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Abstract 

The recent advances in embedded systems world, lead us to more complex systems with 

application specific blocks (IP cores), the System on Chip (SoC) devices. A good example 

of these complex devices can be encountered in the cell phones that can have image proc-

essing cores, communication cores, memory card cores, and others. 

The need of augmenting systems’ processing performance with lowest power, leads to a 

concept of Multiprocessor System on Chip (MSoC) in which the execution of multiple 

tasks can be distributed along various processors. 

This thesis intends to address the creation of a synthesizable multiprocessing system to be 

placed in a FPGA device, providing a good flexibility to tailor the system to a specific ap-

plication. To deliver a multiprocessing system, will be used the synthesisable 32-bit 

SPARC V8 compliant, LEON3 processor. 

Keywords 

Multiprocessor, Multicore, LEON3, IP core, SPARC V8, FPGA, Altera, SoC, MSoC, 

Linux, Operating System. 
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Resumo 

Os avanços recentes no mundo dos sistemas embebidos levam-nos a sistemas mais 

complexos com blocos para aplicações específicas (IP cores), os dispositivos System on 

Chip (SoC). Um bom exemplo destes complexos dispositivos pode ser encontrado nos 

telemóveis, que podem conter cores de processamento de imagem, cores de comunicações, 

cores para cartões de memória, entre outros. 

A necessidade de aumentar o desempenho dos sistemas de processamento com o menor 

consumo possível, leva ao conceito de Multiprocessor System on Chip (MSoC) em que a 

execução de múltiplas tarefas pode ser distribuída por vários processadores. 

Esta Tese pretende abordar a criação de um sistema de multiprocessamento sintetizável 

para ser colocado numa FPGA, proporcionando uma boa flexibilidade para a adaptação do 

sistema a uma aplicação específica. Para obter o sistema multiprocessamento, irá ser 

utilizado o processador sintetizável SPARC V8 de 32-bit, LEON3. 

Palavras-Chave 

Multiprocessador, Multicore, LEON3, IP core, SPARC V8, FPGA, Altera, SoC, MSoC, 

Linux, Sistema Operativo. 
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1. GENERAL INFORMATION 

1.1. INTRODUCTION  

Actual embedded systems have all interfaces needed in one chip, a SoC (System on Chip), 

resulting in an expressive reduction in space and costs of a system. The increase of proc-

essing needs in actual systems lead us to multiprocessors, each executing dedicated tasks 

with high level of processing capabilities improving the overall system performance. 

A SoC is intended to implement most or even all functionalities of an electronic system 

and can include: a processor to manage the system, on-chip memories and memory con-

trollers to interface external memories, DSP functionalities, specific co-processors, com-

munication peripherals like PCI/PCIe, USB, Ethernet, UART, SPI and I²C, among others. 

This type of devices can be found in many product categories like cell phones requiring 

low-power programmable processors, telecommunications and networking using several 

high-speed and high complex systems SoC and digital televisions with needs of higher 

resolution [1]. 

With the needs of more speed and more processing power to achieve the performance 

wanted, concepts of Multiprocessor System-on-Chip (MSoC) appear. The concept is the 

same of SoC but with multiple processors. 
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Another important issue related to SoC or MSoC is where to implement it. Such systems 

were only developed by Integrated Circuits (ICs) manufacturers using Electronic Design 

Automation (EDA) tools for the development of Application Specific Integrated Circuits 

(ASICs). With the progressive development of new powerful and feature rich Field Pro-

grammable Gate Arrays (FPGAs) and Complex Programmable Logic Device (CPLD), this 

type of developments can be done more easily in much less time, taking the advantage of 

being configurable, to reduce the overall system space, weight and providing high per-

formance with the lowest power consumption compared with standard ICs, which makes 

these devices ideal for high performance embedded systems. 

As the systems complexity grows, the management can be also complex in such way that 

the use of an Operating System (OS) or a Real Time Operating System (RTOS) is a must. 

With the multiprocessing systems appearance, a new type of OS supporting both Symmet-

ric Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP) systems arises. 

Nowadays, some areas can benefit from the high performance and low power consumption 

provided by this type of system designs. These product design benefits can be encountered 

in space, aerospace, military, automotive, medical and autonomous systems areas, where 

the system reliability is a major concern. 

Today we can found multiprocessor systems in desktops or laptops devices, named dual-

core or quad-core, but this type of devices are not suitable for embedded systems or de-

signs with high degree of tailoring. New design tools to build multiprocessor systems for 

embedded designs are now accessible, providing support to FPGA devices using Hardware 

Description Languages like VHDL or Verilog. 

This thesis addresses the creation of a synthesizable multiprocessing system can be placed 

in any FPGA device architecture providing flexibility for choosing the right hardware for a 

specific application. To deliver a multiprocessing system it will be used the synthesisable 

32-bit SPARC V8 compliant, LEON3 processor, which is used in space applications by 

Evoleo Technologies, the main requirements supplier in this thesis. 

The Linux 2.6 OS which supports SMP, will be used in order to test the system perform-

ance and provide base software configured to be used in the developed architecture. 
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1.2. CONTEXT  

This thesis was developed in a cooperation between Evoleo Technologies, Lda and the 

Autonomous Systems Laboratory from ISEP. 

To augment and expand knowledge in the area of multiprocessing systems for industry and 

space applications, this thesis was proposed by Evoleo Technologies, Lda, in the context of 

the Master’s course. 

Evoleo Technologies, Lda is an enterprise that acts in two main branches. One is oriented 

to industry with development of automatic test equipments (ATE), automation solutions 

with National Instruments hardware and software (LabView). The second branch is ori-

ented to space applications, with development of hardware and software. 

The Autonomous Systems Laboratory is a research and development (R&D) unit from 

ISEP, conducting research in autonomous systems and related areas, such as navigation, 

control and coordination of multiple robots. Currently, this laboratory is responsible for the 

Master’s course in Autonomous Systems, a specialization within the Electrical and Com-

puter Engineering area. 

1.3. OBJECTIVES  

The main goal of this thesis is to create a base of knowledge developing synthesisable mul-

tiprocessor systems, tailored to a specific design using FPGA devices, delivering the whole 

system design tools knowledge for future designs, reducing the time to market of multi-

processor systems designs. 

The FPGA family to be used shall be from the Altera manufacturer, benefiting of the 

knowledge developed by the enterprise with this manufacturer devices. 

The multiprocessor architecture proposed in this thesis shall be specified and designed us-

ing the LEON3 processor and GRLIB IP Library which contains several Cores to be used 

in conjunction with LEON3. The system to be implemented shall be general purpose pro-

viding a platform for future developments with multiprocessor systems. 
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Application software shall be created in order to test the system developed. A base of com-

parison between uniprocessor and multiprocessor shall be proposed to validate and prove 

the advantages of multiprocessing systems in general applications. The tests should be 

made using a set of benchmarking applications with multiple tasks running simultaneously, 

comparing the overall time consumption to run all applications in uniprocessor and multi-

processor systems. 

1.4. STRUCTURE OF THIS THESIS 

This thesis is structured as follows. 

Chapter 2 presents some multiprocessor concepts related to type of cores architectures, 

multiprocessing symmetry, cache coherency between processors and memory manage-

ment. 

Chapter 3 presents general FPGAs architectures with some details about Altera Cyclone III 

architecture and an overview of the Hardware Description Language (HDL), VHDL. 

Chapter 4 exposes three synthesizable processor architectures, the ERC32 processor used 

mainly for space applications, followed by the LEON architecture which was made to im-

prove some aspects of the ERC32 processor architecture, and finally the ARM processor 

architecture which provides, in recent versions, multiprocessor support which could be a 

good alternative to the architecture addressed in this thesis. 

Chapter 5 presents the LEON3 architecture focusing in the main units, as the processor 

core and its integer unit, the debug unit, the interconnect bus used to connect all system 

cores, the two caches and the multiprocessor support provided by this architecture. 

Chapter 6 exhibits the system requirements and specification, as well as the selected hard-

ware framework to support the multiprocessor architecture. 

Chapter 7 provides preliminary architecture definition and design, and also provides the 

plan for the verification and test of the architecture. 

Chapter 8 contains the detailed design description, as system configuration, pin assign-

ment, pre-synthesis simulation, synthesis, place and route. 
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Chapter 9 exhibits the verification and test results obtained according to the plan outlined 

in Chapter 7. 

Finally, Chapter 10 provides the general conclusions obtained in the development of this 

thesis and the proposed future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  6

 

 

 

 

This page was intentionally left blank. 

 

 



 7 

2. MULTIPROCESSOR CONCEPTS 

2.1. HOMOGENEOUS AND HETEROGENEOUS SYSTEMS 

As the major hardware vendors are moving to multicore systems, some questions about 

what kind of processors to use in the same system or same chip arise. “Use the same or dif-

ferent types of processor cores in our systems?”. Two system types are discussed, the ho-

mogeneous and the heterogeneous. 

2.1.1. HOMOGENEOUS SYSTEM  

Systems having identical cores are named homogeneous systems, such as the Intel Core 2 

or Tilera 64. 

A homogeneous system is a simpler system compared to a heterogeneous system because 

the same core type is replicated in the same system, decreasing the time to learn new core 

architecture and the associated tools [7]. With this approach the same core components can 

be reused for the same and future developed systems, and the existing software code mi-

gration is much easier than heterogeneous systems [11]. 
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Figure 1 C6474 family – homogeneous multicore system [10] 

In a homogeneous system, any core can run any task, facilitating the software scheduler 

job. Another important issue is the power consumption, a special concern nowadays, which 

can be much easier because any core can be switched OFF to reduce any power consump-

tion when the system does not need too much processing power and switched ON when the 

processing complexity increases, benefiting of the homogeneous tasks distribution [9]. 

2.1.2. HETEROGENEOUS SYSTEM  

In contrast with homogeneous systems, heterogeneous systems are built with specialized 

hardware. One example of a heterogeneous system is the Cell processor, which contains 

one general purpose PowerPC core and 6-8 synergetic processing elements (SPE) to per-

form specific tasks as video, audio and communications processing [7]. 

 

Figure 2 Cell processor – heterogeneous multicore system [12] 
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A heterogeneous multicore system has the advantage of being optimized to a specific task, 

reducing the processing time to the minimum required for a certain task and consequently 

the power consumption to that task is reduced. In this case, the software development shall 

be independent for each core and in certain cases the software tools shall be completely 

different, requiring knowledge of various tools. The software portability can be another 

drawback of heterogeneous cores because the software developed for this specialized 

hardware can not be reused in news designs with new specialized hardware [8]. 

2.2. SYMMETRIC MULTIPROCESSING AND ASYMMETRIC MULTIPROCES-

SING 

Multicore processors can be denominated multiprocessing systems because of their proc-

essing parallelism. The multiprocessing system can be symmetric, asymmetric or even a 

mixture of both, i.e. bound. The appropriate form of multiprocessing must be selected prior 

to develop the multicore system hardware because this choice will determine the type of 

multicore system, a homogeneous or heterogeneous system. 

  

Figure 3 Symmetric Multiprocessing and Asymmetric Multiprocessing [15]. 

 

2.2.1. ASYMMETRIC MULTIPROCESSING 

The Asymmetric Multiprocessing (AMP) model works with a separate OS or same OS in 

each core. This approach is similar to systems with only one core, where each core has its 

own OS and to benefit of multiprocessing, an interprocess communications is used to pass 

messages between nodes [14]. 

To take advantage of multiprocessing, the development of software must be focused in 

parallelism paradigm which leads to new development software methodologies to handle 

the management of shared hardware resources [16]. 
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2.2.2. SYMMETRIC MULTIPROCESSING 

The Symmetric Multiprocessing (SMP) model needs only one OS running and controlling 

all cores. The main advantage of this model lies in the assumption that the OS controls all 

hardware resources, so, the OS scheduler can dynamically allocate any task, process or 

thread to any available core, benefiting of the fact that any core can accept any OS object 

[15]. In this model all interprocess communications are made over shared memory [13]. 

Another important issue to be taken into account in shared memory systems is the coher-

ence between cores caches contents. An efficient cache coherency protocol should be used 

in order to prevent data corruption. 

Some OS require a Memory Management Unit (MMU) for advanced memory management 

and protection. 

2.3. CACHE COHERENCY PROTOCOL  

When the SMP model is used in a multicore system, all processors share the same memory 

address space. Because of this capability available in SMP models, a cacheable system 

needs a cache coherency protocol to manage and control the cache system [17]. Several 

cache coherency mechanisms exist, as snooping, directory-based or snarfing. In this chap-

ter, the cache coherency mechanism that will be focused is the cache snooping because of 

its usage in the LEON3 processor. 

 

Figure 4 Cache replicas in multiple processors, a coherency problem in SMP systems [18]. 
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A snoop mechanism consists of a unit integrated in the cache system, which is constantly 

monitoring all transactions related to cache operations, in the main memory access bus, the 

AHB bus, ensuring memory coherency in shared memory systems. A snoop unit monitors 

AHB bus to find data written to any processor in the system, ensuring that do not contain 

any copy of that data. In case of equal data detection, the cache line that contains it is 

marked as invalid [3]. 

A write-through policy can be used (LEON3 has this mechanism available) in conjunction 

with cache snooping in order to write data to main memory, reducing write loads on the 

AHB bus [18]. The reduction in write transactions is made using an update policy, in other 

words, when a processor writes to main memory location that is cached, both the cache and 

the main memory are updated. 

2.4. MEMORY MANAGEMENT UNIT  

A Memory Management Unit (MMU) emerged with the needs of multitasking and multi-

user operating systems that share one common memory space. With this demand is re-

quired that the MMU, protects users privacy, prevents unauthorized access and prevents 

accesses to data currently in use. 

 

Figure 5 Block diagram representation of a system with MMU [5]. 

To meet these system requirements, the MMU translates virtual addresses into physical 

addresses and manages all memory accesses. A system without MMU can access main 

memory using physical addresses, i.e. use the main memory addresses without any type of 

codification. With MMU, when the processor needs to access the main memory it uses vir-

tual addresses that will be translated by the MMU into physical addresses to access data. 

To implement virtual address spaces in hardware, paging and segmentation can be used. 
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Figure 6 Paging concept [4]. 

Paging uses a concept of a fixed block size, named page, which divides virtual address 

space (logical memory) into pages containing mapping entries necessary to access physical 

address space. Segmentation differs from paging in size, where each block, named seg-

ment, is variable in size and does not contain information about physical address space 

mapping, but rather its length and flags for OS information. 

 

Figure 7  Segmentation concept [4]. 

The addresses translation is made through a Translation Look-aside Buffer (TLB), a cache 

used by MMU to improve virtual address translation, which contains page table entries 

mapping virtual addresses to physical addresses. 

 

Figure 8 LEON3 cache and MMU perspective [3]. 
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3. FPGA ARCHITECTURE AND HARD-

WARE DESCRIPTION LANGUAGE 

3.1. FPGA ARCHITECTURE OVERVIEW  

With more than two decades, the Field Programmable Gate Array (FPGA) is a customiza-

ble logic device containing logic blocks connected through interconnects arrays. The first 

FPGA was developed by Xilinx in 1985, containing a matrix of independent logic blocks 

and also independent input/output (I/O) blocks in the periphery, connected through pro-

grammable interconnect resources. With this approach, it’s possible to have both logic 

blocks and I/O blocks to perform specific functions. 
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I/O block

Interconnect
resources

Logic block

 

Figure 9 FPGA architecture 

Currently there are three FPGA architecture types. 

1. SRAM 

SRAM-based FPGAs, contain static memory cells used as interconnect multiplexers to se-

lect the right path for each signal and to store data in LookUp-Tables (LUTs). As any 

SRAM, after power-down all configurations are lost, so, an external device to store con-

figurations is needed to transfer data after FPGA power-up; 

2. Flash/EEPROM 

In early FPGA architectures, the EEPROM memory cells were only used to implement 

wired-AND functions as in Programmable Logic Device (PLD), but with new manufactur-

ing technologies and the appearance of Flash memory cells, this technology evolved to 

store all signals path and cells states, not requiring external memory with configuration set-

tings; 

3. Anti-fuse 

Unlike the SRAM or Flash/EEPROM memory cells, the anti-fuse FPGAs cells after being 

programmed are permanently linked, storing all switch interconnect and cells configura-

tions with no regress. This type of technology is mainly used in military and aerospace in-

dustries as radiation tolerant devices. 
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3.1.1. CURRENT FPGA ARCHITECTURES  

Since the first FPGA, the architecture as evolved to produce more devices with high densi-

ties, high-speed interconnects and function specific blocks, as memory blocks, Digital Sig-

nal Processing (DSP) blocks, clock management blocks and communications specific I/O 

blocks. 

 

Figure 10 Current FPGA architecture 

3.2. ALTERA CYCLONE III 

The Altera Cyclone III FPGA was chosen to hold the system to be developed, because this 

device family offers to developers a lot of features combined with low-power consumption 

and low cost. The Cyclone III family is well used for SoC designs, providing interesting 

features for this type of applications. 
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Figure 11 Altera Cyclone III architecture overview 

The following subsections will present the Cyclone III family architecture features. 

3.2.1. LOGIC ELEMENTS AND LOGIC ARRAY BLOCKS  

The Logic Element is the smallest block which is able to implement several types of func-

tions as, a D, JK, T or SR flip-flop with data, clock, clock enable, clear input, contain a 

four input Look-Up Table (LUT) able to implement logic operations, has register chain 

connection and provides interface to local, row and column interconnections. 

3.2.2. MEMORY BLOCKS  

Each built-in memory block (M9K), provides 9 kbits of memory which can operate at 315 

MHz. The on-chip memory structure consists of M9K blocks columns that can be config-

ured as Random Access Memory (RAM), First-In First-Out (FIFO) buffers or Shift Regis-

ter with support to single-port, simple dual-port and true dual-port modes. 

3.2.3. EMBEDDED MULTIPLIERS  

Embedded multipliers provide on-chip DSP operations, which are ideal to reducing cost 

and power consumption while increasing system performance. The Cyclone III family pro-

vides up to 288 embedded multipliers blocks supporting individual 18x18 bit multipliers or 

two individual 9x9 bit multipliers. With this features, device family is ideal to host SoCs 

with high-performance co-processors or to act as co-processor system. 
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Figure 12 Multiplier block architecture 

3.2.4. CLOCK NETWORKS  

The device family provides 20 global clock networks which can be driven from dedicated 

clock pins, dual-purpose clock pins, user logic and PLLs. This architecture also provides 

up to four PLLs with five outputs per PLL, allowing robust clock management. 

3.2.5. I/O  FEATURES 

One of the most interesting things in FPGA architectures are the I/O features in which each 

FPGA is divided in several I/O banks with support to several I/O standards, making it ideal 

for multi-protocol systems. The Cyclone III has eight I/O banks supporting a variety of I/O 

standards. These standards can be single-ended as LVTTL, LVCMOS, SSTL, HSTL, PCI 

and PCI-X or differential as SSTL, HSTL, LVPECL, BLVDS, LVDS, mini-LVDS, RSDS 

and PPDS. Other I/O features are output port programmable current strength, slew rate 

control, open-drain output, programmable pull-up resistor and On-Chip Termination 

(OCT) resistors to provide I/O impedance matching and termination capabilities. 

3.3. VHDL 

In the early 80’s, the United States (US) Department of Defence began development of the 

Very High Speed Integrated Circuit (VHSIC) project, with the main goal being to provide 

better methodologies to design new Integrated Circuits (ICs) in order to reduce the devel-

opment time and costs, and to provide a new way to document the ICs behaviour that could 
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be simulated before production. A few years later, the Institute of Electrical and Electron-

ics Engineers (IEEE) released a standard to produce the VHSIC Hardware Description 

Language (VHDL). 

In nowadays, this HDL is used in development of ASICs, FPGAs and Application Specific 

Standard Products (ASSPs). The main advantages of using VHDL are: 

• It is an IEEE standard, which makes easier the exchange of information between tools 

and companies developing ICs with this standard; 

• Technology independence in development, which means that the same behaviour 

documented using VHDL can be achieved in a wide range of digital hardware; 

• It is a flexible language allowing various design methodologies; 

• It is highly portable and can be used in various tools at different stages in the design 

process. 

Currently, some institutions as National Aeronautics and Space Administration (NASA) 

and European Space Agency (ESA), adopted VHDL as the main Hardware Description 

Language for internal and sub-contractors project developments. 

The VHDL syntax is similar to ADA and Pascal languages, and is very useful for concur-

rent designs, providing a set of tools for this purpose. 

In the next lines a sample code using VHDL is presented, showing the behaviour of an 

AND gate. 

entity AND is 
port (INA, INB: in bit; OUTA: out bit); 
end AND 
architecture behaviour of AND is 
begin 
  process (INA, INB) 
  begin 
    OUTA <= INA AND INB; 
  end process; 
end behaviour; 
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Figure 13 VHDL AND gate block diagram representation 
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4. PROCESSORS ARCHITECTURES 

4.1. ERC32 

The ERC32 is a 32-bit SPARC V7 compliant and radiation-tolerant processor core, devel-

oped to be a high-performance, general-purpose computer to host real-time operating sys-

tems for space applications. The processor core development began in 1992 at the Euro-

pean Space Research and Technology Centre (ESTEC) and extended to 1997. 

The fault-tolerance of ERC32 was implemented to concurrently detect errors in the internal 

logic, isolate any error to prevent any propagation to the outside of the processor core and 

to handle with errors, restoring to the correct state the internal logic where the fault oc-

curred. 

 

Figure 14 ESA / ERC32 evaluation board Error! Reference source not found.. 
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The ERC32 architecture consists of three core elements, an Integer Unit (IU), a Floating-

Point Unit (FPU) and a Memory Controller (MEC). 

 

Figure 15 ERC32 architecture Error! Reference source not found.. 

The first version of the ERC32, manufactured and commercialized by ATMEL (formerly 

TEMIC Semiconductors), was a three chip system composed of an IU (TSC691), a FPU 

(TSC692) and a MEC (TSC693) [19] [20] [21] [22]. 

After the experience gained around the three chips ERC32 system, ATMEL developed a 

single chip, the TSC695E [23], with the three main units of the previous version. The new 

device was developed with more recent technology and more efficient hardening tech-

niques, revealing more robustness to Single Event Upsets (SEUs) and Single Event Latch-

ups (SELs). Other advantages that came with the single chip ERC32 device, was the in-

crease of system performance and the power consumption reduction [24]. 



 23 

 

Figure 16 TSC695F block diagram [23]. 

4.2. LEON 

The LEON was originally developed by Jiri Gaisler at ESTEC, to succeed the ERC32 

processor core [26]. 

The main goals were to provide a high performance fault tolerant processor, which could 

be implemented in non radiation hardening components to simplify early developed test 

systems, to provide portability across wide range of semiconductor devices maintaining 

functionality and performance, provide modularity allowing reuse in development of SoC 

designs, provide standard interfaces to facilitate the integration with commercial products 

and to provide software compatibility with the previous developed processor, the ERC32. 

The LEON processor is a 32-bit SPARC V8 compliant processor implemented as a high-

level VHDL model, with a 5-stage pipeline, hardware multiplier and divider units, dual co-

processor interfaces and separate instruction and data buses and caches [27]. The SPARC 

V8 architecture was chosen to maintain software compatibility with ERC32 and to avoid 

licensing issues. The interconnect bus standard chosen was AMBA with AMBA AHB for 

cores needing high performance data transactions and AMBA APB for cores designed to 

low-power consumption and low-performance [25]. 
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Figure 17 LEON block diagram Error! Reference source not found.. 

The first prototype was manufactured by ATMEL (ATC35) in a 0.35 µm CMOS process. 

4.3. ARM 

Historically, the Advanced Risc Machine (ARM) was founded by Acorn, Apple and VLSI 

in 1990. ARM is a high-performance processor which is specially designed for low-power 

consumption portable devices, as PDAs, cell-phones, media players and game players. The 

ARM processor has wide range of products divided in various processor families, as 

ARM7, ARM9, ARM10 and ARM11, which can have MMU, cache, FPU, multiplier, de-

bugger, Java Virtual Machine (JVM) and Thumb instructions support [28]. 

The ARM is 32-bit processor with a Reduced Instruction Set Computer (RISC) architec-

ture, with a pipeline integer unit and a large set of general-purpose registers to reach the 

low power consumption. Thumb instructions (16-bit instructions) are optionally available 

to reduce the code density, conditional execution is used to improve performance and code 

density and enhanced instructions like DSP instructions are available. 
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Figure 18 S5PC100 from ARM Cortex A8 family used in new iPhone 3G [33]. 

With ARM processor development, an interconnect bus standard arise to meet the proces-

sors needs and to be easily integrated in future core developments. The interconnect bus is 

the AMBA, currently in the version 3 and supporting four types of buses, the Advanced 

High-Performance Bus (AHB) for high speed data transfers, Advanced Peripheral Bus 

(APB) for low-power and low complexity cores, Advanced eXtensible Interface (AXI) for 

high speed pipelined transfers with simultaneous read and write operations and the Ad-

vanced Trace Bus (ATB) for components with trace capabilities [29] [30] [31] [32]. 
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Recently, a new synthesizable processor included in the ARM11 family was developed 

specially for multiprocessor applications benefiting of tailored processor architecture for 

SMP and AMP systems and named ARM11 MPCore. This micro architecture can be con-

figured to contain between one to four ARM11 processors. 

 

Figure 19 ARM11 MPCore architecture 
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5. LEON3 ARCHITECTURE 

5.1. PROCESSOR 

The LEON3 is a 32-bit synthesizable processor core in VHDL, compliant with the SPARC 

V8 architecture (IEEE-1754). The core is designed for low power consumption and high 

performance for embedded application. The LEON3 main advantages are the high modu-

larity making it appropriated for SOC designs, the portability to be used in various semi-

conductor architectures and scalability to be used in both high and low end applications. 

The LEON3 is a highly stable processor benefiting of the large usage of the former ver-

sions (LEON and LEON2) [2]. 

The processor core is distributed as part of GRLIB IP Library. The IP Library contains a 

set of reusable IP cores suitable for SoC designs. All IP cores support the same intercon-

nect bus (AMBA) and the core assignment in the main bus is made using a GRLIB 

plug&play capability that is fully compatible with AMBA 2.0. This is a unique method to 

quickly assemble a complex SoC design, a PCI-style plug&play that contains information 

about device, vendor and version, cacheability, AMBA address and interrupt number. All 

configurations are made using VHDL generics for core reusability [3]. 
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5.2. INTEGER UNIT  

The internal processor design uses a Harvard architecture model, benefiting of a separation 

between instructions and data buses, allowing parallel fetches and transfers. 

 

Figure 20 Harvard architecture [1] 

A 7-stage instruction pipeline is implemented, supporting a configurable, from 2 to 32, reg-

ister windows. Multiply and divide instructions are supported and a multiplier with op-

tional 16x16 bit Multiply Accumulate (MAC) can be used to accelerate DSP algorithms. A 

single-vector trapping is used to reduce code size for embedded applications and an excep-

tion trap cause the processor to halt execution when, for example, a reset, write buffer error 

or error during fetch has occurred. 
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Figure 21 LEON3 integer unit data path diagram [3]. 

A MMU compatible with SPARC V8 reference MMU can be used [5]. For SMP systems, 

as linux-2.6, a MMU with physical tags and snoop is needed. The Translation Look-aside 

Buffer (TLB) can be configured as a separate TLB for instruction and data or as a shared 

TLB [4]. 

Two optional co-processors can be used as defined in SPARC V8 architecture, a Floating 

Point Unit (FPU) and a user-defined co-processor. The LEON3 supports two FPU: Gaisler 

Research GRFPU with single and double precision operands that implements all SPARC 

V8 FPU instructions, and Sun Meiko FPU, which does not implement the full FPU instruc-

tions defined in SPARC V8 [2]. 
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5.3. DEBUG SUPPORT UNIT 3 

The Debug Support Unit (DSU) is a non-intrusive hardware debug tool that can control the 

processor(s) execution(s). 

 

Figure 22 DSU and debug interface [2] 

The DSU is tightly-coupled to LEON3 processors hardware unit and provides an external 

debug interface. In the system acts as an AHB slave and can be accessed by any AHB mas-

ter, as the external debug interface. The external debug interface can be Joint Test Action 

Group (JTAG), serial Universal Asynchronous Receiver Transmitter (UART), Universal 

Serial Bus (USB), Ethernet or Peripheral Component Interconnect (PCI). 

The debug unit allows inserting instruction and data watch points, an external break signal 

to halt processor execution and step by step execution. A circular buffer, named AHB trace 

buffer, is used to store all AHB data transactions to keep the trace on the bus. 

5.4. INTERCONNECT BUS (AMBA) 

The interconnect bus standard used in overall system is the Advanced Microcontroller Bus 

Architecture (AMBA) 2.0. This bus specification only defines the logic protocol interface 

between cores in the system. Physical aspects like timing and voltage levels are not re-

ferred in the AMBA specification. 
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In revision 2.0, three bus interfaces are defined: 

• Advanced High-performance Bus (AHB); 

• Advanced System Bus (ASB); 

• Advanced Peripheral Bus (APB). 

The AMBA AHB is used for high-performance and high clock frequency cores in the sys-

tem. This interconnect serves as system backbone bus, linking processors, on-chip memo-

ries, off-chip memories, high performance cores like high-speed communications 

(Ethernet, USB, PCI) and function specific cores, and interfaces to low-performance pe-

ripherals. 

 

Figure 23 AHB multiplexer interconnection [6] 

The high-performance is achieved through a priority multiplexed data bus rather than the 

bidirectional bus (used in ASB), which means that using this approach is possible to 

achieve high frequency transactions. The multiplexer priority is managed by an arbiter. 

The AMBA ASB is used for high-performance system cores. The ASB can be used as al-

ternative bus that efficiently connects the same blocks as AHB. 
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Figure 24 Typical AMBA AHB and APB system [6] 

The AMBA APB is used for low-power and low-performance peripherals. The APB is de-

signed for minimal power consumption, with reduced interface complexity allowing per-

forming all peripheral actions [6].  

5.5. CACHES 

A cache is a memory with zero cycle access, tightly-coupled to the processor and can in-

crease system performance in a way that the next instruction or data fetched by the proces-

sor have a higher chance to be in this memory instead of access main memory that takes 

several cycles to put available the needed data. Another advantage is in case of refill after 

cache-line missing, the first instruction takes the main memory access time but the next 

instructions that have been brought to cache are already prepared in the next fetch. 

As the LEON3 processor implements an Harvard architecture, the instruction and data 

buses are connected to cache controllers independently. 

5.6. MULTIPROCESSOR SUPPORT 

5.6.1. CACHE COHERENCY  

A cache coherency mechanism is made available using snooping mechanism. This method, 

“snoop” the AHB bus to ensure that data has no replicas on other processor caches, but if 

same data is encountered, the cache line is marked as invalid. Write-through mechanism is 

also used in order to reduce write transactions in the main system bus, the AHB bus. 

 

 



 33 

5.6.2. MULTIPROCESSOR INTERRUPT CONTROLLER  

The interrupt controller available in the GRLIB IP Library supports multiprocessor 

scheme. All generated interrupts are routed to the interrupt controller that manages signals 

priorities, masks and forwards the high priority interrupts to all processors. After an inter-

rupt reception, processor acknowledges the interrupt. 

5.6.3. MULTIPROCESSOR STATUS REGISTER 

A multiprocessor status register is available to indicate the number of processor in the sys-

tem and inform about processor power-down mode (power-down or running). 

5.6.4. PROCESSORS STATE AFTER RESET 

In a LEON3 multiprocessor system, all processors, except the processor #0, will enter 

power-down mode after reset. The processors release from power-down mode can be done 

by processor #0 after system initialization. 

5.6.5. MULTIPROCESSOR FLOATING POINT UNIT AND COPROCESSOR 

In a multiprocessor system, each processor has its own FPU/ Coprocessor, when enabled. 

The GRFPU core available in the GRLIB IP Library has the option to share FPU capabili-

ties between multiple processors. 
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6. SYSTEM REQUIREMENTS AND 

SPECIFICATION 

6.1. GENERAL REQUIREMENTS  

The following chapter is intended to expose the general system requirements for the plat-

form to be developed. 

The platform to be developed shall: 

• Be based on FPGA devices, improving the system customization and future develop-

ment; 

• Taking into consideration the use of Altera FPGAs, taking advantage of the knowledge 

developed by the enterprise using these devices; 

• Contain two or more processor cores to achieve multiprocessing; 

• Contain EEPROM or flash memory to store instructions to be executed and SRAM or 

SDRAM memory to store temporary data; 

• Supply hardware debug functions and provide the respective debug support unit inter-

face; 

• Support two or more different communication protocols and provide general purpose 

input output interfaces; 



 36 

• Include MMU in order to support advanced operating systems as Linux 2.6 SMP. 

6.2. SYSTEM SPECIFICATION  

This section gives a system perspective to understand the hardware (subsystems) interac-

tion needs. 

FPGA
LEON3-MP

PDU

PDI EI

MU
 

Figure 25 LEON3-MP system perspective 

Thesis will be mainly concentrated on FPGA LEON3-MP block depicted on above picture. 

The block will allocate system processors and peripherals chosen in the next phase accord-

ing the general requirements. Sub-systems requirements will be treated in conjunction with 

the main block to choose the appropriate hardware framework. 

To properly ensure the normal functioning of the system to be developed, a set of blocks 

must be presented in the hardware framework, as: 

EI – External Interface: 

This interface provides system’s easy assessment and user interaction, via connectors, but-

tons or lightning components, such as LEDs. Through this interface, it’s possible to access 

input/output signals and external communications. 
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MU – Memory Unit: 

This unit can be composed of several types of memories, to provide processor instructions 

allocation through data retention memories (EPROM, EEPROM or Flash) and provide fast 

data access through random access memories (SRAM, SSRAM, SDRAM or DDR). 

PDI – Programming and Debug Interface: 

This interface is used for system programming and also debugging through special debug 

software named GRMON. With GRMON it is also possible to access system registers and 

peripherals before running any software application. 

PDU – Power Distribution Unit: 

This is an important unit to manage and provide reliable power supply to the other system 

units, FPGA, EI, MU and PDI. 

6.3. SELECTED HARDWARE FRAMEWORK  

The selected hardware framework was chosen taking into account the FPGA architec-

ture/vendor and hardware available at Evoleo Technologies. 

Evoleo Technologies uses for main development Altera FPGAs, so the hardware frame-

work to be selected should include one of Altera's FPGA architectures.  

The selected hardware was the Cyclone III FPGA Starter Kit, which has the following fea-
tures: 
• Cyclone III EP3C25F324 FPGA; 

• Configuration; 

• Embedded USB-Blaster™ circuitry (includes an Altera EPM3128A CPLD) allowing 

download of FPGA configuration files via the user's USB port; 

• Memory  

• 256-Mbit of DDR SDRAM  

• 1-Mbyte of synchronous SRAM  

• 16-Mbytes of Intel P30/P33 flash  

• Clocking  
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• 50-MHz on-board oscillator  

• Switches and indicators  

• Six push buttons total, four user controlled  

• Seven LEDs total, four user controlled  

• Connectors  

• HSMC  

• USB Type B  

• Cables and power  

• USB cable 

 

Figure 26 Cyclone III FPGA Starter Kit 

As this kit has too few peripheral features, an expansion board is needed. 

The selected expansion board was the THDB-SUM - Terasic HSMC to Santa Cruz Daugh-

ter Board. This is an adapter board to convert HSMC interface to Santa Cruz (SC), USB, 

Mictor, and SD Card interface. 

This expansion board has the following features: 

• One HSMC connector for interface conversion; 

• One SC interface; 

• Adjustable logic levels between HSMC and SC interface signals; 

• One Hi-Speed USB On-The-Go transceiver; 

• One Mictor Connector; 

• One SMA connector for external clock input; 

• One SD Card Socket. 
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The following picture depicts the final hardware framework that will support multiproces-

sing system. 

 

Figure 27 Final hardware framework 
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7. PRELIMINARY ARCHITECTURE DE-

SIGN 

7.1. PRELIMINARY DESIGN 

The GRLIB IP Library provides a rich list of well tested cores to interconnect with the 

main unit, the processor core. 

The list of all cores, which were selected and those that should not be selected are exposed 

in the Appendix A. GRLIB IP Library. 

7.1.1. PROPOSED MULTIPROCESSOR ARCHITECTURE  

The main criterion to select the final architecture cores was to provide a system with simi-

lar peripherals to those found in most microcontrollers. 

The proposed system includes an interrupt controller to handle internal interrupts generated 

by others cores and distributed to all processor cores, four timer units to provide accurate 

counters to the system, general purpose input/outputs to handle external interfaces, two 

UART cores, one to serve as DSU monitor and the other for serial general purpose com-

munication, two SPI cores, one to handle with the SD card available in the hardware 
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framework and the other for general purpose SPI communication and I²C core to interface 

a serial EEPROM and for general purpose. 

The mandatory cores used are two LEON3 processors with cache and MMU, a JTAG core 

to handle with DSU external interface and the flash, SRAM and DDR controllers. 

 

Figure 28 Proposed multiprocessor architecture 

7.1.2. LEON3 PROCESSOR CORE 

Has said in the previous chapters, the LEON3 processor core is a highly configurable 32-

bit SPARC V8 compliant core. Some choice has to be made to properly configure the 

processor to not only support multiple processors in the same system but also to provide a 

MMU to satisfy the Linux 2.6 SMP support. 

All of the following processor core configurations can be made using the VHDL generics 

provided in the component instantiation:  

• Eight SPARC register windows are used; 

• The DSU interface in each processor is enabled to allow instructions trace and processor 

control; 

• SPARC V8 multiply and divide instructions are available to perform 32x32 bit pipe-

lined multiply operations and 64 by 32 bit divide operations to produce 32 bit results; 

• The instruction and data caches are enabled with one set of 4kByte (32Bytes per line), 

each cache, using the Least Recently Used (LRU) algorithm for cache replacement; 

• As required by the Linux 2.6 OS, the MMU is enabled with eight TLB entries for in-

structions and another eight for data, with 4kByte page size; 
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• A data cache snooping mechanism is used, supporting extra physical tags for MMU to 

prevent data conflicts between processors. 

 

Figure 29 LEON3 processor internal architecture 

7.1.3. DEBUG SUPPORT UNIT  

The DSU is used in the LEON3 system to control de processors during the debug mode. 

The main control is achieved through a JTAG interface. 

To take full advantage of this interface, the GRMON software made available by Gaisler 

shall be used. This is a debug monitor and control software for SoC designs using GRLIB 

IP Library cores. With the GRMON console it is possible to access (read or write) all sys-

tem registers and memory, download and order to execute LEON3 applications. It is avail-

able breakpoint and watch point management, trace buffer management and to use a re-

mote connection to GNU debugger (GDB) software for enhanced software debugging. All 

this features are available through a variety of communication protocols, in this project is 

used the JTAG as debug link [34]. 

An alternative UART can be used as DSU monitor console to retrieve system messages 

instead of GRMON console. The main advantage of using that is when GRMON console  

is used to retrieve system messages, on every message, the GRMON console will cause the 

processor to halt, causing an annoying debug. For this reason the first UART will be used 

as DSU monitor. 
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Figure 30 LEON3 DSU interfaces 

More control interfaces are available in the hardware framework, as the CPU reset button 

to fully reset the system, a DSU break (DSUBRE) button which causes the processor halt, 

a DSU active (DSUACT) output to indicate that system is in debug state and an Error out-

put to indicate that an error condition was encountered in the processor. 

7.1.4. MEMORY MAP AND INTERRUPTS 

The memory map is constructed according to the cores used in the design, the core type as 

master or slave and location as located in AMBA AHB or AMBA APB. The final memory 

map and interrupt number attribution can be found in the Appendix B. Memory map and 

interrupts. 
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Figure 31 LEON3 multiprocessor design perspective 

7.2. VERIFICATION AND TEST CONFIGURATIONS  

7.2.1. VERIFICATION PLAN  

After system implementation, a verification process is carried out in order to check if the 

implemented system meets the multiprocessing system specification. To do so, the debug 

monitor GRMON is used. 

The verification process is done using the selected hardware framework with the proposed 

LEON3 multiprocessing system. The verification shall check: 

1. System configuration, all implemented cores and respective registers; 

2. Read and Write to random memory locations of RAM and Read from ROM; 

3. Access data and instruction cache and MMU registers; 

7.2.2. SOFTWARE PLATFORM  

The system tests will be done using an operating system, which provides high level of ab-

straction, accurate task management and is nowadays widely used in complex embedded 

systems. 

The select operating system is Linux 2.6, a free and open source operating system that is 

widely used in home computers but also in embedded systems. The selected Linux distri-

bution that supports the LEON3 processor is a special version of the SnapGear Embedded 

Linux distribution, which is well supported by AEROFLEX Gaisler. 
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The main reasons for this operating system choice is the support of Symmetric Multiproc-

essing (SMP), the free availability and the wide support provided by many communities in 

the internet. 

One of the main requirements of this distribution is the inclusion of a MMU in the system, 

which was foreseen in the system design [35]. 

7.2.3. TEST CONFIGURATIONS  

In order to prove the value of having a multiprocessor platform instead of an uniprocessor 

platform, a set of benchmarking applications shall be used.  

The following table presents the two hardware configurations used, indicating the ID of 

each configuration, the number of processors, a brief description and the goal of the hard-

ware configuration. 

Table 1 Hardware configurations description 

ID No. CPUs Description Goal 

L1 1 1 x LEON3 processor with MMU running 

at 50 MHz. 

Same as thesis hardware 

configuration but with 1 

processor. 

L2 2 2 x LEON3 processor with MMU running 

at 50 MHz. 

Thesis hardware configura-

tion. 

Six benchmark applications are used and described below. Each benchmark application 

will run in the two hardware configurations in order to check the differences between mul-

tiprocessor and uniprocessor systems. 

The following table presents the six benchmark applications used, indicating the ID of each 

application, the number of benchmarking tasks running, a brief description and the goal of 

the benchmark application. 
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Table 2 Benchmark applications description 

ID No. tasks Description Goal 

P1 2 Two tasks running concurrently and perform-

ing an iterative calculation of the first 10000 

Fibonacci numbers. 

Determine the time con-

sumption of each task with 

calculations. 

P2 4 Four tasks running concurrently and perform-

ing an iterative calculation of the first 10000 

Fibonacci numbers. 

Determine the time con-

sumption of each task with 

calculations. 

R1 2 Two tasks running concurrently, sharing mes-

sages like a ring buffer. Each task is waiting 

for any message to run, send new message and 

waiting again. 

Determine the time spent in 

sending and waiting for new 

message. 

R2 4 Four tasks running concurrently, sharing mes-

sages like a ring buffer. Each task is waiting 

for any message to run, send new message and 

waiting again. 

Determine the time spent in 

sending and waiting for new 

message. 

M1 2 Two tasks running concurrently, performing an 

iterative calculation of the first 10000 Fibo-

nacci numbers and sharing messages like a 

ring buffer. Each task is waiting for any mes-

sage to perform calculations, send new mes-

sage and waiting again. 

Determine the time con-

sumption of each task with 

calculations, in sending and 

waiting for new message. 

M2 4 Four tasks running concurrently, performing 

an iterative calculation of the first 10000 Fibo-

nacci numbers and sharing messages like a 

ring buffer. Each task is waiting for any mes-

sage to perform calculations, send new mes-

sage and waiting again. 

Determine the time con-

sumption of each task with 

calculations, in sending and 

waiting for new message. 
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8. DETAILED ARCHITECTURE DESIGN 

After preliminary architecture design where the best choices for the system to be imple-

mented were achieved, the detailed architecture design was developed to implement the 

previous choices. 

 

Figure 32 LEON3 multiprocessor platform 
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The LEON3 multiprocessor system design flow is decomposed in four steps, as: 

1. System configuration, using GRLIB IP Library VHDL files to configure and inter-

connect the components used; 

2. Pin location assignment, according each core specification and hardware frame-

work; 

3. Pre-synthesis simulation, creating tailored test benches to verify the functionality of 

the system designed; 

4. Synthesis and Place and Route, to translate VHDL behaviour into gate-level netlist 

also performing optimization to the specific target technology and fitting the design 

into device. 

 

Figure 33 Design flow perspective 

The GRLIB IP Library is very modular and to properly instantiate every core, it is recom-

mended the use of a local Makefile to automate various common tasks in every system in-

stantiation. The GRLIB User’s Manual [2], explains all configurations provided by the 

make utility and all commands available. In order to access this Makefile under Windows 
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hosts, it is recommended the use of the Linux-like environment for Windows, the Cygwin 

software. 

8.1. SYSTEM CONFIGURATION  

The system configuration is made through two files, the leon3mp.vhd file containing the 

VHDL top level design entity which instantiates all system required VHDL components 

(IP cores), interconnecting with each other through the AMBA signals and provides the 

external interfaces (pins). The second file, config.vhd, is a VHDL package used to con-

figure all IP cores parameters. 

Through a simple text editor, in this case using the notepad++ editor, the two files previ-

ously referred were edited as specified in the preliminary architecture design phase, ac-

cording to the GRLIB IP Cores Manual [3]. 

8.2. PIN ASSIGNMENT  

This step takes as inputs the hardware framework manual, the preliminary architecture de-

sign and the system configuration made, to allocate all pins required by the IP cores used 

in the design. The pins configuration is made through the leon3mp.qsf file. 

The pins assignment for this design is exposed in the Appendix D. Pin assignment. 

8.3. PRE-SYNTHESIS SIMULATION  

The pre-synthesis simulation is performed before synthesising the whole system in order to 

verify the system functionality and a testbench template, testbench.vhd, provided in 

GRLIB is used to properly test its cores. This testbench template includes external PROM 

and SDRAM components containing a pre-loaded test program, which will be executed on 

LEON3 processors in order to test various design functionalities. Some of the test results 

will be printed on the simulator. 

To perform this simulation, the ModelSim software used in simulation and debug for 

ASICs and FPGAs designs is used. In order to generate the appropriate scripts and to run 

the ModelSim, a series of commands provided by local Makefile are used in the Cygwin 

software. 
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8.4. SYNTHESIS AND PLACE AND ROUTE 

The design synthesis is made using the Quartus II software synthesis engine and the place 

and route is made using the Quartus II software fitter engine. Using the same tool, the 

Quartus II software, allows performing with one command the synthesis and place and 

route. The Makefile commands available for these two actions can be found in the GRLIB 

User’s Manual [2]. 

Upon successful design compilation, a .sof file is generated allowing download pro-

gramming file to the FPGA. In order to permanently configure the FPGA contained in the 

hardware framework, the configuration flash memory needs to be loaded with a .pof file 

generated from the .sof file. 
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9. VERIFICATION AND OVERALL TESTS 

9.1. HARDWARE VERIFICATION  

The following lines provide the hardware verification procedures and its results. All com-

mands applied in the verification process can be used in the GRMON console. 

The verification checked the following points: 

1. System configuration, all implemented cores and respective registers; 

• In order to access all cores information is typed the “info sys” command. 

• All cores are implemented in the right AMBA address. 

• Successful verification. 

2. Read and Write to random memory locations of RAM and Read from ROM; 

• In order to read from memory location is typed the “mem <memory address>” com-

mand. 

• In order to write to memory location is typed the “wmem <memory address> 

<data>” command. 

• Read and writes to RAM (DDR) locations are done successfully. 

• Read from ROM (Flash) locations are done successfully. 

• Successful verification. 
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3. Access data and instruction cache and MMU registers; 

• In order to access cache registers is typed the “dcache” command for data cache reg-

isters and “icache” command for instructions cache registers. 

• In order to access memory management unit registers is typed the “mmu” command. 

• The data cache, instructions cache and memory management unit registers can be ac-

cessed successfully. 

• Successful verification. 

9.2. TEST RESULTS 

The test results of the two hardware configurations running all benchmark applications 

specified in the test plan are presented in the next subsections. 

In the following figures, with blue is depicted the results of the L2 configuration, with red 

is the L1 configuration. With green are the mean values of L1 and L2 configurations. The 

time results are presented in seconds (s) and the milliseconds (ms). 

All figures show in Y-Y axis the task time consumption in seconds and in X-X axis the 

number of task’s execution. The following tables provide test results of each benchmark 

application, presenting the hardware configuration ID, task time consumption mean value, 

the following standard deviation and relative standard deviation. 
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9.2.1. P1 BENCHMARK  

The following chart depicts the test results obtained from the P1 benchmark application. 

 

Figure 34 P1 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 3 P1 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.063521s (63.521 ms) 0.020164 s (20.164 ms) 31.74 %. 

L2 0.048682 s (48.682 ms) 0.000430 s (0.430 ms) 0.88 %. 
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9.2.2. P2 BENCHMARK  

The following chart depicts the test results obtained from the P2 benchmark application. 

 

Figure 35 P2 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 4 P2 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.159214 s (159.214 ms) 0.161176 s (161.176 ms) 101.23 % 

L2 0.062115 s (62.115 ms) 0.017952 s (17.952 ms) 28.90 % 
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9.2.3. R1 BENCHMARK  

The following chart depicts the test results obtained from the R1 benchmark application. 

 

Figure 36 R1 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 5 R1 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.000547 s (0.547 ms) 0.000049 s (0.049 ms) 9.01 % 

L2 0.000743 s (0.743 ms) 0.000071 s (0.071 ms) 9.56 % 
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9.2.4. R2 BENCHMARK  

The following chart depicts the test results obtained from the R2 benchmark application. 

 

Figure 37 R2 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 6 R2 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.001510 s (1.510 ms) 0.002873 s (2.873 ms) 190.32 % 

L2 0.000850 s (0.850 ms) 0.000085 s (0.085 ms) 10.02 % 
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9.2.5. M1 BENCHMARK  

The following chart depicts the test results obtained from the M1 benchmark application. 

 

Figure 38 M1 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 7 M1 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.095156 s (95.156 ms) 0.000242 s (0.242 ms) 0.25 % 

L2 0.095790 s (95.790 ms) 0.000277 s (0.277 ms) 0.29 % 
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9.2.6. M2 BENCHMARK  

The following chart depicts the test results obtained from the M2 benchmark application. 

 

Figure 39 M2 benchmark time consumption over time 

The main test results that can be extracted from the following chart are: 

Table 8 M2 benchmark results 

ID Mean Standard deviation Relative standard deviation 

L1 0.190742 s (190.742 ms) 0.101383 s (101.383 ms) 53.15 % 

L2 0.099021 s (99.021 ms) 0.001466 s (1.466 ms) 1.48 % 
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9.3. CONCLUDING REMARKS  

The following table presents the relation between L2 and L1 configurations, related to the 

six benchmark applications. 

Table 9 Benchmark results summary 

P1 P2 R1 R2 M1 M2 

L2=1,30xL1 L2=2,56xL1 L2=0,74xL1 L2=1,78xL1 L2=0.99xL1 L2=1,92xL1 

The P1 and P2 benchmark applications results show the advantage of the multiprocessor 

systems when multiple tasks are performing calculations concurrently. In these bench-

marks, the tasks time consumption deviation from mean value (results from relative stan-

dard deviation) is lower in a multiprocessor system.  

Results extracted from R1 benchmark demonstrate that when only two tasks exchanging 

messages are running, the best performance is achieved in the uniprocessor system. When 

the number of tasks grows, as the case of R2, the best performance is achieved by the mul-

tiprocessor system, which means that when more tasks are running, the greater differences 

are in performance between the two hardware configurations, in favour of multiprocessor 

system. Again, the tasks time consumption variation is lower in multiprocessing. 

The M1 benchmark application shows that uniprocessor and multiprocessor systems pro-

vide similar performance. With the increase of number of tasks, the multiprocessor system 

gives the high performance and low time consumption variation. 
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10. GENERAL CONCLUSIONS 

10.1. CONCLUSIONS 

As said before, multiprocessor and multicore embedded systems are a new trend as the sys-

tems complexity grows in this area requiring more processing power.  

The creation of a base of knowledge developing a multiprocessing system to be placed in 

an FPGA device using synthesizable cores as the LEON3 processor and GRLIB IP Library 

was achieved. 

In order to produce the final system, several project stages were considered. The system 

specification was done taking as inputs the overall system requirements provided by the 

Evoleo Technologies. System specification was followed by preliminary architecture de-

sign to select the cores to be implemented and its interconnection. The verification and test 

plan was made to serve as implementation inputs in order to produce a system that could 

be tested. The implementation was done using the software tools available for synthesizing 

and place and route the selected FPGA. 

The initial system verification has been concluded successfully, allowing to verify that the 

implemented system have no problem. The tests were made using two hardware configura-

tions, the system implemented with two processors and the same architecture but with one 
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processor. In order to test the two hardware configurations, benchmark applications were 

created for the two architectures in order to compare the overall system performance. The 

benchmark applications were created to be used as part of Linux 2.6 OS with SMP support, 

benefiting of OS objects available, as semaphores or message passing functions. 

With the test results available it can be concluded that in terms of computational calcula-

tions, results from P1, P2 and M2 tests, the hardware configuration with two processors is 

too much better than with one processor. Also when more tasks are running simultane-

ously, results from P2, R2 and M2 tests, the overall tasks time consumption is much lower 

in the multiprocessor system, benefiting of the possibility to run two tasks in parallel, one 

in each processor. The benefit of the uniprocessor system is in message passing with only 

two tasks running and exchanging messages, results from R1 and M1 tests, but also can be 

observed that time consumption difference between the two hardware configurations is 

much equal in the R1 and M1 tests, which can be presumed that the OS scheduler in the 

SMP configurations is busy with load balancing or SMP affinity [36]. The tasks time con-

sumption variation is well denoted in uniprocessor systems, where task time variation is 

much higher compared to multiprocessor systems, within the same test configuration. 

The final test results can be satisfactory in the way that has been proven the benefits of the 

usage of a multiprocessor system in comparison with the usage of uniprocessor system 

within the same hardware configurations. 

10.2. FUTURE WORK  

The multiprocessor platform tests that follow should be made using a Real-Time OS 

(RTOS). As the most of RTOS supporting multiprocessing only provides AMP capability, 

the approach to have asymmetric processing should be considered. 

It is mandatory that a hardware framework needs to be developed with more powerful 

FPGA providing more LE to allocate more processors in order to perform more multiproc-

essing tests. 

The use of an ACTEL FPGA should be considered in order to achieve developments for 

space or military industry. 
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Since LEON3 processor, GRLIB IP Library, software compiler and Linux OS are distrib-

uted under GNU Public License (GPL), this type of system can be used for education and 

research in universities and polytechnics. For that purpose, an educational multiprocessing 

kit could be developed and provided to universities interested in digital design using 

GRLIB and embedded software using Linux 2.6. 
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Appendix A. GRLIB IP Library 

This section contains all available IP Cores in GRLIB. 

In this section, the red cells present all (Fault Tolerant) IP Cores that will not be chosen 

because of their target applications (military and space applications). 

The green cells present all IP Cores selected for the final system. 

The following tables are divided by IP Cores applications and contain the following infor-

mation: 

• Name – IP Core name in GRLIB 

• Function – A brief description of core functionality 

• Vendor and Device – Code number for vendor and device in GRLIB 

• License – Type of license. GPL, COM or FT 

Table 10 Processors and support functions 

Name  Function Vendor Device  License 

LEON3  SPARC V8 32-bit processor  0x01 : 0x003  COM/GPL 

DSU3  Multi-processor Debug support unit  0x01 : 0x004  COM/GPL 

IRQMP  Multi-processor Interrupt controller  0x01 : 0x00D  COM/GPL 

GRTIMER General purpose timer unit 0x01 : 0x011 COM/GPL 

GRGPIO General purpose I/O port 0x01 : 0x01A COM/GPL 

GRFPU  High-performance IEEE-754 Floating-point unit  - COM 

GRFPU-Lite Low-area IEEE-754 Floating-point unit  - COM 

LEON3FT  Fault-tolerant SPARC V8 32-bit Processor  0x01 : 0x053  FT 

MUL32 32x32 multiplier module - COM/GPL 

DIV32 Divider module - COM/GPL 

 

Table 11 Floating-point units 

Name  Function Vendor Device   License 

GRFPU  High-performance IEEE-754 Floating-point unit   - COM 

GRFPU-Lite  Low-area IEEE-754 Floating-point unit   -  COM 
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Table 12 Memory controllers 

Name  Function Vendor Device   License 

SRCTRL  8/32-bit PROM/SRAM controller  0x01 : 0x008  COM/GPL 

SDCTRL  PC133 SDRAM controller 0x01 : 0x009  COM/GPL 

FTSDCTRL  

32/64-bit PC133 SDRAM Controller with 

EDAC  0x01 : 0x055  FT 

FTSRCTRL  

Fault Tolerant 32-bit PROM/SRAM/IO Control-

ler  0x01 : 0x051  FT 

MCTRL  8/16/32-bit PROM/SRAM/SDRAM controller  0x04 : 0x00F  LGPL 

FTMCTRL  

8//32-bit PROM/SRAM/SDRAM controller 

with EDAC  0x01 : 0x054  FT 

AHBSTAT  AHB failing address register  0x01 : 0x052  COM/GPL 

DDRCTRL  

8/16/32/64-bit DDR controller with two AHB 

ports (Xilinx only)  0x01 : 0x023  COM/GPL 

DDRSPA  

Single-port 16/32/64 bit DDR controller(Xilinx 

and Altera)  0x01 : 0x025  COM/GPL 

DDR2SPA  

Single-port 16/32/64 bit DDR2 controller(Xilinx 

and Altera) 0x01 : 0x02E  COM/GPL 

SSRCTRL  32-bit synchronous SRAM (SSRAM) controller  0x01 : 0x00A  COM 

FTSRCTRL8  

8-bit SRAM / 16-bit IO Memory Controller with 

EDAC  0x01 : 0x056  FT 

SPIMCTRL SPI Memory controller 0x01 : 0x045 COM/GPL 

 

Table 13 AMBA Bus control 

Name  Function Vendor Device   License 

AHB2AHB  Uni-directional AHB/AHB Bridge  0x01:0x020  COM 

AHBBRIDGE  Bi-directional AHB/AHB Bridge  0x01:0x020  COM 

AHBCTRL  AMBA AHB bus controller with plug&play  - COM/GPL 

AHBCTRL_MB 

AMBA AHB bus controller for multiple buses 

with plug&play  - COM 

APBCTRL  AMBA APB Bridge with plug&play  0x01 : 0x006  COM/GPL 

AHBTRACE  AMBA AHB Trace buffer 0x01 : 0x017  COM/GPL 
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Table 14 PCI interface 

Name  Function Vendor Device  License 

PCITARGET  32-bit target-only PCI interface  0x01 : 0x012  COM/GPL 

PCIMTF/GRPCI  32-bit PCI master/target interface with FIFO  0x01 : 0x014  COM/GPL 

PCITRACE  32-bit PCI trace buffer 0x01 : 0x015  COM/GPL 

PCIDMA  DMA controller for PCIMTF  0x01 : 0x016  COM/GPL 

PCIARB  PCI Bus arbiter 0x04 : 0x010   LGPL 

WILD2AHB  

WildCard Debug Interface with DMA Master 

Interface  0x01 : 0x079  COM/GPL 

 

Table 15 On-chip memory functions 

Name  Function Vendor Device   License 

AHBRAM  Single-port RAM with AHB interface  0x01 : 0x00E  COM/GPL 

AHBDPRAM  

Dual-port RAM with AHB and user back-end 

interface  0x01 : 0x00F  COM/GPL 

AHBROM  ROM generator with AHB interface  0x01 : 0x01B  COM/GPL 

SYNCRAM  Parametrizable 1-port RAM -  COM/GPL 

SYNCRAM_2P  Parametrizable 2-port RAM -  COM/GPL 

SYNCRAM_DP  Parametrizable dual-port RAM  -  COM/GPL 

REGFILE_3P  Parametrizable 3-port register file  -  COM/GPL 

FTAHBRAM  RAM with AHB interface and EDAC protection  0x01 : 0x050  FT 

 

Table 16 Serial communication 

Name  Function Vendor Device   License 

AHBUART  Serial/AHB debug interface  0x01 : 0x007  COM/GPL 

AHBJTAG  JTAG/AHB debug interface  0x01 : 0x01C  COM/GPL 

APBPS2  PS2 Keyboard interface with APB interface  0x01 : 0x060  COM/GPL 

APBUART  Programmable UART with APB interface  0x01 : 0x00C  COM/GPL 

CAN_OC  Opencores CAN 2.0 MAC with AHB interface  0x01 : 0x019  COM/GPL 

GRCAN  CAN 2.0 Controller with DMA  0x01 : 0x03D  COM 

GRSPW  SpaceWire link with RMAP and AHB interface  0x01 : 0x01F  FT 

I2CMST  I2C Master with APB interface  0x01 : 0x028  COM/GPL 

I2CSLV  I2C Slave with APB interface  0x01 : 0x03E  COM/GPL 

SPICTRL  SPI Controller with APB interface  0x01 : 0x02D  COM/GPL 
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Table 17 Ethernet interface 

Name  Function Vendor Device   License 

GRETH  

Gaisler Research 10/100 Mbit Ethernet MAC 

with AHB I/F  0x01 : 0x01D  COM/GPL 

GRETH_GIGA  

Gaisler Research 10/100/1000 Mbit Ethernet 

MAC with AHB  0x01 : 0x01D  COM 

 

Table 18 USB interface 

Name  Function Vendor Device   License 

GRUSBHC  

USB-2.0 Host controller (UHCI/EHCI) with AHB 

I/F  0x01 : 0x027  COM 

USBDCL  

USB-2.0 device controller / AHB debug communi-

cation link  0x01 : 0x022  COM 

 

Table 19 MIL-STD-1553 Bus interface 

Name  Function Device ID   License 

B1553BC  1553 Bus controller with AHB interface  0x01 : 0x070  COM 

B1553RT  1553 Remote terminal with AHB interface  0x01 : 0x071  COM 

B1553BRM  1553 BC/RT/Monitor with AHB interface  0x01 : 0x072  COM 

 

Table 20 Encryption 

Name  Function Vendor Device  License 

GRAES  128-bit AES Encryption/Decryption Core  0x01 : 0x073  COM 

GRECC  Elliptic Curve Cryptography Core  0x01 : 0x074  COM 

 

Table 21 Simulation and debugging 

Name  Function Vendor Device   License 

SRAM  SRAM simulation model with srecord pre-load  -  COM/GPL 

MT48LC16M16  Micron SDRAM model with srecord pre-load -  Free 

MT46V16M16  Micron DDR model -  Free 

CY7C1354B  Cypress ZBT SSRAM model with srecord pre-load -  Free 

AHBMSTEM  AHB master simulation model with scripting  0x01 : 0x040  COM/GPL 
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AHBSLVEM  AHB slave simulation model with scripting   0x01 : 0x041  COM/GPL 

AMBAMON  AHB and APB protocol monitor  -  COM 

 

Table 22 CCSDS Telecommand and telemetry functions 

Name  Function Vendor Device   License 

GRTM  CCSDS Telemetry Encoder  0x01 : 0x030  FT 

GRTC  CCSDS Telecommand Decoder  0x01 : 0x031  FT 

GRPW  Packetwire receiver with AHB interface  0x01 : 0x032  COM/GPL 

GRCTM  CCSDS Time manager 0x01 : 0x033  COM/GPL 

GRHCAN  CAN controller with DMA 0x01 : 0x034  FT 

GRFIFO  External FIFO Interface with DMA  0x01 : 0x035  COM 

GRADCDAC  Combined ADC / DAC Interface  0x01 : 0x036  COM 

GRPULSE  General Purpose Input Output  0x01 : 0x037  FT 

GRTIMER  General Purpose Timer Unit  0x01 : 0x038  FT 

AHB2PP  Packet Parallel Interface 0x01 : 0x039  FT 

GRVERSION  Version and Revision information register  0x01 : 0x03A  FT 

APB2PW  PacketWire Transmitter Interface  0x01 : 0x03B  COM/GPL 

PW2APB  PacketWire Receiver Interface  0x01 : 0x03C  COM/GPL 

GRCE/GRCD  

CCSDS/ECSS Convolutional Encoder and 

Quicklook Decoder  N/A  FT 

GRTMRX  CCSDS Telemetry Receiver  0x01 : 0x082  {internal} 

GRTCTX  CCSDS Telecommand Transmitter  0x01 : 0x083  {internal} 

 

Table 23 HAPS functions 

Name  Function Vendor Device  License 

HAPSTRAK  HapsTrak controller for HAPS boards  0x01 : 0x077  GPL 

FLASH_1X1  

32/16-bit PROM Controller for HAPS 

FLASH_1x1  0x01 : 0x00A  COM * 

SRAM_1X1  

32-bit SSRAM / PROM Controller for HAPS 

SRAM_1x1  0x01 : 0x00A  COM * 

TEST_1X2  

Controller for HAPS test daughter board 

TEST_1x2  0x01 : 0x078  COM/GPL 

BIO1  Controller for HAPS I/O board BIO1  0x01 : 0x07A  COM/GPL 

SDRAM_1X1  32-bit SDRAM Controller for HAPS 0x01 : 0x009  COM/GPL 
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SDRAM_1x1 

DDR_1X1  64-bit DDR266 Controller for HAPS DDR_1x1  0x01 : 0x025  COM/GPL 

GEPHY_1X1  Ethernet Controller for HAPS GEPHY_1x1  0x01 : 0x00A  COM ** 

Note*: The underlying SSRAM controller used in the FLASH_1X1 and SRAM_1X1 cores is provided in VHDL netlist format in the 

GRLIB GPL distribution. The VHDL source code is only provided under commercial license. 

Note**:  The 10/100 Mbit Media Access Controller (MAC) is available in the GRLIB GPL distribution. The 1000 Mbit MAC is only 

provided under commercial license. 

Note: The HAPS functions are described in separate manuals. 
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Appendix B. Memory map and interrupts 

The memory map addresses are divided in two main spaces, the: 

• AMBA AHB address space for all cores attached to this bus for high performance on-

chip communications; 

• AMBA APB address space for all cores attached to this bus and not requiring high per-

formance, like the most of system peripherals; 

The following table display AMBA address range and the interrupt number for each core. 

Table 24 AMBA address range and interrupts 

Core Address range Interrupt Comments 

LEON3     

DSU3  0x90000000-0xa0000000   

IRQMP  0x80000200   

GRTIMER 0x80000300 4, 5, 6, 7 Interrupts for each timer from 0 to 4 

GRGPIO 0x80000500 1, 2, 3, 4, 5, 6, 7  

MCTRL  

0x00000000-0x20000000 

0x20000000-0x40000000 

0xa0000000-0xb0000000 

 PROM 

IO 

SRAM 

DDRSPA  0x40000000-0x50000000   

AHBCTRL     

APBCTRL  0x80000000-0x80100000  AHB to APB bridge 

SPICTRL1 0x80000700 9  

SPICTRL2 0x80000800 10  

I2CMST 0x80000600 8  

APBUART1 0x80000100 2  

APBUART2 0x80000900 3  
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Appendix C. External interface signals 

The following table describes all external interface signals in terms of direction and polar-

ity. 

Table 25 External interface signals list 

Name Description Direction Polarity  

System 

clk Main system clock (50 MHz oscillator) In  

resetn System reset (CPU_resetn push-button) In Low 

DSU debug unit 

dsubren DSU Enable (Push-button 3) In High 

dsuact DSU Active (LED 0) Out High 

errorn Processor error mode indicato r(LED 2) Out Low 

DDR memory 

ddr_clk DDR memory clock high Out  

ddr_clkn DDR memory clock low Out  

ddr_csb DDR memory chip select Out Low 

ddr_cke DDR memory output clock enable Out High 

ddr_ad[12..0] DDR memory address Out High 

ddr_ba[1..0] DDR memory bank address Out High 

ddr_rasb DDR memory row address strobe Out Low 

ddr_casb DDR memory column address strobe Out Low 

ddr_web DDR memory write enable Out Low 

ddr_dq[15..0] DDR memory data Out High 

ddr_dqs[1..0] DDR memory data strobe Out High 

ddr_dm[1..0] DDR memory data mask Out High 

Flash and Sram memory 

writen Flash memory write enable Out Low 

romsn Flash memory chip enable Out Low 

oen Flash memory output enable Out Low 

rstoutn Flash memory reset Out Low 
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address[1] Flash memory address Out High 

address[22..2] Flash/Sram memory address Out High 

address[25..23] Flash memory address Out High 

data[15..0] Flash/Sram memory data Bidir High 

data[31..16] Sram memory data Bidir High 

ssram_oen Sram memory output enable Out Low 

ssram_cen Sram memory chip enable Out Low 

ssram_bw[3..0] Sram memory byte write enable Out Low 

ssram_adscn Sram memory address status controller Out Low 

ssram_wen Sram memory write enable Out Low 

ssram_clk Sram memory clock Out  

GPIO 

gpio[2..0] Push-button [2..0] In High 

gpio[7..3]  Inout High 

SD card memory 

hc_sd_dat Spi Mode: data out Out High 

hc_sd_dat3 Spi Mode: chip select Out Low 

hc_sd_cmd Spi Mode: data in In High 

hc_sd_clk Spi Mode: Clock Out  

SPI 

hc_spi_miso  Out High 

hc_spi_mosi  In High 

hc_spi_sck  Out  

hc_spi_slvsel  Out Low 

Uart1 

hc_uart_txd Uart transmitter Out Low 

hc_uart_rxd Uart receiver In Low 

Uart2 

hc_uart2_txd Uart transmitter Out Low 

hc_uart2_rxd Uart receiver In Low 

I2C master 

hc_id_i2cscl I2C clock Bidir  

hc_id_i2cdat I2C data Bidir High 
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Appendix D. Pin assignment 

The following table describes pin assignment according to Altera FPGA datasheet in terms 

of FPGA and connector pins, voltage level, direction and polarity. 

Table 26 Pin assignment list 

Name FPGA HSMC Volt. Level Dir. Pol. Notes 

System 

clk B9 - 2.5  In  On-board 50 MHz oscillator 

resetn N2 - 2.5  In Low On-board cpu_resetn Push-button 

DSU debug unit 

dsubren B10 - 2.5  In High On-board Button4 (KEY3 - board) 

dsuact P13 - 2.5  Out High On-board LED 1 (LED0 - doc) 

errorn N12 - 2.5  Out Low On-board LED 4 (LED3 - doc) 

DDR memory 

ddr_clk U2 - 2.5  Out  On-board DDR memory 

ddr_clkn V2 - 2.5  Out  On-board DDR memory 

ddr_csb V1 - 2.5  Out Low On-board DDR memory 

ddr_cke R13 - 2.5  Out High On-board DDR memory 

ddr_ad[0] U1 - 2.5  Out High On-board DDR memory 

ddr_ad[1] U5 - 2.5  Out High On-board DDR memory 

ddr_ad[2] U7 - 2.5  Out High On-board DDR memory 

ddr_ad[3] U8 - 2.5  Out High On-board DDR memory 

ddr_ad[4] P8 - 2.5  Out High On-board DDR memory 

ddr_ad[5] P7 - 2.5  Out High On-board DDR memory 

ddr_ad[6] P6 - 2.5  Out High On-board DDR memory 

ddr_ad[7] T14 - 2.5  Out High On-board DDR memory 

ddr_ad[8] T13 - 2.5  Out High On-board DDR memory 

ddr_ad[9] V13 - 2.5  Out High On-board DDR memory 

ddr_ad[10] U17 - 2.5  Out High On-board DDR memory 

ddr_ad[11] V17 - 2.5  Out High On-board DDR memory 

ddr_ad[12] U16 - 2.5  Out High On-board DDR memory 
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ddr_ba[0] V11 - 2.5  Out High On-board DDR memory 

ddr_ba[1] V12 - 2.5  Out High On-board DDR memory 

ddr_rasb V16 - 2.5  Out Low On-board DDR memory 

ddr_casb T4 - 2.5  Out Low On-board DDR memory 

ddr_web U15 - 2.5  Out Low On-board DDR memory 

ddr_dq[0] U4 - 2.5  Out High On-board DDR memory 

ddr_dq[1] V4 - 2.5  Out High On-board DDR memory 

ddr_dq[2] R8 - 2.5  Out High On-board DDR memory 

ddr_dq[3] V5 - 2.5  Out High On-board DDR memory 

ddr_dq[4] P9 - 2.5  Out High On-board DDR memory 

ddr_dq[5] U6 - 2.5  Out High On-board DDR memory 

ddr_dq[6] V6 - 2.5  Out High On-board DDR memory 

ddr_dq[7] V7 - 2.5  Out High On-board DDR memory 

ddr_dq[8] U13 - 2.5  Out High On-board DDR memory 

ddr_dq[9] U12 - 2.5  Out High On-board DDR memory 

ddr_dq[10] U11 - 2.5  Out High On-board DDR memory 

ddr_dq[11] V15 - 2.5  Out High On-board DDR memory 

ddr_dq[12] U14 - 2.5  Out High On-board DDR memory 

ddr_dq[13] R11 - 2.5  Out High On-board DDR memory 

ddr_dq[14] P10 - 2.5  Out High On-board DDR memory 

ddr_dq[15] V14 - 2.5  Out High On-board DDR memory 

ddr_dqs[0] U3 - 2.5  Out High On-board DDR memory 

ddr_dqs[1] T8 - 2.5  Out High On-board DDR memory 

ddr_dm[0] V3 - 2.5  Out High On-board DDR memory 

ddr_dm[1] V8 - 2.5  Out High On-board DDR memory 

Flash and SRAM memory 

writen D18 - 2.5  Out Low flash_we_n 

romsn E2 - 2.5  Out Low flash_ce_n 

oen D17 - 2.5  Out Low flash_oe_n 

rstoutn C3 - 2.5  Out Low flash_reset_n 

address[1] E12 - 2.5  Out High  

address[2] A16 - 2.5  Out High  

address[3] B16 - 2.5  Out High  

address[4] A15 - 2.5  Out High  

address[5] B15 - 2.5  Out High  
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address[6] A14 - 2.5  Out High  

address[7] B14 - 2.5  Out High  

address[8] A13 - 2.5  Out High  

address[9] B13 - 2.5  Out High  

address[10] A12 - 2.5  Out High  

address[11] B12 - 2.5  Out High  

address[12] A11 - 2.5  Out High  

address[13] B11 - 2.5  Out High  

address[14] C10 - 2.5  Out High  

address[15] D10 - 2.5  Out High  

address[16] E10 - 2.5  Out High  

address[17] C9 - 2.5  Out High  

address[18] D9 - 2.5  Out High  

address[19] A7 - 2.5  Out High  

address[20] A6 - 2.5  Out High  

address[21] B18 - 2.5  Out High  

address[22] C17 - 2.5  Out High  

address[23] C18 - 2.5  Out High  

address[24] G14 - 2.5  Out High  

address[25] B17 - 2.5  Out High  

data[0] H3 - 2.5  Bidir High  

data[1] D1 - 2.5  Bidir High  

data[2] A8 - 2.5  Bidir High  

data[3] B8 - 2.5  Bidir High  

data[4] B7 - 2.5  Bidir High  

data[5] C5 - 2.5  Bidir High  

data[6] E8 - 2.5  Bidir High  

data[7] A4 - 2.5  Bidir High  

data[8] B4 - 2.5  Bidir High  

data[9] E7 - 2.5  Bidir High  

data[10] A3 - 2.5  Bidir High  

data[11] B3 - 2.5  Bidir High  

data[12] D5 - 2.5  Bidir High  

data[13] B5 - 2.5  Bidir High  

data[14] A5 - 2.5  Bidir High  



 84 

data[15] B6 - 2.5  Bidir High  

data[16] C16 - 2.5  Bidir High  

data[17 D12 - 2.5  Bidir High  

data[18] E11 - 2.5  Bidir High  

data[19] D2 - 2.5  Bidir High  

data[20] E13 - 2.5  Bidir High  

data[21] E14 - 2.5  Bidir High  

data[22] A17 - 2.5  Bidir High  

data[23] D16 - 2.5  Bidir High  

data[24] C12 - 2.5  Bidir High  

data[25] A18 - 2.5  Bidir High  

data[26] F8 - 2.5  Bidir High  

data[27] D7 - 2.5  Bidir High  

data[28] F6 - 2.5  Bidir High  

data[29] E6 - 2.5  Bidir High  

data[30] G6 - 2.5  Bidir High  

data[31] C7 - 2.5  Bidir High  

ssram_oen E9 - 2.5  Out Low  

ssram_cen F9 - 2.5  Out Low  

ssram_bw[0] F12 - 2.5  Out Low  

ssram_bw[1] F13 - 2.5  Out Low  

ssram_bw[2] F10 - 2.5  Out Low  

ssram_bw[3] F11 - 2.5  Out Low  

ssram_adscn F7 - 2.5  Out Low  

ssram_wen G13 - 2.5  Out Low  

ssram_clk A2 - 2.5  Out   

GPIO 

gpio[0] F1 - 2.5  In High On-board Button1 (KEY0 - board) 

gpio[1] F2 - 2.5  In High On-board Button2 (KEY1 - board) 

gpio[2] A10 - 2.5  In High On-board Button3 (KEY2 - board) 

gpio[3] N7 49 2.5  Inout High THDB PROTO_IO40 (3 - J3) 

gpio[4] J13 55 2.5  Inout High THDB PROTO_IO30 (5 - J3) 

gpio[5] K17 65 2.5  Inout High THDB PROTO_IO32 (7 - J3) 

gpio[6] B2 71 2.5  Inout High THDB PROTO_IO34 (9 - J3) 

gpio[7] G2 77 2.5  Inout High THDB PROTO_IO36 (11 - J3) 
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SD card memory 

hc_sd_dat H6 41 3.3  Out High  

hc_sd_dat3 D3 42 3.3  Out Low  

hc_sd_cmd T1 47 3.3  In High  

hc_sd_clk M5 43 3.3  Out   

SPI 

hc_spi_miso N13 152 3.3  Out High THDB PROTO_IO28 (39 - J5) 

hc_spi_mosi N6 146 3.3  In High THDB PROTO_IO27 (37 - J5) 

hc_spi_sck R18 140 3.3  Out  THDB PROTO_IO25 (35 - J5) 

hc_spi_slvsel R17 138 3.3  Out Low THDB PROTO_IO24 (33 - J5) 

Uart1 

hc_uart_txd N8 53 3.3  Out Low THDB PROTO_IO29 (4 - J3) 

hc_uart_rxd N10 59 3.3  In Low THDB PROTO_IO31 (6 - J3) 

Uart2 

hc_uart2_txd L2 89 3.3  Out Low THDB PROTO_IO16 (21 - J5) 

hc_uart2_rxd L1 91 3.3  In Low THDB PROTO_IO17 (23 - J5) 

I2C master 

hc_id_i2cscl F3 34 3.3  Bidir   

hc_id_i2cdat E1 33 3.3  Bidir High  

 

 


