]
I m [ECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Design, Development and Integration
of a Wireless Communication

Unit in the Concept Car
Master Thesis

University of Kaiserslautern
Department of EIT and Computer Science
Embedded Systems Group

Omair Rafique

January 2013

Supervisory Committee:

Professor Dr. Klaus Schneider (Fachbereich Informatik)
Professor Dr. Dominik Stoffel (Fachbereich EIT)

Erklarung

Hiermit erklédre ich, dass ich die vorliegende Arbeit selbststindig und ohne
fremde Hilfe verfasst, keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt und die aus anderen Quellen entnommenen Stellen als solche
gekennzeichnet habe.

Kaiserslautern, den 14.01.2013

Omair Rafique

i

Danksagung

An dieser Stelle mochte ich allen danken, die es mir ermoglicht haben diese
Arbeit zu verfassen. Dazu zdhlen vor allem meine Freunde und meine Kol-
legen in der Arbeitsgruppe Eingebettete Systeme. Des Weiteren danke ich
besonderes meinem tutor Manuel Gesell fiir die geleistete Arbeit. Meinem
Betreuer Prof. Dr. Schneider danke ich vorallem fiir das angenehme Arbeit-
sklima und die gute Betreuung wahrend der Arbeit. Ausserdem, danke ich
meinem Betreuer Prof. Dr. Stoffel vorallem fiir die gute Betreuung wéhrend
der Arbeit.

il

iv

Zusammenfassung

Das Concept Car ist ein experimentelles Eingebettetes System mit dem Ziel,
moderne und zukiinftige Funktionalitdten im Automobilbereich zu testen
und iiberpriifen. Es ist eine Forschungsplattform, die zur Zeit nur durch eine
Funkfernsteuerung (Transmitter) gesteuert und angetrieben wird. Dariiber
hinaus gibt es zwei Wege um an Informationen iiber die Peripherie des Au-
tos (Energie-Status, Fahrzeuggeschwindigkeit, ECU-Status etc.) zu kommen.
Die erste Moglichkeit ist der Online-Modus: Das Auto ist mit einem Com-
puter mittels CAN Viewer Hardware verbunden, somit kénnen die Informa-
tionen dort iiberwacht werden. Die zweite Moglichkeit ist der Offline-Modus:
Die Daten werden auf einer SD-Karte gespeichert, damit die Daten spéter
ohne direkte Verbindung zum Concept Car (offline) iiberwacht werden kon-
nen. Die Idee dieser Arbeit ist nun, den Status des Fahrzeugs (drahtlos)
zu iiberwachen, wihrend es angetrieben wird, und das Auto ohne Einsatz
der Funkfernsteuerung zu betreiben, dabei werden Eigenschaften der beiden
Modi kombiniert. Da Smartphones heutzutage sehr verbreitet sind und eine
Vielfalt von speziellen Hardware-Features (wie Beschleunigungsmesser, Blue-
tooth, NFC, etc.) beherbergen, ist die Idee, diese speziellen Funktionen des
Smartphones zu benutzen um das Concept Car zu steuern und iiberwachen.

vi

Abstract

The Concept Car is an experimental embedded system with the objective of
testing and verifying modern future car features by deploying different classes
of applications. It is a research platform that by the time, has only been
controlled and driven by a radio controlled transmitter system. Additionally,
there are two ways of getting the information about the car internals (power
status, car speed, ECU’s status etc.). The first option is the Online Mode:
The car is connected to the CAN- Viewer hardware by means of wire, which
allows to monitor the information on the PC or laptop. The second option
is the Offline mode: The data is stored on an SD-Card, which allows to
monitor the stored data offline. The idea now is to lively monitor the status
(wirelessly) of the car internals on the fly while it is being driven, and to drive
the car without using the battery operated radio transmitter system, thereby
combining features of both the modes. Since smartphones are immensely
used these days and can come up with variety of special hardware features
(like accelerometers, Bluetooth, NFC etc.), the idea is to use these special
hardware (software controlled) features of the smartphone to monitor and
control the Concept Car mainly, by interacting with the ECUs.

Vil

viil

Contents

1 Introduction 3
1.1 The Context 4
1.2 The Problem, 8

1.2.1 Problem 1: Monitoring the Car Internals 9
1.2.2 Problem 2: Driving the Car Independent of the Radio

Transmitter System 9

1.3 The Solution 9

1.4 Stateofthe Art 11

1.5 The Structure 12

2 Design 15

2.1 The Basic Designo o 16
2.1.1 From Wireless Communicator to Wireless ECU 16
2.1.2 From User-End Device to Smartphone 17
2.1.3 The Basic Design in a Nutshell 18

2.2 Availability and Selection 18
2.2.1 The Communication Standard 18
2.2.2 The Hardware Tools 21
2.2.3 The Software Tools 24

3 Development 27
3.1 Hardware Development 28

3.1.1 Developing the Wireless ECU 29

X

CONTENTS

3.1.2 Developing the Bluetooth Board
3.2 Getting Started with the Bluetooth Module
3.2.1 Configuring the Module
3.2.2 RN-42 Loopback Test
3.3 Software Development
3.3.1 Setting-Up the Communication Protocol
3.3.2 Discovering the Software Library

Integration

4.1 Integrating the Developed Components

4.2 The Test Application
4.2.1 Analyzing the Data Package for the Test App
4.2.2 Analyzing the Algorithm at the SmartPhone Side . . .
4.2.3 Analyzing the Algorithm at the Wireless ECU Side . .
4.2.4 The Test App Results

Deployment and Delivery

5.1 Implementing the Solution

5.2 The Startup Interface and the Connection Mechanism

5.3 Analyzing the Initialization/Acknowledgment Package

5.4 The Concept Car’s Smart Monitor
5.4.1 The Smart Monitor’s Design
5.4.2 Analyzing the Implementation at the Smartphone Side

61
64

5.4.3 Analyzing the Implementation at the Wireless ECU Side 70

544 Results. oo
5.5 The Concept Car’s Smart Controller
5.5.1 The Smart Controller’s Design
5.5.2 Analyzing the Implementation at the Smartphone Side

74

80

5.5.3 Analyzing the Implementation at the Wireless ECU Side 83

5.5.4 Results.

5.6 Conclusion

86

CONTENTS

6 Summary and Future Recommendations
6.1 Summary e e

6.2 Future Recommendations

xi

xii

CONTENTS

List of Figures

1.1 Basic Building Block Diagram of the Concept Car 4
1.2 The Concept Car’s Power Train 6
1.3 The Emergency ECU Transceiver Module 7
1.4 The Concept Car’s Driving Mechanism 8
1.5 Theldea o 10
2.1 A Basic Example for the Wireless ECU 17
3.1 The Wireless ECU vs the Bluetooth Board 28
3.2 Layout Design for the Wireless ECU 29
3.3 Schematic Design for the Wireless ECU 30
3.4 Layout Design for the Bluetooth Board 31
3.5 Schematic Design for the Bluetooth Board 32
3.6 Connection Diagram of MAX3232 33
3.7 Configuring the RN-42 Module 36
3.8 Loopback Test for the RN-42 Module 37
3.9 Loopback Test Results 37
3.10 The Standard Data Package 38
3.11 The Initialization/Acknowledgment Package 40
3.12 The Wireless ECU and the Bluetooth Board 43
4.1 The Test App« . . o 47
4.2 Setting-up the Test App 47

xiv

4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.9
5.6
5.7
2.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

LIST OF FIGURES

The Test App Data Frames 48
The Smartphone Test App Flow Diagram 49
The Wireless ECU Test App Flow Diagram 51
The Test App Results 52
The Startup Interface 55
The Manual Connection Mechanism 56
The Smart Key b7
The Initialization/Acknowledgment Package 58
The Online Monitoring Mode 59
SD Card Log Data Format 60
The Offline Mode Logged File 60
The Smart Monitor’s Interface 61
The Smart Monitor’s Filter 62
The Filter’'s Newly Added Messages 63
The Smart Monitor’s Flow Diagram at the Smartphone Side . 64
The Smart Monitor’s Flow Diagram at the ECU Side 70
The Smart Monitor’s Received Messages 74
The Smart Monitor’s Logged File 75
The Smart Controller’s Modes 76
The Smart Controller’s Sensor Mode 78
The Smart Controller’s Manual Mode 79
The Smart Controller’s Emergency Mode 79
The Smart Controller’s Flow Diagram at the Smartphone Side 80
The Smart Controller’s Flow Diagram at the ECU Side 83
The Sensor Mode Results 86

The Emergency Mode Results 87

List of Tables

2.1 Common Characteristics of Bluetooth and WiFi
2.2 Bluetooth Modules Classification

LIST OF TABLES

Chapter 1

Introduction

'Exploring the Idea’

This chapter explains the context by introducing the basis of this topic i.e.
the 'Concept Car'. It defines the basic functionality and architecture of the

Concept Car, defines the area of problem and finally explores the basic idea

of solving it. Furthermore, the structure of the thesis is outlined.

4 CHAPTER 1. INTRODUCTION

1.1 The Context

Before going deep into the specific area of problem, let’s first discuss the
platform that forms the basis of the thesis, namely the Concept Car.

The Concept Car is an experimental embedded system with the objective of
testing and verifying modern future car features by deploying different classes
of applications. The Concept Car is a research platform remotely operated
via a standard 2-channel (throttle and steering) 27MHz radio transmitter
system. It incorporates a set of sensors (wheel speed, gyro/accelerometer,
distance etc.) for interacting with the environment and surroundings. It uses
an air-cooled sensorless brushless electrical motor for throttle, and a servo
motor for steering. Depending on the ground conditions, it is capable of
driving at a speed up to 50 km/h.

The basic architecture of the Concept Car, as depicted in Figure 1.1, is
comprised of three processing units: input processing, data processing and
output processing.

————— 1
! Usar Conlrols |

| Input Frocessng Diata Pracessng Qutput Frocessing Actuators
|, !
|\ theoitle |
|
| " | Sansrboard
cadie | g
: siwwing | Thrattle
r Senaors :
@ I Sa board
. | | nsorboar
| ™1 Searing
1
|

@

Actorbaard —]

®

Sensorboard
Digtance
|
&+
|
[y | Sanswrboard
@ | > netial [|
i
oar

http://conceptcar.iese.de

Figure 1.1: Basic Building Block Diagram of the Concept Car

The input processing unit is comprised of all the sensor boards, where
each board forms a separate electronic control unit (ECU). Each sensor board

1.1. THE CONTEXT ot

strictly interacts with the appropriate sensor components (as depicted in the
User Controls part in Figure 1.1), receives the sensory signal, processes it,
and places it to the centralized CAN bus (if required). For instance, Sensor-
Board throttle ECU decodes the throttle PWM from the radio receiver and
the wheel speed sensors from the front left and rear right wheels. Based on the
received throttle signal, it then creates the corresponding acceleration signal
(CANID_THROTTLE), and finally places it on the CAN bus. Each sensor
board ECU is implemented on an 8 bit AT90CAN128 [1] micro-controller.
The data processing unit is meant for performing complex mathematical
computations. For this purpose, it uses an AT9ISAMT7A2 |2] board that
incorporates ARM7TDMI embedded processor with a 32-bit RISC architec-
ture. This board is provided with several embedded peripherals like CAN
interfaces, SPI bus, PWM modules, Timer/Counters etc. The output pro-
cessing unit is mainly comprised of a single ECU namely ActorBoard. This
ECU is held responsible for creating the PWM signals to drive the actua-
tors (dc motor and servo). It receives the CAN messages and generates the
respective PWM signals for controlling the actuators.

The Concept Car features two independent power supply trains (see Figure
1.2):

e 5S1P LiPo, 5000mAh, 18.5V: for the "heavy-load" electric system (ac-
tuators of the car)

e 3S1P LiPo, 5000mAh, 11.1V: for the ECUs interfaced with the CAN
bus

The heavy-load electric system includes an engine controller, a radio receiver
and a steering servo; is controlled by the 18,5V LiPo battery. Since the
maximum voltage that the radio receiver and the steering servo can upheld
is 6V, the idea is to use a step-down voltage regulator that steps down the
voltage to 6V. All the ECUs (including the ARM board) are supplied with
power using a separate 11.1V LiPo battery. Every ECU internally incorpo-
rates a voltage regulator for stepping down this voltage to 5V (discussed in
detail in the design phase). Since two different batteries are incorporated
into the design, it uses the Galvanic Isolator for isolating functional sections
of electrical systems to prevent current flow.

6 CHAPTER 1. INTRODUCTION

@ Supply lines for Engine Control
=== Regulated supply

= Galvanic Isolation between nets
== Supply lines for ECU's

Engine BEC
Battery — 1 Engine —
581 LiPo _ —y— control S Engine 5V/20 W I
Steering Radio
Servo Recefver

Engine Supply
Power Net

J
N N

Electronics
Supply Power
Net

ECU + Galvanic

Battery ———— ARM7 ATI0CAN Isoiation

351 LiPo T Board Boards

|

Figure 1.2: The Concept Car’s Power Train

This galvanic isolation has been implemented by incorporating a separate
board namely EmergencyBoard that mainly serves two purposes:

1. Isolates the actuators from the other boards

2. Provides the user a feature of invoking an emergency stop

This board uses an additional transceiver module from SVS [3], with the re-
ceiver (SHR-7) being placed on the board. The SHR-7 sender remote signal
can reach up to 1.5 km. Pushing any of the three buttons on the emergency
remote control sets the car in a stop mode (see Figure 1.3). Secondly it
isolates the actuators from all the other ECU’s, thereby removing any pos-
sibility of damaging the other ECUs due to any power consumption issue
related to the motor and servo. This ECU has been implemented on an 8
bit ATmega88 [4] microcontroller. As depicted in Figure 1.1, all the ECUs
(except EmergencyBoard) communicate with each other via centralized CAN
bus, with the maximum achievable data transfer rate of 1 Mbps.

1.1. THE CONTEXT 7

http://www.svs-funk.com/

Figure 1.3: The Emergency ECU Transceiver Module

The Driving Mechanism

After getting a firm idea about the architectural view of the Concept Car, it
is the right time to discuss how different ECUs are involved in steering and
driving the Concept Car. As discussed, a standard 2-channel 27TMHz radio
transmitter system is responsible for generating throttle and steering signals.
This radio transmitter generates the pulse width modulation (PWM) [5] sig-
nals for each channel, with 20ms cycle length and 1ms to 2ms duty cycle,
where 1.5ms duty cycle represents the idle position. As shown in Figure 1.4,
these signals are fed in to the SensorBoard steering and SensorBoard throt-
tle via the EmergencyBoard (1), where the PWM signals are calculated and
normalized. This normalized data is then finally placed on the CAN interface
(2). In case if complex mathematical computations are required, the ARM-
Board receives the normalized data, performs the desired calculations, and
places the processed data on the CAN bus with a different id. The selector
switch on the ActorBoard chooses the source of data, either receiving pro-
cessed data from the ARMBoard or normalized data from the SensorBoards
(3). Independent of the source, the ActorBoard, based on these signals, fi-
nally produces the desired PWM signals (4), and passes these signals to the
actuators (servo motor and dc motor) via the EmergencyBoard (5).

8 CHAPTER 1. INTRODUCTION

SensorBoard Inertial DistanceBoard ECU
ARMBoard ECU

b
ﬁ r ﬁ
| CAN Bus I

S I | ,

SensorBoard Throttle SensorBoard Steering
ActorBoard ECU ECU ECU

Servo and DC

EmergencyBoard ECU :> Motor

1 Throttle Steering

Radio Remote Receiver

Figure 1.4: The Concept Car’s Driving Mechanism

It is important to comprehend the services offered by the EmergencyBoard.
Having no access to the CAN bus, this board only accepts the input from
the radio receiver and the ActorBoard, and bypasses it to the SensorBoards
and the actuators (servo and DC motor) respectively. The EmergencyBoard
only bypasses the PWM signals as provided by the radio remote receiver and
the ActorBoard, if there is no emergency signal being sent from the SVS
transceiver module, thereby bringing in the feature of emergency stop and
the galvanic isolation (isolating the actuators from the rest of the ECUs)

1.2 The Problem

Since there are two different problems to consider, this section is split in two
different sub-sections: the idea of monitoring the car internals lively, on the
fly, while the car is being driven, and making the car controllable with an
alternative to radio transmitter system.

1.3. THE SOLUTION 9

1.2.1 Problem 1: Monitoring the Car Internals

As discussed in the previous section, all the ECU’s interact with each other
via CAN bus (except EmergencyBoard). For testing the deployed applica-
tions it is extremely important to have access over the CAN bus, to analyze
and monitor the messages sent by the ECUs. This eventually corresponds to
monitoring the internals of the car, as each message corresponds to a certain
parameter for example: wheel speed, steering data, throttle data, battery
status etc. By the time, we are provided with two different options. The
first option is monitoring in the Online Mode. This corresponds to connect-
ing the CAN bus of the car to a PC or laptop, by using the CAN viewer
hardware via USB interface (it is discussed in detail in Section 5.4). This
approach is only applicable and useful if the car stays static. The second
option is monitoring in the Offline Mode. This approach relies on logging
the values on the SD card, and analyzing this logged data later offline. The
problem arises when it comes to lively monitoring the CAN bus (car inter-
nals) on the fly, while the car is being driven. Thereby, the solution to lively
monitoring the car internals is desired.

1.2.2 Problem 2: Driving the Car Independent of the
Radio Transmitter System

By the time, the only way of driving the car is to use the standard 2-channel
(throttle and steering) 27MHz radio transmitter system. This radio system is
battery operated (12V) and is capable of transmitting signals up to a distance
of 1.5 Km. Logically speaking, we don’t need the car to move that far when it
comes to driving over shorter range of distances for testing purposes, inside a
room or a lab. Secondly, it uses the peripherals of the Sensorboard ECUs for
measuring the pulses for throttle and steering. This affects the use of energy
and CPU utilization overhead for the Sensorboards. Thereby, a solution
capable of replacing the radio transmitter system is desired.

1.3 The Solution

It is quite obvious from the previous sections that the basic solution to both
the problems lies in the idea of introducing the means of some wireless com-
munication within the Concept Car. But still it is important to analyze the
structure of integrating it with the already existing platform. The key to the

10 CHAPTER 1. INTRODUCTION

answer lies in the centralized CAN bus architecture of the car. Since we are
aware of the fact that each ECU sends the desired messages over the CAN
bus, it is quite obvious that either the task of monitoring (getting into the
internals) or the task of driving the car, is completely possible if we have
access over the CAN bus. Firstly, the idea is to incorporate a wireless com-
municator within the Concept Car. This communicator should be blessed
with features like:

e A wireless communication technology based on Radio Frequency (RF)
e (Capable of accessing all the parameters of the car

e Able to interact with all the ECU’s

Secondly, at the user end, we require a device or a computer for replacing
the CAN viewer (for monitoring) and radio controlled transmitter system
(for driving the car). This device must incorporate some important software
controlled hardware features like:

e A wireless communication technology based on Radio Frequency (RF)
for interacting with the car

e Sensing capabilities like accelerometer for producing steering and throt-
tle signals

e A user interface for monitoring the car internals

The combination of both, the wireless communicator within the car and the
user-end device incorporating the features mentioned above, forms the basic
solution to the problem (see Figure 1.5). This solution is elaborated in the
Chapter Design.

Figure 1.5: The Idea

1.4. STATE OF THE ART 11

1.4 State of the Art

The idea of designing and implementing a remotely controlled car is not a
new one. Initially the remote controllers developed were based on the vis-
ible light, however, by the time, most of these implementations are radio
controlled (RF based). There exist a number of remotely controlled elec-
tric cars, each incorporating various features and attributes. Many designs
and implementations use their specific architectures, while some incorporate
proprietary hardware like LEGO MINDSTORMS [6]. Most of these designs
although resembling a conventional car, incorporate a single ECU respon-
sible for carrying out all the desired operations. The Concept Car, on the
other hand, uses the idea of a modern car architecture with different ECUs
responsible for different operations, interacting with each other using the
centralized CAN bus. The architecture specific implementation as presented
by [7, 8], brings in a smartphone based Bluetooth controlled car. Both of
these designs incorporate an on-board device (PDA or Laptop) at the device
side. Unlike the Concept Car (as presented in this work), these designs do
not incorporate individual ECUs for managing different operations. Another
architecture specific design as presented in [9], enables a car to be controlled
wirelessly by the Bluetooth interface using a PC. A serial Bluetooth device is
connected to the PC for generating instructions to the Bluetooth module at
the device end. Likewise the first two designs discussed, it also uses a single
control unit at the device side, responsible for managing all the operations.
The proprietary hardware designs as presented in [6, 10|, uses the LEGO
MINDSTORMS NXT, can be controlled using smartphones. These designs
offers the features of steering and driving the LEGOs by generating the com-
mands over the Bluetooth interface of the smartphone. However, they do not
incorporate the monitoring features, as offered by the Smart Monitor of the
Concept Car. Apart from Bluetooth used as the wireless technology, there
exist implementations based on other wireless technologies. One example
is the implementation of a general packet radio service (GPRS) [11] based
Monorail Car [12]. This vehicle is driven using a smartphone over set up
rails, for the purpose of picking fruits in the mountain areas. Although it
involves the full duplex communication, but still a single ARM 9 architecture
based embedded processor is used as the control unit. Another example as
presented in [13], uses WiFi as a communication technology, for controlling
the car from a PC. Likewise the previous implementation, it incorporates
both the monitor and the controller, while using an ARM 9 processor as the
only ECU available. The idea of controlling a modern car with a smartphone
is already being attempted by the AutoNOMOS laboratories [14]. The cur-

12 CHAPTER 1. INTRODUCTION

rent version of this design namely iDriver, uses iPhone 3GS for steering and
driving the modern car. Although it receives the video stream from the car’s
built in camera, it still does not monitor the internals of the car, as featured
by the Smart Monitor of the Concept Car.

1.5 The Structure

This report is intended to present a self explanatory guide from design to
delivery. This section briefly describes the structure of the whole thesis
section-by-section. Being inspired from the title Design, Development and
Integration of a Communication unit in the Concept Car, the whole project
is organized into four main phases. Let’s discuss each phase briefly:

Design

This phase presents all the efforts that are put in for getting the directions
to proceed. It starts of discussing the basic design of the wireless commu-
nicator and the integration to the already existing structure of the Concept
Car. Tt explains the idea by taking into consideration a simple example.
It also discusses about the options available for forming the wireless com-
munication and then discusses the feasibility criteria of selecting one of the
communication technology. It discusses in detail the hardware tools/com-
ponents required for the wireless communicator and the feasibility criteria
of selecting the components for the design. Finally, it discusses about the
software tools availability and their selection criteria.

Development

As the name suggests, this phase collects all the information from the design
and starts implementing the directions gained from the previous section. It
starts of presenting and discussing the hardware layout of the wireless com-
municator, explaining how hardware components selected in the design phase
are merged together. It then presents the initial testing and configuration
of the wireless communicator. It also presents the first communication test
i.e. testing the communicator with the loopback test. Finally, this phase
presents the development of all the required software components/libraries
(at the device side and as well as at the user end) that are used for the final
applications. This include the application specific communication protocol,
development of sensor libraries and data handling.

1.5. THE STRUCTURE 13

Integration

In the development phase we successfully developed all the required hard-
ware and software components. We initiated the tests for configuring and
running the hardware without using any software. In the integration phase
we integrate all the independent hardware and make it run with the soft-
ware libraries we developed in the previous phase. This include running the
hardware at both ends i.e. the device end (Concept Car) and the user end,
using the software libraries developed at both ends. This phase also tests
and verifies the application specific communication protocol by initiating the
data validation tests.

Deployment and Delivery

In this phase we play with the real deal i.e. gaining the desired results. The
idea of just forming a wireless communication path between the Concept
Car and the user-end device would end up gaining nothing unless we test
and verify it with the real time applications. For the purpose, this phase
presents two main applications that incorporate all the features we designed,
developed and integrated in the previous phases. These applications involve
the use of all the hardware and software features at both ends i.e. the Concept
Car and a user end device.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Design

'Getting the Directions’

-

This chapter proceeds with the basic idea (as presented in the previous
chapter) and formulates the basic idea to a basic design. It actually explains
how we are going to manage the basic solution in the already existing
structure of the car. The available communication technologies and the
selection criteria are discussed. Finally, it explores the availability and
selection of the hardware tools required for the Wireless ECU and the

selection of the software toals for the Wireless ECU and a smartphone.

15

16 CHAPTER 2. DESIGN

2.1 The Basic Design

In the previous chapter we discussed the basic solution, which comprises of
two different parts i.e.

1. Introducing a wireless communicator within the Concept Car

2. Introducing a user-end device at least capable of some wireless com-
munication

Let’s formulate each idea into a basic design:

2.1.1 From Wireless Communicator to Wireless ECU

In the previous chapter we emphasized on one of the basic architectural fea-
tures of the Concept Car i.e. the centralized CAN bus architecture. Taking
advantage of this structure, we know that the only possible way of interacting
with all the ECUs is simply getting an access to the CAN bus. So now the
idea of introducing a wireless communicator formulates to introducing a new
ECU in the Concept Car namely the Wireless ECU. Likewise all the other
ECUs, this ECU would be capable of placing and getting messages from the
CAN bus as it would be directly connected to the interface. Most impor-
tantly, it should incorporate some mean of sending/receiving data wirelessly.

Let’s examine this design by considering a simple scenario, as shown in Figure
2.1. The idea is to receive data wirelessly and drive the actuators based on the
data values. Stepping up from point 1 - 6 serves the purpose. Starting from
Step 1, the desired data is received wirelessly by the Wireless ECU. It then
places this data with a specific id on the CAN bus, in Step 2. In Step 3, the
SensorBoard ECU particularly receives the data with this id, performs the
desired mathematical operations and places the modified data on the CAN
bus again with a different id. In case if intensive mathematical computations
are required, 32 bit ARMBoard (processing unit) is used, which has the access
to the CAN bus. In Step 4, the ActorBoard receives this modified data and
generates the required signals. In Step 5, it passes the calculated signals
through to the EmergencyBoard. Finally, the EmergencyBoard passes on
these signals for driving the actuators through the galvanic isolation.

2.1. THE BASIC DESIGN 17

1 \\
&@ﬁ

Q

ARMBoard sensorBoard ECU Wireless ECU

S T
.

ActorBoard ECU EmergencyBoard ECU

| Actuators |

Figure 2.1: A Basic Example for the Wireless ECU

2.1.2 From User-End Device to Smartphone

In the previous chapter we talked about having a user-end device, capable
of communicating wirelessly and incorporated with some software controlled
hardware features. We can come up with any device incorporating a mi-
croprocessor, memory, a display and a wireless communication technology.
The most commonly used device that can fulfill our cause is a smartphone.
A smartphone is similar to a common phone, with advanced computing ca-
pabilities and powerful features. It is now even being used very commonly
in the area of application development. Since smartphones come up with
many interesting software controlled hardware features like accelerometers,
near field communication (NFC) [15], WiFi [16], Bluetooth [17] etc and are
widely used these days, the idea is to implement these special software con-
trolled hardware features for monitoring and controlling the Concept Car.
One of the most important advantage of using a smartphone is that we don’t
need additional devices like accelerometers, wireless communication device
etc., instead we rely on the built in features of a smartphone.

18 CHAPTER 2. DESIGN

2.1.3 The Basic Design in a Nutshell

We finally reached the point of formulating our basic solution to the basic
design. As discussed in detail in the previous two subsections, we can finally
define our basic design in a nutshell as:

1. Introducing a separate ECU incorporating some wireless communica-
tion i.e. introduction of the Wireless ECU

2. Introducing a software tool exploiting the special hardware features, at
the smartphone side

Before making an attempt to develop and implement this design, an effort is
required to select the most feasible resources from the lot.

2.2 Availability and Selection

Keeping in mind the basic design we discovered in the previous section, this
section (comprised of three sub-sections) discusses in depth about the pos-
sible resources (the wireless communication technology, hardware compo-
nents and software components) that could be considered for this design. It
presents the tradeoff between selecting different resources, while the discus-
sion ends up selecting the most suitable resources for the particular design.

2.2.1 The Communication Standard

In the previous section, we finally chose a smartphone as a user-end de-
vice. This complies to restricting our choices with the available built in
wireless communication technologies, in smartphones. Thereby, we are up to
the task of discussing various feasible wireless communication technologies
available with the smartphones, eventually ending up with one selected tech-
nology. There are three most commonly used wireless communication stan-
dards: NFC, WiFi and Bluetooth. All of these three standards are based
on radio frequency with different; range of operating frequencies, range of
distances, power consumption, package size, interface, cost and data transfer
rates. Let’s discuss each of the technology independently:

2.2. AVAILABILITY AND SELECTION 19

NFC

NFC is a wireless standard for smartphones and similar devices to introduce
the radio communication between devices by almost touching them together
or at least bringing them as close as few centimeters (4 ¢cm to be exact).
Using the NFC standard, communication can also be established between an
NFC device and an unpowered NFC chip, called a Tag. The NFC standard
cover communications protocols and data exchange formats, and are based on
existing radio-frequency identification (RFID) standards including ISO/IEC
14443 and FeliCa [18|. NFC standard is based upon RFID systems that
allows two-way communication between endpoints.

WiFi

WiFi is another popular wireless communication technology that allows smart-
phones (and other electronic devices) to exchange data, including high speed
internet connections. It is also based on RF communication and exchanges
data in the form of radio waves. It is based on the TEEE 802.11 standard
[19]. WiFi operates in the 2.4, 3.6 and 5GHz frequency bands. Depending
on the antenna power and environment, typically, it is capable of emitting a
radio wave to travel 20 meters. But this range could easily be increased to
100 meters by increasing the transmit power. According to the IEEE 802.11n
standard, as per October 2009, it is capable of transmitting at a maximum
net data rate from 54 Mbit/s to 600 Mbit/s.

Bluetooth

Bluetooth is another wireless technology standard commonly used for ex-
changing data over short distances. Likewise WiFi, it is based on radio
frequency and exchanges data in the form of radio waves. It operates using
short-wavelength radio transmissions in the frequency band from 2.40 to 2.48
GHz. In the early years of its development, it is conceived as the wireless
alternative of the RS232 serial data cables [20]. Depending on the antenna
power and environment, typically (at 0dB), it is capable of communicating
at up to 5 meters. With the introduction of the Bluetooth v2.0+EDR (en-
hanced data rate), it is capable of transmitting at 3 Mbit/s covering the
distance up to 20 meters. As the name suggests, EDR enhances the data
transfer rate of v2.0 up to 3 Mbit/s. Bluetooth transceivers are not easily
affected by the noise because of the hopping mechanism [9]. The complete
specification of the Bluetooth standard is given in [21][22].

20 CHAPTER 2. DESIGN

The Criteria

Before comparing the discussed technologies and selecting one, it is extremely
important to set up the feasibility and selection criteria. As discussed in
Chapter 1, a 27MHz radio transmitter capable of communicating at a range
more than one Km is currently used. We are more up to the task of finding
an alternative to this approach, that is more energy efficient than the other
competitive technologies available, regardless of being capable of covering
long distances. In a nutshell, we are up to the task of selecting a technology
that is capable of at least covering the distance for testing the applications,
preferably in a room or lab covering at most 20 meters, with low power
consumption. Let’s select one of the three discussed technologies based on
this criteria.

Comparison and Selection

We briefly discussed each of the available wireless communication technolo-
gies in smartphones. Let’s end up this section by comparing them and se-
lecting the most appropriate one for our cause.

Looking into the range of the NFC standard, the term contactless is more
appropriate than wireless. For this reason, it is widely used in applications
like: contactless payment systems, similar to those currently used in credit
cards and electronic ticket smartcards [23]. Generally, it is a low speed and
short distance protocol, and can be possibly used for bootstrapping more
capable wireless standards like Bluetooth, WiFi etc. One idea would be
enabling, pairing and connecting to a Bluetooth/WiFi device, once the NFC
device finds the desired tag [24]. Due to its short range and low speed, it
is totally inappropriate, even for testing the applications. However, it can
be incorporated later in the design for implementing a smart connection
mechanism.

Although both Bluetooth and WiFi seem quite appropriate in terms of our
selecting criteria, however, each technology dominates over the other in one
or the other feature. We are going to select one based on how the features
offered by these communication standards match the desired criteria. Table
2.1 presents the most common specifications for both standards:

2.2. AVAILABILITY AND SELECTION 21

Frequency (GHz) 2.4 2.4, 3.6 and 5
Bandwidth 800 Kbps 11 Mbps
Power Low High
Range (meters) 20 100
Bit Rate (Mbps) 3 600

Cost Low High

Table 2.1: Common Characteristics of Bluetooth and WiFi

Although WiFi and Bluetooth operate in the same 2.4 GHz frequency band,
WiFi uses more transmit power to cover almost 5 times the distance covered
by the Bluetooth. Depending upon the application, WiFi may use as much
as 40 times the power used by the Bluetooth. The data rate offered by
WiFi is far better than Bluetooth, but still with Bluetooth v2.0+EDR, an
intermediate bit rate of 3 Mbps can be achieved. In terms of cost, Bluetooth
is quite economical than WiFi. The low power consumption and low cost, in
combination with acceptable data rate and range, Bluetooth better suits our
selection criteria and is the selected wireless technology for this thesis.

2.2.2 The Hardware Tools

The term hardware tools means the hardware components required to de-
sign the Wireless ECU. The four most important components that would be
required to design the Wireless ECU are:

1. Bluetooth Device
2. Microcontroller
3. CAN Driver

4. Voltage Regulator

In the previous section, we decided to use Bluetooth as the wireless commu-
nication technology. Now, it is important to select one of the many available
Bluetooth devices, that fulfills our design requirements like; class, size, range
and speed. Secondly, for the design of an ECU, we require; a competitive,
fast and low power processing unit i.e. a Microcontroller. We also need a
CAN driver for protecting the bus lines against transients. Finally, in order
to provide a 5V power source to all the components on the board, we require

22 CHAPTER 2. DESIGN

a voltage regulator to step down the voltage taken from 3S1 LiPo battery
(see Figure 1.2). Generally, it is not possible to present all the hardware
tools available (hundreds of them), and then select one. Instead we are going
to present the selected ones, and are going to discuss the selection criteria.
Let’s discuss each of these separately:

Selecting the Bluetooth Device

There are number of Bluetooth modules available in the market these days,
classified by; power class, standard, size and cost. Based on these character-
istics, Table 2.2 compares the Bluetooth devices:

Class 1 100 ~100
Class 2 2.5 ~10
Class 3 1 ~5

Table 2.2: Bluetooth Modules Classification

The most important change that one can notice between the Bluetooth 1.0
standard and the 2.0 standard is range. According to the Bluetooth special
interest group specifications, devices with 1.0 standard mostly cover a radius
of only 5 meters, though this range can be increased to 100 meters (by
increasing the antenna power), power consumption issues make the use of
these devices very rare. On the other hand, devices adhering to 2.0 standard,
has improved power consumption and typically covers the range of about 20
meters.

For the Wireless ECU, we are using the RN-42 Bluetooth Module [25].
It is a Class 2 Bluetooth Module that adheres to Bluetooth v2.0+EDR. It
is incorporated with an on board chip antenna. It is a small size module
with dimensions as small as: 13.4mm x 20mm x 2 mm. [t is a low power
(26uA during sleep, 3mA connected, 30mA transmit) and a high speed (up
to 3.0 Mbps) Bluetooth module that covers a distance of 20 meters. Tt
supports both UART (universal asynchronous receive transmit) [26] and USB
(universal serial bus) [27] interface connections. A UART is an individual or
part of an integrated circuit used for communicating serially over a computer
or peripheral device serial port, such as micro-controllers

2.2. AVAILABILITY AND SELECTION 23

Selecting the Microcontroller

The most basic element of the ECU is the processing unit. We need a pro-
cessing unit that offers a good trade off between high speed and low power
consumption, and allows the access to special peripherals like Timers, Pulse
Width Modulators, Interrupts etc. As a part of the design, we need to have
the access over the CAN bus, so a micro-controller equipped with a CAN
controller is desired.

Likewise the other ECUs (SensorBoards, ActorBoard) we decided to go with
the same controller i.e. AT90CAN128. The reason is getting satisfactory
results for the other ECUs. It is an 8 bit microcontroller, with an advanced
reduced instruction set computer architecture (RISC). It includes 128K Bytes
of in-system reprogrammable flash, 4K bytes EEPROM, 4K bytes internal
SRAM and up to 64K bytes optional external memory space. It incorporates
peripheral features as: programmable watchdog timer with on-chip oscilla-
tor, 8-bit/16-bit synchronous and asynchronous timer/counter with PWM,
JTAG (IEEE std. 1149.1 Compliant) interface etc. Most importantly, it also
supports the CAN controller, with a maximum data transfer rate of 1 Mbps.

Selecting the CAN Driver

A CAN driver is the interface between a CAN protocol controller and the
physical bus. The device provides differential transmit capability to the bus
and differential receive capability to the CAN controller. Likewise the other
ECUs, we are going to use the same CAN Driver i.e. PCA82C250 [28§], as
it turned out to work efficiently.

The PCA82C250 CAN driver is primarily intended for high-speed automotive
applications (up to 1 MBd). The device provides differential transmit capa-
bility to the bus and differential receive capability to the CAN controller. A
current limiting circuit protects the transmitter output stage against short-
circuit to positive and negative battery voltage. Although the power dissipa-
tion is increased during this fault condition, this feature will prevent destruc-
tion of the transmitter output stage. It is fully compatible with the ISO 11898
standard. It offer features like: Slope control to reduce radio frequency inter-
ference (RFT), differential receiver with wide common-mode range for high
immunity against electro-magnetic interference (EMI), thermally protected,
short-circuit proof to battery and ground, low-current standby mode, an un-
powered node does not disturb the bus lines and at least 110 nodes can be
connected.

24 CHAPTER 2. DESIGN

Selecting the Voltage Regulator

Likewise all the other ECUs, all the components on the Wireless ECU are
required to be powered up with a 5V source. As being successfully used with
all the other ECUs, we are going to use a voltage regulator namely MAX1837
[29]. It is a high-efficiency step-down converter that provides a preset 5V
output voltage from supply voltages as high as 24V. It is available in a 6-pin
SOT23 package, making them ideal for low-cost, low power, space-sensitive
applications.

2.2.3 The Software Tools

This section is intended to discuss the software tools required for writing,
compiling and programming code for the Wireless ECU and a smartphone.
It presents the operating system, development environments, compilers and
programmers (for flashing the ECU) to be used at both ends i.e. for the
Wireless ECU and a smartphone. Let’s discuss it for each end:

Tools for the Wireless ECU

Likewise all the other ECU’s, the software code for the Wireless ECU is
being written under Linux OS (Ubuntu 9.04), using high level language
C++. There is no special integrated development environment (IDE) used
for writing the code, instead we are using the simple text editor. The code
is compiled using the GNU Compiler Collection (GCC) g+-+ compiler
|30], using console commands. The programmer used for flashing the code
into the flash memory of the AT90CAN128 controller is AVRISP mkIT [31].
It comes up with a USB interface, for connecting it to the PC or laptop. It can
be connected to the ATIOCAN128 controller using in-system programmable
(ISP) interface. The software driver used for programming the code using
AVRISP is AVRDUDE [32].

Tools for the smartphone

A smartphone can come up with a different mobile operating system, de-
pending upon the manufacturer. Currently the leading operating systems on
the smartphone market are iOS, BlackBerry, Android, Symbian and Win-
dows. Android and iOs lead by far the other available operating systems
for the smartphones. As a matter of fact, many manufacturers including;

2.2. AVAILABILITY AND SELECTION 25

HTC, Samsung, LG, Motorolla and many more, are building their phones on
Android as the mobile operating system. It would not be wrong to say that
Android is the most common platform used by majority of the smartphone
manufacturers. To cover more range of devices (smartphones), we are going
with the Android platform.

Android Inc was founded in California, U.S. in 2003, and later was acquired
by Google in 2005. After original release there have been number of updates
in the original version of Android. Android is a complete operating environ-
ment based upon the Linux® V2.6 kernel, offering a complete set of tools,
namely software development kit (SDK), for developing apps for Android
devices [33].

For this thesis, the software code for the smartphone is being written under
Windows OS (Windows 7), using high level language Java. The inte-
grated development environment (IDE) used for writing the code is *Eclipse’
(v3.7.1) [34]. The plug-in Android Development Tools (ADT) is inte-
grated with the Eclipse IDE for providing a powerful, integrated environ-
ment for building Android applications [35]. ADT extends the capabilities
of Eclipse for setting up new Android projects, creating an application UI,
adding packages based on the Android Framework API, debugging applica-
tions using the Android SDK tools, and even exporting signed (or unsigned)
.apk files in order to distribute application. With the guided project setup it
provides, as well as tools integration, custom XML editors, and debug output
pane, ADT gives an incredible boost in developing Android applications.

Summary

In this Chapter, we started of explaining the idea of structuring the Wire-
less ECU into the already existing platform of the Concept Car, whereas
a smartphone has been selected as the user-end device. We compared dif-
ferent competing wireless technologies, while following our selection criteria,
Bluetooth has been selected as a wireless technology. We discussed selecting
the important hardware tools for the Wireless ECU where; RN-42 Blue-
tooth module has been selected as the Bluetooth device, AT90CAN128 as
the micro-controller, PCA82C250 as the CAN driver and MAX1837 as the
voltage regulator. Finally, we presented in detail the selected software tools
including; IDEs, compilers and programmers, for the Wireless ECU and the
smartphone.

26

CHAPTER 2. DESIGN

Chapter 3

Development

'Getting Things Done'

This chapter proceeds with the directions received from the design phase
and starts implementing the design. It starts of explaining the hardware
development of the Wireless ECU, by presenting the layout of the Wireless
ECU and the Bluetooth board. This phase for the very first time, works with
the Bluetooth module, performs configuration and the loopback test. In the
second part, the software communication protocol for having a smooth

communication between the Wireless ECU and a smartphone is elaborated.

Finally, the software components for explaining the software libraries to be

used at both ends are presented.

27

28 CHAPTER 3. DEVELOPMENT
3.1 Hardware Development

This section presents the development of the Wireless EC'U and the Bluetooth
Board. The Wireless ECU is incorporated with two simple connectors, for
the sake of accommodating two different modules (see Figure 3.1). These
connectors provide supply and transceiver signals to the modules. One of
the connectors is used for connecting the RN-42 Bluetooth module for the
current work, while the other is reserved for connecting any other wireless
communication module in future, such as a WiFi module. So the idea is to
produce a separate board for the RN-42 Bluetooth device, independent of
the Wireless ECU board. Connecting the module to the ECU is as easy as
plugging the connections into the connector on the ECU. This ensures safety
and ease in troubleshooting the boards.

Bluetooth Board Wireless ECU
RN-42 Module Connector
™ ™
" Ao E—
+ + USART 1
USART 2

AT90CAN128

Reserved | can

forfuture | R - Transceiver

use

Figure 3.1: The Wireless ECU vs the Bluetooth Board

It is important to note that this Figure does not reveal the complete design of
the Wireless ECU, instead it focuses on the connection phenomenon. As dis-
cussed in the previous chapter, the RN-42 Bluetooth module comes up with
both UART and USB interfaces. For our design, we are using the UART
interface for establishing communication between the Wireless ECU and the
RN-42 module. Consequently, wireless transmit and receive operations can
simply be invoked by invoking UART module of the AT90CAN128 controller.
The Bluetooth module is powered from the Wireless ECU via power connec-
tions (+ and -), where “+” symbol represents the 5V input, and “-” symbol
represents ground. The communication between the module and the ECU

3.1. HARDWARE DEVELOPMENT 29

is carried out via transceiver signals (TX and RX), where TX denotes the
transmitter, and RX denotes the receiver. Secondly, other connector is re-
served for future use. This could be any wireless communication device, that
supports UART interface. The Wireless ECU is also connected to the CAN
bus via AT90CAN128 built in CAN controller. Let’s now discuss the layout
of both the independent boards:

3.1.1 Developing the Wireless ECU

This section presents and discusses in detail the hardware development of
the Wireless ECU. Likewise all the other ECUs, it is designed and developed
using the CadSoft’s Eagle PCB design software [36]. The complete layout of
the Wireless ECU is shown in Figure 5.2.

1) CAY Connector ™~ 2) MAX 1837
= Regulator

)
i)

12) Reserved pm 3) CAN Driver

Connector ”
4
-.4
1
L
> 4) ISP Connector
-~y
M)RN-42 = -
Conne'r,tcn
-
‘ 5) JTAG Connector
_'I
10) Crystal
Oscillator Lo
- —

9) Selector
Buttony
\/' X

8) Reset 5 @

]
Bution we = o # 7) Status LED's
"' -————

6) ATO0CAN128
-

Figure 3.2: Layout Design for the Wireless ECU

The Wireless ECU is comprised of twelve important components: CAN con-
nector (1) is a DB9 serial connector for connecting the Wireless ECU to
the CAN interface. It also brings in power supply from a 3S1 LiPo, 11.1
V battery (see Figure 1.2). This voltage is stepped down to 5V by using a
MAX1837 regulator (2). The regulated voltage is then used as the power
source for all the components on the board. The CAN driver (3) connects

30 CHAPTER 3. DEVELOPMENT

the CAN physical bus to the built in CAN controller of the AT90CAN128
controller (6). The AT90CAN128 controller is the main processing unit that
brings in all the desired features to the Wireless ECU. It is clocked from
a 16MHz crystal oscillator (10), for executing instructions and driving pe-
ripherals. Apparently, there are two ways of programming this controller,
either by using an ISP (4) or Joint Test Action Group (JTAG) (5) connec-
tor. Likewise all the other ECUs, we are using an ISP compatible hardware
programmer i.e. AVRISP mkKkII, therefore the ISP connector is used. For
reset operation, a Reset Button (8) is employed. The Wireless ECU incor-
porates a series of status LED’s (7), with each LED indicating a different
operation. Starting from right to left, the RUNS LED indicates continuous
execution of the code. The SIGNAL LED indicates the established connec-
tion with the RN42 Bluetooth module. The SOURCE LEDs represent the
mode selected by the user using the selector button (9). This button allows
the user to choose between a smartphone and the radio controlled system,
as the user end device. Finally, the PWR LED indicates that the board is
correctly powered. As discussed in the previous section, the Bluetooth mod-
ule is connected to the Wireless ECU via a separate connector namely the
RN42-Connector (11). The ECU also incorporates a reserved connector (12),
for bringing in another UART based wireless communication module in the
future. The schematic design of the ECU is shown in Figure 3.3:

12) R;\l—42 Connector

- - 1] "
= - A - A A== o
Ly v 5) ISP Connector
AN - —+ - - = oo I
\ 1 1 }
11) Reserved Connector ""
10) Crystal 8) Reset Button 4 e
Oscillator 0 N, + . .
-3 i \ - 6) JTAG <
- I Connector
A » < 1
I I) T GND '\, L >
= By = < | i
i w71 L <
B A
’ " I : . I '0'<1 = >
T - = = -
A i 1< =)
o = o G0 o B g
\ 2) MAX1837 1 X »
1< =1
o N & «~ Regulator k £ ‘l
= < o » N - == !
[\, ’
It -

. Y T
- I__4)ATOOCAN128 N\ -
<, -~ o -)
T ""\\ 9) Selector Button 7) Status LED's
1) CAN Connector

Figure 3.3: Schematic Design for the Wireless ECU

3.1. HARDWARE DEVELOPMENT 31

3.1.2 Developing the Bluetooth Board

Building a separate board for the RN-42 Bluetooth module reduces the com-
plexity within the already populated Wireless ECU, eventually bringing in
ease in troubleshooting both the boards. Secondly, it avoids re-fabricating
the ECU even if the Bluetooth board gets damaged. This board is also devel-
oped using the Eagle software for PCB design. The layout for the Bluetooth
board is presented in Figure 3.4:

-
- ‘ 3) Regulated Voltage
o~

1) ECU Connector ' _2) RN-42 Plug

Figure 3.4: Layout Design for the Bluetooth Board

The data sheet of the RN-42 module recommends powering up the device
with 3,3V. Starting with the ECU connector (1), it connects the RN-42
module with the Wireless ECU. This board comprises of two separate 2-pin
connectors, one for power and other for transmission signals. A separate
connector namely RN-42 plug (2), connects the module on this board. Again,
this ensures that in case if a module is damaged, it can be replaced easily.
A 3,3V regulator (4) is employed for stepping down the voltage. For this
purpose, a volt regulator is incorporated into the design. Finally, a 2-pin
connector at the extreme right (3), provides the regulated voltage as an
output, that can be used to power other 3,3V devices like MAX3232 (37|
circuit for testing purposes. As shown in Figure 3.5, the schematic version
of the Bluetooth board is highlighted with the same components.

32 CHAPTER 3. DEVELOPMENT

o
1) ECU Connector 2) RN-42 Plug ‘
7
I —
[—- —-
[-—f - —= —-
‘ - —= —-
—- —-
-— - —m
— —-
-—
-—
¥ I
-
~ ‘\ 4) 3,3 v Voltage
~ ¢ Regulator
. ‘ _I 9

3) Regulated Voltage

Figure 3.5: Schematic Design for the Bluetooth Board

3.2 Getting Started with the Bluetooth Mod-
ule

This section presents a QuickStart guide to the RN-42 Bluetooth module.
The best way of getting started is to configure the device. According to the
user manual, it is capable of operating in two different modes namely; Data
Mode and Command Mode. By default, when the device is powered, it starts
with the data mode. In order to test and verify that the module is correctly
connected, powered and working, we start off configuring the device at first,
by entering the command mode. This configuration includes; getting current
settings, changing device name, setting up data transfer rate, setting up a
profile, leaving command mode etc. In the second part, the loopback test is
performed. The idea is to quickly test the module without using any software
code.

3.2.1 Configuring the Module

For configuring and programming the RN-42 module for the very first time,
we connect it to a PC by using RS232 serial port connections. Since mod-
ern PC’s only have USB, we are going to use an inexpensive RS232 to USB
adapter cable from Pollin [38]. The RN-42 module is a 3,3V transistor-
transistor logic (TTL) compatible device [39], whereas RS232 uses different

3.2. GETTING STARTED WITH THE BLUETOOTH MODULE 33

levels of voltage as defined by the RS232 standard [40]. TTL is a class of
digital circuits built from bipolar junction transistors (BJT) and resistors. It
is termed as transistor—transistor logic because both the logic gating func-
tion and the amplifying function are performed by transistors. To make the
signal levels compatible from TTL to RS232 and vice versa, we employ a
MAX3232. It is an integrated circuit, operated at 3,3 volts, that converts
signals from RS-232 serial port to signals suitable for use in TTL compatible
digital logic circuits. It is a dual driver/receiver and typically converts the
RX, TX, CTS and RTS signals. The complete connection diagram is shown
in Figure 3.6.

i+ +) RS232 to USB Adapter

P e hichueiudiie il
. ! —~ "
| | RS232 | | usa |
RX X MAX 3232 2 |—— ']

:TX RX
|

Figure 3.6: Connection Diagram of MAX3232

The MAX3232 is powered from the RN-42 module, from the regulated output
voltage connector (see Figure 3.4). It converts the RX and TX signals (TTL
level) to RS232, and vice versa. It also reveals the use of RS232 to USB
adapter cable. The USB side of the cable is connected to a PC, whereas the
RS232 side is connected to a MAX3232. For issuing commands to the RN-42
module, we require a terminal emulator at the PC like; HyperTerminal [41],
PuTTY [42], TeraTerm [43] etc. We are going to use TeraTerm for issuing
commands serially, to configure our device. For setting up terminal emulators
for connecting and communicating with serial devices, I refer the interested
reader to the online tutorial at [44].

Before issuing commands from the TeraTerm, it is important to discuss the
desired configuration settings. By default the RN-42 module shows up with
SPP profile [45], with a baud rate of 115Kbps, no parity, slave mode, default
name as FireFly-xxxx (xxxx are the last four nibbles of Bluetooth MAC
address) and the pin code is 1234. We are going to change the device’s
default name to ConceptCar, while staying with the default baud rate unless
we find this rate inappropriate for the final applications.

After successfully setting up a connection and keeping in mind the desired
settings, we are going to invoke some commands for configuring the device:

34 CHAPTER 3. DEVELOPMENT
Step 1 - Enter Command Mode

Upon power up, the device starts in the data mode. To enter the command
mode, send the characters $$$ through the serial port. If the device responds
with CMD, it shows that the cable and communication settings are correct.
While in the command mode, the device will accept ASCII bytes as com-
mands. Valid commands will return an AOK, response, and invalid ones will
return FRR. Commands that are not recognized will return a 7.

555 |
[CMD |

As shown above, the top box presents the typed command ($$$), and the
bottom box presents the response received from the device.

Step 2 - Get Current Parameters

A quick check to see if you are in command mode is to type the D and
E commands after entering the command mode. This will show up the
parameters, such as the device name, class of device and serial port settings.

~D

FHESettings***
BTA=000666430DAS8
BTName=FireFly-0DAS8
Baudrt=115K
Parity=None
Mode=Slav
Authen=0

Encryp—0
PinCod=1234
Bounded=0
Rem=00143500139B

The current device name is FireFly-0DAS. The serial port settings involve;
default baud rate = 115K and parity = none. The default mode is slave
mode, which corresponds to, this device is not going to be the initiator for
establishing connections. Since we need the user to initiate the communi-
cation, smartphone is going to be the initiator, so we stay with the same
setting for mode.

3.2. GETTING STARTED WITH THE BLUETOOTH MODULE 35

Step 3 - Change Device’s Default Name

As mentioned in Step 2, the default name of the module is FireFly-0DAS.
For the sake of verifying that our module is rightly connected and working,
we are going to invoke the commands for changing the name of our module
to ConceptCar.

‘ >SN, ConceptCar ‘
[AOK |

Sending the command SN, ConceptCar, receives an AOK command in return.
This indicates that the command is valid and has been successfully invoked.

Step 4 - Get Updated Parameters

Again invoking the D command brings in the settings again, this time with
the changed name i.e. ConceptCar.

>D

FRESettings***
BTA=000666430DAS&
BTName=ConceptCar
Baudrt=115K
Parity=None
Mode=Slav
Authen=0

Encryp=0
PinCod=1234
Bounded=0
Rem=00143500139B

It is important to note that the changed settings only come into play after
the successfull reboot of the RN-42 module.

Step 5 - Exit Command Mode

After invoking all the desired commands, we exit the command mode by
typing - - - (three minus signs). This is verified with the received END
command on the screen.

[>— |
|END |

36 CHAPTER 3. DEVELOPMENT

The original snapshot of the TeraTerm window while the device was config-
ured is shown in Figure 3.7. It summarizes all the steps as discussed in this
section:

1 COM3:115200baud - Tera Term = | S|

File Edit Setup Control Window Help
Step 1: Enter command mode. Invoke 3% to enter command mode -

get the current

Authen=@

Encryp=8

PinCod=1234

Bonded=@

Ren=0814350013%98 -
NOKConceptCar (——___,b
3338 gt ings e
BTN=B8B666438DAS

BTName =ConceptCar
Baudrt=115K

Parity=None

Mode =Slawv

Authen=@

Encryp=8

PinCod=1234

Bonded=@

Ren=0814350013%98

E“D_/ Step 5. Exit command mode: Invoke --- to exit command mode I

Figure 3.7: Configuring the RN-42 Module

Note that there are a number of ASCI commands for bringing in different
features to the RN-42 module. Invoking all the commands is out of scope
for this thesis. Refer to the reference manual, to get the complete set of
commands. Also the module can directly be configured by using a Bluetooth
app on a smartphone, capable of transmitting ASCI bytes over the Bluetooth
medium. This avoids the use of the MAX3232 circuitry and the terminal
emulator.

3.2.2 RN-42 Loopback Test

After successfully configuring the Bluetooth module, it is the time to estab-
lish a quick setup for the wireless communication, without using any piece
of software code. This would verify that our Bluetooth transceiver is work-
ing properly. For this cause, we are going to implement a Loopback Test.
Loopback testing incorporates the way of routing electronic signals, digital
data streams, or flows of items from the transmitting end to the receiving
end of the source without intentional processing or modification [46]. It is
primarily intended for performing transmission tests of access lines, thereby
testing and verifying the transmission or transportation infrastructure.

As per the definition stated above, we short out the RX and TX lines of the
Bluetooth module, as shown in Figure 3.8.

3.2. GETTING STARTED WITH THE BLUETOOTH MODULE 37

Figure 3.8: Loopback Test for the RN-42 Module

The loopback test can be performed either by using the same method used
for configuration, or by using a device capable of Bluetooth communication.
Since we already worked with the serial terminal emulator approach, it is
the right time to introduce a smartphone for wireless communication test-
ing, for the very first time. We are going to use one of the free Bluetooth
communication app, namely BlueTerm [47|, for sending some data wirelessly
to the RN-42 module. Since we binded the RX and TX lines at the RN-42
module, it is expected to receiving an echo of the transmitted byte of data
on a smartphone. While sending the set of bytes as Hello ConceptCar!,
the results obtained are shown in Figure 3.9.

BlueTerm connected:ConceptCar

HHeelloo CCoonncceeppttCCaarr!!f]

12 3 45 6 7 8 90

@ # $ % & * - + ()

Figure 3.9: Loopback Test Results

The bytes sent from a smartphone, are echoed back and received on the
smartphone. The right top of Figure 3.9 reveals the connection to the RN-42

38 CHAPTER 3. DEVELOPMENT

module i.e. ConceptCar. With this, we finally tested and verified that our
module is rightly configured and the transceiver is properly working. In the
next section we are finally going to develop our software library for estab-
lishing the wireless communication with software.

3.3 Software Development

In the previous sections, we successfully developed the Wireless ECU and the
Bluetooth board. Furthermore, the Bluetooth module was successfully con-
figured and tested without any software development. In this section, we set
up a wireless communication protocol for establishing the wireless commu-
nication between the Wireless ECU and the smartphone. The term protocol
means forming up an application specific standard data package, that would
be followed by both the Wireless ECU and the smartphone. In the second
part of this section, the software libraries for managing the wireless commu-
nication are discussed. This software library incorporates the components, to
be used for the final applications namely; the Smart Monitor and the Smart
Controller.

3.3.1 Setting-Up the Communication Protocol

This section deals with setting up the standard data package for both ends
(the Wireless ECU and the smartphone). Figure 3.10 presents the standard
data package:

1 Package = 1 - 16 Frame(s)

1 Frame = 8 bytes

SOF Identifier Data Bytes EOF SOF EOF

tral ipy fral op

1 byte 2 bytes 4 bytes 1 byte
Figure 3.10: The Standard Data Package

The standard data package comprises of at most 16 data frames, where each
frame is composed of 8 bytes. Each individual data frame directs to a specific

3.3. SOFTWARE DEVELOPMENT 39

message. Since it has been successfully tested with 16 frames, we restrict a
package to 16 data frames, however, this limit can be increased to a higher
number upon further testing. It is important to note that 16 is the maximum
number of frames that can be enclosed in a package, however, it can be any
number from 1 to 16, depending upon the requirements of the application.
Let’s discuss each element within a single data frame.

e SOF: It is a hard coded character, denoted by *~’. It suggests the
beginning of a new frame. It takes one byte (8 bits) of a frame

o Identifier: Tt is a 2 byte code, representing a specific message for exam-
ple: Throttle data from a smartphone is represented by the identifier
0x102

e Data bytes: It takes 4 bytes of a frame, and as the name suggests it
carries data from the source as identified by the id

e FOF: It is also a hard coded character, denoted by ’~’. It suggests the
ending of the current frame. It takes one byte of a frame

The Initialization/Acknowledgment Package

As discussed in the previous section, a smartphone acts as the initiator i.e.
it establishes the Bluetooth connection with the Concept Car. Though a
smartphone establishes the connection, it waits for the Wireless ECU to re-
spond before it starts any communication. The idea of initially synchronizing
the devices at both ends leads to the initialization/acknowledgment Package.
It serves two main purposes:

1. Indicates the connection availability for communication

2. Reveals how many frames would be enclosed inside each package (until
the termination of connection), corresponding to the number of mes-
sages enclosed in each package

The Package sent from the Wireless ECU to the smartphone is termed as the
Initialization Package, whereas the package sent as a response to an initializa-
tion package from the smartphone to the ECU is termed as the Acknowledg-
ment Package. The number of frames field denotes the number of messages
that will be enclosed inside each package from that end, for the rest of the
application. After initiating the connection, smartphone waits for the Con-
cept Car to respond with an initialization package. As soon as it receives the

40 CHAPTER 3. DEVELOPMENT

package, it extracts the package size, sends an acknowledgment package, and
immediately starts communication. On the other hand, the Wireless ECU,
as soon as it receives the acknowledgment package, extracts the package size,
and immediately starts communication. The initialization /acknowledgment
package is shown in Figure 3.11:

A single frame

SOF Number Reserved EOF
i of Frames bytes 1
1 byte 1 byte 5 bytes . 1 byte

Figure 3.11: The Initialization/Acknowledgment Package

An initialization /acknowledgment package is a special data package com-
prised of a single data frame, consequently comprising of total 8 bytes. It
offers different SOF and EOF fields as compared to a standard data frame.
Let’s discuss each element of the frame:

e SOF: It is a hard coded character, denoted by ’[’. It suggests the
beginning of an initialization/acknowledgment package. It takes one
byte (8 bits) of a frame

o Number of frames: It represents the package size, corresponding to the
total number of frames enclosed inside a package. This package size is
used for the rest of the application, until the communication terminates

o Reserved bytes: 5 bytes of this frame are reserved for future use

e FOF: It is also a hard coded character, denoted by ’]’. It suggests the
ending of an initialization /acknowledgment package. It takes one byte
(8 bits) of a frame

3.3.2 Discovering the Software Library

This section discusses the software library developed for dealing with the
wireless communication, accessing sensor namely smartphone’s accelerome-
ter, data handling etc. at both ends:

3.3. SOFTWARE DEVELOPMENT 41

Smartphone: Connect Device

This software component provides the user the list of paired and newly discov-
ered devices. It generally involves user interaction for selecting a Bluetooth
device from the list. Upon selection it extracts the address of the device and
passes it to the next library component i.e. Bluetooth service.

Smartphone: Bluetooth Service

It accepts the address from the connect device component, and attempts to
connect to the specified device. Upon success, it starts a service (a separate
thread) for reading and writing data stream from/to the connected Bluetooth
device. Upon failure, it prompts the user about the failure.

Smartphone: Data Handler

This component provides the method of encoding and decoding messages in
accordance with the standard package frame (as discussed in the previous
section). It takes the input stream, decodes it and extracts data and id from
the stream. The encoder accepts the tuple (data, id) and encodes it to the
standard data package. It also allows logging data in a file on a smartphone.

Smartphone: Accelerometer Handler

It deals with finding, discovering, accessing and monitoring the accelerometer
movements, from the smartphone.

Wireless ECU: UART Handler

This component provides complete access to the UART peripheral of the
micro-controller. It initializes the UART parameters like; setting up the
baud rate and other serial port settings. Note that this baud rate must match
the configured rate on the Bluetooth module, otherwise data communication
would be faulty. Tt also provides the UART read and write operations, even-
tually transmitting and receiving data over the Bluetooth module. It also
incorporates the interrupt service routines (ISR’s) for the read and write op-
erations. An interrupt service routine is a software routine that hardware
invokes in response to an interrupt (event) for example: Timer interrupt
executes its ISR upon the completion of the specified time.

42 CHAPTER 3. DEVELOPMENT
Wireless ECU: Package Handler

Package handler combines the feature of the smartphone: Bluetooth Service
and the smartphone: Data Handler as it additionally incorporates the meth-
ods of sending/receiving data stream over the RN-42 Bluetooth module. Tt
does that by incorporating the UART handler’s read/write methods, after
encoding and decoding data in accordance with the standard data package
(as discussed in Section 3.3.1).

Wireless ECU: CAN Handler

This component brings in the methods required for accessing the CAN bus.
This includes; Initializing the CAN interface, sending/receiving messages
to/from the CAN bus, updating the CAN status LED’s etc.

Wireless ECU: Inpin, Outpin Handler

This components provides the access to the I/O (input/output) pins on the
AT90CANI128 controller. This includes; setting up a specific pin on the
controller as an input or an output, placing a high or a low level logic on
the pins etc. It is generally used for setting, activating and deactivating the
staus LED’s on the Wireless ECU.

Summary

In this Chapter, we presented the complete hardware development of the
Wireless ECU and the Bluetooth, from layout to the practical implementa-
tion of the boards. For the very first time, we made the module configured
and tested without using a single line of code. For configuration, we used
a terminal emulator for issuing commands serially to the Bluetooth module.
Also for the very first time, we introduced a smartphone for successfully test-
ing the Bluetooth transceiver, by performing the loopback test. We finally
presented the Bluetooth communication protocol (standard data package),
and discussed the software library components at both ends.

The snapshot of the developed boards is shown in Figure 3.12.

3.3. SOFTWARE DEVELOPMENT

The Wireless ECU The Bluetaath Board

£
“wE
E
=
-
=
2 B
3
=

Figure 3.12: The Wireless ECU and the Bluetooth Board

43

44

CHAPTER 3. DEVELOPMENT

Chapter 4

Integration

'Getting Things Together’

This chapter takes into consideration the hardware and software
components built in the development phase, and proceeds with integrating
these components together, while performing verification and validation
tests. For the very first time, this chapter presents the real implementation
of the developed hardware components and software libraries. It brings in
the practical implementation of the Bluetooth communication, by

presenting a simple test application involving both ends (the Wireless ECU

and a smart phone), using the developed software libraries.

45

46 CHAPTER 4. INTEGRATION

4.1 Integrating the Developed Components

In the development phase, we successfully managed and developed the hard-
ware and software components, required for the final applications (Smart
Monitor and Smart Controller). Before implementing the final applications,
the idea is to; test, verify and validate the components developed in the
previous phase. The best way of doing it is to design a simple application in-
volving each end, eventually testing and verifying the software and hardware
components. It is important to note that for this test application, the stan-
dard data package protocol (as discussed in the previous chapter) is strictly
followed, as it is also a part of the software library. In the next section an
application designed for testing the developed components is presented.

4.2 The Test Application

In the previous chapter, we successfully configured and tested the Bluetooth
module without making the use of the software library created for the Wire-
less ECU. Similarly, we used a free app namely BlueTerm, without making
the use of the software library created for a smartphone. Now, the idea is
to design a test application that practically implements, tests and brings in
all the components developed in the development phase. Though it is a very
simple application comprising of two basic components namely an LED and
a button/switch on the Wireless ECU, it utilizes all the software components
being developed at both ends (explained in detail in the next section). This
application is composed of two parts:

e Toggling the LED on the Wireless ECU by invoking the toggle button
on a smartphone

o Getting the status of the selector button of the Wireless ECU on a
smartphone

The basic design for this test application is shown in Figure 4.1:

4.2. THE TEST APPLICATION 47

LED Selector
Button

AT90CAN128

RN-42 Module

—orCcC

Wireless ECU

Figure 4.1: The Test App

So it is quite clear now that the LED on the Wireless ECU corresponds to
the LED on the user interface (smartphone), and the selector button on the
Wireless ECU corresponds to the button on the user interface. Invoking the
LED button on the smartphone toggles the LED on the Wireless ECU. Sim-
ilarly, turning the selector button on or off, changes the status of the button
on the smartphone accordingly. Since a smartphone acts as the initiator
for establishing the wireless connection, invoking the menu button on the
smartphone allows the user to start the connection process.

Scnning
New Devices

ConceptCar
00.06:66:43:00:48

Paired Devices

GT-19300
B8:D9:CE:9C:60:26

Step 1

Figure 4.2: Setting-up the Test App

The procedure for connecting to the Wireless ECU is shown in Figure 4.2.
Pressing the menu button brings in the option for connecting to the Concept
Car. Invoking the ’Connect to Concept Car’ button as shown in Step 1,
switches to an interface as shown in Step 2. This interface allows the user to
scan new Bluetooth devices and allows to connect with the desired device.
Touching the Concept Car option from the list, attempts to connect to this

48 CHAPTER 4. INTEGRATION

device. Upon success, it prompts the user with a toast message 'Connected to
Concept Car’, as shown in Step 3. After the connection has been successfully
established, the user can invoke the buttons on the smartphone and on the
Wireless ECU.

4.2.1 Analyzing the Data Package for the Test App

Referring to Section 3.3, we discussed about forming the standard data pro-
tocol for ensuring that the data received at one end is same as being sent from
the other end. We also discussed a special kind of data packages comprising
of only one frame namely initialization /acknowledgment package, that en-
sures initially that both ends are perfectly synchronized in terms of sharing
data with each other, once the connection has been established. One of the
reasons for presenting this test app is to test and verify this standard data
protocol, eventually validating the data sent from one end to the other. This
test app requires the transmission of the selector button status (either on
or off) from the Wireless ECU, and the LED button status from the smart-
phone. For the purpose, LED status from the smartphone and button status
from the Wireless ECU, is enclosed inside the standard data package. The
use of standard data package and an initialization/acknowledgment package
is shown in Figure 4.3:

A single frame

SOF Reserved EOF
‘[’ 0)(01 bytes r}r
1 byte 1 byte 5 bytes) 1 byte

Initialization Package for Test App

A single frame

SOF EOF
et ID=0x01 | ID = Ox02 Data = 0x00| Data = Ox01 in
1 byte 2 byte 4 bytes 1 byte

Standard Data Package for Test App

Figure 4.3: The Test App Data Frames

4.2. THE TEST APPLICATION 49

Since from each end, we need to send wirelessly a single message i.e. the LED
data from the smartphone, and the button data from the Wireless ECU, the
initialization and the acknowledgment package carry 0x01 in the number
of frames field. This indicates to the smartphone and the ECU that each
data package being sent contains a single frame. As shown in the Figure, the
standard data package comprises of only one frame (total 8 bytes). Analyzing
the standard data package for the test app, identifier = 0x01 represents the
LED message from the smartphone, whereas identifier = 0x02 represents the
button status from the Wireless ECU. The data field can be filled with either
0x00 or 0x01. The data = 0x00 represents the OFF state, whereas data =
0x01 represents the ON state for each control (LED and button). Pressing
the LED button on the smartphone, or pressing the selector button on the
Wireless ECU changes the state from ON to OFF and vice versa.

4.2.2 Analyzing the Algorithm at the SmartPhone Side

This section presents the complete algorithm being implemented on the
smartphone. The flow diagram of the test app is shown in Figure 4.4.

CONMNECT DEVICE

—]

Select ‘Concept Car’ as
Device from the List

l

BLUETOOTH
SERVICE " 3

Connection
Established?

Start separate
Read/Write Thread

O

Selector Button LED Button
Control Contral

1

Start Reading Data
stream

DATA HANDLER
Decode Stream

D=
Desired ID

Set Button
e— o

Set Button "Off’

Figure 4.4: The Smartphone Test App Flow Diagram

20 CHAPTER 4. INTEGRATION

The Test app starts with the Connect Device class, that provides the user
a list of all the available devices, eventually selecting the desired device. As
the Concept Car is selected from the list, it passes the MAC address to the
Bluetooth Service class, which attempts to connect with the Concept Car,
and upon success it starts a separate thread for reading/writing data stream
over the Bluetooth interface. It prompts the user, in case the connection
failed. After a successful start of the new thread, initialization package is
awaited. As soon as the package is received, it extracts the number of frames
field (number of messages to be enclosed inside each package) and sends
back an acknowledgment package. This ensures that the connection has
been successfully established and both the devices are perfectly synchronized.
The user is now allowed to invoke the controls (LED button and the selector
button) on the smartphone, and on the Wireless ECU. Pressing the LED
button, toggles the LED data and passes this data to the Data Handler class.
The Data Handler class encodes the provided data along with the identifier
(ID = 0x01 for the LED), in accordance with the standard data package.
This data package is then transmitted over the Bluetooth interface using
the Bluetooth Service write routine. Similarly, the selector button status
is received in accordance with the standard data package from the Wireless
ECU. This time the Data Handler class accepts the package, decodes it, and
finally extracts the identifier and data from it. If the identifier matches the
button’s identifier i.e. ID = 0x02, it changes the state of the button control
on the smartphone, as directed by the data. Since this app only accepts the
data enclosed inside a standard data package, therefore it ignores any corrupt
form of data.

4.2.3 Analyzing the Algorithm at the Wireless ECU
Side

This section presents the complete algorithm being implemented on the Wire-
less ECU. The flow diagram of the test app is shown in Figure 4.5. The
test app starts with sending the initialization package continuously until the
smartphone acknowledges the connection, by sending an acknowledgment
package. As soon as it receives the acknowledgment package, the number
of frames field is extracted. This denotes the number of messages (frames)
enclosed inside each package sent from the smartphone, for the rest of the
application.

4.2. THE TEST APPLICATION 51

PACKAGE HANDLER

!

Send Initialization
Package

Acknowledgement
Package Received ?

! ¥
Selector Button
Control

LED Button
Control

1

Start Reading Data
Stream

)

PACKAGE HANDLER

]

| Decode Stream |

. PACKAGE CAN
No D= HANDLER HAMDLER
Desired ID ¥ ¥

Place Data on
CAN Bus

Encode Stream

Set OUTPIN
[+ 'E0 le yanDLER
on’

OUTPIN
HAMDLER

I Set LED "Off* |

Figure 4.5: The Wireless ECU Test App Flow Diagram

The user can now invoke the controls (LED button and the selector button)
on the smartphone, and on the Wireless ECU. Pressing the selector button,
toggles the button status and passes this data to the Package Handler class
and the CAN Handler class. The Package Handler class encodes the provided
data along with the identifier (ID = 0x02 for the button), in accordance with
the standard data package, as shown in Figure 4.3. This data package is then
transmitted over the Bluetooth interface, whereas the CAN Handler class
places the same data over the CAN bus. Similarly, LED data is received
in accordance with the standard data package from the smartphone. This
time the Package Handler class accepts the package, decodes it, and finally
extracts the identifier and data from it. If the identifier matches the LED

52 CHAPTER 4. INTEGRATION

identifier i.e. ID = 0x01, it changes the state of the LED on the Wireless
ECU, as directed by the data, by using the Outpin Handler class. Since this
app only accepts the data enclosed inside a standard data package, therefore
it ignores any corrupt form of data.

4.2.4 The Test App Results

The algorithm discussed in the previous sub-sections, has been successfully
tested with the expected results. As discussed in the beginning of this section,
the test app comprises of two main tasks. The first task is to toggle the
LED on the Wireless ECU, by invoking the LED button on the smartphone.
The second task is getting the status of the selector button of the Wireless
ECU, on the smartphone. The results collected, while the controls have been
invoked, are shown in Figure 4.6:

Turn Led on Button is off Turn Led off Button is on

Figure 4.6: The Test App Results

Pressing the LED button on the smartphone and pressing the selector button
on the Wireless ECU changes the states of the controls. With this, we also
validate the data being sent from one point to other. This successfully verifies
that the developed hardware and the software libraries operate as expected.
With these results, we can now move towards the implementation of our final
applications namely the Smart monitor and the Smart controller, without
being any more concerned about the hardware and software components.

Chapter 5

Deployment and Delivery

'Gaining Desired Results’

This chapter finally presents the solution to the problems (as discussed in
Chapter 1) by implementing the final applications, using the hardware tools
and software libraries designed, developed, tested and verified in the
previous phases. The idea of monitoring the car internals lively, and making
the car controllable independent of the radio transmitter system, has been

practically implemented, by developing two separate applications.

23

o4 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.1 Implementing the Solution

Before presenting the final applications, let’s recall the problems under con-
sideration and their devised solutions. This thesis is subjected to solve two
main problems, on the existing platform of the Concept Car:

1. Monitoring the car internals: Lively monitoring the car internals on
the fly, while the car is being driven

2. Driving the car independent of the radio transmitter system: Driving
the Concept Car over shorter range of distances for testing purposes,
by using a user end device (a smartphone), as an alternative to the
long range radio transmitter system

The devised solution for both the problems is getting a wireless access over
the centralized CAN bus. For this purpose, we added two important tools:

1. A separate ECU incorporating wireless communication i.e. introduc-
tion of the Wireless ECU

2. A software tool exploiting the special hardware features, at the smart-
phone side

Based on these devised solutions, in the previous phases; we designed, de-
veloped, integrated and tested all the hardware and software components
required to realize a wireless access to the Concept Car. Although a wireless
path of interaction with the Concept Car has been successfully established,
but still it offers no use unless some real time applications are implemented,
that solve the discussed problems. In this final phase, the final two applica-
tions that utilize all the hardware and software components, developed and
tested in the previous phases, are presented. Each application presents the
solution to the respective area of problem, for instance, the Smart Monitor
targets the problem of monitoring the car internals, and the Smart Controller
targets the problem of driving the car independent of the transmitter sys-
tem. Practically, both of these applications are implemented as two parts of
the same application, at both ends (the Wireless ECU and the smartphone).
Consequently, at the smartphone, both applications share the same startup
interface (discussed in detail in the next section).

5.2. THE STARTUP INTERFACE AND THE CONNECTION MECHANISMb55

5.2 The Startup Interface and the Connection
Mechanism

Before going deep into the individual applications, it is important to present
the startup interface and the connection mechanism (connecting to the Con-
cept Car), as it is shared by both the applications. Starting with the startup
screen (as shown in Figure 5.1), it comprises of both the applications namely
the Smart Monitor and the Smart Controller. The color and the text of the
header indicates the connection status. The user can select any of the ap-
plication from the startup screen, only once the device has been connected
to the Concept Car. The application does not proceed further until the
smartphone is connected to the Concept Car.

Welcome to Concept Car

Smart Monitor Smart Controller

Figure 5.1: The Startup Interface

The connection mechanism corresponds to connecting with the Concept Car.
There are two different ways of connecting with the device, either manually
or automatically. Starting with the manual connection, this mechanism is as
simple as going through couple of screens (as shown in Figure 5.2). Going
through from step 1 to step 3 serves the purpose.

26 CHAPTER 5. DEPLOYMENT AND DELIVERY

—_—
Seaming.

ConceptCar. connected '
Welcome to Concept Car

New Devices

ConceptCar
00:06:66:43:00:A8

Paired Devices $ - g

ConceptCar Smart Monitor Smart Controller
00:06:66:43:00:A8

GT-19300
B8:D9:CE:9C:60:2E

——————
- Scanfornewdevices

Step 3

Step 1 Step 2

Figure 5.2: The Manual Connection Mechanism

Pressing the menu button brings in the option for connecting to the device,
as shown in Step 1. Touching the Connect to Concept Car option on the
menu bar displays the next interface as shown in Step 2. This interface
presents the already paired devices and the list of newly discovered devices.
As soon as the desired device is selected, it switches back to the startup screen
while attempting to connect with the selected device. Upon success a toast
message (Connected to ConceptCar) pops up, and the header turns green
with the text ConceptCar: Connected, as shown in Step 3. Upon failure a
toast message (Unable to connect to device) appears, and the header remains
unchanged. A connected device can be disconnected at any time by invoking
the Disconnect option in the menu bar.

Introducing the Smart Key

As discussed in Chapter 2, the NFC technology can be possibly used for
bootstrapping more capable wireless standards like Bluetooth, WiF1i etc. One
idea could be connecting to a Bluetooth/WiFi device, once the NFC device
finds the desired tag. The idea of connecting to a Bluetooth device using the
NFC technology leads to the Automatic Connection Mechanism. An NFC
tag written with a plain text ConceptCar is installed downside on the front
guard of the Concept Car. Bringing the smartphone in contact with the
written tag, automatically attempts to connect with the Concept Car. This
automatic way of connection, avoids going through multiple screens (as in
case of manual connection mechanism), and is termed as the Smart Key (as
shown in Figure 5.3).

5.3. ANALYZING THE INITIALIZATION/ACKNOWLEDGMENT PACKAGE57

Figure 5.3: The Smart Key

As soon as the smartphone is brought in contact with the programmed tag,
the Smart Key attempts to connect with the Concept Car. Upon success
a toast message (Connected to ConceptCar) pops up, and the header turns
green with the text ConceptCar: Connected. Upon failure a toast message
(Unable to connect to device) appears, and the header remains unchanged.

5.3 Analyzing the Initialization /Acknowledgment
Package

It is important to note that the Smart Monitor and the Smart Controller
are implemented as two parts of the same application, at both ends (at the
smartphone and the Wireless ECU). As discussed in Chapter 3, the initializa-
tion /acknowledgment package apart from initially synchronizing both ends,
also presents the package size (frames enclosed inside each package) for the
rest of the application, from each end. Therefore, as soon as the connection
is initiated from the smartphone, it is important to convey the number of
messages enclosed inside each package, from each end. Since the Smart Mon-
itor’s app is tested with sixteen frames (sixteen different CAN messages), the
Wireless ECU sends the initialization frame with sixteen in the number of
frames field. With this the smartphone realizes that each package contains

o8 CHAPTER 5. DEPLOYMENT AND DELIVERY

sixteen frames. Similarly, for the Smart Controller, we need three messages
(steering, throttle and emergency) enclosed inside each package, sent from
the smartphone to the Wireless ECU. Therefore, in response to the initializa-
tion package, the smartphone sends an acknowledgment package with three
in the number of frames field. The initialization /acknowledgment package
as sent from each end is shown in Figure 5.4:

A single frame

SOF Number of Reserved EOF
- Frames =16 -
[bytes]

1 byte 1 byte 5 bytes 1 byte

The Initialization Package

SOF Number of Reserved EOF
- Frames =03 -
[bytes]

1 byte 1 byte 5 bytes 1 byte

The Acknowledgement Package

Figure 5.4: The Initialization/Acknowledgment Package

5.4 The Concept Car’s Smart Monitor

As the name suggests, this app specifically targets the first problem i.e. lively
monitoring the car internals on the fly. As discussed in Chapter 1, there ex-
ists two modes pertaining to monitoring the car internals, namely the Online
Mode (uses the wired CAN viewer hardware) for the static car, and the Of-
fline Mode uses the secure digital card (SD card). The idea of implementing
the Smart Monitor is to combine the features of both the modes, thereby
allowing the user to monitor the parameters of the car lively while it is being
driven, or later using the SD card or internal memory of the smartphone.
Before the design of this app is further elaborated, let’s discuss the already
existing online and offline modes of monitoring:

5.4. THE CONCEPT CAR’S SMART MONITOR 59

Online Mode Using the CAN Viewer

The online mode uses a USB based CAN adapter namely Tiny-CAN [48].
The USB interface connects the Concept Car to the PC or laptop. Since it
uses the wired connection, it is only used when the car is static or driven
while suspended. Once connected to the PC, data over the CAN bus can be
monitored using the user interface as shown in Figure 5.5.

File Macro Filter Plugins View Options Help
re) s 1 I
New Load Save Exit Setup
105 Time-Stamp Msg.-Typéid DL{Data (Hex) Data (Dezimal)

Index [Time-Stamp. Msg.Typeid IDL(Data (Hex) Data (Dezimal)

IWHEELSPEED RL
WHEELSPEED RR
WHEELSPEED FL
WHEELSPEED_FR
ldur -

steering-
Inertial-Ax

Rinectial i

Figure 5.5: The Online Monitoring Mode

As highlighted, using the CAN viewer, the user can filter out undesired mes-
sages, so as to receive the messages only with the desired identifiers. This
interface displays; the timestamps, CAN message type (either standard or
extended), id, data length and data.

Offline Mode Using SD Card

For the offline mode, one of the SensorBoard namely InertialBoard writes
data to a FAT16-formatted SD card that is inserted into the card reader
slot. When the board is booted and a valid card is detected, a new file is
created and data from all messages on the CAN bus is written into this file.
There is no mechanism to specifically close the log file except remove the card
or power down the board. There are two status LED’s on the board that
specifically indicate the logging status. The LED LOGGER ON (while in the
ON state) indicates the SD card is present (it has been detected) and the file
could be opened for writing. The LED LOGGER WRITE blinks once each
time a 512 bytes sector is dumped to the SD card. It is a good indicator if
logging actually works. For each CAN message the following data fragment
is written, as shown in Figure 5.6:

60 CHAPTER 5. DEPLOYMENT AND DELIVERY

Timestamp Identifier Data

4 bytes 2 bytes 4 bytes

Figure 5.6: SD Card Log Data Format

The timestamps field holds the time in ms since the board was booted up.
The remainder of the data fragment is the CAN message’s id and content.
For each received CAN message, a new fragment of this sort is appended to
the log file. Since there is no mechanism for explicitly closing the log file, the
last message fragment in the log file is usually cut off. The data is stored to a
newly created file with the naming scheme LOG<nr>.CAN. The <nr> part
is a consecutive number to name all files differently and not to overwrite an
older log. An internal counter increments each time a new log file is written,
and the counter state is conserved in EEPROM over reboots. Reflashing the
board resets the counter to 0. A specimen of a logged file, as stored in the
SD card according to the described format is shown in Figure 5.7.

1 Timestamp:Id:Data
2 500:16:2081

3 500:17:4294936427
4 500:18:137

5 500:8:63

€ 500:9:28007

7 500:10:22171
8 500:11:16194
9 500:34:1904

0 500:37:1982
11 500:32:1

2 1289:16:1893
3 1289:17:2043
4 1289:18:136

5 1290:16:2251
6 1290:17:1978
7 1290:18:137

g2 1290:9:23325
9 1290:10:21903
20 1290:11:15323
21 1293:16:1868
2 1293:17:2069
23 1293:18:136
24 1293:8:63

25 1295:18:2147
6 1295:17:2059%
7 1295:18:138
28 1296:16:2226
29 1296:17:1904
0 1296:18:138
TABRLIALTIAD

Figure 5.7: The Offline Mode Logged File

5.4. THE CONCEPT CAR’S SMART MONITOR 61

5.4.1 The Smart Monitor’s Design

As discussed, this app is specifically designed with the features of the already
existing online and offline modes, while adding new values to them. Starting
with the online mode, it allows the user to monitor the Concept Car in
real time only under the condition the car stays static. This is mainly due
to the wired connectivity of the Tiny-CAN hardware. The Smart Monitor
overcomes this restriction as it incorporates the wireless connectivity. The
user can lively monitor all the parameters of the car on the fly, while the car
is being driven. Additionally, this app allows the user to store all the desired
data (internals of the Concept Car) on the SD card or internal memory of
the smartphone, thereby provides the feature of the offline mode. Let’s now
discuss how these features are designed and implemented within the Smart
Monitor’s app.

Once the smartphone is connected to the Concept Car (either manually or
using Smart Key), invoking the Smart Monitor control on the startup screen
opens the Smart Monitor interface, as shown in Figure 5.8.

TIMESTAMP]

A

Stop

LogData

Figure 5.8: The Smart Monitor’s Interface

62 CHAPTER 5. DEPLOYMENT AND DELIVERY

Pressing the menu button brings in four different options. Starting with the
Start option, the Smart Monitor begins to collect and display data from the
received stream, once this option has been invoked. The Stop option, as the
name suggests, allows the user to stop displaying the messages at any point
in time. The Filter, as the name suggests, allows the user to filter out the
messages that are not desired, so as to receive only the messages with the
desired identifiers. It allows the user to select messages from the default list
and add new messages. Invoking this option displays a dialog box as shown
in Figure 5.9.

Add new messages

50

Wheelspeed_RL

Wheelspeed_RR

Throttle

Steering

Ok Cancel

Figure 5.9: The Smart Monitor’s Filter

This dialog box is programmed with a list of important messages, with each
message having its own unique id. The user can select any of the default
messages by simply ticking out the box against the desired message. The
user can also add a new message with a unique id, by typing in the title
and id on the text boxes provided at the top. Note that this unique id must
match one of the CAN id’s of the message sent from the Wireless ECU. Once
done, pressing the OK button switches back to the Smart Monitor interface,
this time, with the newly added messages, as shown in Figure 5.10. This is

the same feature as provided by the user interface of the online mode (Tiny
CAN viewer).

5.4. THE CONCEPT CAR’S SMART MONITOR 63

Smart Viewer

TIMESTAMP
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Figure 5.10: The Filter’s Newly Added Messages

As shown in the figure above, each message is displayed with; a title (entered
in the dialog box), a timestamps indicating the time in ms since the Start
option is invoked, the unique id (entered in the dialog box) and the data
received against the id. The order with which the Start and Filter option is
invoked, is unimportant.

Last but not least, the LogData option from the menu bar (as shown in Figure
5.8), allows the user to log all the added messages in a file on the smartphone.
The logged file is stored as a Log.file in the internal memory/SD card of the
smartphone. This data logger exactly follows the same format as discussed
in the previous section (see Figure 5.6). However unlike the offline mode, it
overwrites the previously created log file. It is recommended, therefore, to
rename the already stored file before logging the data again. The data logger
once started, continues to log until the termination of the Smart Monitor’s
app. The results obtained are discussed in Section 5.4.4.

64 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.4.2 Analyzing the Implementation at the Smartphone
Side

This section elaborates the implementation of the Smart Monitor by present-
ing the flow diagram and the code examples of the app, at the smartphone
side. Let’s start with discussing the flow diagram of the app, as shown in
Figure 5.11:

O
{ start ¥

Manual

The Smart Key Connection

I—, ‘es
CONNECT DEVICE Select ‘Concept Car as
DATA HANDLER

send Acknowledgement
BLUETOOTH Package
SERVICE l

Collect Received Data
Connection
Established?

Stream
Yes

Device from the List

DATA HANDLER
Decode Stream

Start Separate
Read/wWrite Thread

O

DATAHANDLER

Start Logging

‘es
Apply Filter
Display Messages

Figure 5.11: The Smart Monitor’s Flow Diagram at the Smartphone Side

The app starts with initiating the connection from the smartphone, either
manually or using the Smart Key. In either case, the name of the device is
used by the Connect Device class, that extracts the mac address and passes
it to the Bluetooth Service class. This class attempts to connect by using the
provided mac address. Upon success, prompts the user with a toast message,
and creates a thread for reading/writing data stream over the Bluetooth in-
terface. It also prompts the user, in case the connection failed. After a

=

M

w

5.4. THE CONCEPT CAR’S SMART MONITOR 65

successful start of the new thread, an initialization package is awaited. As
soon as the package is received, the Data Handler class extracts the num-
ber of frames field (number of messages enclosed inside each package), and
sends back an acknowledgment package. The initialization /acknowledgment
packages are sent as discussed in Section 5.3. This ensures that the con-
nection has been successfully established and both the devices are perfectly
synchronized. With this it now starts to collect the received stream from the
Bluetooth Service class, and passes it to the Data Handler class, that decodes
the tuple (id, data) from the stream. The messages with the received iden-
tifiers are compared against the identifiers set in the filter, and the matched
ones are displayed on the interface. The rest are said to be filtered out. It
continues to collect, decode, filter and display messages until the termination
of the connection. The user at any point in time, using the menu bar, can
invoke the LogData feature. Once invoked, the Data Handler class creates
a file and continues to log data until the termination of this app. Since this
app only accepts the data enclosed inside a standard data package, therefore
it ignores any corrupt form of data.

Code Snippets

Let’s now present some of the important methods of the library implemented
in different classes, responsible for initiating connection, data handling and
data streaming:

There exist two versions of connectDevice method that are responsible for
initiating connections. One of the method uses the manual method as:

/xx Method that connects the Concept car
x @param data Mac address received from the
ConnectDevice classx*/
private void connectDevice(Intent data) {
mConnectionSource = false;
// Get the device MAC address
String address = data.getExtras|()
.getString (connectdevice .EXTRA DEVICE ADDRESS) ;
// Get the BluetoothDevice object
BluetoothDevice device = mBtAdapter.getRemoteDevice (
address) ;
// Attempt to connect to the device
mBtService. connect (device) ;

w

S8

=]

=t

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

66

CHAPTER 5. DEPLOYMENT AND DELIVERY

In line

e 6) the Mac address from the Connect Device class is retrieved, in the
user understandable string format

e 9) the Bluetooth object is requested for the Mac address received in
the previous step

e 11) finally, the device object is passed to the Bluetooth Service class,
that attempts to connect with the device

The next method is called only when an NFC event occurs.

JEE:

*
k

Method that connects directly to Concept Car, using
the Mac address received from the NFC event

x @param address

*/

private void connectDevice(String address) {

mConnectionSource = true;
// Get the BluetoothDevice object
final BluetoothDevice device = mBtAdapter.
getRemoteDevice (address) ;
//since a Ul component has to be accessed, it should
run on UI thread
if (!connectionPending) {
connectionPending = true;
runOnUiThread (new Runnable () {
public void run() {
mConnectionProgress =
ProgressDialog.show (ConceptCar. this, "",
"Connecting to Concept Car");
//Attempt to connect to the device
mBtService. connect (device);

™

~ =) ot - w

©

10

11

—-
™M

13

14

15

16

17

18

19

20

21

5.4. THE CONCEPT CAR’S SMART MONITOR 67

In line

e 10) the Bluetooth object is requested based on the address received
from the NFC event

e 14) executes a separate thread on the user interface thread, as a progress
dialog is to be initiated

e 16) a progress dialog is initiated indicating the connection status

e 20) meanwhile the connection method is called

The decoder method that extracts the tuple (id, data) from the received
stream, is implemented in the Data Handler class as:

JEE
x Extracts the tuple (id, data) from the stream
*
/
public int decodePackage(byte|] readbuf, int frment) {
byte j = 0;
byte k = 0;
if (readbuf|0] = |’ && readbuf|[7] = 7’|’ &
framecount > 0) {
return —1;
}
for (int i = 0; i<framecount; i++,j+=8) {
if (readbuf|j] = 77 && readbuf|j+7] =) {
mld[k] = (short) ((short) readbuf[j+1] |
(short) readbuf|j+2]<<8);
mMessage [k] =
(int) ((int) (readbuf[j+3] & OxFF) |
(int) ((readbuf]|j+4]|&0xFF)<< 8) |
(int) ((readbuf[j+5] & OxFF) << 16) |
(int) ((readbuf|[j+6] & OxFF) << 32));
mCurrentTime = System.currentTimeMillis () /1000;
mTimeStamp [k| = mCurrentTime. toString () ;
k++;
}
}

mMessageCount = k;
J=0;
return k;

™

w

S

S8

=]

=t

©

10

11

12

13

14

15

16

17

18

19

21

22

23

24

68 CHAPTER 5. DEPLOYMENT AND DELIVERY

In line

e 7) this if statement keeps track of the initialization package

e 10) extracts all the messages from the package along with their identi-
fiers

e 19) calculates the timestamps in ms

e 26) returns total number of messages received

The updateLog method is implemented inside the Data Handler class, and
is responsible for writing the messages on the SD card or ROM:

/%
x Updates the log file with the newly received messages
x @param islogenabled if the LogData control is invoked
*
/
public void updateLog(boolean islogenabled) {
if (mFileWriter != null) {
try {
if ((islogenabled) &
(!mCurrentTime. equals (mPreviousTime)))
for (int i = 0; i<mMessageCount; i++) {

{

mLogText =

mTimeStamp|i] + ":" + HexString ((mlId[i]))
+ ™" + String (mMessage[i]) + "\n";
mFileWriter. write (mLogText) ;

mPreviousTime = mCurrentTime;

}
1
}

catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}
1
}

In line

e 6) this if statement checks if the file is already created

w ¥ =

S

© oo ~ [=2]

10

11

13

14

15

16

5.4. THE CONCEPT CAR’S SMART MONITOR 69

e 8) this if statement checks if the user has invoked the LogData option
from the menu bar

e 10) this for loop is responsible for writing the file according the defined
format

The Bluetooth Service class is held responsible for streaming data in and out
from the Bluetooth interface. Below is the part of the code, that receives the
data stream:

// Keep listening to the InputStream while connected
while (true) {
try {
if (buffer |[0] = |’ && buffer 7] = ’|7) {
ackData = mDataHandler. acknowledgePackage (
MESSAGE_COUNT) ;
WritetoDevice (ackData) ;
}
dinput.readFully (buffer ; 0, num_of bytes);
mHandler. obtainMessage (ConceptCar . MESSAGE READ,
num_of bytes, —1, buffer).sendToTarget () ;
} catch (IOException e) {
Log.e(TAG, "disconnected", e);
connectionLost () ;
break ;

}

In line

e 2) loop until the end of application or disconnection

e 4) this if statement keeps track of the initialization package

e 5) get acknowledgment package from DataHandler

e 6) method that sends the acknowledgment package

e 8) receives the data bytes as indicated by the initialization package
e 13) this method informs the handler, if the connection is lost

e 14) finishes the current thread

70 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.4.3 Analyzing the Implementation at the Wireless ECU
Side

This section elaborates the implementation of the Smart Monitor by present-
ing the flow diagram and the code examples of the app, at the Wireless ECU
side. Let’s start with discussing the flow diagram of the app, as shown in
Figure 5.12:

PACKAGE HANDLER

Smart Monitor's

1 Wode
Send Initialization ;
Package
CAN
HANDLER
Acknowledgement l
package Received? | Receive CAN Messages |

PACKAGE HANDLER

Encode Stream
Write Stream

INPIN
HAMDLER

!

Get Selector Switch
Status

v
| }

| Selector Switch—0 I I Selector Switch =1 I
QUTPIN QUTPIN
HAMDLER HAMDLER
Set Model LED Set Mode2 LED
Reset Mode2 LED Reset Model LED
smart Monitor's Smart Controller's
Mode Mode

Figure 5.12: The Smart Monitor’s Flow Diagram at the ECU Side

At the Wireless ECU, the Smart Monitor and the Smart Controller are im-
plemented as two different modes within the same application. At any point
in time, the user can switch between the modes by using the selector switch.
In this section the Smart Monitor’s mode implemented at the ECU is dis-
cussed. The app starts with the Package Handler class sending the initial-
ization package, until the acknowledgment package is received. As soon as
it receives the acknowledgment package, extracts the number of frames field,

10

11

13

14

15

16

17

18

19

20

5.4. THE CONCEPT CAR’S SMART MONITOR 71

and the Inpin Handler class gets the status of the selector button. This
status is also sent to the CAN bus using the CAN Handler class. The initial-
ization /acknowledgment packages are sent as discussed in Section 5.3. If the
selector switch provides a logic 0, the app starts executing the Smart Mon-
itor mode. This mode uses the CAN handler for continuously receiving the
CAN messages. The desired messages are then encoded using the Package
Handler class, in accordance with the standard data package. Finally, the
data package is sent over the Bluetooth interface using the UART Handler
class. It continues to transmit the received CAN messages until the mode
changes or the ECU gets reset. Since this app only accepts the data enclosed
inside a standard data package, therefore it ignores any corrupt form of data.

Code Snippets

Let’s now present some of the important methods of the library implemented,
responsible for data handling and data streaming at the ECU:

The Wireless ECU keeps sending the initialization package until it receives
the acknowledgment package, using the DEVICE _init method implemented
in the Package Handler class as:

uint8 t DEVICE init(uint8 t number of frames){
/+* Wait for data to be received x/
while (| (UCSRIA & (1<<RXC1))){
PACKAGE _init(number of frames);
_delay _ms(1000);
1

/+* Get and return received data from buffer =/
currentByte = UDRI;

if (SOF_ACK = currentByte){
currentByte = UARTI1_ Receive () ;
while (currentByte != EOF ACK) {
data|index| = currentByte;
index = index + 1;
currentByte = UART1 Receive () ;
}

return (data[0]) ;

}

return O0;

M =

'

© 0o ~ [=2] (5]

10

11

12

13

14

15

16

17

1

0o

19

20

21

22

23

72 CHAPTER 5. DEPLOYMENT AND DELIVERY

In line

e 3) this while loop continues to send initialization package until the first

byte is received

e 10) this if statement checks if the received package is the acknowledg-

ment from the smartphone

e 17) returns the number of frames field to the calling function

The PACKAGE _send method implemented in the Package Handler class, is
responsible for encoding the messages and id into a stream, and transmitting

this stream via the Bluetooth interface:

void PACKAGE send(uint32 t xdata, uintl6 t xid, uint8 t

framesize) {
for (i = 0; i<framesize; i++, j+=8, y++) {
txPackage x| = SOF;
x = x + 1;
for(k = 0; k<2; k++) {
txPackage [x]| =
(uint8_t) (x(id + y) >> SHIFTCOUNT|k]) ;
x = x + 1;
}
for(k = 0; k<4; k++) {
txPackage [x]| =
(uint8_t) (x(data + y) >> SHIFTCOUNT|k]) ;
x = x + 1;
}
txPackage |x| = EOF;
x = x + 1;
}
//begin writing the stream encoded
for (i = 0; i<framesizex8; i++)
{
UART1 Transmit (txPackage|i]) ;
}
}

In line

e 2) this for loop is the most outer loop that runs frame wise

5.4. THE CONCEPT CAR’S SMART MONITOR 73

e 3) Inserts the SOF byte for the current frame
e 5) this for loop is responsible for encoding the id in the stream
e 7) extracts the id byte-by-byte
e 10) this for loop is responsible for encoding the data in the stream
e 12) extracts the data byte-by-byte
) inserts the EOF for the current frame

e 15

e 19) this for loop is responsible for writing the encoded stream over the
Bluetooth interface

e 21) uses the transmit method from the UART Handler class

The PACKAGE _send method internally uses the UART Handler’s UART _trans-
mit method for writing the stream over the Bluetooth interface as:

-

- w ~

© oo ~ [=2] ot

void UARTI1_ Transmit (uint8 t data)

{

/* Wait for empty transmit buffer x/

while (! (UCSRIA & (1<<UDREL)));
/+* Put data into buffer , sends the data x/
UDR1 = data;

}

In line

e () wait until the transmit buffer is empty

e 9) send the data byte over the Bluetooth interface

This method, as implemented in the UART Handler class, sends only one byte
from the Bluetooth interface. It is used in a loop by the PACKAGE SEND
method for streaming out data according to the standard data package.

A CD/DVD is attached at the end of the report for complete set of code.

74 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.4.4 Results

As discussed in Chapter 3, a standard data package is tested with at most
16 frames/messages, the Smart Monitor’s app has also been tested with this
limit. The Wireless ECU receives 16 CAN messages from the CAN bus, and
sends it to the smartphone. These messages as received by the smartphone
are displayed on the Smart Monitor as shown in Figure 5.13:

ConceptCar

Smart Viewer

t1 1357571817
Wheelspeed_FL 1357571817
Wheelspeed_FR 1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817
1357571817

WM =000 00CcKMOOOoOoOoo

Figure 5.13: The Smart Monitor’s Received Messages

As discussed, using the Filter option from the menu bar, the user can select
13 default messages that can be received from the CAN bus from different
ECUs. Additionally, the user can add messages by typing in the title and id
in the text boxes. These messages are highlighted with a blue color as shown
in the figure.

5.4. THE CONCEPT CAR’S SMART MONITOR 5

Invoking the LogData option from the menu bar, creates a Log.file on the SD
card or internal memory of the smartphone, and begins writing the added
messages. This feature allows the user to record the parameters of the Con-
cept Car, that can be used later for monitoring and analyzing purposes. A
Log.file has been stored while using the Smart Monitor’s app, is shown in
Figure 5.14:

1 S-Mittwoch-Januar

3 TIMESTAMP:ID:DATA
4 1357759264:2
5 1357759264:2
1357759264:2
1357759264:8:
1357759264:9:
b
d
e

1 ™

9 13577539264 :
10 1357759264
11 1357759264:
12 1357759264:10:
13 1357759264:11:
14 1357759264:12:
15 135775%264:20
16 1357759264:49
17 1357759264:4a:
12 1357759264:4b:
39 1357759264:4c:
1357753265
1357753265
1357753265
1357753265
1357753265
1357753265
1357753265
1357753265
1357759265:10:0
1357759265:11:0

[T e s R s s R s)

L T S T Ny
K3 n

== === =T
Lo R L= L= B = = ==

1 ™

m @ O owom [Ry R

PR3 ORI ORY ORI ORI ORI ORI ORI ORI RS

Figure 5.14: The Smart Monitor’s Logged File

The LogData feature exactly follows the same format as that of the offline
mode. It is important to note that unlike the offline mode, LogData always
overwrites the file created previously. Therefore it is recommended to rename
the logged file once the logging is done.

76 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.5 The Concept Car’s Smart Controller

As the name suggests, this app specifically targets the second problem i.e.
controlling the Concept Car with an alternative to already existing radio
controlled transmitter system. Recall from Chapter 1, this radio transmitter
generates the PWM signals for steering and driving the car. Now the idea
is to replace and map these signals using the Smart Controller app. Apart
from steering and driving the car, this controller also brings in the emergency
mode, which is previously implemented by using a separate transmitter sys-
tem, thereby combining features of both the transmission systems. The idea
of implementing the Smart Controller is to introduce a user controllable
interface for driving the Concept Car over shorter range of distances, for
testing purposes. Let’s proceed now with discussing the design of the Smart
Controller:

5.5.1 The Smart Controller’s Design

Once the smartphone is connected to the Concept Car (either manually or
using Smart Key), invoking the Smart Controller’s control on the startup
screen brings in three different modes; Sensor Mode, Manual Mode, and
Emergency Mode, as shown in Figure 5.15:

Manual Sensor
Mode Mode

Emergency Mode

Figure 5.15: The Smart Controller’s Modes

5.5. THE CONCEPT CAR’S SMART CONTROLLER 77

Sensor Mode

As the name suggests, this mode brings in another hardware feature of the
smartphone namely accelerometer. This mode is implemented with the aim
of steering the car by generating the linear movements. For this purpose,
acceleration values in the range -8m/s* to 8m/s? along the y-axis are mapped
to the steering signals from 1ms to 1.8ms duty cycles respectively. A lookup
table has been created so that each value of acceleration corresponds to a
specific steering signal. An acceleration of -8m/s? corresponds to 1ms duty
cycle (extreme left position), whereas an acceleration of 0m/s? corresponds
to approximately 1.5ms (idle position), and finally an acceleration of 8m/s?
corresponds to approximately 1.8 ms duty cycle (extreme right position).
The formula used for creating this lookup table is given as:

LookUpTable[ScaledAcc] = STEERING i, + CONST.ScaledAcc
where,

STEERING,,;, corresponds to 1ms duty cycle

CONST corresponds to increment factor, which is equal to 5

Scaled Acc corresponds to mapping the acceleration of (-8m/s? to 8m/s?) to
the range from 0 to 160. It is scaled as:

ScaledAcc = Acceleration,_,zis.10 4 80

As the acceleration along y-axis changes by a factor of 0.1m/s?, duty cycle
changes by a factor of 0.005ms, therefore, this method generates the steering
signals linearly from 1ms to 1.8ms, as the acceleration changes from -8m/s?
to 8m/s%. For throttle, firstly, we have to drive the car for shorter range of
distances, inside a lab or a room. Secondly, the car runs quite faster even at
the lowest possible driving signals (a PWM signal with 1.6ms duty cycle).
Therefore for every mode the throttle signal is generated with a fixed lowest
driving value. Using Sensor Mode, a fixed value corresponding to a duty
cycle 1.6ms is sent each time the acceleration along x-axis falls below 0m/s%.
The Sensor Mode interface is shown in Figure 5.16:

78 CHAPTER 5. DEPLOYMENT AND DELIVERY

lo.270349
J

X-Axis

0.076614« .
Y-Axis

1.417367! .
Z-Axis Servo Angle

Figure 5.16: The Smart Controller’s Sensor Mode

This interface graphically indicates the servo angle, as depicted by the ac-
celeration signals. At 1ms duty cycle, the servo angle reaches approximately
to -90 degrees. Similarly, at 1.5ms it reaches 0 degrees and around 2ms it
reaches 90 degrees. This interface indicates only these three positions, when
the acceleration reaches the corresponding values. As already discussed, each
package sent from the smartphone includes three messages (steering, throttle
and emergency). The user can invoke the emergency stop from any of the
three modes. Pressing the menu button brings in the feature of forcing the
emergency stop.

Manual Mode

This mode generates the steering signals with the right and left arrow button,
and the throttle signal with the up and down arrow buttons, as shown in Fig-
ure 5.17. Unlike the Sensor Mode, it does not produce the linear movements
for steering, instead it generates the extreme position signals. Pressing the
left arrow button steers the car to the possible extreme left position by gen-
erating a value that corresponds to a PWM signal with 1ms duty cycle, and
pressing the right arrow steers the car to the possible extreme right position
by generating a value that corresponds to a PWM signal with 1.8ms duty
cycle. As already discussed in the Sensor Mode, for throttle, a fixed lowest
possible driving signal with a duty cycle of 1.6ms is used. Pressing the up
button generates this fixed throttle signal.

Likewise the Sensor Mode, invoking the ForceEmergencyStop option in the
menu bar forces the emergency stop.

5.5. THE CONCEPT CAR’S SMART CONTROLLER 79

Figure 5.17: The Smart Controller’s Manual Mode

Emergency Mode

Although each mode incorporates the feature of enforcing the emergency
stop, the Smart Controller also presents it as a separate mode. This mode
along with the emergency status fills the package with the ideal values of
steering and throttle. As shown in Figure 5.18, touching the green button on
the interface sends the emergency signal to the Wireless ECU, that forwards
it to the ActorBoard.

Figure 5.18: The Smart Controller’s Emergency Mode

80 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.5.2 Analyzing the Implementation at the Smartphone
Side

This section elaborates the implementation of the Smart Controller by pre-
senting the flow diagram and the code examples of the app, at the smartphone
side. Let’s start with discussing the flow diagram of the app, as shown in
Figure 5.19:

O—/—=" .

I Start I
Manual
The Smart Key Connection
—*| comnEecTDEVICE Select “Concept Car’ as
Device from the List

BLUETOOTH
SERVICE

Yes
DATA HANDLER

send Acknowledgement
Package

!

| select Controller’s Mode |

Connection
Established?

hdanual Mode

Read Buttons

ACCELEROMETER
HANDLER

Read Caleulate | Calculate | | DATA HANDLER |

Acceleration Steering Throttle
Encode Stream

Emergency Mode

Read Emergency
Status

——

I Steering Signal | | Thrattle signal I
Calculate Calculate
Steering Throttle Write Stream
‘ DATA HANDLER
Look-Up-Table
‘ Encode Stream
| steering Signal | | Throttle signal |

Write Stream
DATA HANDLER

Encode Stream

Figure 5.19: The Smart Controller’s Flow Diagram at the Smartphone Side

Likewise the Smart Monitor, it also initiates with the same connection mech-
anism. Upon success it creates a new read/write thread using the Bluetooth
Service class. After a successful start of the new thread, an initialization
package is awaited. As soon as the package is received, the Data Handler

10

11

13

14

15

16

5.5. THE CONCEPT CAR’S SMART CONTROLLER 81

class extracts the number of frames field (number of messages enclosed inside
each package), and sends back an acknowledgment package. The initializa-
tion /acknowledgment packages are sent as discussed in Section 5.3. With this
the user is now allowed to choose any of the three available modes, as dis-
cussed (see Figure 5.15). Each mode is expected to generate three messages
namely steering, throttle and emergency, with different source of controls.
Starting with the Sensor Mode, it uses the accelerometer to generate the cor-
responding steering and throttle messages. Similarly, using Manual Mode,
these signals are generated using the arrow buttons. Both of these modes
include the emergency status from the menu button. Finally, the Emergency
mode generates the emergency signal from the button, along with the idle
values of the steering and throttle. Once these signals are generated indepen-
dent of the mode, the Data Handler class encodes the stream, and sends it
using the Bluetooth interface. Since this app only accepts the data enclosed
inside a standard data package, therefore it ignores any corrupt form of data.

Code Snippets

Let’s now present some of the important methods of the library implemented
in different classes, responsible for data handling and data streaming for the
Smart Controller:

The encode method that receives the tuple (id, data), encodes it into a stream
in accordance with the standard data package, is implemented in the Data
Handler class.

byte || encodePackage(int || dat, short[] id, int frsz) {
byte || txPackage = new byte|[24];

byte i,k;

byte j = 0;
int x = 0;
byte y= 0;

for (i = 0; i<framesize; i++, j+=8, y++) {
txPackage|[x]| = SOF;
x = x + 1;
for(k = 0; k<2; k++) {
txPackage [x]| =
(byte) (id[y] >> SHIFTCOUNT[k]) :
x = x + 1;
}
for(k = 0; k<4; k++) {
txPackage [x]| =

17

18

19

20

21

22

24

10

11

12

13

14

82 CHAPTER 5. DEPLOYMENT AND DELIVERY

(byte) (data|y] >> SHIFTCOUNT|k]) ;
X =x + 1;

}

txPackage x| = EOF;

x = x + 1;

}

return txPackage;

}

In line

e 7) this for loop is the most outer loop that runs frame wise
e 10) this for loop is responsible for encoding the id in the stream

e 15) this for loop is responsible for encoding the data in the stream

The method responsible for writing the stream once encoded using encode-
Package method, is write method, implemented in the Bluetooth Service class
as:

JEE:
* Write to the connected OutStream.
x @param buffer The bytes to write
*
/
public void write(byte[] buffer) {
try {
mmOutStream . write (buffer);
// Share the sent message back to the Ul Activity
mHandler. obtainMessage (ConceptCar . MESSAGE WRITE,
—1, —1, buffer).sendToTarget () ;
} catch (IOException e) {
Log.e(TAG, "Exception during write", e);
}
}

In line

e 7) writes the package over the Bluetooth interface

e 9) informs the handler in the main activity after the stream is success-
fully written

5.5. THE CONCEPT CAR’S SMART CONTROLLER 83

5.5.3 Analyzing the Implementation at the Wireless ECU
Side

This section elaborates the implementation of the Smart Controller by pre-
senting the flow diagram and the code examples of the app, at the ECU side.
Let’s start with discussing the flow diagram of the app, as shown in Figure
5.20:

PACKAGE HANDLER Smart Controller's

ldode

: —

Send Initialization
PACKAGE HAMDLER
Package
Read Stream
Acknowledgement
Package Received? ‘
Decode Stream
INPIN Extract (data, I1d)
HANDLER ;
l CAN
Get Selector Switch HANDLER
Status ‘
‘ Send Messages on CAN
[| s
Selector Switch=0 Selector Switch =1 l

l }

OUTPIMN OUTPIN
HANDLER HAMDLER

} }

Set Model LED

Reset Mode2 LED

!

Smart Monitor's
fode

Set Mode2 LED

Reset Model LED

|

Smart Controller's
Mode

Figure 5.20: The Smart Controller’s Flow Diagram at the ECU Side

The app starts with the Package Handler class sending the initialization
package, until the acknowledgment package is received. As soon as it re-
ceives the acknowledgment package, extracts the number of frames field, and
the Inpin Handler class gets the status of the selector button. This status
is also sent to the CAN bus using the CAN Handler class. The initializa-

-

w

'

o

10

11

12

13

14

15

16

17

18

19

20

21

22

84 CHAPTER 5. DEPLOYMENT AND DELIVERY

tion /acknowledgment packages are sent as discussed in Section 5.3. If the
selector switch provides a logic 1, the app starts executing the Smart Con-
troller’s mode. Using the Package Handler class, it continuously reads the
stream, decodes it with respect to the number of frames, and extracts the tu-
ple (data, id). Finally, the CAN Handler class places the data with its unique
id on the CAN bus. It continues this procedure until the mode changes or
the ECU gets reset. Since this app only accepts the data enclosed inside a
standard data package, therefore it ignores any corrupt form of data.

Code Snippets

Let’s now present some of the important methods of the library implemented
in different classes, responsible for data handling and data streaming for the
Smart Controller:

The PACKAGE receive method implemented in the Package Handler class,
is responsible for receiving the stream over the Bluetooth interface, and ex-
tracting the tuple (data, id) from it as:

uint8 t PACKAGE receive(uintl6 t *id, uint32 t =xmsg,
uint8 t msgCount){
currentByte = CC_UART1 Receive() ;
for (i = 0; i<msgCount; i++) {
if (SOF = currentByte)
{
currentByte = UART1_ Receive () ;
while (currentByte != EOF){
data|index| = currentByte;
index = index + 1;
currentByte = UART1_Receive () ;
}
*(1d4++) = (uintl6_t) ((uintl6 t) data[ID BYTEO| |
(uintl6_t) data[ID_BYTEl| << 8);

* (msg++)

(uint32_t) ((uint32_t) (data|DATA BYTEO]) |
(uint32_t) (data|DATA BYTEl| << 8)|
(uint32_t) (data|DATA BYTE2| << 16)]
(uint32 t) (data|DATA BYTE3| << 24));
index = 0;

if (i+1 != msgCount)
currentByte = UART1 Receive() ;

5.5. THE CONCEPT CAR’S SMART CONTROLLER 85

else return 0;

}

return 1i;

2|}

-~ w M) -

oo ~ [=2] ot

10

In line

e 3) this for loop keeps track of the total number of frames

e 4) this if statement tests for the start of the package

e 7) this while loop deals with the current frame under reception
e 12) decodes the id from the currently received frame

e 14) decodes the data from the currently received frame

e 20) this if statements checks if the all the desired frames are received

The PACKAGE _receive method internally uses the UART Handler’s UART
ceive method for reading the stream over the Bluetooth interface as:

uint8 _t UARTI1_Receive (void)
{

/* Wait for data to be received x/
while (! (UCSRIA & (1<<RXC1)));

/+* Get and return received data from buffer x/
return UDRI;

}

In line

e 5) wait until the first byte is received

e 8) read the byte before the next byte is received

This method, as implemented in the UART Handler class, receives only one
byte from the Bluetooth interface. It is used in a loop by the PACKAGE _re-
ceive method for streaming in data according to the standard data package.

A CD/DVD is attached at the end of the report for complete set of code.

_re-

86 CHAPTER 5. DEPLOYMENT AND DELIVERY

5.5.4 Results

As discussed, the Sensor Mode of the Smart Controller generates linear steer-
ing movement as a function of the acceleration along y-axis. The Sensor
Mode interface indicates three important servo positions (extreme left, idle
and extreme right), as the acceleration reaches the corresponding values (as
shown in Figure 5.21). At an acceleration of -8m/s?, the servo angle reaches
the extreme left position (-90 degrees). Similarly, at 0m/s?, the servo an-
gle reaches the idle position (0 degrees). Finally at 8m/s? the servo angle
reaches the extreme right position (90 degrees).

sos4861 | b.o6578

77] x-axis

8274361 8331821
Y-A

1.666364: 4341
huls 35S pis

Extreme Left Position Extreme Right Position

9.270349 X-Axis

0076614
— S

1.417367!
Z-Axis Servo Angle

Idle Position

Figure 5.21: The Sensor Mode Results

The Emergency Mode is subjected to present the same behavior as provided
by the separate SVS radio transmission system. Unlike this radio transmis-
sion system, the Emergency Mode, by default starts up with the normal
mode. This is indicated by a green emergency button on the interface, as
shown in Figure 5.22. As soon as the user invokes this button, it forces the
emergency stop, and indicates it by highlighting the button with red color.

5.6. CONCLUSION 87

ConceptCar | ConceptCar

Normal Mode Emergency Mode

Figure 5.22: The Emergency Mode Results

5.6 Conclusion

This chapter starts off with recalling the problems and the devised solu-
tions. The applications designed to test and verify the devised solution are
presented. The first application, the Smart Monitor for monitoring the car
internals lively in comparison with the already existing monitoring modes
is presented. The improvement achieved in monitoring the car internals is
explained. The idea of how these features are developed is elaborated by pre-
senting the design, flow diagram and code examples of the Smart Monitor.
Finally, the results obtained are presented. Similarly, the second application,
the Smart Controller as an alternative to radio transmitter system has been
elaborated.

88

CHAPTER 5. DEPLOYMENT AND DELIVERY

Chapter 6

Summary and Future
Recommendations

6.1 Summary

The Concept Car is designed and developed with the idea of a modern car
architecture, so as to; study, design, implement, test and deploy modern fu-
ture car features. Although the Concept Car does not incorporate as many
ECUs a modern car carries (up to hundred), it still shares many attributes
of a modern car, such as a centralized CAN bus architecture. Since it is a
research platform with an objective of discovering future car features, test-
ing applications before deployment is a very important aspect. For testing
purposes, firstly, a mean of lively monitoring the car internals while the car
is driven was desired. Secondly, a driving tool was desired so as to move the
car inside a lab or room, for few meters. The idea of lively monitoring the car
parameters and driving the car for shorter range of distances has lead to the
concept of Designing, Developing and Integrating a Wireless Communication
Unit in the Concept Car. With the natural architecture of the Concept Car,
consisting of separate ECUs responsible for their distinctive tasks, and the
CAN bus as the centralized interaction medium for the ECUs, the solution
became quite obvious as to add a new ECU capable of wireless communica-
tion. With the selection of a user end device for monitoring and controlling,
there were many choices such as PDAs, Laptops, PCs etc. An Android based
smartphone, being used very commonly for development purposes, was an
easier selection amongst competitors.

89

6.2 Future Recommendations

The Concept Car offering a wide variety of applications to be deployed,
meanwhile also provides a space for bringing up improvements within the
current existing platform. The current work while targeting the problems
under consideration, and implementing the devised solutions, ends up with
some noticeable recommendations as:

e The Wireless ECU as presented in this work, incorporates a reserved
socket for introducing another wireless technology within this ECU.
Likewise the Bluetooth module used in this work, the WiFi devices are
also commonly available with the serial interface, and are widely used
for embedded development. Additionally, WiFi technology is one of the
most common features available almost with all the smartphones. For
these reasons, a WikFi technology can be easily adapted to the current
version of the Wireless ECU, and is therefore strongly recommended.

e The EmergencyBoard responsible for introducing the galvanic isolation
within the system, is one of the most important ECUs of the lot. The
current version of this ECU does not incorporate the CAN feature.
This is the only ECU not capable of interacting with the other ECUs
via CAN bus. It only accepts the input from the radio receiver and
the ActorBoard, and bypasses it to the SensorBoards and the actuators
respectively. With the advent of the Wireless ECU, after this work, the
need of making the EmergencyBoard blessed with the CAN interface,
becomes immensely important. Therefore, revising the current version
of this ECU is strongly recommended.

e The Wireless ECU and the smartphone software tool are designed and
developed with the generic implementation of the software libraries.
This allows the user to design and develop any application using the
same hierarchy of class libraries. The Smart Monitor and the Smart
Controller are implemented for targeting the specific tasks. For in-
stance, the Smart Monitor only comes into play when the car is driven
from the radio transmission system. Similarly, the Smart Controller is
aimed to drive the car independent of the Smart Monitor. For future
work, it is recommended to use the same class of libraries for featuring
an application capable of performing both tasks simultaneously, on the
same user interface.

Bibliography

[1] Atmel Corporation Devices. http://www.atmel.com

[2] AT91SAMTA2 Board. http://www.keil.com

[3] SVS Website. http://www.svs-funk.com

[4] Atmel Corporation Devices. http://www.alldatasheet.com
[5] PWM Introduction. http://www.acroname.com

[6] LEGO MINDSTORMS. http://mindstorms.lego.com

[7] Chih-Yang Chen, Tzuu-Hseng S. Li, Kai-Chuin Lim. Design and Im-
plementation of Intelligent Driving Controller for Car-Like Mobile Robot.
ICSSE 2010, Taipei, Taiwan.

[8] Heikki Rissanen, J.Mahonen, Keijo Haataja, Markus Johansson, Pekka
Toivanen. Designing and Implementing an Intelligent Bluetooth-Enabled
Robot Car. University of Kuopio, Finland.

[9] Yeong Che Fai, Shamsudin H.M. Amin, Norsheila nt Fisal, J. Abu Bakar.
Bluetooth Enabled Mobile Robot. TEEE ICIT’02, Bangkok, THAILAND.

[10] Smartphone enabled Legos. http://www.kleekbots.com
[11] GPRS Introduction. http://www.etsi.org

[12] Xue Huixia, Gao Lin, Wang Lu, Li Wenbin, Yang Kai. Monorail Car’s
Wireless Control System based on Smartphone Platform. 2011 Third International

Conference on Measuring Technology and Mechatronics Automation

[13] Wang Shaokun, Xiao Xiao, Zhao Hongwei. The Wireless Remote Con-
trol Car System Based On ARM9. 2011 Third International Conference on
Measuring Technology and Mechatronics Automation.

[14] Autonomous Labs. http://www.autonomos.inf.fu-berlin.de
[15] NFC Standard. http://www.nearfieldcommunication.org
[16] WiFi definition. http://www.webopedia.com

91

[17] Bluetooth Standard. http://www.bluetooth.com

[18] NFC Technical Specifications. http://www.nfc-forum.org
[19] IEEE 802.11. http://standards.ieee.org

[20] The RS232 Standard. http://www.camiresearch.com

[21] Bluetooth Specs. http://www.bluetooth.com

|22] Bluetooth Specs. http://www.bluetooth.org

[23] Smartcard Basics. http://www.smartcardbasics.com

[24] C.Y. Leong, K. C. Ong, K. K. Tan*, O.P. GAN. Near Field Commu-
nication and Bluetooth Bridge System for Mobile Commerce. 2006 TEEE
International Conference on Industrial Informatics.

[25] Roving Networks Webpage. http://www.rovingnetworks.com
|26] UART definition. http://www.pcmag.com

[27] USB Homepage. http://www.usb.org

[28] PCA82C250 DataSheet. http://www.nxp.com

|29] MAX1837 DataSheet. http://www.maximintegrated.com
|30] GNU Compiler Collection. http://gcc.gnu.org/

[31] AVRISP Programmer. http://www.atmel.com/tools

|32] AVRDUDE Homepage. http://www.nongnu.org

[33] Android Introduction. http://developer.android.com

|34] Eclipse Homepage. http://www.eclipse.org

|35] Android Development. http://developer.android.com

|36] Cadsoft’s Website. http://www.cadsoft.de

[37] Maxim IC’s. http://www.datasheets.maximintegrated.com
|38] RS232 to USB Adapter. http://www.pollin.de

[39] TTL Level. Balch, Mark (2003). Complete Digital Design: A Compre-
hensive Guide To Digital Electronics And Computer System Architecture

|40] Serial Port Complete: Programming and Circuits for Rs-232 and Rs-485
Links and Networks By Jan Axelson, Lakeview Research

[41] HyperTerminal Website. http://www.hilgraeve.com
[42] PuTTY Website. http://www.putty.org
[43] TeraTerm Website. http://www.ayera.com

[44] Configuring Serial Terminal Emulation Programs. http://www.actel.com
[45] SPP profile. http://www.palowireless.com

[46] Federal Standard 1037C. http://www.its.bldrdoc.gov

[47] BlueTerm Android App. https://play.google.com

[48] CAN Adapter. http://www.mhs-elektronik.2de

