

 Customer Documentation 1 V1.2, 2015-05

Scope and purpose

This document is the latest tooling guide for XMC4000 ASC Boot Loader.

The purpose of the documentation is to describe how to use the ASCLoader tool to program XMC4000
devices. The AppNote consists of 6 Chapters.

Chapter 1 introduces the tool provided.

Chapter 2 describes the loader program generated by different compilers (DAVE, Keil and IAR).

Chapter 3 gives an overview of memory organization in XMC4000 family.

Chapter 4 describes the communication protocols used between host PC and device boards to finish the
flash programming.

Chapter 5 provides the host PC program diagrams.

The examples to use the ASCLoader tool are demonstrated in Chapter 6.

Applicable Products

 XMC4000 Microcontrollers Family

 XMC4200/XMC4400/XMC4500 Application Kit

References

Infineon: XMC Family, http://www.infineon.com/XMC

Infineon: DAVE™, http://www.infineon.com/DAVE

The example code supplied can be downloaded from...

XM C4 00 0
32-bit Microcontroller Series for Industrial Applications

To ol in g Gu ide for XM C4 00 0
 AP32235

Application Note

http://www.infineon.com/XMC
http://www.infineon.com/DAVE

Tooling Guide for XMC4000
 AP32235

Table of Contents

Application Note 2 V1.2, 2015-05

 Customer Documentation

Table of Contents

1 Introduction ... 3

1.1 Tool-chains .. 3
1.2 Example Flash program .. 3

2 ASC Bootstrap Loading .. 5

2.1 Flash Loader .. 7
2.2 DAV4 Project Settings ... 7
2.3 Keil Project Settings .. 7

2.4 IAR Project Settings .. 8
2.5 Modification of startup.s File .. 8

3 Flash Memory Organization ... 10

3.1 XMC4500 .. 10

3.2 XMC4400 .. 11

3.3 XMC4200 .. 11

4 Communication Protocol ... 12

4.1 Mode 0: Program Flash Page... 12
4.2 Mode 1: Execute User Program from Flash .. 13

4.3 Mode 2: Execute User Program from iCache .. 14

4.4 Mode 3: Erase Flash Sector ... 14

4.5 Mode 4: Read Flash Protection Status .. 14

4.6 Mode 5: Protect or Unprotect Flash .. 15

4.7 Response Code to the HOST ... 16

5 HOST PC Program Example ... 17

6 Using the Demonstrator ... 20

6.1 Hardware Setup .. 20
6.2 Demonstrator File Structure ... 20
6.3 Run the Demonstrator .. 21

7 Reference Documents .. 24

8 Revision History .. 25

Tooling Guide for XMC4000
 AP32235

Introduction

Application Note 3 V1.2, 2015-05

 Customer Documentation

1 Introduction

The XMC4000 microcontroller family has a built-in Bootstrap Loading (BSL) mechanism that can be used for

Flash programming. This mechanism is described in detail in the BootROM chapter of the XMC4000 User
manual. However the XMC4000 family of products does not provide any hard coded Bootstrap Loader
routines in the BootROM to carry out Flash programming; For example Flash writing, reading, erasing and
verification. Therefore a Flash loader program providing Flash routines must be implemented by the user.

The XMC4000 family supports both Asynchronous Serial Interface (ASC) BSL and Cotroller Area Network
(CAN) BSL. In this application note we will demonstrate Bootstrap Loading using the ASC interface.

The target device is connected to a PC via the ASC interface. The Flash loader system demonstrated in this
application note consists of two parts:

 Flash Loader Program

− The Flash loader program is sent to the target device using the built-in Bootstrap Loading mechanism.

Once the program is sent and executed, the Flash loader program establishes a communication
protocol to receive commands from the HOST program that is running on the PC, and controls the

Flash programming of the target device.

 HOST PC Program

− The HOST program running on a PC uses the communication protocol defined by the Flash loader. It

sends Flash programming commands and the code bytes to be programmed. The HOST program is

application specific, so the HOST program in this application note is only an example.

1.1 Tool-chains

The Flash loader program for ASC is developed with the following tool-chains:

 DAV4 development platform v4.0.0

 Keil Toolchain v.5.1

 IAR Toolchain v7.40.02

The project files for these three tool-chains provided in this example are independent from each other and
user can choose to use any of the 3.

1.2 Example Flash program

An example Flash program, the project LED_Blinky that toggles an LED controlled by P3.9, is provided for all
3 tool-chains. The file Blinky.hex can be downloaded to Flash memory. The XMCLoad HOST PC program is

developed with Microsoft Visual C++ 2010. The example source code is found in the following folders:

 .\DAV4\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the GCC compiler.

 .\Keil\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the Keil compiler.

 .\IAR\XMC4x00\ASCLoader, contains the ASC BSL Loader developed using the IAR compiler.

 .\DAV4\XMC4x00\LED_Blinky, contains the Flash example program developed using the GCC compiler.

 .\Keil\XMC4x00\LED_Blinky, contains the Flash example program developed using the Keil compiler.

 .\IAR\XMC4x00\LED_Blinky, contains the Flash example program developed using the IAR compiler.

Tooling Guide for XMC4000
 AP32235

Introduction

Application Note 4 V1.2, 2015-05

 Customer Documentation

 .\XMCLoad\, holds the example HOST PC program that demonstrates the whole process of Flash
programming. The project files can be compiled with Microsoft Visual C++2010.

Chapter 6 describes in detail how to use the demonstrator to download your own program into Flash and
run it.

Tooling Guide for XMC4000
 AP32235

ASC Bootstrap Loading

Application Note 5 V1.2, 2015-05

 Customer Documentation

2 ASC Bootstrap Loading

The communication between PC and the target device is established via the ASC interface. Figure 1 shows a

hardware setup for this application. On the target device side, the channel 0 of USIC0 (U0C0) is used as ASC.
Ports P1.4 and P1.5 are used as RxD and TxD, respectively.

 receive pin RxD at pin P1.4 (USIC0_DX0B)

 transmit pin TxD at pin P1.5 (USIC0_DOUT0)

Figure 1 Connection between PC and target system for XMC4000 Bootstrap Loading

To run this program, the first step is to make the target device enter ASC BSL mode.

ASC Bootstrap Loader mode is entered upon a device reset, if the boot pins TMS=0 and TCK=0. These are
configured by a DIP switch on the target board.

The configuration pins TCK and TMS in XMC4000 are usually connected to a DIP switch on the XMC4000
board.

Assuming that TMS is connected to switch pin 1 and TCK connected to switch pin 2, the DIP switch
configuration is shown in Figure 2.

Figure 2 DIP switch configuration of boot modes

The bootstrap loader procedure is shown in 0.

Tooling Guide for XMC4000
 AP32235

ASC Bootstrap Loading

Application Note 6 V1.2, 2015-05

 Customer Documentation

Figure 3 ASC Bootstrap loader procedure for Flash programming

The HOST starts by transmitting a zero byte to help the device detect the baud rate. The XMC4000 device

supports baud rates of up to 115200 bits/s. The ASC interface will be initialized for 8 data bits and 1 stop bit.

After the baud rate is detected by the device, the bootstrap loader transmits an acknowledgement byte D5H
back to the host. It then waits 4 bytes, describing the length of the Flash loading program from the HOST.

The least significant byte is received first. If the application length is found to be acceptable by the BSL, an
OK (0x01H) byte is sent to the HOST, and the HOST sends the byte stream of the Flash loader. Once the byte
stream is received, the BSL terminates the protocol by sending a final OK byte and then transfers control to

the Flash loader program.

If there is an error in the application length (i.e. the application length is greater than device PSRAM size), a
N_OK byte (0x02H) is transmitted back to the HOST and the BSL resumes it’s wait for the correct length of
bytes.

The file ASCLoader.hex contains the Flash loading program. After ASCLoader is downloaded to PSRAM and
executed, it will first establish the communication between PC and the target device and then carry out

Flash operations.

Tooling Guide for XMC4000
 AP32235

ASC Bootstrap Loading

Application Note 7 V1.2, 2015-05

 Customer Documentation

2.1 Flash Loader

The Flash Loader implements the Flash routines and establishes the communication between PC and the
target device. The main part of ASCLoader (main.c) implements Flash routines providing the following
features:

 Erase Flash sectors

 Program Flash pages

 Verify a programmed Flash page

 Set flash protection

 Remove flash protection

 Read flash protection status

 Run the codes from both Flash and iCache

The sector and page address must be specified to erase and program the Flash. An invalid address (an

address that is not within the Flash boundaries) results in an address error. The XMC4000 memory
organization is described in the Flash Memory Organization chapter.

Flash user codes can be executed starting from the Flash base address 0xC0000000 and the iCache base
address 0x08000000.

2.2 DAV4 Project Settings

The Flash loader DAV4 project is available in the .\DAV4\ASCLoader folder. The project can be imported into

the DAV4 IDE with the following steps:

 Open the DAV4 IDE

 Import the Infineon DAVE project

 Select root directory as .\DAV4\ASCLoader

 Finish the import

Note: The Flash Loader program must be located in the PSRAM starting at 0x10000000 (XMC4500) or
0x1FFFC000 (XMC4400/4200) because the Flash Loader program can only run from PSRAM. Therefore the
default linker script file generated from DAV4 cannot be used in the Flash loader project, because the
default linker script file locates the codes in iCache starting at 0x80000000. The linker script file that
locates the codes into PSRAM is provided in the XMC4x00_PSRAM.ld filer. To change the linker script file go
to project properties:

 Go to Settings->ARM-GCC C Linker->General->Script file (-T)

 Open “Browse…” to import the file XMC4x00_PSRAM.ld into the field

The Linker Script Language file XMC4x00_PSRAM.ld, defines the ROM memory for codes in PSRAM starting
from address 0x10000000 (XMC4500) or ox1FFFC000 (XMC4400/4200).

The stack, heap and global variables are located in DSRAM starting from address 0x20000000.

2.3 Keil Project Settings

The Keil project for Flash loader is available in the folder .\Keil\ASCLoader. The Keil compiler version is v5.1.
The project can be imported into Keil µVersion as follows:

 Go to project->open project

Tooling Guide for XMC4000
 AP32235

ASC Bootstrap Loading

Application Note 8 V1.2, 2015-05

 Customer Documentation

 Go to folder .\Keil\Flash_Loader->choose project file “ASCLoader.uvproj”->open

Because the Flash Loader must be run from PSARM, the memory should be defined as follows:

 Go to Target

 IROM1 start 0x10000000 (XMC4500) or 0x1FFFC000 (XMC4400/4200), size 0x10000 (XMC4500) or 0x4000
(XMC4400/4200), Startup->yes

 IRAM1 start 0x20000000, size 0x10000

By default the Keil compiler generates the object file with ELF-format and the file extension .axf. But, the

Flash loader needs HEX-format file. In order to get HEX file output go to:

 Open Option->Output->Create HEX file

2.4 IAR Project Settings

The IAR project for Flash loader is available in the folder .\IAR\ASCLoader. The compiler version v7.40.02.
The project can be imported into an IAR Embedded Workspace IDE as follows:

 Open IAR Embedded Workspace

 Go to Project->Add Existing Project

 Go to folder .\IAR\ASCLoader->choose project file “ASCLoader.ewp->open

The IAR compiler uses a Linker script to locate the memory. In the .\config folder two linker script files are

provided; XMC4500_Flash.icf and XMC4500_RAM.icf.

The file XMC4500_RAM.icf should be used to locate the codes in PSRAM.

To change the linker script file go to:

 Open Project Options->Linker->Config->Override default

 Go to folder .\config->Open “XMC4500_RAM.icf”->OK

In the file XMC4500_RAM.icf the ROM and Ram are defined:

 ROM_start = 0x10000000; ROM_end = 0x1000FFFF;

 RAM_start = 0x20000000; RAM_end = 0x2000FFFF;

The linker script files for XMC4400/4200 can be modified in similar way. The codes are located in PSRAM

starting at 0x10000000 (XMC4500) or ox1FFFC000 (XMC4400/4200).

The stack, heap and global variables are located in DSRAM starting from address 0x20000000.

By default the IAR compiler generates the object file with ELF-format and the file extension .out. To generate

HEX file output go to:

 Open Project Options->Output Converter->Generate additional output

 Select Output format as “Intel extended”

 Select “Override default”->OK

2.5 Modification of startup.s File

Attention: It is important to note that all clock setting functions in the startup_XMC4x00.s file used in
all ASCLoader projects with different compilers, must be removed so that the clock settings
made in the ASC bootstrap ROM code (firmware) can be kept without modification. For
example, the following instructions in the DAV4 startup_XMC4500.s file must be removed:

Tooling Guide for XMC4000
 AP32235

ASC Bootstrap Loading

Application Note 9 V1.2, 2015-05

 Customer Documentation

 LDR R0, =SystemInit

 BLX R0

These instructions must be removed because the functions SystemInit() will change the clock settings,
which will change the ASC baud rate and destroy the ASC communication between the Host PC and board

after control handover from ROM code to the downloaded Flash loader program. If the baud rate is changed,
the ASC communication between PC and board will be broken and the Flash programming will not more
work.

All startup.s files provided in the ASCLoader projects have been modified and the system init functions are

removed.

Tooling Guide for XMC4000
 AP32235

Flash Memory Organization

Application Note 10 V1.2, 2015-05

 Customer Documentation

3 Flash Memory Organization

The embedded Flash module in the XMC4x00 family includes maximal 1.0 MB of Flash memory for code or

constant data (called Program Flash). The PMU contains one PFLASH bank, accessible via the cacheable or
non-cacheable address space.

PFlash memory is characterized by its sector architecture and page structure. Sectors are Flash memory
partitions of different sizes. The offset address of each sector is relative to the base address of its bank which

is given in Table 1. Derived devices (see the XMC4000 Data Sheet) can have less Flash memory. The PFLASH
bank shrinks by cutting-off higher numbered physical sectors.

Table 1 Flash Memory Map

Range Description Size Start Address

PMU0 Program Flash Bank

non-cached

1 Mbyte (XMC4500)

512 Kbyte (XMC4400)

256 Kbyte (XMC4200)

0xC000000H

PMU0 Program Flash Bank

cached space (different address space for the same physical

memory, mapped in the non-cached address space)

1 Mbyte (XMC4500)

512 Kbyte (XMC4400)

256 Kbyte (XMC4200)

0x8000000H

 Flash erasure is sector-wise.

 Sectors are subdivided into pages.

 Flash memory programming is page-wise.

 A PFlash page contains 256 bytes.

The following table lists the logical sector structure in the XMC4x00 family of products.

3.1 XMC4500

In XMC4500 the flash module PMU0 contains 1 MB Pflash memory. Table 2 lists the flash logical sector

structure in XMC4500.

Table 2 Sector Structure of PFLASH in XMC4500

Sector Address Range Size

0 0xC000000-0xC003FFF 16 KB

1 0xC004000-0xC007FFF 16 KB

2 0xC008000-0xC00BFFF 16 KB

3 0xC00C000-0xC00FFFF 16 KB

4 0xC010000-0xC013FFF 16 KB

5 0xC014000-0xC017FFF 16 KB

6 0xC018000-0xC01BFFF 16 KB

7 0xC01C000-0xC01FFFF 16 KB

8 0xC020000-0xC03FFFF 128KB

9 0xC040000-0xC07FFFF 256 KB

Tooling Guide for XMC4000
 AP32235

Flash Memory Organization

Application Note 11 V1.2, 2015-05

 Customer Documentation

Sector Address Range Size

10 0xC080000-0xC0BFFFF 256 KB

11 0xC0C0000-0xC0FFFFF 256 KB

3.2 XMC4400

In XMC4400 the flash module PMU0 contains 512 KB Pflash memory. Table 3 lists the flash logical sector
structure in XMC4400.

Table 3 Sector Structure of PFLASH in XMC4400

Sector Address Range Size

0 0xC000000-0xC003FFF 16 KB

1 0xC004000-0xC007FFF 16 KB

2 0xC008000-0xC00BFFF 16 KB

3 0xC00C000-0xC00FFFF 16 KB

4 0xC010000-0xC013FFF 16 KB

5 0xC014000-0xC017FFF 16 KB

6 0xC018000-0xC01BFFF 16 KB

7 0xC01C000-0xC01FFFF 16 KB

8 0xC020000-0xC03FFFF 128KB

9 0xC040000-0xC07FFFF 256 KB

3.3 XMC4200

In XMC4200 the flash module PMU0 contains 256 KB Pflash memory. Table 4 lists the flash logical sector

structure in XMC4200.

Table 4 Sector Structure of PFLASH in XMC4200

Sector Address Range Size

0 0xC000000-0xC003FFF 16 KB

1 0xC004000-0xC007FFF 16 KB

2 0xC008000-0xC00BFFF 16 KB

3 0xC00C000-0xC00FFFF 16 KB

4 0xC010000-0xC013FFF 16 KB

5 0xC014000-0xC017FFF 16 KB

6 0xC018000-0xC01BFFF 16 KB

7 0xC01C000-0xC01FFFF 16 KB

8 0xC020000-0xC03FFFF 128KB

Tooling Guide for XMC4000
 AP32235

Communication Protocol

Application Note 12 V1.2, 2015-05

 Customer Documentation

4 Communication Protocol

The Flash loader program “ASCLoader” establishes a communication structure to receive commands from

the HOST PC.

The HOST sends commands via transfer blocks. Three types of blocks are defined:

Header Block

 Byte 0 Byte 1 Bytes 2…14 Byte 15

Block

Type
(0x00)

Mode

Mode-specific content

Checksum

The header block has a length of 16 bytes.

Data Block

Byte 0 Byte 1 Bytes 2…257 Bytes 258…262 Byte 263

Block

Type
(0x01)

Verifi-

cation
option

256 data bytes

Not used

Checksum

The data block has a length of 264 bytes.

EOT Block

Byte 0 Bytes 1…14 Byte 15

Block

Type
(0x02)

Not used

Checksum

The EOT block has a length of 16 bytes.

The action required by the HOST is indicated in the Mode byte of the header block.

The Flash loader program waits to receive a valid header block and performs the corresponding action. The
correct reception of a block is judged by its checksum, which is calculated as the XOR sum of all block bytes

excluding the block type byte and the checksum byte itself.

In ASC BSL mode, all block bytes are sent at once via the UART interface. The different modes specify the

Flash routines that will be executed by the ASCLoader. The modes and their corresponding communication
protocol are described in the following sections of this chapter.

4.1 Mode 0: Program Flash Page

Header Block

Byte 0 Byte 1 Bytes 2…5 Bytes 6…14 Byte 15

Block Mode

Tooling Guide for XMC4000
 AP32235

Communication Protocol

Application Note 13 V1.2, 2015-05

 Customer Documentation

Type

(0x00)

(0x00) Page Address Not Used Checksum

 Page Address (32bit)

− Address of the Flash page to be programmed. The address must be 256-byte-aligned and in a valid
range (see Chapter 3), Otherwise an address error will occur. Byte 2 indicates the highest byte, and
byte 5 indicates the lowest byte.

After reception of the header block, the device sends either 0x55 as acknowledgement or an error code for

an invalid block. The loader enters a loop waiting to receive the subsequent data blocks in the format shown
below.

The loop is terminated by sending an EOT block to the target device.

Data Block

Byte 0 Byte 1 Bytes 2…257 Bytes 258…262 Byte 263

Block

Type

(0x01)

Verifi-

cation

option

256 data bytes

Not used

Checksum

 Verification Option

− Set this byte to 0x01 to request a verification of the programmed page bytes.

− If set to 0x00, no verification is performed.

 Code bytes

− Page content.

After each received data block, the device either sends 0x55 to the PC as acknowledgement, or it sends an

error code.

EOT Block

Byte 0 Bytes 1…14 Byte 15

Block

Type
(0x02)

Not used

Checksum

After each received EOT block, the device sends either 0x55 to the PC as acknowledgement, or it sends an

error code.

4.2 Mode 1: Execute User Program from Flash

Header Block

Byte 0 Byte 1 Bytes 2…14 Byte 15

Block

Type
(0x00)

Mode

(0x01)

Not Used

Checksum

Tooling Guide for XMC4000
 AP32235

Communication Protocol

Application Note 14 V1.2, 2015-05

 Customer Documentation

The command causes a jump to the Flash base address 0xC000000. The device exits BSL mode after sending
0x55 as acknowledgement.

4.3 Mode 2: Execute User Program from iCache

Header Block

Byte 0 Byte 1 Bytes 2…14 Byte 15

Block

Type
(0x00)

Mode

(0x02)

Not Used

Checksum

The command causes a jump to the iCache base address 0x8000000. The device will exit BSL mode after
sending 0x55 as acknowledgement.

4.4 Mode 3: Erase Flash Sector

Header Block

Byte 0 Byte 1 Bytes 2…5 Bytes 6…9 Bytes 10…14 Byte 15

Block
Type

(0x00)

Mode
(0x03)

Sector Address

Sector Size

Not Used

Checksum

 Sector Address (32bit)

− Address of the Flash sector to be erased. The address must be a valid sector address (see Chapter 3).
Otherwise an address error will occur.

− Byte 2 indicates the highest address byte

− Byte 5 indicates the lowest address byte.

 Sector Size (32bit)

− Size of the Flash sector to be erased. The size must be a valid sector size (see Chapter 3).

− Byte 6 indicates the highest address byte

− Byte 9 indicates the lowest address byte.

The device sends either 0x55 to the PC as acknowledgement, or it sends an error code.

4.5 Mode 4: Read Flash Protection Status

Header Block

Byte 0 Byte 1 Bytes 2…14 Byte 15

Tooling Guide for XMC4000
 AP32235

Communication Protocol

Application Note 15 V1.2, 2015-05

 Customer Documentation

Block

Type

(0x00)

Mode

(0x04)

Not Used

Checksum

− The command requires flash protection status. The device exits BSL mode after sending 0x55 as “flash
unprotected” or 0xF8 as “flash protected”.

−

4.6 Mode 5: Protect or Unprotect Flash

Header Block

Byte 0 Byte 1 Bytes 2…5 Bytes 6…9 Bytes 10 Bytes 11…12 Bytes 13…14 Byte 15

Block

Type

(0x00)

Mode

(0x05)
User

Password 1

User

Password 2
Flash

Module

Protection

Config

Not used

Checksum

UserPassword1 (32bit): First user password. Byte 2 indicates the highest byte while Byte 5 indicates the

lowest byte.

UserPassword2 (32bit): Second user password. Byte 6 indicates the highest byte while Byte 9 indicates the
lowest byte.

FlashModule: Reserved

ProtectionConfig (16bit): Selection of the flash sectors to be protected. The protection configuration word
has the following structure:

ProtectioConfig bit scheme

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Sn = 0: Sector n will not be protected.

Sn = 1: Sector n will be protected.

Note: In the case that sector n does not exist, Bit Sn should be set to 0. Please refer to Chapter 3 for detailed
information about the flash sectorization.

If the Flash is unprotected, it will be protected after sending this header block. The same block sent with the

same passwords to a flash-protected device will unprotect the Flash. All erase or program commands sent
to a flash-protected device will cause a protection error.

Attention: After sending the flash protect/unprotect command the device needs to be reset in order to
make the command valid.

Tooling Guide for XMC4000
 AP32235

Communication Protocol

Application Note 16 V1.2, 2015-05

 Customer Documentation

4.7 Response Code to the HOST

The Flash loader program will let the HOST know whether a block has been successfully received and
whether the requested Flash routine has been successfully executed by sending out a response code.

Table 5 Response Codes

Response Code Description

0x55 Acknowledgement, no error

0xFF Invalid block type

0xFE Invalid mode

0xFD Checksum error

0xFC Invalid address

0xFB Error during Flash erasing

0xFA Error during Flash programming

0xF9 Verification error

0xF8 Protection error

Tooling Guide for XMC4000
 AP32235

HOST PC Program Example

Application Note 17 V1.2, 2015-05

 Customer Documentation

5 HOST PC Program Example

The XMC4000_Bootloader HOST program developed in C++ uses the communication structure described in

Chapter 4.

The file XMCload_API.cpp contains the API for direct communication with the ASCLoader. The API includes
the following functions:

Table 6 API Functions

API Function Description

init_uart Initialize PC COM interface

init_ASC_BSL Initialize ASC BSL

send_loader Send the ASCLoader

bl_send_header Send header block via ASC interface

bl_send_data Send data block via ASC interface

bl_send_EOT Send EOT block via ASC interface

bl_erase_flash Erase PFlash sectors

bl_download_pflash Download code to PFlash

make_flash_image Create a Flash image from HEX file

The main program (XMCLoad.cpp) initializes ASC and sends ASCLoader to the target device.

The user must specify the HEX file to be downloaded. An example HEX file (Blinky.hex) is provided. The user
code is first downloaded to Flash and the user can then execute the downloaded code from both Flash and

iCache.

 The Flash erase procedure, as shown in Figure 4 is implemented in the function bl_erase_flash().

 The Flash programming procedure, as shown in Figure 5, is implemented in bl_download_pflash().

Tooling Guide for XMC4000
 AP32235

HOST PC Program Example

Application Note 18 V1.2, 2015-05

 Customer Documentation

Figure 4 Flash erase procedure implemented in bl_erase_flash()

Tooling Guide for XMC4000
 AP32235

HOST PC Program Example

Application Note 19 V1.2, 2015-05

 Customer Documentation

Figure 5 Flash programming procedure implemented in bl_download_pflash()

Tooling Guide for XMC4000
 AP32235

Using the Demonstrator

Application Note 20 V1.2, 2015-05

 Customer Documentation

6 Using the Demonstrator

The example programs have been tested on an Infineon XMC4x00 Application board. The user can use the

example program to download user codes (hex file format) into Flash. Here we give a description how to do
that.

6.1 Hardware Setup

The ASC output Pin of the XMC4x00 Application board has just 3.3v, but the PC ASC output usually has 5v. In

order to set up the communication between PC and XMC4000 board through the ASC interface, a voltage

adapter (such as the Infineon Xspy-Adapter), is required to adjust the voltage difference.

If the Infineon application board with XMC4x00 device is used in the test, the following hardware setup is
required:

 Set the DIP switch jump on board as jump 1 (ON) and jump 2 (OFF) for ASC bootstrap load mode.

 Connect VCOM interface on application board to the PC ASC interface.

6.2 Demonstrator File Structure

The following figure shows the file structure in the example programs.

Figure 6 File structure of example programs

Tooling Guide for XMC4000
 AP32235

Using the Demonstrator

Application Note 21 V1.2, 2015-05

 Customer Documentation

 This application note is contained in folder .\App.

 The folders .\DAV4, .\IAR and .\Keil are the projects generated using the different compilers.

 The folders \XMC4500, \XMC4400 and \XMC4200 are the device folders, where the corresponding BSL
flash loader program saved.

 ASCLoader project contains the ASC bootstrap loader program

 The LED_Blinky project is the example project for LED blinking

 .\XMCLoad contains the Microsoft Visual C++ 2010 project for the Host PC.

 The ASCLoader.hex and example LED Blinky hex files are saved in.\XMCLoad\Release\XMC4x00
and.\XMCLoad\XMCLoad\XMC4x00, separately.

Attention: The VCOM on Infineon XMC4400 application board cannot be used with ASCLoader because
VCOM on XMC4400 board is NOT connected with Pins P1.4 and P1.5.

6.3 Run the Demonstrator

Before starting the demonstrator, the hex file that needs to be downloaded into Flash should be copied into

the folders .\XMCLoad\Debug\XMC4x00 and .\XMCLoad\XMCLoad\XMC4x00, depending on which device is
used. For example, if the XMC4500 device is used, the hex file should be copied like:

Figure 7 Location of object hex files to be flashed

There are two ways to start the demonstrator.

1. Double click the file XMCLoad.exe under .\XMCLoad\Release:

Tooling Guide for XMC4000
 AP32235

Using the Demonstrator

Application Note 22 V1.2, 2015-05

 Customer Documentation

Figure 8 Direct start of demonstrator

2. Double click the file XMCLoad.sln file in the folder .\XMCLoad to open the Microsoft Visual C++ project.
The project in this AppNote is developed using Microsoft Visual C++ 2010.

Figure 9 Start of demonstrator using Microsoft Visual C++ project

In Microsoft Visual project workbench the project can be started from the “F5” key.

On starting the demonstrator the following window is displayed:

Tooling Guide for XMC4000
 AP32235

Using the Demonstrator

Application Note 23 V1.2, 2015-05

 Customer Documentation

Figure 10 Start using Microsoft Visual project

Follow the instructions in the window to finish the Flash programming, set flash protection or remove the

flash protection.

Note: The hex file name that will be programmed into Flash must be given completely with the file extension;
e.g. Blinky.hex. Otherwise, the program does not know the file name. The Flash loader program accepts
only hex file format. Furthermore, the ACLoader.hex is less than 4096 Bytes, so the 4 bytes Application
Length should be given with 4096.

After the hex file is programmed into Flash, the program can be executed from both Flash and iCache.

Tooling Guide for XMC4000
 AP32235

Reference Documents

Application Note 24 V1.2, 2015-05

 Customer Documentation

7 Reference Documents

Table 7 References

Document Description Location

XMC4500 User’s Manual User’s Manual for XMC4500 device http://www.infineon.com

TriCore AUDO-F Flash Download

Using Bootstrap Loader

Application Note AP32132 http://www.infineon.com

http://iweb.infineon.com/de-DE/Seiten/default.aspx
http://iweb.infineon.com/de-DE/Seiten/default.aspx

Tooling Guide for XMC4000
 AP32235

Revision History

Application Note 25 V1.2, 2015-05

 Customer Documentation

8 Revision History

Current Version is V1.2, 2015-05

Page or Reference Description of change

V1.0, 2013-10

 Initial Version

V1.2, 2015-05

 1. Changing the format

2. Adding workaround for Segger VCOM issue in example codes

3. Changing DAVE3 example projects to DAVE4

4. Adding flash protection commands

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2015 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any

aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

Edition 2014-11

AP32277

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	1 Introduction
	1.1 Tool-chains
	1.2 Example Flash program

	2 ASC Bootstrap Loading
	2.1 Flash Loader
	2.2 DAV4 Project Settings
	2.3 Keil Project Settings
	2.4 IAR Project Settings
	2.5 Modification of startup.s File

	3 Flash Memory Organization
	3.1 XMC4500
	3.2 XMC4400
	3.3 XMC4200

	4 Communication Protocol
	4.1 Mode 0: Program Flash Page
	4.2 Mode 1: Execute User Program from Flash
	4.3 Mode 2: Execute User Program from iCache
	4.4 Mode 3: Erase Flash Sector
	4.5 Mode 4: Read Flash Protection Status
	4.6 Mode 5: Protect or Unprotect Flash
	4.7 Response Code to the HOST

	5 HOST PC Program Example
	6 Using the Demonstrator
	6.1 Hardware Setup
	6.2 Demonstrator File Structure
	6.3 Run the Demonstrator

	7 Reference Documents
	8 Revision History

