

Loan

assessment

process lab
YAWL

Eric Kwok 02741172

 i

Table of Contents
1.0. Introduction .. 1

1.1. Features .. 1

1.2. Architecture and components .. 2

1.3. BPMN to YAWL .. 3

2.0. Implement the process ... 4

2.1. Control flow perspective ... 4

2.2. Data perspective ... 8

2.3. Resource perspective .. 20

3.0. Validate and deploy the process ... 25

4.0. Execute the process .. 27

5.0. Further reading ... 32

References .. 34

Appendix A: XML schema data type definition ... 35

Appendix B: Check application form completeness codelet .. 44

 1

1.0. Introduction
YAWL (Yet Another Workflow Language) was developed by Wil van der Aalst (Eindhoven University

of Technology, the Netherlands) and Arthur ter Hofstede (Queensland University of Technology,

Australia) in 2002. The language was based on the one hand on Petri nets, a well-established

concurrency theory with a graphical representation, and on the other hand on the well-known

workflow patterns, which is a generally accepted benchmark for the suitability of a process

specification language (see section 5.0. Further readings for references to learn more about Petri

nets and workflow patterns). YAWL was developed in the effort to address some of the

shortcomings of existing workflow management systems and workflow languages; it extends Petri

nets with dedicated constructs to support multiple instance, cancellation and inclusive OR-join (The

YAWL foundation, 2014, p. 9).

1.1. Features
One of the distinguishing features of YAWL is that it has a formal foundation, that is, both a precisely

defined syntax and a precisely defined semantics. It removes any ambiguity associated with the

interpretation of complex constructs and their interplay, and also allows for the development of

sophisticated verification techniques that allow the detection of inherent flaws in an executable

process model before it deployed (Hofstede, Aalst, Adams, & Russell, 2010, p. 15). According to the

YAWL foundation (2014, p. 9), other distinctive features of YAWL include:

 YAWL offers comprehensive support for the control-flow patterns. It is the most powerful

process specification language for capturing control-flow dependencies.

 The data perspective in YAWL is captured through the use of XML Schema, XPath and

XQuery.

 YAWL offers comprehensive support for the resource patterns. It is the most powerful

process specification language for capturing resourcing requirements.

 YAWL has been developed independent from any commercial interests. It simply aims to be

the most powerful language for process specification.

 For its expressiveness, YAWL offers relatively few constructs (compare this e.g. to BPMN).

 YAWL offers unique support for exceptional handling, both those that were and those that

were not anticipated at design time.

 YAWL offers unique support for dynamic workflow through the Worklets approach.

Workflows can thus evolve over time to meet new and changing requirements.

 YAWL aims to be straightforward to deploy. It offers a number of automatic installers and

an intuitive graphical design environment.

 The Declare component (released through declare.sf.net) provides unique support for

specifying workflows in terms of constraints. This approach can be combined with the

Worklet approach thus providing very powerful flexibility support.

 YAWL’s architecture is Service-oriented and hence one can replace existing components

with one’s own or extend the environment with newly developed components.

 The YAWL environments supports the automated generation of forms. This is particularly

useful for rapid prototyping purposes.

 Tasks in YAWL can be mapped to human participants, web services, external applications or

to Java classes.

 2

 Through the C-YAWL approach a theory has been developed for the configuration of YAWL

models. For more information on process configuration visit

www.processconfiguration.com.

 Simulation support is offered through a link with the ProM (www.processmining.org)

environment. Through this environment it is also possible to conduct post-execution

analysis of YAWL processes (e.g. in order to identify bottlenecks).

1.2. Architecture and components
YAWL system is structured as a RESTful service-oriented architecture. The characteristics of such

architecture contribute to keeping the YAWL system lightweight and platform-neutral, which have

been two of the key underlying design principles. While other architectures enabling additional

infrastructure-level functionality to be exploited, it was not found to be strictly necessary in the

context of the YAWL system. The engine is completely agnostic with regards to the services

interacting with it; that is, totally unaware of the operations of external services, so that each could

be served in a generic way, it provides a flexible and extensible framework for plugging in additional

(custom) services into the YAWL system (Hofstede, Aalst, Adams, & Russell, 2010).

The YAWL system provides a specific embodiment of the Workflow Reference Model (WRM)

interfaces of the Workflow Management Coalition in the setting of a service-oriented architecture.

Also, in many respects, the YAWL interface extends and deviates from the WRM interfaces. Thus, it

cannot be said that the YAWL system complies with the WRM. It is merely inspired by the WRM, but

significantly differs from it in many respects (Hofstede, Aalst, Adams, & Russell, 2010).

The YAWL system can be presented in a three tier view as shown in figure 1.0 (Hofstede, Aalst,

Adams, & Russell, 2010), which consists of YAWL services at the business logic layer encapsulate

resources in the data layer, and provide functionality to user-facing services (or applications) at the

presentation layers.

Figure 1.0. The YAWL system architecture

http://www.processconfiguration.com/

 3

The core service of the YAWL system is the workflow engine, it interacts with other services in the

YAWL system through four interfaces as shown in figure 1.1 (Hofstede, Aalst, Adams, & Russell,

2010), three of which correspond to the WRM. The engine interfaces are the following:

 Interface A, which corresponds to interface 1 (and partially to interface 5) of the WRM, and

provides endpoints for uploading and unloading process specifications, registering or removing

references to external services and basic user connections and disconnections.

 Interface B, which corresponds to interfaces 2, 3, and 4 of the WRM, and provides endpoints for

services to establish a session with the engine, launch process instances, check work items in

and out of the engine, and retrieve process data and state information.

 Interface E, which (partially) corresponds to interface 5, and provides endpoints for the retrieval

and analysis of process logs.

Figure 1.1. YAWL system's core services and their interfaces

1.3. BPMN to YAWL
YAWL is an executable language to enable process automation; it is a detailed specification that

consists of data types, data extraction and conversion steps, application bindings, resource

allocation, and distribution policies, among others. In comparison to BPMN, BPMN is a language

that has a complete different abstraction level, which used for the purpose of business analysis and

improvement. Due to BPMN and YAWL share many common concepts (see figure 1.2) (Hofstede,

Aalst, Adams, & Russell, 2010), BPMN models obtained from the business analysis phase can be

easily mapped into the equivalent YAWL specifications.

 4

Figure 1.2. Mapping of tasks, events and gateways

2.0. Implement the process
The following sections will be demonstrating how the loan assessment process can be implemented

in YAWL. Please note that due to YAWL is a very flexible workflow management system, there could

be multiple (or perhaps better) ways of achieving the same end result that what have been shown in

the following lab exercise. However, the selected way of implementation is to keep the loan

assessment process in YAWL semantically as similar as possible to the given BPMN. For example,

instead of having an extra task to check application form completeness and then return the

incomplete application to the applicant for resubmission, YAWL is capable of carrying out the check

through its dynamic form and preventing an incomplete form being submitted in the first place.

2.1. Control flow perspective
The editor in YAWL is the tool that enables workflow designers to graphically define complex process

models, and to analyse and export these models to the engine. One way to start YAWL editor, click

on the YAWL – Editor icon located at start/all programs/YAWL folder. The editor will be opened with

a blank canvas. Click on the create a new specification button , at the top left of the menu

toolbar, or click on file in the menu and choose new. A blank net called ‘Net’ by default will be

shown, this is where the loan assessment workflow will be created, configured and validated.

The properties pane at the left of the canvas is used to view and modify all of the properties of the

selected specification, net, decomposition and net element (task, condition or flow). To give the

specification and net a more descriptive name, update the specification and net name properties as

shown in figure 2.0.

 5

Figure 2.0. Properties pane

In theory, the input condition represent the process begins when loan applications being received

after the applicants made a submission through the loan provider’s website. However, for the

purpose of simplicity and being the main focus of the lab exercise is to teach how business processes

can be automated with YAWL. Instead of building a website that interacts with the process by

external service, the applicant has been defined as a role within YAWL and additional tasks will be

added to simulate the online loan application submission, i.e. submit and complete application task.

Click on the atomic task button in the elements palette, or right click in an empty area of the

canvas, and choose atomic task. Left mouse click on the right of the input condition to place an

atomic task. Set the decomposition of the task by select New… in the drop down box of the

decomposition name at the properties pane (see figure 2.1). Type ‘Submit application’ in the new

decomposition dialog and click the OK button.

Figure 2.1. Decomposition properties

Repeat the process to create all the loan assessment tasks as shown in table 2.0 and the loan

assessment net should end up appearing as figure 2.2.

Check application form
completeness

CompleteApplication Check credit
history

Assess loan risk

Appraise property Assess eligibility Reject
application

Prepare and send
acceptance pack

Prepare and send home
insurance quote

VerifyRepaymentAgreement Take final
decision

Update status

Table 2.0. Loan assessment tasks

 6

Figure 2.2. Loan assessment tasks

To establish the flow of execution, connect the input condition to submit application task by finding

the flow connectors that appear as a small cross as you hover your mouse over the sides of the

submit application task. Hold the left mouse button down over a flow connector and draw a line by

dragging the mouse from the flow connector on the input condition to the one on the submit

application task, figure 2.2 shows an established flow relation.

Figure 2.2. Flow relation established

Repeat the process to create flow relations from submit application task to check application form

completeness task. Next, a XOR split decorator needs to be added to check application form

completeness task to specify the possible branches that will lead to the succeeding task depending

on the check outcome. Select check application form completeness task and select XOR split from

the join type drop down box of the task section at the properties pane, this will enable multiple flow

relations from the task. Create one flow relations from check application form completeness task to

complete application task. The branch will be executed if an application is found incomplete, such

application is returned to the applicant for them to complete and resubmit. In order to resubmit, a

XOR split and XOR join decorator is added to the complete application task and check application

form completeness task respectively, an outgoing flow relation from the complete application task

to check application form completeness task is also created. Another flow relation is needed from

complete application task to the update status task, and finally to the end condition, this branch will

be executed if the application is not complete and resubmitted within five days and it will update the

application status to cancel and then the process will come to its end. If the application is

completed, an AND split is needed to enable a credit check and property appraisal to execute

simultaneously. Add an additional task with a AND split decorator to the net, the task is used as an

empty/routing task that does not require decomposition, it is simply for routing purposes, i.e. to

enable tasks that follows to execute simultaneously. Join the check application form completeness

task to the routing task, then join the routing task to the appraise property task and check credit

history, and continue on with assess loan risk task (see figure 2.3).

 7

Figure 2.3. Flow relations of check application form completeness task

Next, add an AND join and XOR split decorator to assess eligibility task to enable synchronisation of

previous tasks, then establish flows from both assess loan risk and appraise property task to assess

eligibility. For the outgoing flows, connect assess eligibility task to reject application and prepare

and send acceptance pack task. Add XOR split decorator to prepare and send acceptance pack task,

create one flow to prepare and send home insurance quote task and another to verify repayment

agreement task. Add a XOR join decorator to verify repayment agreement task to allow an outgoing

flow from prepare and send insurance quote task to connect to it. For the reject application task,

create flow to the end condition. Add another XOR split decorator to verify repayment agreement

task and a XOR join decorator to update status task, establish one flow to take final decision task and

one to update status task. Lastly, connect both take final decision task and update status task to the

end condition (see figure 2.4).

Figure 2.4. Completed control flow perspective

To make the YAWL specification more easily understood, select each task and add task icon from the

task icon properties as shown in figure 2.5.

 8

Figure 2.5. Loan assessment with task icons

To save the specification, click on the save button , and the save dialog appears, choose the

location to be saved at and click save.

2.2. Data perspective
After the control flow of the process have been established, the next thing to consider is the data

requirements. Some of the decisions that need to be made when modelling data includes:

 Data that participants need in each work item.

 Data that must return to the engine once the work item is complete.

 Way of data moves between tasks and net in a running workflow.

 Use of data to choose between flows.

YAWL uses XML schema to define data documents that are passed from net to task and back during

the life of a workflow instance. User-defined data types are also supported, by allowing for the

definition of XML Schema complex types, which are added to a specification and then may be used

to define variables based on those types. The remainder of the section is to step through how to

implement the data perspective to the loan assessment process in YAWL. The following complex

elements shown in table 2.1 needs to be created in order to capture the required data. The complex

elements with indented complex elements indicate that such complex element is based on another

complex element, for example, the loan application complex type is based on ApplicantInformation

complex type, PropertyInformation complex type and so on.

Complex element Sub-component (simple element) Type

Loan application

ApplicantInformation Name String

 Surname String

 Email String

 HomePhone Int

 CellPhone Int

 CurrentAddress String

 PreviousAddress String

 CurrentEmployer String

 MonthlyNetRevenue Double

 BankName String

 TypeOfAccount String

 9

 AccountNumber String

PropertyInformation TypeOfProperty String

 PropertyAddress String

 PurchasingPrice Double

LoanInformation LoanAmount Double

 NumberOfYears Double

 StartDate Date

 InterestRate Double

 InterestType String

InsuranceQuoteRequired Required Boolean

AdministrationInformation ApplicationIdentifier String

 SubmissionDateAndTime DateTime

 RevisionDateAndTime DateTime

 Status String

 Comments String

 Eligibility Boolean

 LoanOfficerIdentifier String

CreditHistoryReport

FinancialOfficerIdentifier ID String

ApplicantCreditInformation LoanType String

 Amount Double

 Duration Double

 InterestRate Double

OverdueCreditAccounts CreditType String

 DefaultAmount Double

 Duration Double

 InterestRate Double

CurrentCreditCardInformation Provider String

 StartDate Date

 EndDate Date

 InterestRate Double

PublicRecordInformation CourtJudgementInformation String

 BankruptcyInformation String

CreditAssessment Result String

PropertyAppraisal PropertyAppraiserIdentifier String

 SurroundingPropertiesValue1 Double

 SurroundingPropertiesValue2 Double

 SurroundingPropertiesValue3 Double

 EstimatedPropertyMarketValue Double

 Comments String

RepaymentSchedule MonthlyRepaymentAmount Double

 NumberOfRepayment Int

HomeInsuranceQuote HomeInsuranceTotalCost Double

 AdditionalCostOnMonthlyLoanRepayment Double

 InsuranceSalesRepresentativeIdentifier String
Table 2.1. Loan application data requirements

 10

To define the data type, select the data definitions property in the specification section of the

properties pane, then click on the action button (at the right of the property). Enter the XML

schema data type definition in appendix A into the data definitions dialog, in the event of errors

found, the bottom pane will show the error details. Click the done button.

Once the data type has been defined, it can be used when creating net and task variables. Net

variable is created to store information relating to the loan assessment net that tasks within the net

may need to read or update. Select the data variables property in the net section of the properties

pane, then click on the action button to open the data variables dialog (see figure 2.6). Click on the +

button at the bottom toolbar to add a new variable. Enter LoanApplication in the name field, click

on the drop down arrow at the type field, and notice all the defined complex elements are now

listed as a data type that can be used. Select LoanApplication as the type, local for scope and click

OK. Follow the previous steps and create the remainder net variables as shown in figure 2.7.

Figure 2.6. Data variable dialog

Figure 2.7. Net variables of loan assessment net

 11

The loan assessment net now requires task variables to be added so that it can transfer information

between workflow users, and transfer of data between the net and its tasks. Task variables can be

added to tasks in a similar way of how net variables are added. Select submit application task, then

select the data variables property in the decomposition section of the properties pane, then click on

the action button to open the data variables dialog. Click on the + button at the bottom toolbar of

the decomposition variable section to add a new task variable. Enter LoanApplication in the name

field. Click on the drop down arrow at the type field, select LoanApplication as the type, output for

scope and click OK (see figure 2.8).

Figure 2.8. Submit application task variable

Follow the previous steps and create the task variables for each of the task listed in table 2.2.

Task Variable name Type Scope

Check application form
completeness

LoanApplication LoanApplication Input only

CompleteApplication LoanApplication LoanApplication Input &
output

 AdministrationInformation AdministrationInformation Input only

Update status AdministrationInformation AdministrationInformation Input &
output

Check credit history LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input only

 CreditHistoryReport CreditHistoryReport Output

 12

only

Appraise property LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input only

 PropertyAppraisal PropertyAppraisal Output
only

Assess loan risk RiskWeight Int Input &
output

Assess eligibility LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input &
output

 RiskWeight Int Input

 PropertyAppraisal PropertyAppraisal Input only

Reject application LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input &
output

Prepare and send acceptance
pack

LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input only

 RepaymentSchedule RepaymentSchedule Output
only

Prepare and send home
insurance pack

HomeInsuranceQuote HomeInsuranceQuote Output
only

 TermsAndConditions YDocumentType Output
only

VerifyRepaymentAgreement LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input only

 ConditionsAgreed Boolean Output
only

 RepaymentAgreed Boolean Output
only

 RepaymentSchedule RepaymentSchedule InputOnly

Take final decision LoanApplication LoanApplication Input only

 AdministrationInformation AdministrationInformation Input &
output

 ConditionsAgreed Boolean Input only

 RepaymentAgreed Boolean Input only

 RepaymentSchedule RepaymentSchedule Input only
Table 2.2. Loan assessment task variables

Check application form completeness task will require an associated codelet (Java class) to enable a

script to be executed to check the loan application and assign the check results to the

AdministrationInformation variables. Create a Java class by copy and paste the Java codes provided

in appendix B.

A detailed technical discussion of the codelet construction is beyond the scope of the lab exercise.

However in essence, what the codelet does is to check for null value of each field in the loan

application, if null is found, it will note that in the comment field accordingly. In addition, it also

check to make sure the home phone and cell phone number has 10 digits in total. If it doesn’t satisfy

the criteria of a completed application, it will assign a status of incomplete to the application. It also

set the case I.D as the application identifier and the submission date and time.

 13

Place the CheckApplicationFormCompletness class file into the following YAWL’s codelets folder

(create the directories if it doesn’t exists) – [YAWL INSTALL DIR]\engine\apache-tomcat-

7.0.55\webapps\resourceService\WEB-INF\classes\org\yawlfoundation\yawl\resourcing\codelets.

The root directory is depends on where YAWL is installed. In order for the new codelet to become

available, the YAWL engine needs to be started (or restart the engine if it is currently running). Click

on the control panel icon located at start/all programs/YAWL folder, then click the start button. To

associate the codelet with the check application form completeness task, automate the task by

ticking the automated checkbox in the decomposition section of the properties pane. Select the

codelet property, then click on the action button (at the right of the property) to open the set

codelet for automated decomposition dialog box. All the available codelets will be listed in the

dialog (see figure 2.9). Select CheckApplicationFormCompleteness codelet and click the OK button.

A green arrow will appear in the task to indicate that the task is now automated and has a codelet

specified.

Figure 2.9. Available codelets

Both CompleteApplication and VerifyRepaymentAgreement task in the loan assessment process

require a timer task to ensure timely response from applicants. If an application is not received back

from the applicant in the required time frame, the task will expire and move onto the next task.

Select the CompleteApplication task, then select the Timer property in the task section of the

properties pane, then click on the action button (at the right of the property) to open the set timer

dialog box and complete the set up as shown in figure 2.10. Click the OK button, the timer property

is now set to Offer: P5D, where P stands for period and D for days. Repeat the same steps for

VerifyRepaymentAgreement task, and set to 14 days for the duration.

 14

Figure 2.10. Timer settings of complete application task

After setting up all the net and task variables, data bindings needs to be defined using XQuery

expressions to enable value assign to a variable, and how a value is passed between net-level and

task-level variables and vice-versa. Both input and output bindings can be assigned to any tasks

(depending on its usage type) to allow the passing of state between nets and their tasks, and

between tasks and workflow engine, users and web services.

To create an output binding, select the submit application task, open the data variables for

decomposition dialog from the properties pane, select the LoanApplication task variable by clicking

on the arrow next to the variable in the decomposition variables section as shown in figure 2.11.

Figure 2.11 Data variables for submit application task

 15

Click on the output bindings button on the lower toolbar, and the output data bindings dialog

box will appear. All the net variables are listed in the net variable drop down box at the output to

section, and all the task variable(s) of the task are listed in the task variable drop down box in the

generate binding from section. Make sure the both net and task variable are selected as shown in

figure 2.12, and then there are two ways to add the XQuery, 1. click the generate and insert binding

button , or 2. type the XQuery directly into the XQuery box, click the OK button. To see the

binding just created, click on the quick view bindings button in the data variable dialog. Figure

2.13 shows the binding summary dialog box with the data bindings created for the task.

Figure 2.12. Passing the completed loan application values to a net variable

Figure 2.13. Established data bindings with XQuery mapping

 16

Creating an input binding is done in a similar way as the output binding by clicking the input bindings

button instead of the output bindings button.

Follow the previous steps and create data bindings for each of the task listed in table 2.3.

Task Task/net
variable

Expression Parameter
type

CompleteA
pplication

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

LoanAppli
cation

{/CompleteApplication/LoanApplication/*} Output

Check
application
form
completen
ess

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Check_application_form_completeness/AdministrationInf
ormation/*

Output

Update
status

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

Administr
ationInfor
mation

<ApplicationIdentifier>{/Update_status/AdministrationInfor
mation/ApplicationIdentifier/text()}</ApplicationIdentifier>
<SubmissionDateAndTime>{/Update_status/AdministrationI
nformation/SubmissionDateAndTime/text()}</SubmissionD
ateAndTime><RevisionDateAndTime>{current-
DateTime()}</RevisionDateAndTime>
<Status>Canceled</Status>
<Comments>{/Update_status/AdministrationInformation/C
omments/text()}</Comments>
<Eligibility>{false()}</Eligibility>
<LoanOfficerIdentifier>{/Update_status/AdministrationInfor
mation/LoanOfficerIdentifier/text()}</LoanOfficerIdentifier>

Output

Check
credit
history

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

CreditHist
oryReport

{/Check_credit_history/CreditHistoryReport/*} Output

Appraise
property

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

PropertyA
ppraisal

{/Appraise_property/PropertyAppraisal/*} Output

Assess loan
risk

RiskWeigh
t

{if(/Loan_assessment/CreditHistoryReport/CreditAssessmen
t/Result/text()='B') then 0 else
if(/Loan_assessment/CreditHistoryReport/CreditAssessmen

Input

 17

t/Result/text()='BB') then 20 else
if(/Loan_assessment/CreditHistoryReport/CreditAssessmen
t/Result/text()='BBB') then 40 else
if(/Loan_assessment/CreditHistoryReport/CreditAssessmen
t/Result/text()='A') then 60 else
if(/Loan_assessment/CreditHistoryReport/CreditAssessmen
t/Result/text()='AA') then 80 else 100}

RiskWeigh
t

{/Assess_loan_risk/RiskWeight/text()} Output

Assess
eligibility

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

RiskWeigh
t

{/Loan_assessment/RiskWeight/text()} Input

PropertyA
ppraisal

{/Loan_assessment/PropertyAppraisal/*} Input

Administr
ationInfor
mation

<ApplicationIdentifier>{/Assess_eligibility/AdministrationInf
ormation/ApplicationIdentifier/text()}</ApplicationIdentifie
r>
<SubmissionDateAndTime>{/Assess_eligibility/Administrati
onInformation/SubmissionDateAndTime/text()}</Submissio
nDateAndTime>
<RevisionDateAndTime>{current-
dateTime()}</RevisionDateAndTime>
<Status>Assessed</Status>
<Comments>{/Assess_eligibility/AdministrationInformation
/Comments/text()}</Comments>
<Eligibility>{/Assess_eligibility/AdministrationInformation/El
igibility/text()}</Eligibility>
<LoanOfficerIdentifier>{/Assess_eligibility/AdministrationInf
ormation/LoanOfficerIdentifier/text()}</LoanOfficerIdentifie
r>

Output

Reject
application

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

<ApplicationIdentifier>{/Loan_assessment/AdministrationIn
formation/ApplicationIdentifier/text()}</ApplicationIdentifi
er>

<SubmissionDateAndTime>{/Loan_assessment/Administrati
onInformation/SubmissionDateAndTime/text()}</Submissio
nDateAndTime>
 <RevisionDateAndTime>{current-
dateTime()}</RevisionDateAndTime>
 <Status>Rejected</Status>

<Comments>{/Loan_assessment/AdministrationInformation
/Comments/text()}</Comments>

<Eligibility>{/Loan_assessment/AdministrationInformation/

Input

 18

Eligibility/text()}</Eligibility>

<LoanOfficerIdentifier>{/Loan_assessment/AdministrationIn
formation/LoanOfficerIdentifier/text()}</LoanOfficerIdentifi
er>

Administr
ationInfor
mation

{/Reject_application/AdministrationInformation/*} Output

Prepare
and send
acceptance
pack

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

Repaymen
tSchedule

{/Prepare_and_send_acceptance_pack/RepaymentSchedul
e/*}

Output

Prepare
and send
home
insurance
quote

TermsAnd
Conditions

{/Prepare_and_send_home_insurance_quote/TermsAndCo
nditions/*}

Output

HomeInsu
ranceQuot
e

{/Prepare_and_send_home_insurance_quote/HomeInsuran
ceQuote/*}

Output

VerifyRepa
ymentAgre
ement

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

Repaymen
tSchedule

{/Loan_assessment/RepaymentSchedule/*} Input

Repaymen
tAgreed

{/VerifyRepaymentAgreement/RepaymentAgreed/text()} Output

Conditions
Agreed

{/VerifyRepaymentAgreement/ConditionsAgreed/text()} Output

Take final
decision

LoanAppli
cation

{/Loan_assessment/LoanApplication/*} Input

Administr
ationInfor
mation

{/Loan_assessment/AdministrationInformation/*} Input

Repaymen
tSchedule

{/Loan_assessment/RepaymentSchedule/*} Input

Repaymen
tAgreed

{/Loan_assessment/RepaymentAgreed/text()} Input

Conditions
Agreed

{/Loan_assessment/ConditionsAgreed/text()} Input

Administr
ationInfor
mation

{/Take_final_decision/AdministrationInformation/*} Output

Table 2.3. Parameter mappings

It is now possible to define which flow should be activated at runtime at each of the decision points,

i.e. XOR splits. Click on the check application form completeness task, select the split predicates

property in the task section of the properties pane, then click on the action button (at the right of

the property) to open the split predicates dialog box. All the outgoing flows of the split and its

 19

associated flow expression (predicate) will be listed in the split predicates dialog box that appears.

There should be two target task listed – CompleteApplication and unnamed task. The arrow buttons

at the bottom toolbar of the list allow reordering the evaluation sequence of the predicates. The

bottom predicate will form the default flow that gets executed if all other predicates evaluated to be

false. Ensure the unnamed target task is at the bottom in this instance. To specify the predicate,

select the CompleteApplication target task, then click on the action button and complete the set up

as shown in figure 2.14. Enter

/Loan_assessment/AdministrationInformation/Status/text()='Incomplete' in the predicate for flow

dialog box and click the OK button. Leave the predicate of the unnamed task as true() to allow the

flow will always execute to avoid deadlock when all other predicates are false (see figure 2.15).

Repeat the steps to define rest of the flow details as listed in table 2.4, and ensure to follow the

evaluation sequence of the predicates.

Figure 2.14. Predicate for flow Split predicates

Figure 2.15. Predicate for flow

Task Target task Predicate

CompleteApplicati
on

Update status timer(CompleteApplication)='expired'

Check application
form completeness

true()

Assess eligibility Reject application /Loan_assessment/AdministrationInformation/Eligibility/
text()='false'

Prepare and send
acceptance pack

true()

 20

Prepare and send
acceptance pack

Prepare and send
home insurance
quote

/Loan_assessment/LoanApplication/InsuranceQuoteReq
uired/Required/text()='true'

VerifyRepaymentA
greement

true()

VerifyRepaymentA
greement

Update status timer(VerifyRepaymentAgreement)='expired'

Take final decision true()
Table 2.4. Loan assessment flow details

2.3. Resource perspective
Now that the loan assessment process is completed, it is time to specify which participants should

be doing which tasks. In order to assign tasks to participants, participants and their roles must first

be defined in YAWL control centre. Navigate to the resource service’s web UI either by click on the

logon button in the YAWL control panel or by pointing your browser at

http://localhost:8080/resourceService, log on with the generic user id ‘admin’ and password ‘YAWL’.

Go to the organisational data management screen showing in figure 2.16 by clicking on the Org data

heading. To add a new role, click the new button. Enter loan officer in the name field, and click the

add button, the role will appear in the roles box after it has been added. Now add the financial

officer, property appraiser, insurance sales rep. and applicant in the same way.

Figure 2.16. Organisational data management

Once all roles have been added, click on the users heading to go to the user management screen

(see figure 2.17) to add the participants.

http://localhost:8080/resourceService

 21

Figure 2.17. User management

To add a new participant, click the new button and enter the participant details. For the purpose of

the exercise, enter loan officer in the first name field, A in the last name field, LOA as the user I.D,

and give it a password in the password section. To assign Loan officer A to the role of Loan officer,

ensure the roles tab is selected at the bottom left section of the screen. The ‘owns’ box shows the

role(s) a participant currently holds and the ‘available’ box shows all the roles that a participant can

be assigned to. Select loan officer from the list of available roles and click on the left pointing arrow

to assign the loan officer role to loan officer A. Create the remaining users listed in table 2.5.

First name Last name User ID Roles

Loan officer B LOB Loan officer

Finance officer A FOA Finance officer

Property appraiser A PAA Property appraiser

Insurance sales rep. A ISRA Insurance sales rep.

Applicant A AA Applicant
Table 2.5. Loan assessment process participants

Once the above roles and participants are defined, resources can be allocated to tasks by specifying

the interaction strategy via YAWL editor. Click on submit application task and select the resourcing

property in the task section of the properties pane, then click on the action button (at the right of

the property) to open the resources dialog box, and tick the enable system offer, allocation and start

as shown in figure 2.18. What it does is when a case start, the system will automatically offer,

allocate, and immediately start the work items of the task at run time.

 22

Figure 2.18. Resources dialog box

Task then can be assigned to specific participants and/or roles, click + sign in the participants section,

select A, Applicant from the all participants list and click OK (see figure 2.19), then click the OK

button again to close the resources dialog. The applicant is now the primary resources that the work

item of the selected task will be offered to at runtime by the system.

 23

Figure 2.19. Participants dialog

Use the resourcing properties to set up resources for the tasks listed in table 2.6.

Task Enable
system
offer

Enable system
allocation

Enable
system
start

Participants Roles

CompleteApplication Applicant A

Check credit history Financial
officer

Appraise property Property
appraiser

Assess eligibility Loan officer

Reject application, Loan officer

Prepare and home
insurance quote

 Insurance
sales rep.

 Table 2.6. Resource setting

The remaining three tasks – prepare and send acceptance pack, VerifyRepaymentAgreement and

take final decision requires business rules to be defined in its resourcing.

 Prepare and send acceptance pack

Tick enable system offer, enable system allocate and enable system start. Add loan officer to the

roles box. Add runtime constraints to ensure the task are allocated to the same loan officer who

have previously completed work items of assess eligibility task in the current process instance (see

figure 2.20).

 24

Figure 2.20. Resourcing with choose completer(s) of task constraints

 VerifyRepaymentAgreement

Tick enable system offer, enable system allocate and enable system start. Add loan officer to the

roles box. Add runtime constraints to ensure the task are allocated to the same loan officer who

have previously completed work items of prepare and send acceptance pack task in the current

process instance.

 Take final decision

Tick enable system offer, enable system allocate and enable system start. Add loan officer to the

roles box. Add runtime constraints to ensure the task are allocated to a different loan officer who

have previously completed work items of VerifyRepaymentAgreement task in the current process

instance (see figure 2.21).

 25

Figure 2.21. Resourcing with do not choose completer(s) of task constraints

3.0. Validate and deploy the process
The loan assessment net is now fully completed, it is important to check the process that just been

created for any problems that would prevent the process from executing and complete successfully.

Click the validate button on the tool bar, and YAWL will validate the specification (verification

will also run by default each time the specification is saved). Any problems found and its potential

solution will be shown at the info pane, under the validation results tab. Figure 3.0 shows the

validation result.

 26

Figure 3.0. Loan assessment process with no problems found

If desired, further detailed analysis can be conducted by using the analyse this specification toolbar

button . A number of potential problems with a workflow can be automatically spotted with

analysis. Examples include spotting potential deadlock situations, unnecessary cancellation set

members, and unnecessary or-join decorators.

After the loan assessment net have been validated to be correct, it is ready for deployment. Click

the upload this specification to YAWL engine button and follows the prompt to deploy. Or

alternatively, click the logon button in YAWL control panel to bring up YAWL control centre, and click

on cases in the top menu as shown in figure 3.1. To upload the workflow specification, click on the

browse button to bring up the file browser dialog box, double click on the loan assessment file to

select the file, then click the upload file button. When the specification is uploaded, it is validated

against the YAWL specification schema for validity. If there is a problem with the upload, an

appropriate error message is displayed in a popup dialog. If the specification has been uploaded

successfully, it will be shown in the loaded specifications section (see figure 3.1).

 27

Figure 3.1. Case management

4.0. Execute the process
After the workflow specification have been uploaded, to launch a case, select the loan assessment

specification and click the launch case button. All the current active/running case(s) of the loan

assessment process will be shown in the running cases section (see figure 4.0). It is now ready to

give the loan assessment process a test run to see its execution. Logout of YAWL control centre and

log back on as the applicant, use the password that was created during the setup of participants.

 28

Figure 4.0. Case management showing running cases

Click on started in the menu, select the submit application task that is listed under work items (see

figure 4.1) and click the view/edit button to bring up the loan application. Fill in sample data as

shown in figure 4.2 and click the complete button.

Figure 4.1. Applicant screen with submit application task

 29

Figure 4.2. Loan application form

 30

Logout and log back in as the financial officer. Click on started in the menu, select the check credit

history task listed under work items and click the view/edit button to bring up the credit history

report. Fill in sample data as shown in figure 4.3 and click the complete button. Note that how an

uneditable copy of the completed loan application and administration information are attached.

The information in the administration information section are automatically populated by the

codelet as part of the check application form completeness task.

Figure 4.3. Credit history report

 31

Logout and log back in as the property appraiser. Click on started in the menu, select the appraise

property task listed under work items and click the view/edit button to bring up the property

appraisal. Fill in sample data as shown in figure 4.4 and click the complete button.

Figure 4.4. Property appraisal

Depending on which loan officer were randomly allocated with the assess eligibility task, logout and

log back in as either Loan officer A or Loan officer B. Click on started in the menu, select the assess

eligibility task listed under work items and click the view/edit button to bring up the loan

application, property appraisal and risk weight. The risk weight is determined by the assess loan risk

automatic task. Fill in sample data as shown in figure 4.5 and click the complete button.

Figure 4.5. Administration information

Next, refresh the work items list, notice prepare and send acceptance pack is now appear under

started work items for same loan officer. That’s because in the resource setup, it has been defined

that the same loan officer completed assess eligibility task will prepare and send acceptance pack.

Select the task and click the view/edit button to fill out the repayment schedule as shown in figure

4.6.

 32

Figure 4.6. Repayment schedule

Due to the applicant had requested for insurance quote in the loan application, logout and log back

in as insurance sales rep. Click on started in the menu, select the prepare and send home insurance

quote task listed under work items and click the view/edit button to bring up the home insurance

quote. Fill in sample data as shown in figure 4.7 and click the complete button. The up arrow next

to the terms and conditions field is to enable documents to be uploaded, click on the arrow and

follow the prompt to upload a document.

Figure 4.7. Home insurance quote

The same loan officer who completed the prepare and send acceptance pack task will verify

repayment agreement. Select the task and click the view/edit button, check both conditions and

repayment agreed checkboxes, click the complete button.

Finally, the take final decision task will be carried out by a different loan officer who completed the

verify repayment agreement task. Logout and log back in as loan officer A or B depending on who

has the take final decision task. Click on started in the menu, select the take final decision task listed

under work items and click the view/edit button to bring up the application, change status to

approved and click the complete button.

The above process execution demo shows one possibility of how the process can be executed,

please feel free to try out different scenarios with different test data to see how alternative paths of

the process can be executed at different decision points.

5.0. Further reading
Various subject areas mentioned in the lab exercise are a topic of its own, which cannot be covered

entirely or in great details. In addition to the references list of the lab exercise, the below additional

references are suggested further reading into such subject areas.

 33

Aalst, W. v., & Hee, K. v. (2002). Workflow management: models methods, and systems. MIT press.

The YAWL foundation. (2010). YAWL - technical manual: verison 2.1. Retrieved February 19, 2015,

from http://yawlfoundation.org/manuals/YAWLTechnicalManual2.1.pdf

The YAWL user group. (2015). YAWL user group. Retrieved from http://yaug.org

Workflow Patterns Initiative. (2015, February 19). Workflow patterns. Retrieved from

http://www.workflowpatterns.com

 34

References
Hofstede, A. H., Aalst, W. M., Adams, M., & Russell, N. (2010). Modern business process automation:

YAWL and its support enviornment. Berlin: Springer.

The YAWL foundation. (2014, September). YAWL - user manual: version 3.0. Retrieved February 19,

2015, from http://yawlfoundation.org/manuals/YAWLUserManual3.0.pdf

 35

Appendix A: XML schema data type definition

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="ApplicantInformation">

 <xs:sequence>

 <xs:element name="Name" type="xs:string" minOccurs="0" />

 <xs:element name="Surname" type="xs:string" minOccurs="0" />

 <xs:element name="Email" type="xs:string" minOccurs="0" />

 <xs:element name="HomePhone" type="xs:int" minOccurs="0" />

 <xs:element name="CellPhone" type="xs:int" minOccurs="0" />

 <xs:element name="CurrentAddress" type="xs:string" minOccurs="0" />

 <xs:element name="PreviousAddress" type="xs:string" minOccurs="0" />

 <xs:element name="CurrentEmployer" type="xs:string" minOccurs="0" />

 <xs:element name="MonthlyNetRevenue" type="xs:double" minOccurs="0" />

 <xs:element name="BankName" type="xs:string" minOccurs="0" />

 <xs:element name="TypeOfAccount" type="xs:string" minOccurs="0" />

 <xs:element name="AccountNumber" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 36

 <xs:complexType name="PropertyInformation">

 <xs:sequence>

 <xs:element name="TypeOfProperty" type="xs:string" minOccurs="0" />

 <xs:element name="PropertyAddress" type="xs:string" minOccurs="0" />

 <xs:element name="PurchasingPrice" type="xs:double" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="LoanInformation">

 <xs:sequence>

 <xs:element name="LoanAmount" type="xs:double" minOccurs="0" />

 <xs:element name="NumberOfYears" type="xs:double" minOccurs="0" />

 <xs:element name="StartDate" type="xs:date" minOccurs="0" />

 <xs:element name="InterestRate" type="xs:double" minOccurs="0" />

 <xs:element name="InterestType" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Variable" />

 <xs:enumeration value="Fixed" />

 </xs:restriction>

 </xs:simpleType>

 37

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="InsuranceQuoteRequired">

 <xs:sequence>

 <xs:element name="Required" type="xs:boolean" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="AdministrationInformation">

 <xs:sequence>

 <xs:element name="ApplicationIdentifier" type="xs:string" minOccurs="0" />

 <xs:element name="SubmissionDateAndTime" type="xs:dateTime" minOccurs="0" />

 <xs:element name="RevisionDateAndTime" type="xs:dateTime" minOccurs="0" />

 <xs:element name="Status" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Complete" />

 <xs:enumeration value="Incomplete" />

 <xs:enumeration value="Assessed" />

 <xs:enumeration value="Rejected" />

 38

 <xs:enumeration value="Canceled" />

 <xs:enumeration value="Approved" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Comments" type="xs:string" minOccurs="0" />

 <xs:element name="Eligibility" type="xs:boolean" minOccurs="0" />

 <xs:element name="LoanOfficerIdentifier" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="FinancialOfficerIdentifier">

 <xs:sequence>

 <xs:element name="ID" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="ApplicantCreditInformation">

 <xs:sequence>

 <xs:element name="LoanType" minOccurs="0">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 39

 <xs:enumeration value="Household" />

 <xs:enumeration value="Personal" />

 <xs:enumeration value="Domestic" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Amount" type="xs:double" minOccurs="0" />

 <xs:element name="Duration" type="xs:double" minOccurs="0" />

 <xs:element name="InterestRate" type="xs:double" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="OverdueCreditAccounts">

 <xs:sequence>

 <xs:element name="CreditType" type="xs:string" minOccurs="0" />

 <xs:element name="DefaultAmount" type="xs:double" minOccurs="0" />

 <xs:element name="Duration" type="xs:double" minOccurs="0" />

 <xs:element name="InterestRate" type="xs:double" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CurrentCreditCardInformation">

 40

 <xs:sequence>

 <xs:element name="Provider" type="xs:string" minOccurs="0" />

 <xs:element name="StartDate" type="xs:date" minOccurs="0" />

 <xs:element name="EndDate" type="xs:date" minOccurs="0" />

 <xs:element name="InterestRate" type="xs:double" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PublicRecordInformation">

 <xs:sequence>

 <xs:element name="CourtJudgementInformation" type="xs:string" minOccurs="0" />

 <xs:element name="BankruptcyInformation" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CreditAssessment">

 <xs:sequence>

 <xs:element name="Result">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="AAA" />

 <xs:enumeration value="AA" />

 41

 <xs:enumeration value="A" />

 <xs:enumeration value="BBB" />

 <xs:enumeration value="BB" />

 <xs:enumeration value="B" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="LoanApplication">

 <xs:sequence>

 <xs:element name="ApplicantInformation" type="ApplicantInformation" />

 <xs:element name="PropertyInformation" type="PropertyInformation" />

 <xs:element name="LoanInformation" type="LoanInformation" />

 <xs:element name="InsuranceQuoteRequired" type="InsuranceQuoteRequired" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CreditHistoryReport">

 <xs:sequence>

 <xs:element name="FinancialOfficerIdentifier" type="FinancialOfficerIdentifier" />

 42

 <xs:element name="ApplicantCreditInformation" type="ApplicantCreditInformation" maxOccurs="unbounded" />

 <xs:element name="OverdueCreditAccounts" type="OverdueCreditAccounts" maxOccurs="unbounded" />

 <xs:element name="CurrentCreditCardInformation" type="CurrentCreditCardInformation" maxOccurs="unbounded" />

 <xs:element name="PublicRecordInformation" type="PublicRecordInformation" maxOccurs="unbounded" />

 <xs:element name="CreditAssessment" type="CreditAssessment" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PropertyAppraisal">

 <xs:sequence>

 <xs:element name="PropertyAppraiserIdentifier" type="xs:string" />

 <xs:element name="SurroundingPropertiesValue1" type="xs:double" />

 <xs:element name="SurroundingPropertiesValue2" type="xs:double" />

 <xs:element name="SurroundingPropertiesValue3" type="xs:double" />

 <xs:element name="EstimatedPropertyMarketValue" type="xs:double" />

 <xs:element name="Comments" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="RepaymentSchedule">

 <xs:sequence>

 <xs:element name="MonthlyRepaymentAmount" type="xs:double" />

 43

 <xs:element name="NumberOfRepayment" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="HomeInsuranceQuote">

 <xs:sequence>

 <xs:element name="HomeInsuranceTotalCost" type="xs:double" />

 <xs:element name="AdditionalCostOnMonthlyLoanRepayment" type="xs:double" />

 <xs:element name="InsuranceSalesRepresentativeIdentifier" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 44

Appendix B: Check application form completeness codelet

package org.yawlfoundation.yawl.resourcing.codelets;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import org.jdom2.Element;

import org.yawlfoundation.yawl.engine.interfce.WorkItemRecord;

import org.yawlfoundation.yawl.elements.data.YParameter;

import org.yawlfoundation.yawl.resourcing.codelets.AbstractCodelet;

import org.yawlfoundation.yawl.resourcing.codelets.CodeletExecutionException;

public class CheckApplicationFormCompleteness extends AbstractCodelet {

 public CheckApplicationFormCompleteness(){

 super();

 setDescription("This codelet checks for all the required informationa and its format of a loan application. Required

parameters:
 " +

 "Input: Loan application
" +

 "Output: Administration information");

 45

 }

 public Element execute(Element inData, List<YParameter> inParams, List<YParameter> outParams) throws CodeletExecutionException {

 // Set the inputs passed in the base class

 setInputs(inData, inParams, outParams);

 // Get the data values required

 Element Name = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("Name");

 Element Surname = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("Surname");

 Element Email = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("Email");

 Element HomePhone = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("HomePhone");

 Element CellPhone = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("CellPhone");

 Element CurrentAddress = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("CurrentAddress");

 Element CurrentEmployer = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("CurrentEmployer");

 Element MonthlyNetRevenue = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("MonthlyNetRevenue");

 Element BankName = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("BankName");

 Element TypeOfAccount= inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("TypeOfAccount");

 Element AccountNumber = inData.getChild("LoanApplication").getChild("ApplicantInformation").getChild("AccountNumber");

 Element TypeOfProperty = inData.getChild("LoanApplication").getChild("PropertyInformation").getChild("TypeOfProperty");

 Element PropertyAddress = inData.getChild("LoanApplication").getChild("PropertyInformation").getChild("PropertyAddress");

 Element PurchasingPrice = inData.getChild("LoanApplication").getChild("PropertyInformation").getChild("PurchasingPrice");

 46

 Element LoanAmount = inData.getChild("LoanApplication").getChild("LoanInformation").getChild("LoanAmount");

 Element NumberOfYears = inData.getChild("LoanApplication").getChild("LoanInformation").getChild("NumberOfYears");

 Element StartDate = inData.getChild("LoanApplication").getChild("LoanInformation").getChild("StartDate");

 Element InterestRate = inData.getChild("LoanApplication").getChild("LoanInformation").getChild("InterestRate");

 Element InterestType = inData.getChild("LoanApplication").getChild("LoanInformation").getChild("InterestType");

 String Comments = "";

 // Check the loan application form fields and add comments accordingly

 if(Name==null) {

 Comments = "Name is required. ";

 }

 if(Surname==null) {

 Comments = Comments + "Surname is required. ";

 }

 if(Email==null) {

 Comments = Comments + "Email is required. ";

 }

 if(HomePhone==null) {

 Comments = Comments + "HomePhone is required. ";

 47

 }

 else if (HomePhone.getText().length()!=10) {

 Comments = Comments + "Home phone must be 10 digits. ";

 }

 if(CellPhone==null) {

 Comments = Comments + "CellPhone is required. ";

 }

 else if (CellPhone.getText().length()!=10) {

 Comments = Comments + "Cell phone must be 10 digits. ";

 }

 if(CurrentAddress==null) {

 Comments = Comments + "CurrentAddress is required. ";

 }

 if(CurrentEmployer==null) {

 Comments = Comments + "CurrentEmployer is required. ";

 }

 if(MonthlyNetRevenue==null) {

 Comments = Comments + "MonthlyNetRevenue is required. ";

 48

 }

 if(BankName==null) {

 Comments = Comments + "BankName is required. ";

 }

 if(TypeOfAccount==null) {

 Comments = Comments + "TypeOfAccount is required. ";

 }

 if(AccountNumber==null) {

 Comments = Comments + "AccountNumber is required.";

 }

 if(TypeOfProperty==null) {

 Comments = Comments + "TypeOfProperty is required.";

 }

 if(PropertyAddress==null) {

 Comments = Comments + "PropertyAddress is required.";

 }

 49

 if(PurchasingPrice==null) {

 Comments = Comments + "PurchasingPrice is required.";

 }

 if(LoanAmount==null) {

 Comments = Comments + "LoanAmount is required.";

 }

 if(NumberOfYears==null) {

 Comments = Comments + "NumberOfYears is required.";

 }

 if(StartDate==null) {

 Comments = Comments + "StartDate is required.";

 }

 if(InterestRate==null) {

 Comments = Comments + "InterestRate is required.";

 }

 if(InterestType==null) {

 Comments = Comments + "InterestType is required.";

 50

 }

 // Set the output data

 WorkItemRecord wir = this.getWorkItem();

 String caseID = wir.getRootCaseID();

 DateFormat DateFormat = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss");

 Date Date = new Date();

 String DateAndTime = DateFormat.format(Date);

 String AdministrationInformation = "<ApplicationIdentifier>"+caseID+"</ApplicationIdentifier>

<SubmissionDateAndTime>"+DateAndTime+"</SubmissionDateAndTime>";

 if(Comments!=""){

 setParameterValue("AdministrationInformation", AdministrationInformation+" <Status>Incomplete</Status>

<Comments>"+Comments+"</Comments>");

 }

 else {

 setParameterValue("AdministrationInformation", AdministrationInformation+" <Status>Complete</Status>");

 }

 // Return the element created in the base class and containing the result

 return getOutputData();

 }

 51

 public List<YParameter> getRequiredParams() {

 List<YParameter> params = new ArrayList<YParameter>();

 YParameter param = new YParameter(null, YParameter._INPUT_PARAM_TYPE);

 param.setDataTypeAndName("LoanApplication", "LoanApplication", XSD_NAMESPACE);

 params.add(param);

 param = new YParameter(null, YParameter._OUTPUT_PARAM_TYPE);

 param.setDataTypeAndName("AdministrationInformation", AdministrationInformation", XSD_NAMESPACE);

 params.add(param);

 return params;

 }

 }

