Infineon

XMC4000

32-bit Microcontroller Series for Industrial Applications

Tooling Guide for XMC4000

AP32235
Application Note

Scope and purpose
This document is the latest tooling guide for XMC4000 ASC Boot Loader.

The purpose of the documentation is to describe how to use the ASCLoader tool to program XMC4000
devices. The AppNote consists of 6 Chapters.

Chapter 1 introduces the tool provided.
Chapter 2 describes the loader program generated by different compilers (DAVE, Keil and IAR).
Chapter 3 gives an overview of memory organization in XMC4000 family.

Chapter 4 describes the communication protocols used between host PC and device boards to finish the
flash programming.

Chapter 5 provides the host PC program diagrams.

The examples to use the ASCLoader tool are demonstrated in Chapter 6.

Applicable Products
e XMC4000 Microcontrollers Family
e XMC4200/XMC4400/XMC4500 Application Kit

References
Infineon: XMC Family, http://www.infineon.com/XMC
Infineon: DAVE™, http://www.infineon.com/DAVE

The example code supplied can be downloaded from...

Customer Documentation 1 V1.2,2015-05

http://www.infineon.com/XMC
http://www.infineon.com/DAVE

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Table of Contents

Table of Contents

1 INtrOdUCEION c..cruuiiiniiiniitiiiriiiiiiteiitaiittitteictaistaeitseistacsrsesssessassrsssssessssssssssssssssssssnsssnes 3
1.1 TOOL-CRAINS .ttt ettt st s bbb et et et e e st e b e saeebesbe st et e e e st eneenesaneses 3
1.2 EXample FIash PrOgram ... oottt sttt ettt ettt et sbe st et s b e 3
2 ASC BoOtStrap LOAdiNgcccceerrneieecresineinesiaiaesrosiacssestascsessossaessessascasssessassssssascasssassassses 5
2.1 FLASN LOBAEN ..ttt ettt st et ettt et s s s b b e b e b et et e e esesseeneee 7
2.2 DAVA ProjeCt SETIINGS .eeoueeeeeeieeee ettt ettt ettt et e st st st s bt s bt et e st e s e e et e meesmees 7
2.3 KEIL PrOJECT SEHINES ...veovetiteieteieteeee ettt ettt st et ettt ettt sb e bbb et et e e esesseeseee 7
2.4 JAR ProOjJECE SETHINGS .ottt ettt ettt ettt s et s bt et s et e s e sae e e e besree s esneeneenee 8
2.5 Modification Of SEArtUP.S File ccueuiiieiececeeeeee ettt s b e s ra e e 8
3 Flash Memory Organizationcccceecieeineceesiesiaecnesiacaesrestaecsessescaessessascassssssasssessascansse 10
3.1 XIMCAS00 ...ueeeeieeeieeeiieeeieeeettessreessteesseessseeesssaesseessssaessseessssessssassssssessseessssessnsesssssessssesssseessssassssees 10
3.2 XIMECAA00iieieeeee e eeeccttee e e e e e eeeertteeeeeeeseseubaeaeeeeseseaasssaaaeesesesassstanaeesssesasssssanaeesssenanssseasaesessensnsres 11
3.3 XIMCA200 ...eeeeeieeeieeeiieenieeeeteessreeesteessseessseeesssaesseessssaessseessssesssassssssssssesssssessssessssssssssesssseesssseesssees 11
4 CommMUNICAtiON ProtoCOol...ccieuiiuiiruiinncirnicrasraesnseccsaccrsses 12
4.1 Mode 0: Program FIash Pae........cocueeueriirienirienieetesiest ettt ettt et sttt st et s et e s s e s eaes 12
4.2 Mode 1: Execute User Program from FLashc..ccevieiririnineneneccteeeneneeveseesee et 13
4.3 Mode 2: Execute User Program from iCaCheccueveiririninienienienieieieeeese st 14
4.4 MOdE 3: Erase FIASh SECLONuiiiiiieiieectectece ettt sttt e e s re e s aeste s te s te s beesrnesneeenes 14
4.5 Mode 4: Read Flash ProteCtion StatUus........coceeverierieirinenenenenieieietee s sse st st see e saeenes 14
4.6 Mode 5: Protect or UNproteCt FLaSh......c..eivieiieeeceeeecteeeeeee ettt e ste et e 15
4.7 ReSPONSE COAE tO tNE HOST ...ttt ettt e e e e e re e s e s reesnesreesaaneas 16
5 HOST PC Program EXampPle ...ccccecieciecrecsecactacressesscassessessecsssssssssscsscassssssssssssssssssssssssns 17
6 Using the DEMONSTIrator....ccciiuiiiieiiniieniaiseniaiioesreniaccsestasisessesssssessosssessessasssessasssesse 20
6.1 [10 LT TSI (U] 1TSS 20
6.2 DEMONSLIAtOr File STrUCTUIE ..ottt ettt sttt et enes 20
6.3 RUN the DEMONSTIATON c..uvieiiciecteeteectecte ettt e te e e be e a e s be e s e e sate s teesbeesbeessaesnsennes 21
7 Reference DOCUMENTES...ccuiiiuiituiirninnniirnisracsnsnisraisrsesssnssrssrsesssssssssssssssssssssssssssssssssnses 24
8 REVISION HiStOIY...ceuiiiuiiruiiiniirniirnsnnniirnisrasnsessrsiersesssnsssssrsssssssssssssssssssssssssssssssssssnses 25
Application Note 2 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Introduction

1 Introduction

The XMC4000 microcontroller family has a built-in Bootstrap Loading (BSL) mechanism that can be used for
Flash programming. This mechanism is described in detail in the BootROM chapter of the XMC4000 User
manual. However the XMC4000 family of products does not provide any hard coded Bootstrap Loader
routines in the BootROM to carry out Flash programming; For example Flash writing, reading, erasing and
verification. Therefore a Flash loader program providing Flash routines must be implemented by the user.

The XMC4000 family supports both Asynchronous Serial Interface (ASC) BSL and Cotroller Area Network
(CAN) BSL. In this application note we will demonstrate Bootstrap Loading using the ASC interface.

The target device is connected to a PC via the ASC interface. The Flash loader system demonstrated in this
application note consists of two parts:

e Flash Loader Program

- The Flash loader program is sent to the target device using the built-in Bootstrap Loading mechanism.
Once the program is sent and executed, the Flash loader program establishes a communication
protocol to receive commands from the HOST program that is running on the PC, and controls the
Flash programming of the target device.

e HOST PC Program

- The HOST program running on a PC uses the communication protocol defined by the Flash loader. It
sends Flash programming commands and the code bytes to be programmed. The HOST program is
application specific, so the HOST program in this application note is only an example.

1.1 Tool-chains

The Flash loader program for ASC is developed with the following tool-chains:
e DAV4 development platform v4.0.0

e Keil Toolchainv.5.1

e IARToolchain v7.40.02

The project files for these three tool-chains provided in this example are independent from each other and
user can choose to use any of the 3.

1.2 Example Flash program

An example Flash program, the project LED_Blinky that toggles an LED controlled by P3.9, is provided for all
3 tool-chains. The file Blinky.hex can be downloaded to Flash memory. The XMCLoad HOST PC program is
developed with Microsoft Visual C++2010. The example source code is found in the following folders:

o \DAV4\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the GCC compiler.

o \Keil\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the Keil compiler.

o \IAR\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the IAR compiler.

o \DAV4\XMC4x00\LED_Blinky, contains the Flash example program developed using the GCC compiler.
o \Keil\XMC4x00\LED_Blinky, contains the Flash example program developed using the Keil compiler.

o \IAR\XMC4x00\LED_Blinky, contains the Flash example program developed using the IAR compiler.

Application Note 3 V1.2,2015-05
Customer Documentation

‘T
Tooling Guide for XMC4000 < 1
AP32235 In I n eon

Introduction

e \XMCLoad\, holds the example HOST PC program that demonstrates the whole process of Flash
programming. The project files can be compiled with Microsoft Visual C++2010.

Chapter 6 describes in detail how to use the demonstrator to download your own program into Flash and
runit.

Application Note 4 V1.2,2015-05
Customer Documentation

‘T
Tooling Guide for XMC4000 < 1
AP32235 In I n eon

ASC Bootstrap Loading

2 ASCBootstrap Loading

The communication between PC and the target device is established via the ASC interface. Figure 1 shows a
hardware setup for this application. On the target device side, the channel 0 of USICO (UOCO) is used as ASC.
Ports P1.4 and P1.5 are used as RxD and TxD, respectively.

e receive pin RxD at pin P1.4 (USICO_DXO0B)
e transmit pin TxD at pin P1.5 (USICO_DOUTO)

PC Target
77 RxD RxD [
COM
Port <—>{ XMC4500 ‘
TxD TxD
B GND o

Figure1 Connection between PC and target system for XMC4000 Bootstrap Loading

To run this program, the first step is to make the target device enter ASC BSL mode.

ASC Bootstrap Loader mode is entered upon a device reset, if the boot pins TMS=0 and TCK=0. These are
configured by a DIP switch on the target board.

The configuration pins TCK and TMS in XMC4000 are usually connected to a DIP switch on the XMC4000
board.

Assuming that TMS is connected to switch pin 1 and TCK connected to switch pin 2, the DIP switch
configuration is shown in Figure 2.

DIP switch TMS,TCK pins Boot mode
TMS TCK
ON
| TMS=0,TCK=0 ASC BSL
OFF

=

ON
TMS=1,TCK=0 Normal
orf L I N |
1 2
ON D |:|
TMS=0,TCK=1 CAN BSL
OFF

1 2

Figure 2 DIP switch configuration of boot modes

The bootstrap loader procedure is shown in 0.

Application Note 5 V1.2,2015-05
Customer Documentation

‘T
Tooling Guide for XMC4000 < 1
AP32235 In I n eon

ASC Bootstrap Loading

PC Bootstrap
(HOST) Loader
0x00 "
0xD5

4 Length Bytes (Little Endian)

0x01

Flash loader program stream
(Little Endian)

0x01

A

Call ASCLoader

Flash

ASCLoader Roilifias

Call Flash
Send Command (refer to Chapter 4) Routine

Response Code (refer to Chapter 4)
< -

Figure 3 ASC Bootstrap loader procedure for Flash programming

The HOST starts by transmitting a zero byte to help the device detect the baud rate. The XMC4000 device
supports baud rates of up to 115200 bits/s. The ASC interface will be initialized for 8 data bits and 1 stop bit.

After the baud rate is detected by the device, the bootstrap loader transmits an acknowledgement byte D5H
back to the host. It then waits 4 bytes, describing the length of the Flash loading program from the HOST.
The least significant byte is received first. If the application length is found to be acceptable by the BSL, an
OK (0x01H) byte is sent to the HOST, and the HOST sends the byte stream of the Flash loader. Once the byte
stream is received, the BSL terminates the protocol by sending a final OK byte and then transfers control to
the Flash loader program.

If there is an error in the application length (i.e. the application length is greater than device PSRAM size), a
N_OK byte (0x02H) is transmitted back to the HOST and the BSL resumes it’s wait for the correct length of
bytes.

The file ASCLoader.hex contains the Flash loading program. After ASCLoader is downloaded to PSRAM and
executed, it will first establish the communication between PC and the target device and then carry out
Flash operations.

Application Note 6 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

ASC Bootstrap Loading

2.1 Flash Loader

The Flash Loader implements the Flash routines and establishes the communication between PC and the
target device. The main part of ASCLoader (main.c) implements Flash routines providing the following
features:

e Erase Flash sectors

e Program Flash pages

o Verify a programmed Flash page

e Setflash protection

e Remove flash protection

e Read flash protection status

e Run the codes from both Flash and iCache

The sector and page address must be specified to erase and program the Flash. An invalid address (an
address that is not within the Flash boundaries) results in an address error. The XMC4000 memory
organization is described in the Flash Memory Organization chapter.

Flash user codes can be executed starting from the Flash base address 0xC0000000 and the iCache base
address 0x08000000.

2.2 DAV4 Project Settings

The Flash loader DAV4 project is available in the .\\DAV4\ASCLoader folder. The project can be imported into
the DAV4 IDE with the following steps:

e Openthe DAV4 IDE

e Import the Infineon DAVE project

e Select root directory as .\DAV4\ASCLoader

e Finish the import

Note: The Flash Loader program must be located in the PSRAM starting at 0x10000000 (XMC4500) or
Ox1FFFC000 (XMC4400/4200) because the Flash Loader program can only run from PSRAM. Therefore the
default linker script file generated from DAV4 cannot be used in the Flash loader project, because the
default linker script file locates the codes in iCache starting at 0x80000000. The linker script file that
locates the codes into PSRAM is provided in the XMC4x00_PSRAM.ld filer. To change the linker script file go
to project properties:

e Go to Settings->ARM-GCC C Linker->General->Script file (-T)
e Open “Browse...” to import the file XMC4x00_PSRAM.ld into the field

The Linker Script Language file XMC4x00_PSRAM.ld, defines the ROM memory for codes in PSRAM starting
from address 0x10000000 (XMC4500) or ox1FFFC000 (XMC4400/4200).

The stack, heap and global variables are located in DSRAM starting from address 0x20000000.

2.3 Keil Project Settings

The Keil project for Flash loader is available in the folder .\Keil\ASCLoader. The Keil compiler version is v5.1.
The project can be imported into Keil uVersion as follows:
e Go to project->open project

Application Note 7 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

ASC Bootstrap Loading

e Go to folder .\Keil\Flash_Loader->choose project file “ASCLoader.uvproj”’->open
Because the Flash Loader must be run from PSARM, the memory should be defined as follows:
e Goto Target

e |ROM1 start 0x10000000 (XMC4500) or 0x1FFFC0O00 (XMC4400/4200), size 0x10000 (XMC4500) or 0x4000
(XMC4400/4200), Startup->yes

e |RAM1 start 0x20000000, size 0x10000

By default the Keil compiler generates the object file with ELF-format and the file extension .axf. But, the
Flash loader needs HEX-format file. In order to get HEX file output go to:

e Open Option->Output->Create HEX file

2.4 |AR Project Settings

The IAR project for Flash loader is available in the folder .\IAR\ASCLoader. The compiler version v7.40.02.
The project can be imported into an IAR Embedded Workspace IDE as follows:

e Open IAR Embedded Workspace

e Go to Project->Add Existing Project

e Go to folder .\IAR\ASCLoader->choose project file “ASCLoader.ewp->open

The IAR compiler uses a Linker script to locate the memory. In the .\config folder two linker script files are
provided; XMC4500_Flash.icf and XMC4500_RAM.icf.

The file XMC4500_RAM.icf should be used to locate the codes in PSRAM.
To change the linker script file go to:

e Open Project Options->Linker->Config->Override default

e Goto folder.\config->Open “XMC4500_RAM.icf”->0K

In the file XMC4500_RAM.icf the ROM and Ram are defined:

e ROM_start =0x10000000; ROM_end = 0x1000FFFF;

e RAM_start =0x20000000; RAM_end = 0x2000FFFF;

The linker script files for XMC4400/4200 can be modified in similar way. The codes are located in PSRAM
starting at 0x10000000 (XMC4500) or ox1FFFC000 (XMC4400/4200).

The stack, heap and global variables are located in DSRAM starting from address 0x20000000.

By default the IAR compiler generates the object file with ELF-format and the file extension .out. To generate
HEX file output go to:

e Open Project Options->Output Converter->Generate additional output
e Select Output format as “Intel extended”
e Select “Override default”->0K

2.5 Modification of startup.s File

Attention: It is important to note that all clock setting functions in the startup_XMC4x00.s file used in
all ASCLoader projects with different compilers, must be removed so that the clock settings
made in the ASC bootstrap ROM code (firmware) can be kept without modification. For
example, the following instructions in the DAV4 startup_XMC4500.s file must be removed:

Application Note 8 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

ASC Bootstrap Loading

e LDR RO,=Systemlnit
e BLX RO

These instructions must be removed because the functions Systeminit() will change the clock settings,
which will change the ASC baud rate and destroy the ASC communication between the Host PC and board
after control handover from ROM code to the downloaded Flash loader program. If the baud rate is changed,
the ASC communication between PC and board will be broken and the Flash programming will not more
work.

All startup.s files provided in the ASCLoader projects have been modified and the system init functions are
removed.

Application Note 9 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Flash Memory Organization

3 Flash Memory Organization

The embedded Flash module in the XMC4x00 family includes maximal 1.0 MB of Flash memory for code or
constant data (called Program Flash). The PMU contains one PFLASH bank, accessible via the cacheable or
non-cacheable address space.

PFlash memory is characterized by its sector architecture and page structure. Sectors are Flash memory
partitions of different sizes. The offset address of each sector is relative to the base address of its bank which
is given in Table 1. Derived devices (see the XMC4000 Data Sheet) can have less Flash memory. The PFLASH
bank shrinks by cutting-off higher numbered physical sectors.

Table 1 Flash Memory Map

Range Description Size Start Address
PMUO Program Flash Bank 1 Mbyte (XMC4500) 0xC000000H
non-cached 512 Kbyte (XMC4400)

256 Kbyte (XMC4200)
PMUO Program Flash Bank 1 Mbyte (XMC4500) 0x8000000H
cached space (different address space for the same physical | 5717 Kbyte (XMC4400)
memory, mapped in the non-cached address space) 256 Kbyte (XMC4200)

o Flash erasure s sector-wise.

e Sectors are subdivided into pages.

e Flash memory programming is page-wise.

e APFlash page contains 256 bytes.

The following table lists the logical sector structure in the XMC4x00 family of products.

3.1 XMC4500

In XMC4500 the flash module PMUO contains 1 MB Pflash memory. Table 2 lists the flash logical sector
structure in XMC4500.

Table 2 Sector Structure of PFLASH in XMC4500

Sector Address Range Size

0 0xC000000-0xCO03FFF 16 KB
1 0xC004000-0xCOOTFFF 16 KB
2 0xC008000-0xCOOBFFF 16 KB
3 0xC00C000-0xCOOFFFF 16 KB
4 0xC010000-0xCO13FFF 16 KB
5 0xC014000-0xCO17FFF 16 KB
6 0xC018000-0xCO1BFFF 16 KB
7 0xC01C000-0xCO1FFFF 16 KB
8 0xC020000-0xCO3FFFF 128KB
9 0xC040000-0xCOTFFFF 256 KB
Application Note 10 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Flash Memory Organization

Sector Address Range Size
10 0xC080000-0xCOBFFFF 256 KB
11 0xC0C0000-0xCOFFFFF 256 KB

3.2 XMC4400

In XMC4400 the flash module PMUO contains 512 KB Pflash memory. Table 3 lists the flash logical sector
structure in XMC4400.

Table 3 Sector Structure of PFLASH in XMC4400

Sector Address Range Size

0 0xC000000-0xCO03FFF 16 KB
1 0xC004000-0xCOOTFFF 16 KB
2 0xC008000-0xCOOBFFF 16 KB
3 0xC00C000-0xCOOFFFF 16 KB
4 0xC010000-0xCO13FFF 16 KB
5 0xC014000-0xCO17FFF 16 KB
6 0xC018000-0xCO1BFFF 16 KB
7 0xC01C000-0xCO1FFFF 16 KB
8 0xC020000-0xCO3FFFF 128KB
9 0xC040000-0xCOTFFFF 256 KB

3.3 XMC4200

In XMC4200 the flash module PMUO contains 256 KB Pflash memory. Table 4 lists the flash logical sector
structure in XMC4200.

Table 4 Sector Structure of PFLASH in XMC4200

Sector Address Range Size

0 0xC000000-0xCO03FFF 16 KB
1 0xC004000-0xCOOTFFF 16 KB
2 0xC008000-0xCOOBFFF 16 KB
3 0xC00C000-0xCOOFFFF 16 KB
4 0xC010000-0xCO13FFF 16 KB
5 0xC014000-0xCO17FFF 16 KB
6 0xC018000-0xCO1BFFF 16 KB
7 0xC01C000-0xCO1FFFF 16 KB
8 0xC020000-0xCO3FFFF 128KB
Application Note 11 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Communication Protocol

4 Communication Protocol

The Flash loader program “ASCLoader” establishes a communication structure to receive commands from
the HOST PC.

The HOST sends commands via transfer blocks. Three types of blocks are defined:

Header Block
Byte0 Bytel Bytes 2...14 Byte 15
Block
Type Mode Mode-specific content Checksum
(0x00)

The header block has a length of 16 bytes.

Data Block
Byte 0 Byte 1l Bytes 2...257 Bytes 258...262 Byte 263
Block Verifi-
Type cation 256 data bytes Not used Checksum
(0x01) | option

The data block has a length of 264 bytes.

EOT Block
Byte 0 Bytes 1...14 Byte 15
Block
Type Not used Checksum
(0x02)

The EOT block has a length of 16 bytes.

The action required by the HOST is indicated in the Mode byte of the header block.

The Flash loader program waits to receive a valid header block and performs the corresponding action. The
correct reception of a block is judged by its checksum, which is calculated as the XOR sum of all block bytes
excluding the block type byte and the checksum byte itself.

In ASC BSL mode, all block bytes are sent at once via the UART interface. The different modes specify the
Flash routines that will be executed by the ASCLoader. The modes and their corresponding communication
protocol are described in the following sections of this chapter.

4.1 Mode 0: Program Flash Page

Header Block
Byte 0 Byte 1 Bytes 2...5 Bytes6...14 Byte 15
Block Mode

Application Note 12 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Communication Protocol

Type | (0x00) Page Address Not Used Checksum
(0x00)

e Page Address (32bit)

- Address of the Flash page to be programmed. The address must be 256-byte-aligned and in a valid
range (see Chapter 3), Otherwise an address error will occur. Byte 2 indicates the highest byte, and
byte 5 indicates the lowest byte.

After reception of the header block, the device sends either 0x55 as acknowledgement or an error code for
an invalid block. The loader enters a loop waiting to receive the subsequent data blocks in the format shown
below.

The loop is terminated by sending an EOT block to the target device.

Data Block
Byte0 Bytel Bytes 2...257 Bytes 258...262 Byte 263
Block Verifi-
Type | cation 256 data bytes Not used Checksum
(0x01) | option

e Verification Option
- Set this byte to 0x01 to request a verification of the programmed page bytes.
- If set to 0x00, no verification is performed.

e Code bytes
- Page content.

After each received data block, the device either sends 0x55 to the PC as acknowledgement, or it sends an
error code.

EOT Block
Byte 0 Bytes 1...14 Byte 15
Block
Type Not used Checksum
(0x02)

After each received EOT block, the device sends either 0x55 to the PC as acknowledgement, or it sends an
error code.

4.2 Mode 1: Execute User Program from Flash

Header Block
Byte 0 Byte 1 Bytes 2...14 Byte 15
Block Mode
Type | (0x01) Not Used Checksum
(0x00)

Application Note 13 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Communication Protocol

The command causes a jump to the Flash base address 0xC000000. The device exits BSL mode after sending
0x55 as acknowledgement.

4.3 Mode 2: Execute User Program from iCache

Header Block
Byte 0 Byte 1 Bytes 2...14 Byte 15
Block Mode
Type | (0x02) Not Used Checksum
(0x00)

The command causes a jump to the iCache base address 0x8000000. The device will exit BSL mode after
sending 0x55 as acknowledgement.

4.4 Mode 3: Erase Flash Sector

Header Block
Byte O Byte 1 Bytes 2...5 Bytes 6...9 Bytes 10...14 Byte 15
Block Mode
(:yg:) (0x03) Sector Address Sector Size Not Used Checksum
X

e Sector Address (32bit)

- Address of the Flash sector to be erased. The address must be a valid sector address (see Chapter 3).
Otherwise an address error will occur.

- Byte 2 indicates the highest address byte
- Byte 5indicates the lowest address byte.
e Sector Size (32bit)
- Size of the Flash sector to be erased. The size must be a valid sector size (see Chapter 3).
- Byte 6 indicates the highest address byte
- Byte 9 indicates the lowest address byte.

The device sends either 0x55 to the PC as acknowledgement, or it sends an error code.

4.5 Mode 4: Read Flash Protection Status

Header Block
Byte O Byte 1 Bytes 2...14 Byte 15
Application Note 14 V1.2,2015-05

Customer Documentation

Tooling Guide for XMC4000
AP32235

(infineon

Communication Protocol

Block Mode
Type (0x04) Not Used Checksum
(0x00)

The command requires flash protection status. The device exits BSL mode after sending 0x55 as “flash
unprotected” or O0XF8 as “flash protected”.

4.6 Mode 5: Protect or Unprotect Flash

Header Block
Byte O Byte 1l Bytes 2...5 Bytes6...9 Bytes 10 Bytes11...12 Bytes 13...14 Byte1l5
Block Mode User User Flash Protection
(';yg:) (0x05) | password 1 | Password2 | podule Config Notused | Checksum
X

UserPassword1 (32bit): First user password. Byte 2 indicates the highest byte while Byte 5 indicates the
lowest byte.

UserPassword2 (32bit): Second user password. Byte 6 indicates the highest byte while Byte 9 indicates the
lowest byte.

FlashModule: Reserved

ProtectionConfig (16bit): Selection of the flash sectors to be protected. The protection configuration word
has the following structure:

ProtectioConfig bit scheme

Sn =0: Sector n will not be protected.
Sn = 1: Sector n will be protected.

Note: In the case that sector n does not exist, Bit Sn should be set to 0. Please refer to Chapter 3 for detailed
information about the flash sectorization.

If the Flash is unprotected, it will be protected after sending this header block. The same block sent with the
same passwords to a flash-protected device will unprotect the Flash. All erase or program commands sent
to a flash-protected device will cause a protection error.

Attention: After sending the flash protect/unprotect command the device needs to be reset in order to
make the command valid.

Application Note 15 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Communication Protocol

4,7 Response Code to the HOST

The Flash loader program will let the HOST know whether a block has been successfully received and
whether the requested Flash routine has been successfully executed by sending out a response code.

Table 5 Response Codes

Response Code Description

0x55 Acknowledgement, no error
OxFF Invalid block type

OxFE Invalid mode

OxFD Checksum error

OxFC Invalid address

OxFB Error during Flash erasing

OxFA Error during Flash programming
0xF9 Verification error

OxF8 Protection error

Application Note 16 V1.2,2015-05

Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

HOST PC Program Example

5 HOST PCProgram Example
The XMC4000_Bootloader HOST program developed in C++ uses the communication structure described in
Chapter 4.

The file XMCload_APIl.cpp contains the API for direct communication with the ASCLoader. The APl includes
the following functions:

Table 6 API Functions

API Function Description

init_uart Initialize PC COM interface
init_ASC_BSL Initialize ASC BSL

send_loader Send the ASCLoader
bl_send_header Send header block via ASC interface
bl_send_data Send data block via ASC interface
bl_send_EOT Send EOT block via ASC interface
bl_erase_flash Erase PFlash sectors
bl_download_pflash Download code to PFlash
make_flash_image Create a Flash image from HEX file

The main program (XMCLoad.cpp) initializes ASC and sends ASCLoader to the target device.

The user must specify the HEX file to be downloaded. An example HEX file (Blinky.hex) is provided. The user
code is first downloaded to Flash and the user can then execute the downloaded code from both Flash and
iCache.

e The Flash erase procedure, as shown in Figure 4 is implemented in the function bl_erase_flash().

e The Flash programming procedure, as shown in Figure 5, is implemented in bl_download_pflash().

Application Note 17 V1.2,2015-05
Customer Documentation

Tooling Guide for XMC4000
AP32235

(infineon

HOST PC Program Example

End of file

Read HEX line

I

Determin flash sector
according to address

Sector already

erased? yes

Mode = 3
Bl_send_header()

l

Mark sector as erased

Figure 4

Application Note

Flash erase procedure implemented in bl_erase_flash()

18

V1.2,2015-05
Customer Documentation

Tooling Guide for XMC4000

AP32235

(infineon

HOST PC Program Example

no

Start

h 4

bl_erase_flash()

A
Read HEX line

End of file

bl_send_data()
(send remaining bytes)

bl_send_EOT()

.

Mode =0
bl_send_header()

Store bytes from HEX
file in write-buffer

Size of write-buffer>=2567

bl_send_data()

Delete the first 256

bytes in write-buffer

no

Size of write-buffer >0?

bl_send_data()
(send remaining bytes)

:

bl_send EOT()

End

Figure 5

Application Note

19

Flash programming procedure implemented in bl_download_pflash()

V1.2,2015-05
Customer Documentation

‘T
Tooling Guide for XMC4000 < 1
AP32235 In I n eon

Using the Demonstrator

6 Using the Demonstrator

The example programs have been tested on an Infineon XMC4x00 Application board. The user can use the
example program to download user codes (hex file format) into Flash. Here we give a description how to do
that.

6.1 Hardware Setup

The ASC output Pin of the XMC4x00 Application board has just 3.3v, but the PC ASC output usually has 5v. In
order to set up the communication between PC and XMC4000 board through the ASC interface, a voltage
adapter (such as the Infineon Xspy-Adapter), is required to adjust the voltage difference.

If the Infineon application board with XMC4x00 device is used in the test, the following hardware setup is
required:

e Setthe DIP switch jump on board as jump 1 (ON) and jump 2 (OFF) for ASC bootstrap load mode.
e Connect VCOM interface on application board to the PC ASC interface.

6.2 Demonstrator File Structure

The following figure shows the file structure in the example programs.

4 XMC4000_ASCBootloader
App - App Note

4 |, DAVE4 - DAV4 project

4 |, XMC4200 - Device folder
ASCLoader ASCLoader project
LED_Blinky Blinky example project

= XMC4400
ASCLoader
LED_Blinky

4 | XMC4500
ASCLoader
LED_Blinky

IAR - IAR project
Keil - Keil project
4 XMClLoad - Visual C++ project
ipch

4 | Release - Execution command
XMC4200 -
XMC4400 |> -y User flash hex file
XMC4500 J

= XMCload
Release
XMC4200 ~
XMC4400 l - User flash hex file
XMC4500

Figure 6 File structure of example programs

Application Note 20 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Using the Demonstrator

e This application note is contained in folder .\App.
e Thefolders .\DAV4, \IAR and .\Keil are the projects generated using the different compilers.

e The folders \XMC4500, \XMC4400 and \XMC4200 are the device folders, where the corresponding BSL
flash loader program saved.

e ASCLoader project contains the ASC bootstrap loader program
e The LED_Blinky project is the example project for LED blinking
e \XMCLoad contains the Microsoft Visual C++ 2010 project for the Host PC.

e The ASCLoader.hex and example LED Blinky hex files are saved in.\XMCLoad\Release\XMC4x00
and.\XMCLoad\XMCLoad\XMC4x00, separately.

Attention: The VCOM on Infineon XMC4400 application board cannot be used with ASCLoader because
VCOM on XMC4400 board is NOT connected with Pins P1.4 and P1.5.

6.3 Run the Demonstrator

Before starting the demonstrator, the hex file that needs to be downloaded into Flash should be copied into
the folders \XMCLoad\Debug\XMC4x00 and .\XMCLoad\XMCLoad\XMC4x00, depending on which device is
used. For example, if the XMC4500 device is used, the hex file should be copied like:

XMCload - Name

ipch
__| ASCLoader.hex

__| Blinky.hex

Release
XMC4200
XMC4400
XMC4500
XMCload
Release Copy the hex file here
XMC4200
XMC4400
XMC4500

Figure 7 Location of object hex files to be flashed

There are two ways to start the demonstrator.
1. Double click the file XMCLoad.exe under \XMCLoad\Release:

Application Note 21 V1.2,2015-05
Customer Documentation

Tooling Guide for XMC4000
AP32235

infineon

Using the Demonstrator

4 XMC4000_ASCBootloader
. App
. DAVE4
. IAR
. Keil
4 . XMCload
ipch
El Release
. XMC4200
. XMC4400
. XMC4500
. XMCLoad

o Name
, XMC4200
, XMC4400 .
e Double click
- Execution of
" XMCLoad.exe —— XMCLoad
|| XMClLoad.pdb command

Figure 8 Direct start of demonstrator

2. Double click the file XMCLoad.slIn file in the folder .\XMCLoad to open the Microsoft Visual C++ project.
The project in this AppNote is developed using Microsoft Visual C++2010.

. LED_Blinky
XMC4500
. ASCLoader
. LED_Blinky
IAR
Keil
. XMClLoad
. ipch
. Release
XMC4200
XMC4400
XMC4500
XMCload
. Release
. XMC4200
XMC4400
. XMC4500

m

Name

. ipch

. Release

. XMCload
|| Device_Memory.h
%, FTCJTAG.dII
| FTATAG.h
¥4 FTCTAG.lib
%, FTD2XX.dII
| XMClLoad.cpp

XMClLoad.opensdf

(75 XMCLoad.sdf

Double click
7 XMCloadsln <@ Open Microsoft
XMCLoad.suo Visual C++ peoject

|| XMClLoad_APLcpp
| XMClLoad_APLh

Figure 9

Start of demonstrator using Microsoft Visual C++ project

In Microsoft Visual project workbench the project can be started from the “F5” key.

On starting the demonstrator the following window is displayed:

Application Note

22 V1.2,2015-05
Customer Documentation

l de f 'T
Tooling Guide for XMC4000 1
Fooling ¢ Infineon

Using the Demonstrator

% C:\ATV_MC_ACE_IMM\AppNotes\XMC4000_ASCBootloader\ XMCLoad\Debug\XMCLoad exe G S

A#MCLoad vi.1 - Flash Programming for XMC45xx Devices

Supported Devices:

®MC4500 family:
(1> XMC45680_10624
(2> RMC45080_768
(3> XMC45680_512
#MC4400 family:
(4> ¥MC4480_512
®MC4200 family:

nmwumuwunnmu

(5> KMC42808_256

nmwuwnnuwmn

lease Enter the device to program (Enter number)
ZMC4500_1024

ZMC45008_768

ZMC45008_512

XMC44008_512

XMC42008_256

nmuwunnn

Figure 10 Start using Microsoft Visual project

Follow the instructions in the window to finish the Flash programming, set flash protection or remove the
flash protection.

Note: The hex file name that will be programmed into Flash must be given completely with the file extension;
e.g. Blinky.hex. Otherwise, the program does not know the file name. The Flash loader program accepts
only hex file format. Furthermore, the ACLoader.hex is less than 4096 Bytes, so the 4 bytes Application
Length should be given with 4096.

After the hex file is programmed into Flash, the program can be executed from both Flash and iCache.

Application Note 23 V1.2,2015-05
Customer Documentation

Tooling Guide for XMC4000
AP32235

(infineon

Reference Documents

7 Reference Documents

Table 7 References
Document Description Location
XMC4500 User’s Manual User’s Manual for XMC4500 device | http://www.infineon.com

TriCore AUDO-F Flash Download
Using Bootstrap Loader

Application Note AP32132

http://www.infineon.com

Application Note

24

V1.2,2015-05
Customer Documentation

http://iweb.infineon.com/de-DE/Seiten/default.aspx
http://iweb.infineon.com/de-DE/Seiten/default.aspx

l de f 'T
Tooling Guide for XMC4000 1
AP32235 <|I1 ineon

Revision History

8 Revision History

Current Version is V1.2, 2015-05

Page or Reference ‘ Description of change

V1.0,2013-10
Initial Version
V1.2,2015-05
1. Changing the format
2. Adding workaround for Segger VCOM issue in example codes
3. Changing DAVE3 example projects to DAVE4
4. Adding flash protection commands
Application Note 25 V1.2,2015-05

Customer Documentation

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, pVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
ig™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

www.infineon.com

Edition 2014-11
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2015 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
AP32277

Legal Disclaimer

THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information

For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (wWww.infineon.com).

Warnings

Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	1 Introduction
	1.1 Tool-chains
	1.2 Example Flash program

	2 ASC Bootstrap Loading
	2.1 Flash Loader
	2.2 DAV4 Project Settings
	2.3 Keil Project Settings
	2.4 IAR Project Settings
	2.5 Modification of startup.s File

	3 Flash Memory Organization
	3.1 XMC4500
	3.2 XMC4400
	3.3 XMC4200

	4 Communication Protocol
	4.1 Mode 0: Program Flash Page
	4.2 Mode 1: Execute User Program from Flash
	4.3 Mode 2: Execute User Program from iCache
	4.4 Mode 3: Erase Flash Sector
	4.5 Mode 4: Read Flash Protection Status
	4.6 Mode 5: Protect or Unprotect Flash
	4.7 Response Code to the HOST

	5 HOST PC Program Example
	6 Using the Demonstrator
	6.1 Hardware Setup
	6.2 Demonstrator File Structure
	6.3 Run the Demonstrator

	7 Reference Documents
	8 Revision History

