
TargetFFSTM

FLASH FILE SYSTEM

HIGHLIGHTS

● Royalty Free

● Reliable, Re-entrant Embedded
File System

● Provides POSIX and Standard C API

● Use of Flash Memory is
Invisible to Applications

● Supports Dynamic Creation and
Deletion of Files, Directories,
and Links

● Complete Wear-Leveling

● Guaranteed Integrity Across
Unexpected Resets

● Supports Multiple Volumes

● Includes Shell Application

● Works with TargetOS

● Integrated with CodeWarrior

B L U N K
Microsystems

Blunk Microsystems provides

system software, device drivers,

and board support packages to

the embedded systems market,

both off-the-shelf products and

custom work done under contract.

TargetFFS is a reliable, re-entrant
embedded file system with a POSIX
and ANSI C compliant application
program interface. Supports
dynamic creation and deletion of
files, directories, and links with
read and write capability. Not a
static ROM-image file system. Use
of flash media for the backing store
is invisible to the application layer.

Supports the large erasable block
sizes typical of flash memory, usu-
ally 64KB or larger. Memory is logi-
cally divided into 512 byte sectors
that are assigned to individual files
as needed. Before a block is erased,
the sectors in use are copied to
another block.

Implements complete wear-leveling
to prevent premature failure of the
flash media. Erase cycles are spread
evenly across all sectors. A wear
count is maintained starting with
the first time a flash volume is for-
matted. The current wear count is
available to applications via the
vstat() call.

File system integrity is guaranteed
across unexpected shutdowns. Only
data written since the last synchroniz-
ing operation (fclose(), fflush(),
etc.) can be lost. Directory structures,
closed files, and files open for reading
are never at risk.

“Thin” hardware dependent layer
for maximum ease in porting to
new platforms. Supports linearly
addressable flash with a 32, 16, or
8-bit interface to the CPU. Wider
interfaces and interleaved devices
provide higher performance.

Includes an example driver for a
4MB flash memory that uses four
8-bit devices to implement a 32-bit
wide interface with erasable blocks
of size 256KB.

Supports concurrent use of multi-
ple volumes. Flash volumes can be
permanently installed at startup, or
added and deleted as removable
devices come and go.

Flash memory can be shared
between a boot program and a
TargetFFS volume. Because flash
memory is not accessible while
being erased or programmed, the
boot program can read files, change
directories, etc., but cannot create
files, directories, or links.
Alternatively, the boot program can
copy itself to RAM and jump there
before making calls to TargetFFS.

Low priority background task does
garbage collection to ensure minimal
use of RAM.

Shipped with two sample applica-
tions: a shell that supports creating
directories, listing directories, etc.
and a binary search application.
The shell may be extended with
user commands.

Developed using TargetOSTM, Blunk
Microsystems’ real-time operating
system, the source code is 100%
ANSI C and is easily ported to
other real-time kernels.

Integrated with CodeWarriorTM, the
development environment from
Metrowerks with an integrated source
level debugger, compiler, assembler,
linker, editor, and GUI make tool.

Royalty free. Includes full source code,
user’s manuals, sample applications,
and one year of technical support. u

The TargetFFS Application Program Interface:

AVAILABLE COMPONENTS

TargetOS
Real-time, deterministic, multi-
tasking, priority-based, preemptive
kernel. Includes Standard C library.

TargetTCP
RFC compliant TCP/IP protocol
stack providing the standard
Berkeley Sockets API.

TargetLAPB
ISO/IEC 7776 protocol stack.
Supports exchanging data on
point-to-point networks.
Provides automatic flow control
and data reliability.

CONTACT INFORMATION

● Visit our web site:
www.blunkmicro.com

● Customer Support:
(408) 323-9833

● Technical Support:
(408) 323-1758

● Fax:
(408) 323-1757

● E-mail:
sales@blunkmicro.com

● Address:
6576 Leyland Park Drive
San Jose, CA 95120
USA

Price and Licensing Terms
TargetFFSTM is royalty free. Purchasers are granted a non-exclusive license to use the provided source code
at a single site. Licensees have the right to disseminate or resell the software in executable format only.
The source code and derived object code may not be redistributed or resold.

Pricing is $5,000 for a one-year term license and $15,000 for a perpetual license. The term license
allows development use of the software for one year from the date of purchase. License renewal is not
required to fix bugs or to duplicate executable code.

int chdir(const char *path);
void clearerr(FILE* stream);
int close(int fid);
int closedir(DIR *dirp);
int fclose(FILE *stream);
FILE *fdopen(int fid, const char
*mode);

int feof(FILE *stream);
int ferror(FILE *stream);
int fflush(FILE *stream);
int fgetc(FILE *stream);
int fgetpos(FILE *stream, fpos_t
*pos);

char *fgets(char *s, int n, FILE
*stream);

int fileno(FILE *stream);
FILE *fopen(const char *filename,
const char *mode);

int format(char *path);
int fprintf(FILE *stream, const
char *format, ...);

int fputc(int c, FILE *stream);
int fputs(const char *string, FILE
*stream);

size_t fread(void *ptr, size_t
size, size_t nmemb, FILE *stream);

FILE *freopen(const char *filename,
const char *mode, FILE *stream);

int fscanf(FILE *stream, const char
*format, ...);

int fseek(FILE *stream, long offset,
int mode);

int fsetpos(FILE *stream, const
fpos_t *pos);

int fstat(int fid, struct stat
*buf);

long ftell(FILE *stream);
size_t fwrite(const void *ptr, size_t
size, size_t nmemb, FILE *stream);

int getc(FILE *stream);
int getchar(void);
char *getcwd(char *buf, size_t size);
char *gets(char *s);
int link(const char *existing,
const char *new);

off_t lseek(int fid, off_t offset,
int whence);

int mkdir(const char *path, mode_t
mode);

int mount(char *path);
int open(const char *path, int
oflag, ...);

DIR *opendir(const char *dirname);
void perror(const char *s);
int printf(const char *format, ...);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int read(int fid, void *buf,
unsigned int nbyte);

struct dirent *readdir(DIR *dirp);
int remove(const char *filename);
int rename(const char *old, const
char *new);

void rewind(FILE *stream);
void rewinddir(DIR *dirp);
int rmdir(const char *path);
int scanf(const char *format, ...);
void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char
*buf, int mode, size_t size);

int stat(const char *path, struct
stat *buf);

FILE *tmpfile(void);
char *tmpnam(char *s);
int ungetc(int c, FILE *stream);
int unlink(const char *path);
int unmount(char *path);
int utime(const char *path, const
struct utimbuf *times);

int vfprintf(FILE *stream, const
char *format, va_list arg);

int vprintf(const char *format,
va_list arg);

int vstat(const char *path, union
vstat *buf);

int write(int fid, const void *buf,
unsigned int nbyte); ■

