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Abstract

The recent advances in embedded systems world,ule@d more complex systems with
application specific blocks (IP cores), the SystamChip (SoC) devices. A good example
of these complex devices can be encountered indlh@hones that can have image proc-

essing cores, communication cores, memory cargcara others.

The need of augmenting systems’ processing perfcenavith lowest power, leads to a
concept of Multiprocessor System on Chip (MSoCwinich the execution of multiple

tasks can be distributed along various processors.

This thesis intends to address the creation ohéhsgizable multiprocessing system to be
placed in a FPGA device, providing a good flexikilio tailor the system to a specific ap-
plication. To deliver a multiprocessing system, vk used the synthesisable 32-bit
SPARC V8 compliant, LEON3 processor.
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Resumo

Os avancos recentes no mundo dos sistemas embebik®-nos a sistemas mais
complexos com blocos para aplicagfes especifiagdies), os dispositivos System on
Chip (SoC). Um bom exemplo destes complexos disposi pode ser encontrado nos
telemoveis, que podem conter cores de processamenitoagem, cores de comunicacoes,

cores para cartdes de memoria, entre outros.

A necessidade de aumentar o desempenho dos sislen@ascessamento com 0 menor
consumo possivel, leva ao conceito de MultiproaeSystem on Chip (MSoC) em que a

execucao de multiplas tarefas pode ser distribpddaarios processadores.

Esta Tese pretende abordar a criagdo de um sistenmaultiprocessamento sintetizavel
para ser colocado numa FPGA, proporcionando umdldéahbilidade para a adaptagcéo do
sistema a uma aplicacdo especifica. Para obtestenw multiprocessamento, ir4 ser
utilizado o processador sintetizavel SPARC V8 dd®di82.EONS3.

Palavras-Chave

Multiprocessador, Multicore, LEONS3, IP core, SPAR@, FPGA, Altera, SoC, MSoC,
Linux, Sistema Operativo.
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1. GENERAL INFORMATION

1.1. INTRODUCTION

Actual embedded systems have all interfaces neiadaake chip, a SoC (System on Chip),
resulting in an expressive reduction in space arstiscof a system. The increase of proc-
essing needs in actual systems lead us to mulépsats, each executing dedicated tasks

with high level of processing capabilities imprayitine overall system performance.

A SoC is intended to implement most or even allcfiomalities of an electronic system
and can include: a processor to manage the systeithip memories and memory con-
trollers to interface external memories, DSP fuwrdlities, specific co-processors, com-
munication peripherals like PCI/PCle, USB, EtherttART, SPI and I2C, among others.
This type of devices can be found in many prodategories like cell phones requiring
low-power programmable processors, telecommunicatend networking using several
high-speed and high complex systems SoC and diglevisions with needs of higher

resolution [1].

With the needs of more speed and more processingrpto achieve the performance
wanted, concepts of Multiprocessor System-on-CMB¢C) appear. The concept is the

same of SoC but with multiple processors.



Another important issue related to SoC or MSoC lene to implement it. Such systems
were only developed by Integrated Circuits (ICshafacturers using Electronic Design
Automation (EDA) tools for the development of Amgaltion Specific Integrated Circuits
(ASICs). With the progressive development of new@dul and feature rich Field Pro-

grammable Gate Arrays (FPGAs) and Complex Prograsteriaogic Device (CPLD), this

type of developments can be done more easily inhnegs time, taking the advantage of
being configurable, to reduce the overall systemcepweight and providing high per-
formance with the lowest power consumption compaved standard ICs, which makes

these devices ideal for high performance embedg&érmss.

As the systems complexity grows, the managemenbeaalso complex in such way that
the use of an Operating System (OS) or a Real Dimerating System (RTOS) is a must.
With the multiprocessing systems appearance, atysvof OS supporting both Symmet-
ric Multiprocessing (SMP) and Asymmetric Multipreseng (AMP) systems arises.

Nowadays, some areas can benefit from the higlopeance and low power consumption
provided by this type of system designs. Theseymbdesign benefits can be encountered
in space, aerospace, military, automotive, medacal autonomous systems areas, where

the system reliability is a major concern.

Today we can found multiprocessor systems in desktw laptops devices, named dual-
core or quad-core, but this type of devices aresnghble for embedded systems or de-
signs with high degree of tailoring. New designlsom build multiprocessor systems for
embedded designs are now accessible, providingosufgpFPGA devices using Hardware
Description Languages like VHDL or Verilog.

This thesis addresses the creation of a synthdsinalitiprocessing system can be placed
in any FPGA device architecture providing flexityilfor choosing the right hardware for a
specific application. To deliver a multiprocesssygtem it will be used the synthesisable
32-bit SPARC V8 compliant, LEON3 processor, whishused in space applications by
Evoleo Technologies, the main requirements supplidris thesis.

The Linux 2.6 OS which supports SMP, will be usedider to test the system perform-

ance and provide base software configured to be insihe developed architecture.



1.2. CONTEXT

This thesis was developed in a cooperation betvieareo Technologies, Lda and the

Autonomous Systems Laboratory from ISEP.

To augment and expand knowledge in the area ofipnatiessing systems for industry and
space applications, this thesis was proposed bieBvicechnologies, Lda, in the context of

the Master’s course.

Evoleo Technologies, Lda is an enterprise that iact&o main branches. One is oriented
to industry with development of automatic test pquents (ATE), automation solutions
with National Instruments hardware and softwareb{tiaw). The second branch is ori-

ented to space applications, with development afkare and software.

The Autonomous Systems Laboratory is a researchdandlopment (R&D) unit from
ISEP, conducting research in autonomous systemsaatkd areas, such as navigation,
control and coordination of multiple robots. Cutignthis laboratory is responsible for the
Master’s course in Autonomous Systems, a speciaizavithin the Electrical and Com-

puter Engineering area.

1.3. OBJECTIVES

The main goal of this thesis is to create a basaoivledge developing synthesisable mul-
tiprocessor systems, tailored to a specific desging FPGA devices, delivering the whole
system design tools knowledge for future desigaducing the time to market of multi-
processor systems designs.

The FPGA family to be used shall be from the Alteranufacturer, benefiting of the

knowledge developed by the enterprise with thisufecturer devices.

The multiprocessor architecture proposed in thesighshall be specified and designed us-
ing the LEON3 processor and GRLIB IP Library whmdntains several Cores to be used
in conjunction with LEON3. The system to be implereel shall be general purpose pro-

viding a platform for future developments with nipifbcessor systems.



Application software shall be created in orderest the system developed. A base of com-
parison between uniprocessor and multiprocessdr lshgroposed to validate and prove
the advantages of multiprocessing systems in gema@aications. The tests should be
made using a set of benchmarking applications mitltiple tasks running simultaneously,
comparing the overall time consumption to run plplecations in uniprocessor and multi-

processor systems.

1.4. STRUCTURE OF THIS THESIS
This thesis is structured as follows.

Chapter 2 presents some multiprocessor conceptedeto type of cores architectures,
multiprocessing symmetry, cache coherency betwaenepsors and memory manage-

ment.

Chapter 3 presents general FPGAs architecturessaitie details about Altera Cyclone Il

architecture and an overview of the Hardware Dpton Language (HDL), VHDL.

Chapter 4 exposes three synthesizable procesduteatares, the ERC32 processor used
mainly for space applications, followed by the LE@i¢hitecture which was made to im-
prove some aspects of the ERC32 processor aralrigecnd finally the ARM processor
architecture which provides, in recent versionsltipnocessor support which could be a

good alternative to the architecture addressekisithesis.

Chapter 5 presents the LEONS3 architecture focusindgpe main units, as the processor
core and its integer unit, the debug unit, thergdenect bus used to connect all system

cores, the two caches and the multiprocessor stuppmrided by this architecture.

Chapter 6 exhibits the system requirements andfggaon, as well as the selected hard-
ware framework to support the multiprocessor aechitre.

Chapter 7 provides preliminary architecture deifmtand design, and also provides the

plan for the verification and test of the architeet

Chapter 8 contains the detailed design descripégnsystem configuration, pin assign-
ment, pre-synthesis simulation, synthesis, plackraate.



Chapter 9 exhibits the verification and test resobtained according to the plan outlined
in Chapter 7.

Finally, Chapter 10 provides the general conclusiobtained in the development of this
thesis and the proposed future work.
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2. MULTIPROCESSORCONCEPTS

2.1. HOMOGENEOUS AND HETEROGENEOUS SYSTEMS

As the major hardware vendors are moving to mukicgystems, some questions about
what kind of processors to use in the same systesaroe chip arise. “Use the same or dif-
ferent types of processor cores in our systems®t 3ystem types are discussed, the ho-

mogeneous and the heterogeneous.

2.1.1. HOMOGENEOUS SYSTEM

Systems having identical cores are named homogsm@tems, such as the Intel Core 2
or Tilera 64.

A homogeneous system is a simpler system comparacheterogeneous system because
the same core type is replicated in the same systeaneasing the time to learn new core
architecture and the associated tools [7]. Witk #gproach the same core components can
be reused for the same and future developed systamdsthe existing software code mi-

gration is much easier than heterogeneous systehhs |
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Figure 1 C6474 family — homogeneous multicore system [10]

In a homogeneous system, any core can run any fesktating the software scheduler

job. Another important issue is the power consuampta special concern nowadays, which
can be much easier because any core can be switffiedo reduce any power consump-
tion when the system does not need too much pnocegewer and switched ON when the

processing complexity increases, benefiting ofrtbmogeneous tasks distribution [9].

2.1.2. HETEROGENEOUS SYSTEM

In contrast with homogeneous systems, heterogergmisms are built with specialized
hardware. One example of a heterogeneous systéme iSell processor, which contains
one general purpose PowerPC core andsgrtergetic processing eleme&PE) to per-

form specific tasks as video, audio and commuroaatprocessing [7].

[sxu][sxu [ sxu][sxu][sxu][sxu]

|LS||LS|ILSIIL3I Ls Ls
ISMF " SMF ” SMF " SMF " SMF " SMFI
N

EIB (up to 96 Bytes/cycle)

8 SPE <
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CPU : x
architecture T = Dugl XOR™ I l
to PCIe/IB
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a

Figure 2 Cell processor — heterogeneous multicore system [12



A heterogeneous multicore system has the advawofdgeing optimized to a specific task,
reducing the processing time to the minimum requfoe a certain task and consequently
the power consumption to that task is reducedhisdase, the software development shall
be independent for each core and in certain cdmesdftware tools shall be completely
different, requiring knowledge of various tools.€elkoftware portability can be another
drawback of heterogeneous cores because the seftareloped for this specialized

hardware can not be reused in news designs withspewialized hardware [8].

2.2. SYMMETRIC MULTIPROCESSING AND ASYMMETRIC MULTIPROCES-
SING

Multicore processors can be denominated multipogssystems because of their proc-
essing parallelism. The multiprocessing system lm@aeymmetric asymmetic or even a
mixture of both, i.ebound The appropriate form of multiprocessing must élected prior

to develop the multicore system hardware becausectivice will determine the type of

multicore system, a homogeneous or heterogenestensy

Single-0S: SMP Multi-OS: AMP
0S 0S OS

Figure 3 Symmetric Multiprocessing and Asymmetric Multiprocessing [15].

2.2.1. ASYMMETRIC MULTIPROCESSING

The Asymmetric Multiprocessing (AMP) model worksthva separate OS or same OS in
each core. This approach is similar to systems wonily one core, where each core has its
own OS and to benefit of multiprocessing, an int@cpss communications is used to pass

messages between nodes [14].

To take advantage of multiprocessing, the developroé software must be focused in
parallelism paradigm which leads to new developnsefiware methodologies to handle

the management of shared hardware resources [16].



2.2.2. SYMMETRIC MULTIPROCESSING

The Symmetric Multiprocessing (SMP) model needy amle OS running and controlling

all cores. The main advantage of this model lieheassumption that the OS controls all
hardware resources, so, the OS scheduler can dyalynallocate any task, process or
thread to any available core, benefiting of thd that any core can accept any OS object

[15]. In this model all interprocess communicati@ns made over shared memory [13].

Another important issue to be taken into accourghared memory systems is the coher-
ence between cores caches contents. An efficiehieceoherency protocol should be used
in order to prevent data corruption.

Some OS require a Memory Management Unit (MMU)ddvanced memory management

and protection.

2.3. CAcHE COHERENCY ProTOCOL

When the SMP model is used in a multicore systéinpracessors share the same memory
address space. Because of this capability availabeMP models, a cacheable system
needs a cache coherency protocol to manage ancblctm cache system [17]. Several
cache coherency mechanisms exist, as snoopingiatiyebased or snarfing. In this chap-
ter, the cache coherency mechanism that will baded is the cache snooping because of
its usage in the LEONS3 processor.

D=

Cache Cache
u: 5 u: 7
M
e

Figure 4 Cache replicas in multiple processors, a coherengroblem in SMP systems [18].
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A snoop mechanism consists of a unit integratetthhéncache system, which is constantly
monitoring all transactions related to cache opanat in the main memory access bus, the
AHB bus, ensuring memory coherency in shared mersgstems. A snoop unit monitors
AHB bus to find data written to any processor ia #ystem, ensuring that do not contain
any copy of that data. In case of equal data detecthe cache line that contains it is
marked as invalid [3].

A write-through policy can be used (LEON3 has thischanism available) in conjunction
with cache snooping in order to write data to nraemory, reducing write loads on the
AHB bus [18]. The reduction in write transactioesmade using an update policy, in other
words, when a processor writes to main memory iogdhat is cached, both the cache and

the main memory are updated.

2.4. MEMORY MANAGEMENT UNIT

A Memory Management Unit (MMU) emerged with the de®f multitasking and multi-
user operating systems that share one common mespage. With this demand is re-
quired that the MMU, protects users privacy, présamauthorized access and prevents

accesses to data currently in use.

data
Main
S | hysical M
virtua physica emo
- . MMU y
address address

Figure 5 Block diagram representation of a system with MMU 5].

To meet these system requirements, the MMU tragslairtual addresses into physical
addresses and manages all memory accesses. A sy#fesat MMU can access main

memory using physical addresses, i.e. use the mamory addresses without any type of
codification. With MMU, when the processor needsitcess the main memory it uses vir-

tual addresses that will be translated by the MMtd physical addresses to access data.

To implement virtual address spaces in hardwagingand segmentation can be used.
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Figure 6 Paging concept [4].

Paging uses a concept of a fixed block size, napaggk which divides virtual address
space (logical memory) into pages containing mappiniries necessary to access physical
address space. Segmentation differs from pagingze, where each block, nameedg-
ment is variable in size and does not contain inforamatibout physical address space

mapping, but rather its length and flags for O®rnnfation.

Linear
s o i address
Linear address space Linear address space : space
| 1 3 2
Mannin : Lo : : Logical level
pping Physical level
" Linear Address Space © ‘Linear Address Space : ‘Linear
address
space

Figure 7 Segmentation concept [4].

The addresses translation is made through a Ttamslaook-aside Buffer (TLB), a cache
used by MMU to improve virtual address translatismich contains page table entries

mapping virtual addresses to physical addresses.

S

Local IRAM -Cache D-Cache | Local DRAM

ITLB SRMMU DTLB

AHB I/F

!

Figure 8 LEON3 cache and MMU perspective [3].
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3. FPGAARCHITECTURE ANDHARD-
WARE DESCRIPTIONLANGUAGE

3.1. FPGAARCHITECTURE OVERVIEW

With more than two decades, the Field Programm@hblie Array (FPGA) is a customiza-
ble logic device containing logic blocks connectemugh interconnects arrays. The first
FPGA was developed by Xilinx in 1985, containingnatrix of independent logic blocks
and also independent input/output (I/O) blocksha periphery, connected through pro-
grammable interconnect resources. With this approds possible to have both logic

blocks and 1/0 blocks to perform specific functions
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Figure 9 FPGA architecture

Currently there are three FPGA architecture types.
1. SRAM

SRAM-based FPGASs, contain static memory cells @sethterconnect multiplexers to se-
lect the right path for each signal and to storeada LookUp-Tables (LUTs). As any
SRAM, after power-down all configurations are losh, an external device to store con-

figurations is needed to transfer data after FPGwear-up;
2. Flash/EEPROM

In early FPGA architectures, the EEPROM memoryscelére only used to implement
wired-AND functions as in Programmable Logic Dev{g¢.D), but with new manufactur-
ing technologies and the appearance of Flash mewlly, this technology evolved to
store all signals path and cells states, not reguexternal memory with configuration set-

tings;
3. Anti-fuse

Unlike the SRAM or Flash/EEPROM memory cells, tinéi-fuse FPGAs cells after being
programmed are permanently linked, storing all glwinterconnect and cells configura-
tions with no regress. This type of technology aimty used in military and aerospace in-

dustries as radiation tolerant devices.
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3.1.1. CURRENT FPGA ARCHITECTURES

Since the first FPGA, the architecture as evoleeproduce more devices with high densi-
ties, high-speed interconnects and function speblficks, as memory blocks, Digital Sig-
nal Processing (DSP) blocks, clock management blacki communications specific I/O
blocks.

llo o o lio

o Logic Memory Logic o

1o Logic Logic 1o

Logic Logic Multiplier 1o

o Loglc Memory Logic Multiplier 1[e]

110 1o 1o

Figure 10 Current FPGA architecture

3.2. ALTERA CYCLONE llI

The Altera Cyclone Il FPGA was chosen to hold slgstem to be developed, because this
device family offers to developers a lot of featucembined with low-power consumption
and low cost. The Cyclone Il family is well usear fSoC designs, providing interesting

features for this type of applications.
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Figure 11 Altera Cyclone lll architecture overview

The following subsections will present the Cyclothiéamily architecture features.

3.2.1. LoGIC ELEMENTS AND L OGIC ARRAY BLOCKS

The Logic Element is the smallest block which igeab implement several types of func-
tions as, a D, JK, T or SR flip-flop with data, co clock enable, clear input, contain a
four input Look-Up Table (LUT) able to implementgio operations, has register chain

connection and provides interface to local, row epldmn interconnections.

3.2.2. MEMORY BLOCKS

Each built-in memory block (M9K), provides 9 kbdaé memory which can operate at 315
MHz. The on-chip memory structure consists of MdKcks columns that can be config-
ured as Random Access Memory (RAM), First-In F®si: (FIFO) buffers or Shift Regis-

ter with support to single-port, simple dual-partidrue dual-port modes.

3.2.3. EMBEDDED MULTIPLIERS

Embedded multipliers provide on-chip DSP operatiomsich are ideal to reducing cost
and power consumption while increasing system padoce. The Cyclone Il family pro-
vides up to 288 embedded multipliers blocks suppgihdividual 18x18 bit multipliers or
two individual 9x9 bit multipliers. With this featess, device family is ideal to host SoCs

with high-performance co-processors or to act agrooessor system.
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Figure 12 Multiplier block architecture

3.2.4. CLock NETWORKS

The device family provides 20 global clock netwovidsich can be driven from dedicated
clock pins, dual-purpose clock pins, user logic &dls. This architecture also provides

up to four PLLs with five outputs per PLL, allowimgbust clock management.

3.2.5. I/O FEATURES

One of the most interesting things in FPGA architexs are the 1/O features in which each
FPGA is divided in several /0 banks with supporséveral I/O standards, making it ideal
for multi-protocol systems. The Cyclone Ill hashaifO banks supporting a variety of I1/0
standards. These standards can be single-endedTad | LVCMOS, SSTL, HSTL, PCI
and PCI-X or differential as SSTL, HSTL, LVPECL, BDS, LVDS, mini-LVDS, RSDS
and PPDS. Other I/O features are output port prograble current strength, slew rate
control, open-drain output, programmable pull-ugis®r and On-Chip Termination
(OCT) resistors to provide I/O impedance matching &rmination capabilities.

3.3. VHDL

In the early 80’s, the United States (US) Departne¢iefence began development of the
Very High Speed Integrated Circuit (VHSIC) projeeith the main goal being to provide

better methodologies to design new Integrated @&¢lCs) in order to reduce the devel-
opment time and costs, and to provide a new waptoment the ICs behaviour that could
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be simulated before production. A few years latee, Institute of Electrical and Electron-
ics Engineers (IEEE) released a standard to prothee/HSIC Hardware Description
Language (VHDL).

In nowadays, this HDL is used in development of @§IFPGAs and Application Specific

Standard Products (ASSPs). The main advantagesrg WVHDL are:

« It is an IEEE standard, which makes easier the angh of information between tools
and companies developing ICs with this standard;

» Technology independence in development, which mehas the same behaviour
documented using VHDL can be achieved in a widgeaf digital hardware;

« ltis a flexible language allowing various desigathodologies;

« It is highly portable and can be used in variousgat different stages in the design

process.

Currently, some institutions as National Aeronaitand Space Administration (NASA)
and European Space Agency (ESA), adopted VHDL astihin Hardware Description

Language for internal and sub-contractors projegetbpments.

The VHDL syntax is similar to ADA and Pascal langes, and is very useful for concur-

rent designs, providing a set of tools for thispmse.

In the next lines a sample code using VHDL is pnesd showing the behaviour of an

AND gate.

entity AND is
port (INA INB: in bit; OUTA out bit);

end AND
architecture behaviour of AND is
begi n

process (I NA | NB)

begi n

OUTA <= | NA AND | NB;
end process;
end behavi our;
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4. PROCESSORARCHITECTURES

4.1. ERC32

The ERC32 is a 32-bit SPARC V7 compliant and raaiatolerant processor core, devel-
oped to be a high-performance, general-purpose gtanfo host real-time operating sys-
tems for space applications. The processor corelolement began in 1992 at the Euro-
pean Space Research and Technology Centre (ESTiE®@Xxéended to 1997.

The fault-tolerance of ERC32 was implemented tccaomently detect errors in the internal
logic, isolate any error to prevent any propagatmthe outside of the processor core and
to handle with errors, restoring to the correctestae internal logic where the fault oc-

curred.

Figure 14 ESA / ERC32 evaluation boardError! Reference source not found.
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The ERC32 architecture consists of three core elésnan Integer Unit (IU), a Floating-
Point Unit (FPU) and a Memory Controller (MEC).

ERC32 computing core

U FPU
(90C601E) (90C602E)

Y r'y
Address bus

Data bus

RsT MEC

' W 3

Buffers —— Buffers ———

: & b A 4
Main memory
banks r
10 devices

Redundant
memory bank

F W 3

|

Figure 15 ERC32 architecture Error! Reference source not found.

The first version of the ERC32, manufactured anchroercialized by ATMEL (formerly
TEMIC Semiconductors), was a three chip system am@g of an 1U (TSC691), a FPU
(TSC692) and a MEC (TSC693) [19] [20] [21] [22].

After the experience gained around the three cBIR€32 system, ATMEL developed a
single chip, the TSC695E [23], with the three maits of the previous version. The new
device was developed with more recent technology rmore efficient hardening tech-
niques, revealing more robustness to Single Ev@sets (SEUs) and Single Event Latch-
ups (SELs). Other advantages that came with thglesithip ERC32 device, was the in-

crease of system performance and the power congamrgtuction [24].
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Figure 16 TSC695F block diagram [23].

The LEON was originally developed by Jiri GaisléerEESTEC, to succeed the ERC32

processor core [26].

The main goals were to provide a high performarast tolerant processor, which could
be implemented in non radiation hardening compaentsimplify early developed test
systems, to provide portability across wide ranfjsemiconductor devices maintaining
functionality and performance, provide modularitypwaing reuse in development of SoC
designs, provide standard interfaces to facilitheeintegration with commercial products
and to provide software compatibility with the piaws developed processor, the ERC32.

The LEON processor is a 32-bit SPARC V8 compliammicpssor implemented as a high-
level VHDL model, with a 5-stage pipeline, hardwanrsltiplier and divider units, dual co-
processor interfaces and separate instruction atadliises and caches [27]. The SPARC
V8 architecture was chosen to maintain software patility with ERC32 and to avoid
licensing issues. The interconnect bus standardechwvas AMBA with AMBA AHB for
cores needing high performance data transactiotisAMBA APB for cores designed to

low-power consumption and low-performance [25].
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Figure 17 LEON block diagram Error! Reference source not found.

The first prototype was manufactured by ATMEL (AT8}3 a 0.35 pum CMOS process.

4.3. ARM

Historically, the Advanced Risc Machine (ARM) wamihded by Acorn, Apple and VLSI
in 1990. ARM is a high-performance processor whschpecially designed for low-power
consumption portable devices, as PDAs, cell-phameslia players and game players. The
ARM processor has wide range of products dividedvamnious processor families, as
ARM7, ARM9, ARM10 and ARML11, which can have MMU,atee, FPU, multiplier, de-
bugger, Java Virtual Machine (JVM) and Thumb instians support [28].

The ARM is 32-bit processor with a Reduced InstarctSet Computer (RISC) architec-
ture, with a pipeline integer unit and a large afejeneral-purpose registers to reach the
low power consumption. Thumb instructions (16-bstructions) are optionally available
to reduce the code density, conditional executsomsed to improve performance and code

density and enhanced instructions like DSP instvostare available.
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Figure 18 S5PC100 from ARM Cortex A8 family used in new iPhoa 3G [33].

With ARM processor development, an interconnectdiaadard arise to meet the proces-
sors needs and to be easily integrated in future developments. The interconnect bus is
the AMBA, currently in the version 3 and supportifogir types of buses, the Advanced
High-Performance Bus (AHB) for high speed data dfars, Advanced Peripheral Bus
(APB) for low-power and low complexity cores, Adwaa eXtensible Interface (AXI) for
high speed pipelined transfers with simultaneowsl rend write operations and the Ad-
vanced Trace Bus (ATB) for components with trageatdlities [29] [30] [31] [32].
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Recently, a new synthesizable processor includetthenARM11 family was developed
specially for multiprocessor applications benegtiof tailored processor architecture for
SMP and AMP systems and named ARM11 MPCore. Thesararchitecture can be con-

figured to contain between one to four ARM11 preces.
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Figure 19 ARM11 MPCore architecture
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5. LEON3ARCHITECTURE

5.1. PROCESSOR

The LEONS is a 32-bit synthesizable processor ookHDL, compliant with the SPARC
V8 architecture (IEEE-1754). The core is designadidw power consumption and high
performance for embedded application. The LEON3nna@ivantages are the high modu-
larity making it appropriated for SOC designs, poetability to be used in various semi-
conductor architectures and scalability to be useloth high and low end applications.
The LEONS is a highly stable processor benefitihghe large usage of the former ver-
sions (LEON and LEON2) [2].

The processor core is distributed as part of GRIHB.ibrary. The IP Library contains a
set of reusable IP cores suitable for SoC desi§hhdP cores support the same intercon-
nect bus (AMBA) and the core assignment in the niais is made using a GRLIB
plug&play capability that is fully compatible withMBA 2.0. This is a unique method to
quickly assemble a complex SoC design, a PCl-gtiylg&play that contains information
about device, vendor and version, cacheability, Avigldress and interrupt number. All

configurations are made using VHDL generics foeaausability [3].
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5.2. INTEGER UNIT

The internal processor design uses a Harvard aothie model, benefiting of a separation
between instructions and data buses, allowing lehfatches and transfers.

' | CPU |
)
! I ¥ | L
1 '”;érc"-'rgé':’sn Instruction Data Address Data |
Pathway Pathway Pathway  Pathway !
¥ ¥ + ¥

I
i

E Instruction Memary Data Memory

1

Figure 20 Harvard architecture [1]

A 7-stage instruction pipeline is implemented, sartipg a configurable, from 2 to 32, reg-
ister windows. Multiply and divide instructions asepported and a multiplier with op-
tional 16x16 bit Multiply Accumulate (MAC) can beed to accelerate DSP algorithms. A
single-vector trapping is used to reduce codefsizembedded applications and an excep-
tion trap cause the processor to halt executiomwtoe example, a reset, write buffer error

or error during fetch has occurred.
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Figure 21 LEONS3 integer unit data path diagram [3].

A MMU compatible with SPARC V8 reference MMU can bged [5]. For SMP systems,
as linux-2.6, a MMU with physical tags and snoopmégded. The Translation Look-aside
Buffer (TLB) can be configured as a separate TLBifgtruction and data or as a shared
TLB [4].

Two optional co-processors can be used as defm&PARC V8 architecture, a Floating
Point Unit (FPU) and a user-defined co-processbe TEON3 supports two FPU: Gaisler
Research GRFPU with single and double precisiomamgls that implements all SPARC
V8 FPU instructions, and Sun Meiko FPU, which doesimplement the full FPU instruc-
tions defined in SPARC V8 [2].
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5.3. DEBUG SUPPORTUNIT 3

The Debug Support Unit (DSU) is a non-intrusivedwaare debug tool that can control the

processor(s) execution(s).

LEON3 __ Debug I/F

Processor(s)

Debug Support
Unit

| |
| |
| |
| |
| |
| |
| AHB Slave I/F |
| AHB Master I/F |
| AMBA AHB BUS |
| |
| |
| |
| |
| |

RS232 PCI Ethernet JTAG USB

DEBUG HOST

Figure 22 DSU and debug interface [2]

The DSU is tightly-coupled to LEON3 processors &gk unit and provides an external
debug interface. In the system acts as an AHB sladecan be accessed by any AHB mas-
ter, as the external debug interface. The extatebug interface can be Joint Test Action
Group (JTAG), serial Universal Asynchronous ReceiVensmitter (UART), Universal
Serial Bus (USB), Ethernet or Peripheral Compoih@erconnect (PCI).

The debug unit allows inserting instruction andadaatch points, an external break signal
to halt processor execution and step by step execwk circular buffer, named AHB trace
buffer, is used to store all AHB data transactitmnkeep the trace on the bus.

5.4. INTERCONNECT Bus(AMBA)

The interconnect bus standard used in overall sysehe Advanced Microcontroller Bus
Architecture (AMBA) 2.0. This bus specification grdefines the logic protocol interface
between cores in the system. Physical aspectdifikeag and voltage levels are not re-

ferred in the AMBA specification.
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In revision 2.0, three bus interfaces are defined:
» Advanced High-performance Bus (AHB);

* Advanced System Bus (ASB);

» Advanced Peripheral Bus (APB).

The AMBA AHB is used for high-performance and higbck frequency cores in the sys-
tem. This interconnect serves as system backboselibking processors, on-chip memo-
ries, off-chip memories, high performance corese likigh-speed communications

(Ethernet, USB, PCI) and function specific corasl enterfaces to low-performance pe-

Arbiter
) HADDR

ripherals.

HADDR HWDATA | Slave
#1
Master | HWDATA HRDATA
#1
HRDATA
HADDR
HADDR | u HWDATA Slave
#2
Master | HWDATA Address and HRDATA
#2 HRDATA control mux
HADDR
HADDR HWDATA Slave
#3
Master | HWDATA ‘ Write data mux HRDATA
#3 E—
HRDATA Read data mux
HADDR [ |

HWDATA Slave
#4

HRDATA

Decoder

Figure 23 AHB multiplexer interconnection [6]

The high-performance is achieved through a prianultiplexed data bus rather than the
bidirectional bus (used in ASB), which means thsing this approach is possible to

achieve high frequency transactions. The multipigx®rity is managed by an arbiter.

The AMBA ASB is used for high-performance systemeso The ASB can be used as al-

ternative bus that efficiently connects the sanoehkd as AHB.
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Figure 24 Typical AMBA AHB and APB system [6]

The AMBA APB is used for low-power and low-perfornt@ peripherals. The APB is de-
signed for minimal power consumption, with redudeigrface complexity allowing per-

forming all peripheral actions [6].

5.5. CACHES

A cache is a memory with zero cycle access, tigtilypled to the processor and can in-
crease system performance in a way that the nettugtion or data fetched by the proces-
sor have a higher chance to be in this memory andsté access main memory that takes
several cycles to put available the needed datath®&n advantage is in case of refill after
cache-line missing, the first instruction takes thain memory access time but the next
instructions that have been brought to cache aeady prepared in the next fetch.

As the LEON3 processor implements an Harvard achite, the instruction and data

buses are connected to cache controllers indepdynden

5.6. MULTIPROCESSOR SUPPORT

5.6.1. CACHE COHERENCY

A cache coherency mechanism is made available ssiogping mechanism. This method,
“snoop” the AHB bus to ensure that data has nagaplon other processor caches, but if
same data is encountered, the cache line is makadsalid. Write-through mechanism is

also used in order to reduce write transactiortkemmain system bus, the AHB bus.
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5.6.2. MULTIPROCESSOR INTERRUPT CONTROLLER

The interrupt controller available in the GRLIB IHbrary supports multiprocessor
scheme. All generated interrupts are routed tarttegrupt controller that manages signals
priorities, masks and forwards the high priorityemupts to all processors. After an inter-

rupt reception, processor acknowledges the interrup

5.6.3. M ULTIPROCESSOR STATUS REGISTER

A multiprocessor status register is available thdate the number of processor in the sys-

tem and inform about processor power-down mode épa@ewn or running).

5.6.4. PROCESSORSSTATE AFTER RESET

In a LEON3 multiprocessor system, all processoxsept the processor #0, will enter
power-down mode after reset. The processors refeasepower-down mode can be done

by processor #0 after system initialization.

5.6.5. M ULTIPROCESSOR FLOATING POINT UNIT AND COPROCESSOR

In a multiprocessor system, each processor haswissFPU/ Coprocessor, when enabled.
The GRFPU core available in the GRLIB IP Librargtihe option to share FPU capabili-

ties between multiple processors.
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6. SYSTEM REQUIREMENTS AND
SPECIFICATION

6.1. GENERAL REQUIREMENTS

The following chapter is intended to expose theegainsystem requirements for the plat-

form to be developed.

The platform to be developed shall:

» Be based on FPGA devices, improving the systenoougation and future develop-
ment;

» Taking into consideration the use of Altera FPGi&&jng advantage of the knowledge
developed by the enterprise using these devices;

» Contain two or more processor cores to achieveipnatiessing;

» Contain EEPROM or flash memory to store instructiom be executed and SRAM or
SDRAM memory to store temporary data;

e Supply hardware debug functions and provide thpe&$s/e debug support unit inter-
face;

» Support two or more different communication protecand provide general purpose

input output interfaces;

35



* Include MMU in order to support advanced operatiggtems as Linux 2.6 SMP.

6.2. SYSTEM SPECIFICATION

This section gives a system perspective to undetstae hardware (subsystems) interac-

tion needs.

| FPGA
PDI ~| LEON3-MP |~ El

Figure 25 LEON3-MP system perspective

Thesis will be mainly concentrated 6B#GA LEON3-MPblock depicted on above picture.
The block will allocate system processors and perals chosen in the next phase accord-
ing the general requirements. Sub-systems requireswéll be treated in conjunction with

the main block to choose the appropriate hardwaradwork.

To properly ensure the normal functioning of thetegn to be developed, a set of blocks

must be presented in the hardware framework, as:
El — External Interface:

This interface provides system’s easy assessmeniisar interaction, via connectors, but-
tons or lightning components, such as LEDs. Thrahghinterface, it's possible to access

input/output signals and external communications.
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MU — Memory Unit:

This unit can be composed of several types of m@Esoio provide processor instructions
allocation through data retention memories (EPR@EPROM or Flash) and provide fast
data access through random access memories (SRARAM, SDRAM or DDR).

PDI — Programming and Debug Interface:

This interface is used for system programming daed debugging through special debug
software named GRMON. With GRMON it is also possitd access system registers and

peripherals before running any software application
PDU — Power Distribution Unit:

This is an important unit to manage and providebé& power supply to the other system
units, FPGA, EI, MU and PDI.

6.3. SELECTED HARDWARE FRAMEWORK

The selected hardware framework was chosen takit@y account the FPGA architec-

ture/vendor and hardware available at Evoleo Teldgnes.

Evoleo Technologies uses for main development AlE&PGAS, so the hardware frame-

work to be selected should include one of AlteF®& A architectures.

The selected hardware was the Cyclone Il FPGAt&t#it, which has the following fea-
tures:
» Cyclone Il EP3C25F324 FPGA;

« Configuration;
* Embedded USB-Blaster™ circuitry (includes an AltERRM3128A CPLD) allowing
download of FPGA configuration files via the us&tSB port;
e Memory
» 256-Mbit of DDR SDRAM
* 1-Mbyte of synchronous SRAM
» 16-Mbytes of Intel P30/P33 flash
» Clocking
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* 50-MHz on-board oscillator
» Switches and indicators
« Six push buttons total, four user controlled
» Seven LEDs total, four user controlled
» Connectors
« HSMC
* USB Type B
* Cables and power
* USB cable

Figure 26 Cyclone Il FPGA Starter Kit

As this kit has too few peripheral features, anagwgoon board is needed.

The selected expansion board was the THDB-SUM adierHSMC to Santa Cruz Daugh-
ter Board. This is an adapter board to convert HIMe&rface to Santa Cruz (SC), USB,

Mictor, and SD Card interface.

This expansion board has the following features:

* One HSMC connector for interface conversion;

* One SC interface;

» Adjustable logic levels between HSMC and SC intfsignals;
* One Hi-Speed USB On-The-Go transceiver;

* One Mictor Connector;

* One SMA connector for external clock input;

* One SD Card Socket.
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The following picture depicts the final hardwararfrework that will support multiproces-

sing system.

Figure 27 Final hardware framework
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/. PRELIMINARY ARCHITECTUREDE-
SIGN

7.1. PRELIMINARY DESIGN

The GRLIB IP Library provides a rich list of wekdted cores to interconnect with the

main unit, the processor core.

The list of all cores, which were selected and ¢hthst should not be selected are exposed
in the Appendix A. GRLIB IP Library.

7.1.1. PROPOSEDMULTIPROCESSOR ARCHITECTURE

The main criterion to select the final architectaoees was to provide a system with simi-

lar peripherals to those found in most microcoihrsl

The proposed system includes an interrupt contrtdl@andle internal interrupts generated
by others cores and distributed to all processoes;dour timer units to provide accurate
counters to the system, general purpose input/tatigpuhandle external interfaces, two
UART cores, one to serve as DSU monitor and therdibr serial general purpose com-
munication, two SPI cores, one to handle with tli® Gard available in the hardware
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framework and the other for general purpose SPInconication and I2C core to interface

a serial EEPROM and for general purpose.

The mandatory cores used are two LEON3 processthiscache and MMU, a JTAG core
to handle with DSU external interface and the fJ&RAM and DDR controllers.

AMBA AHB AMBA APB

Figure 28 Proposed multiprocessor architecture

7.1.2. LEON3 PROCESSOR CORE

Has said in the previous chapters, the LEON3 psmresore is a highly configurable 32-
bit SPARC V8 compliant core. Some choice has tartagle to properly configure the
processor to not only support multiple processorthe same system but also to provide a
MMU to satisfy the Linux 2.6 SMP support.

All of the following processor core configuratiooan be made using the VHDL generics

provided in the component instantiation:

» Eight SPARC register windows are used;

» The DSU interface in each processor is enabletider anstructions trace and processor
control;

 SPARC V8 multiply and divide instructions are asble to perform 32x32 bit pipe-
lined multiply operations and 64 by 32 bit divideesations to produce 32 bit results;

» The instruction and data caches are enabled withseh of 4kByte (32Bytes per line),
each cache, using the Least Recently Used (LRW@yitthgn for cache replacement;

* As required by the Linux 2.6 OS, the MMU is enableith eight TLB entries for in-

structions and another eight for data, with 4kBydge size;
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* A data cache snooping mechanism is used, suppatitng physical tags for MMU to

prevent data conflicts between processors.

Hardware T buff
Harvard
Interrupt port ~ 7-Stage Pipeline DSUS3 port
/ \
, yF N
-4KB  D-4KB

Figure 29 LEON3 processor internal architecture

7.1.3. DEBUG SUPPORT UNIT

The DSU is used in the LEON3 system to control deegssors during the debug mode.

The main control is achieved through a JTAG intzfa

To take full advantage of this interface, the GRM&dtware made available by Gaisler
shall be used. This is a debug monitor and cosutilvare for SoC designs using GRLIB
IP Library cores. With the GRMON console it is pb$sto access (read or write) all sys-
tem registers and memory, download and order towegd EON3 applications. It is avail-
able breakpoint and watch point management, trafierbmanagement and to use a re-
mote connection to GNU debugger (GDB) softwareefioinanced software debugging. All
this features are available through a variety ahicmnication protocols, in this project is
used the JTAG as debug link [34].

An alternative UART can be used as DSU monitor oe$o retrieve system messages
instead of GRMON console. The main advantage afguthat is when GRMON console
is used to retrieve system messages, on every geesba GRMON console will cause the
processor to halt, causing an annoying debug. Hisréason the first UART will be used

as DSU monitor.

43



SPARC V8
Harvard
7-Stage Pipeline

DSU3
¥ R

JTAG UART #0
A A

Figure 30 LEON3 DSU interfaces

More control interfaces are available in the hamdwaamework, as the CPU reset button
to fully reset the system, a DSU break (DSUBRE}dwutvhich causes the processor halt,
a DSU active (DSUACT) output to indicate that sgsts in debug state and an Error out-

put to indicate that an error condition was encerett in the processor.

7.1.4. MEMORY MAP AND |INTERRUPTS

The memory map is constructed according to thescosed in the design, the core type as
master or slave and location as located in AMBA A6iBAMBA APB. The final memory
map and interrupt number attribution can be founthe Appendix B. Memory map and

interrupts.
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JTAG Flash

DSU DDR SRAM
LEON3 #0 LEON3 #1
MM MM JTAG DDR CTRL MEM CTRL
|
AHB AMBA AHB
CTRL APB
| AMB|AAPB | | CTRL
IR CTRL TIMERS UART #0 2C SPIZ0 GPIO
\ I B DR
RS-232 RS-232 12c SD Card SPI 110
DSU

Monitor

Figure 31 LEON3 multiprocessor design perspective

7.2. VERIFICATIONAND TEST CONFIGURATIONS

7.2.1. VERIFICATION PLAN

After system implementation, a verification processarried out in order to check if the
implemented system meets the multiprocessing syspauification. To do so, the debug
monitor GRMON is used.

The verification process is done using the selebsgdware framework with the proposed
LEONS3 multiprocessing system. The verification sbheck:

1. System configuration, all implemented cores angeetve registers;

2. Read and Write to random memory locations of RAM BRead from ROM;

3. Access data and instruction cache and MMU registers

7.2.2. SOFTWARE PLATFORM

The system tests will be done using an operatistesy, which provides high level of ab-
straction, accurate task management and is nowadiaty used in complex embedded

systems.

The select operating system is Linux 2.6, a freg @pen source operating system that is
widely used in home computers but also in embedystems. The selected Linux distri-
bution that supports the LEON3 processor is a sp&ersion of the SnapGear Embedded
Linux distribution, which is well supported by AEROEX Gaisler.
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The main reasons for this operating system chait¢kd support of Symmetric Multiproc-
essing (SMP), the free availability and the widpmrt provided by many communities in

the internet.

One of the main requirements of this distributisrthe inclusion of a MMU in the system,
which was foreseen in the system design [35].
7.2.3. TEST CONFIGURATIONS

In order to prove the value of having a multipremesplatform instead of an uniprocessor

platform, a set of benchmarking applications shallsed.

The following table presents the two hardware gamftions used, indicating the ID of
each configuration, the number of processors, et description and the goal of the hard-

ware configuration.

Table 1 Hardware configurations description

ID No. CPUs Description Goal
L1 1 1 x LEONS3 processor with MMU running  Same as thesis hardware
at 50 MHz. configuration but with 1
processor.
L2 2 2 x LEONS processor with MMU running Thesis hardware configurat
at 50 MHz. tion.

Six benchmark applications are used and descrileémlvb Each benchmark application
will run in the two hardware configurations in orde check the differences between mul-

tiprocessor and uniprocessor systems.

The following table presents the six benchmarkiappbns used, indicating the ID of each
application, the number of benchmarking tasks nugna brief description and the goal of

the benchmark application.
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Table 2 Benchmark applications description

No. tasks

Description

Goal

P1

2

Two tasks running concurrently and perfor
ing an iterative calculation of the first 1000

Fibonacci numbers.

m- Determine the time con-
D sumption of each task with

calculations.

P2

Four tasks running concurrently and perfor
ing an iterative calculation of the first 1000

Fibonacci numbers.

m- Determine the time con-
D sumption of each task with

calculations.

R1

Two tasks running concurrently, sharing m
sages like a ring buffer. Each task is waitin
for any message to run, send new message

waiting again.

bsbetermine the time spent ir
g sending and waiting for nev

and message.

N

R2

Four tasks running concurrently, sharing m
sages like a ring buffer. Each task is waitin
for any message to run, send new message

waiting again.

esbetermine the time spent ir
g sending and waiting for nev

and message.

M1

Two tasks running concurrently, performing
iterative calculation of the first 10000 Fibo-
nacci numbers and sharing messages like

ring buffer. Each task is waiting for any mes
sage to perform calculations, send new me

sage and waiting again.

an Determine the time con-
sumption of each task with

acalculations, in sending anc

5- waiting for new message.

S-

M2

Four tasks running concurrently, performin
an iterative calculation of the first 10000 Fib
nacci numbers and sharing messages like
ring buffer. Each task is waiting for any mes
sage to perform calculations, send new me

sage and waiting again.

g Determine the time con-

0- sumption of each task with
acalculations, in sending anc
5- waiting for new message.

S-
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8. DETAILED ARCHITECTUREDESIGN

After preliminary architecture design where thethdw®ices for the system to be imple-
mented were achieved, the detailed architecturegmlesas developed to implement the

previous choices.

Processor

Memory I/F

Debug Unit Peripherals
. GPIO>

J \ J
\

D
J

Figure 32 LEON3 multiprocessor platform
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The LEON3 multiprocessor system design flow is dgoosed in four steps, as:

1. System configuration, using GRLIB IP Library VHDLefs to configure and inter-

connect the components used;

2. Pin location assignment, according each core dpatidn and hardware frame-

work;

3. Pre-synthesis simulation, creating tailored tesiches to verify the functionality of

the system designed,;

4. Synthesis and Place and Route, to translate VHDIaweur into gate-level netlist
also performing optimization to the specific targgthnology and fitting the design

into device.

GRLIBIP Configuration Quartus Il
Library files and top level settings files
{wvhd) file { wvhd qsf

5 5.5

Pre-Synthesis simulation 3

Synthesis and Place&Route 4

Programming
file ( sof)

Figure 33 Design flow perspective

The GRLIB IP Library is very modular and to propeirhistantiate every core, it is recom-
mended the use of a local Makefile to automateouaricommon tasks in every system in-
stantiation. The GRLIB User's Manual [2], explaial configurations provided by the

make utility and all commands available. In ordeatcess this Makefile under Windows
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hosts, it is recommended the use of the Linux-&kegironment for Windows, the Cygwin

software.

8.1. SysTeEM CONFIGURATION

The system configuration is made through two fiteg| eon3np. vhd file containing the

VHDL top level design entity which instantiates ajistem required VHDL components
(IP cores), interconnecting with each other throtigh AMBA signals and provides the
external interfaces (pins). The second filenfi g. vhd, is a VHDL package used to con-

figure all IP cores parameters.

Through a simple text editor, in this case usirg nbtepad++ editor, the two files previ-
ously referred were edited as specified in theiqmighry architecture design phase, ac-
cording to the GRLIB IP Cores Manual [3].

8.2. PINASSIGNMENT

This step takes as inputs the hardware frameworkualathe preliminary architecture de-
sign and the system configuration made, to alloalitpins required by the IP cores used

in the design. The pins configuration is made tgtotihel eon3np. gsf file.

The pins assignment for this design is exposedemppendix D. Pin assignment.

8.3. PRE-SYNTHESIS SMULATION

The pre-synthesis simulation is performed beforgrssising the whole system in order to
verify the system functionality and a testbench pgkte, t est bench. vhd, provided in
GRLIB is used to properly test its cores. Thislieath template includes external PROM
and SDRAM components containing a pre-loaded teggram, which will be executed on
LEONS3 processors in order to test various desigmctfanalities. Some of the test results

will be printed on the simulator.

To perform this simulation, the ModelSim softwarged in simulation and debug for
ASICs and FPGAs designs is used. In order to genéna appropriate scripts and to run
the ModelSim, a series of commands provided byl IMzakefile are used in the Cygwin

software.
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8.4. SYNTHESIS AND PLACE AND ROUTE

The design synthesis is made using the Quartustivare synthesis engine and the place
and route is made using the Quartus Il softwaterfiengine. Using the same tool, the
Quartus Il software, allows performing with one ¢oand the synthesis and place and
route. The Makefile commands available for these &stions can be found in the GRLIB

User's Manual [2].

Upon successful design compilation, saof file is generated allowing download pro-
gramming file to the FPGA. In order to permanemwtyfigure the FPGA contained in the
hardware framework, the configuration flash memuoegds to be loaded with. @of file

generated from thesof file.
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9. VERIFICATION AND OVERALL TESTS

9.1. HARDWARE VERIFICATION

The following lines provide the hardware verificatiprocedures and its results. All com-

mands applied in the verification process can leel irs the GRMON console.

The verification checked the following points:
1. System configuration, all implemented cores angeetve registers;
* In order to access all cores information is tygesl“info sys” command.
» All cores are implemented in the right AMBA address
» Successful verification.
2. Read and Write to random memory locations of RAM BRead from ROM,;
* In order to read from memory location is typed them <memory address>" com-
mand.
e In order to write to memory location is typed theniem <memory address>
<data>" command.
* Read and writes to RAM (DDR) locations are donecsasfully.
* Read from ROM (Flash) locations are done succdgsful

* Successful verification.
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3. Access data and instruction cache and MMU registers
* In order to access cache registers is typed thactde’ command for data cache reg-
isters and “icache” command for instructions cadggsters.
* In order to access memory management unit registéyped the “mmu” command.
» The data cache, instructions cache and memory rear&g unit registers can be ac-
cessed successfully.

* Successful verification.

9.2. TESTRESULTS

The test results of the two hardware configuraticumsning all benchmark applications

specified in the test plan are presented in thé sigsections.

In the following figures, with blue is depicted thesults of the L2 configuration, with red
is the L1 configuration. With green are the mealues of L1 and L2 configurations. The
time results are presented in secor®isiid the millisecondsr(s.

All figures show in Y-Y axis the task time consumoptin seconds and in X-X axis the
number of task’s execution. The following tablesypde test results of each benchmark
application, presenting the hardware configurat@ntask time consumption mean value,

the following standard deviation and relative stadddeviation.
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9.2.1. P1BENCHMARK

The following chart depicts the test results olgdifrom the P1 benchmark application.
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Figure 34 P1 benchmark time consumption over time
The main test results that can be extracted frardhowing chart are:

Table 3 P1 benchmark results

ID Mean Standard deviation Relative standard deviation
L1 0.063521s (63.521 ms) 0.020164 s (20.164 ms) 743%0.
L2 0.048682 s (48.682 ms 0.000430 s (0.430 ms 8 @8
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9.2.2. P2 BENCHMARK

The following chart depicts the test results olgdifrom the P2 benchmark application.
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Figure 35P2 benchmark time consumption over time
The main test results that can be extracted franidhowing chart are:

Table 4 P2 benchmark results

ID Mean Standard deviation Relative standard deviation
L1 | 0.159214 s (159.214 ms) 0.161176 s (161.176 ms) 101.23 %
L2 0.062115 s (62.115 ms 0.017952 s (17.952 ms) 9028
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9.2.3. R1 BENCHMARK

The following chart depicts the test results olgdifrom the R1 benchmark application.
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Figure 36 R1 benchmark time consumption over time
The main test results that can be extracted fraidhowing chart are:

Table 5 R1 benchmark results

ID Mean Standard deviation Relative standard deviation
L1 0.000547 s (0.547 ms) 0.000049 s (0.049 ms %01
L2 0.000743 s (0.743 ms) 0.000071 s (0.071 ms %56
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9.2.4. R2 BENCHMARK

The following chart depicts the test results olgdifrom the R2 benchmark application.
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Figure 37 R2 benchmark time consumption over time
The main test results that can be extracted franidhowing chart are:

Table 6 R2 benchmark results

ID Mean Standard deviation Relative standard deviation
L1 0.001510 s (1.510 ms) 0.002873 s (2.873 ms 3P
L2 0.000850 s (0.850 ms) 0.000085 s (0.085 ms %0
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M1 BENCHMARK

9.2.5.

The following chart depicts the test results oledifrom the M1 benchmark application.
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Figure 38 M1 benchmark time consumption over time

The main test results that can be extracted franidhowing chart are:

Table 7 M1 benchmark results
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9.2.6. M2 BENCHMARK

The following chart depicts the test results ol#difrom the M2 benchmark application.
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Figure 39 M2 benchmark time consumption over time
The main test results that can be extracted fradhowing chart are:

Table 8 M2 benchmark results

ID Mean Standard deviation Relative standard deviation
L1 | 0.190742 s (190.742 ms) 0.101383 s (101.383 ms) 53.15 %
L2 0.099021 s (99.021 ms 0.001466 s (1.466 ms 8 %4
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9.3. CONCLUDING REMARKS

The following table presents the relation betwe@mahd L1 configurations, related to the
six benchmark applications.

Table 9 Benchmark results summary

P1 P2 R1 R2 M1 M2

L2=1,30xL1 L2=2,56xL1 L2=0,74xL1 L2=1,78xL1 L2=0.491 L2=1,92xL1

The P1 and P2 benchmark applications results shevadvantage of the multiprocessor
systems when multiple tasks are performing calmrat concurrently. In these bench-
marks, the tasks time consumption deviation fronramealue (results from relative stan-

dard deviation) is lower in a multiprocessor system

Results extracted from R1 benchmark demonstratewthan only two tasks exchanging
messages are running, the best performance isvachie the uniprocessor system. When
the number of tasks grows, as the case of R2,@begerformance is achieved by the mul-
tiprocessor system, which means that when mores t@askrunning, the greater differences
are in performance between the two hardware cordtguns, in favour of multiprocessor

system. Again, the tasks time consumption variagsdower in multiprocessing.

The M1 benchmark application shows that uniproaeasd multiprocessor systems pro-
vide similar performance. With the increase of nemtif tasks, the multiprocessor system

gives the high performance and low time consumptemmation.
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10. GENERAL CONCLUSIONS

10.1. CONCLUSIONS

As said before, multiprocessor and multicore embddyystems are a new trend as the sys-

tems complexity grows in this area requiring mam@cpssing power.

The creation of a base of knowledge developing Hipnocessing system to be placed in
an FPGA device using synthesizable cores as theNF@ocessor and GRLIB IP Library

was achieved.

In order to produce the final system, several mtoggages were considered. The system
specification was done taking as inputs the ovesydlem requirements provided by the
Evoleo Technologies. System specification was vad#ld by preliminary architecture de-
sign to select the cores to be implemented andtigsconnection. The verification and test
plan was made to serve as implementation inputsder to produce a system that could
be tested. The implementation was done using thea®@ tools available for synthesizing

and place and route the selected FPGA.

The initial system verification has been concludadcessfully, allowing to verify that the
implemented system have no problem. The tests mate using two hardware configura-

tions, the system implemented with two processndsthe same architecture but with one
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processor. In order to test the two hardware candions, benchmark applications were
created for the two architectures in order to cample overall system performance. The
benchmark applications were created to be usedrasfplLinux 2.6 OS with SMP support,

benefiting of OS objects available, as semapharesessage passing functions.

With the test results available it can be conclutted in terms of computational calcula-
tions, results from P1, P2 and M2 tests, the harglwanfiguration with two processors is
too much better than with one processor. Also wimame tasks are running simultane-
ously, results from P2, R2 and M2 tests, the oVéaaks time consumption is much lower
in the multiprocessor system, benefiting of thesgmbty to run two tasks in parallel, one

in each processor. The benefit of the uniprocesgstem is in message passing with only
two tasks running and exchanging messages, résuitisR1 and M1 tests, but also can be
observed that time consumption difference betwdentivo hardware configurations is

much equal in the R1 and M1 tests, which can beupned that the OS scheduler in the
SMP configurations is busy with load balancing dMFSaffinity [36]. The tasks time con-

sumption variation is well denoted in uniprocessgstems, where task time variation is

much higher compared to multiprocessor system$jmihe same test configuration.

The final test results can be satisfactory in tlag that has been proven the benefits of the
usage of a multiprocessor system in comparison thighusage of uniprocessor system

within the same hardware configurations.

10.2. FUTURE WORK

The multiprocessor platform tests that follow slibble made using a Real-Time OS
(RTOS). As the most of RTOS supporting multiproagg®nly provides AMP capability,
the approach to have asymmetric processing sheutdbsidered.

It is mandatory that a hardware framework needbealeveloped with more powerful
FPGA providing more LE to allocate more processomrder to perform more multiproc-

essing tests.

The use of an ACTEL FPGA should be considered dewoto achieve developments for

space or military industry.
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Since LEONS3 processor, GRLIB IP Library, softwammpiler and Linux OS are distrib-
uted under GNU Public License (GPL), this type ydgtem can be used for education and
research in universities and polytechnics. For phepose, an educational multiprocessing
kit could be developed and provided to universitigerested in digital design using

GRLIB and embedded software using Linux 2.6.
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Appendix A.GRLIB IP Library

This section contains all available IP Cores in G3RL

In this section, the red cells present all (Fautefant) IP Cores that will not be chosen

because of their target applications (military apece applications).

The green cells present all IP Cores selectechiofibhal system.

The following tables are divided by IP Cores apgiimns and contain the following infor-

mation:

« Name — IP Core name in GRLIB

» Function — A brief description of core functionglit
* Vendor and Device — Code number for vendor andcdewvi GRLIB

* License — Type of license. GPL, COM or FT

Table 10 Processors and support functions

Name

GRFPU

Function Vendor Device| License

High-performance IEEE-754 Floating-pointtuni

GRFPU-Lite

Low-area IEEE-754 Floating-point unit

Table 11 Floating-point units

Name Function Vendor Device| License
GRFPU High-performance IEEE-754 Floating-pointtuni - COM
GRFPU-Lite Low-area IEEE-754 Floating-point unit - COM
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Table 12 Memory controllers

Name Function Vendor Device| License
SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008COM/GPL
SDCTRL PC133 SDRAM controller 0x01 : 0x00p COMIGP

AHBSTAT AHB failing address register
8/16/32/64-bit DDR controller with two AHB
DDRCTRL ports (Xilinx only) 0x01 : 0x023| COM/GPL

Single-port 16/32/64 bit DDR2 controller(Xilinx
DDR2SPA and Altera) 0x01 : Ox02E, COM/GRL
SSRCTRL 32-bit synchronous SRAM (SSRAM) controllefx01 : 0x00A

SPIMCTRL SPI Memory controller 0x01 : 0x045 COM/GPL

Table 13 AMBA Bus control

Name Function Vendor Device| License
AHB2AHB Uni-directional AHB/AHB Bridge 0x01:0x020| COM
AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01:0x(R COM

AMBA AHB bus controller for multiple buses
AHBCTRL_MB with plug&play - COM

AHBTRACE AMBA AHB Trace buffer 0x01: 0x017| COMML




Table 14 PCI interface

Name Function Vendor Device| License
PCITARGET 32-bit target-only PClI interface 0x00x012 | COM/GPL
PCIMTF/GRPCI| 32-bit PCI master/target interface with FIFQ Ox@k014 | COM/GPL
PCITRACE 32-bit PCI trace buffer 0x01:0x015 C(BWL
PCIDMA DMA controller for PCIMTF 0x01 : 0x016] Q@WGPL
PCIARB PCI Bus arbiter 0x04 : 0x010 LGPL
WildCard Debug Interface with DMA Mastet
WILD2AHB Interface 0x01 : 0x079] COM/GRL

Table 15 On-chip memory functions

Name Function Vendor Device| License
AHBRAM Single-port RAM with AHB interface 0x010x00E | COM/GPU
Dual-port RAM with AHB and user back-end
AHBDPRAM interface 0x01 : OxO0F COM/GRL
AHBROM ROM generator with AHB interface 0x01 :ax8 | COM/GPL]
SYNCRAM Parametrizable 1-port RAM - COM/GPL
SYNCRAM_2P Parametrizable 2-port RAM - COM/GRL
SYNCRAM_DP Parametrizable dual-port RAM - COM/GPL
REGFILE_3P Parametrizable 3-port register file - COM/GPL

Table 16 Serial communication

Name Function Vendor Device| License

AHBUART Serial/AHB debug interface 0x01 : Ox00[/COM/GPL

APBPS2 PS2 Keyboard interface with APB interface 0x01 : 0x060 | COM/GP

Opencores CAN 2.0 MAC with AHB interfage 0x01 : 0x019
CAN 2.0 Controller with DMA 0x01 : 0x03L0

[2CSLV 12C Slave with APB interface 0x01 : OxO3ECOM/GPL
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Table 17 Ethernet interface

Name Function Vendor Device| License
Gaisler Research 10/100 Mbit Ethernet MAC
GRETH with AHB I/F 0x01 : 0x01D | COM/GPL
Gaisler Research 10/100/1000 Mbit Ethernet
GRETH_GIGA MAC with AHB 0x01 : 0x01D COM
Table 18 USB interface
Name Function Vendor Device| License
USB-2.0 Host controller (UHCI/EHCI) with AHB
GRUSBHC I/F 0x01 : 0x027 COM
USB-2.0 device controller / AHB debug communi-
USBDCL cation link 0x01 : 0x022 COM
Table 19 MIL-STD-1553 Bus interface
Name Function Device ID License
B1553BC 1553 Bus controller with AHB interface 00x: 0x070 COM
B1553RT 1553 Remote terminal with AHB interface x00: 0x071 COM
B1553BRM 1553 BC/RT/Monitor with AHB interface 0% : Ox072 COM
Table 20 Encryption
Name Function Vendor Device| License
GRAES 128-bit AES Encryption/Decryption Core Ox@ix073 COM
GRECC Elliptic Curve Cryptography Core 0x01 : 040 COM
Table 21 Simulation and debugging
Name Function Vendor Device| License
SRAM SRAM simulation model with srecord pre-loag - COM/GPL
MT48LC16M16 Micron SDRAM model with srecord pre-load - Free
MT46V16M16 Micron DDR model - Free
CY7C1354B | Cypress ZBT SSRAM model with srecordipeal - Free
AHBMSTEM AHB master simulation model with scripgin 0x01 : 0x040| COM/GP
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AHBSLVEM AHB slave simulation model with scripting 0x01 :0x041| COM/GP
AMBAMON AHB and APB protocol monitor - COM
Table 22 CCSDS Telecommand and telemetry functions
Name Function Vendor Device License

GRPW

Packetwire receiver with AHB interface

Ox@k032

COM/GPL

GRCTM

GRFIFO

CCSDS Time manager

External FIFO Interface with DMA

0x01 : 0x033

0x01 :aB5

COM/(

COM

5PL

GRADCDAC

APB2PW

Combined ADC / DAC Interface

PacketWire Transmitter Interface

0x01 : 003

COM

O0x0103E

PW2APB

PacketWire Receiver Interface

0x01 : Ox03

GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082  tdmal}
GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x08B{internal}
Table 23 HAPS functions
Name Function Vendor Device License

HAPSTRAK HapsTrak controller for HAPS boards Ox@x077 GPL

32/16-bit PROM Controller for HAPS
FLASH_1X1 FLASH_1x1 0x01 : Ox00A COM *
32-bit SSRAM / PROM Controller for HAPS
SRAM_1X1 SRAM_1x1 0x01 : Ox00A COM *
Controller for HAPS test daughter board

TEST_1X2 TEST_1x2 0x01 : Ox078 COM/GRL
BIO1 Controller for HAPS 1/O board BIO1 0x01 :@BA COM/GPL

SDRAM_1X1 32-bit SDRAM Controller for HAPS 0x0Dx009 COM/GPL
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SDRAM_1x1
DDR_1X1 64-bit DDR266 Controller for HAPS DDR_1x1 0x01 : 0x025 COM/GP
GEPHY_1X1 Ethernet Controller for HAPS GEPHY_1x1 0x01 : OxO0A COM **

Note*: The underlying SSRAM controller used in the FLASX1 and SRAM_1X1 cores is provided in VHDL netlfstmat in the

GRLIB GPL distribution. The VHDL source code is pprovided under commercial license.
Note**: The 10/100 Mbit Media Access Controller (MAC) igadlable in the GRLIB GPL distribution. The 1000 MMMAC is only

provided under commercial license.

Note: The HAPS functions are described in separate nti&nua
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Appendix B.Memory map and interrupts

The memory map addresses are divided in two maioesy the:

» AMBA AHB address space for all cores attached te bus for high performance on-
chip communications;

 AMBA APB address space for all cores attached i®lihis and not requiring high per-
formance, like the most of system peripherals;

The following table display AMBA address range dnel interrupt number for each core.

Table 24 AMBA address range and interrupts

Core Address range Interrupt Comments
LEON3
DSU3 0x90000000-0xa000000
IRQMP 0x80000200
GRTIMER 0x80000300 4,56,7 Interrupts for edaotet from 0 to 4
GRGPIO 0x80000500 1,2,3,4,5,6
0x00000000-0x2000000( PROM
0x20000000-0x4000000( 10
MCTRL 0xa0000000-0xb000000( SRAM
DDRSPA 0x40000000-0x5000000
AHBCTRL
APBCTRL 0x80000000-0x8010000 AHB to APB bridge
SPICTRL1 0x80000700 9
SPICTRL2 0x80000800 10
[2CMST 0x80000600 8
APBUART1 0x80000100
APBUART2 0x80000900 3
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Appendix C.External interface signals

The following table describes all external integfagnals in terms of direction and polar-

ity.
Table 25 External interface signals list
Name Description Direction | Polarity
System
clk Main system clock (50 MHz oscillator) In
resetn System reset (CPU_resetn push-button) In Low
DSU debug unit
dsubren DSU Enable (Push-button 3) In High
dsuact DSU Active (LED 0) Out High
errorn Processor error mode indicato r(LED 2) Out owL
DDR memory
ddr_clk DDR memory clock high Out
ddr_clkn DDR memory clock low Out
ddr_csb DDR memory chip select Out Low
ddr_cke DDR memory output clock enable Out High
ddr_ad[12..0] DDR memory address Out High
ddr_ba[1..0] DDR memory bank address Out High
ddr_rasb DDR memory row address strobe Ou Law
ddr_casb DDR memory column address strobe Ou Low
ddr_web DDR memory write enable Out Low
ddr_dq[15..0] DDR memory data Out High
ddr_dgs[1..0] DDR memory data strobe Out High
ddr_dm[1..0] DDR memory data mask Out High
Flash and Sram memory
writen Flash memory write enable Out Low
romsn Flash memory chip enable Out Low
oen Flash memory output enable Out Low
rstoutn Flash memory reset Out Low
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address[1] Flash memory address Out High
address[22..2] Flash/Sram memory address Ou High
address[25..23] Flash memory address Out High
data[15..0] Flash/Sram memory data Bidin High
data[31..16] Sram memory data Bidir High
ssram_oen Sram memory output enable Out Law
ssram_cen Sram memory chip enable Ou Low
ssram_bw[3..0] Sram memory byte write enable Out Low
ssram_adscn Sram memory address status controller ut O Low
ssram_wen Sram memory write enable Out Low
ssram_clk Sram memory clock Out
GPIO
gpio[2..0] Push-button [2..0] In High
gpio[7..3] Inout High
SD card memory
hc_sd_dat Spi Mode: data out Out High
hc_sd_dat3 Spi Mode: chip select Out Low
hc_sd_cmd Spi Mode: data in In High
hc_sd_clk Spi Mode: Clock Out
SPI
hc_spi_miso Out High
hc_spi_mosi In High
hc_spi_sck Out
hc_spi_slvsel Out Low
Uartl
hc_uart_txd Uart transmitter Out Low,
hc_uart_rxd Uart receiver In Low
Uart2
hc_uart2_txd Uart transmitter Out Low,
hc_uart2_rxd Uart receiver In Low
I2C master
hc_id_i2cscl 12C clock Bidir
hc_id_i2cdat I12C data Bidir High
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Appendix D.Pin assignment

The following table describes pin assignment adogrtb Altera FPGA datasheet in terms

of FPGA and connector pins, voltage level, diracand polarity.

Table 26 Pin assignment list

Name FPGA | HSMC | Volt. | Level | Dir. | Pol. Notes
System
clk B9 - 25 In On-board 50 MHz oscillator
resetn N2 - 2.5 In Low On-board cpu_resetn Pustobu
DSU debug unit
dsubren B10 - 2.5 In High  On-board Button4 (KEM3oard)
dsuact P13 - 2.5 Ou High On-board LED 1 (LED®eX
errorn N12 - 2.5 Out| Low On-board LED 4 (LED3 cjio
DDR memory
ddr_clk U2 - 2.5 Out On-board DDR memory
ddr_clkn V2 - 2.5 Out On-board DDR memory
ddr_csb V1 - 2.5 Out| Low On-board DDR memory
ddr_cke R13 - 2.5 Out  High On-board DDR memory
ddr_ad[0] Ul - 2.5 Out | High On-board DDR memory
ddr_ad[1] U5 - 2.5 Out | High On-board DDR memaory
ddr_ad[2] u7 - 2.5 Out | High On-board DDR memory
ddr_ad[3] us - 2.5 Out| High On-board DDR memory
ddr_ad[4] P8 - 2.5 Out  High On-board DDR memory
ddr_ad[5] P7 - 2.5 Out  High On-board DDR memory
ddr_ad[6] P6 - 2.5 Out  High On-board DDR memory
ddr_ad[7] T14 - 2.5 Out| High On-board DDR memory
ddr_ad[8] T13 - 2.5 Out| High On-board DDR memory
ddr_ad[9] V13 - 2.5 Out| High On-board DDR memaory
ddr_ad[10] ul7 - 2.5 Out  High On-board DDR memory
ddr_ad[11] V17 - 2.5 Out| High On-board DDR memory
ddr_ad[12] uie6 - 2.5 Out  High On-board DDR memory
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ddr_bal0] V11 2.5 Out| High On-board DDR memory
ddr_ba[1] V12 2.5 Out| High On-board DDR memory
ddr_rasb V16 2.5 Out Low On-board DDR memory
ddr_casb T4 2.5 Out Low On-board DDR memory
ddr_web uis 2.5 Outl  Low On-board DDR memory
ddr_dq[0] U4 2.5 Out| High On-board DDR memory
ddr_dq[1] V4 2.5 Out| High On-board DDR memory
ddr_dq[2] R8 2.5 Out| High On-board DDR memory
ddr_dq[3] V5 2.5 Out| High On-board DDR memory
ddr_dq[4] P9 2.5 Out| High On-board DDR memory
ddr_dq[5] U6 2.5 Out| High On-board DDR memory
ddr_dq[6] V6 2.5 Out| High On-board DDR memaory
ddr_dq[7] V7 2.5 Out| High On-board DDR memaory
ddr_dq[8] ul3 2.5 Out| High On-board DDR memaory
ddr_dq[9] ui2 2.5 Out| High On-board DDR memory
ddr_dq[10] Ull 2.5 Out| High On-board DDR memory
ddr_dq[11] V15 25 Out| High On-board DDR memaory
ddr_dq[12] ul4 2.5 Out| High On-board DDR memory
ddr_dq[13] R11 2.5 Outl  High On-board DDR memaory
ddr_dq[14] P10 2.5 Out  High On-board DDR memory
ddr_dq[15] V14 2.5 Out| High On-board DDR memaory
ddr_dgs[0] u3 2.5 Out| High On-board DDR memory
ddr_dgs[1] T8 2.5 Out| High On-board DDR memory
ddr_dm[0] V3 2.5 Out| High On-board DDR memory
ddr_dm[1] V8 2.5 Out| High On-board DDR memory
Flash and SRAM memory
writen D18 2.5 Out| Low flash_we n
romsn E2 2.5 Out| Low flash_ce_n
oen D17 25 Out| Low flash_oe_n
rstoutn C3 2.5 Out| Low flash_reset_n
address[1] E12 2.5 Out High
address[2] Al6 2.5 Out High
address[3] B16 2.5 Ou High
address[4] Al5 2.5 Out High
address[5] B15 2.5 Ou High
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address[6] Al4 2.5 Out  High
address[7] B14 2.5 Ou High
address[8] Al3 2.5 Out High
address[9] B13 2.5 Ou High
address[10] Al2 2.5 Ou High
address[11] B12 2.5 Out High
address[12] All 2.5 Ou High
address[13] B11 2.5 Out High
address[14] Cc10 2.5 Out  High
address[15] D10 2.5 Out High
address[16] E10 2.5 Out  High
address[17] C9 2.5 Out High
address[18] D9 2.5 Ou High
address[19] A7 2.5 Out High
address[20] A6 2.5 Out High
address[21] B18 2.5 Out High
address[22] C17 2.5 Our High
address[23] C18 2.5 Ou|t High
address[24] Gl4 2.5 Out High
address[25] B17 2.5 Out High
data[0] H3 2.5 Bidir, High
data[1] D1 2.5 Bidir, High
data[?] A8 25 Bidir| High
data[3] B8 2.5 Bidir, High
data[4] B7 2.5 Bidir, High
data[5] C5 2.5 Bidin  High
data[6] ES8 2.5 Bidin  High
data[7] A4 2.5 Bidir| High
data[8] B4 2.5 Bidir, High
data[9] E7 2.5 Bidin  High
data[10] A3 2.5 Bidir, High
data[11] B3 2.5 Bidin  High
data[12] D5 2.5 Bidin  High
data[13] B5 2.5 Bidin  High
data[14] A5 2.5 Bidir, High
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data[15] B6 - 2.5 Bidir High
data[16] C16 - 2.5 Bidif HigH
data[17 D12 - 2.5 Bidif  HigH
data[18] E1ll - 2.5 Bidir  High
data[19] D2 - 2.5 Bidin  High
data[20] E13 - 2.5 Bidir  High
data[21] E1l4 - 2.5 Bidir  High
data[22] Al7 - 2.5 Bidit  High
data[23] D16 - 2.5 Bidi  High
data[24] C12 - 2.5 Bidif HigH
data[25] Al18 - 2.5 Bidin  High
data[26] F8 - 2.5 Bidi  High
data[27] D7 - 2.5 Bidin  High
data[28] F6 - 2.5 Bidi  High
data[29] E6 - 2.5 Bidi  High
data[30] G6 - 2.5 Bidi  High
data[31] C7 - 2.5 Bidi  High
ssram_oen E9 - 2.5 Out Low
ssram_cen F9 - 2.5 Out Low
ssram_bw][0] F12 - 2.5 Ou Low
ssram_bw][1] F13 - 2.5 Ou Low
ssram_bw[2] F10 - 2.5 Ou Low
ssram_bw([3] F11 - 2.5 Ou Low
ssram_adscn F7 - 2.5 Out Low
ssram_wen G13 - 2.5 Out Low
ssram_clk A2 - 2.5 Out
GPIO
gpio[0] F1 - 2.5 In High  On-board Buttonl (KEY®eard)
gpio[1] F2 - 2.5 In High  On-board Button2 (KEY beard)
gpio[2] Al10 - 2.5 In High  On-board Button3 (KEY Deard)
gpio[3] N7 49 2.5 Inout High THDB PROTO _1040 (33)
gpio[4] J13 55 2.5 Inout High THDB PROTO_1030 (53)
gpio[5] K17 65 2.5 Inout High THDB PROTO _1032 (33)
gpio[6] B2 71 2.5 Inout  High THDB PROTO_1034 (93)
gpio[7] G2 77 2.5 lnout  High THDB PROTO_1036 (113)
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SD card memory

hc_sd_dat H6 41 3.3 Ou|t High
hc_sd_dat3 D3 42 3.3 Out Low
hc_sd_cmd T1 47 3.3 In High
hc_sd_clk M5 43 3.3 Out
SPI
hc_spi_miso]  N13 152 3.3 Ot High  THDB PROTO_lO28 {J5)
hc_spi_mosi N6 146 3.3 In|  High  THDB PROTO_lO27 (3B)
hc_spi_sck R18 140 3.3 Out THDB PROTO_1025 (35)-
hc_spi_slvsel R17 138 3.3 Out Low THDB PROTO_1@23 - J5)
Uartl
hc_uart_txd N8 53 3.3 Ou Low THDB PROTO_1029 B)
hc_uart_rxd N10 59 3.3 In Low THDB PROTO 1031 (#3)
Uart2
hc_uart2_txd L2 89 3.3 Ou Low THDB PROTO _1016 (216)
hc_uart?2_rxd L1 91 3.3 In Low THDB PROTO_1017 (25b)
I12C master
hc_id_i2cscl F3 34 3.3 Bidir
hc_id_i2cdat El 33 3.3 Bidir  High
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