K ’ l STMicroelectronics

life.augmented

Date:
Author:

X-CUBE PRODUCT USER MANUAL

Porting X-CUBE-BLE1, Expansion for
STM32Cube Across Different STM32
Series

User Manual

Table of Contents

1 References 3

2 Acronyms and Abbreviations 4
3 Introduction 5

4 Whatis STM32Cube? 6

4.1 STM32Cube Overview
4.2 STM32Cube Architecture

5 Porting X-CUBE-BLE1 to different STM32 series

5.1 Preliminary Steps

5.2 Replace the startup file

5.3 Replace the STM32 Nucleo board BSP driver

5.4 Replace the device CMSIS driver

5.5 Replace the device Hardware Abstraction Layer (HAL) files
5.6 Update the project settings and rebuild

11
12
14
15
18

Page 2

User Manual

1 References

[1] TBD

Page 3

User Manual

2 Acronyms and Abbreviations

Acronym Description

Page 4

User Manual

3 Introduction

This document describes how to migrate the X-CUBE-BLE1 expansion software to different STM32
series. The instructions provided here refer to the specific example of porting the code to a
NUCLEO-L152RE board (based on STM32L152RE) using STM32Cube with IAR EWARM. Porting
to different series of STM32 MCUs is very similar and only slight changes would be required.

Page 5

User Manual

4 What is STM32Cube?

4.1 STM32Cube Overview

STMCube™ initiative was originated by STMicroelectronics to ease developers’ life by reducing
development efforts, time and cost. STM32Cube covers STM32 portfolio.

STM32Cube Version 1.x includes:

e The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards.

e A comprehensive embedded software platform, delivered per series (such as STM32CubeF4
for STM32F4 series)
e The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring

maximized portability across STM32 portfolio

e A consistent set of middleware components such as RTOS, USB, TCP/IP, Graphics
¢ All embedded software utilities coming with a full set of examples.

Information about STM32Cube are available on st.com at:
http://www.st.com/stm32cube

4.2 STM32Cube Architecture

The STM32Cube firmware solution is built around three independent levels that can easily interact
with each other’s as described in the figure below:

Page 6

http://www.st.com/stm32cube

User Manual

Lewel 2

Lewel 1

Lewel O

Figure 1 Firmware Architecture

Level O: This level is divided into three sub-layers:

= Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, 10 expander, Touchscreen, SRAM
driver, LCD drivers. etc...) and composed of two parts:

o Component: is the driver relative to the external device on the board and not related
to the STM32, the component driver provide specific APIs to the BSP driver external
components and could be portable on any other board.

o BSP driver: it permits to link the component driver to a specific board and provides a
set of friendly used APIs. The APIs naming rule is BSP_FUNCT_Action(): ex.
BSP_LED_Init(),BSP_LED_On()

It's based on modular architecture allowing to port it easily on any hardware by just

implementing the low level routines.

= Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries and
stacks). It provides a generic, multi instance and functionalities oriented APIs which permit

Page 7

User Manual

to offload the user application implementation by providing ready to use process. As
example, for the communication peripherals (12S, UART...) it provides APIs allowing to
initialize and configure the peripheral, manage data transfer based on polling, interrupt or
DMA process, and manage communication errors that may raise during communication.
The HAL Drivers APIs are split in two categories, generic APIs which provides common and
generic functions to all the STM32 series and extension APIs which provides specific and
customized functions for a specific family or a specific part number.

= Basic peripheral usage examples: this layer encloses the examples build over the STM32
peripheral using only the HAL and BSP resources.

Level 1: This level is divided into two sub-layers:

= Middleware components: set of Libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interactions between the
components of this layer is done directly by calling the feature APIs while the vertical
interaction with the low level drivers is done through specific callbacks and static macros
implemented in the library system call interface. As example, the FatFs implements the disk
I/O driver to access microSD drive or the USB Mass Storage Class.

= Examples based on the Middleware components: each Middleware component comes
with one or more examples (called also Applications) showing how to use it. Integration
examples that use several Middleware components are provided as well.

Level 2: This level is composed of a single layer which is global real-time and graphical
demonstration based on the Middleware service layer, the low level abstraction layer and the basic
peripheral usage applications for board based functionalities.

Page 8

User Manual

5 Porting X-CUBE-BLE1 to different STM32 series

5.1 Preliminary Steps

Download the X-CUBE-BLE1 software package and extract its content. From now on, we’ll refer to
the base directory of the X-CUBE-BLE1 package as “$BLE1_DIR".

We'll provide instructions to port the software to different STM32 series. In this specific example,
we’'ll use another STM32 Nucleo board as the target for our porting. In particular we’ll migrate the
code to a NUCLEO-L152RE board (based on STM32L152RE) using IAR EWARM.

Since we’re interested in STM32L1, search for STM32CubelL1 package on www.st.com and unzip it
to a local directory. From now on we’ll refer to the base directory of STM32CubelLl as
“$CUBE_DIR".

Start from the SensorDemo project located in

“$BLE1_DIR\Projects\Multi\Applications\SensorDemo” for NUCLEO-F401RE and port it to
NUCLEO-L152RE.

Copy the whole

“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\EWARM\STM32F401RE-Nucleo” directory
into “$BLE1_DIR\Projects\Multi\Applications\SensorDemo\EWARM” and within Explorer rename it
to STM32L152RE-Nucleo.

Now go to the

“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\EWARM\STM32L152RE-Nucleo” directory
and open the “SensorDemoProject.eww” file using IAR.

As a first step, within IAR select “Project -> Options...” and from the "Target" tab, change the
"device" in the "Processor variant" section. In our case, we're going to migrate to the
STM32L152RE chip. From the device selector, choose "ST STM32L152xE".

Page 9

http://www.st.com/

Categony;

Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

Simulator

Angel

CMSIS DAP

GDE Server

IAR. ROM-monitor

T4et/TTAGjet

Jinkf1-Trace

TI Stellaris

Macraigor

FE micro

RDI

STALIMK

Third-Party Driver

XDS100/200/1CDI

User Manual

Target | Qutput | Library Configuration | Library Options | MI

Processor variant
oo
I © Devics ST STMI2L1EXE
Endian mode FFU
® e
Big
BE32
@ BE8

Faraday

Freescale

Fujitsu

Hilscher

Holtek

Infineon

Intel

Marvell

Maxim

Micronas
Microsemi
MetSilicon
MordicSemi
MNuvoton

MNXP

OKI
ONSemiconductor
Renesas
Samsung
SiliconLaboratories
Socle

Sonix

Spansion

ST
Texaslnstruments
Toshiba

Kilinx

STM32F215
STM32F217
STM22F200
STM32F330
STM32F370
STM32F401
STM32F405
STM32F407
STM32F415
STM32F417
STM32F427
STM32F429
STM32F437
STM32F439
STM22L 0
STM321100
STM221151
STM321152
STM321162
STM32W108
STRT10
STR730
STR750
STRI10

5T 5TM32L152:6
ST STM32L152x6A
ST S5TM321152:8
ST STM32L152x8A
5T STM32L152%B
ST STM32L152xBA
ST STM321152xC
ST STM32L152xCA
5T STM321152xD

Verify the debugger settings and check that ST-Link is being used.

ST STM32L152xE

Page 10

User Manual

Categany: Factory Settings

General Options

Runtime Checking
CfC++ Compiler
Assembler Setup | Download | Images | Extra Options I Multicore I F‘Iugins|
Qutput Converter
Custom Build Driver Run to

Build Actions m —
Linker
Setcp macros
Simulator Use macro file{s)
ave | [8
CMSIS DAP
GDE Server | | |—|
IAR. ROM-monitor =
Ijet{ITAGjet
#Isng;:;ace Ovemide default

Macraigor [STOOLKIT_DIRS\CONFIG\debugger ST\STM32L 15E ddf | [..|
PE micra —

ROI

ST-LIMK
Third-Party Driver
¥D5100/200,1CD1

Device description file

Press "OK" to accept the changes.

Now we are going to replace the specific library and product files.

5.2 Replace the startup file

Now we have to replace the "startup_stm32f401xe.s" startup file for STM32F401RE with one
suitable for STM32L152RE. We can find an appropriate startup file in the STM32CubeL1 package.

Page 11

User Manual

File Edit View Project Tools Window Help

=-=-1E] | |
Workspace x
| SThM3IZF 4w _MUCLED -
Files En ER

—E [(1Doc

& (1 Drivers x
—E (1 Middlewares x
= (] Output

Copy the
“$CUBE_DIR\Projects\STM32L152RE-Nucleo\Examples\SPI\SPI_FullDuplex_ComIT\
\EWARMA\startup_stm321152xe.s” file into this directory:
“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\EWARM\STM32F401RE-Nucleo”

To add the newly copied file to the project, within IAR right click on the "EWARM" directory and
select "Add -> Add Files..." and select the

“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\EWARM\STM32F401RE-Nucleo\
\startup_stm32I152xe.s" file.

Now, within IAR, remove the old startup file for STM32F4 by right clicking on
"startup_stm32f401xe.s" and selecting "Remove".

5.3 Replace the STM32 Nucleo board BSP driver

Replace the "stm32f4xx_nucleo.c" BSP driver file for NUCLEO-F401RE with the one specific for
NUCLEO-L152RE.

Copy the "$CUBE_DIR\Drivers\BSP\STM32L1xx_Nucleo" directory to
“$BLE1_DIR\Drivers\BSP”.

Now, as shown in the picture, within IAR, right click on the "STM32F4xx_NUCLEQO" folder name
and select "Rename...". Choose "STM32L1xx_ NUCLEQ" as the new name.

Page 12

User Manual

% Sersordemoproect - ERETSE T WaRE D™

File Edit View Project Tools Window Help

s—=1- 1] | | -
Workspace x
[STM32F4>::4_NUELED -
Files g B
B (1 SensorDemoProject - STM32F Do NU_.. v
= (1 Application
= (] EVWARM
fsh startup_stm3zZ1162xe.s *
L@ (] User B
= (1 0oc
B (1 Drivers
= [1BsF
]S Thi32Fdoc NUCLED —
L@\ [x-MUCLEDHDBI4AT Optiens..
HH (1 ChSIS Make
L@ (1 STMIZFdw_HAL_Drivver o
= (O Middlewares Compile
CISTh3Z_BlueMRG Rebuild Al
= (] Output Clean
Stop Build
Add 3
Remowve
| Rename... |
Version Control Systern 3

Right click on the newly renamed "STM32L1xx_NUCLEOQO" folder and select "Add -> Add Files..."
and add the "stm32l1xx_nucleo.c" file (located in

"$BLE1_DIR\Drivers\BSP\STM32L1xx_Nucleo") to the project.

Remove the old driver file for NUCLEO-F401RE by right clicking on "stm32f4xx_nucleo.c" and
selecting "Remove".

Now copy the "$BLE1_DIR\Drivers\BSP\STM32F4xx-Nucleo\stm32f4xx_nucleo_bluenrg.h" file into
"$BLE1_DIR\Drivers\STM32L1xx_Nucleo" and within Explorer rename the newly copied file to
"stm32|1xx_nucleo_bluenrg.h". Now edit the new file and replace the following lines:

#include "stm32f4xx hal.h"
#include "stm32f4xx nucleo.h"
with:

#include "stm3211xx hal.h"
#include "stm3211xx nucleo.h"

Page 13

User Manual

NOTE: The “stm32l1xx_nucleo_bluenrg.h” file allows you to configure the driver for the BlueNRG
chip according to your HW setup. In this case we’re migrating from STM32F401RE to
STM32L152RE and there are no changes required: in both cases we're using an STM32 Nucleo
board and the pin configuration is identical for both microcontrollers. When migrating across other
STMS32 series, however, you may need to update the configuration of the SPI alternate function and
the EXTI line for the BlueNRG IRQ.

In particular, you may need to update the definition of “BNRG_SPI_EXTI _IRQn” and
“BNRG_SPI_EXTI_IRQHandler” according to the documentation of your specific STM32 chip. To
get an idea of the changes that may be needed across STM32 series, please compare the contents
of “$BLE1_DIR\Drivers\BSP\STM32F4xx-Nucleo\stm32f4xx_nucleo_bluenrg.h” and
“$BLE1_DIR\Drivers\BSP\STM32L0xx-Nucleo\stm32l0xx_nucleo_bluenrg.h”.

For example, with the STM32L0xx you have to use GPIO_AF0_SPI1 as the alternate function for
SPI1 while with STM32F4xx you have to use GPIO_AF5_ SPI1.

As for the EXTI line handling, STM32L0xx and STM32F4xx are different because in the first case,
EXTI lines 0 and 1 are handled by a single handler, while in the second case, each line is handled
individually.

If you need to port your software on a custom board based on STM32, of course, you will have to
change the pin configuration according to your schematics.

5.4 Replace the device CMSIS driver

Now we have to replace the device CMSIS driver for STM32F4 with one specific for STM32L1.

Page 14

User Manual

& SensorDemoProject - IAR Embedded Workbench IDE 0 N
File Edit View Project Toecls Window Help

=A==y | |

Workspace x

[STHM32F4mw MUCLED -
Files S

=2 (J SensorDemoProject - STM32F Do NU_..
—= (1 Application
L 51 I EWARKM

fsm startup_stm32f401xe.s *
Calser *
[J1Doc
—=1 (] Dirivers
- 2I[1BSP

|—E| [STh32F 4o MHIUCLED

| stm 32 _nucleo.c *

L@ [x-MUCLED-IDBD 44T *
2101 CMSIS

system_stm32fd o
CASTr3E2F o HAL_Driver *
—H [hiddlewares x
[Qutput

Copy the whole

"$CUBE_DIR\Drivers\CMSIS\Device\ST\STM32L1xx" directory to
"$BLE1_DIR\Drivers\CMSIS\Device\ST".

From this directory:
“$CUBE_DIR\Projects\STM32L152RE-Nucleo\Examples\SPI\SPI_FullDuplex_ComIT\Src”
copy file "system_stm32l1xx.c" to:
“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Src”

To add the newly copied file to the project, within IAR right click on the "CMSIS" directory and
select "Add -> Add Files..." and add the "system_stm32l1xx.c" file (located in

"$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Src") to the project.

Now, within IAR, remove the old CMSIS driver file for STM32F4 by right clicking on
"system_stm32f4xx.c" and selecting "Remove".

5.5 Replace the device Hardware Abstraction Layer (HAL) files

Replace the device Hardware Abstraction Layer (HAL) files for STM32F4 with the ones for
STM32L1.

Page 15

User Manual

Copy the "$CUBE_DIR\Drivers\STM32L1xx_HAL_Driver" directory to:
“$BLE1 DIR\Drivers”

Now, as shown in the picture, within 1AR, right click on the "STM32F4xx_HAL _Driver" folder name
and select "Rename...". Choose "STM32L1xx_HAL_Driver" as the new name.

U& SensorDemoProject - IAR Embedded Workbench IDE [
File Edit View Project Tools Window Help

D @ = | | |
Workspace x
[STH32Fdus MUCLED -
Files fno B

B SensorDemoProject - STM32F 40 NU . v
2 (1 Application

L5 [EWARM
A startup_stm32fdlixe s x
C1lUszer .
[JDoc
=1 (1 Dirivers
L B [1BSP
|—|..:-| CASTMIZ2F 4w MUCLED
| stm32fdes_nucleo.c x
CAx-MNUCLEOHDBO4AT *
L5 C1CMSIS
system_stm32fdac x

SThMIZF 4w _HAL Driver

stm32fdae_hal c x
stm32fdo_hal_adc.c x
stm32fdoc_hal_adc_ex.c x
stm32fdoc_hal_corex.c x
stm32fda_hal_dmac x
stm32ida_hal_flash.c x
stm32ida_hal_flash_exc X

EEELEE

Within IAR, right click on the newly renamed "STM32L1xx_HAL_Driver" folder and select "Add ->
Add Files..." and add all the files located in "$BLE1_DIR\Drivers\STM32L1xx_HAL_Driver\Src" to
the project.

NOTE: make sure to include all the relevant files ending with "_ex.c". It is important that you add
the "stm32l1xx_hal_spi_ex.c" which implements the HAL_SPI_Init() function needed by the
BlueNRG driver.

Now, within IAR, remove the old HAL files for STM32F4 by right clicking on the files with the
"stm32f4xx_hal" prefix and selecting "Remove".

Copy file “$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Src\cube_hal_f4.c” into
“$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Src\cube_hal_11.c”.

To add the newly copied file to the project, within IAR right click on the "User" directory and select
"Add -> Add Files..." and add the "cube_hal_l1.c" file to the project.

Within 1AR, right click on "cube_hal_f4.c" and select "Remove" to remove it from the project.

Page 16

User Manual

Now open "cube_hal_I1.c" and update the "SystemClock_Config" function using a one suitable for
STM32L1.

For example, you can copy the "SystemClock_ Config" function that you can find in the
“$CUBE_DIR\Projects\

\STM32L152RE-Nucleo\Examples\UART\UART_TwoBoards_ComIT\Src\main.c” file.

Edit "$BLE1_DIR\Projects\Multi\Applications\SensorDemo\inc\cube_hal.h" file and add a section
like the following for L1:

#ifdef USE_STM32L1XX_NUCLEO
#include "stm3211xx hal.h"
#include "stm3211xx nucleo.h"
#include "stm3211xx nucleo bluenrg.h"
#include "stm3211lxx hal conf.h"
/* The following defines are needed because the BSP for Nucleo L1
* uses different names compared to the BSP for Nucleo F4 and Nucleo LO
*/
#define BUTTON KEY BUTTON USER
#define KEY BUTTON PIN USER BUTTON PIN
#endif

Copy file "$CUBE_DIR\Projects\

\STM32L152RE-Nucleo\Examples\SPI\SPI_FullDuplex_ComIT\Inc\stm32I1xx_hal_conf.h" into
"$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Inc" directory.

Now edit the newly copied

"$BLE1_DIR\Projects\Multi\Applications\SensorDemo\Inc\stm32I1xx_hal_conf.h" file and make
sure that at the top of the file you decomment the same defines that were defined in the
"stm32f4xx_hal_conf.h", i.e.:

#define HAL MODULE ENABLED
#define HAL ADC_MODULE ENABLED
#define HAL DMA MODULE ENABLED
#define HAL FLASH MODULE ENABLED
#define HAL GPIO MODULE ENABLED
#define HAL PWR MODULE ENABLED
#define HAL RCC_MODULE ENABLED
#define HAL SPI_ MODULE ENABLED

Page 17

User Manual

#define HAL CORTEX MODULE ENABLED

Edit “$BLE1_DIR\Drivers\BSP\X-NUCLEO-IDB04A1\stm32_bluenrg_ble.h” file and add a section
like the following for STM32L1.:

#ifdef USE STM32L1XX NUCLEO
#include "stm3211lxx hal.h"
#include "stm3211xx nucleo.h"
#include "stm3211xx nucleo bluenrg.h"
#define SYSCLK FREQ 32000000

#endif

NOTE: SYSCLK_FREQ should be set accordingly to the frequency set by the
SystemClock_Config() function described earlier.

5.6 Update the project settings and rebuild

Within IAR select “Project -> Options...” and from the "C/C++ Compiler" category, select the
"Preprocessor" tab.

In the "Additional include directories" section, change all occurrences of F4 to L1, in order to
correctly include the L1 directories created in the previous step.

NOTE: there is a slight difference in "$BLE1_DIR\Drivers\BSP" directory between "STM32F4xx-
Nucleo" and "STM32L1xx_Nucleo" because in one case there is a hyphen and in the other an
underscore.

In the "Defined symbols" section, change "STM32F401xE" to "STM32L152xE" and
"USE STM32F4XX_NUCLEO" to "USE_STM32L1XX_ NUCLEO".

Page 18

User Manual

Crim s st

Cateqgory: Factory Settings

General Options kfulti-file Cornpilaticon
Runtime Checking [] Digeard Uruzed Publics

CfC++ Compiler o
Assembler | Language 1 I Language 2 I Code I Optimizations | Qutput | List | flia | &
Output Converter
Custom Build
Build Actions
Linker lgnore standard include directories
Debugger

Simulator

Angel

CMSIS DAP

GDE Server

TAR ROM-monitor

iet/ITAG et Preinclude file:

JLink/1-Trace

TI Stellaris

Macraigor Defined symbols: jone per line)

PE micra STM22L152«E Preprocessor output to file

RDI ISE STMIZL 1 0 [] Preserve commerts

L] = LURIVER - " N

ST.—LINK . ENAELE_EF‘I_FIX [] Generate Hine directives

Third-Party Driver

%05 100,/200/1C01

Additional include directories: {one per ling)

0k I ’ Cancel

Press "OK" to accept the changes.

Save the IAR EWARM project and then rebuild all by selecting "Project -> Rebuild All* from IAR
menu.

There you go with your SensorDemo for NUCLEO-L152RE...

Page 19

