, all
requests, responses and traps are stored.

The log uses a raw data format (basically the BER encoded message), in order to minimize the CPU
load needed for the log mechanism. This means that the log is not human readable, but needs to be
formatted off-line before it can be read. Use the function snmp:log to_txt/2,3 for this purpose.

1.7.8 Deviations from the Standard

In some aspects the agent does not implement SNMP fully. Here are the differences:

e The default functions and snmp_generic cannot handle an object of type NetworkAddress as
INDEX (SNMPv1 only!). Use IpAddress instead.

e The agent does not check complex ranges specified for INTEGER objects. In these cases it just
checks that the value lies within the minimum and maximum values specified. For example, if the
range is specified as 1..10 | 12..20 the agent would let 11 through, but not O or 21. The
instrumentation functions must check the complex ranges itself.

e The agent will never generate the wrongEncoding error. If a variable binding is erroneous
encoded, the asniParseError counter will be incremented.

e A tooBig error in an SNMPv1 packet will always use the >*NULL value in all variable bindings.

Simple Network Management Protocol (SNMP) 45

Chapter 1: SNMP User's Guide

e The default functions and snmp_generic do not check the range of each OCTET in textual
conventions derived from OCTET STRING, e.g. DisplayString and DateAndTime. This must be
checked in an overloaded is_set_ok function.

1.8 Definition of Configuration Files

All configuration data must be included in configuration files that are located in the configuration
directory. The name of this directory is given in the snmp_config dir configuration parameter. These
files are read at start-up, and are used to initialize the SNMPv2-MIB or STANDARD-MIB,
SNMP-FRAMEWORK-MIB, SNMP-MPD-MIB, SNMP-VIEW-BASED-ACM-MIB,
SNMP-COMMUNITY-MIB, SNMP-USER-BASED-SM-MIB, SNMP-TARGET-MIB and
SNMP-NOTIFICATION-MIB (refer to the Management of the Agent [page 9] for a description of the
MIBs).

The directory where the configuration files are found is given as a parameter to the agent.

The entry format in all files are Erlang terms, separated by a *." and a newline. In the following sections,
the formats of these terms are described. Comments may be specified as ordinary Erlang comments.

Syntax errors in these files are discovered and reported with the function config_err/2 of the error
report module at start-up.

1.8.1 Agent Information

The agent information should be stored in a file called agent . conf.
Each entry is a tuple of size two:
{AgentVariable, Value}.
e AgentVariable is one of the variables is SNMP-FRAMEWORK-MIB or one of the internal

variables intAgentUDPPort, which defines which UDP port the agent listens to, or
intAgentIpAddress, which defines the IP address of the agent.

e Value is the value for the variable.

The following example shows a agent . conf file:
{intAgentUDPPort, 4000}.
{intAgentIpAddress, [141,213,11,24]}.

{snmpEngineID, "mbj’s engine"}.
{snmpEngineMaxPacketSize, 484}.

The value of snmpEngineID is a string, which for a deployed agent should have a very specific structure.
See RFC 2271/2571 for details.

46 Simple Network Management Protocol (SNMP)

1.8: Definition of Configuration Files

1.8.2 Contexts

The context information should be stored in a file called context.conf. The default context "" need
not be present.

Each row defines a context in the agent. This information is used in the table vacmContextTable in the
SNMP-VIEW-BASED-ACM-MIB.

Each entry is a term:

ContextName.

e ContextName is a string.

1.8.3 System Information

The system information should be stored in a file called standard. conf.
Each entry is a tuple of size two:
{SystemVariable, Value}.

e SystemVariable is one of the variables in the system group, or snmpEnableAuthenTraps.
e Value is the value for the variable.

The following example shows a valid standard. conf file:

{sysDescr, "Erlang SNMP agent"}.

{sysObjectID, [1,2,31}.

{sysContact, "(mbj,eklas)@erlang.ericsson.se"}.
{sysName, "test"}.

{sysServices, 72}.

{snmpEnableAuthenTraps, enabled}.

A value must be provided for all variables, which lack default values in the MIB.

1.8.4 Communities

The community information should be stored in a file called community.conf. It must be present if the
agent is configured for SNMPv1 or SNMPv2c.

The corresponding table is snmpCommunityTable in the SNMP-COMMUNITY-MIB.
Each entry is a term:

{CommunityIndex, CommunityName, SecurityName, ContextName, TransportTag}.

e CommunityIndex iS a non-empty string.
e CommunityName is a string.

e SecurityName is a string.

e ContextName is a string.

e TransportTag is a string.

Simple Network Management Protocol (SNMP) 47

Chapter 1: SNMP User's Guide

1.8.5 MIB Views for VACM

The information about MIB Views for VACM should be stored in a file called vacm. conf.

The corresponding tables are vacmSecurityToGroupTable, vacmAccessTable and
vacmViewTreeFamilyTable in the SNMP-VIEW-BASED-ACM-MIB.

Each entry is one of the terms, one entry corresponds to one row in one of the tables.
{vacmSecurityToGroup, SecModel, SecName, GroupName}.

{vacmAccess, GroupName, Prefix, SecModel, SeclLevel, Match, ReadView, WriteView,
NotifyView}.

{vacmViewTreeFamily, ViewIndex, ViewSubtree, ViewStatus, ViewMask}.

e SecModel is any, v1, v2c, Of usm.

e SecName is a string.

e GroupName is a string.

e Prefix is a string.

e SecLevel iSnoAuthNoPriv, authNoPriv, or authPriv
e Match is prefix Or exact.

e ReadView IS a string.

e WriteView is a string.

e NotifyView is a string.

e ViewIndex is an integer.

e ViewSubtree is a list of integer.

e ViewStatus is either included or excluded

e ViewMask is either null or a list of ones and zeros. Ones nominate that an exact match is used for
this sub-identifier. Zeros are wildcards which match any sub-identifier. If the mask is shorter than
the subtree, the tail is regarded as all ones. null is shorthand for a mask with all ones.

1.8.6 Security data for USM

The information about Security data for USM should be stored in a file called usm. conf, which must be
present if the agent is configured for SNMPv3.

The corresponding table is usmUserTable in the SNMP-USER-BASED-SM-MIB.
Each entry is a term:
{EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC,
OwnPrivKeyC, Public, AuthKey, PrivKey}.
e EngineID is a string.
e UserName is a string.
e SecName is a string.
e Clone is zeroDotZero or a list of integers.
e AuthP is either usmNoAuthProtocol, usmHMACMD5AuthProtocol, or usmHMACSHAAuthProtocol.
e AuthKeyC is a string.
e OwnAuthKeyC is a string.

e PrivP is a usmNoPrivProtocol Or usmDESPrivProtocol.

48 Simple Network Management Protocol (SNMP)

1.8: Definition of Configuration Files

e PrivKeyC is a string.
e OwnPrivKeyC is a string.
e Public is a string.

e AuthKey is a list (of integer). This is the User's secret localized authentication key. It is not visible
in the MIB. The length of this key needs to be 16 if usmHMACMD5AuthProtocol is used, and 20 if
usmHMACSHAAuthProtocol is used.

e PrivKey is a list (of integer). This is the User's secret localized encryption key. It is not visible in
the MIB. The length of this key needs to be 16 if usmDESPrivProtocol is used.

1.8.7 Notify Definitions

The information about Notify Definitions should be stored in a file called notify. conf.
The corresponding table is snmpNotifyTable in the SNMP-NOTIFICATION-MIB.
Each entry is a term:

{NotifyName, Tag, Type}.

e NotifyName iS a unique non-empty string.
e Tag is a string.
e Type iS trap Or inform.

1.8.8 Target Address Definitions

The information about Target Address Definitions should be stored in a file called target_addr. conf.

The corresponding tables are snmpTargetAddrTable in the SNMP-TARGET-MIB and
snmpTargetAddrExtTable in the SNMP-COMMUNITY-MIB.

Each entry is a term:
{TargetName , Ip, Udp, Timeout, RetryCount, Taglist, ParamsName}. or
{TargetName , Ip, Udp, Timeout, RetryCount, Taglist, ParamsName, Engineld, TMask,
MaxMessageSize}.

e TargetName iS a unique non-empty string.

e Ipis a list of four integers.

e Udp is an integer.

e Timeout iS an integer.

e RetryCount is an integer.

e Taglist isa string.

e ParamsName iS a string.

e Engineld is a string.

e TMask is a string of size 0, or size 6.

e MaxMessageSize iS an integer.

Simple Network Management Protocol (SNMP) 49

Chapter 1: SNMP User's Guide

1.8.9 Target Parameters Definitions

The information about Target Parameters Definitions should be stored in a file called
target_params.conf.

The corresponding table is snmpTargetParamsTable in the SNMP-TARGET-MIB.
Each entry is a term:
{ParamsName, MPModel, SecurityModel, SecurityName, SecurityLevel}.

e ParamsName iS a unique non-empty string.

e MPModel is v1, v2c Or v3

e SecurityModel is v1, v2c, OrF usm.

e SecurityName is a string.

e SecurityLevel iS noAuthNoPriv, authNoPriv or authPriv.

1.9 Definition of Instrumentation Functions

The section Definition of Instrumentation Functions describes the user defined functions, which the agent
calls at different times.

1.9.1 Variable Instrumentation

For scalar variables, a function f (Operation, ...) must be defined.
The Operation can be new, delete, get, is_set_ok, set, Or undo.

In case of an error, all instrumentation functions may return either an SNMPv1 or an SNMPV2 error
code. If it returns an SNMPv2 code, it is converted into an SNMPv1 code before it is sent to a SNMPv1
manager. It is recommended to use the SNMPv2 error codes for all instrumentation functions, as these
provide more details. See Appendix A [page 58] for a description of error code conversions.

f(new [, ExtraArgs])

The function f (new [, ExtraArgs]) is called for each variable in the MIB when the MIB is loaded
into the agent. This makes it possible to perform necessary initialization.

This function is optional. The return value is discarded.

f(delete [, ExtraArgs])

THE function f (delete [, ExtraArgs]) is called for each object in an MIB when the MIB is
unloaded from the agent. This makes it possible to perform necessary clean-up.

This function is optional. The return value is discarded.
f(get [, ExtraArgs])

ThE function f (get [, ExtraArgs]) is called when a get-request or a get-next request refers to the
variable.

This function is mandatory.

50 Simple Network Management Protocol (SNMP)

1.9: Definition of Instrumentation Functions

Valid Return Values

e {value, Value}. The Value must be of correct type, length and within ranges, otherwise genErr
is returned in the response PDU. If the object is an enumerated integer, the symbolic enum value
may be used as an atom. If the object is of type BITS, the return value shall be an integer or a list
of bits that are set.

e {noValue, noSuchName}(SNMPv1)
e {noValue, noSuchObject | noSuchInstance} (SNMPv2)

e genErr. Used if an error occured. Note, this should be an internal processing error, e.g. a caused
by a programing fault somewhere. If the variable does not exist, use {noValue, noSuchName} or
{noValue, noSuchInstance}.

f(is_set_ok, NewValue [, ExtraArgs])
ThE function f (is_set_ok, NewValue [, ExtraArgs]) is called in phase one of the set-request
processing so that the new value can be checked for inconsistencies.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If
the object is an enumerated integer or of type BITS, the integer value is used.

This function is optional.
If this function is called, it will be called again, either with undo or with set as first argument.

Valid return values

e noError
e badValue | noSuchName | genErr(SNMPv1)

e noAccess | noCreation | inconsistentValue | resourceUnavailable
inconsistentName | genErr(SNMPv2)

f(undo, NewValue [, ExtraArgs])

If an error occurred, this function is called after the is_set_ok function is called. If set is called for this
object, undo is not called.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If
the object is an enumerated integer or of type BITS, the integer value is used.

This function is optional.

Valid return values

e noError

e genErr(SNMPv1)
e undoFailed | genErr(SNMPv2)

Simple Network Management Protocol (SNMP) 51

Chapter 1: SNMP User's Guide

f(set, NewValue [, ExtraArgs])

This function is called to perform the set in phase two of the set-request processing. It is only called if
the corresponding is_set_ok function is present and returns noError.

NewValue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If
the object is an enumerated integer or of type BITS, the integer value is used.

This function is mandatory.

Valid return values

e noError
e genErr(SNMPv1)
e commitFailed | undoFailed | genErr(SNMPv2)

1.9.2 Table Instrumentation

For tables, a f (Operation, ...) function should be defined (the function shown is exemplified with
f).
The Operation can be new, delete, get, next, is_set_ok, undo Or set.

In case of an error, all instrumentation functions may return either an SNMPv1 or an SNMPvV2 error
code. If it returns an SNMPv2 code, it is converted into an SNMPv1 code before it is sent to a SNMPv1
manager. It is recommended to use the SNMPv2 error codes for all instrumentation functions, as these
provide more details. See Appendix A [page 58] for a description of error code conversions.

f(new [, ExtraArgs])

The function f (new [, ExtraArgs]) is called for each object in an MIB when the MIB is loaded into
the agent. This makes it possible to perform the necessary initialization.

This function is optional. The return value is discarded.

f(delete [, ExtraArgs])

The function f (delete [, ExtraArgs]) is called for each object in an MIB when the MIB is unloaded
from the agent. This makes it possible to perform any necessary clean-up.

This function is optional. The return value is discarded.

f(get, Rowlndex, Cols [, ExtraArgs])

The function £ (get, RowIndex, Cols [, ExtraArgs]) is called when a get-request refers to a table.
This function is mandatory.

Arguments

e RowIndex is a list of integers which define the key values for the row. The RowIndex is the list
representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

e Cols is a list of integers which represent the column numbers. The Cols are sorted by increasing
value and are guaranteed to be valid column numbers.

52 Simple Network Management Protocol (SNMP)

1.9: Definition of Instrumentation Functions

Valid Return Values

e A list with as many elements as the Cols list, where each element is the value of the
corresponding column. Each element can be:

— {value, Value}. The Value must be of correct type, length and within ranges, otherwise
genErr is returned in the response PDU. If the object is an enumerated integer, the symbolic
enum value may be used (as an atom). If the object is of type BITS, the return value shall be
an integer or a list of bits that are set.

— {noValue, noSuchName}(SNMPv1)
— {noValue, noSuchObject | noSuchInstance}(SNMPVv2)

e {noValue, Error}. If the row does not exist, because all columns have {noValue, Error}), the
single tuple {noValue, Error} can be returned. This is a shorthand for a list with all elements
{novValue, Error}.

e genErr. Used if an error occured. Note that this should be an internal processing error, e.g. a
caused by a programing fault somewhere. If some column does not exist, use {noValue,
noSuchName} or {noValue, noSuchInstance}.

f(get_next, Rowlndex, Cols [, ExtraArgs])

The fumction £ (get next, RowIndex, Cols [, ExtraArgs]) is called when a get-next- or a
get-bulk-request refers to the table.

The RowIndex argument may refer to an existing row or a non-existing row, or it may be unspecified.
The Cols list may refer to unaccessible columns or non-existing columns. For each column in the Cols
list, the corresponding next instance is determined, and the last part of its OBJECT IDENTIFIER and
its value is returned.

This function is mandatory.

Arguments

e RowIndex is a list of integers (possibly empty) that defines the key values for a row. The RowIndex
is the list representation (list of integers), which follow the Cols integer in the OBJECT
IDENTIFIER.

e Cols is a list of integers, greater than or equal to zero, which represents the column numbers.

Valid Return Values

e A list with as many elements as the Cols list Each element can be:

— {Next0id, NextValue}, where Next0id is the lexicographic next OBJECT IDENTIFIER for
the corresponding column. This should be specified as the OBJECT IDENTIFER part
following the table entry. This means that the first integer is the column number and the rest
is a specification of the keys. NextValue is the value of this element.

— endOfTable if there are no accessible elements after this one.

e {genErr, Column} where Column denotes the column that caused the error. Column must be one
of the columns in the Cols list. Note that this should be an internal processing error, e.g. a caused
by a programing fault somewhere. If some column does not exist, you must return the next
accessible element (or end0fTable).

Simple Network Management Protocol (SNMP) 53

Chapter 1: SNMP User's Guide

f(is_set_ok, RowlIndex, Cols [, ExtraArgs])

The fumction f (is_set_ok, RowIndex, Cols [, ExtraArgs]) is called in phase one of the
set-request processing so that new values can be checked for inconsistencies.

If the function is called, it will be called again with undo, or with set as first argument.
This function is optional.

Arguments
e RowIndex is a list of integers which define the key values for the row. The RowIndex is the list
representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

e Colsisalist of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an
enumerated integer or of type BITS, the integer value is used. The list is sorted by Column
(increasing) and each Column is guaranteed to be a valid column number.

Valid Return Values

e {noError, 0}

e {Error, Column}, where Error is the same as for is_set_ok for variables, and Column denotes
the faulty column. Column must be one of the columns in the Cols list.

f(undo, Rowlndex, Cols [, ExtraArgs])

If an error occurs, The fumction £ (undo, RowIndex, Cols [, ExtraArgs]) is called after the
is_set_ok function. If set is called for this object, undo is not called.

This function is optional.

Arguments

e RowIndex is a list of integers which define the key values for the row. The RowIndex is the list
representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

e Colsisalist of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an
enumerated integer or of type BITS, the integer value is used. The list is sorted by Column
(increasing) and each Column is guaranteed to be a valid column number.

Valid Return Values

e {noError, 0}

e {Error, Column} where Error is the same as for undo for variables, and Column denotes the
faulty column. Column must be one of the columns in the Cols list.

f(set, Rowlndex, Cols [, ExtraArgs])

The fumction £ (set, RowIndex, Cols [, ExtraArgs]) is called to perform the set in phase two of
the set-request processing. It is only called if the corresponding is_set_ok function did not exist, or
returned {noError, 0}.

This functionn is mandatory.

54 Simple Network Management Protocol (SNMP)

1.10: Definition of Net if

Arguments
e RowIndex is a list of integers that define the key values for the row. The RowIndex is the list
representation (list of integers) which follow the Cols integer in the OBJECT IDENTIFIER.

e Cols isalist of {Column, NewValue}, where Column is an integer, and NewValue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an
enumerated integer or of type BITS, the integer value is used. The list is sorted by Column
(increasing) and each Column is guaranteed to be a valid column number.

Valid Return Values

e {noError, 0}

e {Error, Column} where Error is the same as set for variables, and Column denotes the faulty
column. Column must be one of the columns in the Cols list.

1.10 Definition of Net if

Bytes Erlang Terms Master
— >
Agent

A

Proxy agent
specific representation

Proxy Agent
Subsystem

Figure 1.9: The Purpose of Net if

The Network Interface (Net if) process delivers SNMP PDUs to a master agent, and receives SNMP
PDUs from the master agent. The most common behaviour of a Net if process is that is receives bytes
from a network, decodes them into an SNMP PDU, which it sends to a master agent. When the master
agent has processed the PDU, it sends a response PDU to the Net if process, which encodes the PDU
into bytes and transmits the bytes onto the network.

However, that simple behaviour can be modified in numerous ways. For example, the Net if process can
apply some kind of encrypting/decrypting scheme on the bytes or act as a proxy filter, which sends
some packets to a proxy agent and some packets to the master agent.

It is also possible to write your own Net if process. The default Net if process is implemented in the
module snmp net_if and it uses UDP as the transport protocol.

This section describes how to write a Net if process.

Simple Network Management Protocol (SNMP) 55

Chapter 1: SNMP User's Guide

1.10.1 Mandatory Functions

A Net if process must be implemented in a module that exports the Module:start_1ink/2 function,
which starts a new Net if process. The name of the Net if module is passed as a start argument to the
snmp_agent Process.

Function

Module:start_link(MasterAgent,Args)

Arguments

MasterAgent -> is a Pid.
Args is a a list of arguments:
e {net_if_verbosity,silencel|infol|log|debug|trace}
A description of verbosity can be found here [page 109] and here [page 30]

o {net_if_recbuf,integer(O}
The size to be used for the UDP receive buffer.

Return values

The return values are:

e {ok, Pid}, where Pid is a linked Pid of the Net if process.
e {error, Reason} if the operation fails.

1.10.2 Messages

The section Messages describes mandatory messages, which Net if must send and be able to receive.

Outgoing Messages

Net if must send the following message when it receives an SNMP PDU from the network that is aimed
for the MasterAgent:

MasterAgent ! {snmp_pdu, Vsn, Pdu, PduMS, ACMData, From, Extra}

e Vsn is either >version-1’, >version-2’, 0Or *version-3’.
e Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP request.

e PduMS is the Maximum Size of the response Pdu allowed. Normally this is returned from
snmp_mpd : process_packet (See Reference Manual).

e ACMData is data used by the Access Control Module in use. Normally this is returned from
snmp_mpd : process_packet (see Reference Manual).

e From is the source address. If UDP over IP is used, this should be a 2-tuple {IP, UDPport}, where
IP is a 4-tuple with the IP address, and UDPport is an integer.

56 Simple Network Management Protocol (SNMP)

1.10: Definition of Net if

e Extra is any term the Net if process wishes to send to the agent. This term can be retrieved by
the instrumentation functions by calling snmp: current net_if_data(). This data is also sent
back to the Net if process when the agent generates a response to the request.

The following message is used to report that a response to a request has been received. The only
request an agent can send is an Inform-Request.

Pid ! {snmp_response received, Vsn, Pdu, From}

e Pid is the Process that waits for the response for the request. The Pid was specified in the
send_pdu_req message (see below) [page 58].

e Vsn is either *version-1’, >version-2’, Or *version-3’.
e Pdu is the SNMP Pdu received

e From is the source address. If UDP over IP is used, this should be a 2-tuple {IP, UDPport}, where
IP is a 4-tuple with the IP address, and UDPport is an integer.

Incoming Messages

This section describes the incoming messages which a Net if process must be able to receive.

e {snmp.response, Vsn, Pdu, Type, ACMData, To, Extra} This message is sent to the Net if
process from a master agent as a response to a previously received request.

Vsn is either *version-1’, version-2’, Or ’version-3°.
Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.
Type is the #pdu. type of the original request.

ACMData is data used by the Access Control Module in use. Normally this is just sent to
snmp_mpd : generate response message (See Reference Manual).

To is the destination address. If UDP over IP is used, this should be a 2-tuple {IP,
UDPport}, where IP is a 4-tuple with the IP address, and UDPport is an integer.

Extra is the term that the Net if process sent to the agent when the request was sent to the
agent.

e {discarded pdu, Vsn, Reqld, ACMData, Variable, Extra} This message is sent from a
master agent if it for some reason decided to discard the pdu.

Vsn is either *version-1’, version-2’, Or ’version-3°.
ReqlId is the request id of the original request.

ACMData is data used by the Access Control Module in use. Normally this is just sent to
snmp_mpd: generate response message (See Reference Manual).

Variable is the name of an snmp counter that represents the error, e.g.
snmpInBadCommunityUses.

Extra is the term that the Net if process sent to the agent when the request was sent to the
agent.

e {send pdu, Vsn, Pdu, MsgData, To} This message is sent from a master agent when a trap is to
be sent.

Vsn is either ’version-1’, >version-2’, Or ’version-3°.

Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

Simple Network Management Protocol (SNMP) 57

Chapter 1: SNMP User's Guide

— MsgData is the message specific data used in the SNMP message. This value is normally sent
to snmp_mpd: generate message/4. In SNMPv1 and SNMPv2c, this message data is the
community string. In SNMPv3, it is the context information.

— To is a list of the destination addresses and their corresponding security parameters. This
value is normally sent to snmp_mpd: generate message/4.

e {send_pdureq, Vsn, Pdu, MsgData, To, Pid} This message is sent from a master agent when
a request is to be sent. The only request an agent can send is Inform-Request. The net if process
needs to remember the request id and the Pid, and when a response is received for the request id,
send it to Pid, using a snmp_response _received message.

— Vsn is either *version-1’, ’version-2’, Or ’version-3’.
— Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

— MsgData is the message specific data used in the SNMP message. This value is normally sent
to snmp_mpd: generate message/4. In SNMPv1 and SNMPv2c, this message data is the
community string. In SNMPv3, it is the context information.

— To is a list of the destination addresses and their corresponding security parameters. This
value is normally sent to snmp_mpd: generate message/4.

— Pid is a process identifier.

Notes

Since the Net if process is responsible for encoding and decoding of SNMP messages, it must also update
the relevant counters in the SNMP group in MIB-II. It can use the functions in the module snmp_mpd for
this purpose (refer to the Reference Manual, section snmp, module snmp_mpd for more details.)

There are also some useful functions for encoding and decoding of SNMP messages in the module
snmp_pdus.

1.11 SNMP Appendix A

1.11.1 Appendix A

This appendix describes the conversion of SNMPv2 to SNMPv1 error messages. The instrumentation
functions should return v2 error messages.

Mapping of SNMPV2 error message to SNMPv1:

SNMPV2 message SNMPv1 message

noError noError

genErr genErr

noAccess noSuchName

wrongType badValue
continued ...

58 Simple Network Management Protocol (SNMP)

1.12: SNMP Appendix B

... continued

wrongLength badValue
wrongEncoding badValue
wrongValue badValue
noCreation noSuchName
inconsistentValue badValue
resourceUnavailable genErr
commitFailed genErr
undoFailed genErr
notWritable noSuchName
inconsistentName noSuchName

Table 1.1: Error Messages

1.12 SNMP Appendix B

1.12.1 Appendix B

RowsStatus (from RFC1903)

RowStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"The RowStatus textual convention is used to manage the
creation and deletion of conceptual rows, and is used as the
value of the SYNTAX clause for the status column of a
conceptual row (as described in Section 7.7.1 in RFC1902.)

The status column has six defined values:

- ‘active’, which indicates that the conceptual row is

available for use by the managed device;

- ‘notInService’, which indicates that the conceptual
row exists in the agent, but is unavailable for use by

the managed device (see NOTE below);

- ‘notReady’, which indicates that the conceptual row

exists in the agent, but is missing information

necessary in order to be available for use by the

managed device;

- ‘createAndGo’, which is supplied by a management

station wishing to create a new instance of a

conceptual row and to have its status automatically set
to active, making it available for use by the managed

device;

- ‘createAndWait’, which is supplied by a management

Simple Network Management Protocol (SNMP)

59

Chapter 1: SNMP User's Guide

station wishing to create a new instance of a
conceptual row (but not make it available for use by
the managed device); and,

- ‘destroy’, which is supplied by a management station
wishing to delete all of the instances associated with
an existing conceptual row.

Whereas five of the six values (all except ‘notReady’) may
be specified in a management protocol set operation, only
three values will be returned in response to a management
protocol retrieval operation: ‘notReady’, ‘notInService’ or
‘active’. That is, when queried, an existing conceptual row
has only three states: it is either available for use by
the managed device (the status column has value ‘active’);
it is not available for use by the managed device, though
the agent has sufficient information to make it so (the
status column has value ‘notInService’); or, it is not
available for use by the managed device, and an attempt to
make it so would fail because the agent has insufficient
information (the state column has value ‘notReady’).

NOTE WELL

This textual convention may be used for a MIB table,
irrespective of whether the values of that table’s
conceptual rows are able to be modified while it is
active, or whether its conceptual rows must be taken
out of service in order to be modified. That is, it is
the responsibility of the DESCRIPTION clause of the
status column to specify whether the status column must
not be ‘active’ in order for the value of some other
column of the same conceptual row to be modified. If
such a specification is made, affected columns may be
changed by an SNMP set PDU if the RowStatus would not
be equal to ‘active’ either immediately before or after
processing the PDU. In other words, if the PDU also
contained a varbind that would change the RowStatus
value, the column in question may be changed if the
RowStatus was not equal to ‘active’ as the PDU was
received, or if the varbind sets the status to a value
other than ’active’.

Also note that whenever any elements of a row exist, the
RowStatus column must also exist.
To summarize the effect of having a conceptual row with a

status column having a SYNTAX clause value of RowStatus,
consider the following state diagram:

60 Simple Network Management Protocol (SNMP)

1.12: SNMP Appendix B

STATE

e e e e

I A I B | C I D

| |status col.|status column]

|status column | is | is | status column

ACTION |does not exist| notReady | notInService| is active

—————————————— e B e B
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Valuel Value
createAndGo |inconsistent- | | |

| Valuel | I
—————————————— e e e e e e e e e
set status InoError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Valuel Value
createAndWait |wrongValue | | |
—————————————— e e e e e e e e e
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active I I I I

I I or | |

I I I I

I |see 2 ->D| ->D| ->D
—————————————— e B e B
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | I I I

I I or | | or

I I I I

I Isee 3 ->C| ->C|wrongValue
—————————————— e B e B
set status |noError |noError |noError |noError
column to I I I I
destroy I ->A| ->A| ->A| ->A
—————————————— e B e B
set any other |see 4 |noError |noError |see 5
column to some| I | I
value | | see 1] ->C| ->D
—————————————— T R

(1) goto B or C, depending on information available to the
agent.

(2) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto D.

(3) if other variable bindings included in the same PDU,
provide values for all columns which are missing but

required, then return noError and goto C.

(4) at the discretion of the agent, the return value may be
either:

Simple Network Management Protocol (SNMP) 61

Chapter 1: SNMP User's Guide

inconsistentName: because the agent does not choose to
create such an instance when the corresponding
RowStatus instance does not exist, or

inconsistentValue: if the supplied value is
inconsistent with the state of some other MIB object’s
value, or

noError: because the agent chooses to create the
instance.

If noError is returned, then the instance of the status
column must also be created, and the new state is B or C,
depending on the information available to the agent. If
inconsistentName or inconsistentValue is returned, the row
remains in state A.

(5) depending on the MIB definition for the column/table,
either noError or inconsistentValue may be returned.

NOTE: Other processing of the set request may result in a
response other than noError being returned, e.g.,
wrongValue, noCreation, etc.

Conceptual Row Creation

There are four potential interactions when creating a
conceptual row: selecting an instance-identifier which is
not in use; creating the conceptual row; initializing any
objects for which the agent does not supply a default; and,
making the conceptual row available for use by the managed
device.

Interaction 1: Selecting an Instance-Identifier

The algorithm used to select an instance-identifier varies
for each conceptual row. In some cases, the instance-
identifier is semantically significant, e.g., the
destination address of a route, and a management station
selects the instance-identifier according to the semantics.

In other cases, the instance-identifier is used solely to
distinguish conceptual rows, and a management station
without specific knowledge of the conceptual row might
examine the instances present in order to determine an
unused instance-identifier. (This approach may be used, but
it is often highly sub-optimal; however, it is also a
questionable practice for a naive management station to
attempt conceptual row creation.)

Alternately, the MIB module which defines the conceptual row

62 Simple Network Management Protocol (SNMP)

1.12: SNMP Appendix B

might provide one or more objects which provide assistance
in determining an unused instance-identifier. For example,
if the conceptual row is indexed by an integer-value, then
an object having an integer-valued SYNTAX clause might be
defined for such a purpose, allowing a management station to
issue a management protocol retrieval operation. In order
to avoid unnecessary collisions between competing management
stations, ‘adjacent’ retrievals of this object should be
different.

Finally, the management station could select a pseudo-random
number to use as the index. In the event that this index
was already in use and an inconsistentValue was returned in
response to the management protocol set operation, the
management station should simply select a new pseudo-random
number and retry the operation.

A MIB designer should choose between the two latter
algorithms based on the size of the table (and therefore the
efficiency of each algorithm). For tables in which a large
number of entries are expected, it is recommended that a MIB
object be defined that returns an acceptable index for
creation. For tables with small numbers of entries, it is
recommended that the latter pseudo-random index mechanism be
used.

Interaction 2: Creating the Conceptual Row

Once an unused instance-identifier has been selected, the
management station determines if it wishes to create and
activate the conceptual row in one transaction or in a
negotiated set of interactioms.

Interaction 2a: Creating and Activating the Conceptual Row

The management station must first determine the column
requirements, i.e., it must determine those columns for
which it must or must not provide values. Depending on the
complexity of the table and the management station’s
knowledge of the agent’s capabilities, this determination
can be made locally by the management station. Alternately,
the management station issues a management protocol get
operation to examine all columns in the conceptual row that
it wishes to create. In response, for each column, there
are three possible outcomes:

- a value is returned, indicating that some other
management station has already created this conceptual

row. We return to interaction 1.

- the exception ‘noSuchInstance’ is returned,
indicating that the agent implements the object-type

Simple Network Management Protocol (SNMP)

63

Chapter 1: SNMP User's Guide

64

associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. For those
columns to which the agent provides read-create access,
the ‘noSuchInstance’ exception tells the management
station that it should supply a value for this column
when the conceptual row is to be created.

- the exception ‘noSuchObject’ is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station cannot issue any
management protocol set operations to create an
instance of this column.

Once the column requirements have been determined, a
management protocol set operation is accordingly issued.
This operation also sets the new instance of the status
column to ‘createAndGo’.

When the agent processes the set operation, it verifies that
it has sufficient information to make the conceptual row
available for use by the managed device. The information
available to the agent is provided by two sources: the
management protocol set operation which creates the
conceptual row, and, implementation-specific defaults
supplied by the agent (note that an agent must provide
implementation-specific defaults for at least those objects
which it implements as read-only). If there is sufficient
information available, then the conceptual row is created, a
‘noError’ response is returned, the status column is set to
‘active’, and no further interactions are necessary (i.e.,
interactions 3 and 4 are skipped). If there is insufficient
information, then the conceptual row is not created, and the
set operation fails with an error of ‘inconsistentValue’.

On this error, the management station can issue a management
protocol retrieval operation to determine if this was
because it failed to specify a value for a required column,
or, because the selected instance of the status column
already existed. In the latter case, we return to
interaction 1. In the former case, the management station
can re-issue the set operation with the additional
information, or begin interaction 2 again using
‘createAndWait’ in order to negotiate creation of the
conceptual row.

NOTE WELL
Regardless of the method used to determine the column

requirements, it is possible that the management
station might deem a column necessary when, in fact,

Simple Network Management Protocol (SNMP)

1.12: SNMP Appendix B

the agent will not allow that particular columnar
instance to be created or written. In this case, the
management protocol set operation will fail with an
error such as ‘noCreation’ or ‘notWritable’. In this
case, the management station decides whether it needs
to be able to set a value for that particular columnar
instance. If not, the management station re-issues the
management protocol set operation, but without setting
a value for that particular columnar instance;
otherwise, the management station aborts the row
creation algorithm.

Interaction 2b: Negotiating the Creation of the Conceptual
Row

The management station issues a management protocol set
operation which sets the desired instance of the status

column to ‘createAndWait’. If the agent is unwilling to
process a request of this sort, the set operation fails with
an error of ‘wrongValue’. (As a consequence, such an agent

must be prepared to accept a single management protocol set
operation, i.e., interaction 2a above, containing all of the
columns indicated by its column requirements.) Otherwise,
the conceptual row is created, a ‘noError’ response is
returned, and the status column is immediately set to either
‘notInService’ or ‘notReady’, depending on whether it has
sufficient information to make the conceptual row available
for use by the managed device. If there is sufficient
information available, then the status column is set to
‘notInService’; otherwise, if there is insufficient
information, then the status column is set to ‘notReady’.
Regardless, we proceed to interaction 3.

Interaction 3: Initializing non-defaulted Objects

The management station must now determine the column
requirements. It issues a management protocol get operation
to examine all columns in the created conceptual row. In
the response, for each column, there are three possible
outcomes:

- a value is returned, indicating that the agent
implements the object-type associated with this column
and had sufficient information to provide a value. For
those columns to which the agent provides read-create
access (and for which the agent allows their values to
be changed after their creation), a value return tells
the management station that it may issue additional
management protocol set operations, if it desires, in
order to change the value associated with this column.

- the exception ‘noSuchInstance’ is returned,
indicating that the agent implements the object-type

Simple Network Management Protocol (SNMP)

65

Chapter 1: SNMP User's Guide

associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. However,
the agent does not have sufficient information to
provide a value, and until a value is provided, the
conceptual row may not be made available for use by the
managed device. For those columns to which the agent
provides read-create access, the ‘noSuchInstance’
exception tells the management station that it must
issue additional management protocol set operations, in
order to provide a value associated with this column.

- the exception ‘noSuchObject’ is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station cannot issue any
management protocol set operations to create an
instance of this column.

If the value associated with the status column is
‘notReady’, then the management station must first deal with
all ‘noSuchInstance’ columns, if any. Having done so, the
value of the status column becomes ‘notInService’, and we
proceed to interaction 4.

Interaction 4: Making the Conceptual Row Available

Once the management station is satisfied with the values
associated with the columns of the conceptual row, it issues
a management protocol set operation to set the status column
to ‘active’. If the agent has sufficient information to
make the conceptual row available for use by the managed
device, the management protocol set operation succeeds (a
‘noError’ response is returned). Otherwise, the management
protocol set operation fails with an error of
‘inconsistentValue’.

NOTE WELL

A conceptual row having a status column with value
‘notInService’ or ‘notReady’ is unavailable to the
managed device. As such, it is possible for the
managed device to create its own instances during the
time between the management protocol set operation
which sets the status column to ‘createAndWait’ and the
management protocol set operation which sets the status
column to ‘active’. In this case, when the management
protocol set operation is issued to set the status
column to ‘active’, the values held in the agent
supersede those used by the managed device.

66 Simple Network Management Protocol (SNMP)

1.12: SNMP Appendix B

SYNTAX

If the management station is prevented from setting the
status column to ‘active’ (e.g., due to management station
or network failure) the conceptual row will be left in the
‘notInService’ or ‘notReady’ state, consuming resources
indefinitely. The agent must detect conceptual rows that
have been in either state for an abnormally long period of
time and remove them. It is the responsibility of the
DESCRIPTION clause of the status column to indicate what an
abnormally long period of time would be. This period of
time should be long enough to allow for human response time
(including ‘think time’) between the creation of the
conceptual row and the setting of the status to ‘active’.
In the absense of such information in the DESCRIPTION
clause, it is suggested that this period be approximately 5
minutes in length. This removal action applies not only to
newly-created rows, but also to previously active rows which
are set to, and left in, the notInService state for a
prolonged period exceeding that which is considered normal
for such a conceptual row.

Conceptual Row Suspension

When a conceptual row is ‘active’, the management station
may issue a management protocol set operation which sets the

instance of the status column to ‘notInService’. If the
agent is unwilling to do so, the set operation fails with an
error of ‘wrongValue’. Otherwise, the conceptual row is

taken out of service, and a ‘noError’ response is returned.
It is the responsibility of the DESCRIPTION clause of the
status column to indicate under what circumstances the
status column should be taken out of service (e.g., in order
for the value of some other column of the same conceptual
row to be modified).

Conceptual Row Deletion

For deletion of conceptual rows, a management protocol set
operation is issued which sets the instance of the status
column to ‘destroy’. This request may be made regardless of
the current value of the status column (e.g., it is possible
to delete conceptual rows which are either ‘notReady’,
‘notInService’ or ‘active’.) If the operation succeeds,
then all instances associated with the conceptual row are
immediately removed."

INTEGER {
-— the following two values are states:
-— these values may be read or written
active(l1),

Simple Network Management Protocol (SNMP)

67

Chapter 1: SNMP User's Guide

notInService(2),

-— the following value is a state:
-- this value may be read, but not written
notReady(3),

-— the following three values are

-— actions: these values may be written,
-— but are never read

createAndGo(4),

createAndWait (5),

destroy(6)

1.13 SNMP Release Notes

1.13.1 SNMP Development Toolkit v3.4.12

Version 3.4.12 supports code replacement in runtime from/to version 3.4.11, 3.4.10, 3.4.9, 3.4.8,
3.4.7,3.4.6,3.4.5,3.4.4,3.4.3,3.4.2,3.4.1 and 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent The SNMP agent internal data base (local db) uses dets, and does not properly handle error's from
e.g. lookup.
Own Id: OTP-6210
Aux Id: Seq 10404
Aux Id: OTP-5838

Incompatibilities

1.13.2 SNMP Development Toolkit v3.4.11

Version 3.4.11 supports code replacement in runtime from/to version 3.4.10, 3.4.9, 3.4.8, 3.4.7, 3.4.6,
3.4.5,3.4.4,343,3.4.2,3.41and 3.4.

Improvements and new features

68 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

Reported Fixed Bugs and Malfunctions

agent Error replies was composed with invalid OIDs for the following error counter:
usmStatsUnsupportedSecLevels (point 5).
Own Id: OTP-5486
Aux Id: Seq 9791
Aux Id: OTP-5464

Incompatibilities

1.13.3 SNMP Development Toolkit v3.4.10

Version 3.4.10 supports code replacement in runtime from/to version 3.4.9, 3.4.8, 3.4.7, 3.4.6, 3.4.5,
3.4.4,34.3,3.4.2,3.4.1and 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent Error replies was composed with invalid OIDs for the following error counters:
usmStatsWrongDigests (RFC 2574, chap 3.2, point 6), usmStatsUnsupportedSecLevels (point 5) and
usmStatsDecryptionErrors (point 8a).
Own Id: OTP-5464
Aux Id: Seq 9791

agent Malformed Oid returned from a get_next operation as part of a get-bulk-request causes the agent
to crash.
Own Id: OTP-5465
Aux Id: Seq 9783, Seq 9793

Incompatibilities

1.13.4 SNMP Development Toolkit v3.4.9

Version 3.4.9 supports code replacement in runtime from/to version 3.4.8, 3.4.7, 3.4.6, 3.4.5, 3.4.4,
3.4.3,3.4.2,3.4.1and 3.4.

Improvements and new features

Simple Network Management Protocol (SNMP) 69

Chapter 1: SNMP User's Guide

Reported Fixed Bugs and Malfunctions

agent Added missing type check for access snmpCommunityTable with is_set_ok.
Own Id: OTP-4978
Aux Id: Seq 8380

compiler Added “default value” for INTEGER with enumeration without a DEFVAL clause. The lowest
valid integer value is choosen for the variable_info defval.
Own Id: OTP-5124
Aux Id: Seq 8738

Incompatibilities

1.13.5 SNMP Development Toolkit v3.4.8
Version 3.4.8 supports code replacement in runtime from/to version 3.4.7, 3.4.6, 3.4.5, 3.4.4, 3.4.3,
3.4.2,3.4.1and 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent Default instrumentation functions mis-behave on some, not supported, tables. Could enter infinit
loop.
Own Id: OTP-5084
Aux Id: Seq 8807

Incompatibilities

1.13.6 SNMP Development Toolkit v3.4.7

Version 3.4.7 supports code replacement in runtime from/to version 3.4.6, 3.4.5, 3.4.4, 3.4.3, 3.4.2,
3.4.1 and 3.4.

Improvements and new features

e Application test directory included in the source release.

Own Id: OTP-5056
Aux Id: Seq 8738

70 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

Reported Fixed Bugs and Malfunctions

compiler The value range part of the SYNTAX Integer32 does not handle values given as hexStr or bitStr
(only 10-base integers).
Own Id: OTP-5051
Aux Id: Seq 8738

compiler The mib compiler cannot handle mib traps/notifications with included values (OBJECTS) which
are defined later in the MIB.
Own Id: OTP-5052
Aux Id: Seq 8738

Incompatibilities

1.13.7 SNMP Development Toolkit v3.4.6

Version 3.4.6 supports code replacement in runtime from/to version 3.4.5, 3.4.4, 3.4.3, 3.4.2, 3.4.1 and
3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent Incorrect (v3-) password causes the agent to not send a report back to the manager and counters
to not be updated, due to a decode crash.
Martin Bjrklund
Own Id: OTP-5041

Incompatibilities

1.13.8 SNMP Development Toolkit v3.4.5

Version 3.4.5 supports code replacement in runtime from/to version 3.4.4, 3.4.3, 3.4.2, 3.4.1 and 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent snmp_user_based_sm_mib:add_user/13 calls undef function snmp_conf.check_user/1.
Should have been snmp_conf:check_usm/1. Introduced in snmp-3.4.3

Own Id: OTP-5017

Simple Network Management Protocol (SNMP) 71

Chapter 1: SNMP User's Guide

Incompatibilities

1.13.9 SNMP Development Toolkit v3.4.4

Version 3.4.4 supports code replacement in runtime from/to version 3.4.3, 3.4.2, 3.4.1 and 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent SNIMP trap send stops after change to Access Group Data.
Own Id: OTP-4999
Aux Id: Seq 8626

agent get-next on vacmAccessTable exits (badarg) for column 3.
Own Id: OTP-5000
Aux Id: Seq 8626

Incompatibilities

1.13.10 SNMP Development Toolkit v3.4.3

Version 3.4.3 supports code replacement in runtime from/to version 3.4.2, 3.4.1 and 3.4.

Improvements and new features

agent Improved load control. Added a new config parameter, snmp_req-limit, which allow for some
load control, see configuration parameters [page 27].
Own Id: OTP-4980
Aux Id: Seq 8446
agent The example manager cannot handle start option receive_type.
Nicolas Niclausse
Own Id: OTP-4993

compiler Notifications now included in generated header files.
Own Id: OTP-4931
Aux Id: Seq 8421

compiler Defines of the SNMPv2-TC now builtin. This also means that the SNMPv2-TC provided with
this application is the proper one.
Own Id: OTP-4934
Aux Id: Seq 8419

agent Added functions to add/delete config in runtime, equivalent to the config files:

— add_community/5 [page 110] and delete_community/1 [page 111]
— add_context/1 [page 115] and delete_context/1 [page 115]

72 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

— add_notify/3 [page 135] and delete_notify/1 [page 136]

— add_addr/10 [page 145], delete_addr/1 [page 145], add_params/5 [page 145] and
delete_params/1 [page 146]

— add_user/13 [page 147] and delete_user/1 [page 148]

— add_sec2group/3 [page 149], delete_sec2group/1 [page 150], add_access/8 [page 150],
delete_access/1 [page 150], add_view_tree_fam/4 [page 150] and delete_view_tree_fam/1
[page 151]

Own Id: OTP-4996

Reported Fixed Bugs and Malfunctions

agent Access with typo causes system crash. Adding a rudimentary type check to the (set- and
is_set_ok-) access functions:
— SNMP-COMMUNITY-MIB: snmpCommunityTable/3
SNMP-NOTIFICATION-MIB: snmpNotifyTable/3
SNMP-TARGET-MIB: snmpTargetAddrTable/3, sampTargetParamsTable/3
SNMP-USER-BASED-SM-MIB: usmUserTable/3

SNMP-VIEW-BASED-ACM-MIB: vacmSecurityToGroupTable/3, vacmAccessTable/3 &
vacmViewTreeFamilyTable/3

Own Id: OTP-4978
Aux Id: Seq 8380

compiler SNMP compiler cannot handle MIBs without object defs.
Luke Gorrie
Own Id: OTP-4981
agent Instrumentation function usmUserTable exited on bad values.
Own Id: OTP-3843
Aux Id: Seq 5096

Incompatibilities

1.13.11 SNMP Development Toolkit v3.4.2

Version 3.4.2 supports code replacement in runtime from/to version 3.4.1 and 3.4.

Improvements and new features

e Added new date and time function(s) utilizing the local_time_to_universal_time_dst of the
calendar module.
See local_time_to_date_and_time_dst [page 104] and date_and_time_to_universal _time_dst [page
101].
The old functions, local_time_to_date_and_time/1 and date_and_time_to_universal_time/1,
has been obsoleted and will be removed at a later date.
Own Id: OTP-4873

Simple Network Management Protocol (SNMP) 73

Chapter 1: SNMP User's Guide

Reported Fixed Bugs and Malfunctions

¢ Handling of subagents (with subtrees not in sequence).
When a subagent has two subtrees registered, A and C, and another agent has a subtree between
the two, B. A get-next operation for the last variable in A would return the first variable in B,
which is wrong. The master agent did check this, but not very good.
Martin Bjrklund
Own Id: OTP-4879

Incompatibilities

e Functions snmp:local_time to_date_and _time/1 and
snmp:date_and_time_to_universal_time/1, has been obsoleted and will be removed at a later
date.

1.13.12 SNMP Development Toolkit v3.4.1

Version 3.4.1 supports code replacement in runtime from/to version 3.4.

Improvements and new features

Reported Fixed Bugs and Malfunctions

agent Minor errors in debug macros and sample config file.
Serge Aleynikov
Own Id: OTP-4810

agent Code up/downgrade cleanup.
Own Id: OTP-4811

compiler Fixed a parser error that caused the group checks to behave erratic. Also fixed related group check
problems which among other things produced cryptic error messages.
Own Id: OTP-4825
Aux Id: Seq 8183

1.13.13 SNMP Development Toolkit v3.4

Version 3.4.0 supports code replacement in runtime from/to version 3.3.8.

Improvements and new features

agent MIB server has been re-written to improve memory usage. It is now also possible to create the
“mib database” before starting the snmp agent (instead of loading mibs at runtime). MIB data is
stored in either ets (default), dets or mnesia.
Own Id: OTP-4601

agent The snmp_local _db now use dets for persistent storage, instead of snmp _pets.
Own Id: OTP-4720

74 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

Reported Fixed Bugs and Malfunctions

compiler Added check and warning for sloppy asignment in MIBs.
Own Id: OTP-4660

compiler Fixed a bunch of errors related to group checks.
Own Id: OTP-4607
Aux Id: Seq 7765

1.13.14 SNMP Development Toolkit v3.3.8

Version 3.3.8 supports code replacement in runtime from/to version 3.3.7, 3.3.6 and 3.3.5.

Improvements and new features

¢ In case the UDP port dies, the snmp_net_if process now reports this and also tries to re-open the
port.
Own Id: OTP-4457
Aux Id: Seq 7594

e SNMP mib compiler warning(s) cleanup. Some of the warnings (e.g. about missing
accessfunction) was changed into info printouts, which can be seen with the compiler (erlc)
argument +'{verbosity,info}'. See SNMP compiler options [page 98].

Own Id: OTP-4478

Reported Fixed Bugs and Malfunctions

e The agent side set and is_set_ok operations on the snmpTargetAddrExtTable was incorrect.

Own Id: OTP-4477
Aux Id: Seq 7444

1.13.15 SNMP Development Toolkit v3.3.7

Version 3.3.7 supports code replacement in runtime from/to version 3.3.6, 3.3.5, 3.3.4, 3.3.3 and 3.3.2

Improvements and new features

Reported Fixed Bugs and Malfunctions

e SNMP Target mib tag check incorrect.
Own Id: OTP-4394
Aux 1d: Seq 7444

1.13.16 SNMP Development Toolkit v3.3.6

Version 3.3.6 supports code replacement in runtime from/to version 3.3.5, 3.3.4, 3.3.3 and 3.3.2

Simple Network Management Protocol (SNMP) 75

Chapter 1: SNMP User's Guide

Improvements and new features

Reported Fixed Bugs and Malfunctions

e Improved error handling in snmp_error_report module (ets-lookup failure).
Own Id: OTP-4345
Aux Id: Seq 7309

¢ SNMP NotifiyType error. Calls to the functions snmp notificationmib:get_targets/0 failes
since it assumes that notify type was stored as atoms, which is not always the case.
Furthermore the parsing of the notify config file did not convert the *trap’ and ‘inform® to their
respective integer values 1 and 2.
Own Id: OTP-4329
Aux Id: Seq 7367

1.13.17 SNMP Development Toolkit v3.3.5

Version 3.3.5 supports code replacement in runtime from/to version 3.3.4, 3.3.3 and 3.3.2

Improvements and new features

e When opening a log file, the failure reason was not checked. Instead it was assumed to be
{badarg,size} (when opened without the size option, this means the file does not exist). This is
usually correct, but just to be on the safe side the test has beem changed to make sure that no
other results get through.

Own Id: OTP-4282
Aux Id: Seq 7312

e Added possiblillity to specify own error report module (instead of the default, snmp_error). This
is done with a new application config directive: snmp_error_report_mod, see configuration
parameters [page 27]. Also added a size limit to the snmp_error module. Messages larger then
1024 chars will be truncated. Added a very simple error report module, snmp_error_io, which
writes the message to stdout using the io module (without any limitations).

Own Id: OTP-4279
Aux Id: Seq 7309

e Test manager does not send error message in quiet mode. If the request to the manager contains
an erroneous oid, no information is sent back to the client (that started the manager). See quiet
config parameter [page 131] for the new reply value.

Added two new functions for oid to/from aliasname conversion, to be used by the test manager
users, see oid_to_name [page 130] and name_to_oid [page 130].

Own Id: OTP-4250

Aux Id: Seq 7270

Reported Fixed Bugs and Malfunctions

¢ Handling of large erroneous SNMP messages corrected. Encoding of the reply to these messages
failed due to a bug in the length encoding. Also corrected counter increments.
Own Id: OTP-4278
Aux Id: Seq 7309

76 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

1.13.18 SNMP Development Toolkit v3.3.4

Version 3.3.4 supports code replacement in runtime from/to version 3.3.3, 3.3.2, 3.3.1, 3.3.0 and 3.2.2
(with the exception of what's mentioned in the version 3.3.0 note).

Improvements and new features

Reported Fixed Bugs and Malfunctions

e Crypto keys changed from string to list
Own Id: OTP-4206
Aux Id: Seq 7207

e SNMP date diff check changed according to RFC 2579 (was according to RFC 1903).
Own Id: OTP-4209
Aux Id: Seq 7185

1.13.19 SNMP Development Toolkit v3.3.3

Version 3.3.3 supports code replacement in runtime from/to version 3.3.2, 3.3.1, 3.3.0 and 3.2.2 (with
the exception of what's mentioned in the version 3.3.0 note).

Improvements and new features

Reported Fixed Bugs and Malfunctions
e Erroneous macro defines corrected.
Own Id: OTP-4006

e Storage of mib data using dets did not work (see OTP-3740).
Own Id: OTP-4076

e Error according to section 3.2.7a of RFC 2274/2574 reported with the wrong OID
(usmStatsNotInTimeWindows instead of usmStatsNotInTimeWindows.0)
Own Id: OTP-4090

1.13.20 SNMP Development Toolkit v3.3.2

Version 3.3.2 supports code replacement in runtime from/to version 3.3.1, 3.3.0 and 3.2.2 (with the
exception of what's mentioned in the version 3.3.0 note).

Improvements and new features

Reported Fixed Bugs and Malfunctions

e snmp_net_if:subtr/2 don't handle megaseconds
Own Id: OTP-3920
Aux Id: Seq 5174

e The mib compiler does not detect if an notification and an ordinary mib entry
(OBJECT-IDENTITY) has the same OID.
Own Id: OTP-3986
Aux Id: Seq 5256

Simple Network Management Protocol (SNMP) 77

Chapter 1: SNMP User's Guide

1.13.21 SNMP Development Toolkit v3.3.1

Version 3.3.1 supports code replacement in runtime from/to version 3.3.0 and 3.2.2 (with the
exception of what's mentioned in the version 3.3.0 note).

Improvements and new features

e The UDP based Network Interface included in this application, snmp_net_if, now sets the UDP
receive buffer size, according to the snmp_net_if_recbuf sys config option. If this option is not
present, the default value is used (i.e. it is not set at all). There is no need to set the send buffer
since the size of the send buffer is adjusted automatically. Note that the underlying IP
implementation defines the maximum buffer size.

Own Id: OTP-3874
Aux Id: seg5103

Reported Fixed Bugs and Malfunctions

e Failure to retrieve mib info. This is information (specifically a list of loaded mibs) is retrieved
when performing a takover. Could cause a takeover to fail.
Own Id: OTP-3890
Aux Id: seg5123

e Error in mib conversion for notifications. This error exist only in version 3.3.0.
Own Id: OTP-3875
Aux Id: seq4936

e SNMP loop if damaged snmp db. If a table row has been created with own RowIndex (key) of *”,
this will cause an infinit loop when traversing the table (this is done when the SNMP application
at startup performs the table cleanup). This happens if:

Empty string for Communitylndex in config file community.conf.

Empty string for NotifyName in config file notify.conf.
Empty string for TargetName in config file target_addr.conf.

Empty string for ParamsName in config file target_params.conf.

Own Id: OTP-3881
Aux Id: seg5113

1.13.22 SNMP Development Toolkit v3.3.0

Version 3.3.0 supports code replacement in runtime from/to version 3.2.2.

Note:

You cannot downgrade if you are using dets or mnesia for mib data storage, since previous versions
only supported ets.

78 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

Improvements and new features

e The agent can now load mibs compiled with a pre 3.2.0 mib compiler.
Own Id: OTP-3833

e Added a new interface function to retrieve the index types of the table info. This was previously
internal info only. See the generic functions [page 117].
Own Id: OTP-3816
Aux Id: seq5053

e It is now possible to store mib data in ets, dets and mnesia. Default is ets. See configuration
parameters [page 27] on how to configure this.
Own Id: OTP-3740
Aux 1d: seq4947

Reported Fixed Bugs and Malfunctions

e The EVA application called undefined SNMP log conversion function.
Own Id: OTP-3733

e Snmp manager ‘get-bulk-request’ failure.
This is actually a UDP problem (OTP-3807). In R7 the default receive buffer, recbuf, size of a
UDP socket has incorrectly been changed to 1024 bytes. The problem is that when a message
bigger then the recbuf size is received it is cut and sizeof(recbuf) bytes is delivered (this is not the
correct behaviour). The simple snmp manager app included in this application did not explicitly
set the size of recbuf.
So, in R7 a get-bulk-request could easily exceed 1024 bytes, resulting in an erroneous message.
The size of recbuf for the snmp manager app is now configurable ({recbuf,integer ()}, see
manager options [page 131]).
Note that the maximum size of outgoing/incoming message should be set to a value less then or
equal to the recbuf size! See for example snmpEngineMaxMessageSize in
SNMP_FRAMEWORK_MIB.
Note that this problem exists in R7 only!
Own Id: OTP-3797
Aux Id: seq5008

1.13.23 SNMP Development Toolkit v3.2.2

Version 3.2.2 supports code replacement in runtime from/to version:

e OTP version R7: 3.2.1 and 3.2.0,
e OTP version R6: 3.1.4 and 3.1.3,
e OTP version R5: 3.0.9.4, 3.0.9.3 and 3.0.9.2.

Improvements and new features

e Itis now possible to register/unregister for notification of changes stored (permanetly, i.e. on disk)
in snmp_local _db.
Own Id: OTP-3704

e Added direct access (read) functions to the symbolic store for faster access (accessible throw the
snmp [page 98] module).
Own Id: OTP-3725

Simple Network Management Protocol (SNMP) 79

Chapter 1: SNMP User's Guide

1.13.24 SNMP Development Toolkit v3.2.1

Version 3.2.1 supports code replacement in runtime from/to version 3.2.0, 3.1.4, 3.1.3, 3.0.9.4, 3.0.9.3
and 3.0.9.2.

Reported Fixed Bugs and Malfunctions

e Bad-arith in snmp_pdus (error case not handled). Erronous user provided messages that could not
be encoded caused the application to crash.
Own Id: OTP-3688
Aux Id: seq4874

1.13.25 SNMP Development Toolkit v3.2.0

Version 3.2.0 supports code replacement in runtime from/to version 3.1.4, 3.1.3 and 3.0.9.2.

Note:
When importing MIBs, ensure that the imported MIBs as well as the importing MIB are compiled
using the same version of the SNMP-compiler.

The required interface of the Net if module has changed [page 56].

Improvements and new features

e Debugging has been improved. It is now possible to “debug” all named processes (individually) of
the snmp application. See the snmp module for details.

o Filter (audit trail) logs on timestamp.
Own Id: OTP-3600

e The MIB-compilator has been improved. It is possible to include Description-field into compiled
MIB.
Own Id: OTP-3538

Reported Fixed Bugs and Malfunctions

e Failure converting audit trace log to text file.
Own Id: OTP-3649, OTP-3650
Aux Id: seq4844

1.13.26 SNMP Development Toolkit v3.1.4

Version 3.1.4 supports code replacement in runtime from/to version 3.1.3.
Improvements and new features

e Debugging has been improved. It is now possible to “debug” all named processes (individually) of
the snmp application. See the snmp module for details.

80 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

Reported Fixed Bugs and Malfunctions

Erroneous check for duplicate trap/mib entries. A check for duplicate mibentries has been added.
This check can be overridden with the sys config tuple: {snmp mibentry_override,bool()}. The
check for duplicate trap entries was erroneous, only the first trapentry in a mib was checked. This
check can now be overridden with the sys config tupple: {snmp_trapentry override,bool()}.
Default values in both cases are false (no override, which means the check is made).

Own Id: OTP-3601

Cloning of user from template user failure.
Own Id: OTP-3596
Aux Id: seq4584

Problem with deprecated (mib-) definitions.

A new option for the MIB-compilator is used. The option is deprecated, will get around the
problem with deprecated definition.

Own Id: OTP-3574

Aux Id: seq4528

Trap sending example in chapter Manual implementation corrected.
Own Id: OTP-3353

1.13.27 SNMP Development Toolkit v3.1.3

Version 3.1.3 supports code replacement in runtime from version 3.1.2.

Improvements and new features

Reported Fixed Bugs and Malfunctions

SNMPv3 discovery process does not work.
Own Id: OTP-3542
Aux 1d: seq4449

Corrupt (snmp_local_db) log files cause snmp crash. Changes to the local db is stored on disk in a
logfile. In a takeover senario the new snmp will try to restore the database by reading the ets-table
on disk and then update this with the transactions stored in the logfile. If the logfile is corrupt,
this caused a crash.

Own Id: OTP-3537

Aux 1d: seq4471

Return value genErr from GET instrumentation function treated as not accepted.

Own Id: OTP-3534
Aux Id: seq4437

snmp:date_and_time() rewritten to not rely on erlang:now()
Own Id: OTP-3525
Aux Id: seq4391

the SNMP reportableFlag was set in response messages, which it should not.
Own Id: OTP-3416
Aux Id: seq4200.

Failure to check if MIBs were already loaded at take-over.
Own Id: OTP-3411
Aux Id: seq4155

Simple Network Management Protocol (SNMP) 81

Chapter 1: SNMP User's Guide

e Unneccessary print-outs in snmp_net_if.
Own Id: OTP-3410
Aux Id: seq4241

e A crash-report from disk_log was generated when the SNMP agent was started for the very first
time.
Own Id;: OTP-3393
Aux Id: seg4211

e The SNMP agent crashed (in snmp_pdus:enc_oid_tag) during initialization of table. Proper check
of object identifier values has been added.
Own Id: OTP-3378
Aux Id: seq4155.

1.13.28 SNMP Development Toolkit v3.1.2

Version 3.1.2 supports code replacement in runtime from versions 3.1.1 and 3.0.6.

Improvements and new features

e The fact that the MIBs SNMPv2-SMI, RFC-1215, RFC-1212, SNMPv2-TC, SNMPv2-CONF and
RFC1155-SMI are compiler built-ins, has been added to the compiler documentation.
Own Id: OTP-3316
Aux Id:

e The agent option authentication _service has been reintroduced. This option is part of an
SNMP internal API.
Own Id: OTP-3324
Aux Id:

¢ It has been clarified in the documentation, that the value of snmpEngineID should not be just a
simple string, but has to follow the conventions specified in RFC 2271/2571.
Own Id: OTP-3350
Aux Id:

Reported Fixed Bugs and Malfunctions

¢ If two Erlang nodes are started on the same host, and each node starts an SNMP agent, and if both
agents use the same UDP port, the agent that starts last, will completely control the port. The
reason for this is that the UDP port is opened with a reuse directive.
A new option no_reuse_address, which, if set, causes the reuse directive not to be set.
Own Id: OTP-3317
Aux Id: seq4008

e Debug printouts from snmp net_if appeared even when the debug flag was not set. This has been
corrected.
Own Id: OTP-3345
Aux Id: seq4091

82 Simple Network Management Protocol (SNMP)

1.13: SNMP Release Notes

1.13.29 SNMP Development Toolkit v3.1.1

Improvements and new features

e The audit trail log has been improved. Now each log item also contains a time stamp. Also the
text format of a log (produced by a call to snmp: log to_txt) has been changed to be more “line
oriented”.

The function snmp:log_to_txt/4 has been added.
Own Id: OTP-3261
Aux Id: seq3884, OTP-3253

e Each item in an audit trail text log file (produced by snmp:log to_txt) now has a trailing TAB
character, and any TAB character in the body of a text item is replaced by ESC TAB.
Own Id: OTP-3282
Aux Id: seq3969

e The function snmp:log_-to_txt/5 has been added, so that not only the log name but also the log
file name can be specified when converting an audit trail log to text format.
Own Id: OTP-3298
Aux Id:

e A new optional environment variable bind_to_ip_addess has been added, controlling if the agent
should bind to the specific IP address or not.
Own Id: OTP-3293
Aux Id:

Reported Fixed Bugs and Malfunctions

e Conversion of a log to text format could crash SNMP if the log was already open.
Own Id: OTP-3261
Aux 1d: seq3884

e The BER encoding of integers did not follow the ASN.1 BER encoding rules.
Own Id: OTP-3274
Aux 1d: seq3960

e SNMP did not start if the audit disk_log file was corrupt.

Own Id: OTP-3290
Aux Id:

e SNMP was not backward compatible with instrumentation functions that returned {novalue,
unSpecified} (the SNMP agent crashed). This has been changed by silently transforming such a
return value to {noValue, noSuchInstance}.

Own Id: OTP-3303
Aux 1d: seq3975
e The header file snmp_vacm.hrl was missing in the SNMP src directory.

Own Id: OTP-3327
Aux Id:

Incompatibilities with v3.1

e Applications that parses the audit trail log text files have to be rewritten.

Simple Network Management Protocol (SNMP) 83

Chapter 1: SNMP User's Guide

1.13.30 SNMP Development Toolkit v3.1

Improvement and new features

e Adaption to new format of exit codes.

84 Simple Network Management Protocol (SNMP)

SNMP Reference Manual

Short Summaries

e Application snmp [page 96] - The SNMP Application
e Erlang Module snmp [page 98] — Interface Functions to the SNMP toolkit

e Erlang Module snmp_community_mib [page 110] - Instrumentation Functions for
SNMP-COMMUNITY-MIB

e Erlang Module snmp_error [page 112] — Functions for Reporting SNMP Errors
through the error_logger

e Erlang Module snmp_error_io [page 113] - Functions for Reporting SNMP Errors
on stdio

e Erlang Module snmp_error_report [page 114] — Functions for Reporting SNMP
Errors

e Erlang Module snmp_framework_mib [page 115] — Instrumentation Functions for
SNMP-FRAMEWORK-MIB

e Erlang Module snmp_generic [page 117] — Generic Functions for Implementing
SNMP Objects in a Database

e Erlang Module snmp_index [page 121] — Abstract Data Type for SNMP Indexing
e Erlang Module snmp_local_db [page 125] — The SNMP built-in database
e Erlang Module snmp_mgr [page 128] — SNMP Manager

e Erlang Module snmp_mpd [page 133] — Message Processing and Dispatch module
for SNMP

e Erlang Module snmp_notification_mib [page 135] — Instrumentation Functions for
SNMP-NOTIFICATION-MIB

e Erlang Module snmp_pdus [page 137] — Encode and Decode Functions for SNMP
PDUs

e Erlang Module snmp_standard_mib [page 140] — Instrumentation Functions for
STANDARD-MIB and SNMPv2-MIB

e Erlang Module snmp_supervisor [page 142] — A supervisor for the SNMP Processes

e Erlang Module snmp_target_mib [page 144] — Instrumentation Functions for
SNMP-TARGET-MIB

e Erlang Module snmp_user_based_sm_mib [page 147] — Instrumentation Functions
for SNMP-USER-BASED-SM-MIB

e Erlang Module snmp_view_based_acm_mib [page 149] - Instrumentation
Functions for SNMP-VIEW-BASED-ACM-MIB

Simple Network Management Protocol (SNMP) 85

SNMP Reference Manual

snmp

No functions are exported.

snmp

The following functions are exported:

86

add_agent_caps (SysORID, SysORDescr) -> SysORIndex
[page 98] Add an AGENT-CAPABILITY definition to the agent

c(File)
[page 98] Compile the specified MIB

c(File,Options) -> {ok, BinFileName} | {error, Reason}
[page 98] Compile the specified MIB

change log size(NewSize) -> ok | {error, Reason}
[page 99] Change the size of the Audit Trail Log

config() -> ok | {error, Reason}
[page 99] Configurate with a simple SNMP agent configuration tool

current_address() -> {value, {IP, UDP}} | false
[page 100] Retrieve the IP address of the manager

current_community() -> {value, Community} | false
[page 100] Retrieve the community of the current request

current_context() -> {value, ContextName} | false
[page 100] Retrieve the context of the current request

current net_if data() -> {value, NetIfData} | false
[page 100] Retrieve the Net_if data of the current pdu

current _request_id() -> {value, RequestId} | false
[page 100] Retrieve the request Id of the current request

date_and_time() -> DateAndTime
[page 101] Return the current date and time as an OCTET STRING

date_and_time_to_universal_time_dst(DateAndTime) -> [utc()]
[page 101] Convert a DateAndTime value to a list of possible utc()

date_and_time_to_string(DateAndTime) -> string()
[page 101] Convert a DateAndTime value to a string

debug (Agent ,Bool) -> void()
[page 101] Turn debugging on/off

del_agent_caps(SysORIndex) -> void()
[page 101] Delete an AGENT-CAPABILITY definition from the agent

enum_to_int (Name,Enum) -> {value, Int} | false
[page 101] Convert an enum value to an integer

enum_to_int (Db,Name,Enum) -> {value, Int} | false
[page 102] Convert an enum value to an integer

get (Agent,Vars) -> Values | {error, Reason}
[page 102] Perform a get operation on the agent

get_agent_caps() -> [[SysORIndex, SysORID, SysORDescr, SysORUpTime]]
[page 102] Return all AGENT-CAPABILITY definitions in the agent

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

e get_symbolic_store db() -> Db
[page 102] Retrieve the symbolic store database reference

e info(Agent) -> [{Key, Value}]
[page 103] Return information about the agent

e int_to_enum(Name,Int) -> {value, Enum} | false
[page 103] Convert an integer to an enum value

e int_to_enum(Db,Name,Int) -> {value, Enum} | false
[page 103] Convert an integer to an enum value

e is_consistent(Mibs) -> ok | {error, Reason}
[page 103] Check for OID conflicts between MIBs

e load mibs(Agent,Mibs) -> ok | {error, Reason}
[page 103] Load MIBs into the agent

e local_time_to_date_and_time_dst(Local) -> [DateAndTime]
[page 104] Convert a Local time value to a list of possible DateAndTime(s)

e log to_txt(LogDir, Mibs)
[page 104] Convert an Audit Trail Log to text format

e log to_txt(LogDir, Mibs, OutFile) -> ok | {error, Reason}
[page 104] Convert an Audit Trail Log to text format

e log to_txt(LogDir, Mibs, OutFile, LogName) -> ok | {error, Reason}
[page 104] Convert an Audit Trail Log to text format

e log to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error
Reason}
[page 104] Convert an Audit Trail Log to text format

e log to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok |
{error, Reason}
[page 104] Convert an Audit Trail Log to text format

H

e log to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) ->

ok | {error, Reason}
[page 104] Convert an Audit Trail Log to text format

e mib_to_hrl(MibName) -> ok | {error, Reason}
[page 105] Generate constants for the objects in the MIB

e name_to_oid(Name) -> {value, 0id()} | false
[page 105] Convert a symbolic name to an OID

e name to_oid(Db,Name) -> {value, oid()} | false
[page 105] Convert a symbolic name to an OID

e oid_toname(0ID) -> {value, Name} | false
[page 105] Convert an OID to a symbolic name

e oid_toname(Db,0ID) -> {value, Name} | false
[page 105] Convert an OID to a symbolic name

e register_subagent (Agent,SubTree0id,Subagent) -> ok | {error, Reason}

[page 105] Register a subagent under a subtree

e send notification(Agent,Notification,Receiver)
[page 106] Send a notification

e send notification(Agent,Notification,Receiver,Varbinds)
[page 106] Send a notification

e send notification(Agent,Notification,Receiver, NotifyName,Varbinds
[page 106] Send a notification

Simple Network Management Protocol (SNMP)

)

87

SNMP Reference Manual

88

e send notification(Agent,Notification,Receiver,
NotifyName,ContextName,Varbinds) -> void()
[page 106] Send a notification

e send_trap(Agent,Trap,Community)
[page 107] Send a trap

e send trap(Agent,Trap,Community,Varbinds) -> void()
[page 107] Send a trap

e universal_time_to_date_and time(UTC) -> DateAndTime
[page 108] Convers a UTC value to DateAndTime

e unload mibs(Agent,Mibs) -> ok | {error, Reason}
[page 108] Unload MIBs from the agent

e unregister_subagent (Agent,Subagent0id0rPid) -> ok | {ok,
SubAgentPid} | {error, Reason}
[page 109] Unregister a subagent

e validate date_and time(DateAndTime) bool()
[page 109] Check if a DateAndTime value is correct

e verbosity(Ref,Verbosity) -> void()
[page 109] Assign a new verbosity for the process

snmp_community_mib

The following functions are exported:

e configure(ConfDir) -> void()
[page 110] Configure the SNMP-COMMUNITY-MIB

e reconfigure(ConfDir) -> void()
[page 110] Configure the SNMP-COMMUNITY-MIB

e add_community(Idx, CommName, SecName, CtxName, TransportTag) -> Ret
[page 111] Added one community

e delete_community(Key) -> Ret
[page 111] Delete one community

snmp-_error

The following functions are exported:

e config err(Format, Args) -> void()
[page 112] Called if a configuration error occurs

e user_err(Format, Args) -> void()
[page 112] Called if a user related error occurs

snmp_error_io

The following functions are exported:

e config err(Format, Args) -> void()
[page 113] Called if a configuration error occurs

e user_err(Format, Args) -> void()
[page 113] Called if a user related error occurs

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

snmp_error_report

The following functions are exported:
e config err(Format, Args) -> void()
[page 114] Called if a configuration error occurs

e user_err(Format, Args) -> void()
[page 114] Called if a user related error occurs

snmp_framework_mib

The following functions are exported:
e configure(ConfDir) -> void()
[page 115] Configure the SNMP-FRAMEWORK-MIB

e init() -> void()
[page 115] Initialize the SNMP-FRAMEWORK-MIB

e add_context(Ctx) -> Ret
[page 115] Added one context

e delete_context(Key) -> Ret
[page 115] Delete one context

snmp_generic

The following functions are exported:
e get_status_col(Name,Cols)
[page 118] Get the value of the status column from Cols

e get_status_col(NameDb,Cols) -> {ok, StatusVal} | false
[page 118] Get the value of the status column from Cols

e get_index_types (Name)
[page 118] Get the index types of Name

e table func(Opl,NameDb)
[page 118] Default instrumentation function for tables

e table func(0p2,RowIndex,Cols,NameDb) -> Ret
[page 118] Default instrumentation function for tables

e table get_elements(NameDb,RowIndex,Cols) -> Values
[page 119] Get elements in a table row

e table_next(NameDb,Rest0id) -> RowIndex | endOfTable
[page 119] Find the next row in the table

e table_row_exists(NameDb,RowIndex) -> bool()
[page 119] Check if a row in a table exists

e table_set_elements(NameDb,RowIndex,Cols) -> bool()
[page 119] Set elements in a table row

e variable func(Op1l,NameDb)
[page 119] Default instrumentation function for tables

e variable func(0p2,Val,NameDb) -> Ret
[page 119] Default instrumentation function for tables

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

90

e variable get(NameDb) -> {value, Value} | undefined
[page 119] Get the value of a variable

e variable_set (NameDb,NewVal) -> true | false
[page 119] Set a value for a variable

snmp_index

The following functions are exported:
e delete(Index) -> true
[page 122] Delete an index table

e delete(Index, Key) -> NewIndex
[page 123] Delete an item from the index

e get(Index, Key0id) -> {ok, {Key0id, Value}} | undefined
[page 123] Get the item with Key0id

e get_last(Index) -> {ok, {Key0id, Value}} | undefined
[page 123] Get the last item in the index structure

e get next(Index, Key0id) -> {ok, {NextKeyOid, Value}} | undefined
[page 123] Get the next item

e insert(Index, Key, Value) -> NewIndex
[page 123] Insert an item into the index

e key to_oid(Index, Key) -> Key0Oid
[page 123] Convert a key to an OBJECT IDENTIFIER

e new(KeyTypes)
[page 124] Create a new snmp index structure

snmp_local_db

The following functions are exported:
e dump() -> ok | {error, Reason}
[page 126] Dump the database to disk

e match(NameDb,Pattern)
[page 126] Perform an ets match on the table

e print()
[page 126] Print the database to screen

e print(TableName)
[page 126] Print the database to screen

e print(TableName, Db)
[page 126] Print the database to screen

e table_create(NameDb) -> bool()
[page 126] Create a table

e table_create_row(NameDb,RowIndex,Row) -> bool()
[page 126] Create a row in a table

e table_delete(NameDb) -> void()
[page 127] Delete a table

e table_delete_row(NameDb,RowIndex) -> bool()
[page 127] Delete the row in the table

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

table_exists(NameDb) -> bool()

[page 127] Check if a table exists

table_get_row(NameDb,RowIndex) -> Row | undefined

[page 127] Get a row from the table

register notify client(Client,Module) -> ok | {error,Reason}
[page 127] Register Client as notification client

unregister notify_client(Client) -> ok | {error,Reason}
[page 127] Unregister Client as notification client

snmp_mgr

The following functions are exported:

expect(Id, What) -> ok | {error, Id, Reason}
[page 129] Test if the manager has received a response, trap, inform or report

expect (Id, ErrorStatus,ErrorIndex,Varbinds)

[page 129] Test if the manager has received a response, trap, inform or report
expect(Id, trap, Enterp, Generic, Specific, Varbinds)

[page 129] Test if the manager has received a response, trap, inform or report

expect(Id, v2trap, Varbinds)
[page 129] Test if the manager has received a response, trap, inform or report

expect(Id, report, Varbinds)
[page 129] Test if the manager has received a response, trap, inform or report

expect(Id, {inform, InformReply}, Varbinds)

[page 129] Test if the manager has received a response, trap, inform or report
g(0ids) -> void()

[page 129] Send a get-request

gb(NonRepeaters, MaxRepetitions, 0ids) -> void()
[page 129] Send a get-bulk-request

gn(0ids) -> void()

[page 130] Send a get-next-request

gn() -> void()
[page 130] Send a get-next-request

gn(N) -> void()
[page 130] Send N get-next-request requests

r() -> void()
[page 130] Resend the last request

oid_toname(0id) -> {ok, Name} | {error, Reason}
[page 130] Transform a oid to it's aliasname

name_to_oid(Name) -> {ok, 0id} | {error, Reason}
[page 130] Transform a aliasname to it's oid

s(Varbinds) -> void()
[page 130] Send a set-request

start (Options)
[page 130] Start the SNMP manager

start_1link(Options) -> void()
[page 131] Start the SNMP manager

stop() -> void()
[page 132] Stop the SNMP manager

Simple Network Management Protocol (SNMP)

91

SNMP Reference Manual

snmp_mpd
The following functions are exported:
e init mpd(Options) -> mpd_state()

[page 133] Initialize the MPD module

e process_packet(Packet, TDomain, TAddress, State) -> {ok, Vsn, Pdu,
PduMS, ACMData} | {discarded, Reason}
[page 133] Process a packet received from the network

e generate responsemsg(Vsn, RePdu, Type, ACMData) -> {ok, Packet} |
{discarded, Reason}
[page 133] Generate a response packet to be sent to the network

e generatemsg(Vsn, Pdu, MsgData, To) -> {ok, PacketsAndAddresses} |
{discarded, Reason}
[page 134] Generate a request message to be sent to the network

e discarded pdu(Variable) -> void()
[page 134] Increment the variable associated with a discarded pdu

snmp_notification_mib

The following functions are exported:
e configure(ConfDir) -> void()
[page 135] Configure the SNMP-NOTIFICATION-MIB

e reconfigure(ConfDir) -> void()
[page 135] Configure the SNMP-NOTIFICATION-MIB

e add notify(Name, Tag, Type) -> Ret
[page 135] Added one notify definition

e deletemnotify(Key) -> Ret
[page 136] Delete one notify definition

snmp_pdus
The following functions are exported:
e decmessage([byte(D]) -> Message

[page 137] Decode an SNMP Message

e dec message only([byte()]) -> Message
[page 137] Decode an SNMP Message, but not the data part

dec_pdu([byte()]) -> Pdu
[page 137] Decode an SNMP Pdu

e dec_scoped_pdu([byte()]) -> ScopedPdu
[page 138] Decode an SNMP ScopedPdu

e dec_scoped_pdu_data([byte()]) -> ScopedPduData
[page 138] Decode an SNMP ScopedPduData

e dec_usm_security_parameters([byte()]) -> UsmSecParams
[page 138] Decode SNMP UsmSecurityParameters

e enc_encrypted_scoped_pdu(EncryptedScopedPdu) -> [byte()]
[page 138] Encode an encrypted SNMP scopedPDU

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

e enc message(Message) -> [byte()]
[page 138] Encode an SNMP Message

e enc message only(Message) -> [byte()]
[page 138] Encode an SNMP Message, but not the data part

e enc_pdu(Pd) -> [byte()]
[page 138] Encode an SNMP Pdu

e enc_scoped_pdu(ScopedPdu) -> [byte()]
[page 138] Encode an SNMP scopedPDU

e enc_usm_security_parameters(UsmSecParams) -> [byte()]
[page 139] Encode SNMP UsmSecurityParameters

snmp_standard_mib

The following functions are exported:
e configure(ConfDir) -> void()
[page 140] Configure the STANDARD-MIB and SNMPv2-MIB

e inc(Name) -> void()
[page 140] Increment a variable in the MIB

e inc(Name, N) -> void()
[page 140] Increment a variable in the MIB

e reconfigure(ConfDir) -> void()
[page 140] Configure the STANDARD-MIB and SNMPv2-MIB

e reinit() -> void()
[page 141] Reset all snmp counters to O

e sys_up_-time() -> Time
[page 141] Get the system up time

snmp_supervisor

The following functions are exported:

e start_sub()
[page 142] Start the SNMP supervisor for subagents only

e start_sub(Opts) -> {ok, pid()} | {error, {already started, pid(}} |
{error, Reason}

[page 142] Start the SNMP supervisor for subagents only

e start_master(DbDir,ConfDir)
[page 142] Start the SNMP supervisor for all agents

e startmaster (DbDir,ConfDir,Opts) -> {ok, pid(0} | {error,
{already_started, pid()}} | {error, Reason}
[page 142] Start the SNMP supervisor for all agents

e start_subagent (ParentAgent,Subtree,Mibs) -> {ok, pid()} | {error,
Reason}
[page 143] Start a subagent

e stop_subagent (SubAgent) -> ok | no_such_child
[page 143] Stop a subagent

Simple Network Management Protocol (SNMP) 93

SNMP Reference Manual

94

snmp_target_mib

The following functions are exported:

configure(ConfDir) -> void()
[page 144] Configure the SNMP-TARGET-MIB

reconfigure(ConfDir) -> void()
[page 144] Configure the SNMP-TARGET-MIB

set_target_engine id(TargetAddrName, EngineId) -> boolean()
[page 145] Set the engine id for a targetAddr row.

add_addr (Name, Ip, Port, Timeout, Retry, Taglist, Params, Engineld,
TMask, MMS) -> Ret
[page 145] Add one target address definition

delete_addr(Key) -> Ret
[page 145] Delete one target address definition

add_params (Name, MPModel, SecModel, SecName, SecLevel) -> Ret
[page 145] Add one target parameter definition

delete_params(Key) -> Ret
[page 146] Delete one target parameter definition

snmp_user_based_sm_mib

The following functions are exported:

configure(ConfDir) -> void()
[page 147] Configure the SNMP-USER-BASED-SM-MIB

reconfigure(ConfDir) -> void()
[page 147] Configure the SNMP-USER-BASED-SM-MIB

add_user (EngineID, Name, SecName, Clone, AuthP, AuthKeyC,
OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, Priery)
-> Ret

[page 148] Add one user

delete_user(Key) -> Ret
[page 148] Delete one user

snmp_view_based_acm_mib

The following functions are exported:

e configure(ConfDir) -> void()

[page 149] Configure the SNMP-VIEW-BASED-ACM-MIB

e reconfigure(ConfDir) -> void()

[page 149] Configure the SNMP-VIEW-BASED-ACM-MIB

e add_sec2group(SecModel, SecName, GroupName) -> Ret

[page 150] Add one security to group definition

e delete_sec2group(Key) -> Ret

[page 150] Delete one security to group definition

Simple Network Management Protocol (SNMP)

SNMP Reference Manual

e add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV)

-> Ret
[page 150] Add one access definition

e delete_access(Key) -> Ret
[page 150] Delete one access definition

e add_view_tree_fam(ViewIndex, SubTree, Status, Mask) -> Ret
[page 150] Add one view tree family definition

e delete view tree_fam(Key) -> Ret
[page 151] Delete one view tree family definition

Simple Network Management Protocol (SNMP)

95

snmp

SNMP Reference Manual

96

snmp

Application

This chapter describes the snmp application in OTP. The SNMP application provides
the following services:

e a multilingual extensible SNMP agent
e a MIB compiler
e asimple manager

Configuration

The following configuration parameters are defined for the SNMP application. Refer to
application(3) for more information about configuration parameters.

audit_trail log = false | writelog | read write_ log <optional> Specifies if
an audit trail log should be used. The disk-log module is used to maintain a wrap
log. If write_log is specified, only set requests are logged. If read write_log, all
requests are logged. Default is false.

audit_trail log dir = string() <optional> Specifies where the audit trail log
should be stored. If audit_trail_log specifies that logging should take place, this
parameter must be defined.

audit_trail log size = {MaxBytes, MaxFiles} <optional> Specifies the size of
the audit trail log. This parameter is sent to disk_log. If audit_trail_log
specifies that logging should take place, this parameter must be defined.

bind to_ip_address = bool() <optional> If true the agent binds to the agent IP
adress. If false the agent listens on any IP address on the host where it is running.
Default is false.

force_config load = bool() <optiomnal> If true the configuration files are re-read
during startup, and the contents of the configuration database ignored. Thus, if
true, changes to the configuration database are lost upon reboot of the agent.
Default is false.

no_reuse_address = bool() <optional> If true the agent does not specify that the
IP and port address should be reusable. If false the agent the address is set to
reusable. Default is false.

snmp_agent_type = master | sub <optional> If master, one master agent is
started. Otherwise, no agents are started. Default is master.

snmp_config dir = string() <mandatory> Defines where the SNMP configuration
files and the compiled master agent MIB files are stored.

snmp_db_dir = string() <mandatory> Defines where the SNMP internal db files
are stored.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

snmp_master_agent mibs = [string()] <optional> Specifies a list of MIB names
and defines which MIBs are initially loaded into the SNMP master agent. These
MIBs are loaded from snmp_config dir.

snmp_multi_threaded = bool() <optional> If true, the agent is multi-threaded,
with one thread for each get request. Default is false.

snmp_priority = atom() <optional> Defines the Erlang priority for all SNMP
processes. Default is normal.

vl = bool() <optional> Defines if the agent shall speak SNMPv1. Default is true.
v2
v3

bool() <optional> Defines if the agent shall speak SNMPv2c. Default is true.

bool() <optional> Defines if the agent shall speak SNMPv3. Default is true.

snmp_local_db_auto_repair = false | true | true_verbose <optional> When
starting snmp_local_db it always tries to open an existing database. If false, and
some errors occur, a new datebase is created instead. If true, erroneous
transactions (in the logfile) are ignored. If true_verbose, erroneous transactions
(in the logfile) are igored and an error message is written. Default is true.

snmp_mibentry_override = bool() <optional> If this value is false, then when
loading a mib each mib- entry is checked prior to installation of the mib. The
perpose of the check is to prevent that the same symbolic mibentry name is used
for different oid's. Default is false.

snmp_trapentry_override = bool() <optional> If this value is false, then when
loading a mib each trap is checked prior to installation of the mib. The perpose of
the check is to prevent that the same symbolic trap name is used for different
trap's. Default is false.

snmp_error_reportmod = atom() <optional> Defines an error report module,
other then the default. Two modules are provided with the toolkit: snmp_error
and snmp_error_io. Default is snmp_error.

snmp_master_agent _verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP master agent. Default is silence.

snmp_symbolic_store_verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP symbolic store. Default is silence.

snmp_note_store_verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP note store. Default is silence.

snmp_net_if verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP net if. Default is silence.

snmp_mibserver verbosity = silence | info | log | debug | trace <optional>
Specifies the startup verbosity for the SNMP mib server. Default is silence.
snmpmib_storage = ets | {dets,Dir} | {dets,Dir,Action} | {mnesia,Nodes} | {mnesia,Nod
Specifies how info retrieved from the mibs will be stored. Default is ets.
Dir = string(). Dir is the directory where the (dets) files will be created.
Nodes = [node()]. If Nodes =[] then the own node is assumed.
Action = clear | keep. Default is keep. Action is used to specify what shall be
done if the mnesia table already exist.

See Also

application(3), disk_log(3)

Simple Network Management Protocol (SNMP) 97

snmp SNMP Reference Manual

snmp

Erlang Module

The module snmp contains interface functions to the SNMP toolkit. Some functions are
off-line functions (e.g. c to compile a MIB), and some are functions called by
instrumentation functions in a target system (e.g. current_address).

Common Data Types

The following datatypes are used in the functions below:
e 0id() = [byte()]

The 0id () type is used to represent an ASN.1 OBJECT IDENTIFIER.

Exports

add_agent_caps(SysORID, SysORDescr) -> SysORIndex

Types:

e SysORID = oid()

e SysORDescr = string()
e SysORIndex = integer()

This function can be used to add an AGENT-CAPABILITY statement to the
sysORTable in the agent. The table is defined in the SNMPv2-MIB.

c(File)
c(File,Options) -> {ok, BinFileName} | {error, Reason}
Types:
e File = string()
e Options = [opt()]
e opt() = {db, volatile| persistent| mnesia} | {i, [dirQ1} | {il, [dir()]} | {outdir, dir(Q)} |

{warnings, bool()} | {group_check, bool()} | {deprecated, bool()} | {description,
bool()} | {verbosity, silence|warning|info|log|debug]trace}

e dir() = string()
e BinFileName = string()

Compiles the specified MIB file <File>.mib. The compiled file BinFileName is called
<File>.bin.

98 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

e The option db specifies which database should be used for the default
instrumentation. Default is volatile.

e The option i specifies the path to search for imported (compiled) MIB files. The
directories should be strings with a trailing directory delimiter. Default is ["./"].

e The option i1 (include_lib) also specifies a list of directories to search for imported
MIBs. It assumes that the first element in the directory name corresponds to an
OTP application. The compiler will find the current installed version. For
example, the value [“snmp/mibs/”] will be replaced by [“snmp-3.1.1/mibs/"] (or
what the current version may be in the system). The current directory and the
<snmp-home>/priv/mibs/ are always listed last in the include path.

e The option warnings specifies whether warning messages should be shown.
Default is true.

e The option verbosity specifies the verbosity of the SNMP mib compiler. l.e. if
warning, info, log, debug and trace messages shall be shown. Default is silence.
Note that if the option warnings is true and the option verbosity is silence,
warning messages will still be shown.

e The option group_check specifies whether the mib compiler should check the
OBJECT-GROUP macro and the NOTIFICATION-GROUP macro for correctness
or not. Default is true.

e The option deprecated specifies if a deprecated definition should be kept or not.
If the option is false the MIB compiler will ignore all deprecated definitions.
Default is true.

e The option description specifies if the text of the DESCRIPTION field will be
included or not. Default is false, in which case the description will be replaced by
the atom undefined.

The MIB compiler understands both SMIv1 and SMIv2 MIBs. It uses the
MODULE-IDENTITY statement to determine if the MIB is version 1 or 2.

The MIB compiler can be invoked from the OS command line by using the command
erlc. erlc recognises the extension .mib, and invokes the SNMP MIB compiler for
files with that extension. The options db, group_check and deprecated have to be
specified to erlc using the syntax +term. See erlc (1) for details.

change_log_size(NewSize) -> ok | {error, Reason}

Types:

¢ NewSize = {MaxBytes, MaxFiles}
e MaxBytes = integer()

e MaxFiles = integer()

Changes the log size of the Audit Trail Log. The application must be configured to use
the audit trail log function. Please refer to disk_log(3) in Kernel Reference Manual for a
description of how to change the log size.

The change is permanent, as long as the log is not deleted. That means, the log size is
remebered across reboots.

config() -> ok | {error, Reason}

Simple Network Management Protocol (SNMP) 99

snmp SNMP Reference Manual

A simple interactive SNMP agent configuration tool. Simple configuration files can be
generated, but more complex configurations still have to be edited manually.

The tool is a textual based tool that asks some questions and generates sys.config and
* ., conf files.

Note that if the agent shall support version 3, then the crypto app must be started
before running this function (password generation).

current_address() -> {value, {IP, UDP}} | false

Types:
o IP = [int(), int(), int(), int()]
e UDP =int()

Retrieves the IP address of the management station sending the request. It must be

called from the same process that is handling the request (normally an instrumentation
function).

Returns false if no request is currently handled.

current_community() -> {value, Community} | false
Types:
e Community = string()

Retrieves the community referred to in the current request. It must be called from the
same process that is handling the request (normally an instrumentation function).

Returns false if no request is currently handled.

NOTE: This function should only be used if the agent speaks SNMPv1 or SNMPv2c
only. Otherwise, use current_context/0.

current_context() -> {value, ContextName} | false
Types:
e ContextName = string()

Retrieves the context referred to in the current request. It must be called from the same
process that is handling the request (normally an instrumentation function).

Returns false if no request is currently handled.

current net_if data() -> {value, NetIfData} | false
Types:
¢ NetlfData = term()

Retrieves the Net_if data for the current pdu being handled. This data is defined in the
Net_if process, and can be used to forward information about the packet to the
instrumentation functions. With the default Net_if implementation, it is nil. It must be

called from the same process that handles the request (normally an instrumentation
function).

Returns false if no request is currently handled.

current request_id() -> {value, RequestId} | false

Types:

100 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

e Requestld = int()

Retrieves the request Id of the current request. It must be called from the same process
that is handling the request (normally an instrumentation function).

Returns false if no request is currently handled.

date_and_time() -> DateAndTime
Types:
e DateAndTime = [int()]

Returns current date and time as the data type DateAndTime, as specified in RFC1903.
This isan OCTET STRING.

date_and_time_to_universal_time_dst(DateAndTime) -> [utc()]
Types:
e DateAndTime = [int()]
e utc() = {{Y,Mo,D},{H,M,S}}

Converts a DateAndTime list to a list of possible universal time(s). The unversal time
value on the same format as defined in calendar(3).

date_and time_to_string(DateAndTime) -> string()
Types:
e DateAndTime = [int()]

Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT
definition in RFC1903.

debug(Agent ,Bool) -> void()

Types:
o Agent = pid() | atom()
¢ Bool = bool()

Turns debugging of the agent on/off. Debug information is printed whenever an
instrumentation function is called, and when a packet is received or sent. This actually
sets verbosity to 1log or silence for the snmp_master_agent and snmp_net_if.

del_agent_caps(SysORIndex) -> void()
Types:
e SysORIndex = integer()

This function can be used to delete an AGENT-CAPABILITY statement to the
sysORTable in the agent. This table is defined in the SNMPv2-MIB.

enum_to_int (Name,Enum) -> {value, Int} | false
Types:
¢ Name = atom()

e Enum = atom()
e Int=int()

Simple Network Management Protocol (SNMP) 101

snmp

SNMP Reference Manual

Converts the symbolic value Enum to the corresponding integer of the enumerated
object or type Name in a MIB. The MIB must be loaded.

false is returned if the object or type is not defined in any loaded MIB, or if it does not
define the symbolic value as enumerated.

enum_to_int (Db,Name,Enum) -> {value, Int} | false

Types:

Db = term()

Name = atom()

Enum = atom()

e Int=int()

Converts the symbolic value Enum to the corresponding integer of the enumerated
object or type Name in a MIB. The MIB must be loaded. Db is a reference to the
symbolic store database (retrieved by a call to get_symbolic_store_ db/0<c>).
<p><c>false is returned if the object or type is not defined in any loaded MIB, or if it
does not define the symbolic value as enumerated.

get (Agent,Vars) -> Values | {error, Reason}

Types:

e Agent = pid() | atom()

e Vars = [oid()]

e Values = [term()]

e Reason = {atom(), oid()}

Performs a GET operation on the agent. All loaded MIB objects are visible in this
operation. The agent calls the corresponding instrumentation functions just as if it was a

GET request coming from a manager. That the request specific parameters (such as
snmp: current_request_id/0 are not accessible for the instrumentation functions if this

function is used.

get_agent_caps() -> [[SysORIndex, SysORID, SysORDescr, SysORUpTime]]

Types:

e SysORIndex = integer()

e SysORId = oid()

e SysORDescr = string()

e SysORUpTime = integer()

Returns all AGENT-CAPABILITY statements in the sysORTable in the agent. This
table is defined in the SNMPv2-MIB.

get_symbolic_store db() -> Db

102

Types:
e Db =term()

Retrieve the symbolic store database reference. This is used for faster access to the
database using the functions: int_to_enum/3, enum to_int/3, name_to_o0id/2,
oid_to_name/2.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

info(Agent) -> [{Key, Value}]
Types:
o Agent = pid() | atom()
Returns a list (a dictionary) containing information about the agent. Information

includes loaded MIBs, registered subagents, some information about the memory
allocation.

int_to_enum(Name,Int) -> {value, Enum} | false

Types:
¢ Name = atom()
o Int=int()

e Enum = atom()

Converts the integer Int to the corresponding symbolic value of the enumerated object
or type Name in a MIB. The MIB must be loaded.

false is returned if the object or type is not defined in any loaded MIB, or if it does not
define the symbolic value as enumerated.

int_to_enum(Db,Name,Int) -> {value, Enum} | false

Types:

e Db =term()

¢ Name = atom()
e Int=int()

e Enum = atom()

Converts the integer Int to the corresponding symbolic value of the enumerated object
or type Name in a MIB. The MIB must be loaded. Db is a reference to the symbolic store
database (retrieved by a call to get_symbolic_store db/0<c>). <p><c>falseis
returned if the object or type is not defined in any loaded MIB, or if it does not define
the symbolic value as enumerated.

is_consistent (Mibs) -> ok | {error, Reason}

Types:

e Mibs = [MibName]

e MibName = string()

Checks for multiple usage of object identifiers and traps between MIBs.

load mibs(Agent,Mibs) -> ok | {error, Reason}

Types:

o Agent = pid() | atom()
e Mibs = [MibName]

e MibName = string()

Loads Mibs into an agent. If the agent cannot load all MIBs, it will indicate where
loading was aborted. The MibName is the name of the Mib, including the path to where
the compiled mib is found. For example,

Simple Network Management Protocol (SNMP) 103

snmp

SNMP Reference Manual

Dir = code:priv_dir(my_app) ++ "/mibs/",
snmp:load_mibs(snmp_master_agent, [Dir ++ "MY-MIB"]).

local_time_to_date_and_time_dst(Local) -> [DateAndTime]

Types:
e Local = {{Y,Mo,D},{H,M,S}}
e DateAndTime = [int()]

Converts a local time value to a list of possible DateAndTime list(s). The local time
value on the same format as defined in calendar(3).

log_to_txt(LogDir, Mibs)
log-to_txt(LogDir, Mibs, OutFile) -> ok | {error, Reason}
log to_txt(LogDir, Mibs, OutFile, LogName) -> ok | {error, Reason}

log to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error, Reason}

1og_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {error, Reason}
log to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok | {error,

104

Reason}

Types:

e LogDir = string()

e Mibs = [MibName]

e OutFile = string()

e MibName = string()

e LogName = string()

e LogFile = string()

e Start = Stop = null | datetime() | {local_time,datetime()} |
{universal_time,datetime()}

Converts an Audit Trail Log to a readable text file, where each item has a trailing TAB
character, and any TAB character in the body of an item has been replaced by ESC TAB.

The function can be used on a running system, or by copying the entire log directory
and calling this function. SNMP must be running in order to provide MIB information.

LogDir is the name of the directory where the audit trail log is stored. Mibs is a list of
Mibs to be used. The function uses the information in the Mibs to convert for example
object identifiers to their symbolic name. OutFile is the name of the generated textfile.
It defaults to " . /snmp_log.txt". LogName is the name of the log (default is "snmp
log"), LogFile is the name of the log file (default is "snmp.log"). Start is the start
(first) date and time from which log events will be converted and Stop is the stop (last)
date and time to which log events will be converted.

The format of an audit trail log text item is as follows:

Tag Addr - Community [TimeStamp] Vsn
PDU

where Tag iS request, response, report, trap or inform; Addr is IP:Port (or comma
space separated list of such); Community is the community parameter (SNMP version v1
and v2), or SecLevel: "AuthEngineID": "UserName" (SNMP v3); TimeStamp is a date
and time stamp, and Vsn is the SNMP version. PDU is a textual version of the protocol
data unit. There is a new line between Vsn and PDU.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

mib_to_hrl(MibName) -> ok | {error, Reason}

Types:
¢ MibName = string()

Generates a .hr1 file with definitions of Erlang constants for the objects in the MIB.
The .hrl file is called <MibName>.hrl. The MIB must be compiled, and present in the
current directory.

The mib_to_hrl generator can be invoked from the OS command line by using the
command erlc. erlc recognises the extension .bin, and invokes this function for files
with that extension.

name_to_oid(Name) -> {value, 0id()} | false
Types:
¢ Name = atom()

Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note,
the OBJECT IDENTIFIER is given for the object, not for an instance.

false is returned if the object is not defined in any loaded MIB.

name_to_oid (Db,Name) -> {value, 0id()} | false
Types:
e Db =term()
¢ Name = atom()

Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note,
the OBJECT IDENTIFIER is given for the object, not for an instance. Db is a reference
to the symbolic store database (retrieved by a call to get_symbolic_store_db/0<c>).
<p><c>false is returned if the object is not defined in any loaded MIB.

oid_toname(0ID) -> {value, Name} | false
Types:
e OID =oid()
e Name = atom()
Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER.
false is returned if the object is not defined in any loaded MIB.

oid_to.name(Db,0ID) -> {value, Name} | false

Types:
e Db =term()
e OID =o0id()

e Name = atom()

Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER. Db is a
reference to the symbolic store database (retrieved by a call to
get_symbolic_store.db/0<c>). <p><c>false isreturned if the object is not
defined in any loaded MIB.

register_subagent (Agent,SubTree0id,Subagent) -> ok | {error, Reason}

Simple Network Management Protocol (SNMP) 105

snmp

SNMP Reference Manual

Types:

e Agent = pid() | atom()

e SubTreeQOid = oid()

e SubAgent = pid()

Registers a subagent under a subtree of another agent.

It is easy to make mistakes when registering subagents and this activity should be done
carefully. For example, a strange behaviour would result from the following
configuration:

snmp_agent :register_subagent (MAPid, [1,2,3,4],S5A1),
snmp_agent :register_subagent (SA1,[1,2,3], SA2).

SA2 will not get requests starting with object identifier [1,2,3] since SA1 does not.

send notification(Agent,Notification,Receiver)

send notification(Agent,Notification,Receiver,Varbinds)

send notification(Agent,Notification,Receiver, NotifyName,Varbinds)

send notification(Agent,Notification,Receiver, NotifyName,ContextName,Varbinds) ->

106

void ()

Types:

o Agent = pid() | atom()

¢ Notification = atom()

e Receiver = no_receiver | {Tag, Recv}

e Tag = term()

e Recv = pid() | atom() | {M,FA}

¢ NotifyName = string()

e ContextName = string()

e Varbinds = [Varbind]

e Varbind = {Variable, Value} | {Column, RowlIndex, Value} | {OID, Value}
¢ Variable = atom()

e Column = atom()

e OID = oid()

e Value = term()

e Rowlndex = [int()]

Sends the notification Notification to the management targets defined for
NotifyName in the snmpNotifyTable in SNMP-NOTIFICATION-MIB from the

specified context. If no NotifyName is specified (or if it is ""), the notification is sent to
all management targets. If no ContextName is specified, the default "" context is used.

The parameter Receiver specifies where information about delivery of Inform-Requests
should be sent. The agent sends Inform-Requests and waits for acknowledgements from
the managers. If the Receiver is specified as no_receiver, nothing is sent. Otherwise,
it is specified as {Tag, Recv}. The receiver (Recv) gets a message:

e {snmp_targets, Tag, Addresses}

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

Addresses is a list of management target addresses. If UDP over IP is used, this is a
2-tuple {IP, UDPport}, where IP is a 4-tuple with the IP address, and UDPport is an
integer. The notification is sent as an Inform-Request to each target address in
Addresses. If there are no targets for which an Inform-Request is sent, Addresses is
the empty list [J.

For each such Address is the Addresses list, one of the following two messages is sent
to Recv:

e {snmpnotification, Tag, {got_response, Address}}

e {snmp notification, Tag, {no_response, Address}}

The optional argument Varbinds defines values for the objects in the notification. If no
value is given for an object, the Agent performs a get-operation to retrieve the value.

Varbinds is a list of Varbind, where each Varbind is one of:

e {Variable, Value}, where Variable is the symbolic name of a scalar variable
referred to in the notification specification.

e {Column, RowIndex, Value}, where Column is the symbolic name of a column
variable. RowIndex is a list of indices for the specified element. If this is the case,
the OBJECT IDENTIFIER sent in the notification is the RowIndex appended to
the OBJECT IDENTIFIER for the table column. This is the OBJECT
IDENTIFIER which specifies the element.

e {0ID, Value}, where 0ID is the OBJECT IDENTIFIER for an instance of an
object, scalar variable, or column variable.

For example, to specify that sysLocation should have the value "upstairs" in the
notification, we could use one of:

e {sysLocation, "upstairs"}or
e {[1,3,6,1,2,1,1,6,0], "upstairs"}or

e {7sysLocation_instance, "upstairs"} (provided that the generated .hr1 file is
included)

If a variable in the notification is a table element, the RowIndex for the element must be
given in the Varbinds list. In this case, the OBJECT IDENTIFIER sent in the
notification is the OBJECT IDENTIFIER that identifies this element. This OBJECT
IDENTIFIER could be used in a get operation later.

This function is asynchronous, and does not return any information. If an error occurs,
user_err/2 of the error report module is called and the notification is discarded.

send_trap(Agent,Trap,Community)
send_trap(Agent,Trap,Community,Varbinds) -> void()
Types:
Agent = pid() | atom()
Trap = atom()
Community = string()
Varbinds = [Varbind]
Varbind = {Variable, Value} | {Column, RowlIndex, Value} | {OID, Value}
Variable = atom()

Simple Network Management Protocol (SNMP) 107

snmp

SNMP Reference Manual

Column = atom()
OID = oid()

Value = term()
RowlIndex = [int()]

Note! This function is only kept for backwards compatibility reasons. Use
send_notification instead.

Sends the trap Trap to the managers defined for Community in the intTrapDestTable
in OTP-SNMPEA-MIB. The optional argument Varbinds defines values for the objects
in the trap. If no value is given for an object, the Agent performs a get-operation to
retrieve the value.

Varbinds is a list of Varbind, where each Varbind is one of:

e {Variable, Value}, where Variable is the symbolic name of a scalar variable
referred to in the trap specification.

e {Column, RowIndex, Value}, where Column is the symbolic name of a column
variable. RowIndex is a list of indices for the specified element. If this is the case,
the OBJECT IDENTIFIER sent in the trap is the RowIndex appended to the
OBJECT IDENTIFIER for the table column. This is the OBJECT IDENTIFIER
which specifies the element.

e {0ID, Value}, where 0ID is the OBJECT IDENTIFIER for an instance of an
object, scalar variable, or column variable.

For example, to specify that sysLocation should have the value "upstairs" in the
trap, we could use one of:

e {sysLocation, "upstairs"}or
e {[1,3,6,1,2,1,1,6,0], "upstairs"}or

e {?sysLocation_instance, "upstairs"} (provided that the generated .hr1l file is
included)

If a variable in the trap is a table element, the RowIndex for the element must be given
in the Varbinds list. In this case, the OBJECT IDENTIFIER sent in the trap is the
OBJECT IDENTIFIER that identifies this element. This OBJECT IDENTIFIER could
be used in a get operation later.

This function is asynchronous, and does not return any information. If an error occurs,
snmp_error:user_err/2 is called and the trap is discarded.

universal_time_to_date_and_time(UTC) -> DateAndTime

Types:
e UTC = {{Y,Mo,D},{H,M,S}}
e DateAndTime = [int()]

Converts a universal time value to a DateAndTime list. The unversal time value on the
same format as defined in calendar(3).

unload mibs(Agent,Mibs) -> ok | {error, Reason}

108

Types:
e Agent = pid() | atom()
e Mibs = [MibName]

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp

¢ MibName = string()

Unloads MIBs into an agent. If it cannot unload all MIBs, it will indicate where
unloading was aborted.

unregister_subagent (Agent,Subagent0id0rPid) -> ok | {ok, SubAgentPid} | {error,
Reason}

Types:

o Agent = pid() | atom()
e SubTreeOidorPid = oid() | pid()

Unregisters a subagent. If the second argument is a pid, then that subagent will be
unregistered from all trees in Agent.

validate_date_and_time(DateAndTime) bool()
Types:
e DateAndTime = term()

Checks if DateAndTime is a correct DateAndTime value, as specified in RFC1903. This
function can be used in instrumentation functions to validate a DateAndTime value.

verbosity (Ref,Verbosity) -> void()
Types:

e Ref =pid() | snmp_master_agent | snmp_net.if | snmp_mib | snmp_symbolic_store |
snmp_note_store | snmp_local_db

e Verbosity = silence | info | log | debug | trace

Sets verbosity for the designated process. For the lowest verbosity silence, nothing is
printed. The higher the verbosity, the more is printed.

See Also

calendar(3), erlc(1)

Simple Network Management Protocol (SNMP) 109

snmp_community_mib SNMP Reference Manual

snmp_community_mib

Erlang Module

The module snmp_community mib implements the instrumentation functions for the
SNMP-COMMUNITY-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config_err/2 of the error, report module and the function fails with reason
configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: community. conf.

reconfigure(ConfDir) -> void()
Types:
e ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-COMMUNITY-MIB, after this function has been called, is
from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config_err/2 of the error report module, and the function fails with reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: community. conf.

110 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_community_mib

add_community(Idx, CommName, SecName, CtxName, TransportTag) -> Ret

Types:

e Idx = string()

e CommName = string()

e SecName = string()

e CtxName = string()

e TransportTag = string()

e Ret = {ok, Key} | {error, Reason}
e Key =term()

e Reason = term()

Adds a community to the agent config. Equivalent to one line in the community.conf
file.

delete_community(Key) -> Ret
Types:
e Key = term()
e Ret = ok | {error, Reason}
e Reason = term()

Delete a community from the agent config.

Simple Network Management Protocol (SNMP) 111

snmp._error

SNMP Reference Manual

snmp-_error

Erlang Module

The module snmp_error contains two callback functions which are called by
snmp_error_report in order to report SNMP errors.

This module provides a simple mechanism for reporting SNMP errors. Errors are sent to
the error_logger after a size check. Messages are truncated after 1024 chars. It is
provided as an example.

This module is the default error report module, but can be explicitly configured, see
snmp_error_report [page 114] and configuration parameters [page 27].

Exports

config err(Format, Args) -> void()

Types:
e Format = string()
e Args = list()

The function is called if an error occurs during the configuration phase, for example if a
syntax error is found in a configuration file.

Format and Args are as in io:format (Format, Args).

user_err (Format, Args) -> void()

112

Types:
e Format = string()
e Args = list()

The function is called if a user related error occurs at runtime, for example if a user
defined instrumentation function returns erroneous.

Format and Args are as in io:format (Format, Args).

See Also

error_logger(3)

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_error.io

snmp_error_io

Erlang Module

The module snmp_error_io contains two callback functions which are called by
snmp_error_report in order to report SNMP errors.

This module provides a simple mechanism for reporting SNMP errors. Errors are
written to stdout using the io module. It is provided as an simple example.

This module needs to be explicitly configured, see snmp_error_report [page 114] and
configuration parameters [page 27].

Exports

config err(Format, Args) -> void()

Types:
e Format = string()
o Args = list()

The function is called if an error occurs during the configuration phase, for example if a
syntax error is found in a configuration file.

Format and Args are as in io:format (Format, Args).

user_err (Format, Args) -> void()

Types:
e Format = string()
o Args = list()

The function is called if a user related error occurs at runtime, for example if a user
defined instrumentation function returns erroneous.

Format and Args are as in io:format (Format, Args).

Simple Network Management Protocol (SNMP) 113

snmp_error_report SNMP Reference Manual

snmp_error_report

Erlang Module

The module snmp_error_report contains two callback functions which are called if an
error occurs at different times during agent operation. These functions in turn calls the
corresponding function in the configured error report module, which implements the
actual report functionallity.

Two simple implementation(s) is provided with the toolkit; the modules snmp_error
[page 112] which (still) is the default and module snmp_error_io [page 113].

The error report module is configured using the directive snmp_error_report_mod, see
configuration parameters [page 27].

Exports

config err(Format, Args) -> void()

Types:
e Format = string()
e Args = list()

The function is called if an error occurs during the configuration phase, for example if a
syntax error is found in a configuration file.

Format and Args are as in io:format (Format, Args).

user_err (Format, Args) -> void()
Types:
e Format = string()
e Args = list()

The function is called if a user related error occurs at runtime, for example if a user
defined instrumentation function returns erroneous.

Format and Args are as in io:format (Format, Args).

114 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_framework_mib

snmp_framework_mib

Erlang Module

The module snmp_framework mib implements instrumentation functions for the
SNMP-FRAMEWORK-MIB, and functions for initializing and configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all old data.

Thus, the data in the SNMP-FRAMEWORK-MIB, after this function has been called, is
from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: context.conf.

init() -> void()
This function is called from the supervisor at system start-up.

Creates the necessary objects in the database if they do not exist. It does not destroy
any old values.

add_context (Ctx) -> Ret

Types:

e Ctx =string()

e Ret = {ok, Key} | {error, Reason}
e Key =term()

e Reason = term()

Adds a context to the agent config. Equivalent to one line in the context . conf file.

delete_context(Key) -> Ret

Simple Network Management Protocol (SNMP) 115

snmp_framework_mib

SNMP Reference Manual

Types:
e Key =term()

e Ret = ok | {error, Reason}
e Reason = term()

Delete a context from the agent config.

116 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_generic

snmp_generic

Erlang Module

The module snmp_generic contains generic functions for implementing tables (and
variables) using the SNMP built-in database or Mnesia. These default functions are used
if no instrumentation function is provided for a managed object in a MIB. Sometimes, it
might be necessary to customize the behaviour of the default functions. For example, in
some situations a trap should be sent if a row is deleted or modified, or some hardware
is to be informed, when information is changed.

The overall structure is shown in the following figure:

e +
| SNMP Agent |
- - - - - - - - +
| MIB |
e +
I
Association file (associates a MIB object with
| snmp_generic:table funct
| snmp_generic:variable func)
o +
| snmp_generic | Support for get-next,
| | RowStatus operations
o Fommm e +
| snmp_localdb | Mnesia | Database
o Fommm e +
| dets I Persistent storage
e +

Each function takes the argument NameDb, which is a tuple {Name, Db}, to identify
which database the functions should use. Name is the symbolic name of the managed
object as defined in the MIB, and Db is either volatile, persistent, Or mnesia. If it is
mnesia, all variables are stored in the Mnesia table snmp_variables which must be a
table with two attributes (not a Mnesia SNMP table). The SNMP tables are stored in
Mnesia tables with the same names as the SNMP tables. All functions assume that a
Mnesia table exists with the correct name and attributes. It is the programmer’s
responsibility to ensure this. Specifically, if variables are stored in Mnesia, the table
snmp_variables must be created by the programmer. The record definition for this
table is defined in the file snmp/include/snmp_types.hrl

If an instrumentation function in the association file for a variable myVar does not have a
name when compiling an MIB, the compiler generates an entry.
{myVar, {snmp_generic, variable func, [{myVar, Dbl}}.

And for a table:

Simple Network Management Protocol (SNMP) 117

snmp_generic

SNMP Reference Manual

{myTable, {snmp_generic, table_func, [{myTable, Dbl}}.

In the functions defined below, the following types are used:

NameDb = {Name, Db}, Name = atom(), Db = volatile | persistent | mnesia
RowIndex = [int ()]

Cols = [Col]l | [{Col, Value}l, Col = int(), Value = term()

RowIndex denotes the last part of the OID which specifies the index of the row in the
table (see RFC1212, 4.1.6 for more information about INDEX). Cols is a list of
column numbers in the case of a get operation, and a list of column numbers and values
in the case of a set operation. Cols is a list of column numbers in case of a get
operation, and a list of column numbers and values in case of a set operation.

Exports

get_status_col (Name,Cols)
get_status_col(NameDb,Cols) -> {ok, StatusVal} | false

Gets the value of the status column from Cols.

This function can be used in instrumentation functions for is_set_ok, undo or set to
check if the status column of a table is modified.

get_index_types (Name)

Gets the index types of Name

This function can be used in instrumentation functions to retrieve the index types part
of the table info.

table_func(0Opl,NameDb)
table_func(0p2,RowIndex,Cols,NameDb) -> Ret

118

Types:

e Opl=new | delete

e Op2 =get | next | is_set_ok | set | undo

This is the default instrumentation function for tables.

e The new function creates the table if it does not exist, but only if the database is
the SNMP internal db.

e The delete function does not delete the table from the database since unloading
an MIB does not necessarily mean that the table should be destroyed.

e The is_set_ok function checks that a row which is to be modified or deleted
exists, and that a row which is to be created does not exist.

e The undo function does nothing.

e The set function checks if it has enough information to make the row change its
status from notReady to notInService (when a row has been been set to
createAndWait). If a row is set to createAndWait, columns without a value are set
to noinit. If Mnesia is used, the set functionality is handled within a transaction.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_generic

If it is possible for a manager to create or delete rows in the table, there must be a
RowStatus column for is_set_ok, set and undo to work properly.

The function returns according to the specification of an instrumentation function.

table_get_elements(NameDb,RowIndex,Cols) -> Values
Types:
e Values = [term() | noinit]

Returns a list with values for all columns in Cols. If a column is undefined, its value is
noinit.

table next (NameDb,Rest0id) -> RowIndex | endOfTable
Types:
¢ RestOid = [int()]

Finds the indices of the next row in the table. Rest0id does not have to specify an
existing row.

table_row_exists(NameDb,RowIndex) -> bool()

Checks if a row in a table exists.

table_set_elements (NameDb,RowIndex,Cols) -> bool()

Sets the elements in Cols to the row specified by RowIndex. No checks are performed
on the new values.

If the Mnesia database is used, this function calls mnesia:write to store the values.
This means that this function must be called from within a transaction
(mnesia:transaction/1 Or mnesia:dirty/1).

variable func(Opl,NameDb)

variable func(0p2,Val,NameDb) -> Ret
Types:
e Opl=new | delete | get
e Op2 =isset.ok | set | undo

This is the default instrumentation function for variables.

The new function creates a new variable in the database with a default value as defined
in the MIB, or a zero value (depending on the type). The delete function does not
delete the variable from the database. The function returns according to the
specification of an instrumentation function.

variable get (NameDb) -> {value, Value} | undefined
Types:
e Value = term()
Gets the value of a variable.

variable_set (NameDb,NewVal) -> true | false

Types:

Simple Network Management Protocol (SNMP) 119

snmp_generic

SNMP Reference Manual

120

e NewVal = term()

Sets a new value to a variable. The variable is created if it does not exist. No checks are
made on the type of the new value. Returns false if the NameDb argument is incorrectly
specified, otherwise true.

Example

The following example shows an implementation of a table which is stored in Mnesia,
but with some checks performed at set-request operations.

myTable func(new, NameDb) -> % pass unchanged
snmp_generic:table func(new, NameDb).

myTable func(delete, NameDb) -> 7% pass unchanged
snmp_generic:table func(delete, NameDb) .

%% change row
myTable func(is_set_ok, RowIndex, Cols, NameDb) ->
case snmp_generic:table func(is_set_ok, RowIndex,
Cols, NameDb) of
{noError, 0} ->
myApplication:is_set_ok(RowIndex, Cols);
Err ->
Err
end;

myTable func(set, RowIndex, Cols, NameDb) ->
case snmp_generic:table func(set, RowIndex, Cols,
NameDb) ,
{noError, 0} ->
% Now the row is updated, tell the application
myApplication:update(RowIndex, Cols);
Err ->
Err
end;

myTable func(Op, RowIndex, Cols, NameDb) -> % pass unchanged
snmp_generic:table func(0Op, RowIndex, Cols, NameDb).

The . funcs file would look like:

{myTable, {myModule, myTable func, [{myTable, mnesia}]l}}.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp.index

snmp_index

Erlang Module

The module snmp_index implements an Abstract Data Type (ADT) for an SNMP index
structure for SNMP tables. It is implemented as an ets table of the ordered_set
data-type, which means that all operations are O(log n). In the table, the key is an
ASN.1 OBJECT IDENTIFIER.

This index is used to separate the implementation of the SNMP ordering from the
actual implementation of the table. The SNMP ordering, that is implementation of
GET NEXT, is implemented in this module.

For example, suppose there is an SNMP table, which is best implemented in Erlang as
one process per SNMP table row. Suppose further that the INDEX in the SNMP table
isan OCTET STRING. The index structure would be created as follows:

snmp_index:new(string)
For each new process we create, we insert an item in an snmp_index Structure:

new_process (Name, SnmpIndex) ->
Pid = start_process(),
NewSnmpIndex =
snmp_index:insert (SnmpIndex, Name, Pid),
<002

With this structure, we can now map an OBJECT IDENTIFIER in e.g. a GET NEXT
request, to the correct process:

get_next_pid(0id, SnmpIndex) ->
{ok, {_, Pid}} = snmp_index:get_next(SnmpIndex, 0id),
Pid.

Common data types

The following data types are used in the functions below:

e index()
e 0id() = [byte()]
e key_ types = type_spec() | {type_spec(), type_spec(), ...}

e type_spec() = fix_string | string | integer
e key() = key_spec() | {key_spec(), key_spec(), ...}
e key_spec() = string() | integer()

Simple Network Management Protocol (SNMP) 121

snmp_index SNMP Reference Manual

The index () type denotes an snmp index structure.
The 0id () type is used to represent an ASN.1 OBJECT IDENTIFIER.

The key_types () type is used when creating the index structure, and the key () type is
used when inserting and deleting items from the structure.

The key_types () type defines the types of the SNMP INDEX columns for the table. If
the table has one single INDEX column, this type should be a single atom, but if the
table has multiple INDEX columns, it should be a tuple with atoms.

If the INDEX column is of type INTEGER, or derived from INTEGER, the
corresponding type should be integer. If it is a variable length type (e.g. OBJECT
IDENTIFIER, OCTET STRING), the corresponding type should be string. Finally, if
the type is of variable length, but with a fixed size restriction (e.g. IpAddress), the
corresponding type should be fix string.

For example, if the SNMP table has two INDEX columns, the first one an OCTET

STRING with size 2, and the second one an OBJECT IDENTIFER, the corresponding
key_types parameter would be {fix_string, string}.

The key () type correlates to the key_types () type. If the key_types () is a single atom,
the corresponding key () is a single type as well, but if the key_types () is a tuple, key
must be a tuple of the same size.

In the example above, valid keys could be {"hi", "mom"} and {"no", "thanks"},
whereas "hi", {"hi", 42} and {"hello", "there"} would be invalid.

Warning:

All API functions that update the index return a NewIndex term. This is for
backward compatibility with a previous implementation that used a B+ tree written
purely in Erlang for the index. The NewIndex return value can now be ignored. The
return value is now the unchanged table identifier for the ets table.

The implementation using ets tables introduces a semantic incompatibility with older
implementations. In those older implementations, using pure Erlang terms, the index
was garbage collected like any other Erlang term and did not have to be deleted when
discarded. An ets table is deleted only when the process creating it explicitly deletes
it or when the creating process terminates.

A new interface delete/1 is now added to handle the case when a process wants to
discard an index table (i.e. to build a completely new). Any application using
transient snmp indexes has to be modified to handle this.

As an snmp adaption usually keeps the index for the whole of the systems lifetime,
this is rarely a problem.

Exports

delete(Index) -> true
Types:

e Index = Newlndex = index()
e Key =key()

122 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp.index

Deletes a complete index structure (i.e. the ets table holding the index). The index can
no longer be referenced after this call. See the warning note [page 122] above.

delete(Index, Key) -> NewIndex
Types:
e Index = Newlndex = index()
e Key =key()

Deletes a key and its value from the index structure. Returns a new structure.

get (Index, Key0id) -> {ok, {Key0id, Value}} | undefined
Types:
e Index = index()
¢ KeyOid = oid()
e Value = term()

Gets the item with key Key0id. Could be used from within an SNMP instrumentation
function.

get_last(Index) -> {ok, {KeyOid, Value}} | undefined
Types:
e Index = index()
e KeyOid = oid()
e Value = term()
Gets the last item in the index structure.

get next (Index, Key0id) -> {ok, {NextKeyOid, Value}} | undefined
Types:
e Index = index()
e KeyOid = NextKeyOid = oid()
e Value = term()

Gets the next item in the SNMP lexicographic ordering, after Key0id in the index
structure. Key0id does not have to refer to an existing item in the index.

insert(Index, Key, Value) -> NewIndex
Types:

e Index = Newlndex = index()
e Key =key()
e Value = term()

Inserts a new key value tuple into the index structure. If an item with the same key
already exists, the new Value overwrites the old value.
key_to_oid(Index, Key) -> KeyOid

Types:
e Index = index()

Simple Network Management Protocol (SNMP) 123

snmp_index SNMP Reference Manual

e Key =key()
¢ KeyOid = NextKeyOid = oid()
Converts Key to an OBJECT IDENTIFIER.

new (KeyTypes)
Types:
o KeyTypes = key_types()
Creates a new snmp index structure. The key_types () type is described above.

124 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_local_db

snmp_local_db

Erlang Module

The module snmp_local_db contains functions for implementing tables (and variables)
using the SNMP built-in database. The database exists in two instances, one volatile and
one persistent. The volatile database is implemented with ets. The persistent database is
implemented with dets. It is possible to manually dump the database.

There are three scaling problems with this database.

o If the database is never dumped, there are a lot of modifications to the database
and the log file will grow rapidly. This can be solved by regularly dumping the
database.

e The second problem occurs if the database is large, dumping the entire database
may take some considerable time and it may slow down the system.

e The third problem is that insertions and deletions are inefficient for large tables.

All these problems are best solved by using Mnesia instead.

In order to know when the content of the database should be dumped, it is possible to
register/unregister a notification client. This client will be notified of all
persistent/permanent changes to the database by a call to:

Module:notify(Client,What)
Where the arguments are:

e Client = term()

e What = insert | delete | close

Note:
The snmp local db currently uses the defalt auto-save time of dets!

See register notify_client/2 and unregister notify_client/2 below for further
information.

The following functions describe the interface to snmp_local_db. Each function has a
Mnesia equivalent. The argument NameDb is a tuple {Name, Db} where Name is the
symbolic name of the managed object (as defined in the MIB), and Db is either
volatile Or persistent. mnesia is not possible since all these functions are
snmp_local_db specific.

Simple Network Management Protocol (SNMP) 125

snmp_local_db SNMP Reference Manual

Common Data Types

In the functions defined below, the following types are used:

e NameDb = {Name, Db}
e Name = atom(), Db = volatile | persistent
e RowIndex = [int()]
e Cols = [Col]l | [{Col, Value}l, Col = int(), Value = term()
where RowIndex denotes the last part of the OID, that specifies the index of the row in

tha table. Cols is a list of column numbers in case of a get operation, and a list of
column numbers and values in case of a set operation.

Exports

dump() -> ok | {error, Reason}

This function can be used to dump the database at any time.

match(NameDb,Pattern)

Performs an ets matching on the table. See Stdlib documentation, module ets, for a
description of Pattern and the return values.

print ()
print(TableName)
print(TableName, Db)

Types:

e TableName = atom()

Prints the contents of the database on screen. This is useful for debugging since the
STANDARD-MIB and OTP-SNMPEA-MIB (and maybe your own MIBs) are stored in
snmp_local_db.

TableName is an atom for a table in the database. When no name is supplied, the whole
database is shown.

table_create(NameDb) -> bool()

Creates a table. If the table already exist, the old copy is destroyed.
Returns false if the NameDb argument is incorrectly specified, true otherwise.

table_create_row(NameDb,RowIndex,Row) -> bool()
Types:

e Row = {Vall, Val2, ..., VaIN}
e Vall =Val2 = ... = VaIN = term()

Creates a row in a table. Row is a tuple with values for all columns, including the index
columns.

126 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_local_db

table_delete (NameDb) -> void()

Deletes a table.

table_delete_row(NameDb,RowIndex) -> bool()

Deletes the row in the table.

table_exists(NameDb) -> bool()

Checks if a table exists.

table_get_row(NameDb,RowIndex) -> Row | undefined

Types:
e Row = {Vall, Val2, ..., VaIN}
e Vall =Val2 =... = ValN = term()

Row is a tuple with values for all columns, including the index columns.

registernotify_client(Client,Module) -> ok | {error,Reason}

Types:

Client = term()

Module = atom()

Reason = {already_registered,CurrentModule}
CurrentModule = atom()

Register Client as notification client to snmp_local_db. Client is actually just used as an
identity, but could e.g. be a pid (). When changes are made to the database (insert,
delete or stop) notify clients will be notified.

unregister notify_client(Client) -> ok | {error,Reason}

Types:
e Client =term()
e Reason = not_registered

Unregister Client as notification client to snmp_local _db.

See Also

ets(3), snmp_generic(3)

Simple Network Management Protocol (SNMP) 127

snmp_mgr

SNMP Reference Manual

128

snmp_mgr

Erlang Module

The module snmp_mgr provides a simple SNMP (Simple Network Management
Protocol) manager. It is used for test purposes during agent development. There are two
modes of operation. First, it can be used as a simple command line manager. Second, it
can be used to write test suites for testing the MIB implementation in the SNMP agent.

The manager supports SNMPv1, SNMPv2c and SNMPv3, including authentication and
privacy.

The command line manager uses the Erlang shell. It supports all SNMPv1, v2 and v3
requests, i.e. set, get, get-next and get-bulk. For example,
snmp_mgr:s([{[1,2,3,0], "hej"}1), sends a set request to the agent and
snmp_mgr:g([[1,2,3,0], [myVar,0]]) gets two values. The manager operates
asynchronously. This implies that the return value of most functions is nonsense. When
the manager gets a response message from the agent, it is echoed to the display.

The start-up option quiet tells the manager not to display incoming SNMP responses,
traps and informs. Messages are sent to the Erlang process that started the manager.
This makes it possible to process them from an application or a test suite.

Use the expect function (that operates on the message queue) to write test suites.
Examples of how to write a test suite can be found in snmp_mgr_tests.erl.

MIBs (Management Information Base) can be loaded in the manager. There are two
reasons for doing this. OBJECT IDENTIFIERs (Oids) can be entered in symbolic form.
Example: instead of [1,3,6,1,2,1,1,1], the symbolic name sysDescr can be used. The
other reason is to take advantage of the type information in the MIB when sending set
requests.

An 0id is represented as a list. For convenience, nested lists are allowed. There is one
exception though. If an oid is entered in symbolic form, this symbol must be the first
item in the list. A symbolic name includes the complete path from the top of the global
naming tree. Accordingly, an oid can only contain one symbolic name.

Examples of valid Oids are: [myVar, 0], [1,2,3,4,5,0], [myColumn, 95], [myTable, 4,
123, [51“eklas"]].

The last example refers to column 4 of the row with the two keys 123 and [5]“eklas”]
of table myTable.

Known bug: There is not yet a {timeout, Msecs} option.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_mgr

Exports

expect(Id, What) -> ok | {error, Id, Reason}
expect (Id, ErrorStatus,ErrorIndex,Varbinds)
expect(Id, trap, Enterp, Generic, Specific, Varbinds)
expect (Id, v2trap, Varbinds)
expect (Id, report, Varbinds)
expect(Id, {inform, InformReply}, Varbinds)
Types:
e Id =term()
e What = any | trap | timeout | Varbinds | ErrorStatus
e Errorindex = integer()
e Enterp = o0id()
e Generic = integer()
e Specific = integer()
e InformReply = true | false | {error, ErrorStatus, Errorindex}

e Idis used to help identifying this particular test in a long test suite. It is not used
by the manager.

e The atom any makes the test succeed for any response.

e timeout succeeds if the message queue is empty for 3.5 seconds. This can be used
to ensure that no messages are pending.

e ErrorStatus is an atom which describes an error message. See documentation for
the SNMP agent.

e Varbinds is a list of {Oid, Value} | {Oid,any}.
If a response other than the expected one is received, an error message is displayed and

and {error, Id, Reason} isreturned. A call to expect is normally directly preceeded
by sending a message.

The reply to a received Inform request can be controlled. If InformReply iS true, a
noError reply is sent. If itis false no reply is sent. If it is {error, ErrorStatus,
ErrorIndex}, a reply indicating the error is sent.

g(0ids) -> void()
Types:
¢ Oids = [0id()]
Sends a get-request.

gb(NonRepeaters, MaxRepetitions, 0ids) -> void()
Types:
¢ NonRepeaters = integer()
e MaxRepetitions = integer()
¢ Oids = [0id()]
Sends a get-bulk-request (See RFC1905).

Simple Network Management Protocol (SNMP) 129

snmp_mgr SNMP Reference Manual

gn(0ids) -> void()
Types:
¢ Oids = [0id()]
Sends a get-next-request.

gn() -> void()

Sends yet another get-next-request constructed from the previous response. This is a
nice feature for manually traversing a MIB.

gn(N) -> void()
Types:
e N = integer()
Sends N get-next-request requests.

The last response is used as the start value. Works somewhat like a get-bulk-request
(see SNMPv2).

r() -> void(Q)

Resend the last request.

oid_toname(0id) -> {ok, Name} | {error, Reason}
Types:
e Oid = o0id()
¢ Name = atom()
Transform a oid to it's aliasname.

name_to_oid(Name) -> {ok, 0id} | {error, Reason}
Types:
e Name = atom()
e Oid = 0id()
Transform a aliasname to it's oid.

s(Varbinds) -> void()
Types:
e Varbinds = [varbind()]
Sends a set-request.
Varbind is:

e {Oid, Value} if the object with Oid 0id is loaded by the manager.

e {Oid, TypeTag, Value} where TypeTag is s|o|i (String, Oid, Integer). This syntax
is used if this object is not defined in a MIB loaded by the manager. (Or if you
explicitly want to send a request of wrongly typed data.)

start(Options)

130 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_mgr

start_1ink(Options) -> void()
Types:
e Options = [options()]
Starts the SNMP manager.
Mandatary options are:

¢ {agent, Agent} - where Agent is the IP address of the agent {int(),int(),int(),int()}
or the name of the host (string()).

Optional options are:

e {agent_udp, int()} - the UDP port that the agent listens to. Default is 4000.

e {trap_udp, int()} -the UDP port where the manager will receive traps. Default
is 5000.

e {community, string()} - the community string that is sent in the requests from
the manager. Default is “public”.

e {context, string()} - the context that is sent in v3 requests from the manager.
Default is *”.

e {user, string()} - the USM user name that is sent in v3 requests from the
manager. Default is “initial”.

e {engine_id, string()} - the engine ID of the agent. Used in v3 only. Default is
“agentEngine”.

e {context_engine_id, string()} - the context engine ID used in v3 requests.
Default is the same as engine_id.

e {sec_level, noAuthNoPriv + authNoPriv | authPriv} - the requested
security level. Used in v3 only. Default is noAuthNoPriv.

e {dir, string()} - the directory where the file usm. conf is located. This file is
only needed if v3 is used. The file has the same syntax as the usm.conf file for the
agent.

e {mibs, List of filename} - MIBs to be loaded in the manager. Default is no
MIBs. The MIBs must be compiled.

e {receive_type, pdu | msg} - defines the format of delivered messages. Default
is pdu.

e quiet - incoming responses are not displayed.
Messages are sent to the Erlang process that started the manager. The format of
the message depends on the value of receive_type. If the value is pdu
(default),the message is {snmp_pdu, PDU} where PDU is a pdu() or a trappdu()
record defined in snmp_types.hrl. If the value is msg, the message is {snmp_msg,
Msg, Ip, Udp}. If the request was issued with an erroneous oid, the message is
{oid_error, Reason}, where Reason is a printable string. Default is, this option is
not present, i.e. all incoming requests are displayed. This option must be present
when running test suites.

e v1|v2]|v3-what SNMP version to use. Default is v1.

e {recbuf, integer ()} - defines the size of a UDP socket receive buffer.

This is important when sending large regusts to the agent (i.e. requests which will
gererate large responses).

Also consider the max size of the agents outgoing message (defined e.g. by
snmpEngineMaxMessageSize in SNMP-FRAMEWORK-MIB). Default is 1024.

Simple Network Management Protocol (SNMP) 131

snmp_mgr SNMP Reference Manual

stop() -> void()
Stops the SNMP manager.

132 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_-mpd

snmp_mpd

Erlang Module

The module snmp mpd implements the version independent Message Processing and
Dispatch functionality in SNMP. It is supposed to be used from a Network Interface
process (net_if).

Exports

init mpd(Options) -> mpd_state()
Types:
e Options = [Option]
e Option=v1 | v2 | v3

This function can be called from the net_if process at startup. The options list defines
which versions to use.

It also initializes some SNMP counters.

process_packet (Packet, TDomain, TAddress, State) -> {ok, Vsn, Pdu, PduMS, ACMData} |
{discarded, Reason}
Types:
e Packet = binary()
e TDomain = snmpUDPDomain
e TAddress = {Ip, Udp}
¢ Ip = {integer(), integer(), integer(), integer()}
e Udp = integer()
e State = mpd_state()
e Vsn ="version-1' | 'version-2' | ‘version-3'
e Pdu = #pdu
e PduMs = integer()
e ACMData = acm_data()

Processes an incoming packet. Performs authentication and decryption as necessary.
The return values should be passed the agent.

generate responsemsg(Vsn, RePdu, Type, ACMData) -> {ok, Packet} | {discarded,
Reason}

Types:
e Vsn ="version-1' | 'version-2' | 'version-3'
e RePdu = #pdu

Simple Network Management Protocol (SNMP) 133

snmp_mpd

SNMP Reference Manual

e Type = atom()
e ACMData = acm_data()
e Packet = binary()

Generates a possibly encrypted response packet to be sent to the network. Type is the
#pdu. type of the original request.

generate msg(Vsn, Pdu, MsgData, To) -> {ok, PacketsAndAddresses} | {discarded,

Reason}

Types:

e Vsn ="version-1' | 'version-2' | 'version-3'
e Pdu = #pdu

e MsgData = msg_data()

e To = [dest_addrs()]

e PacketsAndAddresses = [{ TDomain, TAddress, Packet}]

e TDomain = snmpUDPDomain

e TAddress = {Ip, Udp}

¢ Ip = {integer(), integer(), integer(), integer() }

e Udp = integer()

e Packet = binary()

Generates a possibly encrypted request packet to be sent to the network.

MsgData is the message specific data used in the SNMP message. This value is received
in a send_pdu or send_pdu_req message from the agent. In SNMPv1 and SNMPv2c, this
message data is the community string. In SNMPv3,; it is the context information. To is a
list of the destination addresses and their corresponding security parameters. This value
is also received from the requests mentioned above.

discarded_pdu(Variable) -> void()

134

Types:
¢ Variable = atom()

Increments the variable associated with a discarded pdu. This function can be used
when the net_if process receives a discarded_pdu message from the agent.

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_notification_mib

snmp_notification_mib

Erlang Module

The module snmp notificationmib implements the instrumentation functions for the
SNMP-NOTIFICATION-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: notify. conf.

reconfigure(ConfDir) -> void()
Types:
e ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-NOTIFICATION-MIB, after this function has been called,
is from the configuration files.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: notify. conf.

add notify(Name, Tag, Type) -> Ret

Simple Network Management Protocol (SNMP) 135

snmp_notification_mib SNMP Reference Manual

Types:

e Name = string()

e Tag = string()

e Type =trap | inform

e Ret = {ok, Key} | {error, Reason}
e Key =term()

e Reason = term()

Adds a notify definition to the agent config. Equivalent to one line in the notify.conf
file.

deletenotify(Key) -> Ret
Types:
e Key =term()
e Ret = ok | {error, Reason}
e Reason = term()

Delete a notify definition from the agent config.

136 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_pdus

snmp_pdus

Erlang Module

RFC1157, RFC1905 and/or RFC2272 should be studied carefully before using this
module, snmp_pdus.

The module snmp_pdus contains functions for encoding and decoding of SNMP
protocol data units (PDUs). In short, this module converts a list of bytes to Erlang
record representations and vice versa. The record definitions can be found in the file
snmp/include/snmp_types.hrl. If snmpv3 is used, the module that includes
snmp_types . hrl must define the constant SNMP_USE_V3 before the header file is
included. Example:

-define (SNMP_USE_V3, true).
-include 1ib("snmp/include/snmp_types.hrl").

Encoding and decoding must be done explicitly when writing your own Net if process.

Exports

decmessage([byte()]) -> Message
Types:
. Message = #message

Decodes a list of bytes into an SNMP Message. Note, if there is a v3 message, the
msgSecurityParameters are not decoded. They must be explicitly decoded by a call to
a security model specific decoding function, e.g. dec_usm_security_parameters/1.
Also note, if the scopedPDU is encrypted, the OCTET STRING encoded encryptedPDU
will be present in the data field.

decmessage_only([byte()]) -> Message
Types:
e Message = #message

Decodes a list of bytes into an SNMP Message, but does not decode the data part of the
Message. That means, data is still a list of bytes, normally an encoded PDU (v1 and V2)
or an encoded and possibly encrypted scopedPDU (v3).

dec_pdu([byte()]) -> Pdu
Types:
e Pdu = #pdu
Decodes a list of bytes into an SNMP Pdu.

Simple Network Management Protocol (SNMP) 137

snmp_pdus SNMP Reference Manual

dec_scoped_pdu([byte()]) -> ScopedPdu
Types:
e ScopedPdu = #scoped_pdu
Decodes a list of bytes into an SNMP ScopedPdu.

dec_scoped_pdu_data([byte()]) -> ScopedPduData
Types:

e ScopedPduData = #scoped_pdu | EncryptedPDU
e EncryptedPDU = [byte()]

Decodes a list of bytes into either a scoped pdu record, or - if the scoped pdu was
encrypted - to a list of bytes.

dec_usm_security_parameters([byte()]) -> UsmSecParams
Types:
e UsmSecParams = #usmSecurityParameters
Decodes a list of bytes into an SNMP UsmSecurityParameters

enc_encrypted_scoped_pdu(EncryptedScopedPdu) -> [byte()]
Types:
e EncryptedScopedPdu = [byte()]

Encodes an encrypted SNMP ScopedPdu into an OCTET STRING that can de used as
the data field in a message record, that later can be encoded with a call to
enc_message_only/1.

This function should be used whenever the ScopedPDU is encrypted.

enc_message (Message) -> [byte()]
Types:
e Message = #message
Encodes a message record to a list of bytes.

enc_message_only(Message) -> [byte()]
Types:
° Message = #message

Message is a record where the data field is assumed to be encoded (a list of bytes). If
there is a v1 or v2 message, the data field is an encoded PDU, and if there is a v3
message, data is an encoded and possibly encrypted scopedPDU.

enc_pdu(Pd) -> [byte()]
Types:
e Pdu = #pdu
Encodes an SNMP Pdu into a list of bytes.

enc_scoped_pdu(ScopedPdu) -> [byte()]

138 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_pdus

Types:
e ScopedPdu = #scoped_pdu

Encodes an SNMP ScopedPdu into a list of bytes, which can be encrypted, and after
encryption, encoded with a call to enc_encrypted_scoped_pdu/1; or it can be used as
the data field in a message record, which then can be encoded with
enc_message_only/1.

enc_usm_security_parameters(UsmSecParams) -> [byte()]
Types:
e UsmSecParams = #usmSecurityParameters
Encodes SNMP UsmSecurityParameters into a list of bytes.

Simple Network Management Protocol (SNMP) 139

snmp_standard_mib SNMP Reference Manual

snmp_standard_mib

Erlang Module

The module snmp_standard mib implements the instrumentation functions for the
STANDARD-MIB and SNMPv2-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()

Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config_err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: standard. conf.

inc(Name) -> void()
inc(Name, N) -> void()

Types:

¢ Name = atom()

e N = integer()

Increments a variable in the MIB with N, or one if N is not specified.

reconfigure(ConfDir) -> void()

140

Types:
e ConfDir = string()

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_standard_mib

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-STANDARD-MIB and SNMPv2-MIB, after this function
has been called, is from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: standard. conf.

reinit() -> void()

Resets all snmp counters to O.

sys_up-time() -> Time
Types:
e Time = int()
Gets the system up time in hundredth of a second.

Simple Network Management Protocol (SNMP) 141

snmp_supervisor SNMP Reference Manual

start_sub()

snmp_supervisor

Erlang Module

The snmp_supervisor is the supervisor for the SNMP application. There is always one
supervisor at each node with an SNMP agent (master agent or subagent).

Exports

start_sub(Opts) -> {ok, pid(0} | {error, {already started, pid(0}} | {error, Reason}

Types:

e Opts = [opt()]

e opt() = {priority, Prio}

Starts a supervisor for the SNMP agent system without a master agent. The supervisor

starts all involved SNMP processes, but no agent processes. Subagents should be started
by calling start_subagent/3.

Prio is an Erlang priority. All SNMP processes use this priority. Default is the same as
default in the Erlang runtime system.

start_master (DbDir,ConfDir)
start_master (DbDir,ConfDir,Opts) -> {ok, pid()} | {error, {already started, pid()}} |

142

{error, Reason}

Types:

e DDbDir = string()

e ConfDir = string()

e Opts = [opt(]

e opt() = {mibs, Mibs} | {net_if, NetlfModule} | {priority, Prio} | {name, Name}
e Mibs = [MibName]

e MibName = [string()]

¢ NetfModule = atom()

e Name = {local, atom()} | {global, atom()}

Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_supervisor

Starts a supervisor for the SNMP agent system. The supervisor starts all involved SNMP
processes, including the master agent. Subagents should be started by calling
start_subagent/3.

DbDir is a string including a trailing directory delimiter, which points to the directory
where the database files sre stored.

ConfDir is a string including a trailing directory delimiter, which points to the directory
where the configuration file is found.

If the STANDARD-MIB is not specified in the Mibs list, it is loaded from the
configuration directory (i.e. with the . conf files).

If no NetIfModules is specified, the default net if implementation is used
(snmp_net_if).

Prio is an Erlang priority. All SNMP processes use this priority. Default is the same as
default in the Erlang runtime system.

If no Opts is given, [{name, {local, snmp master_agent}}] is default.

start_subagent (ParentAgent,Subtree,Mibs) -> {ok, pid()} | {error, Reason}

Types:

e ParentAgent = pid()

e SubTree = o0id()

e Mibs = [MibName]

e MibName = [string()]

Starts a subagent on the node where the function is called. The snmp_supervisor must
be running.

If the supervisor is not running, the function fails with the reason badarg.

stop_subagent (SubAgent) -> ok | no_such_child
Types:
e SubAgent = pid()

Stops the subagent on the node where the function is called. The snmp_supervisor
must be running.

If the supervisor is not running, the function fails with the reason badarg.

Simple Network Management Protocol (SNMP) 143

snmp_target_mib SNMP Reference Manual

snmp_target_mib

Erlang Module

The module snmp_target mib implements the instrumentation functions for the
SNMP-TARGET-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config_err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration files read are: target_addr.conf and target_params.conf.

reconfigure(ConfDir) -> void()
Types:
e ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-TARGET-MIB, after this function has been called, is the
data from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config_err/2 of the , and the function fails with the reason configuration_error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration files read are: target_addr.conf and target_params.conf.

144 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_target_mib

set_target_engine id(TargetAddrName, EngineId) -> boolean()
Types:
e TargetAddrName = string()
e Engineld = string()

Changes the enigne id for a target in the snmpTargetAddrTable. If notifications are sent
as Inform requests to a target, its engine id must be set.

add_addr (Name, Ip, Port, Timeout, Retry, Taglist, Params, EngineId, TMask, MMS) ->
Ret
Types:
e Name = string()
e Ip = [integer()], length 4
e Port = integer()
e Timeout = integer()
e Retry = integer()
e TaglList = string()
e ParamsName = string()
e Engineld = string()
e TMask = string(), length O or 6
e MMS = integer()
e Ret = {ok, Key} | {error, Reason}
e Key =term()
e Reason = term()

Adds a target address definition to the agent config. Equivalent to one line in the
target_addr. conf file.

delete_addr(Key) -> Ret
Types:
e Key =term()
e Ret =ok | {error, Reason}
e Reason = term()
Delete a target address definition from the agent config.

add_params (Name, MPModel, SecModel, SecName, SecLevel) -> Ret
Types:
e Name = string()
e MPModel =vl | v2c | v3
e SecModel =v1 | v2c | usm
e SecName = string()
e SecLevel = noAuthNoPriv | authNoPriv | authPriv
e Ret = {ok, Key} | {error, Reason}
e Key = term()
e Reason = term()

Simple Network Management Protocol (SNMP) 145

snmp_target_mib SNMP Reference Manual

Adds a target parameter definition to the agent config. Equivalent to one line in the
target_params. conf file.

delete_params(Key) -> Ret
Types:

e Key =term()

e Ret = ok | {error, Reason}
e Reason = term()

Delete a target parameter definition from the agent config.

146 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_user_based_sm_mib

snmp_user_based_sm_mib

Erlang Module

The module snmp_user_based_sm_mib implements the instrumentation functions for
the SNMP-USER-BASED-SM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: usm. conf.

reconfigure(ConfDir) -> void()
Types:
e ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-USER-BASED-SM-MIB, after this function has been
called, is the data from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: usm. conf.

Simple Network Management Protocol (SNMP) 147

snmp_user_based_sm_mib SNMP Reference Manual

add_user (EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP,
PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey) -> Ret
Types:
e EnginelD = string()
e Name = string()
e SecName = string()
e Clone = zeroDotZero | [integer()]

e AuthP = usmNoAuthProtocol | usmHMACMDS5AuthProtocol |
usmHMACSHAAuthProtocol

e AuthKeyC = string()

e OwnAuthKeyC = string()

e PrivP = usmNoPrivProtocol | usmDESPrivProtocol
e PrivKeyC = string()

e OwnPrivKeyC = string()

e Public = string()

e AuthKey = string()

e PrivKey = string()

¢ Ret = {ok, Key} | {error, Reason}
e Key =term()

e Reason = term()

Adds a USM security data (user) to the agent config. Equivalent to one line in the
usm. conf file.

delete_user(Key) -> Ret
Types:
e Key =term()

e Ret = ok | {error, Reason}
e Reason = term()

Delete a USM security data (user) from the agent config.

148 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_view_based_acm_mib

snmp_view_based_acm_mib

Erlang Module

The module snmp_view based_acm mib implements the instrumentation functions for
the SNMP-VIEW-BASED-ACM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
e ConfDir = string()
This function is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with
StorageType volatile. The rows created from the configuration file will have
StorageType nonVolatile.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: vacm. conf.

reconfigure(ConfDir) -> void()
Types:
e ConfDir = string()

Inserts all data in the configuration files into the database and destroys all old data,
including the rows with StorageType nonVolatile. The rows created from the
configuration file will have StorageType nonVolatile.

Thus, the data in the SNMP-VIEW-BASED-ACM-MIB, after this function has been
called, is the data from the configuration files.

All snmp counters are set to zero.

If an error is found in the configuration file, it is reported using the function
config err/2 of the error report module, and the function fails with the reason
configuration error.

ConfDir is a string which points to the directory where the configuration files are found.
The configuration file read is: vacm. conf.

Simple Network Management Protocol (SNMP) 149

snmp_view_based_acm_mib SNMP Reference Manual

add_sec2group(SecModel, SecName, GroupName) -> Ret
Types:

SecModel =v1 | v2c | usm
SecName = string()

GroupName = string()

Ret = {ok, Key} | {error, Reason}
Key = term()

e Reason =term()

Adds a security to group definition to the agent config. Equivalent to one
vacmSecurityToGroup-line in the vacm. conf file.

delete_sec2group(Key) -> Ret
Types:
e Key =term()

e Ret = ok | {error, Reason}
e Reason = term()

Delete a security to group definition from the agent config.

add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV) -> Ret
Types:
e GroupName = string()
e Prefix = string()
e SecModel =v1 | v2c | usm
e SeclLevel = string()
e Match = prefix | exact
e RV =string()
e WV =string()
e NV =string()
¢ Ret = {ok, Key} | {error, Reason}
e Key =term()
e Reason = term()

Adds a access definition to the agent config. Equivalent to one vacmAccess-line in the
vacm. conf file.

delete_access(Key) -> Ret
Types:
e Key =term()
e Ret = ok | {error, Reason}
e Reason = term()

Delete a access definition from the agent config.

add_view_tree_fam(ViewIndex, SubTree, Status, Mask) -> Ret
Types:
¢ Viewlndex = integer()

150 Simple Network Management Protocol (SNMP)

SNMP Reference Manual snmp_view_based_acm_mib

e SubTree = o0id()

e Status = included | excluded

e Mask = null | [integer()], where all values are either 0 or 1
e Ret = {ok, Key} | {error, Reason}

e Key =term()

e Reason = term()

Adds a view tree family definition to the agent config. Equivalent to one
vacmViewTreeFamily-line in the vacm. conf file.

delete_view_tree_fam(Key) -> Ret
Types:
e Key =term()

e Ret =ok | {error, Reason}
e Reason = term()

Delete a view tree family definition from the agent config.

Simple Network Management Protocol (SNMP) 151

snmp_view_based_acm_mib SNMP Reference Manual

152 Simple Network Management Protocol (SNMP)

List of Figures

11
1.2
13
14
15
1.6
1.7
1.8
19

MIB Compiler Principles 6
Starting the Agent

Architecture 7
Overview of the mechanism of MIB selection 12
Contentsof my_table 19
GetNext from [3,1,1] and [5,1,1]. 20
GetNext from [3,2,1] and [5,2,1]. 20
GetNext from [3,1,2] and [4,1,2]. o o 21
The Purpose of Netif. 55

Simple Network Management Protocol (SNMP) 153

List of Figures

154 Simple Network Management Protocol (SNMP)

List of Tables

1.1 Error Messages o o o e e 59

Simple Network Management Protocol (SNMP) 155

List of Tables

156 Simple Network Management Protocol (SNMP)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

add_access/8
snmp_view_based_acm_mib , 150

add_addr/10
snmp_target_mib , 145

add_agent_caps/2
snmp , 98

add_community/5
snmp_community_mib , 111

add_context/1
snmp_framework_mib , 115

add_notify/3
snmp_notification_-mib , 135

add_params/5
snmp_target_mib , 145

add_sec2group/3
snmp_view_based_acm_mib , 150

add_user/13
snmp_user_based_sm_mib , 148

add_view_tree_fam/4
snmp_view_based_acm_mib , 150

c/1
snmp , 98

c/2
snmp , 98

change_log_size/1
snmp , 99

config/0
snmp , 99

config_err/2
snmp_error, 112
snmp_error_io , 113
snmp_error_report , 114

configure/1

snmp_community_mib , 110
snmp_framework_mib , 115
snmp_notification_.mib , 135
snmp_standard_mib , 140
snmp_target_mib , 144
snmp_user_based_sm_mib , 147
snmp_view_based_acm_mib , 149

current_address/0
snmp , 100

current_community/0

snmp , 100

current_context/0
snmp , 100

current_net_if_data/0
snmp , 100

current_request_id/0
snmp , 100

date_and_time/0
snmp , 101

date_and_time_to_string/1
snmp , 101

date_and_time_to_universal_time_dst/1

snmp , 101

debug/2
snmp , 101

dec_message/1
snmp_pdus , 137

dec_message_only/1
snmp_pdus , 137

dec_pdu/1
snmp_pdus , 137

dec_scoped_pdu/1
snmp_pdus , 138

dec_scoped_pdu_data/1

Simple Network Management Protocol (SNMP)

157

Index of Modules and Functions

snmp_pdus , 138

dec_usm_security_parameters/1
snmp_pdus , 138

del_agent_caps/1
snmp , 101

delete/1
snmp_index , 122

delete/2
snmp_index , 123

delete_access/1
snmp_view_based_acm_mib , 150

delete_addr/1
snmp_target_mib , 145

delete_community/1
snmp_community_mib , 111

delete_context/1
snmp_framework_mib , 115

delete_notify/1
snmp_notification_mib , 136

delete_params/1
snmp_target_mib , 146

delete_sec2group/1
snmp_view_based_acm_mib , 150

delete_user/1
snmp_user_based_sm_mib , 148

delete_view_tree_fam/1
snmp_view_based_acm_mib , 151

discarded_pdu/1
snmp_mpd , 134

dump/0
snmp_local_db , 126

enc_encrypted_scoped_pdu/1
snmp_pdus , 138

enc_message/1
snmp_pdus , 138

enc_message_only/1
snmp_pdus , 138

enc_pdu/1
snmp_pdus , 138

enc_scoped_pdu/1
snmp_pdus , 138

enc_usm_security_parameters/1

snmp_pdus , 139

enum_to_int/2

snmp , 101

enum_to_int/3
snmp , 102

expect/2
snmp_mgr, 129

expect/3
snmp_-mgr, 129

expect/4
snmp_-mgr, 129

expect/6
snmp_mgr, 129

g/1
snmp_-mgr, 129

gb/3
snmp_mgr, 129

generate_msg/4
snmp_mpd , 134

generate_response_msg/4
snmp_mpd , 133

get/2
snmp , 102
snmp_index , 123

get_agent_caps/0
snmp , 102

get_index_types/1
snmp_generic , 118

get_last/1
snmp_index , 123

get_next/2
snmp_index , 123

get_status_col/2
snmp_generic , 118

get_symbolic_store_db/0
snmp , 102

gn/0
snmp_mgr, 130

gn/1
snmp_-mgr , 130

inc/1
snmp_standard_mib , 140

158 Simple Network Management Protocol (SNMP)

Index of Modules and Functions

inc/2
snmp_standard_mib , 140

info/1

snmp , 103
init/0

snmp_framework_mib , 115
init_mpd/1

snmp-mpd , 133

insert/3
snmp_index , 123

int_to_enum/2

snmp , 103

int_to_enum/3
snmp , 103

is_consistent/1
snmp , 103

key_to_oid/2
snmp_index , 123

load_mibs/2
snmp , 103

local_time_to_date_and_time_dst/1

snmp , 104

log_to_txt/2
snmp , 104

log_to_txt/3
snmp , 104

log_to_txt/4
snmp , 104

log_to_txt/5
snmp , 104

log_to_txt/6
snmp , 104

log_to_txt/7
snmp , 104

match/2
snmp_local_db , 126

mib_to_hrl/1
snmp , 105

name_to_oid/1
snmp , 105
snmp_mgr, 130

name_to_oid/2
snmp , 105

new/1
snmp_index , 124

oid_to_name/1
snmp , 105
snmp_-mgr, 130

oid_to_name/2
snmp , 105

print/0
snmp_local_db , 126

print/1
snmp_local_db , 126

print/2
snmp_local_db , 126

process_packet/4
snmp-mpd , 133

r/0
snmp_mgr, 130

reconfigure/1
snmp_community_mib , 110
snmp_notification_.mib , 135
snmp_standard_mib , 140
snmp_target_mib , 144

snmp_user_based_sm_mib , 147
snmp_view_based_acm_mib , 149

register_notify_client/2
snmp_local_db , 127

register_subagent/3
snmp , 105

reinit/0
snmp_standard_mib , 141

s/1
snmp_-mgr, 130

send_notification/3
snmp , 106

send_notification/4
snmp , 106

send_notification/5
snmp , 106

send_notification/6
snmp , 106

Simple Network Management Protocol (SNMP)

159

Index of Modules and Functions

send_trap/3
snmp , 107

send_trap/4
snmp , 107

set_target_engine_id/2
snmp_target_mib , 145

snmp
add_agent_caps/2, 98
c/1, 98
c/2, 98
change_log_size/1,99
config/0, 99
current_address/0, 100
current_community/0, 100
current_context/0, 100
current_net_if_data/0, 100
current_request_id/0, 100
date_and_time/0, 101

date_and_time_to_string/1,101
date_and_time_to_universal_time_dst/1,

101
debug/2, 101
del_agent_caps/1, 101
enum_to_int/2, 101
enum_to_int/3, 102
get/2, 102
get_agent_caps/0, 102

get_symbolic_store_db/0, 102

info/1, 103
int_to_enum/2, 103
int_to_enum/3, 103
is_consistent/1, 103
load_mibs/2, 103

local_time_to_date_and_time_dst/1,

104
log_to_txt/2,104
log_to_txt/3,104
log_to_txt/4,104
log_to_txt/5, 104
log_to_txt/6, 104
log_to_txt/7,104
mib_to_hrl/1, 105
name_to_oid/1, 105
name_to_oid/2, 105
oid_to_name/1, 105
oid_to_name/2, 105
register_subagent/3, 105
send_notification/3, 106
send_notification/4, 106
send_notification/5, 106
send_notification/6, 106

send_trap/3, 107
send_trap/4, 107

universal_time_to_date_and_time/1,

108
unload_mibs/2, 108
unregister_subagent/2, 109

validate_date_and_time/1, 109

verbosity/2, 109

snmp_community_mib
add_community/5, 111
configure/1,110
delete_community/1, 111
reconfigure/1, 110

snmp_error
config_err/2,112
user_err/2,112

snmp_error-io
config_err/2,113
user_err/2,113

snmp_error_report
config_err/2,114
user_err/2, 114

snmp_framework_mib
add_context/1, 115
configure/1,115
delete_context/1, 115
init/0, 115

snmp_generic
get_index_types/1, 118
get_status_col/2,118
table_func/2, 118
table_func/4, 118
table_get_elements/3, 119
table_next/2,119
table_row_exists/2,119
table_set_elements/3, 119
variable_func/2,119
variable_func/3,119
variable_get/1,119
variable_set/2,119

snmp_index
delete/1,122
delete/2, 123
get/2,123
get_last/1,123
get_next/2,123
insert/3, 123
key_to_oid/2,123
new/1, 124

160 Simple Network Management Protocol (SNMP)

Index of Modules and Functions

snmp_local_db enc_pdu/1, 138
dump/0, 126 enc_scoped_pdu/1, 138
match/2, 126 enc_usm_security_parameters/1, 139

print/0, 126

print/1,126

print/2,126
register_notify_client/2, 127
table_create/1,126
table_create_row/3,126
table_delete/1,127
table_delete_row/2, 127

snmp_standard_mib
configure/1, 140
inc/1, 140
inc/2, 140
reconfigure/1, 140
reinit/0, 141
sys_up_time/0, 141

table_exists/1, 127 snmp_supervisor
table_get_row/2, 127 start_master/2, 142
unregister_notify_client/1, 127 start_master/3, 142

start_sub/0, 142
start_sub/1, 142
start_subagent/3, 143
stop_subagent/1, 143

snmp_mgr
expect/2, 129
expect/3, 129
expect/4, 129

expect/6, 129 snmp_target_mib

g/1, 129 add_addr/10, 145

ghb/3,129 add_params/5, 145

gn/0, 130 configure/1, 144

gn/1,130 delete_addr/1, 145
name_to_oid/1, 130 delete_params/1, 146
oid_to_name/1, 130 reconfigure/1, 144

r/0, 130 set_target_engine_id/2, 145
s/1,130

snmp_user_based_sm_mib

start_link/1,131 add‘l.lser/ 13,148
stop/0, 132 configure/1, 147

! delete_user/1, 148

snmp_-mpd reconfigure/1, 147
discarded_pdu/1, 134
generate_msg/4, 134
generate_response_msg/4, 133
init_mpd/1, 133
process_packet/4, 133

start/1, 130

snmp_view_based_acm_mib
add_access/8, 150
add_sec2group/3, 150
add_view_tree_fam/4, 150
configure/1, 149

snmp_notification_mib delete_access/1, 150
add_notify/3, 135 delete_sec2group/1, 150
configure/1, 135 delete_view_tree_fam/1, 151
delete_notify/1,136 reconfigure/1, 149
reconfigure/1, 135 start/1

snmp_pdus snmp-mgr, 130

dec_message/1, 137
dec_message_only/1, 137
dec_pdu/1, 137
dec_scoped_pdu/1, 138 start_master/2
dec_scoped_pdu_data/1, 138 snmp_supervisor , 142
dec_usm_security_parameters/1, 138
enc_encrypted_scoped_pdu/1, 138
enc_message/1, 138
enc_message_only/1, 138 start_sub/0

start_link/1
snmp_mgr, 131

start_master/3
snmp_supervisor , 142

Simple Network Management Protocol (SNMP) 161

Index of Modules and Functions

snmp_supervisor , 142

start_sub/1
snmp_supervisor , 142

start_subagent/3
snmp_supervisor, 143

stop/0
snmp_mgr , 132

stop_subagent/1
snmp_supervisor , 143

sys_up_time/0
snmp_standard_mib , 141

table_create/1
snmp_local_db , 126

table_create_row/3
snmp_local_db , 126

table_delete/1
snmp_local_db , 127

table_delete_row/2
snmp_local_db , 127

table_exists/1
snmp_local_db , 127

table_func/2
snmp_generic , 118

table_func/4
snmp_generic , 118

table_get_elements/3
snmp_generic , 119

table_get_row/2
snmp_local_db , 127

table_next/2
snmp_generic , 119

table_row_exists/2
snmp_generic , 119

table_set_elements/3
snmp_generic , 119

universal_time_to_date_and_time/1
snmp , 108

unload_mibs/2
snmp , 108

unregister_notify_client/1
snmp_local_db , 127

unregister_subagent/2
snmp , 109

user_err/2
snmp_error , 112
snmp_error_io, 113

snmp_error_report , 114

validate_date_and_time/1

snmp , 109

variable_func/2
snmp_generic , 119

variable_func/3
snmp_generic , 119

variable_get/1
snmp_generic , 119

variable_set/2
snmp_generic , 119

verbosity/2
snmp , 109

162 Simple Network Management Protocol (SNMP)

