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Chapter 1

Introduction

This document is a user’s guide to random effects modelling in AD Model Builder (ADMB).
Chapter 2 is a concise introduction to ADMB, and Chapter 3 is a collection of examples
selected from different fields of application. Online program code is provided for all ex-
amples. Supplementary documentation references consist of

• The ADMB manual (http://otter-rsch.com/admodel.htm)

• Skaug & Fournier (2003), which describes the computational method used to handle
random effect in ADMB (http://bemata.imr.no/laplace.pdf).

• The ADMB-RE example collection (http://otter-rsch.com/admbre/examples.html).

• The ADMB web-forum where you can ask questions to other users (http://www.otter-
rsch.ca/phpbb/).

Why use AD Model Builder for creating nonlinear random effects models? The answer
consists of three words – flexibility, speed and accuracy. To illustrate these points a
number of examples comparing ADMB-RE with two existing packages NLME which runs
on R and Splus, and WinBUGS. In general NLME is rather fast and it is good for the
problems for which it was designed, but it is quite inflexible. What is needed is a tool
with at least the computational power of NLME but the flexibility to deal with arbitrary
nonlinear random effects models. In section 2.2.3 we consider a thread from the R user
list where a discussion about extending a model to use random effects which had a log-
normal rather than normal distribution took place. This appeared to be quite difficult.
With ADMB-RE this change takes one line of code. WinBUGS on the other hand is
very flexible and many random effects models can be easily formulated in it. However,
it can be very slow and it is necessary to adopt a Bayesian perspective which may be
a problem for some applications. A model which runs 25 times faster under ADMB
than under WinBUGS may be found at: http://otter-rsch.com/admbre/examples/

logistic/logistic.html.
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1.1 Summary of features

Model formulation With ADMB you can formulate and fit a large class of nonlin-
ear statistical models. With ADMB-RE you can include random effects in your model.
Examples of such models include:

• Generalized linear mixed models (logistic and Poisson regression).

• Nonlinear mixed models (growth curve models, pharmacokinetics).

• State space models (nonlinear Kalman filter).

• Frailty models in survival analysis.

• Bayesian hierarchical models.

• General nonlinear random effects models (fisheries catch-at-age models).

You formulate the likelihood function in a template file, using a language that resembles
C++. The file is compiled into an executable program (Linux or Windows). The whole
C++ language is to your disposal, giving you great flexibility with respect to model
formulation.

Computational basis of ADMB-RE

• Hyper-parameters (variance components etc.) estimated by maximum likelihood.

• Marginal likelihood evaluated by the Laplace approximation or importance sam-
pling.

• Exact derivatives calculated using Automatic Differentiation.

• Sampling from the Bayesian posterior using MCMC (Metropolis-Hastings algo-
rithm).

• Most features of ADMB (matrix arithmetic and standard errors, etc.) are available.

The strengths of ADMB-RE

• Flexibility : You can fit a large variety of models within a single framework.

• Convenience: Computational details are transparent. Your only responsibility is to
formulate the loglikelihood

• Computational efficiency : ADMB-RE is up to 50 times faster than WinBUGS.

• Robustness : With exact derivatives you can fit highly nonlinear models.

• Convergence diagnostic: The gradient of the likelihood function provides a clear
convergence diagnostic.
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Program interface

• Model formulation: You fill in a C++ based template using your favorite text editor.

• Compilation: You turn your model into an executable program using a C++ com-
piler (which you need to install separately).

• Platforms : Windows and Linux

How to order ADMB-RE ADMB-RE is a module for ADMB. Both can be ordered
from:
Otter Research Ltd
PO Box 2040,
Sidney, B.C. V8L 3S3
Canada
Voice or Fax (250)-655-3364
Email otter@otter-rsch.com
Internet: otter-rsch.com
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Chapter 2

The language and the program

2.1 What is ordinary ADMB?

ADMB is a software package for doing parameter estimation in nonlinear models. It com-
bines a flexible mathematical modelling language (built on C++) with a powerful function
minimizer (based on Automatic Differentiation). The following features of ADMB make
it very useful for building and fitting nonlinear models to data:

• Vector-matrix arithmetic, vectorized operations for common mathematical func-
tions.

• Read and write vector and matrix objects to file.

• Fit the model is a stepwise manner (with ‘phases’), where more and more parameters
become active in the minimization.

• Calculate standard deviations of arbitrary functions of the model parameters by the
‘delta method’.

• MCMC sampling from Bayesian posteriors.

To use random effects in ADMB it is recommended that you have some experience in
writing ordinary ADMB programs. In this sections we review, for the benefit of the
reader without this experience, the basic constructs of ADMB.

Model fitting with ADMB has three stages: 1) Model formulation, 2) Compilation
and 3) Program execution. The model fitting process is typically iterative: After having
looked at the output from stage 3) one goes back to stage 1) and modifies some aspect of
the program.

Writing an ADMB program To fit a statistical model to data we must carry out
certain fundamental tasks, such as reading data from file, declaring the set of parameters
that should be estimated, and finally we must give a mathematical description of the
model. In ADMB you do all of this by filling in a template, which is an ordinary text file
with the file-name extension ‘.tpl’ (and hence the template file is known as the tpl-file).

9
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You therefore need a text editor, such as ’vi’ under Linux or ’Notepad’ under Windows,
to write the tpl-file. The first tpl-file to which the reader of the ordinary ADMB manual
is exposed is simple.tpl (listed in Section 2.2.1 below). We shall use simple.tpl as our
generic tpl-file, and we shall see that introduction of random effects only requires small
changes to the program.

A tpl-file is divided into a number of ‘sections’, each representing one of the funda-
mental tasks mentioned above. The required sections are:

Name Purpose
DATA SECTION Declare ‘global’ data objects; initialization from file
PARAMETER SECTION Declare independent parameters
PROCEDURE SECTION Specify model and objective function in C++

More details are given when we later look at simple.tpl.

Compiling an ADMB program After having finished writing simple.tpl, we want
to convert it into an executable program. This is done in a DOS-window under Windows,
and in an ordinary terminal window under Linux. To compile simple.tpl, we would
under both platforms give the command:

$ admb -re simple

Here, ’$’ is the command line prompt (which may be a different symbol on your computer),
and -re is an option telling the program admb that your model contains random effects.
The program admb accepts another option -s which produces the ‘safe’ (but slower) version
of the executable program. The -s option should be used in a debugging phase, but it
should be skipped when the final production version of the program is generated.

The compilation process really consists of two steps: first simple.tpl is converted
to a C++ program by a preprosessor called tpl2rem. An error message from tpl2rem

consists of a single line of text, with a reference to the line in the tpl-file where the error
occurs. The first compilation step results in the C++ file simple.cpp. In the second
step simple.cpp is compiled and linked using an ordinary C++ compiler (which is not
part of ADMB). Error messages during this phase typically consist of long printouts, with
references to line numbers in simple.cpp. To track down syntax errors it may occasionally
be useful to look at the content of simple.cpp. When you understand what is wrong in
simple.cpp you should go back and correct simple.tpl and re-enter the command admb

-re simple. When all errors have been removed, the result will be an executable file,
which is called simple.exe under Windows or simple under Linux.

In some situations you may want to modify the options that are passed to the
C++ compiler. The script files that actually invoke the compiler reside in the bin direc-
tory of your ADMB installation. There are different versions of the scripts corresponding
to the different combinations of command line options you can invoke admb with. So,
given that you type admb -re -s the compilation script myccsre will be called, and sub-
sequently the linker script mylinksre. By looking at the bin directory, or the contents
of the script admb which also resides in this directory, you will easily figure out what is
going on. (Note that older version of ADMB used slightly different naming conventions.)
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Running an ADMB-program The executable program is run in the same window as
it was compiled. Note that data are not usually part of the ADMB program (simple.tpl).
Instead, data are being read from a file with the file name extension ‘.dat’ (simple.dat).
This brings us to the naming convention used by ADMB programs for input and output
files: The executable automatically infers file names by adding an extension to its own
name. The most important files are:

File name Contents
Input simple.dat Data for the analysis

simple.pin Initial parameter values
Output simple.par Parameter estimates

simple.std Standard deviations
simple.cor Parameter correlations

You can use command line options to modify the behavior of the program at runtime.
The available command line options can be listed by typing:

$ simple -?

(or whatever your executable is called). The command line options that are specific to
ADMB-RE are listed in Appendix 1, and are discussed in detail under the various sections.
An option you probably will like to use during an experimentation phase is -est, which
turns off calculation of standard deviations, and hence reduces the running time of the
program.

Statistical prerequisites To use random effects in ADMB you must be familiar with
the notion of a random variable, and in particular with the normal distribution. In case
you are not, please consult a standard textbook in statistics. The notation u ∼ N(µ, σ2)
is used throughout this manual, and means that u has a normal (Gaussian) distribution
with expectation µ and variance σ2. The distribution placed on the random effects is
called the ’prior’, which is a term borrowed from Bayesian statistics.

A central concept that originates from generalized linear models is that of a lin-
ear predictor. Let x1, . . . , xp denote observed covariates (explanatory variables), and let
β1, . . . , βp be the corresponding regression parameters to be estimated. Many of the ex-
amples in this manual involve a linear predictor ηi = β1x1,i + · · · + βpxp,i, which we also
will write on vector form as η = Xβ.

Frequentist or Bayesian statistics? A pragmatic definition of a frequentist is a per-
son who prefers to estimate parameters by the method of maximum likelihood. Similarly,
a Bayesian is a person who use MCMC techniques to generate samples from the posterior
distribution (typically with noninformative priors on hyper-parameters), and from these
samples generates some summary statistic such as the posterior mean. With its -mcmc

runtime option ADMB lets you switch freely between the two worlds. The approaches
complement each other rather than being competitors. A maximum likelihood fit (point
estimate + covariance matrix) is a step-1 analysis. For some purposes step-1 is sufficient.
In other situations, one may want to see posterior distributions for the parameters, and
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then the established covariance matrix (inverse Hessian of the log-likelihood) is used by
ADMB to implement an efficient Metropolis-Hastings algorithm (which you invoke with
-mcmc).

2.2 Why random effects?

Many people are familiar with the method of least squares for parameter estimation. Far
fewer know about random effects modeling. The use of random effects requires that we
adopt a statistical point of view, where the sum of squares is interpreted as being part of a
likelihood function. When data are correlated, the method of least squares is sub-optimal,
or even biased. But relax, random effects come to rescue!

The classical motivation of random effects is:

• To create parsimonious and interpretable correlation structures.

• To account for additional variation or overdispersion.

We shall see, however, that random effects are useful in a much wider context. For
instance, the problem of testing the assumption of linearity in ordinary regression is nat-
urally formulated within ADMB-RE (see http://otter-rsch.com/admbre/examples/

union/union.html).
We use the simple.tpl example from the ordinary ADMB manual to exemplify the

use of random effects. The statistical model underlying this example is the simple linear
regression

Yi = axi + b + εi, i = 1, . . . , n,

where Yi and xi are the data, a and b are the unknown parameters to be estimated, and
εi ∼ N(0, σ2) is an error term.

Consider now the situation that we do not observe xi directly, but rather we observe

Xi = xi + ei,

where ei is a measurement error term. This situation frequently occurs in observational
studies, and is known as the ‘error in variables’ problem. Assume further that ei ∼
N(0, σ2

e), where σ2
e is the measurement error variance. For reasons discussed below, we

shall assume that we know the value of σe, so we shall pretend that σe = 0.5.
Because xi is not observed, we model it as a random effect with xi ∼ N(µ, σ2

x). In
ADMB-RE you are allowed to make such definitions through the new parameter type
random effects vector. (There is also a random effects matrix which allows you to
define a matrix of random effects).

1. Why do we call xi a random effect, while we do not use this term for Xi and
Yi (though they clearly are ’random’)? The point is that Xi and Yi are observed
directly, while xi is not. The term ’random effect’ comes from regression analysis,
where it means a random regression coefficient. In a more general context ’latent
random variable’ is probably a better term.

http://otter-rsch.com/admbre/examples/union/union.html
http://otter-rsch.com/admbre/examples/union/union.html
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2. The unknown parameters in our model are: a, b, µ, σ, σx and x1, . . . , xn. We have
agreed to call x1, . . . , xn random effects. The rest of the parameters are called hyper-
parameters. Note that we place no prior distribution on the hyper-parameters.

3. Random effects are integrated out of the likelihood, while hyper-parameters are
estimated by maximum likelihood . This approach is often called ‘empirical Bayes’,
and will be considered a frequentist method by most people. There is however
nothing preventing you from making it ‘more Bayesian’ by putting priors (penalties)
on the hyper-parameters.

4. A statistician will say ”this model is nothing but a bivariate Gaussian distribution
for (X, Y ), and we don’t need any random effects in this situation”. This is formally
true, because we could work out the covariance matrix of (X, Y ) by hand and fit the
model using ordinary ADMB. This program would probably run much faster, but
it would have taken us longer to write the code without declaring xi to be of type
random effects vector. But, more important is that random effects can be used
also in non-Gaussian (nonlinear) models where we are unable to derive an analytical
expression for the distribution of (X, Y ).

5. Why didn’t we try to estimate σe? Well, let us count the parameters in the model:
a, b, µ, σ, σx and σe; totally six parameters. We know that the bivariate Gaussian
distribution has only five parameters (the means of X and Y and three free param-
eters in the covariate matrix). Thus, our model is not identifiable if we also try
to estimate σe. Instead, we pretend that we have estimated σe from some external
data source. This, example illustrates a general point in random effects modelling:
you must be careful to make sure that the model is identifiable!

2.2.1 A code example

Here is the random effects version of simple.tpl:

DATA_SECTION

init_int nobs

init_vector Y(1,nobs)

init_vector X(1,nobs)

PARAMETER_SECTION

init_number a

init_number b

init_number mu

vector pred_Y(1,nobs)

init_bounded_number sigma_Y(0.000001,10)

init_bounded_number sigma_x(0.000001,10)

random_effects_vector x(1,nobs)

objective_function_value f
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PROCEDURE_SECTION // This section is pure C++

f = 0;

pred_Y=a*x+b; // Vectorized operations

// Prior part for random effects x

f += -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

// Likelihood part

f += -nobs*log(sigma_Y) - 0.5*norm2((pred_Y-Y)/sigma_Y);

f += -0.5*norm2((X-x)/0.5);

f *= -1; // ADMB does minimization!

Guide for the tpl-illiterate

1. Everything following ’//’ is a comment.

2. In the DATA SECTION, variables with a init in front of the data type are read from
file.

3. In the PARAMETER SECTION, variables with a init in front of the data type are the
hyper-parameters, i.e. the parameters to be estimated by maximum likelihood.

4. Variables defined in the PARAMETER SECTION without the init prefix can be used
as ordinary programming variables under the PROCEDURE SECTION. For instance, we
can assign a value to the vector pred Y.

5. ADMB does minimization, rather than optimization. Thus, the sign of the loglike-
lihood function f is changed in the last line of the code.

2.2.2 Parameter estimation

We learned above that hyper-parameters are estimated but maximum likelihood, but what
if we also are interested in the value of the random effects? For this purpose ADMB-RE
offers an ‘empirical Bayes’ approach, which involves fixing the hyper-parameters at their
maximum likelihood estimates, and treating the random effects as the parameters of the
model. ADMB-RE automatically calculates ‘maximum posterior’ estimates of the random
effects for you. Estimates of both hyper-parameters and random effects are written to
simple.par.

2.2.3 Log-normal random effects

Say that you doubt the distributional assumption xi ∼ N(µ, σ2
x) that was made in

simple.tpl, and that you want to check if a skewed distribution gives a better fit. You
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could for instance take

xi = µ + σx exp(zi), zi ∼ N(0, 1).

Under this model the standard deviation of xi is proportional, but not directly equal, to
σx. It is easy to make this modification in simple.tpl. In the PARAMETER SECTION we
replace the declaration of x by

vector x(1,nobs)

random_effects_vector z(1,nobs)

and in the PROCEDURE SECTION we replace the prior on x by

f = - 0.5*norm2(z);

x = mu + sigma_x*exp(z);

This example shows one of the strengths of ADMB-RE: it is very easy to modify
models. In principle you can implement any random effects model you can think of, but
as we shall discuss later, there are limits to the number of random effects you can declare.

2.3 Random effects modeling

As with ordinary ADMB the user specifies an objective function in terms of data and
parameters, but in ADMB-RE the objective function must have the interpretation as
being a (negative) log-likelihood. One typically have got a hierarchical specification of the
model, where at the top layer data are assumed to have a certain probability distribution
conditionally on the random effects (and the hyper-parameters), and at the next level the
random effects are assigned a prior distribution (typically normal). Because conditional
probabilities are multiplied to yield the joint distribution of data and random effects, the
objective function becomes a sum of (negative) log-likelihood contributions.

The sign of the objective function The reason why the objective function must hold
the value of the negative log-likelihood is that ADMB does minimization (as opposed to
maximization). In complex models, with contributions to the log-likelihood coming from
a variety of data sources and random effects priors, it is recommended that you collect
the contributions to the objective function using the -= operator of C++, i.e.

f -= -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

In this way you avoid changing the sign of the expression for the loglikelihood expression,
which makes the model/code much easier to read.

When non of the advanced features of Section 2.4 are used, you are allowed to switch
the sign of the objective function at the end of the program
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f *= -1; // ADMB does minimization!

so that in fact f holds the value of the log-likelihood until the last line of the program.
The order in which the different loglikelihood contributions are added to the objective

function does not matter, but make sure that all programming variables have got their
value assigned before they enter in a prior or a likelihood expression.

In simple.tpl we declared x1, . . . , xn to be of type random effects vector. This
statement tells ADMB that x1, . . . , xn should be treated as random effects (i.e. be the
targets for the Laplace approximation), but it does not say anything about which distribu-
tion the random effects should have. In the simple.tpl we assumed that xi ∼ N(µ, σ2

x),
and (without saying it explicitly) that the xi’s were statistically independent. We know
that the corresponding prior contribution to the loglikelihood is

−n log(σx)−
1

2σ2
x

∑
i=1

(xi − µ)2 .

The corresponding ADMB code is

f += -nobs*log(sigma_x) - 0.5*norm2((x-mu)/sigma_x);

Usually, the random effects will have a Gaussian distribution, but technically speaking
there is nothing preventing you from replacing the above line by for instance a log-gamma
density. It can be expected that the Laplace approximation will be less accurate. A
change-of-variable transformation for the random effects may be use to improve the ac-
curacy of the Laplace approximation (not discussed in this manual).

A frequent source of error when writing ADMB-RE programs is that prior gets wrongly
specified. The following trick can make the code easier to read, and has the additional
advantage of being numerically stable for small values of σx. From basic probability
theory we know that if u ∼ N(0, 1), then x = σxu + µ will have a N(µ, σ2

x) distribution.
The corresponding ADMB code would be

f += - 0.5*norm2(u);

x = sigma_x*u + mu;

(This, of course, requires that we change the type of x from random effects vector to
vector, and that u is declared as a random effects vector.) So, the trick here was to
start with N(0, 1) distributed random effects, and to build the model from them. This is
however not always the preferred strategy, as we shall see later.

Similarly, the likelihood contribution coming from data (Xi and Yi in simple.tpl)
must be added to the objective function. Typically, you will use the binomial, Poisson,
gamma or Gaussian distribution for your data, but you are not restricted to these dis-
tributions. There are no built-in probability distributions, so you will have to write the
mathematical expressions yourself, as we did for the Gaussian distribution above.
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2.3.1 Correlated random effects

In some situation you will need correlated random effects, and as part of the problem
you may want to estimate the elements of the covariance matrix. To ensure that the
correlation matrix C is positive definite, you can parameterize the problem in terms of
the Cholesky factor L, i.e. C = LL′, where L is a lower diagonal matrix with positive
diagonal elements. There are q(q − 1)/2) free parameters (the non-zero elements of L)
to be estimated, where q is the dimension of C. Since C is a correlation matrix we must
ensure that its diagonal elements are unity. An example with q = 4 is

PARAMETER_SECTION

matrix L(1,4,1,4) // Cholesky factor

init_vector a(1,6) // Free parameters

PROCEDURE_SECTION

int k;

L(1,1) = 1.0;

for(i=2;i<=4;i++)

{

L(i,i) = 1.0;

for(j=1;j<=i-1;j++)

L(i,j) = a(k++);

L(i)(1,i) /= norm(L(i)(1,i)); // Ensures that C(i,i) = 1

}

Given the Cholesky factor L, we can proceed in different directions. One option is to
use the same transformation-of-variable technique as above: Start out with a vector u of
independent N(0, 1) distributed random effects. Then, the vector

x = L*u;

has correlation matrix C = LL′. To scale the variances, we multiply each component of
x by the appropriate standard deviation.

Large structured covariance matrices In some situations, for instance in spatial
models, q will be large (q = 100, say). Then it is better to use the approach outlined in
Section 2.5.3.

2.3.2 Non-Gaussian random effects

It is customary to use normally distributed random effects, but in some situations other
distributions than the normal are required. The distributions currently available in
ADMB-RE are: gamma, beta and robust normal distribution (mixture of 2 normal dis-
tributions). To use either of these you must

1. Define a random effect u with a N(0, 1) distribution.
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2. Transform u into a new random effect g using one of something deviate functions
described below.

In particular, to obtain av vector g of gamma distributed random effects (probability
density ga−1 exp(−g)/Γ(a)):

PARAMETER_SECTION

init_number a // Shape parameter

vector g(1,n)

random_effects_vector u(1,n,2)

PROCEDURE_SECTION

g -= -0.5*norm2(ui); // N(0,1) likelihood contribution from u’s

for (i=1;i<=n;i++)

g(i) = gamma_deviate(u(i),a);

Full example: http://www.otter-rsch.com/admbre/examples/gamma/gamma.html
Similarly, to obtain beta distributed random effects (probability density proportional

to ga−1(1− g)b−1) we use:

PROCEDURE_SECTION

g -= -0.5*norm2(ui); // N(0,1) likelihood contribution from u’s

for (i=1;i<=n;i++)

g(i) = beta_deviate(u(i),a,b);

//g(i)=beta_deviate(u(i),a,b,1.e-7);

The function beta deviate has a fourth parameter (as in the line above that is commented
out) which controls the numerical stability of the function. The use of this parameter is
currently not documented.

The robust normal distribution has probability density

f(g) = 0.95
1√
2π

e−0.5g2

+ 0.05
1

c
√

2π
e−0.5(g/c)2

where c is a “spread” parameter that default is set to c = 3. The corresponding ADMB-
RE code is

PROCEDURE_SECTION

g -= - 0.5*norm2(ui); // N(0,1) likelihood contribution from u’s

for (i=1;i<=n;i++)

{

g(i) = robust_normal_mixture_deviate(u(i)); // c = 1.0
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//g(i) = robust_normal_mixture_deviate(u(i),2.0); // c = 2.0

}

Notes about the parameters used above:

F a and b are among the parameters that are being estimated, so they should have
type init number.

F c cannot be estimated.

It would be possible to write a version of robust normal mixture deviate where
also c and the mixing proportion (fixed at 0.95 here) in this case can be estimated. The
list of distribution that can be used is likely to be expanded in the future.

2.3.3 REML (Restricted maximum likelihood)

It is well known that maximum likelihood estimators of variance parameters can be down-
wards biased. The biases arises from estimation of one or more mean-related parameters.
The simplest example of a REML estimator is the ordinary sample variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

where the devisor (n−1), rather the n which occurs for the maximum likelihood estimator,
accounts for the fact that we have estimated a single mean parameter.

There are many ways of deriving the REML correction, but in the current context
the most natural explanation is that we integrate the likelihood function (note: not the
log-likelihood) with respect to the mean parameters β, say. This is achieved in ADMB-
RE by defining β as being of type random effects vector, but without specifying a
distribution/prior for the parameters. It should be noted that the only thing that the
random effects vector statement tells ADMB-RE is that the likelihood function should
be integrated with respect to β. In linear-Gaussian models the Laplace approximation is
exact, and hence this approach yields exact REML estimates. In nonlinear models the
notion of REML is more difficult, but REML-like corrections are still being used.

2.3.4 Under the hood

The random effects are important building blocks in simple.tpl, but how are they treated
internally in ADMB-RE? Since the random effects are not observed data they have pa-
rameter status, but we distinguish them from the hyper-parameters. This is because the
xi are random variables. In the marginal likelihood function used internally by ADMB-
RE to estimate hyper-parameters, the random effects are ‘integrated out’. The purpose
of the integration is to generate the marginal probability distribution for the observed
quantities, which are X and Y in simple.tpl. In that example we could have found an
analytical expression for the marginal distribution of (X, Y ), because only normal distri-
butions were involved. For other distributions, such as the binomial, no simple expression
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for the marginal distribution exists, and hence we must rely on ADMB to do the integra-
tion. In fact, the core of what ADMB-RE does for you is that it automatically calculates
the marginal likelihood, at the same time as it estimates the hyper-parameters. The in-
tegration technique used by ADMB-RE is the so-called Laplace approximation (Skaug &
Fournier 2003).

The algorithm used internally by ADMB-RE to estimate hyper-parameters involves
iterating between the two steps:

1. The ‘penalized likelihood’ step: Maximizing the likelihood with respect to the ran-
dom effects, while holding the value of the hyper-parameters fixed.

2. Updating the value of the hyper-parameters, using the estimates of the random
effects obtained in 1).

The reason for calling the objective function in 1) a penalized likelihood, is that the prior
on the random effects acts as a penalty function.

2.3.5 Building a random effects model that works

In all nonlinear parameter estimation problems, there are two possible explanations when
your program does not produce meaningful results:

1. The underlying mathematical model is not well defined, e.g. it may be over-parameterized.

2. You have implemented the model incorrectly, e.g. you have forgotten a minus sign
somewhere.

In an early phase of the code development it may not be clear which of these is causing the
problem. With random effects, the two-step iteration scheme described above makes it
even more difficult to find the error. We therefore advise you always to check the program
on simulated data before you apply it to your real dataset. This section gives you a recipe
for how to do this.

The first thing you should do after having finished the tpl-file is to check that the
penalized likelihood step is working correctly. In ADMB it is very easy to switch from a
random effects version of the program to a penalized likelihood version. In simple.tpl

we would simply redefine the random effects vector x to be of type init vector. The
parameters would then be a, b, µ, σ, σx and x1, . . . , xn. It is not recommended, or even
possible, to estimate all of these simultaneously, so you should fix σx (by giving it a phase
‘-1’) at some reasonable value. The actual value at which you fix σx is not critically
important, and you could even try a range of σx values. In larger models there will be
more than one parameter that needs to be fixed. We recommend the following scheme:

1. Write a simulation program (in R, S-Plus, Matlab, or some other program) that
generates data from the random effects model (using some reasonable values for the
parameters) and writes to simple.dat.

2. Fit the penalized likelihood program with σx (or the equivalent parameters) fixed
at the value used to simulate data.
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3. Compare the estimated parameters with the parameter values used to simulate
data. In particular, you should plot the estimated x1, . . . , xn against the simulated
random effects. The plotted points should centre around a straight line. If they do
(to some degree of approximation) you most likely have got a correct formulation
of the penalized likelihood.

If your program passes this test, you are ready to test the random effects version of the
program. You redefine x to be of type random effects vector, free up σx, and apply
again your program to the same simulated dataset. If the program produces meaningful
estimates of the hyper-parameters, you most likely have implemented your model cor-
rectly, and you are ready to move on to your real data!

With random effects it often happens that the maximum likelihood estimate of a
variance component is zero (σx = 0). Parameters bouncing against the boundaries usually
makes one feel uncomfortable, but with random effects the interpretation of σx = 0 is
clear and unproblematic. All it really means is that data do not support a random effect,
and the natural consequence is to remove (or inactivate) x1, . . . , xn, together with the
corresponding prior (and hence σx), from the model.

2.4 Exploiting separability

Above we have shown how to create a model containing latent random variables (random
effects). This description is sufficient for models with a small number of latent random
variables, but in order to deal with larger models it is necessary to exploit any special
structure that the model may have. Such special structures are best described with
reference to common classes of latent variable models:

• Nested random effects.

• Time series structure.

• Crossed random effects.

ADMB-RE is able two exploit these structures in two different ways, both of which help
improving the performance: 1) derivative calculations can be simplifid and 2) the in-
ternal matrix computations may be performed with sparse matrix libraries. The key to
achieving efficiency is to break up the computation into a series of calls to a one or more
SEPARABLE FUNCTION’s, in such a way that each call only involves a few latent random
variables.

2.4.1 The first example

A simple example is the one-way variance component model

yij = µ + σuui + εij, i = 1, . . . , q, j = 1, . . . , ni

where ui ∼ N(0, 1) is a random effect and εij ∼ N(0, σ2) is an error term. The straight-
forward implementation of this model (shown only in part) is
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PARAMETER_SECTION

random_effects_vector u(1,q)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

{

g -= -0.5*square(u(i));

for(j=1;j<=n(i);j++)

g -= -log(sigma) - 0.5*square((y(i,j)-mu-sigma_u*u(i))/sigma);

}

The efficient implementation of this model is

PROCEDURE_SECTION

for(i=1;i<=q;i++)

g_cluster(i,u(i),mu,sigma,sigma_u);

SEPARABLE_FUNCTION void g_cluster(int i, const dvariable& u,...)

g -= -0.5*square(u);

for(int j=1;j<=n(i);j++)

g -= -log(sigma) - 0.5*square((y(i,j)-mu-sigma_u*u)/sigma);

where ... replaces the rest of the argument list (due to lack of space in this document).
It is the function call g cluster(i,u(i),mu,sigma,sigma u) that enables ADMB-

RE to identify the special structure of the model, which in this case is a trivial instance
of nesting. Knowing about the nesting structure enables ADMB-RE to do a series of
univariate Laplace approximations, rather than a single Laplace approximation in full
dimension q. It should then be possible to fit models where q is in the order of thousands,
but this clearly depends on the complexity of the function g cluster.

The following rules apply:

F The argument list in the definition of the SEPARABLE FUNCTION should not broken
into several lines of text in the tpl-file. This is often tempting as the line typically
gets long, but it results in an error message from tpl2rem.

F Objects defined in the PARAMETER SECTION must be passed as arguments to g cluster.
There is one exception: the objective function g is a global object, and does not
need to be as an argument. Temporary variables should be defined locally within
the SEPARABLE FUNCTION.

F Objects defined in the DATA SECTION should not be passed as arguments to g cluster

(they are also global objects).

The data types that currently can be passed as arguments to a SEPARABLE FUNCTION are:
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int

const dvariable&

const dvar_vector&

with an example being

SEPARABLE_FUNCTION void f(int i, const dvariable& a, const dvar_vector& beta)

The qualifier const is required for the latter two data types, and signalizes to the
C++ compiler that the value of the variable is not going to be changed by the func-
tion. You may also come across the type const prevariable& which means exactly the
same as const dvariable&.

There are other rules that have to be obeyed:

F No calculations involving variables defined in the PARAMETER SECTION are allowed
in the PROCEDURE SECTION. The only use of such variables there is passing them as
arguments to SEPARABLE FUNCTION’s.

This rule implies that all the action has to take place inside the SEPARABLE FUNCTION’s.
To minimize the number of parameters that have be passed as arguments, the following
programming practice is recommended when using SEPARABLE FUNCTION’s:

F The PARAMETER SECTION should contain definitions only of parameters (those vari-
ables which type has a init prefix) and random effects, i.e. no temporary program-
ming variables.

All temporary variables needed for the computations should be defined locally in the
SEPARABLE FUNCTION as shown here:

SEPARABLE_FUNCTION void prior(const dvariable& log_s, const dvariable& u)

dvariable sigma_u = exp(log_s);

g -= -log_s - 0.5*square(u(i)/sigma_u);

2.4.2 Nested models

In the above model there is no hierarchical structure among the latent random variables
(the u’s). A more complicated example is provided by the following model:

yijk = σvvi + σuuij + εijk, i = 1, . . . , q, j = 1, . . . ,m, k = 1, . . . , nij,

where the random effects vi and uij are independent N(0, 1) distributed, and εij ∼
N(0, σ2) is still the error term. One often say that the u’s are nested within the v’s.
For i1 6= i2 we have that yi1jk and yi2jk are statistically independent, so that the likeli-
hood factors at the outer nesting level (i). To exploit this we use the SEPARABLE FUNCTION

as follows:
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PARAMETER_SECTION

random_effects_vector v(1,q)

random_effects_matrix u(1,q,1,m)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

g_cluster(v(i),u(i),sigma,sigma_u,sigma_v,i);

Note that u(i) is the i’th row of the matrix u (this is standard ADMB stuff), and it
should be passed as a vector to the SEPARABLE FUNCTION, which we would implement as
follows:

SEPARABLE_FUNCTION void g_cluster(const dvariable& v,const dvar_vector& u,...)

g -= -0.5*square(v);

g -= -0.5*norm2(u);

for(int j=1;j<=m;j++)

for(int k=1;k<=n(i,j);k++)

g -= -log(sigma) - 0.5*square((y(i,j,k)

-sigma_v*v - sigma_u*u(j))/sigma);

Alternative, we could have structured the program as follows:

PARAMETER_SECTION

random_effects_vector v(1,q)

random_effects_matrix u(1,q,1,m)

PROCEDURE_SECTION

for(i=1;i<=q;i++)

for(int j=1;j<=m;j++)

g_cluster(v(i),u(i,j),sigma,sigma_u,sigma_u,i);

but this would not be detected by ADMB-RE as a nested model (although the use of
SEPARABLE FUNCTION would still improve performance) due to the following rule:

F For a model to be detected as “nested” each latent variable should be passed
exactly once as an argument to a SEPARABLE FUNCTION.

2.4.3 State-space models

A simple state space model is

yi = ui + εi,

ui = ρui−1 + ei,
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where ei ∼ N(0, σ2) is an inovation term. The log-likelihood contribution comming from
the state vector (u1, . . . , un) is

n∑
i=2

log

(
1√
2πσ

exp

[
−(ui − ρui−1)

2

2σ2

])
,

where (u1, . . . , un) is the state vector. To make ADMB-RE exploit this special structure
we write a SEPARABLE FUNCTION named g conditional, that implements the individual
terms in the above sum. This function would then be invoked as follows

for(i=2;i<=n;i++)

g_conditional(u(i),u(i-1),rho,sigma);

Full example http://www.otter-rsch.com/admbre/examples/polio/polio.html.
Above we have looked at a model with a univariate state vector. For multivariate

state vectors, as in

yi = ui + vi + εi,

ui = ρ1ui−1 + ei,

vi = ρ2vi−1 + di,

we would merge the u and v vectors into a single vector (u1, v1, u2, v2, . . . , un, vn), and
define

random_effects_vector u(1,m)

where m = 2n. The call to the SEPARABLE FUNCTION would now look like

for(i=2;i<=n;i++)

g_conditional(u(2*(i-2)+1),u(2*(i-2)+2),u(2*(i-2)+3),u(2*(i-2)+4),...);

where ... denotes the arguments ρ1, ρ2, σe and σd.

2.4.4 Frequency weighting for multinomial likelihoods

In situations were the response variable only can take on a finite number of different
values, it is possibly to reduce the computational burden enormously. As an example,
consider a situation where observation yi is binomially distributed with paramters N = 2
and pi. Assume that

pi =
exp(µ + ui)

1 + exp(µ + ui)
,
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where µ is a parameter and ui ∼ N(0, σ2) is a random effect. For independent observations
y1, . . . , yn, the loglikelihood function for the parameter θ = (µ, σ) can be written:

l(θ) =
n∑

i=1

log [p(xi; θ)] . (2.1)

In ADMB-RE p(xi; θ) is approximated using the Laplace approximation. However, since
yi only can take the values 0, 1 and 2, we can re-write the loglikelihood as

l(θ) =
2∑

j=0

nj log [p(j; θ)] , (2.2)

where nj is the number yi’s being equal to j. Still the Laplace approximation must be
used to approximate p(j; θ), but now only for j = 0, 1, 2, as opposed to n times above.
For large n this can give large a large reduction in computing time.

To implement the weighted loglikelihood (2.2) we define a weight vector (w1, w2, w3) =
(n0, n1, n2). To read the weights from file, and to tell ADMB-RE that w is a weights vector,
the following code is used:

DATA_SECTION

init_vector w(1,3)

PARAMETER_SECTION

!! set_multinomial_weights(w);

In addition it is necessary to explicitly multiply the likelihood contributions in (2.2) by w.
The program must be written with SEPARABLE FUNCTION as explained in Section 2.4.2.
For the likelihood (2.2) the SEPARABLE FUNCTION will be invoked three times.

Full example: http://www.otter-rsch.com/admbre/examples/weights/weights.html

2.5 Improving performance

In this section we discuss certain mechanisms you can use to make an ADMB-RE program
run faster, or to produce more accurate estimates.

2.5.1 Memory management; reducing the size of temporary files

When ADMB needs more temporary storage than is available in the allocated memory
buffers, it starts producing temporary files. Since writing to disk is much slower than
accessing memory, it is important to reduce the size of temporary files as much as possible.
There are several parameters (such as arrmblsize) built into ADMB that regulates how
large memory buffers an ADMB program allocates at startup. With random effects the
memory requirements increase dramatically, and ADMB-RE deals with this by producing
(when needed) six temporary files:
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File name Command line option
f1b2list1 -l1 N

f1b2list12 -l2 N

f1b2list13 -l3 N

nf1b2list1 -nl1 N

nf1b2list12 -nl2 N

nf1b2list13 -nl3 N

The table also shows the command line arguments you can use to manually set the size
(determined by N) of the different memory buffers.

When you see any of these files start growing, you should kill your application and
restart it with the appropriate command line options. In addition to the options shown
above there is -ndb N that splits the computations into N chunks. This effectively reduces
the memory requirements by a factor of N , at the cost of a somewhat longer run time.
It is necessary that N is a divisor of the total number of random effects in the model, so
that it is possible to split the job into N iqually large parts. The -ndb option can be used
in combination with the -l and -nl options listed above. The following rule-of-thumb for
setting N in -ndb N can be used: if there are totally m random effects in the model, one
should choose N such that m/N ≈ 50. For most of the models in the example collection
(Chapter 3) this choice of N prevents any temporary files of being created.

Consider the model http://otter-rsch.com/admbre/examples/union/union.html
as an example. This model contains only about 60 random effects, but does rather heavy
computations with these, and as a consequence large temporary files are generated. The
following command line

$ ./union -l1 10000000 -l2 100000000 -l3 10000000 -nl1 10000000

takes away the temporary files but requires 80Mb of memory. The command line

$ ./union -est -ndb 5 -l1 10000000

also runs without temporary files, requires only 20Mb of memory, but runs three times
slower.

Finally, a warning about the use of these command line options. If you allocate too
much memory your application will crash, and you will (should) get a meaningful error
message. You should monitor the memory use of your application using “Task Manager”
under Windows and the command “top” under Linux, to ensure that you do not exceed
the available memory on your computer.

2.5.2 Limited memory Newton optimization

The penalized likelihood step (Section 2.3.4), that forms a crucial part of the algorithm
used by ADMB to estimate hyper-parameters, is by default conducted using a quasi-
Newton optimization algorithm. If the number of random effects is large, as it typically
is for separable models, it may be more efficient to use a ‘limited memory quasi-Newton’
optimization algorithm. This is done using the command line argument -ilmn N, where
N is the number of steps to keep. Typically N=5 is a good choice.

http://otter-rsch.com/admbre/examples/union/union.html
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2.5.3 Gaussian priors and quadratic penalties

In most models the prior for the random effect will be Gaussian. In some situations,
such as in spatial statistics, all the individual components of the random effects vector
will be jointly correlated. ADMB contains a special feature (the normal prior keyword)
for dealing efficiently with such models. The construct used to declaring a correlated
Gaussian prior is

random_effects_vector u(1,n)

normal_prior S(u);

The first of these lines is an ordinary declaration of a random effects vector. The second
line tells ADMB that u has a multivariate Gaussian distribution with zero expectation
and covariance matrix S , i.e. the probability density of u is

h(u) = (2π)−1/2 det(S)−1/2 exp

(
−1

2
u′S−1u

)
.

Here, S is allowed to depend on the hyper-parameters of the model. The part of the
code where S gets assigned its value must be placed in a SEPARABLE FUNCTION (see http:

//otter-rsch.com/admbre/examples/spatial/spatial.html).

F The log-prior log (h (u)) is automatically subtracted from the objective function. It
is thus necessary that the objective function holds the negative loglikelihood when
using the normal prior.

F To verify that your model really is partially separable you should try replacing the
SEPARABLE FUNCTION keyword with an ordinary FUNCTION. Then verify on a small
subset of your data that the two versions of the program produce the same results.
You should be able to observe that the SEPARABLE FUNCTION-version runs faster.

2.5.4 Importance sampling

The Laplace approximation may be inaccurate in some situations . The quality of the
approximation may then be improved by adding an importance sampling step. This is
done in ADMB-RE by using the command line argument -is N seed, where N is the
sample size in the importance sampling and seed (optional) is used to initialize the
random number generator. Increasing N will give better accuracy, at the cost of a longer
run time. As a rule-of-thumb you should start with N=100, and increase N stepwise by a
factor of 2 until the parameter estimates stabilize.

By running the model with different seeds you can check the Monte Carlo error in
your estimates, and possibly average across the different runs to decrease the Monte
Carlo error. Replaing the -is N seed option with a -isb N seed gives you a “balanced”
sample, which in general should reduce the Monte Carlo error.

For large values of N, the option -is N seed will require a lot of memory, and you
will see that huge temporary files are produced during the execution of the program. The
option -isf 5 will split the calculations relating to importance sampling into 5 (or any
number you like) batches. In combination with the techniques discussed in Section 2.5.1,
this should reduce the storage requirements. An example of a command line is:

http://otter-rsch.com/admbre/examples/spatial/spatial.html
http://otter-rsch.com/admbre/examples/spatial/spatial.html
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lessafre -isb 1000 9811 -isf 20 -cbs 50000000 -gdb 50000000

The -is option can also be used as a diagnostic tool for checking the accuracy of the
Laplace approximation. If you add the -pis (print importance sampling) the importance
sampling weights will be printed at the end of the optimization process. If these weights
do not vary much, the Laplace approximation is probably doing well. On the other hand,
if a single weight dominates the others by several orders of magnitude, you are in trouble,
and it is likely that even -is N with a large value of N is not going to help you out. In
such situations, reformulating the model, with the aim of making the loglikelihood closer
to a quadratic function in the random effects, is the way to go. See also the following
section.

2.5.5 Gauss-Hermite quadrature

In the situation where the model is separable of type ”block diagonal Hessian” with only a
single random effect in each block (see Section 2.4), Gauss-Hermite quadrature is available
as an option to the Laplace approximation and the -is option (importance sampling). It
is invoked with command line option -gh N where N is the number of quadrature points.

2.5.6 Phases

A very useful feature of ADMB is that it allows the model to be fit in different phases.
In the first phase you estimate only a subset of the parameters, with the remaining
parameters being fixed at their initial values. In the second phase more parameters are
turned on, and so it goes. The phase in which a parameter becomes active is specified in
the declaration of the parameter. By default a parameter has phase 1. A simple example
would be

PARAMETER_SECTION

init_number a(1)

random_effects_vector b(1,10,2)

where a becomes active in phase 1, while b is a vector of length 10 that becomes active in
phase 2. With random effects we have the following rule-of-thumb for the use of phases:

1. Activate the random effects and the corresponding variance parameter in phase 2.

2. Activate the remaining hyper-parameters in phase 1.

When there are more than one random effects vector, it may be advantageous to let these
become active in different phases.

During program development it is often useful to be able to completely switch a
parameters off. A parameter is inactivated when given phase ‘-1’ as in

PARAMETER_SECTION

init_number c(-1)
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The parameter is still part of the program, and its value will still be read from the pin-file,
but it does not take part in the optimization (in any phase).

For further details about phases, please consult the section ‘Carrying out the mini-
mization in a number of phases’ in the ADMB manual (not this document).

2.5.7 MCMC

There are two different MCMC methods built into ADMB-RE: -mcmc and -mcmc2. Both
are based on the Metropolis-Hastings algorithm. The former generates a Markov chain on
the hyper-parameters only, while -mcmc2 generates a chain on the joint vector of hyper-
parameters and random effects. (Some sort of rejection sampling could be used with -mcmc

to generate values also for the random effects, but this is currently not implemented). The
advantages of -mcmc are:

• Because there typically is a small number of hyper-parameters, but a large number
of random effects, it is much easier to judge convergence of the chain generated
by -mcmc than that generated by -mcmc2.

• The -mcmc chain mixes faster than the -mcmc2 chain.

The disadvantage of the -mcmc option is that it is slow, because it relies on evaluation
of the marginal likelihood by the Laplace approximation. It is recommended to run
(separately) both of -mcmc and -mcmc2 to verify that they yield the same posterior for
the hyper-parameters.

2.6 Are all the ADMB-functions in ADMB-RE?

You will find that not all the functionality of ordinary ADMB has yet been implemented
in ADMB-RE. Functions are being added all the time.
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Command line options

A list of command line options accepted by ADMB programs can be obtained by giving
the option -? to the application, for instance simple -?. The following command line
options are specific to ADMB-RE. Please consult the ordinary ADMB manual for the rest
of the command line options.

Option Explanation
-is N seed use importance sampling with sample size N and seed

-pis print importance sampling weights
-ilmn N N-step limited memory quasi Newton for random effects
-gh N perform N point Gauss-Hermite quadrature
-nr N perform N Newton-Raphson steps in the Laplace approximation
-imaxfn N perform N optimization steps in the Laplace approximation
-ndb N splits computations into N chunks
-l1 N set the size of buffer f1b2list1 to N

-l2 N set the size of buffer f1b2list12 to N

-l3 N set the size of buffer f1b2list13 to N

-nl1 N set the size of buffer nf1b2list1 to N

-nl2 N set the size of buffer nf1b2list12 to N

-nl3 N set the size of buffer nf1b2list13 to N

31



32 APPENDIX A. COMMAND LINE OPTIONS



Appendix B

Interfacing ADMB with R

R is a popular freely available software package for statistical analysis. It is convenient
to be able to call ADMB programs from R. This appendix explains how to:

• Write data to the .dat and .pin files.

• Call an exe-file produced with ADMB (via the system() function in R).

• Read back the .par and .std files.

It is also possible to compile an ADMB program into an dll that can be linked with R,
as described in the chapter “Creating Dynamic Link Libraries with AD Model Builder”
of the ADMB manual.

Consider the simple linear regression (y against x). We first generate data in R

> y = rnorm(3)

> x = rnorm(3)

> dat_write("simple",list(n=length(y),y=y,x=x))

which produces the file simple.dat:

# "simple.dat" produced by dat_write() from ADMButils; Wed ...

# n

3

# y

0.4157458 0.07686372 -0.709638

# x

-1.662676 1.193920 -0.08753698

33
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Currently, dat write() handles vector and matrix arguments, but not 3-dimensional
arrays. Similarly, pin write() writes initial values for the parameters to simple.pin.

To invoke simple.exe (assumed to exists in the directory where R is running) we
give the command:

> system("simple",T)

We then read back the results using either of the commands

> L1 = par_read("simple")

> L2 = std_read("simple")

which both return list objects (L1 and L2).
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