

ISEP

Polytechnic Institute of Porto

School of Engineering

Multiprocessor platform using LEON3

processor

António João dos Santos Sousa

A dissertation submitted in partial fulfilment of the specified requirements for the degree

of Master in Electrical and Computer Engineering

Supervision: Prof. Eduardo Silva and Prof. Alfredo Martins

Enterprise orientation: Eng. Rodolfo Martins from Evoleo Technologies

Porto, December, 2009

 iii

Abstract

The recent advances in embedded systems world, lead us to more complex systems with

application specific blocks (IP cores), the System on Chip (SoC) devices. A good example

of these complex devices can be encountered in the cell phones that can have image proc-

essing cores, communication cores, memory card cores, and others.

The need of augmenting systems’ processing performance with lowest power, leads to a

concept of Multiprocessor System on Chip (MSoC) in which the execution of multiple

tasks can be distributed along various processors.

This thesis intends to address the creation of a synthesizable multiprocessing system to be

placed in a FPGA device, providing a good flexibility to tailor the system to a specific ap-

plication. To deliver a multiprocessing system, will be used the synthesisable 32-bit

SPARC V8 compliant, LEON3 processor.

Keywords

Multiprocessor, Multicore, LEON3, IP core, SPARC V8, FPGA, Altera, SoC, MSoC,

Linux, Operating System.

 iv

 v

Resumo

Os avanços recentes no mundo dos sistemas embebidos levam-nos a sistemas mais

complexos com blocos para aplicações específicas (IP cores), os dispositivos System on

Chip (SoC). Um bom exemplo destes complexos dispositivos pode ser encontrado nos

telemóveis, que podem conter cores de processamento de imagem, cores de comunicações,

cores para cartões de memória, entre outros.

A necessidade de aumentar o desempenho dos sistemas de processamento com o menor

consumo possível, leva ao conceito de Multiprocessor System on Chip (MSoC) em que a

execução de múltiplas tarefas pode ser distribuída por vários processadores.

Esta Tese pretende abordar a criação de um sistema de multiprocessamento sintetizável

para ser colocado numa FPGA, proporcionando uma boa flexibilidade para a adaptação do

sistema a uma aplicação específica. Para obter o sistema multiprocessamento, irá ser

utilizado o processador sintetizável SPARC V8 de 32-bit, LEON3.

Palavras-Chave

Multiprocessador, Multicore, LEON3, IP core, SPARC V8, FPGA, Altera, SoC, MSoC,

Linux, Sistema Operativo.

 vi

 vii

Table of Contents

ABSTRACT ... III

RESUMO ...V

TABLE OF CONTENTS...VII

LIST OF FIGURES... IX

LIST OF TABLES...XI

LIST OF ACRONYMS..XIII

1. GENERAL INFORMATION.. 1

1.1. INTRODUCTION... 1
1.2. CONTEXT.. 3
1.3. OBJECTIVES.. 3
1.4. STRUCTURE OF THIS THESIS.. 4

2. MULTIPROCESSOR CONCEPTS.. 7

2.1. HOMOGENEOUS AND HETEROGENEOUS SYSTEMS.. 7
2.2. SYMMETRIC MULTIPROCESSING AND ASYMMETRIC MULTIPROCESSING.. 9
2.3. CACHE COHERENCY PROTOCOL... 10
2.4. MEMORY MANAGEMENT UNIT ... 11

3. FPGA ARCHITECTURE AND HARDWARE DESCRIPTION LANGUAGE 13

3.1. FPGA ARCHITECTURE OVERVIEW ... 13
3.2. ALTERA CYCLONE III ... 15
3.3. VHDL .. 17

4. PROCESSORS ARCHITECTURES.. 21

4.1. ERC32.. 21
4.2. LEON... 23
4.3. ARM .. 24

5. LEON3 ARCHITECTURE ... 27

5.1. PROCESSOR... 27
5.2. INTEGER UNIT .. 28
5.3. DEBUG SUPPORT UNIT 3... 30
5.4. INTERCONNECT BUS (AMBA).. 30

 viii

5.5. CACHES...32
5.6. MULTIPROCESSOR SUPPORT..32

6. SYSTEM REQUIREMENTS AND SPECIFICATION...35

6.1. GENERAL REQUIREMENTS...35
6.2. SYSTEM SPECIFICATION..36
6.3. SELECTED HARDWARE FRAMEWORK..37

7. PRELIMINARY ARCHITECTURE DESIGN41

7.1. PRELIMINARY DESIGN...41
7.2. VERIFICATION AND TEST CONFIGURATIONS...45

8. DETAILED ARCHITECTURE DESIGN ..49

8.1. SYSTEM CONFIGURATION..51
8.2. PIN ASSIGNMENT...51
8.3. PRE-SYNTHESIS SIMULATION ..51
8.4. SYNTHESIS AND PLACE AND ROUTE..52

9. VERIFICATION AND OVERALL TESTS53

9.1. HARDWARE VERIFICATION ...53
9.2. TEST RESULTS...54
9.3. CONCLUDING REMARKS..61

10. GENERAL CONCLUSIONS...63

10.1. CONCLUSIONS...63
10.2. FUTURE WORK..64

REFERENCES...67

APPENDIX A. GRLIB IP LIBRARY..71

APPENDIX B. MEMORY MAP AND INTERRUPTS ..77

APPENDIX C. EXTERNAL INTERFACE SIGNALS79

APPENDIX D. PIN ASSIGNMENT...81

 ix

List of Figures

Figure 1 C6474 family – homogeneous multicore system [10].. 8

Figure 2 Cell processor – heterogeneous multicore system [12]..8

Figure 3 Symmetric Multiprocessing and Asymmetric Multiprocessing [15]. 9

Figure 4 Cache replicas in multiple processors, a coherency problem in SMP systems [18]. ... 10

Figure 5 Block diagram representation of a system with MMU [5]... 11

Figure 6 Paging concept [4].. 12

Figure 7 Segmentation concept [4]... 12

Figure 8 LEON3 cache and MMU perspective [3]... 12

Figure 9 FPGA architecture.. 14

Figure 10 Current FPGA architecture... 15

Figure 11 Altera Cyclone III architecture overview... 16

Figure 12 Multiplier block architecture.. 17

Figure 13 VHDL AND gate block diagram representation.. 19

Figure 14 ESA / ERC32 evaluation board Error! Reference source not found.. 21

Figure 15 ERC32 architecture Error! Reference source not found... 22

Figure 16 TSC695F block diagram [23]... 23

Figure 17 LEON block diagram Error! Reference source not found.. 24

Figure 18 S5PC100 from ARM Cortex A8 family used in new iPhone 3G [33]. 25

Figure 19 ARM11 MPCore architecture .. 26

Figure 20 Harvard architecture [1] ... 28

Figure 21 LEON3 integer unit data path diagram [3]... 29

Figure 22 DSU and debug interface [2].. 30

Figure 23 AHB multiplexer interconnection [6]... 31

Figure 24 Typical AMBA AHB and APB system [6] .. 32

Figure 25 LEON3-MP system perspective... 36

Figure 26 Cyclone III FPGA Starter Kit... 38

Figure 27 Final hardware framework ... 39

Figure 28 Proposed multiprocessor architecture .. 42

Figure 29 LEON3 processor internal architecture.. 43

Figure 30 LEON3 DSU interfaces.. 44

 x

Figure 31 LEON3 multiprocessor design perspective .. 45

Figure 32 LEON3 multiprocessor platform.. 49

Figure 33 Design flow perspective ... 50

Figure 34 P1 benchmark time consumption over time ... 55

Figure 35 P2 benchmark time consumption over time ... 56

Figure 36 R1 benchmark time consumption over time... 57

Figure 37 R2 benchmark time consumption over time... 58

Figure 38 M1 benchmark time consumption over time.. 59

Figure 39 M2 benchmark time consumption over time.. 60

 xi

List of Tables

Table 1 Hardware configurations description ... 46

Table 2 Benchmark applications description .. 47

Table 3 P1 benchmark results ... 55

Table 4 P2 benchmark results ... 56

Table 5 R1 benchmark results ... 57

Table 6 R2 benchmark results ... 58

Table 7 M1 benchmark results .. 59

Table 8 M2 benchmark results .. 60

Table 9 Benchmark results summary .. 61

Table 10 Processors and support functions ... 71

Table 11 Floating-point units .. 71

Table 12 Memory controllers .. 72

Table 13 AMBA Bus control .. 72

Table 14 PCI interface... 73

Table 15 On-chip memory functions... 73

Table 16 Serial communication... 73

Table 17 Ethernet interface ... 74

Table 18 USB interface ... 74

Table 19 MIL-STD-1553 Bus interface .. 74

Table 20 Encryption .. 74

Table 21 Simulation and debugging.. 74

Table 22 CCSDS Telecommand and telemetry functions... 75

Table 23 HAPS functions.. 75

Table 24 AMBA address range and interrupts .. 77

Table 25 External interface signals list ... 79

Table 26 Pin assignment list.. 81

 xii

This page was intentionally left blank.

 xiii

List of Acronyms

AHB Advanced High-Performance Bus

AMP Asymmetric Multiprocessing

APB Advanced Peripheral Bus

ARM Advanced Risc Machine

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Products

ATB Advanced Test Bus

AXI Advanced eXtensible Interface

CPLD Complex Programmable Logic Device

DDR Double Data Rate

DSU Debug Support Unit

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-Only Memory

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FIFO Firs-In First-Out

FPGA Field Programmable Gate Array

FPU Floating Point Unit

HDL Hardware Description Language

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IU Integer Unit

I/O Input/Output

JTAG Joint Test Action Group

JVM Java Virtual Machine

LUT Look-Up Table

MEC Memory Controller

MMU Memory Management Unit

MSoC Multiprocessor System On-Chip

 xiv

NASA National Aeronautics and Space Administration

OS Operating System

PCI Peripheral Component Interconnect

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System

SEL Single Event Latch-up

SEU Single Event Upset

SMP Symmetric Multiprocessing

SoC System On-Chip

SPARC Scalable Processor Architecture

SPE Synergetic Processing Element

SDRAM Synchronous Dynamic Random Access Memory

SRAM Synchronous Random Access Memory

UART Universal Asynchronous Receiver Transmitter

US United States

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

TLB Translation Look-aside Buffer

 1

1. GENERAL INFORMATION

1.1. INTRODUCTION

Actual embedded systems have all interfaces needed in one chip, a SoC (System on Chip),

resulting in an expressive reduction in space and costs of a system. The increase of proc-

essing needs in actual systems lead us to multiprocessors, each executing dedicated tasks

with high level of processing capabilities improving the overall system performance.

A SoC is intended to implement most or even all functionalities of an electronic system

and can include: a processor to manage the system, on-chip memories and memory con-

trollers to interface external memories, DSP functionalities, specific co-processors, com-

munication peripherals like PCI/PCIe, USB, Ethernet, UART, SPI and I²C, among others.

This type of devices can be found in many product categories like cell phones requiring

low-power programmable processors, telecommunications and networking using several

high-speed and high complex systems SoC and digital televisions with needs of higher

resolution [1].

With the needs of more speed and more processing power to achieve the performance

wanted, concepts of Multiprocessor System-on-Chip (MSoC) appear. The concept is the

same of SoC but with multiple processors.

 2

Another important issue related to SoC or MSoC is where to implement it. Such systems

were only developed by Integrated Circuits (ICs) manufacturers using Electronic Design

Automation (EDA) tools for the development of Application Specific Integrated Circuits

(ASICs). With the progressive development of new powerful and feature rich Field Pro-

grammable Gate Arrays (FPGAs) and Complex Programmable Logic Device (CPLD), this

type of developments can be done more easily in much less time, taking the advantage of

being configurable, to reduce the overall system space, weight and providing high per-

formance with the lowest power consumption compared with standard ICs, which makes

these devices ideal for high performance embedded systems.

As the systems complexity grows, the management can be also complex in such way that

the use of an Operating System (OS) or a Real Time Operating System (RTOS) is a must.

With the multiprocessing systems appearance, a new type of OS supporting both Symmet-

ric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP) systems arises.

Nowadays, some areas can benefit from the high performance and low power consumption

provided by this type of system designs. These product design benefits can be encountered

in space, aerospace, military, automotive, medical and autonomous systems areas, where

the system reliability is a major concern.

Today we can found multiprocessor systems in desktops or laptops devices, named dual-

core or quad-core, but this type of devices are not suitable for embedded systems or de-

signs with high degree of tailoring. New design tools to build multiprocessor systems for

embedded designs are now accessible, providing support to FPGA devices using Hardware

Description Languages like VHDL or Verilog.

This thesis addresses the creation of a synthesizable multiprocessing system can be placed

in any FPGA device architecture providing flexibility for choosing the right hardware for a

specific application. To deliver a multiprocessing system it will be used the synthesisable

32-bit SPARC V8 compliant, LEON3 processor, which is used in space applications by

Evoleo Technologies, the main requirements supplier in this thesis.

The Linux 2.6 OS which supports SMP, will be used in order to test the system perform-

ance and provide base software configured to be used in the developed architecture.

 3

1.2. CONTEXT

This thesis was developed in a cooperation between Evoleo Technologies, Lda and the

Autonomous Systems Laboratory from ISEP.

To augment and expand knowledge in the area of multiprocessing systems for industry and

space applications, this thesis was proposed by Evoleo Technologies, Lda, in the context of

the Master’s course.

Evoleo Technologies, Lda is an enterprise that acts in two main branches. One is oriented

to industry with development of automatic test equipments (ATE), automation solutions

with National Instruments hardware and software (LabView). The second branch is ori-

ented to space applications, with development of hardware and software.

The Autonomous Systems Laboratory is a research and development (R&D) unit from

ISEP, conducting research in autonomous systems and related areas, such as navigation,

control and coordination of multiple robots. Currently, this laboratory is responsible for the

Master’s course in Autonomous Systems, a specialization within the Electrical and Com-

puter Engineering area.

1.3. OBJECTIVES

The main goal of this thesis is to create a base of knowledge developing synthesisable mul-

tiprocessor systems, tailored to a specific design using FPGA devices, delivering the whole

system design tools knowledge for future designs, reducing the time to market of multi-

processor systems designs.

The FPGA family to be used shall be from the Altera manufacturer, benefiting of the

knowledge developed by the enterprise with this manufacturer devices.

The multiprocessor architecture proposed in this thesis shall be specified and designed us-

ing the LEON3 processor and GRLIB IP Library which contains several Cores to be used

in conjunction with LEON3. The system to be implemented shall be general purpose pro-

viding a platform for future developments with multiprocessor systems.

 4

Application software shall be created in order to test the system developed. A base of com-

parison between uniprocessor and multiprocessor shall be proposed to validate and prove

the advantages of multiprocessing systems in general applications. The tests should be

made using a set of benchmarking applications with multiple tasks running simultaneously,

comparing the overall time consumption to run all applications in uniprocessor and multi-

processor systems.

1.4. STRUCTURE OF THIS THESIS

This thesis is structured as follows.

Chapter 2 presents some multiprocessor concepts related to type of cores architectures,

multiprocessing symmetry, cache coherency between processors and memory manage-

ment.

Chapter 3 presents general FPGAs architectures with some details about Altera Cyclone III

architecture and an overview of the Hardware Description Language (HDL), VHDL.

Chapter 4 exposes three synthesizable processor architectures, the ERC32 processor used

mainly for space applications, followed by the LEON architecture which was made to im-

prove some aspects of the ERC32 processor architecture, and finally the ARM processor

architecture which provides, in recent versions, multiprocessor support which could be a

good alternative to the architecture addressed in this thesis.

Chapter 5 presents the LEON3 architecture focusing in the main units, as the processor

core and its integer unit, the debug unit, the interconnect bus used to connect all system

cores, the two caches and the multiprocessor support provided by this architecture.

Chapter 6 exhibits the system requirements and specification, as well as the selected hard-

ware framework to support the multiprocessor architecture.

Chapter 7 provides preliminary architecture definition and design, and also provides the

plan for the verification and test of the architecture.

Chapter 8 contains the detailed design description, as system configuration, pin assign-

ment, pre-synthesis simulation, synthesis, place and route.

 5

Chapter 9 exhibits the verification and test results obtained according to the plan outlined

in Chapter 7.

Finally, Chapter 10 provides the general conclusions obtained in the development of this

thesis and the proposed future work.

 6

This page was intentionally left blank.

 7

2. MULTIPROCESSOR CONCEPTS

2.1. HOMOGENEOUS AND HETEROGENEOUS SYSTEMS

As the major hardware vendors are moving to multicore systems, some questions about

what kind of processors to use in the same system or same chip arise. “Use the same or dif-

ferent types of processor cores in our systems?”. Two system types are discussed, the ho-

mogeneous and the heterogeneous.

2.1.1. HOMOGENEOUS SYSTEM

Systems having identical cores are named homogeneous systems, such as the Intel Core 2

or Tilera 64.

A homogeneous system is a simpler system compared to a heterogeneous system because

the same core type is replicated in the same system, decreasing the time to learn new core

architecture and the associated tools [7]. With this approach the same core components can

be reused for the same and future developed systems, and the existing software code mi-

gration is much easier than heterogeneous systems [11].

 8

Figure 1 C6474 family – homogeneous multicore system [10]

In a homogeneous system, any core can run any task, facilitating the software scheduler

job. Another important issue is the power consumption, a special concern nowadays, which

can be much easier because any core can be switched OFF to reduce any power consump-

tion when the system does not need too much processing power and switched ON when the

processing complexity increases, benefiting of the homogeneous tasks distribution [9].

2.1.2. HETEROGENEOUS SYSTEM

In contrast with homogeneous systems, heterogeneous systems are built with specialized

hardware. One example of a heterogeneous system is the Cell processor, which contains

one general purpose PowerPC core and 6-8 synergetic processing elements (SPE) to per-

form specific tasks as video, audio and communications processing [7].

Figure 2 Cell processor – heterogeneous multicore system [12]

 9

A heterogeneous multicore system has the advantage of being optimized to a specific task,

reducing the processing time to the minimum required for a certain task and consequently

the power consumption to that task is reduced. In this case, the software development shall

be independent for each core and in certain cases the software tools shall be completely

different, requiring knowledge of various tools. The software portability can be another

drawback of heterogeneous cores because the software developed for this specialized

hardware can not be reused in news designs with new specialized hardware [8].

2.2. SYMMETRIC MULTIPROCESSING AND ASYMMETRIC MULTIPROCES-

SING

Multicore processors can be denominated multiprocessing systems because of their proc-

essing parallelism. The multiprocessing system can be symmetric, asymmetric or even a

mixture of both, i.e. bound. The appropriate form of multiprocessing must be selected prior

to develop the multicore system hardware because this choice will determine the type of

multicore system, a homogeneous or heterogeneous system.

Figure 3 Symmetric Multiprocessing and Asymmetric Multiprocessing [15].

2.2.1. ASYMMETRIC MULTIPROCESSING

The Asymmetric Multiprocessing (AMP) model works with a separate OS or same OS in

each core. This approach is similar to systems with only one core, where each core has its

own OS and to benefit of multiprocessing, an interprocess communications is used to pass

messages between nodes [14].

To take advantage of multiprocessing, the development of software must be focused in

parallelism paradigm which leads to new development software methodologies to handle

the management of shared hardware resources [16].

 10

2.2.2. SYMMETRIC MULTIPROCESSING

The Symmetric Multiprocessing (SMP) model needs only one OS running and controlling

all cores. The main advantage of this model lies in the assumption that the OS controls all

hardware resources, so, the OS scheduler can dynamically allocate any task, process or

thread to any available core, benefiting of the fact that any core can accept any OS object

[15]. In this model all interprocess communications are made over shared memory [13].

Another important issue to be taken into account in shared memory systems is the coher-

ence between cores caches contents. An efficient cache coherency protocol should be used

in order to prevent data corruption.

Some OS require a Memory Management Unit (MMU) for advanced memory management

and protection.

2.3. CACHE COHERENCY PROTOCOL

When the SMP model is used in a multicore system, all processors share the same memory

address space. Because of this capability available in SMP models, a cacheable system

needs a cache coherency protocol to manage and control the cache system [17]. Several

cache coherency mechanisms exist, as snooping, directory-based or snarfing. In this chap-

ter, the cache coherency mechanism that will be focused is the cache snooping because of

its usage in the LEON3 processor.

Figure 4 Cache replicas in multiple processors, a coherency problem in SMP systems [18].

 11

A snoop mechanism consists of a unit integrated in the cache system, which is constantly

monitoring all transactions related to cache operations, in the main memory access bus, the

AHB bus, ensuring memory coherency in shared memory systems. A snoop unit monitors

AHB bus to find data written to any processor in the system, ensuring that do not contain

any copy of that data. In case of equal data detection, the cache line that contains it is

marked as invalid [3].

A write-through policy can be used (LEON3 has this mechanism available) in conjunction

with cache snooping in order to write data to main memory, reducing write loads on the

AHB bus [18]. The reduction in write transactions is made using an update policy, in other

words, when a processor writes to main memory location that is cached, both the cache and

the main memory are updated.

2.4. MEMORY MANAGEMENT UNIT

A Memory Management Unit (MMU) emerged with the needs of multitasking and multi-

user operating systems that share one common memory space. With this demand is re-

quired that the MMU, protects users privacy, prevents unauthorized access and prevents

accesses to data currently in use.

Figure 5 Block diagram representation of a system with MMU [5].

To meet these system requirements, the MMU translates virtual addresses into physical

addresses and manages all memory accesses. A system without MMU can access main

memory using physical addresses, i.e. use the main memory addresses without any type of

codification. With MMU, when the processor needs to access the main memory it uses vir-

tual addresses that will be translated by the MMU into physical addresses to access data.

To implement virtual address spaces in hardware, paging and segmentation can be used.

 12

Figure 6 Paging concept [4].

Paging uses a concept of a fixed block size, named page, which divides virtual address

space (logical memory) into pages containing mapping entries necessary to access physical

address space. Segmentation differs from paging in size, where each block, named seg-

ment, is variable in size and does not contain information about physical address space

mapping, but rather its length and flags for OS information.

Figure 7 Segmentation concept [4].

The addresses translation is made through a Translation Look-aside Buffer (TLB), a cache

used by MMU to improve virtual address translation, which contains page table entries

mapping virtual addresses to physical addresses.

Figure 8 LEON3 cache and MMU perspective [3].

 13

3. FPGA ARCHITECTURE AND HARD-

WARE DESCRIPTION LANGUAGE

3.1. FPGA ARCHITECTURE OVERVIEW

With more than two decades, the Field Programmable Gate Array (FPGA) is a customiza-

ble logic device containing logic blocks connected through interconnects arrays. The first

FPGA was developed by Xilinx in 1985, containing a matrix of independent logic blocks

and also independent input/output (I/O) blocks in the periphery, connected through pro-

grammable interconnect resources. With this approach, it’s possible to have both logic

blocks and I/O blocks to perform specific functions.

 14

I/O block

Interconnect
resources

Logic block

Figure 9 FPGA architecture

Currently there are three FPGA architecture types.

1. SRAM

SRAM-based FPGAs, contain static memory cells used as interconnect multiplexers to se-

lect the right path for each signal and to store data in LookUp-Tables (LUTs). As any

SRAM, after power-down all configurations are lost, so, an external device to store con-

figurations is needed to transfer data after FPGA power-up;

2. Flash/EEPROM

In early FPGA architectures, the EEPROM memory cells were only used to implement

wired-AND functions as in Programmable Logic Device (PLD), but with new manufactur-

ing technologies and the appearance of Flash memory cells, this technology evolved to

store all signals path and cells states, not requiring external memory with configuration set-

tings;

3. Anti-fuse

Unlike the SRAM or Flash/EEPROM memory cells, the anti-fuse FPGAs cells after being

programmed are permanently linked, storing all switch interconnect and cells configura-

tions with no regress. This type of technology is mainly used in military and aerospace in-

dustries as radiation tolerant devices.

 15

3.1.1. CURRENT FPGA ARCHITECTURES

Since the first FPGA, the architecture as evolved to produce more devices with high densi-

ties, high-speed interconnects and function specific blocks, as memory blocks, Digital Sig-

nal Processing (DSP) blocks, clock management blocks and communications specific I/O

blocks.

Figure 10 Current FPGA architecture

3.2. ALTERA CYCLONE III

The Altera Cyclone III FPGA was chosen to hold the system to be developed, because this

device family offers to developers a lot of features combined with low-power consumption

and low cost. The Cyclone III family is well used for SoC designs, providing interesting

features for this type of applications.

 16

Figure 11 Altera Cyclone III architecture overview

The following subsections will present the Cyclone III family architecture features.

3.2.1. LOGIC ELEMENTS AND LOGIC ARRAY BLOCKS

The Logic Element is the smallest block which is able to implement several types of func-

tions as, a D, JK, T or SR flip-flop with data, clock, clock enable, clear input, contain a

four input Look-Up Table (LUT) able to implement logic operations, has register chain

connection and provides interface to local, row and column interconnections.

3.2.2. MEMORY BLOCKS

Each built-in memory block (M9K), provides 9 kbits of memory which can operate at 315

MHz. The on-chip memory structure consists of M9K blocks columns that can be config-

ured as Random Access Memory (RAM), First-In First-Out (FIFO) buffers or Shift Regis-

ter with support to single-port, simple dual-port and true dual-port modes.

3.2.3. EMBEDDED MULTIPLIERS

Embedded multipliers provide on-chip DSP operations, which are ideal to reducing cost

and power consumption while increasing system performance. The Cyclone III family pro-

vides up to 288 embedded multipliers blocks supporting individual 18x18 bit multipliers or

two individual 9x9 bit multipliers. With this features, device family is ideal to host SoCs

with high-performance co-processors or to act as co-processor system.

 17

Figure 12 Multiplier block architecture

3.2.4. CLOCK NETWORKS

The device family provides 20 global clock networks which can be driven from dedicated

clock pins, dual-purpose clock pins, user logic and PLLs. This architecture also provides

up to four PLLs with five outputs per PLL, allowing robust clock management.

3.2.5. I/O FEATURES

One of the most interesting things in FPGA architectures are the I/O features in which each

FPGA is divided in several I/O banks with support to several I/O standards, making it ideal

for multi-protocol systems. The Cyclone III has eight I/O banks supporting a variety of I/O

standards. These standards can be single-ended as LVTTL, LVCMOS, SSTL, HSTL, PCI

and PCI-X or differential as SSTL, HSTL, LVPECL, BLVDS, LVDS, mini-LVDS, RSDS

and PPDS. Other I/O features are output port programmable current strength, slew rate

control, open-drain output, programmable pull-up resistor and On-Chip Termination

(OCT) resistors to provide I/O impedance matching and termination capabilities.

3.3. VHDL

In the early 80’s, the United States (US) Department of Defence began development of the

Very High Speed Integrated Circuit (VHSIC) project, with the main goal being to provide

better methodologies to design new Integrated Circuits (ICs) in order to reduce the devel-

opment time and costs, and to provide a new way to document the ICs behaviour that could

 18

be simulated before production. A few years later, the Institute of Electrical and Electron-

ics Engineers (IEEE) released a standard to produce the VHSIC Hardware Description

Language (VHDL).

In nowadays, this HDL is used in development of ASICs, FPGAs and Application Specific

Standard Products (ASSPs). The main advantages of using VHDL are:

• It is an IEEE standard, which makes easier the exchange of information between tools

and companies developing ICs with this standard;

• Technology independence in development, which means that the same behaviour

documented using VHDL can be achieved in a wide range of digital hardware;

• It is a flexible language allowing various design methodologies;

• It is highly portable and can be used in various tools at different stages in the design

process.

Currently, some institutions as National Aeronautics and Space Administration (NASA)

and European Space Agency (ESA), adopted VHDL as the main Hardware Description

Language for internal and sub-contractors project developments.

The VHDL syntax is similar to ADA and Pascal languages, and is very useful for concur-

rent designs, providing a set of tools for this purpose.

In the next lines a sample code using VHDL is presented, showing the behaviour of an

AND gate.

entity AND is
port (INA, INB: in bit; OUTA: out bit);
end AND
architecture behaviour of AND is
begin
 process (INA, INB)
 begin
 OUTA <= INA AND INB;
 end process;
end behaviour;

 19

Figure 13 VHDL AND gate block diagram representation

 20

This page was intentionally left blank.

 21

4. PROCESSORS ARCHITECTURES

4.1. ERC32

The ERC32 is a 32-bit SPARC V7 compliant and radiation-tolerant processor core, devel-

oped to be a high-performance, general-purpose computer to host real-time operating sys-

tems for space applications. The processor core development began in 1992 at the Euro-

pean Space Research and Technology Centre (ESTEC) and extended to 1997.

The fault-tolerance of ERC32 was implemented to concurrently detect errors in the internal

logic, isolate any error to prevent any propagation to the outside of the processor core and

to handle with errors, restoring to the correct state the internal logic where the fault oc-

curred.

Figure 14 ESA / ERC32 evaluation board Error! Reference source not found..

 22

The ERC32 architecture consists of three core elements, an Integer Unit (IU), a Floating-

Point Unit (FPU) and a Memory Controller (MEC).

Figure 15 ERC32 architecture Error! Reference source not found..

The first version of the ERC32, manufactured and commercialized by ATMEL (formerly

TEMIC Semiconductors), was a three chip system composed of an IU (TSC691), a FPU

(TSC692) and a MEC (TSC693) [19] [20] [21] [22].

After the experience gained around the three chips ERC32 system, ATMEL developed a

single chip, the TSC695E [23], with the three main units of the previous version. The new

device was developed with more recent technology and more efficient hardening tech-

niques, revealing more robustness to Single Event Upsets (SEUs) and Single Event Latch-

ups (SELs). Other advantages that came with the single chip ERC32 device, was the in-

crease of system performance and the power consumption reduction [24].

 23

Figure 16 TSC695F block diagram [23].

4.2. LEON

The LEON was originally developed by Jiri Gaisler at ESTEC, to succeed the ERC32

processor core [26].

The main goals were to provide a high performance fault tolerant processor, which could

be implemented in non radiation hardening components to simplify early developed test

systems, to provide portability across wide range of semiconductor devices maintaining

functionality and performance, provide modularity allowing reuse in development of SoC

designs, provide standard interfaces to facilitate the integration with commercial products

and to provide software compatibility with the previous developed processor, the ERC32.

The LEON processor is a 32-bit SPARC V8 compliant processor implemented as a high-

level VHDL model, with a 5-stage pipeline, hardware multiplier and divider units, dual co-

processor interfaces and separate instruction and data buses and caches [27]. The SPARC

V8 architecture was chosen to maintain software compatibility with ERC32 and to avoid

licensing issues. The interconnect bus standard chosen was AMBA with AMBA AHB for

cores needing high performance data transactions and AMBA APB for cores designed to

low-power consumption and low-performance [25].

 24

Figure 17 LEON block diagram Error! Reference source not found..

The first prototype was manufactured by ATMEL (ATC35) in a 0.35 µm CMOS process.

4.3. ARM

Historically, the Advanced Risc Machine (ARM) was founded by Acorn, Apple and VLSI

in 1990. ARM is a high-performance processor which is specially designed for low-power

consumption portable devices, as PDAs, cell-phones, media players and game players. The

ARM processor has wide range of products divided in various processor families, as

ARM7, ARM9, ARM10 and ARM11, which can have MMU, cache, FPU, multiplier, de-

bugger, Java Virtual Machine (JVM) and Thumb instructions support [28].

The ARM is 32-bit processor with a Reduced Instruction Set Computer (RISC) architec-

ture, with a pipeline integer unit and a large set of general-purpose registers to reach the

low power consumption. Thumb instructions (16-bit instructions) are optionally available

to reduce the code density, conditional execution is used to improve performance and code

density and enhanced instructions like DSP instructions are available.

 25

Figure 18 S5PC100 from ARM Cortex A8 family used in new iPhone 3G [33].

With ARM processor development, an interconnect bus standard arise to meet the proces-

sors needs and to be easily integrated in future core developments. The interconnect bus is

the AMBA, currently in the version 3 and supporting four types of buses, the Advanced

High-Performance Bus (AHB) for high speed data transfers, Advanced Peripheral Bus

(APB) for low-power and low complexity cores, Advanced eXtensible Interface (AXI) for

high speed pipelined transfers with simultaneous read and write operations and the Ad-

vanced Trace Bus (ATB) for components with trace capabilities [29] [30] [31] [32].

 26

Recently, a new synthesizable processor included in the ARM11 family was developed

specially for multiprocessor applications benefiting of tailored processor architecture for

SMP and AMP systems and named ARM11 MPCore. This micro architecture can be con-

figured to contain between one to four ARM11 processors.

Figure 19 ARM11 MPCore architecture

 27

5. LEON3 ARCHITECTURE

5.1. PROCESSOR

The LEON3 is a 32-bit synthesizable processor core in VHDL, compliant with the SPARC

V8 architecture (IEEE-1754). The core is designed for low power consumption and high

performance for embedded application. The LEON3 main advantages are the high modu-

larity making it appropriated for SOC designs, the portability to be used in various semi-

conductor architectures and scalability to be used in both high and low end applications.

The LEON3 is a highly stable processor benefiting of the large usage of the former ver-

sions (LEON and LEON2) [2].

The processor core is distributed as part of GRLIB IP Library. The IP Library contains a

set of reusable IP cores suitable for SoC designs. All IP cores support the same intercon-

nect bus (AMBA) and the core assignment in the main bus is made using a GRLIB

plug&play capability that is fully compatible with AMBA 2.0. This is a unique method to

quickly assemble a complex SoC design, a PCI-style plug&play that contains information

about device, vendor and version, cacheability, AMBA address and interrupt number. All

configurations are made using VHDL generics for core reusability [3].

 28

5.2. INTEGER UNIT

The internal processor design uses a Harvard architecture model, benefiting of a separation

between instructions and data buses, allowing parallel fetches and transfers.

Figure 20 Harvard architecture [1]

A 7-stage instruction pipeline is implemented, supporting a configurable, from 2 to 32, reg-

ister windows. Multiply and divide instructions are supported and a multiplier with op-

tional 16x16 bit Multiply Accumulate (MAC) can be used to accelerate DSP algorithms. A

single-vector trapping is used to reduce code size for embedded applications and an excep-

tion trap cause the processor to halt execution when, for example, a reset, write buffer error

or error during fetch has occurred.

 29

Figure 21 LEON3 integer unit data path diagram [3].

A MMU compatible with SPARC V8 reference MMU can be used [5]. For SMP systems,

as linux-2.6, a MMU with physical tags and snoop is needed. The Translation Look-aside

Buffer (TLB) can be configured as a separate TLB for instruction and data or as a shared

TLB [4].

Two optional co-processors can be used as defined in SPARC V8 architecture, a Floating

Point Unit (FPU) and a user-defined co-processor. The LEON3 supports two FPU: Gaisler

Research GRFPU with single and double precision operands that implements all SPARC

V8 FPU instructions, and Sun Meiko FPU, which does not implement the full FPU instruc-

tions defined in SPARC V8 [2].

 30

5.3. DEBUG SUPPORT UNIT 3

The Debug Support Unit (DSU) is a non-intrusive hardware debug tool that can control the

processor(s) execution(s).

Figure 22 DSU and debug interface [2]

The DSU is tightly-coupled to LEON3 processors hardware unit and provides an external

debug interface. In the system acts as an AHB slave and can be accessed by any AHB mas-

ter, as the external debug interface. The external debug interface can be Joint Test Action

Group (JTAG), serial Universal Asynchronous Receiver Transmitter (UART), Universal

Serial Bus (USB), Ethernet or Peripheral Component Interconnect (PCI).

The debug unit allows inserting instruction and data watch points, an external break signal

to halt processor execution and step by step execution. A circular buffer, named AHB trace

buffer, is used to store all AHB data transactions to keep the trace on the bus.

5.4. INTERCONNECT BUS (AMBA)

The interconnect bus standard used in overall system is the Advanced Microcontroller Bus

Architecture (AMBA) 2.0. This bus specification only defines the logic protocol interface

between cores in the system. Physical aspects like timing and voltage levels are not re-

ferred in the AMBA specification.

 31

In revision 2.0, three bus interfaces are defined:

• Advanced High-performance Bus (AHB);

• Advanced System Bus (ASB);

• Advanced Peripheral Bus (APB).

The AMBA AHB is used for high-performance and high clock frequency cores in the sys-

tem. This interconnect serves as system backbone bus, linking processors, on-chip memo-

ries, off-chip memories, high performance cores like high-speed communications

(Ethernet, USB, PCI) and function specific cores, and interfaces to low-performance pe-

ripherals.

Figure 23 AHB multiplexer interconnection [6]

The high-performance is achieved through a priority multiplexed data bus rather than the

bidirectional bus (used in ASB), which means that using this approach is possible to

achieve high frequency transactions. The multiplexer priority is managed by an arbiter.

The AMBA ASB is used for high-performance system cores. The ASB can be used as al-

ternative bus that efficiently connects the same blocks as AHB.

 32

Figure 24 Typical AMBA AHB and APB system [6]

The AMBA APB is used for low-power and low-performance peripherals. The APB is de-

signed for minimal power consumption, with reduced interface complexity allowing per-

forming all peripheral actions [6].

5.5. CACHES

A cache is a memory with zero cycle access, tightly-coupled to the processor and can in-

crease system performance in a way that the next instruction or data fetched by the proces-

sor have a higher chance to be in this memory instead of access main memory that takes

several cycles to put available the needed data. Another advantage is in case of refill after

cache-line missing, the first instruction takes the main memory access time but the next

instructions that have been brought to cache are already prepared in the next fetch.

As the LEON3 processor implements an Harvard architecture, the instruction and data

buses are connected to cache controllers independently.

5.6. MULTIPROCESSOR SUPPORT

5.6.1. CACHE COHERENCY

A cache coherency mechanism is made available using snooping mechanism. This method,

“snoop” the AHB bus to ensure that data has no replicas on other processor caches, but if

same data is encountered, the cache line is marked as invalid. Write-through mechanism is

also used in order to reduce write transactions in the main system bus, the AHB bus.

 33

5.6.2. MULTIPROCESSOR INTERRUPT CONTROLLER

The interrupt controller available in the GRLIB IP Library supports multiprocessor

scheme. All generated interrupts are routed to the interrupt controller that manages signals

priorities, masks and forwards the high priority interrupts to all processors. After an inter-

rupt reception, processor acknowledges the interrupt.

5.6.3. MULTIPROCESSOR STATUS REGISTER

A multiprocessor status register is available to indicate the number of processor in the sys-

tem and inform about processor power-down mode (power-down or running).

5.6.4. PROCESSORS STATE AFTER RESET

In a LEON3 multiprocessor system, all processors, except the processor #0, will enter

power-down mode after reset. The processors release from power-down mode can be done

by processor #0 after system initialization.

5.6.5. MULTIPROCESSOR FLOATING POINT UNIT AND COPROCESSOR

In a multiprocessor system, each processor has its own FPU/ Coprocessor, when enabled.

The GRFPU core available in the GRLIB IP Library has the option to share FPU capabili-

ties between multiple processors.

 34

This page was intentionally left blank.

 35

6. SYSTEM REQUIREMENTS AND

SPECIFICATION

6.1. GENERAL REQUIREMENTS

The following chapter is intended to expose the general system requirements for the plat-

form to be developed.

The platform to be developed shall:

• Be based on FPGA devices, improving the system customization and future develop-

ment;

• Taking into consideration the use of Altera FPGAs, taking advantage of the knowledge

developed by the enterprise using these devices;

• Contain two or more processor cores to achieve multiprocessing;

• Contain EEPROM or flash memory to store instructions to be executed and SRAM or

SDRAM memory to store temporary data;

• Supply hardware debug functions and provide the respective debug support unit inter-

face;

• Support two or more different communication protocols and provide general purpose

input output interfaces;

 36

• Include MMU in order to support advanced operating systems as Linux 2.6 SMP.

6.2. SYSTEM SPECIFICATION

This section gives a system perspective to understand the hardware (subsystems) interac-

tion needs.

FPGA
LEON3-MP

PDU

PDI EI

MU

Figure 25 LEON3-MP system perspective

Thesis will be mainly concentrated on FPGA LEON3-MP block depicted on above picture.

The block will allocate system processors and peripherals chosen in the next phase accord-

ing the general requirements. Sub-systems requirements will be treated in conjunction with

the main block to choose the appropriate hardware framework.

To properly ensure the normal functioning of the system to be developed, a set of blocks

must be presented in the hardware framework, as:

EI – External Interface:

This interface provides system’s easy assessment and user interaction, via connectors, but-

tons or lightning components, such as LEDs. Through this interface, it’s possible to access

input/output signals and external communications.

 37

MU – Memory Unit:

This unit can be composed of several types of memories, to provide processor instructions

allocation through data retention memories (EPROM, EEPROM or Flash) and provide fast

data access through random access memories (SRAM, SSRAM, SDRAM or DDR).

PDI – Programming and Debug Interface:

This interface is used for system programming and also debugging through special debug

software named GRMON. With GRMON it is also possible to access system registers and

peripherals before running any software application.

PDU – Power Distribution Unit:

This is an important unit to manage and provide reliable power supply to the other system

units, FPGA, EI, MU and PDI.

6.3. SELECTED HARDWARE FRAMEWORK

The selected hardware framework was chosen taking into account the FPGA architec-

ture/vendor and hardware available at Evoleo Technologies.

Evoleo Technologies uses for main development Altera FPGAs, so the hardware frame-

work to be selected should include one of Altera's FPGA architectures.

The selected hardware was the Cyclone III FPGA Starter Kit, which has the following fea-
tures:
• Cyclone III EP3C25F324 FPGA;

• Configuration;

• Embedded USB-Blaster™ circuitry (includes an Altera EPM3128A CPLD) allowing

download of FPGA configuration files via the user's USB port;

• Memory

• 256-Mbit of DDR SDRAM

• 1-Mbyte of synchronous SRAM

• 16-Mbytes of Intel P30/P33 flash

• Clocking

 38

• 50-MHz on-board oscillator

• Switches and indicators

• Six push buttons total, four user controlled

• Seven LEDs total, four user controlled

• Connectors

• HSMC

• USB Type B

• Cables and power

• USB cable

Figure 26 Cyclone III FPGA Starter Kit

As this kit has too few peripheral features, an expansion board is needed.

The selected expansion board was the THDB-SUM - Terasic HSMC to Santa Cruz Daugh-

ter Board. This is an adapter board to convert HSMC interface to Santa Cruz (SC), USB,

Mictor, and SD Card interface.

This expansion board has the following features:

• One HSMC connector for interface conversion;

• One SC interface;

• Adjustable logic levels between HSMC and SC interface signals;

• One Hi-Speed USB On-The-Go transceiver;

• One Mictor Connector;

• One SMA connector for external clock input;

• One SD Card Socket.

 39

The following picture depicts the final hardware framework that will support multiproces-

sing system.

Figure 27 Final hardware framework

 40

This page was intentionally left blank.

 41

7. PRELIMINARY ARCHITECTURE DE-

SIGN

7.1. PRELIMINARY DESIGN

The GRLIB IP Library provides a rich list of well tested cores to interconnect with the

main unit, the processor core.

The list of all cores, which were selected and those that should not be selected are exposed

in the Appendix A. GRLIB IP Library.

7.1.1. PROPOSED MULTIPROCESSOR ARCHITECTURE

The main criterion to select the final architecture cores was to provide a system with simi-

lar peripherals to those found in most microcontrollers.

The proposed system includes an interrupt controller to handle internal interrupts generated

by others cores and distributed to all processor cores, four timer units to provide accurate

counters to the system, general purpose input/outputs to handle external interfaces, two

UART cores, one to serve as DSU monitor and the other for serial general purpose com-

munication, two SPI cores, one to handle with the SD card available in the hardware

 42

framework and the other for general purpose SPI communication and I²C core to interface

a serial EEPROM and for general purpose.

The mandatory cores used are two LEON3 processors with cache and MMU, a JTAG core

to handle with DSU external interface and the flash, SRAM and DDR controllers.

Figure 28 Proposed multiprocessor architecture

7.1.2. LEON3 PROCESSOR CORE

Has said in the previous chapters, the LEON3 processor core is a highly configurable 32-

bit SPARC V8 compliant core. Some choice has to be made to properly configure the

processor to not only support multiple processors in the same system but also to provide a

MMU to satisfy the Linux 2.6 SMP support.

All of the following processor core configurations can be made using the VHDL generics

provided in the component instantiation:

• Eight SPARC register windows are used;

• The DSU interface in each processor is enabled to allow instructions trace and processor

control;

• SPARC V8 multiply and divide instructions are available to perform 32x32 bit pipe-

lined multiply operations and 64 by 32 bit divide operations to produce 32 bit results;

• The instruction and data caches are enabled with one set of 4kByte (32Bytes per line),

each cache, using the Least Recently Used (LRU) algorithm for cache replacement;

• As required by the Linux 2.6 OS, the MMU is enabled with eight TLB entries for in-

structions and another eight for data, with 4kByte page size;

 43

• A data cache snooping mechanism is used, supporting extra physical tags for MMU to

prevent data conflicts between processors.

Figure 29 LEON3 processor internal architecture

7.1.3. DEBUG SUPPORT UNIT

The DSU is used in the LEON3 system to control de processors during the debug mode.

The main control is achieved through a JTAG interface.

To take full advantage of this interface, the GRMON software made available by Gaisler

shall be used. This is a debug monitor and control software for SoC designs using GRLIB

IP Library cores. With the GRMON console it is possible to access (read or write) all sys-

tem registers and memory, download and order to execute LEON3 applications. It is avail-

able breakpoint and watch point management, trace buffer management and to use a re-

mote connection to GNU debugger (GDB) software for enhanced software debugging. All

this features are available through a variety of communication protocols, in this project is

used the JTAG as debug link [34].

An alternative UART can be used as DSU monitor console to retrieve system messages

instead of GRMON console. The main advantage of using that is when GRMON console

is used to retrieve system messages, on every message, the GRMON console will cause the

processor to halt, causing an annoying debug. For this reason the first UART will be used

as DSU monitor.

 44

Figure 30 LEON3 DSU interfaces

More control interfaces are available in the hardware framework, as the CPU reset button

to fully reset the system, a DSU break (DSUBRE) button which causes the processor halt,

a DSU active (DSUACT) output to indicate that system is in debug state and an Error out-

put to indicate that an error condition was encountered in the processor.

7.1.4. MEMORY MAP AND INTERRUPTS

The memory map is constructed according to the cores used in the design, the core type as

master or slave and location as located in AMBA AHB or AMBA APB. The final memory

map and interrupt number attribution can be found in the Appendix B. Memory map and

interrupts.

 45

Figure 31 LEON3 multiprocessor design perspective

7.2. VERIFICATION AND TEST CONFIGURATIONS

7.2.1. VERIFICATION PLAN

After system implementation, a verification process is carried out in order to check if the

implemented system meets the multiprocessing system specification. To do so, the debug

monitor GRMON is used.

The verification process is done using the selected hardware framework with the proposed

LEON3 multiprocessing system. The verification shall check:

1. System configuration, all implemented cores and respective registers;

2. Read and Write to random memory locations of RAM and Read from ROM;

3. Access data and instruction cache and MMU registers;

7.2.2. SOFTWARE PLATFORM

The system tests will be done using an operating system, which provides high level of ab-

straction, accurate task management and is nowadays widely used in complex embedded

systems.

The select operating system is Linux 2.6, a free and open source operating system that is

widely used in home computers but also in embedded systems. The selected Linux distri-

bution that supports the LEON3 processor is a special version of the SnapGear Embedded

Linux distribution, which is well supported by AEROFLEX Gaisler.

 46

The main reasons for this operating system choice is the support of Symmetric Multiproc-

essing (SMP), the free availability and the wide support provided by many communities in

the internet.

One of the main requirements of this distribution is the inclusion of a MMU in the system,

which was foreseen in the system design [35].

7.2.3. TEST CONFIGURATIONS

In order to prove the value of having a multiprocessor platform instead of an uniprocessor

platform, a set of benchmarking applications shall be used.

The following table presents the two hardware configurations used, indicating the ID of

each configuration, the number of processors, a brief description and the goal of the hard-

ware configuration.

Table 1 Hardware configurations description

ID No. CPUs Description Goal

L1 1 1 x LEON3 processor with MMU running

at 50 MHz.

Same as thesis hardware

configuration but with 1

processor.

L2 2 2 x LEON3 processor with MMU running

at 50 MHz.

Thesis hardware configura-

tion.

Six benchmark applications are used and described below. Each benchmark application

will run in the two hardware configurations in order to check the differences between mul-

tiprocessor and uniprocessor systems.

The following table presents the six benchmark applications used, indicating the ID of each

application, the number of benchmarking tasks running, a brief description and the goal of

the benchmark application.

 47

Table 2 Benchmark applications description

ID No. tasks Description Goal

P1 2 Two tasks running concurrently and perform-

ing an iterative calculation of the first 10000

Fibonacci numbers.

Determine the time con-

sumption of each task with

calculations.

P2 4 Four tasks running concurrently and perform-

ing an iterative calculation of the first 10000

Fibonacci numbers.

Determine the time con-

sumption of each task with

calculations.

R1 2 Two tasks running concurrently, sharing mes-

sages like a ring buffer. Each task is waiting

for any message to run, send new message and

waiting again.

Determine the time spent in

sending and waiting for new

message.

R2 4 Four tasks running concurrently, sharing mes-

sages like a ring buffer. Each task is waiting

for any message to run, send new message and

waiting again.

Determine the time spent in

sending and waiting for new

message.

M1 2 Two tasks running concurrently, performing an

iterative calculation of the first 10000 Fibo-

nacci numbers and sharing messages like a

ring buffer. Each task is waiting for any mes-

sage to perform calculations, send new mes-

sage and waiting again.

Determine the time con-

sumption of each task with

calculations, in sending and

waiting for new message.

M2 4 Four tasks running concurrently, performing

an iterative calculation of the first 10000 Fibo-

nacci numbers and sharing messages like a

ring buffer. Each task is waiting for any mes-

sage to perform calculations, send new mes-

sage and waiting again.

Determine the time con-

sumption of each task with

calculations, in sending and

waiting for new message.

 48

This page was intentionally left blank.

 49

8. DETAILED ARCHITECTURE DESIGN

After preliminary architecture design where the best choices for the system to be imple-

mented were achieved, the detailed architecture design was developed to implement the

previous choices.

Figure 32 LEON3 multiprocessor platform

 50

The LEON3 multiprocessor system design flow is decomposed in four steps, as:

1. System configuration, using GRLIB IP Library VHDL files to configure and inter-

connect the components used;

2. Pin location assignment, according each core specification and hardware frame-

work;

3. Pre-synthesis simulation, creating tailored test benches to verify the functionality of

the system designed;

4. Synthesis and Place and Route, to translate VHDL behaviour into gate-level netlist

also performing optimization to the specific target technology and fitting the design

into device.

Figure 33 Design flow perspective

The GRLIB IP Library is very modular and to properly instantiate every core, it is recom-

mended the use of a local Makefile to automate various common tasks in every system in-

stantiation. The GRLIB User’s Manual [2], explains all configurations provided by the

make utility and all commands available. In order to access this Makefile under Windows

 51

hosts, it is recommended the use of the Linux-like environment for Windows, the Cygwin

software.

8.1. SYSTEM CONFIGURATION

The system configuration is made through two files, the leon3mp.vhd file containing the

VHDL top level design entity which instantiates all system required VHDL components

(IP cores), interconnecting with each other through the AMBA signals and provides the

external interfaces (pins). The second file, config.vhd, is a VHDL package used to con-

figure all IP cores parameters.

Through a simple text editor, in this case using the notepad++ editor, the two files previ-

ously referred were edited as specified in the preliminary architecture design phase, ac-

cording to the GRLIB IP Cores Manual [3].

8.2. PIN ASSIGNMENT

This step takes as inputs the hardware framework manual, the preliminary architecture de-

sign and the system configuration made, to allocate all pins required by the IP cores used

in the design. The pins configuration is made through the leon3mp.qsf file.

The pins assignment for this design is exposed in the Appendix D. Pin assignment.

8.3. PRE-SYNTHESIS SIMULATION

The pre-synthesis simulation is performed before synthesising the whole system in order to

verify the system functionality and a testbench template, testbench.vhd, provided in

GRLIB is used to properly test its cores. This testbench template includes external PROM

and SDRAM components containing a pre-loaded test program, which will be executed on

LEON3 processors in order to test various design functionalities. Some of the test results

will be printed on the simulator.

To perform this simulation, the ModelSim software used in simulation and debug for

ASICs and FPGAs designs is used. In order to generate the appropriate scripts and to run

the ModelSim, a series of commands provided by local Makefile are used in the Cygwin

software.

 52

8.4. SYNTHESIS AND PLACE AND ROUTE

The design synthesis is made using the Quartus II software synthesis engine and the place

and route is made using the Quartus II software fitter engine. Using the same tool, the

Quartus II software, allows performing with one command the synthesis and place and

route. The Makefile commands available for these two actions can be found in the GRLIB

User’s Manual [2].

Upon successful design compilation, a .sof file is generated allowing download pro-

gramming file to the FPGA. In order to permanently configure the FPGA contained in the

hardware framework, the configuration flash memory needs to be loaded with a .pof file

generated from the .sof file.

 53

9. VERIFICATION AND OVERALL TESTS

9.1. HARDWARE VERIFICATION

The following lines provide the hardware verification procedures and its results. All com-

mands applied in the verification process can be used in the GRMON console.

The verification checked the following points:

1. System configuration, all implemented cores and respective registers;

• In order to access all cores information is typed the “info sys” command.

• All cores are implemented in the right AMBA address.

• Successful verification.

2. Read and Write to random memory locations of RAM and Read from ROM;

• In order to read from memory location is typed the “mem <memory address>” com-

mand.

• In order to write to memory location is typed the “wmem <memory address>

<data>” command.

• Read and writes to RAM (DDR) locations are done successfully.

• Read from ROM (Flash) locations are done successfully.

• Successful verification.

 54

3. Access data and instruction cache and MMU registers;

• In order to access cache registers is typed the “dcache” command for data cache reg-

isters and “icache” command for instructions cache registers.

• In order to access memory management unit registers is typed the “mmu” command.

• The data cache, instructions cache and memory management unit registers can be ac-

cessed successfully.

• Successful verification.

9.2. TEST RESULTS

The test results of the two hardware configurations running all benchmark applications

specified in the test plan are presented in the next subsections.

In the following figures, with blue is depicted the results of the L2 configuration, with red

is the L1 configuration. With green are the mean values of L1 and L2 configurations. The

time results are presented in seconds (s) and the milliseconds (ms).

All figures show in Y-Y axis the task time consumption in seconds and in X-X axis the

number of task’s execution. The following tables provide test results of each benchmark

application, presenting the hardware configuration ID, task time consumption mean value,

the following standard deviation and relative standard deviation.

 55

9.2.1. P1 BENCHMARK

The following chart depicts the test results obtained from the P1 benchmark application.

Figure 34 P1 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 3 P1 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.063521s (63.521 ms) 0.020164 s (20.164 ms) 31.74 %.

L2 0.048682 s (48.682 ms) 0.000430 s (0.430 ms) 0.88 %.

 56

9.2.2. P2 BENCHMARK

The following chart depicts the test results obtained from the P2 benchmark application.

Figure 35 P2 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 4 P2 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.159214 s (159.214 ms) 0.161176 s (161.176 ms) 101.23 %

L2 0.062115 s (62.115 ms) 0.017952 s (17.952 ms) 28.90 %

 57

9.2.3. R1 BENCHMARK

The following chart depicts the test results obtained from the R1 benchmark application.

Figure 36 R1 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 5 R1 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.000547 s (0.547 ms) 0.000049 s (0.049 ms) 9.01 %

L2 0.000743 s (0.743 ms) 0.000071 s (0.071 ms) 9.56 %

 58

9.2.4. R2 BENCHMARK

The following chart depicts the test results obtained from the R2 benchmark application.

Figure 37 R2 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 6 R2 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.001510 s (1.510 ms) 0.002873 s (2.873 ms) 190.32 %

L2 0.000850 s (0.850 ms) 0.000085 s (0.085 ms) 10.02 %

 59

9.2.5. M1 BENCHMARK

The following chart depicts the test results obtained from the M1 benchmark application.

Figure 38 M1 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 7 M1 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.095156 s (95.156 ms) 0.000242 s (0.242 ms) 0.25 %

L2 0.095790 s (95.790 ms) 0.000277 s (0.277 ms) 0.29 %

 60

9.2.6. M2 BENCHMARK

The following chart depicts the test results obtained from the M2 benchmark application.

Figure 39 M2 benchmark time consumption over time

The main test results that can be extracted from the following chart are:

Table 8 M2 benchmark results

ID Mean Standard deviation Relative standard deviation

L1 0.190742 s (190.742 ms) 0.101383 s (101.383 ms) 53.15 %

L2 0.099021 s (99.021 ms) 0.001466 s (1.466 ms) 1.48 %

 61

9.3. CONCLUDING REMARKS

The following table presents the relation between L2 and L1 configurations, related to the

six benchmark applications.

Table 9 Benchmark results summary

P1 P2 R1 R2 M1 M2

L2=1,30xL1 L2=2,56xL1 L2=0,74xL1 L2=1,78xL1 L2=0.99xL1 L2=1,92xL1

The P1 and P2 benchmark applications results show the advantage of the multiprocessor

systems when multiple tasks are performing calculations concurrently. In these bench-

marks, the tasks time consumption deviation from mean value (results from relative stan-

dard deviation) is lower in a multiprocessor system.

Results extracted from R1 benchmark demonstrate that when only two tasks exchanging

messages are running, the best performance is achieved in the uniprocessor system. When

the number of tasks grows, as the case of R2, the best performance is achieved by the mul-

tiprocessor system, which means that when more tasks are running, the greater differences

are in performance between the two hardware configurations, in favour of multiprocessor

system. Again, the tasks time consumption variation is lower in multiprocessing.

The M1 benchmark application shows that uniprocessor and multiprocessor systems pro-

vide similar performance. With the increase of number of tasks, the multiprocessor system

gives the high performance and low time consumption variation.

 62

This page was intentionally left blank.

 63

10. GENERAL CONCLUSIONS

10.1. CONCLUSIONS

As said before, multiprocessor and multicore embedded systems are a new trend as the sys-

tems complexity grows in this area requiring more processing power.

The creation of a base of knowledge developing a multiprocessing system to be placed in

an FPGA device using synthesizable cores as the LEON3 processor and GRLIB IP Library

was achieved.

In order to produce the final system, several project stages were considered. The system

specification was done taking as inputs the overall system requirements provided by the

Evoleo Technologies. System specification was followed by preliminary architecture de-

sign to select the cores to be implemented and its interconnection. The verification and test

plan was made to serve as implementation inputs in order to produce a system that could

be tested. The implementation was done using the software tools available for synthesizing

and place and route the selected FPGA.

The initial system verification has been concluded successfully, allowing to verify that the

implemented system have no problem. The tests were made using two hardware configura-

tions, the system implemented with two processors and the same architecture but with one

 64

processor. In order to test the two hardware configurations, benchmark applications were

created for the two architectures in order to compare the overall system performance. The

benchmark applications were created to be used as part of Linux 2.6 OS with SMP support,

benefiting of OS objects available, as semaphores or message passing functions.

With the test results available it can be concluded that in terms of computational calcula-

tions, results from P1, P2 and M2 tests, the hardware configuration with two processors is

too much better than with one processor. Also when more tasks are running simultane-

ously, results from P2, R2 and M2 tests, the overall tasks time consumption is much lower

in the multiprocessor system, benefiting of the possibility to run two tasks in parallel, one

in each processor. The benefit of the uniprocessor system is in message passing with only

two tasks running and exchanging messages, results from R1 and M1 tests, but also can be

observed that time consumption difference between the two hardware configurations is

much equal in the R1 and M1 tests, which can be presumed that the OS scheduler in the

SMP configurations is busy with load balancing or SMP affinity [36]. The tasks time con-

sumption variation is well denoted in uniprocessor systems, where task time variation is

much higher compared to multiprocessor systems, within the same test configuration.

The final test results can be satisfactory in the way that has been proven the benefits of the

usage of a multiprocessor system in comparison with the usage of uniprocessor system

within the same hardware configurations.

10.2. FUTURE WORK

The multiprocessor platform tests that follow should be made using a Real-Time OS

(RTOS). As the most of RTOS supporting multiprocessing only provides AMP capability,

the approach to have asymmetric processing should be considered.

It is mandatory that a hardware framework needs to be developed with more powerful

FPGA providing more LE to allocate more processors in order to perform more multiproc-

essing tests.

The use of an ACTEL FPGA should be considered in order to achieve developments for

space or military industry.

 65

Since LEON3 processor, GRLIB IP Library, software compiler and Linux OS are distrib-

uted under GNU Public License (GPL), this type of system can be used for education and

research in universities and polytechnics. For that purpose, an educational multiprocessing

kit could be developed and provided to universities interested in digital design using

GRLIB and embedded software using Linux 2.6.

 66

This page was intentionally left blank.

 67

References

[1] JERRAYA, Ahmed Amine; WOLF, Wayne—Multiprocessor Systems-on-Chips, The
Morgan Kaufmann Series in Systems on Silicon, 2005.

[2] GAISLER, Jiri; CATOVIC, Edvin; ISOMÄKI, Marko; GLEMBO, Kristoffer;
HABINC, Sandi—GRLIB IP Core User’s Manual. Gaisler Research, Version 1.0.20,
February 2009

[3] GAISLER, Jiri; HABINC, Sandi; CATOVIC, Edvin—GRLIB IP Library User’s
Manual. Gaisler Research, Version 1.0.20, February 2009

[4] EISELE, Konrad—Design of a Memory Management Unit for System-on-a-Chip
Platform "LEON". November 2002

[5] SPARC International, Inc—The SPARC Architecture Manual, Version 8. 1992

[6] ARM—AMBA Specification (Rev 2.0). Issue A, May 1999

[7] FAXÉN, Karl-Filip;BENGTSSON, Christer; BRORSSON, Mats; GRAHN,
Håkan;HAGERSTEN, Erik; JONSSON, Bengt; KESSLER, Christoph; LISPER,
Björn; STENSTRÖM, Per; SVENSSON, Bertil—Multicore computing-state of the
art. December 2008

[8] HAGERSTEN, Erik—The challenge of many cores. Uppsala University, September
2008

[9] KASSNER, Matthias—Processor architectures-Design choices and trade-offs.
Texas Instruments, April 2009

[10] Texas Instruments—Texas Instruments multicore fact sheet. January 2008

[11] LEONARD, Patrick—Homogeneous vs. Heterogeneous multicore: hardware strate-
gies. September 2008

[12] KOCH, Ken; HENNING, Paul—Beyond a Single Cell. Cell Workshop, University of
Tennessee, October 2006

[13] BUNTINAS, Darius; MERCIER, Guillaume; GROPP, William—Data Transfers
between Processes in an SMP System: Performance Study and Application to MPI.
in Proceedings of the International Conference on Parallel Processing 2006 (ICPP
06), August 2006

[14] LEROUX, Paul; CRAIG, Robert—Migrating legacy applications to multicore proc-
essors. in Military Embedded Systems Summer 2006, October 2006

[15] ARTHANARI, Jegan—OS Multicore Enablement Wind River. in Power.org, Febru-
ary 2009

 68

[16] CHRISTOFFERSON, Michael—Building multi-core designs with asymmetric multi-
processor. in EETimes-India, November 2005

[17] CLARKE, Dwaine; SUH, G. Edward; GASSEND, Blaise; DIJK, Marten van;
DEVADAS, Srinivas— Checking the Integrity of Memory in a Snooping-Based
Symmetric Multiprocessor (SMP) System. MIT Computer Science and Artificial In-
telligence Laboratory, July 2004

[18] GERNDT, Michael—Shared Memory Architectures. Lectures of the High Perform-
ance Architectures course, Faculty of Informatics at Technischen Universität
München, June 2009

[19] Hardware and Documentation Status of the ERC32-Chipset Microprocessor (AT-
MEL TSC691, TSC692 and TSC693). ESTEC, March 2004.

[20] TSC691E Integer Unit User's Manual for Embedded Real time 32-bit Computer
(ERC32) for SPACE Applications. Temic Semiconductors, Rev. G, September 1996.

[21] TSC692E Floating Point Unit User's Manual for Embedded Real time 32-bit Com-
puter (ERC32) for SPACE Applications. Temic Semiconductors, Rev. H, September
1996.

[22] TSC693E Memory Controller User's Manual for Embedded Real time 32-bit Com-
puter (ERC32) for SPACE Applications. Temic Semiconductors, Rev. D, September
1997.

[23] TSC695E Rad-Hard 32-bit SPARC Embedded Processor User's Manual. AT-
MEL, Rev. H, June 2003.

[24] CORBIERE, Thierry—TSC695F: A SEU immune SPARC 32bit computer for space
applications. in RADECS Conference, September 2001.

[25] GAISLER, Jiri—A Portable and Fault-Tolerant Microprocessor Based on the
SPARC V8 Architecture. in Dependable Systems and Networks 2002, Gaisler Re-
search, June 2002.

[26] HORST, Johannes van der. Literature Study: Radiation tolerant implementation of a
LEON processor for space applications. June 2005.

[27] AT697E Rad-Hard 32 bit SPARC V8 Processor. ATMEL, Ver. G, May 2009.

[28] PIETIKÄINEN, Ville—ARM architecture Brief history of ARM. November 2002.

[29] AMBA AXI Protocol Specification, Version 1. ARM, March 2004

[30] AMBA AHB Protocol Specification, Version 1. ARM, June 2006

[31] AMBA APB Protocol Specification, Version 1. ARM, August 2004

[32] AMBA ATB Protocol Specification, Version 1. ARM, June 2006

[33] Samsung S5PC100 ARM Cortex A8 based Mobile Application Processor. Product
Brochure, Samsung. February 2009.

[34] GRMON User’s Manual, Version .1.351. Aeroflex Gaisler AB, March 2009

 69

[35] SnapGear Linux for LEON, Version 1.39.0. Aeroflex Gaisler AB, April 2009

[36] Aas, Josh—Understanding the Linux 2.6.8.1 CPU scheduler. Silicon Graphics, Inc.
(SGI). February 2005

 70

This page was intentionally left blank.

 71

Appendix A. GRLIB IP Library

This section contains all available IP Cores in GRLIB.

In this section, the red cells present all (Fault Tolerant) IP Cores that will not be chosen

because of their target applications (military and space applications).

The green cells present all IP Cores selected for the final system.

The following tables are divided by IP Cores applications and contain the following infor-

mation:

• Name – IP Core name in GRLIB

• Function – A brief description of core functionality

• Vendor and Device – Code number for vendor and device in GRLIB

• License – Type of license. GPL, COM or FT

Table 10 Processors and support functions

Name Function Vendor Device License

LEON3 SPARC V8 32-bit processor 0x01 : 0x003 COM/GPL

DSU3 Multi-processor Debug support unit 0x01 : 0x004 COM/GPL

IRQMP Multi-processor Interrupt controller 0x01 : 0x00D COM/GPL

GRTIMER General purpose timer unit 0x01 : 0x011 COM/GPL

GRGPIO General purpose I/O port 0x01 : 0x01A COM/GPL

GRFPU High-performance IEEE-754 Floating-point unit - COM

GRFPU-Lite Low-area IEEE-754 Floating-point unit - COM

LEON3FT Fault-tolerant SPARC V8 32-bit Processor 0x01 : 0x053 FT

MUL32 32x32 multiplier module - COM/GPL

DIV32 Divider module - COM/GPL

Table 11 Floating-point units

Name Function Vendor Device License

GRFPU High-performance IEEE-754 Floating-point unit - COM

GRFPU-Lite Low-area IEEE-754 Floating-point unit - COM

 72

Table 12 Memory controllers

Name Function Vendor Device License

SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 COM/GPL

SDCTRL PC133 SDRAM controller 0x01 : 0x009 COM/GPL

FTSDCTRL

32/64-bit PC133 SDRAM Controller with

EDAC 0x01 : 0x055 FT

FTSRCTRL

Fault Tolerant 32-bit PROM/SRAM/IO Control-

ler 0x01 : 0x051 FT

MCTRL 8/16/32-bit PROM/SRAM/SDRAM controller 0x04 : 0x00F LGPL

FTMCTRL

8//32-bit PROM/SRAM/SDRAM controller

with EDAC 0x01 : 0x054 FT

AHBSTAT AHB failing address register 0x01 : 0x052 COM/GPL

DDRCTRL

8/16/32/64-bit DDR controller with two AHB

ports (Xilinx only) 0x01 : 0x023 COM/GPL

DDRSPA

Single-port 16/32/64 bit DDR controller(Xilinx

and Altera) 0x01 : 0x025 COM/GPL

DDR2SPA

Single-port 16/32/64 bit DDR2 controller(Xilinx

and Altera) 0x01 : 0x02E COM/GPL

SSRCTRL 32-bit synchronous SRAM (SSRAM) controller 0x01 : 0x00A COM

FTSRCTRL8

8-bit SRAM / 16-bit IO Memory Controller with

EDAC 0x01 : 0x056 FT

SPIMCTRL SPI Memory controller 0x01 : 0x045 COM/GPL

Table 13 AMBA Bus control

Name Function Vendor Device License

AHB2AHB Uni-directional AHB/AHB Bridge 0x01:0x020 COM

AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01:0x020 COM

AHBCTRL AMBA AHB bus controller with plug&play - COM/GPL

AHBCTRL_MB

AMBA AHB bus controller for multiple buses

with plug&play - COM

APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 COM/GPL

AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 COM/GPL

 73

Table 14 PCI interface

Name Function Vendor Device License

PCITARGET 32-bit target-only PCI interface 0x01 : 0x012 COM/GPL

PCIMTF/GRPCI 32-bit PCI master/target interface with FIFO 0x01 : 0x014 COM/GPL

PCITRACE 32-bit PCI trace buffer 0x01 : 0x015 COM/GPL

PCIDMA DMA controller for PCIMTF 0x01 : 0x016 COM/GPL

PCIARB PCI Bus arbiter 0x04 : 0x010 LGPL

WILD2AHB

WildCard Debug Interface with DMA Master

Interface 0x01 : 0x079 COM/GPL

Table 15 On-chip memory functions

Name Function Vendor Device License

AHBRAM Single-port RAM with AHB interface 0x01 : 0x00E COM/GPL

AHBDPRAM

Dual-port RAM with AHB and user back-end

interface 0x01 : 0x00F COM/GPL

AHBROM ROM generator with AHB interface 0x01 : 0x01B COM/GPL

SYNCRAM Parametrizable 1-port RAM - COM/GPL

SYNCRAM_2P Parametrizable 2-port RAM - COM/GPL

SYNCRAM_DP Parametrizable dual-port RAM - COM/GPL

REGFILE_3P Parametrizable 3-port register file - COM/GPL

FTAHBRAM RAM with AHB interface and EDAC protection 0x01 : 0x050 FT

Table 16 Serial communication

Name Function Vendor Device License

AHBUART Serial/AHB debug interface 0x01 : 0x007 COM/GPL

AHBJTAG JTAG/AHB debug interface 0x01 : 0x01C COM/GPL

APBPS2 PS2 Keyboard interface with APB interface 0x01 : 0x060 COM/GPL

APBUART Programmable UART with APB interface 0x01 : 0x00C COM/GPL

CAN_OC Opencores CAN 2.0 MAC with AHB interface 0x01 : 0x019 COM/GPL

GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D COM

GRSPW SpaceWire link with RMAP and AHB interface 0x01 : 0x01F FT

I2CMST I2C Master with APB interface 0x01 : 0x028 COM/GPL

I2CSLV I2C Slave with APB interface 0x01 : 0x03E COM/GPL

SPICTRL SPI Controller with APB interface 0x01 : 0x02D COM/GPL

 74

Table 17 Ethernet interface

Name Function Vendor Device License

GRETH

Gaisler Research 10/100 Mbit Ethernet MAC

with AHB I/F 0x01 : 0x01D COM/GPL

GRETH_GIGA

Gaisler Research 10/100/1000 Mbit Ethernet

MAC with AHB 0x01 : 0x01D COM

Table 18 USB interface

Name Function Vendor Device License

GRUSBHC

USB-2.0 Host controller (UHCI/EHCI) with AHB

I/F 0x01 : 0x027 COM

USBDCL

USB-2.0 device controller / AHB debug communi-

cation link 0x01 : 0x022 COM

Table 19 MIL-STD-1553 Bus interface

Name Function Device ID License

B1553BC 1553 Bus controller with AHB interface 0x01 : 0x070 COM

B1553RT 1553 Remote terminal with AHB interface 0x01 : 0x071 COM

B1553BRM 1553 BC/RT/Monitor with AHB interface 0x01 : 0x072 COM

Table 20 Encryption

Name Function Vendor Device License

GRAES 128-bit AES Encryption/Decryption Core 0x01 : 0x073 COM

GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 COM

Table 21 Simulation and debugging

Name Function Vendor Device License

SRAM SRAM simulation model with srecord pre-load - COM/GPL

MT48LC16M16 Micron SDRAM model with srecord pre-load - Free

MT46V16M16 Micron DDR model - Free

CY7C1354B Cypress ZBT SSRAM model with srecord pre-load - Free

AHBMSTEM AHB master simulation model with scripting 0x01 : 0x040 COM/GPL

 75

AHBSLVEM AHB slave simulation model with scripting 0x01 : 0x041 COM/GPL

AMBAMON AHB and APB protocol monitor - COM

Table 22 CCSDS Telecommand and telemetry functions

Name Function Vendor Device License

GRTM CCSDS Telemetry Encoder 0x01 : 0x030 FT

GRTC CCSDS Telecommand Decoder 0x01 : 0x031 FT

GRPW Packetwire receiver with AHB interface 0x01 : 0x032 COM/GPL

GRCTM CCSDS Time manager 0x01 : 0x033 COM/GPL

GRHCAN CAN controller with DMA 0x01 : 0x034 FT

GRFIFO External FIFO Interface with DMA 0x01 : 0x035 COM

GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 COM

GRPULSE General Purpose Input Output 0x01 : 0x037 FT

GRTIMER General Purpose Timer Unit 0x01 : 0x038 FT

AHB2PP Packet Parallel Interface 0x01 : 0x039 FT

GRVERSION Version and Revision information register 0x01 : 0x03A FT

APB2PW PacketWire Transmitter Interface 0x01 : 0x03B COM/GPL

PW2APB PacketWire Receiver Interface 0x01 : 0x03C COM/GPL

GRCE/GRCD

CCSDS/ECSS Convolutional Encoder and

Quicklook Decoder N/A FT

GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082 {internal}

GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x083 {internal}

Table 23 HAPS functions

Name Function Vendor Device License

HAPSTRAK HapsTrak controller for HAPS boards 0x01 : 0x077 GPL

FLASH_1X1

32/16-bit PROM Controller for HAPS

FLASH_1x1 0x01 : 0x00A COM *

SRAM_1X1

32-bit SSRAM / PROM Controller for HAPS

SRAM_1x1 0x01 : 0x00A COM *

TEST_1X2

Controller for HAPS test daughter board

TEST_1x2 0x01 : 0x078 COM/GPL

BIO1 Controller for HAPS I/O board BIO1 0x01 : 0x07A COM/GPL

SDRAM_1X1 32-bit SDRAM Controller for HAPS 0x01 : 0x009 COM/GPL

 76

SDRAM_1x1

DDR_1X1 64-bit DDR266 Controller for HAPS DDR_1x1 0x01 : 0x025 COM/GPL

GEPHY_1X1 Ethernet Controller for HAPS GEPHY_1x1 0x01 : 0x00A COM **

Note*: The underlying SSRAM controller used in the FLASH_1X1 and SRAM_1X1 cores is provided in VHDL netlist format in the

GRLIB GPL distribution. The VHDL source code is only provided under commercial license.

Note**: The 10/100 Mbit Media Access Controller (MAC) is available in the GRLIB GPL distribution. The 1000 Mbit MAC is only

provided under commercial license.

Note: The HAPS functions are described in separate manuals.

 77

Appendix B. Memory map and interrupts

The memory map addresses are divided in two main spaces, the:

• AMBA AHB address space for all cores attached to this bus for high performance on-

chip communications;

• AMBA APB address space for all cores attached to this bus and not requiring high per-

formance, like the most of system peripherals;

The following table display AMBA address range and the interrupt number for each core.

Table 24 AMBA address range and interrupts

Core Address range Interrupt Comments

LEON3

DSU3 0x90000000-0xa0000000

IRQMP 0x80000200

GRTIMER 0x80000300 4, 5, 6, 7 Interrupts for each timer from 0 to 4

GRGPIO 0x80000500 1, 2, 3, 4, 5, 6, 7

MCTRL

0x00000000-0x20000000

0x20000000-0x40000000

0xa0000000-0xb0000000

 PROM

IO

SRAM

DDRSPA 0x40000000-0x50000000

AHBCTRL

APBCTRL 0x80000000-0x80100000 AHB to APB bridge

SPICTRL1 0x80000700 9

SPICTRL2 0x80000800 10

I2CMST 0x80000600 8

APBUART1 0x80000100 2

APBUART2 0x80000900 3

 78

This page was intentionally left blank.

 79

Appendix C. External interface signals

The following table describes all external interface signals in terms of direction and polar-

ity.

Table 25 External interface signals list

Name Description Direction Polarity

System

clk Main system clock (50 MHz oscillator) In

resetn System reset (CPU_resetn push-button) In Low

DSU debug unit

dsubren DSU Enable (Push-button 3) In High

dsuact DSU Active (LED 0) Out High

errorn Processor error mode indicato r(LED 2) Out Low

DDR memory

ddr_clk DDR memory clock high Out

ddr_clkn DDR memory clock low Out

ddr_csb DDR memory chip select Out Low

ddr_cke DDR memory output clock enable Out High

ddr_ad[12..0] DDR memory address Out High

ddr_ba[1..0] DDR memory bank address Out High

ddr_rasb DDR memory row address strobe Out Low

ddr_casb DDR memory column address strobe Out Low

ddr_web DDR memory write enable Out Low

ddr_dq[15..0] DDR memory data Out High

ddr_dqs[1..0] DDR memory data strobe Out High

ddr_dm[1..0] DDR memory data mask Out High

Flash and Sram memory

writen Flash memory write enable Out Low

romsn Flash memory chip enable Out Low

oen Flash memory output enable Out Low

rstoutn Flash memory reset Out Low

 80

address[1] Flash memory address Out High

address[22..2] Flash/Sram memory address Out High

address[25..23] Flash memory address Out High

data[15..0] Flash/Sram memory data Bidir High

data[31..16] Sram memory data Bidir High

ssram_oen Sram memory output enable Out Low

ssram_cen Sram memory chip enable Out Low

ssram_bw[3..0] Sram memory byte write enable Out Low

ssram_adscn Sram memory address status controller Out Low

ssram_wen Sram memory write enable Out Low

ssram_clk Sram memory clock Out

GPIO

gpio[2..0] Push-button [2..0] In High

gpio[7..3] Inout High

SD card memory

hc_sd_dat Spi Mode: data out Out High

hc_sd_dat3 Spi Mode: chip select Out Low

hc_sd_cmd Spi Mode: data in In High

hc_sd_clk Spi Mode: Clock Out

SPI

hc_spi_miso Out High

hc_spi_mosi In High

hc_spi_sck Out

hc_spi_slvsel Out Low

Uart1

hc_uart_txd Uart transmitter Out Low

hc_uart_rxd Uart receiver In Low

Uart2

hc_uart2_txd Uart transmitter Out Low

hc_uart2_rxd Uart receiver In Low

I2C master

hc_id_i2cscl I2C clock Bidir

hc_id_i2cdat I2C data Bidir High

 81

Appendix D. Pin assignment

The following table describes pin assignment according to Altera FPGA datasheet in terms

of FPGA and connector pins, voltage level, direction and polarity.

Table 26 Pin assignment list

Name FPGA HSMC Volt. Level Dir. Pol. Notes

System

clk B9 - 2.5 In On-board 50 MHz oscillator

resetn N2 - 2.5 In Low On-board cpu_resetn Push-button

DSU debug unit

dsubren B10 - 2.5 In High On-board Button4 (KEY3 - board)

dsuact P13 - 2.5 Out High On-board LED 1 (LED0 - doc)

errorn N12 - 2.5 Out Low On-board LED 4 (LED3 - doc)

DDR memory

ddr_clk U2 - 2.5 Out On-board DDR memory

ddr_clkn V2 - 2.5 Out On-board DDR memory

ddr_csb V1 - 2.5 Out Low On-board DDR memory

ddr_cke R13 - 2.5 Out High On-board DDR memory

ddr_ad[0] U1 - 2.5 Out High On-board DDR memory

ddr_ad[1] U5 - 2.5 Out High On-board DDR memory

ddr_ad[2] U7 - 2.5 Out High On-board DDR memory

ddr_ad[3] U8 - 2.5 Out High On-board DDR memory

ddr_ad[4] P8 - 2.5 Out High On-board DDR memory

ddr_ad[5] P7 - 2.5 Out High On-board DDR memory

ddr_ad[6] P6 - 2.5 Out High On-board DDR memory

ddr_ad[7] T14 - 2.5 Out High On-board DDR memory

ddr_ad[8] T13 - 2.5 Out High On-board DDR memory

ddr_ad[9] V13 - 2.5 Out High On-board DDR memory

ddr_ad[10] U17 - 2.5 Out High On-board DDR memory

ddr_ad[11] V17 - 2.5 Out High On-board DDR memory

ddr_ad[12] U16 - 2.5 Out High On-board DDR memory

 82

ddr_ba[0] V11 - 2.5 Out High On-board DDR memory

ddr_ba[1] V12 - 2.5 Out High On-board DDR memory

ddr_rasb V16 - 2.5 Out Low On-board DDR memory

ddr_casb T4 - 2.5 Out Low On-board DDR memory

ddr_web U15 - 2.5 Out Low On-board DDR memory

ddr_dq[0] U4 - 2.5 Out High On-board DDR memory

ddr_dq[1] V4 - 2.5 Out High On-board DDR memory

ddr_dq[2] R8 - 2.5 Out High On-board DDR memory

ddr_dq[3] V5 - 2.5 Out High On-board DDR memory

ddr_dq[4] P9 - 2.5 Out High On-board DDR memory

ddr_dq[5] U6 - 2.5 Out High On-board DDR memory

ddr_dq[6] V6 - 2.5 Out High On-board DDR memory

ddr_dq[7] V7 - 2.5 Out High On-board DDR memory

ddr_dq[8] U13 - 2.5 Out High On-board DDR memory

ddr_dq[9] U12 - 2.5 Out High On-board DDR memory

ddr_dq[10] U11 - 2.5 Out High On-board DDR memory

ddr_dq[11] V15 - 2.5 Out High On-board DDR memory

ddr_dq[12] U14 - 2.5 Out High On-board DDR memory

ddr_dq[13] R11 - 2.5 Out High On-board DDR memory

ddr_dq[14] P10 - 2.5 Out High On-board DDR memory

ddr_dq[15] V14 - 2.5 Out High On-board DDR memory

ddr_dqs[0] U3 - 2.5 Out High On-board DDR memory

ddr_dqs[1] T8 - 2.5 Out High On-board DDR memory

ddr_dm[0] V3 - 2.5 Out High On-board DDR memory

ddr_dm[1] V8 - 2.5 Out High On-board DDR memory

Flash and SRAM memory

writen D18 - 2.5 Out Low flash_we_n

romsn E2 - 2.5 Out Low flash_ce_n

oen D17 - 2.5 Out Low flash_oe_n

rstoutn C3 - 2.5 Out Low flash_reset_n

address[1] E12 - 2.5 Out High

address[2] A16 - 2.5 Out High

address[3] B16 - 2.5 Out High

address[4] A15 - 2.5 Out High

address[5] B15 - 2.5 Out High

 83

address[6] A14 - 2.5 Out High

address[7] B14 - 2.5 Out High

address[8] A13 - 2.5 Out High

address[9] B13 - 2.5 Out High

address[10] A12 - 2.5 Out High

address[11] B12 - 2.5 Out High

address[12] A11 - 2.5 Out High

address[13] B11 - 2.5 Out High

address[14] C10 - 2.5 Out High

address[15] D10 - 2.5 Out High

address[16] E10 - 2.5 Out High

address[17] C9 - 2.5 Out High

address[18] D9 - 2.5 Out High

address[19] A7 - 2.5 Out High

address[20] A6 - 2.5 Out High

address[21] B18 - 2.5 Out High

address[22] C17 - 2.5 Out High

address[23] C18 - 2.5 Out High

address[24] G14 - 2.5 Out High

address[25] B17 - 2.5 Out High

data[0] H3 - 2.5 Bidir High

data[1] D1 - 2.5 Bidir High

data[2] A8 - 2.5 Bidir High

data[3] B8 - 2.5 Bidir High

data[4] B7 - 2.5 Bidir High

data[5] C5 - 2.5 Bidir High

data[6] E8 - 2.5 Bidir High

data[7] A4 - 2.5 Bidir High

data[8] B4 - 2.5 Bidir High

data[9] E7 - 2.5 Bidir High

data[10] A3 - 2.5 Bidir High

data[11] B3 - 2.5 Bidir High

data[12] D5 - 2.5 Bidir High

data[13] B5 - 2.5 Bidir High

data[14] A5 - 2.5 Bidir High

 84

data[15] B6 - 2.5 Bidir High

data[16] C16 - 2.5 Bidir High

data[17 D12 - 2.5 Bidir High

data[18] E11 - 2.5 Bidir High

data[19] D2 - 2.5 Bidir High

data[20] E13 - 2.5 Bidir High

data[21] E14 - 2.5 Bidir High

data[22] A17 - 2.5 Bidir High

data[23] D16 - 2.5 Bidir High

data[24] C12 - 2.5 Bidir High

data[25] A18 - 2.5 Bidir High

data[26] F8 - 2.5 Bidir High

data[27] D7 - 2.5 Bidir High

data[28] F6 - 2.5 Bidir High

data[29] E6 - 2.5 Bidir High

data[30] G6 - 2.5 Bidir High

data[31] C7 - 2.5 Bidir High

ssram_oen E9 - 2.5 Out Low

ssram_cen F9 - 2.5 Out Low

ssram_bw[0] F12 - 2.5 Out Low

ssram_bw[1] F13 - 2.5 Out Low

ssram_bw[2] F10 - 2.5 Out Low

ssram_bw[3] F11 - 2.5 Out Low

ssram_adscn F7 - 2.5 Out Low

ssram_wen G13 - 2.5 Out Low

ssram_clk A2 - 2.5 Out

GPIO

gpio[0] F1 - 2.5 In High On-board Button1 (KEY0 - board)

gpio[1] F2 - 2.5 In High On-board Button2 (KEY1 - board)

gpio[2] A10 - 2.5 In High On-board Button3 (KEY2 - board)

gpio[3] N7 49 2.5 Inout High THDB PROTO_IO40 (3 - J3)

gpio[4] J13 55 2.5 Inout High THDB PROTO_IO30 (5 - J3)

gpio[5] K17 65 2.5 Inout High THDB PROTO_IO32 (7 - J3)

gpio[6] B2 71 2.5 Inout High THDB PROTO_IO34 (9 - J3)

gpio[7] G2 77 2.5 Inout High THDB PROTO_IO36 (11 - J3)

 85

SD card memory

hc_sd_dat H6 41 3.3 Out High

hc_sd_dat3 D3 42 3.3 Out Low

hc_sd_cmd T1 47 3.3 In High

hc_sd_clk M5 43 3.3 Out

SPI

hc_spi_miso N13 152 3.3 Out High THDB PROTO_IO28 (39 - J5)

hc_spi_mosi N6 146 3.3 In High THDB PROTO_IO27 (37 - J5)

hc_spi_sck R18 140 3.3 Out THDB PROTO_IO25 (35 - J5)

hc_spi_slvsel R17 138 3.3 Out Low THDB PROTO_IO24 (33 - J5)

Uart1

hc_uart_txd N8 53 3.3 Out Low THDB PROTO_IO29 (4 - J3)

hc_uart_rxd N10 59 3.3 In Low THDB PROTO_IO31 (6 - J3)

Uart2

hc_uart2_txd L2 89 3.3 Out Low THDB PROTO_IO16 (21 - J5)

hc_uart2_rxd L1 91 3.3 In Low THDB PROTO_IO17 (23 - J5)

I2C master

hc_id_i2cscl F3 34 3.3 Bidir

hc_id_i2cdat E1 33 3.3 Bidir High

