
 Page 1

Hands-on Manual to FormalCheckVersion 2.3

Hardware Verification Group

Concordia University
Department of Electrical and Computer Engineering,

Montreal, Quebec, Canada.

May 2000

F
or

m
al

Ch
ec

k

 Page 2

TABLE OF CONTENTS
 Page No.

Preface 5

Audience 5

1. Introduction 6

2 Verifying Techniques used in FormalCheck 9

FormalCheck Project 9

Queries (properties + constraints) 9

Pros and Cons of using Constraints 16

Checking for Overconstraint 16

3 Stepwise Procedure of Verifying a Design in FormalCheck 17

Step 1 (Initializing Step) 17

Step 2 (Saving the Project) 18

Step 3 (Opening a file: optional) 18

Step 4 (Compiling the Verilog/VHDL design - BUILD) 18

Step 5 (Adding a Constraint). 19

Step 6 (Create/Edit Query) 20

Step 7 (Verify Query) 21

4 Post-Processing Analysis 22

5 Advanced Options 24

New Features 25

AutoCheck 25

Macro 25

 Page 3

Page No.

Clock Extraction: 25

Script Interface 25

IMPORTANT BUILD OPTIONS 26

ADVANCED QUERY RUN OPTIONS: 26

THREE VERIFICATION ALGORITHMS 26

A Recommended Procedure for Verification 27

References 28

APPENDICES 29

APPENDIX A 29

The System Settings to Run FormalCheck 29

Running FormalCheck on NCD terminals 30

APPENDIX B 31

FormalCheck File Description 31

Contents of the file README 31

Contents of the file verify.stdout. 32

Contents of the file verify.out 34

Contents of the file query.c 35

APPENDIX C 36

Design Tips (for verification purpose) 36

APPENDIX D 37

The “arbiter” example 37

Description of the Arbiter to be verified 37

Arbiter Basic Specification 39

RTL design 39

 Page 4

Page No.

VERIFICATION RESULTS 49

Query-1 49

Query-2 50

Query-3 52

Query-4 53

Query-5 56

.

 Page 5

Preface

__

Audience:

This guide is written for research students and design engineers who will use
FormalCheck as a tool of hardware verification for the first time. It summarizes the
available material (FormalCheck User Guide, FormalCheck on-line Manual, etc.)
that the manufacturer has provided with the tool.

__

 Page 6

1. Introduction

Formal verification means a mathematical proof which assures that a property holds of a design
model. The need for “correct” designs insafety-critical applications, coupled with the majorcost
associated with products delivered late,are the two of the main reasons behind the recent popular-
ity of formal hardware verification . The verification methods require considerable time and
expertise to verify even fairly simple systems. As a result, practical application has been limited to
a few domains, such assecurityandsafety-criticalsystems, where ethical or legal requirements
demand the highest assurance of correctness, regardless of the cost [1].

Two well-established approaches to verification are, model checking and theorem proving. Theo-
rem proving means that, given a set of axioms and a theorem formulated in some logic, there
exists a proof generated by the inference system. On the other hand, model checking is a tech-
nique that relies on building a finite model of a system and checking that a desired user-defined
property holds in the model [2]. FormalCheck is a model checker, designed to help alleviate the
functional verification bottleneck.

FIG 1.1: FormalCheck Verification procedure [3]

FormalCheck supports the synthesizable subsets of Verilog and VHDL hardware design lan-
guages. The source code does not need to be modified for the sake of verification. The user sup-

Queries = Properties + Constraints

SPEC

Compile

RTL

Model Checking Engine

Pass or Fail

 Page 7

plies FormalCheck with a set of queries to be verified on the design model. The queries are simply
statements (formalizations) of important behaviors described in the specification.

FormalCheck aids the user by automatically back referencing each error to the offending line to
the source code. The errors can be fixed and the source recompiled without leaving the tool. The
tool explores all possible input scenarios, guaranteeing that no bugs are missed for lack of vectors.

It is common to wait for the test bench to be completed before starting simulation and a complete
test bench is only created at the chip level. With FormalCheck, verification can be started as soon
as the first block is designed and the first query is written. This speeds up the design cycle by
catching the bugs at an earlier stage and also reduce the verification effort. In short, “Formal-
Check model checker can be used when the design is fluid or only partially defined” [3].

FIG 1.2: Localization Reduction algorithm[3]

“It is of paramount importance that the tool be able to reduce the model automatically relative to
the property under check, to the greatest extent possible” [3]. FormalCheck uses two approaches
of reduction algorithm (1-stepand iterative). Most of the reductions tend to be property-depen-
dent localization reductions[5], in which the part of the design model that are irrelevant to the
property being checked, are abstracted away. In FormalCheck, localization reduction is applied
dynamically. At each step of the algorithm, the model is adjusted by advancing its “free fence”

ACTIVE

 S Y S T E M

PRUNED

QUERY

free fence

 Page 8

(please refer to the Figure 1.2) of induced primary inputs, in order to discard spurious counter
examples to the stated query [5].

1-step reductionlooks at the dependency graph and removes any portion of the design from the
verification proof that cannot affect the outcome of the query. This algorithm propagates constants
contained in the design or in the input assumptions to further reduce the design.

An additional level of reduction can be achieved byIterative Reductionalgorithm. It takes an
attempt to find a small portion of the design that can be used to verify the current query. This tech-
nique guarantees that queries proven to be true on the small portion of the design would also be
true for the entire design. This algorithm can be run with or without a user-supplied starting point
(reduction seed) and can reduce thestate spaceof the design by several orders of magnitude,
allowing larger designs to be verified.

This tool checks if a change (by the user) could affect the outcome of the verification. If not, it
marks the query as proven by the previous runs. This unique capability reduces theregression
time. Through FormalCheck’s Back-Reference utility, a click on an error in the waveform pops up
the source with the cursor on the line that caused the error.

FIG 1.3: FormalCheck Verification Cycle [6]

 Specification

HDL Code Queries

FormalCheck

Design Verified !!

Errors?
 YES

NO

 Back-Reference
 to error.

 Automatic

 Page 9

2. Verifying Techniques used in FormalCheck

To use either the Graphical User Interface (GUI) or the Command Line Version, one must aware
of the functionality of the each step to wisely use the different advanced options provided by
FormalCheck. The following literature refers to the GUI version of FormalCheck tool.

Note: If anyone alreadyhassomeexperiencewith FormalCheck,can skip this
chapterandcanhave a look at thechapter4 (stepwiseprocedure)in order
to just remind him/herself of the tool

FormalCheck Project:

A FormalCheckproject is a container (directory structure) that holds all information relevant to
the verification [6]. One may start the tool either by opening an existing project or by creating a
new one. A project (.fpj) file contains the following information:

• pointer to the model design.
• necessary information to compile the design (i.e. HDL language, top

 level entity/module name, hierarchical dependencies, etc.).
• data structure built for the verification.
• queries (properties + constraints)
• result of the verification of the queries.

Queries (properties + constraints):

Existing model-checkers use some form of CTL (Computation Tree Logic) to define properties
[3]. The idea of using a logic was discarded my FormalCheck, because this approach is some-
times hard to be defined for the general users. In FormalCheck, eachproperty is defined using
one of a small set of templates,each with a clear intuitive and simple semanticsand correctly as
impressive as the class ofomega() automata. Of course, what is gained in simplicity is lost in

flexibility [3].

A property is verified if and only if no failures are found after exploring all reachable states and
possible input combinations [6].

ω

 Page 10

FIG 2.1: Property Panel, showing essential features.

The above figure defines a property which checks that after each time the designatedenabling
conditionis enabled, the designatedfulfilling conditionholds continuously unless thedischarging
condition becomes true [3].
“Fulfill at Discharge” option is used when it is necessary to require the Fulfilling Condition con-
currently with the Discharging Condition.

Table 1: Explanation of the option “Fulfill at Discharge”

Regular Fulfil and Discharge condition With option: Fulfill at Discharge (Figure 2.1)

Example: Always (A) Fulfilling Condition
 Unless (B=1)Discharging Condition

Example: Always (A) Fulfilling Condition
Unless After (B=1)Discharging Condition

Explanation: The Fulfilling Condition will
 discharge when B=1.

Explanation: The Fulfilling Condition will
discharge when B becomes equal to 1,

 while A still holds.

CONDITION

FULFILLING

ENABLING
CONDITION

CONDITION

DISCHARGING

 Page 11

Property (safety, liveness):

1. Safety-This kind of property ensures that nothing “bad” happens. The Safety property fails if
the undesired behavior is exhibited in any state which is reachable with the phase state active
[6].

There are two kinds of Safety property in FormalCheck: a) Never b) Always

FIG 2.2: A property in FormalCheck: “Light is never green in both directions”

a)Never: “FormalCheck will explore all possible inputs and reachable states to verify that
the condition can NEVER occur” [6].

Figure 2.2 shows, how one can specify a property in FormalCheck. This can be done
either my writing manually or with the help of buttons (signal selection).

b) Always: “FormalCheck will explore all possible inputs and reachable states to verify
 that the condition can NEVER be false” [6].

2. Liveness- This type of property guarantees that eventually something “good” happens.
“A Liveness property fails if there exists a sequence of inputs which can postpone
the required behavior indefinitely. Since all designs are finite state, a liveness
failure amounts to finding a cycle of reachable states where the required behavior
does not occur” [6]. FormalCheck defines three kinds of liveness property:

a) Eventually
b) Eventually Always
c) Strong Liveness

Name of the Signal

(traffic_light.direction[0] == 0) && (traffic_light.direction[1] == 0)

Root Module Name

0 is equvalent to green

Relation Operator

(according to the design)

 Page 12

FIG 2.3: Property panel with an Eventual Property.

a) Eventually: The Fulfilling Condition must eventually become true. However, it does
not have to remain true all the time. The above eventual liveness property can be written

 in words as follows:

After (direction(0) = GREEN)
Eventually (direction (0) = RED)

b) Eventually Always: This is like steady state “Eventually” property. The Fulfilling Con-
dition must remain true (Steady State) at the time of discharging. “It does not have to
reach steady state within any time limit and may become true and then false several
times before it reaches the steady state” [6].

c) Strong Liveness: Strong liveness differs from the other liveness property by its Enabling
Condition. Here, the Enabling Condition is allowed to be checked repeatedly upon the
failure of fulfilling condition.

 Page 13

Constraint: In FormalCheck, design constraints are defined using a companion set of templates
(property templates and constraint templates are paired), and each check on a design
model is performed in the context of a set of properties and constraints, termed “query”
[3]. All the constraints belonging to the project are listed in theConstraint Library panel
(please refer to Figure 3.3). Constraints limit the state space of a design model.

FIG 2.4: The Effect of Constraints in the Reachable State Space [6]

Table 2: The Difference Between Strong Liveness and Eventually

Strong Liveness Eventually

Format: If Repeatedly (event A)
 (Enabling Condition)

 Eventually (event B)
 (Fulfilling Condition)

Format: After (event A)
 (Enabling Condition)

 Eventually (event B)
(Fulfilling Condition)

The Enabling Condition need to be satis-
fied along the failure cycles.

The Enabling Condition need not be satis-
fied along the failure cycles. The Enabling
Condition may be satisfied before the fail-
ure cycle is entered.

Both Enabling and Fulfilling Condition
are required for Strong Liveness property.

When Enabling Condition is absent, the
Fulfilling Condition is active until it is dis-
charged (if ever).

Computationally not simple Computationally simpler.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

X

~X

 Page 14

Let us assume that, the Figure 2.4 is the total reachable space of a variable X for some design
model. The constraint to be added as “X is true always”. The area with the thick boundary is then
excluded from verification as it belongs to negative X. If we put constraints to some signals which
includes a feature of the design, then that will not be verified and this situation is called “Overcon-
strained”.

WARNING: We should be careful about the model being not OVERCONSTRAINED.

There are 2 types of general constraints:
i) Safety (never, always)
ii) Fairness (eventually, strong fairness)

Safety constraints are the constraints applied with the safety property and the fairness con-
straints are applied with the liveness property of the query.

Constraint SHORTCUTS: Constraint Shortcuts are provided by the tool to use as ready-
made constraints. There is also “general” constraint in order to define any other
kind of constraints. Shortcuts are only allowed for the primary inputs.

i) Assignment
ii) Clock
iii) Constant
iv) Reset/Repeat

i) Assignment: An input signal always takes the value of an expression. The expression
may contain internal signals, but the signal must be a primary input.

ii) Clock: This is a very important constraint. It is an oscillating signal and FormalCheck
detects the rising and falling edge of the signal. Example,design.CLK == rising (Verilog)

FIG 2.5: The usage of Clock Constraint

Root module. signal_name

 Page 15

During the verification, this constraint can simulate the behavior of the clock ticks.

iii) Constant: It assumes a signal to have a constant value.

iv) Reset/Repeat: This a very useful constraint. It is used to constrain a signal to a user-
defined waveform. The waveform may be an one shot waveform or a repeat (periodic)
one. A signal is first selected, then a waveform is specified. Each state in which the
selected signal matches, the specified waveform is excluded from the verification. This
constraint can wisely be used for the initialization of all the input signals. But to do
that one should always remember that it is going to be needed to add some lines code
to the original design model.

Example: The following is a Verilog example (portion of a design). The reset/repeat
constrain can be applied to the signal reset_elevator (please refer to the Figure 2.6) to
initialize the signals “direction” and “movement”.
 // initialization block
always @(reset_elevator)
begin

if (reset_elevator)
begin

direction = ‘UP;
movement = ‘STOPPED;
end

end

FIG 2.6: The usage of Reset/Repeat Constraint

 Page 16

The settings on Figure 2.6 will produce amain_reset signal (passed as a parameter
while instantiating another module instance, and thus, is equivalent toreset_elevator) which
is “high” (logic value 1) for 2 cranks (unit of time) and “low” (logic value 0) for the
rest of the verification period. As the block is active only at positive values of the sig-
nal reset_elevator, all the input signals in the block are initialized to the desired values.

 Cranks: This is the term FormalCheck uses for “unit of time”.

Pros and Cons of using Constraints:
(+) Constraints limit the state space of a design to be verified.
(+) Constraints can significantly reduce the run time.
(+) One can limit the input by using constraint on it, and thus restrict the design. Any error

in the restricted design is also an error for the total design. So, running a severely
restricted design can give a goodearly warning concerning the computational com-
plexity of the unrestricted design.

(-) Mutually inconsistent constraints can compromise the verification by preventing an
 important design flaw being exposed.

Mutually inconsistent: While individually taken, works fine. But simultaneous use impose
contradictory results.

Checking for Overconstraint:
When the properties are overconstraint, the verification result comes as “Vacuous”. It
means, the Enabling Condition of the property was never satisfied. Because,

1. The Enabling Condition was wrongly formed.
2. The verification engine could not reach a state where the Enabling Condition

was satisfied.
3. Inconsistent definitions while forming constraints. Like, X=1 && X=0.

The following are some procedures to solve problems with constraints:

• The only conclusive way to check that a design is not overconstraint is to convert all con-
straints to their corresponding properties and verify these properties on the model that
derives the inputs of the given design,

• If -DVACCHECK (please refer to page 8-8 on FormalCheck User’s Guide, reference no.
6) fails, one can apply -DVACCHECK“run option” (Query panel) to successive sub-
sets of the constraints until a small mutually inconsistent subset is identified.

• One can check “Missing value Report” for values some signals never attain.

 Page 17

3. Stepwise Procedure of Verifying a Design in FormalCheck

Step 1 (Initializing Step).

FIG 3.1: Design Model Panel (for Step 1)

PROJECT
NEW/OPEN

This will invoke “Design Model Panel”.
• Name of the project has to be provided. (“Title”).
• Design language has to be chosen (VHDL or Verilog).
• For VHDL (.vhd/.vhdl): Root Entity (mandatory)
 Architecture (mandatory)
• For Verilog (.v): Root Module (mandatory)

 Build Option (optional)
ADD

 This will invoke “Select Design File Panel”.
• A design file (same language chosen before) has to be selected.
• Option “SAVE LIST”: This will create a text file that contains a list of file

names of the design model files that are currently displayed on the panel.
• Option “NOTES”: This will allow to write notes about the project.

 Page 18

Step 2 (Saving the Project).
PROJECT

SAVE / SAVE AS
FormalCheck uses the extension “.fpj ” for the files containing the project. The user
has to enter a name for the file.

Step 3 (Opening a file: optional).
FILE

OPEN
This is not a mandatory step for the verification process. But, it allows to debug
syntax error (edit) the design (Verilog/VHDL).

FIG 3.2: Running the Build option on an example (for Step 4)

Step 4 (Compiling the Verilog/VHDL design - BUILD).
PROJECT

BUILD
“Build” option is the first main step towards verification. Whenever any change in
the design is made, BUILD is necessary, so as FILE-SAVE.

The following three actions are performed implicitly by “Build”:
i) Compilation of the design (Verilog or VHDL)
ii) Post-Processing of the netlist.
iii) Processing of the behavioral description.

 Page 19

Compilation errors are highlighted in the Diagnostic region, and then are hyper-
links. Clicking on an error will highlight the source line in the edit region that
caused the error.

Note: At theendof this Step4, theprojecthasto besavedoncemore(repetition
of Step 2

FIG 3.3: The Constraint Library Panel (for Step 5)

Step 5 (Adding a Constraint).

PROJECT
CONSTRAINT LIBRARY

This will invoke “Constraint Library ” panel (Figure 3.3). Constraints limits the
state place of a design model that is verified [6].

Note: Please refer to the previous chapter for more details on CONSTRAINTS.

 Page 20

Step 6 (Create/Edit Query).
QUERY

NEW / EDIT
A query must contain one or more properties. The procedure to write properties are
explained in the previous chapter. A new query also automatically contains any
constraints marked as default in the constraint library. Additional constraints can
be added or removed manually.

Default Constraint: “A default constraint is a constraint that will be automatically
applied to all new queries in a project. A constraint marked as default will not be
applied to any pre-existing queries unless specified manually. A non-default con-
straint can be manually added to any query” [6].

FIG 3.4: The “Query” Panel and Its Features (for Step 6)

for the query named
ElevatorDoor

List of Properties

List of Constraints

Explicit State Enumeration
Auto-Restrict

Symbolic BDD

1-Step
Iterated

Allows to keep notes on Project, Query , Constraints and State Varia b

 Page 21

 Four main steps in the “Query” panel to remember:
1. Name of the property.
2. Type of property.
3. Insertion of logic in Enabling Condition, Fulfilling Condition and/or Dis-

charging Condition.
4. Taking care of Constraints.

“Fulfill Delay ”: A delay can be added between the Enabling Condition and the checking
of the Fulfilling Condition. This delay is specified as an integer that counts the
occurrences of an event which is again specified by a boolean expression written
into the “Of Edge” field (please refer to Figure 3.3, “Property” panel).

“Duration” : The verification windows terminates after a given duration of the Discharg-
ing condition becomes true, whichever comes first. The duration is measured by an
integer, same way as the “Fulfill Delay”.

FIG 3.5: The “Query Manager” panel (for Step 7).

Step 7 (Verify Query).

Before starting to verify the query, the user has to save the query as well as the project
(Step 2).

QUERY
QUERY MANAGER

Verify!
The user has to select the desired query from the “Name” column (Figure 3.5)
and press the “verify! ” button. FormalCheck will do the rest about verification.

 Page 22

4. Post-Processing Analysis

The “Result” column of the “Query Manager” may contain eight possible outcomes. The follow-
ing is the short description:

(1) New: Indicates a new query, no attempt has been taken to verify it.
(2) Failed: Error has been found in the design and an error track is available for debugging.
(3) Verified!: The query was previously verified.
(4) Running: A verification procedure is currently being processed.
(5) Terminated: The verification process is incomplete (user or some other intervention).
(6) Scheduled: The verification is scheduled by the “Schedule Manager” (refer to the Query
 pull down menu).
(7) No Error: No failures have been found, but this is not same as verification. It sometimes

happens while using the auto-restrict algorithm to quickly verify the design.
(8) Vacuous: The Enabling condition is never satisfied, the reason why the Fulfilling
 condition was never checked.

FIG 4.1: The Wave Form Window (ODAN).

If the result is “Failed”, then the waveform viewer (the Output Display / Analysis Tool -
ODAN) is very useful to finish the post-verification analysis. FormalCheck creates 2 files

Select Signals

 Page 23

(.HDR and .REC) in the query directory for each failed query and ODAN uses those files to
offer the following capabilities:

• Interactively select a subset to the signals for display.
• Zoom-in on critical areas.
• Select a specific time region to view signal activity in detail.
• Group signals under one label.

 If the result is “Vacuous”, then there may be a possibility that it was over-constraint (please
refer to Chapter 2 of this manual).

 Page 24

5. Advanced Options

FIG 5.1: Reduction Options panel & Run Options panel

FormalCheck uses a patented localized reduction algorithm to reduce the size of the design
model relative to the property being tested [6]. Among the two algorithms1-step is used by
default and theiterated algorithm is used for complex designs, because it takesless memory
(more time) to verify the design. This reduction technique finds a portion of the design model
on which it is sufficient to run the verification.

FIG 5.2: Reduction Manager panel

Start As
Input

 Page 25

A reduction seedcan be provided by the user to further speed up the verification process. The
user designates a candidate portion of the design model by marking its boundary signalsStart
As Input . This option disconnects all signals marked as “Start As Input” from the driving ex-
pressions and turns them into primary inputs. If some driving expressions really in need of
some of these signals, the algorithm will reinstate them, cutting the design model signals at an
alternate point instead [6].

Note: Iterated reduction does not support Auto-Restrict verification algorithm
Reduction Seed is recommended when Iterated Algorithm is used.

Through the “Make Input ” option some signals can be disconnected almost permanently from
their driving expressions, and thus treated as primary inputs. This is the way to isolate a portion
of the design model. In such a condition, if FormalCheck verifies a query, it means that the
same query would also be verified in the full design model.

Note: “Make Input” sometimes creates problems in error tracing if FormalCheck returns
failure.

Through the option “Keep Active”, one can make sure that the signal is not going to be exclud-
ed from the verification, no matter what.

Note: If “K eep Alive” is used, it increases the computational cost.

“Clear” option removes any reduction designation from a design element.

New Features:

AutoCheck: AutoCheck is applied as a preverification procedure. It is used in the early design
stages to quickly run on queries in order to find early design bugs. AutoCheck is not a complete
verification procedure as it does not cover the entire state space. (further reference: page 5-9 in
user’s manual: command “formalreadthemanual”).

Macro: Macro is the shorthand version of any expression. It is done by the expression editor.
The procedure is to type or insert any expression and give it a name after pressing “MakeMac-
ro”.

Clock Extraction : While imposing clock constraints, the feature “Clock Extraction” can be
used to reduce verification time in some cases. This option should be tried if the design is syn-
chronous with respect to a single clock edge.

Script Interface: FormalCheck supports user-defined UNIX script to perform tasks, like
automatically generating constraints. (see page 8-7 in users’ manual).

 Page 26

IMPORTANT BUILD OPTIONS:

[-D <parameter>=<value>]
Allows the value of a Verilog parameter to be set to a different (smaller) value to reduce
the state space. This is necessary for parenthesized RAMs, ROMs, FIFOs, and queues.

[-W<path>]
Specifies a single directory to which all the files will be created by FormalCheck.

ADVANCED QUERY RUN OPTIONS:
[-L<mb>]
Specifies a limit on memory used. “mb” is memory in megabyte, represented in floating
point notation. 80% limit of user accessible memory is recommended. The verification be-
gins a wrap up sequence (time consuming) when the memory is finished to generate re-
ports.

[-#hardlimit=<mb>]
Stops verification without the warp up sequence.

[-DVACCHECK]
This option verifies if really a query isvacuous. If the result with this option is “verified!”
then the query is vacuous. If a bad cycle is found then the query is not vacuous.

THREE VERIFICATION ALGORITHMS:

• Symbolic State Enumeration (Ordered Binary Decision Diagrams / Symbolic BDD)
• Explicit State Enumeration.
• Auto-Restrict.

Symbolic BDD is generally useful for verifying models with a very large set of
States. But, BDDs become extremely large for the design models with arithmetic expres-
sions.

Explicit State Enumeration is recommended for designs with fewer than 1000 pri-
mary inputs/state and which contain a large number of arithmetic expressions. It can find
error in the design faster than the symbolic BDD. This algorithm is preferable for liveness
property.

Auto-Restrict attempts to narrow down the portion of the design where a failure is
likely to be found. It speeds up the verification. But if may give the result “No Errors”. In
this case, the verification has to be performed again with any of the previous two algo-
rithms.

 Page 27

A Recommended Procedure for Verification:

At first Symbolic BDD should be used with a time limit. The verification can stop for three reasons.
An error can be found, the time limit can be expired or the verification can be complete. For the
first two reasons, one can do the following:

• Missing value report should be checked.
• Restriction should be added.
• Reduction Manager should be employed.
• Verification should be re-run with Auto-restrict or Explicit State Enumeration.

Note: “MissingValues”:Show thedesignelements(signals)thatareirrelevantto thespecific
query

 Page 28

References

[1] A.J. Hu. Formal Hardware Verification with BDDs: An Introduction, IEEE Pacific Rim Con-
ference on Communications, Computers, and Signal Processing (PACRIM), pp. 677-682,
1997.

[2] E.M. Clarke and J.M. Wing. Formal Methods: State of Art and Future Directions, CMU Com-
puter Science Technical Report CMU-CS-96-178, August 1996.

[3] R.P. Kurshan. Formal Verification In a Commercial Setting, Bell laboratories, Murry Hill, NJ.
In Design Automation Conference. June, 1997.

[4] R.H. Hardin, Z. Har’EL, R. P. Kurshan, COSPAN, Springer LNCS 1102 (1996), pp. 61-67.

[5] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes, Princeton Univ. Press,
1994.

[6] FormalCheck User’s Guide. Cadence Design Systems. V2.3, August 1999.

 Page 29

APPENDIX A

System Settings to Run FormalCheck

1. To work on a UNIX machine, the system administrator has to activate user’s privilege
 to the tool (FormalCheck).

2. The following lines had to be added to the .cshrc (startup file).

setenv LM_LICENSE_FILE /usr/local/etc/license/cadence/license.dat
setenv CDS_INST_DIR /CMC/tools/formalcheck2.3
setenv CDS_LIC_FILE /usr/local/etc/license/cadence/license.dat
setenv FCHECKDIR /CMC/tools/formalcheck2.3/SOLARIS
setenv FCCC /opt/SUNWspro/bin/cc
setenv NL_DIRECTORY /usr/local/etc/license/cadence/license.dat
setenv MANPATH $FCHECKDIR/syscad/man:$MANPATH
setenv FCATHOME no
set path = ($FCHECKDIR $path)
alias formalreadthemanual ’/CMC/tools/formalcheck2.3/tools.sun4v/bin/openbook’

Or, one can make a file called formalcheck.env (or any_name.env) and source it
everytime he wants to run formalcheck, as follows:

source forrmalcheck.env

3. FormalCheck comes with an example, done as a tutorial for the new users. Before run-
ning the tutorial from the help menu (“Getting Started”). necessary files should be copied
to the current directory by exeuting the following command on the UNIX prompt:

> cp -r /CMC/tools/formalcheck2.3/SOLARIS/examples .

The online tutorial is the quickest way to learn formalcheck.

4. The tools comes with very useful sets of documents. The access to different documents
can be done in following ways:

SOURCE 1: By typing “formalreadthemanual” (without colons) in the command
prompt. The prerequisite of this command is sourcing the .env file (explained
before). This is the most extensive source of information one can get about for-
malcheck. The command “formalreadthemanual” will invoke openbook utility
of unix and the user can read on just by clicking the mouse.

SOURCE 2: The other documents are accessible after running the tool from the
help menu. These documents contain comparatively short description of what
explained in source 1.

5. At last, the command “formalcheck” will invoke the graphical user interface of the
 tool.

 Page 30

Running FormalCheck on NCD terminal:

Before proceeding with the following steps, one should remember that it is not a complete solution
concerning the problem of FormalCheck about executing on the NCD terminals. But, it allows one
to run the tool for a certain amount of time or certain amount of activity (by removing the file called
.formalcheck created by the tool on the current directory, which is done in step 2).

1. Place the appropriate lines/paths (mentioned in the previous topic at point 2: Setting the
environment) in the .cshrc which is located under the main directory, ex.: /home/
user_name/.cshrc

Note: make sure to source .cshrc before proceeding if anyone wants to run the applica-
tion before login again, as follows:

source .cshrc

2. Create a new file with any desired name (for example, runFC) and place these lines in it:

#!/bin/sh
rm -rf .formalcheck
/CMC/tools/formalcheck2.3/SOLARIS/formalcheck

3. Make sure that the file in Step 2 has “Execute” permission by doing the following
 command:

chmod 755 file_name

4. Now you can run the program by running the FormalCheck executable or by creating an
Alias for that file in the .cshrc as follows:

 alias any_name_u_like ’/home/user_name/file_name_in_step_2’

 Page 31

APPENDIX B

FormalCheck Files Description

The following is the list of files created in the directory called .<priject_name> (the name
used for the project.

DIRECTORY .crd_project.fpj

FIG 1: SnapShot of the Directory .crd_project.fp

Contents of the file README

All the file contained in this directory and below are considered part of the FormalCheck
project. Changing anything in this directory or its children could result in corrupting your
verification results.

 Page 32

DIRECTORY Query_1

FIG 2: SnapShot of the Directory Query_1

Contents of the file verify.stdout

model M: FCHECK bcy0
model unM: FCHECK.C_B_clk FCHECK.C_B_reset
model M_p:
model M_o: .environment_._H15_road_B_._VD5_state___0__1__[1]
M_o+: .environment_._H15_road_B_._VD5_state___0__1__[0]
M_o+: .environment_._H14_road_A_._VD5_state___0__1__[1]
M_o+: .environment_._H14_road_A_._VD5_state___0__1__[0]
pruned:
 .environment__ENV
 .environment_.__fi_status_A_[0]
 .environment_.__fi_status_A_[1]
 .environment_.status_A_[0]
 .environment_.status_A_[1]
 .environment_.__fi_test_
 .environment_.test_
 .environment_.__fi__VD0__T161___0__2__[0]
 .environment_.__fi__VD0__T161___0__2__[1]
 .environment_.__fi__VD0__T161___0__2__[2]
 .environment_._VD0__T161___0__2__[0]
 .environment_._VD0__T161___0__2__[1]
 .environment_._VD0__T161___0__2__[2]
 .environment_._H13_police_
 .environment_._H14_road_A_.__fi_status_[0]

 Page 33

 .environment_._H14_road_A_.__fi_status_[1]
 .environment_._H14_road_A_.status_[0]
 .environment_._H14_road_A_.status_[1]
 .environment_._H14_road_A_.__fi__VD5_state___0__1__[0]
 .environment_._H14_road_A_.__fi__VD5_state___0__1__[1]
 .environment_._H14_road_A_._H4__I3
 .environment_._H14_road_A_._H5__I4
 .environment_._H14_road_A_._H6__I5
 .environment_._H15_road_B_.__fi_status_[0]
 .environment_._H15_road_B_.__fi_status_[1]
 .environment_._H15_road_B_.status_[0]
 .environment_._H15_road_B_.status_[1]
 .environment_._H15_road_B_.__fi__VD5_state___0__1__[0]
 .environment_._H15_road_B_.__fi__VD5_state___0__1__[1]
 .environment_._H15_road_B_._H4__I3
 .environment_._H15_road_B_._H5__I4
 .environment_._H15_road_B_._H6__I5
 .environment_._H16_col_
 .environment_._H17_starv_
 .environment_._H18__I12
 .environment_._H19__I13
 .environment_._H20__I14
 .environment_._H21__I15
 .FCHECK.C_B_reset
active:
 .FCHECK.P_collision
 .bcy0
free:
 .environment_._H14_road_A_._VD5_state___0__1__[0]1 free choices
 .environment_._H14_road_A_._VD5_state___0__1__[1]1 free choices
 .environment_._H15_road_B_._VD5_state___0__1__[0]1 free choices
 .environment_._H15_road_B_._VD5_state___0__1__[1]1 free choices

 product of free choices=1

free:
 .environment_1x1x1x1=1 free choices

 product of free choices=1

looking for:
400486bde2e4888a96a0765ca3de8bc06f3d7426b004e4b0394012c88d522073c4344bc5dd17fdb12a43dd391da3ae8bd3b78a0eb6
ad72a55f955107
FCkillMonitor 9771: PIDS is 9773

 Page 34

Contents of the file verify.out

9771
Verification Server: enterprise.ece.concordia.ca 9771
SunOS enterprise.ece.concordia.ca 5.5.1 Generic sun4u sparc
cospan -I/CMC/tools/formalcheck2.1/SOLARIS/include environment_.sr -Ks -#caseonedflt -#varlines -#nmi -#missin-
gasgn -#nocaseonedflterr -#shortfloat=3 -#status -#dupstvars -#hotunroot -#hotback -#Msuperset -b -q -#csplit -
#pthreshold=1e3,50 -#rmc -#flow -#disconnect -#slowdisconnect=4 query.sr
cospan: Version 8.23.24 (Bell Laboratories) 27 May 1998
Iterative run for option -q
Iteration 0:
++++++++++++++++++
cospan: Version 8.23.24 (Bell Laboratories) 27 May 1998
+ sr_E -I/CMC/tools/formalcheck2.1/SOLARIS/cospan -#caseonedflt -#varlines -#nmi -#missingasgn -#nocaseonedfl-
terr -#shortfloat=3 -#status -#dupstvars -#hotunroot -#hotback -#Msuperset -#pthreshold=1e3,50 -#flow -#disconnect -
#slowdisconnect=4 -I/CMC/tools/formalcheck2.1/SOLARIS/cospan -I/CMC/tools/formalcheck2.1/SOLARIS/include
environment_.sr -Ks -#caseonedflt -#varlines -#nmi -#missingasgn -#nocaseonedflterr -#shortfloat=3 -#status -#dupst-
vars -#hotunroot -#hotback -#Msuperset -b -#reduction -#pthreshold=1e3,50 -#flow -#disconnect -#slowdisconnect=4
query.sr -#caseonedflt -#varlines -#nmi -#missingasgn -#nocaseonedflterr -#shortfloat=3 -#status -#dupstvars -#hotun-
root -#hotback -#Msuperset -#pthreshold=1e3,50 -#flow -#disconnect -#slowdisconnect=4 -#caseonedflt -#varlines -
#nmi -#missingasgn -#nocaseonedflterr -#shortfloat=3 -#status -#dupstvars -#hotunroot -#hotback -#Msuperset -#reduc-
tion -#pthreshold=1e3,50 -#flow -#disconnect -#slowdisconnect=4
Status: Begin parsing at 0.01 sec 0 megabytes.
query.rf: Wed Sep 22 14:31:28 1999
environment_.sr: Wed Sep 22 14:31:31 1999
./environment__ENV.sr: Wed Sep 22 14:31:31 1999
query.sr: Wed Sep 22 14:31:29 1999
/CMC/tools/formalcheck2.1/SOLARIS/include/QRY.h: Wed Jul 29 14:17:28 1998
/CMC/tools/formalcheck2.1/SOLARIS/include/QRY+.h: Wed Jul 29 14:17:27 1998
/CMC/tools/formalcheck2.1/SOLARIS/include/gui.h: Wed Jul 29 14:17:28 1998
Status: Begin checks and tree rewrites at 0.15 sec 1.37626 megabytes.
query.rf: list entry count: unM 2 M 2 M_o 4
568 pruned, 1 active, 4 freed by reduction
284 data variables declared or with width >= -#databits=4
4 selection/local variables
1 bounded state variables: 2 states
0 unbounded state variables
1 boolean cysets
0 boolean recurs
0 free selection/local variables: 1 selections/state
2 kill/free optimization actions
2 variable assignments driven by kills
886 variable reference clippings, 655 expression clippings
2 vector bitwise comparisons expanded
0 pausing processes
0 non-deterministic (non-free) selection/local variables
1 selections/state (maximum)
1 total selections/state (maximum)

sr_E: Equivalent reduction, Task performed! (older run)
+ exit 3
FormalCheck Verification Finished
Wed Sep 22 14:31:53 EDT 1999

 Page 35

Contents of the file query.c

static char WHAT[]="@(#)query.c Wed Sep 22 05:49:05 1999";
#ifndef Int
#define Int int
#endif
#define String int
#define BYTESIZE 8
#ifdef HDR
extern
#endif
struct{
struct{
struct{
Int _clk_;
unsigned char U_clk_[2];
Int _reset_;
unsigned char U_reset_[2];
struct{
Int _prev0;
}_91179_clk____;
}_environment__ENV;
struct{
Int ___fi__U2_r_state_;
Int ___fi__U3_r_state_;
struct{
Int _9983___fi__VD5_state___0__1___0;
Int _9982___fi__VD5_state___0__1___1;
Int _9985__VD5_state___0__1___0;
Int _9984__VD5_state___0__1___1;
struct{
Int _9923___fi_SR_OUT_state__0;
Int _9922___fi_SR_OUT_state__1;
Int _9925_SR_OUT_state__0;
Int _9924_SR_OUT_state__1;
Int _9911___fi_SR_ST_state__0;
Int _9910___fi_SR_ST_state__1;
struct{
Int _st0;
}_9913_SR_ST_state__0;
struct{
Int _st1;
}_9912_SR_ST_state__1;
Int ___fi__T90_;
Int __T90_;
unsigned char U__T90_[2];
Int _9926___fi__Z1_state__1;
Int _9928__Z1_state__1;
}__H6__I5;
}__H14_road_A_;
struct{
 FILE CONTINUES

 Page 36

 APPENDIX C

Design Tips (for verification purpose)

One may remember the following:

• One should not use two signals to activate the events in an always block.
 correct:always @(posedge clk)

 incorrect:always @(posedge clk && reset)

• “Initialization” is not supported by FormalCheck. We used another extra signal “reset”,
propagated through all the modules. The “reset” signal is made active high for only 2

 cranks of time and low for ever (Reset/Repeat constraint). The always block activated
 by the positive “reset” signal contains the assignments for the initialization.

Note that while specifying the above reset signal one is going to introduce another
“always” block (concurrent block). With two always blocks in the same module, one
should be careful to avoid reassignment of the same signal in the 2 concurrent blocks. This
may greatly affect the verification.

• If design contains internal nondeterministic signals, they should be converted to
 primary input of that module because, FormalCheck does not support nondeterministic
 internal signals.

• FormalCheck does not support real enumerated data types for Verilog code. But it is
 possible to use the key word “define”. For example,

‘define no_cars 0
 ‘define car_waiting 1
 ‘define cars_passing 2
 ‘define traffic_status {no_cars, car_waiting, cars_passing}

Note that the above piece of Verilog code is used just outside the modules (please refer to
the Verilog example in Appendix D).

 Page 37

APPENDIX D

The “Arbiter” Example
(Courtesy of Cadence for educational purposes only)

===

Description of the Arbiter to be verified:

FIG 3: Arbiter Circuit Block Diagram

The circuit arbitrates a shared resource among 4 clients. It features a selectable (clockwise or coun-
ter clockwise) polling direction for either a round-robin or an aged-based arbitration scheme. The
circuit also features the ability to bypass requests. The above picture shows the block diagram of
the circuit.

The state diagram of the circuit’s functionality is depicted on the next page.

Req{3:0}

Rot

Am

Ck

Arbiter

Reset

Byp_Req{3:0}

Ack{3:0}

 Page 38

FIG 4: Arbiter State Diagram

Table 1: Arbiter’s I/O Specification

SIGNAL POLARITY BRIEF DESCRIPTION

Req[3:0] 1 Client’s Request - Active High

Byp_Req[3:0] 1 Command to Bypass Requests
Active High.

Rot 0/1 0 - Counter -clockwise Rotation
1 - Clockwise Rotation

Am 0/1 Arbitration Mode
0 - Round Robin
1 - Age Based

Ck Posedge System Clock

Reset 1 Reset Signal - Active High

Ack[3:0] 1 Acknowledgement - Active High

A

B

C

D

(~ReqDReqA)Rot (~ReqAReqB)Rot

(~ReqA~ReqBReqC)Rot
(~ReqA~ReqB~ReqC)ReqD

IDLE

~ReqA~ReqBReqC

~ReqAReqB
Off

Off

Off
Off

ReqA

Off = ~ReqA~ReqB~ReqC~ReqD

 Page 39

Arbiter Basic Specification:

• Request inputs (Req[3:0]) are required to be deasserted a minimum of one clock cycle after
the request is acknpwledged.

• Acknowledge outputs (Ack[3:0]) will remain stable one clock cycle after the corresponding
Request (Req[3:0]) input goes low.

The following are all the necessary verilog files of the RTL design:

===================

RTL design:

arb.h

// ***
//
//File:arb.h
// Description:Global Mnemonic Assignments in arbiter
//
// ***
//

‘define IDLE4’b0000
‘define GrantA4’b0001
‘define GrantB4’b0010
‘define GrantC4’b0100
‘define GrantD4’b1000

arb.v

// **
//
//File:arb.v
// Description:Top RTL-Level for arbiter
//
// **
//
//
// **
//
// circuit:arb.v
// Description:Arbiter for 4 clients.
//
// **
//
//
// Files:
//arb.h --‘include "arb.h"

 Page 40

//dpath.v -- Decision logic in a small datapath.
//fsm.v -- FSM for arbiter
//age.v -- State to compute the age of a client’s request
//arb.v -- Top RTL-level for arbiter
//arb.fpj -- Project file (arb.fpj.ascii --> text mode project file)
//
//
// ***
//
//Brief Functional Description
//
// ***
//
// Arb.v arbitrates a shared resource among 4 clients.
//
// A Request "Req_(j)" is eventually acknowledged. Asserting "Ack_(j)"
// after a request is issued may take as little as 1 clock cycle or as
// many as "X" clock cycles. It is expected from the environment that
// each Req_(j) asserted is eventually withdrawn. Removing Req_(j)
// after the acknowledment is issued may take as little as 1 clock cycle
// or as many as "Y" clock cycles. Each Ack_(j) goes away 1 clock cycle
// after Req_(j) is withdrawn.
//
//

modulearb (ck, reset, req, byp_req, rot, am, ack);
input ck, reset;
input[3:0] req, byp_req;
input rot, am;
output[3:0] ack;

// ***
//
//Brief Description on I/O signals
//
// ***
//
// Inputs
// -------
// cksystem clock
// resetsynchronous reset - Active high
// reqbus requests from clients
// byp_reqcommand to bypass requests from clients
// rotarbiter’s rotation direction
//-----------+---------------------
// rot Value | Polling Direction
//-----------+---------------------
// 0 | CounterClockwise
// 1 | Clockwise
//
// amarbitration mode (scheme)
//-----------+---------------------
// am Value | Arbitration Scheme
//-----------+---------------------
// 0 | Round Robin
// 1 | Aged-based

 Page 41

//
// Outputs
// -------
// ackacknowledgement of bus grants back to clients
//
// **

// **
// Internal wires
// **
wireselA, selB, selC, selD, aged;
wire[2:0]AgeA, AgeB, AgeC, AgeD;
wire[3:0]requests, ack;
wirereqA, reqB, reqC, reqD;

 assign aged = am;
 assign reqA = ~ byp_req[0] & req[0];
 assign reqB = ~ byp_req[1] & req[1];
 assign reqC = ~ byp_req[2] & req[2];
 assign reqD = ~ byp_req[3] & req[3];
 assign requests = { {reqD}, {reqC}, {reqB}, {reqA} };

fsm FSM (.ck(ck), .reset(reset), .reqA(selA), .reqB(selB),
 .reqC(selC), .reqD(selD), .state(ack));

dpath DP (.AgeA(AgeA), .AgeB(AgeB), .AgeC(AgeC), .AgeD(AgeD),
 .rot(rot), .aged(aged), .req(requests), .lastGrant(ack),
 .selA(selA), .selB(selB), .selC(selC), .selD(selD));

age AGE (.ck(ck), .reset(reset), .req(requests), .ack(ack),
 .AgeA(AgeA), .AgeB(AgeB), .AgeC(AgeC), .AgeD(AgeD));

endmodule // arb

fsm.v

// ***
//
//File:fsm.v
// Description:Arbiter’s Finite State Machine
//
// ***
modulefsm (ck, reset, reqA, reqB, reqC, reqD, state);

inputck, reset, reqA, reqB, reqC, reqD;
output[3:0] state;

reg[3:0] state;

 always @(posedge ck)
 begin
 if (reset)
state <= ‘IDLE;

 Page 42

 else
 begin
case (state)
 ‘IDLE ://Waiting for Requests
 begin
if ((reqA | reqB | reqC | reqD) == 1’b1)
 begin
if (reqA)
state <= ‘GrantA;
 else if (reqB)
state <= ‘GrantB;
 else if (reqC)
state <= ‘GrantC;
 else if (reqD)
state <= ‘GrantD;
 end
 end

 ‘GrantA :
 begin
if ((reqA | reqB | reqC | reqD) == 1’b0)
state <= ‘IDLE;
else
 begin
if (reqB)
state <= ‘GrantB;
 else if (reqC)
state <= ‘GrantC;
 else if (reqD)
state <= ‘GrantD;
 end
 end

 ‘GrantB :
 begin
if ((reqA | reqB | reqC | reqD) == 1’b0)
state <= ‘IDLE;
else
 begin
if (reqA)
state <= ‘GrantA;
 else if (reqC)
state <= ‘GrantC;
 else if (reqD)
state <= ‘GrantD;
 end
 end

 ‘GrantC :
 begin
if ((reqA | reqB | reqC | reqD) == 1’b0)
state <= ‘IDLE;
else
 begin
if (reqA)
state <= ‘GrantA;
 else if (reqB)
state <= ‘GrantB;
 else if (reqD)

 Page 43

state <= ‘GrantD;
 end
 end

 ‘GrantD :
 begin
if ((reqA | reqB | reqC | reqD) == 1’b0)
state <= ‘IDLE;
else
 begin
if (reqA)
state <= ‘GrantA;
 else if (reqB)
state <= ‘GrantB;
 else if (reqC)
state <= ‘GrantC;
 end
 end
endcase

 end

 end

endmodule // fsm

dpath.v

// ***
//
//File:dpath.v
// Description:Datapath with Grant’s Selection Logic
//
// ***
//

‘include "arb.h"

module dpath (AgeA, AgeB, AgeC, AgeD, rot, aged, req,
 lastGrant, selA, selB, selC, selD);

input[2:0]AgeA, AgeB, AgeC, AgeD;
inputrot, aged;
input[3:0]req, lastGrant;
outputselA, selB, selC, selD;

//
// **
//
//Internal wires
//
// **
//

wire A_ge_B, A_lt_B, A_ge_C, A_lt_C, A_ge_D, A_lt_D;
wire B_ge_A, B_lt_A, B_ge_C, B_lt_C, B_ge_D, B_lt_D;

 Page 44

wire C_ge_A, C_lt_A, C_ge_B, C_lt_B, C_ge_D, C_lt_D;
wire D_ge_A, D_lt_A, D_ge_B, D_lt_B, D_ge_C, D_lt_C;
wire selA_pri0, selA_pri1, selA_pri2, selA_pri3;
wire selB_pri0, selB_pri1, selB_pri2, selB_pri3;
wire selC_pri0, selC_pri1, selC_pri2, selC_pri3;
wire selD_pri0, selD_pri1, selD_pri2, selD_pri3;
wire selA_pri2_1, selA_pri2_2, selA_pri2_3;
wire selB_pri2_1, selB_pri2_2, selB_pri2_3;
wire selC_pri2_1, selC_pri2_2, selC_pri2_3;
wire selD_pri2_1, selD_pri2_2, selD_pri2_3;
wire selA_pri3_1, selA_pri3_2, selA_pri3_3;
wire selB_pri3_1, selB_pri3_2, selB_pri3_3;
wire selC_pri3_1, selC_pri3_2, selC_pri3_3;
wire selD_pri3_1, selD_pri3_2, selD_pri3_3;
wire reqA, reqB, reqC, reqD;
wire selA, selB, selC, selD;

assign reqA = req[0];
assign reqB = req[1];
assign reqC = req[2];
assign reqD = req[3];

assign A_ge_B = (AgeA >= AgeB) ? 1’b1 : 1’b0;
assign A_lt_B = ~A_ge_B;

assign A_ge_C = (AgeA >= AgeC) ? 1’b1 : 1’b0;
assign A_lt_C = ~A_ge_C;

assign A_ge_D = (AgeA >= AgeD) ? 1’b1 : 1’b0;
assign A_lt_D = ~A_ge_D;

assign B_ge_A = (AgeB >= AgeA) ? 1’b1 : 1’b0;
assign B_lt_A = ~B_ge_A;

assign B_ge_C = (AgeB >= AgeC) ? 1’b1 : 1’b0;
assign B_lt_C = ~B_ge_C;

assign B_ge_D = (AgeB >= AgeD) ? 1’b1 : 1’b0;
assign B_lt_D = ~B_ge_D;

assign C_ge_A = (AgeC >= AgeA) ? 1’b1 : 1’b0;
assign C_lt_A = ~C_ge_A;

assign C_ge_B = (AgeC >= AgeB) ? 1’b1 : 1’b0;
assign C_lt_B = ~C_ge_B;

assign C_ge_D = (AgeC >= AgeD) ? 1’b1 : 1’b0;
assign C_lt_D = ~C_ge_D;

assign D_ge_A = (AgeD >= AgeA) ? 1’b1 : 1’b0;
assign D_lt_A = ~D_ge_A;

assign D_ge_B = (AgeD >= AgeB) ? 1’b1 : 1’b0;
assign D_lt_B = ~D_ge_B;

assign D_ge_C = (AgeD >= AgeC) ? 1’b1 : 1’b0;
assign D_lt_C = ~D_ge_C;

 Page 45

//
// Default Selections
//
assign selA_pri0 = (lastGrant == ‘IDLE) & reqA;
assign selB_pri0 = (lastGrant == ‘IDLE) & ~reqA & reqB;
assign selC_pri0 = (lastGrant == ‘IDLE) & ~reqA & ~reqB & reqC;
assign selD_pri0 = (lastGrant == ‘IDLE) & ~reqA & ~reqB & ~reqC & reqD;

//
// Ownership Selections
//
assign selA_pri1 = (lastGrant == ‘GrantA) & reqA;
assign selB_pri1 = (lastGrant == ‘GrantB) & reqB;
assign selC_pri1 = (lastGrant == ‘GrantC) & reqC;
assign selD_pri1 = (lastGrant == ‘GrantD) & reqD;

//
// Round Robin Selections
//
assign selA_pri2_1 = (lastGrant == ‘GrantB) & ~reqB & (~rot || ~reqC & ~reqD);
assign selA_pri2_2 = (lastGrant == ‘GrantC) & ~reqC & (~rot & ~reqB || rot & ~reqD);
assign selA_pri2_3 = (lastGrant == ‘GrantD) & ~reqD & (rot || ~reqC & ~reqB);
assign selA_pri2 = (reqA & ~aged) & (selA_pri2_1 | selA_pri2_2 | selA_pri2_3);

assign selB_pri2_1 = (lastGrant == ‘GrantC) & ~reqC & (~rot || ~reqD & ~reqA);
assign selB_pri2_2 = (lastGrant == ‘GrantD) & ~reqD & (~rot & ~reqC || rot & ~reqA);
// Fix assign selB_pri2_3 = (lastGrant == ‘GrantA) & ~reqA & (rot || ~reqD & ~reqC);
assign selB_pri2_3 = (lastGrant == ‘GrantA) & ~reqA & rot;
assign selB_pri2 = (reqB & ~aged) & (selB_pri2_1 | selB_pri2_2 | selB_pri2_3);

assign selC_pri2_1 = (lastGrant == ‘GrantD) & ~reqD & (~rot || ~reqA & ~reqB);
assign selC_pri2_2 = (lastGrant == ‘GrantA) & ~reqA & (~rot & ~reqD || rot & ~reqB);
assign selC_pri2_3 = (lastGrant == ‘GrantB) & ~reqB & (rot || ~reqA & ~reqD);
assign selC_pri2 = (reqC & ~aged) & (selC_pri2_1 | selC_pri2_2 | selC_pri2_3);

assign selD_pri2_1 = (lastGrant == ‘GrantA) & ~reqA & (~rot || ~reqB & ~reqC);
assign selD_pri2_2 = (lastGrant == ‘GrantB) & ~reqB & (~rot & ~reqA || rot & ~reqC);
assign selD_pri2_3 = (lastGrant == ‘GrantC) & ~reqC & (rot || ~reqB & ~reqA);
assign selD_pri2 = (reqD & ~aged) & (selD_pri2_1 | selD_pri2_2 | selD_pri2_3);

//
// Age Based Selections
//
assign selA_pri3_1 = (lastGrant == ‘GrantD) & ~reqD & ((rot & A_ge_B & A_ge_C) ||
 (~rot & C_lt_A & B_lt_A));
assign selA_pri3_2 = (lastGrant == ‘GrantC) & ~reqC & ((rot & D_lt_A & A_ge_B) ||
 (~rot & B_lt_A & A_ge_D));
assign selA_pri3_3 = (lastGrant == ‘GrantB) & ~reqB & ((rot & C_lt_A & D_lt_A) ||
 (~rot & A_ge_D & A_ge_C));
assign selA_pri3 = (reqA & aged) & (selA_pri3_1 | selA_pri3_2 | selA_pri3_3);

assign selB_pri3_1 = (lastGrant == ‘GrantA) & ~reqA & ((rot & B_ge_C & B_ge_D) ||
 (~rot & D_lt_B & C_lt_B));
assign selB_pri3_2 = (lastGrant == ‘GrantD) & ~reqD & ((rot & A_lt_B & B_ge_C) ||

 Page 46

 (~rot & C_lt_B & B_ge_A));
assign selB_pri3_3 = (lastGrant == ‘GrantC) & ~reqC & ((rot & D_lt_B & A_lt_B) ||
 (~rot & B_ge_A & B_ge_D));

assign selB_pri3 = (reqB & aged) & (selB_pri3_1 | selB_pri3_2 | selB_pri3_3);

// Fix assign selC_pri3_1 = (lastGrant == ‘GrantB) & ~reqB & ((rot & C_ge_D & C_ge_A) ||
assign selC_pri3_1 = (lastGrant == ‘GrantB) & ~reqB & ((rot & C_ge_D & C_ge_A) ||
 (~rot & A_lt_C & D_lt_C));
assign selC_pri3_2 = (lastGrant == ‘GrantA) & ~reqA & ((rot & B_lt_C & C_ge_D) ||
 (~rot & D_lt_C & C_ge_B));
assign selC_pri3_3 = (lastGrant == ‘GrantD) & ~reqD & ((rot & A_lt_C & B_lt_C) ||
 (~rot & C_ge_B & C_ge_A));
assign selC_pri3 = (reqC & aged) & (selC_pri3_1 | selC_pri3_2 | selC_pri3_3);

assign selD_pri3_1 = (lastGrant == ‘GrantC) & ~reqC & ((rot & D_ge_A & D_ge_B) ||
 (~rot & B_lt_D & A_lt_D));
assign selD_pri3_2 = (lastGrant == ‘GrantB) & ~reqB & ((rot & C_lt_D & D_ge_A) ||
 (~rot & A_lt_D & D_ge_C));
assign selD_pri3_3 = (lastGrant == ‘GrantA) & ~reqA & ((rot & B_lt_D & C_lt_D) ||
 (~rot & D_ge_C & D_ge_B));
assign selD_pri3 = (reqD & aged) & (selD_pri3_1 | selD_pri3_2 | selD_pri3_3);

assign selA = selA_pri0 | selA_pri1 | selA_pri2 | selA_pri3;
assign selB = selB_pri0 | selB_pri1 | selB_pri2 | selB_pri3;
assign selC = selC_pri0 | selC_pri1 | selC_pri2 | selC_pri3;
assign selD = selD_pri0 | selD_pri1 | selD_pri2 | selD_pri3;

endmodule // dpath

age.v

// ***
//
//File:age.v
// Description:Determines the Age of a Request.
//
// ***
//

module age (ck, reset, req, ack, AgeA, AgeB, AgeC, AgeD);
inputck, reset;
input[3:0] req, ack;
output[2:0] AgeA, AgeB, AgeC, AgeD;

wireReqA, ReqB, ReqC, ReqD;
wireAckA, AckB, AckC, AckD;
wireAwon, Bwon, Cwon, Dwon;
reg[2:0] AgeA, AgeB, AgeC, AgeD;

assign Awon = req[0] && ack[0];
assign Bwon = req[1] && ack[1];
assign Cwon = req[2] && ack[2];
assign Dwon = req[3] && ack[3];

always @(posedge ck)

 Page 47

begin
 if (reset)
 begin
AgeA <= 3’d0;
AgeB <= 3’d0;
AgeC <= 3’d0;
AgeD <= 3’d0;
 end
 else
 if (Awon)
 begin
 AgeA <= 3’d0;
 if (req[1])
 begin

if (AgeB < 6)
 AgeB <= AgeB + 3’d1;

else
 AgeB <= AgeB;
 end
 if (req[2])
 begin

if (AgeC < 6)
 AgeC <= AgeC + 3’d1;

else
 AgeC <= AgeC;
 end
 if (req[3])
 begin

if (AgeD < 6)
 AgeD <= AgeD + 3’d1;

else
 AgeD <= AgeD;
 end
 end
 if (Bwon)
 begin
 AgeB <= 3’d0;
 if (req[0])
 begin

if (AgeA < 6)
 AgeA <= AgeA + 3’d1;

else
 AgeA <= AgeA;
 end
 if (req[2])
 begin

if (AgeC < 6)
 AgeC <= AgeC + 3’d1;

else
 AgeC <= AgeC;
 end
 if (req[3])
 begin

if (AgeD < 6)
 AgeD <= AgeD + 3’d1;

else
 AgeD <= AgeD;
 end
 end

 Page 48

 if (Cwon)
 begin
 AgeC <= 3’d0;
 if (req[0])
 begin

if (AgeA < 6)
 AgeA <= AgeA + 3’d1;

else
 AgeA <= AgeA;
 end
 if (req[1])
 begin

if (AgeB < 6)
 AgeB <= AgeB + 3’d1;

else
 AgeB <= AgeB;
 end
 if (req[3])
 begin

if (AgeD < 6)
 AgeD <= AgeD + 3’d1;

else
 AgeD <= AgeD;
 end
 end
 if (Dwon)
 begin
 AgeD <= 3’d0;
 if (req[0])
 begin

if (AgeA < 6)
 AgeA <= AgeA + 3’d1;

else
 AgeA <= AgeA;
 end
 if (req[1])
 begin

if (AgeB < 6)
 AgeB <= AgeB + 3’d1;

else
 AgeB <= AgeB;
 end
 if (req[2])
 begin

if (AgeC < 6)
 AgeC <= AgeC + 3’d1;

else
 AgeC <= AgeC;
 end
 end
end
endmodule // age

VERIFICATION RESULTS :

 Page 49

Query-1:

Query: NoAck_Unless_Req

PROPERTIES:

Property: NoAcks
 Type: Always

 Always: (arb.ack == 0)
 Unless After: (arb.req >= 1) && (arb.ck == rising)

 Options: Fulfill at discharge

CONSTRAINTS:

Clock Constraint: ck
 Signal: arb.ck
 Extract: No
 Default: Yes

 Start: Low
 1st Duration: 1
 2nd Duration: 1

Reset Constraint: reset
 Signal: arb.reset
 Default: Yes

 Start: High

 Transition Duration Value
 Start 2 1
 forever 0

RUN OPTIONS:

 Algorithm: Symbolic (BDD)

REDUCTION OPTIONS:

 Reduction Technique: 1-Step
 Reduction Seed: Empty

 Page 50

RESULT:

Verification Query NoAck_Unless_Req VERIFIED! Wed May 10 01:15:50 2000 on server: richards

Query Data:
1.32e3 combinational variables
1.02e3 Possible input combinations per state
20 State variables: 2.1e+06 states

Verification Data:
5 states reached.
State variable coverage: 20 variables, 57.50% average coverage
Search Depth: 5
Real time: 0 minutes 23 seconds
Memory Usage: 5.99654 megabytes

EXPRESSION MACROS:

@AckA: arb.ack[0] == 1
@AckB: arb.ack[1] == 1
@AckC: arb.ack[2] == 1
@AckD: arb.ack[3] == 1
@All_Reqs: arb.req == 15
@CkRising: arb.ck == rising
@Multi_Acks: (((arb.ack[3] + arb.ack[2]) + arb.ack[1]) + arb.ack[0]) > 1
@ReqA: arb.req[0] == 1
@ReqB: arb.req[1] == 1
@ReqC: arb.req[2] == 1
@ReqD: arb.req[3] == 1
@ResetDone: arb.reset == finished

Query-2:

Query: Only_One_Ack

There are 4 request inputs and 4 acknowledge outputs in this design.

 We want to verify that the arbiter never acknowledges more than one request at
 a time.

 Ensure P1{NEVER{Ack1 + Ack2 + + Ackn >1}}

 THIS IS A NEVER PROPERTY.

PROPERTIES:

 Page 51

Property: Never_Multiple_Acks
 Type: Never

 Never: @Multi_Acks

 Options:(None)

CONSTRAINTS:

Clock Constraint: ck
 Signal: arb.ck
 Extract: No
 Default: Yes

 Start: Low
 1st Duration: 1
 2nd Duration: 1

Reset Constraint: reset
 Signal: arb.reset
 Default: Yes

 Start: High

 Transition Duration Value
 Start 2 1
 forever 0

RUN OPTIONS:

 Algorithm: Symbolic (BDD)

REDUCTION OPTIONS:

 Reduction Technique: 1-Step
 Reduction Seed: Empty

RESULT:

Verification Query Only_One_Ack VERIFIED! Wed May 10 01:16:29 2000 on server: richards

Query Data:
1.32e3 combinational variables
1.02e3 Possible input combinations per state
20 State variables: 2.1e+06 states

Verification Data:
1.11e+04 states reached.

 Page 52

State variable coverage: 20 variables, 97.50% average coverage
Search Depth: 20
Real time: 0 minutes 17 seconds
Memory Usage: 5.99654 megabytes

Query-3:

ery: AckA_Width

Checking if the AckA is minimum of 2 clocks wide.

 We can later check for AckB, AckC and AckD. Which can be easily done in command
 line version.

PROPERTIES:

Property: Min_Width_AckA_2clks
 Type: Always

 After: arb.ack[0] == rising
 Always: arb.ack[0] == 1

 Options: Fulfill Delay: 0 Duration: 2 counts of
 @CkRising

CONSTRAINTS:

Constant Constraint: Dont_bypassA
 Signal: arb.byp_req[0]
 Default: No
 Value: 0

Group Constraint: ReqA
 Constraints: ReqA_cant_occur
 ReqA_persists

 Default: Yes

Clock Constraint: ck
 Signal: arb.ck
 Extract: No
 Default: Yes

 Start: Low
 1st Duration: 1
 2nd Duration: 1

Reset Constraint: reset

 Page 53

 Signal: arb.reset
 Default: Yes

 Start: High

 Transition Duration Value
 Start 2 1
 forever 0

RUN OPTIONS:

 Algorithm: Symbolic (BDD)

REDUCTION OPTIONS:

 Reduction Technique: 1-Step
 Reduction Seed: Empty

RESULT:

Verification Query AckA_Width VERIFIED! Wed May 10 01:17:03 2000 on server: richards

Query Data:
1.32e3 combinational variables
512 Possible input combinations per state
25 State variables: 1e+08 states

Verification Data:
1.54e+04 states reached.
State variable coverage: 25 variables, 96.00% average coverage
Search Depth: 42
Real time: 0 minutes 24 seconds
Memory Usage: 6.0375 megabytes

Query-4:

Query: Acka

This query includes a liveness property and fairness constraint.

 It says that eventually there will be an acknowledgment for the request from A.

PROPERTIES:

 Page 54

Property: Eventually_AckA
 Type: Eventually

 After: @ResetDone && @ReqA && @CkRising
 Eventually: @AckA

 Options:(None)

CONSTRAINTS:

Constant Constraint: Dont_bypassA
 Signal: arb.byp_req[0]
 Default: No
 Value: 0

Group Constraint: ReqA
 Constraints: ReqA_cant_occur
 ReqA_persists

 Default: Yes

Group Constraint: ReqB
 Constraints: ReqB_cant_occur
 ReqB_persists

 Default: Yes

Group Constraint: ReqC
 Constraints: ReqC_cant_occur
 ReqC_persists

 Default: Yes

Group Constraint: ReqD
 Constraints: ReqD_cant_occur
 ReqD_persists

 Default: Yes

Constraint Stable_Rotation
 Type: Always

 After: @ResetDone && @CkRising
 Assume Always: arb.rot == stable

 Options: (None)

Constant Constraint: am_zero
 Signal: arb.am
 Default: No
 Value: 0

To make the arbitration mode non age based

 Page 55

Clock Constraint: ck
 Signal: arb.ck
 Extract: No
 Default: Yes

 Start: Low
 1st Duration: 1
 2nd Duration: 1

Reset Constraint: reset
 Signal: arb.reset
 Default: Yes

 Start: High

 Transition Duration Value
 Start 2 1
 forever 0

RUN OPTIONS:

 Algorithm: Symbolic (BDD)

REDUCTION OPTIONS:

 Reduction Technique: 1-Step
 Reduction Seed: Empty

RESULT:

Verification Query Acka VERIFIED! Wed May 10 01:17:44 2000 on server: richards

Query Data:
557 combinational variables
256 Possible input combinations per state
16 State variables: 6.55e4 states
 **** Same as prior verification Wed May 10 00:10:16 2000

Verification Data:
Reachable space: 495 states
495 states reached.
State variable coverage: 19 variables, 100.00% average coverage
Search Depth: 10
Real time: 0 minutes 11 seconds
Memory Usage: 2.32653 megabytes.

 Page 56

Query-5:

uery: Seq_ClockwiseAged

This is a Liveness property.

 To verify that the sequence for Clockwise/Aged arbitration is

 AckA -> AckB -> AckC -> AckD

 Also... note the use of state variable called "Seq".

PROPERTIES:

Property: ClockwiseAged
 Type: Eventually

 After: @All_Reqs && (Seq == 0) && @CkRising && (arb.ack == 0)
 Eventually: Seq == 4

 Options:(None)

CONSTRAINTS:

Group Constraint: ReqA
 Constraints: ReqA_cant_occur
 ReqA_persists

 Default: Yes

Group Constraint: ReqB
 Constraints: ReqB_cant_occur
 ReqB_persists

 Default: Yes

Group Constraint: ReqC
 Constraints: ReqC_cant_occur
 ReqC_persists

 Default: Yes

Group Constraint: ReqD
 Constraints: ReqD_cant_occur
 ReqD_persists

 Default: Yes

Constant Constraint: am_high

 Page 57

 Signal: arb.am
 Default: No
 Value: 1

Constant Constraint: byp_req_low
 Signal: arb.byp_req
 Default: No
 Value: 0

Clock Constraint: ck
 Signal: arb.ck
 Extract: No
 Default: Yes

 Start: Low
 1st Duration: 1
 2nd Duration: 1

Reset Constraint: reset
 Signal: arb.reset
 Default: Yes

 Start: High

 Transition Duration Value
 Start 2 1
 forever 0

Constant Constraint: rot_high
 Signal: arb.rot
 Default: No
 Value: 1

STATE VARIABLES:

Seq: Range 0 to 4
Initial: 0

if ((Seq == 0) && @AckA && @CkRising)
 Seq = 1;
else if ((Seq == 1) && @AckB && @CkRising)
 Seq = 2;
else if ((Seq == 2) && @AckC && @CkRising)
 Seq = 3;
else if ((Seq == 3) && @AckD && @CkRising)
 Seq = 4;
else if ((Seq == 4) && @CkRising)
 Seq = 0;
else
 Seq = Seq;

 Page 58

RUN OPTIONS:

 Algorithm: Symbolic (BDD)

REDUCTION OPTIONS:

 Reduction Technique: 1-Step
 Reduction Seed: Empty

RESULT:

Verification Query Seq_ClockwiseAged VERIFIED! Wed May 10 01:18:12 2000 on server: richards

Query Data:
925 combinational variables
16 Possible input combinations per state
28 State variables: 6.71e8 states
 **** Same as prior verification Wed May 10 00:48:10 2000

Verification Data:
Reachable space: 2.86e+03 states
2.86e+03 states reached.
State variable coverage: 30 variables, 93.33% average coverage
Search Depth: 42
Real time: 0 minutes 12 seconds
Memory Usage: 2.32653 megabytes.

EXPRESSION MACROS:

@AckA: arb.ack[0] == 1
@AckB: arb.ack[1] == 1
@AckC: arb.ack[2] == 1
@AckD: arb.ack[3] == 1
@All_Reqs: arb.req == 15
@CkRising: arb.ck == rising
@Multi_Acks: (((arb.ack[3] + arb.ack[2]) + arb.ack[1]) + arb.ack[0]) > 1
@ReqA: arb.req[0] == 1
@ReqB: arb.req[1] == 1
@ReqC: arb.req[2] == 1
@ReqD: arb.req[3] == 1
@ResetDone: arb.reset == finished

