
1

Grove - Digital Light Sensor

User Manual

Version： 1.0

Release date： 2015/9/22

Wiki: http://www.seeedstudio.com/wiki/Grove_-_Digital_Light_Sensor

Bazaar: http://www.seeedstudio.com/depot/Grove-Digital-Light-

Sensor-p-1281.html?cPath=25_128

http://www.seeedstudio.com/wiki/Grove_-_Digital_Light_Sensor
http://www.seeedstudio.com/depot/Grove-Digital-Light-Sensor-p-1281.html?cPath=25_128
http://www.seeedstudio.com/depot/Grove-Digital-Light-Sensor-p-1281.html?cPath=25_128

2

Document Revision History

Revision Date Author Description

1.0 Sep 22, 2015 Loovee Create file

3

Contents

Document Revision History ··· 2

1. Introduction ··· 2

2. Features ·· 3

3. Specifications ··· 4

4. Interface Function ·· 5

5. TSL2561 Functional Block Diagram·· 6

6. Usage ·· 7

6.1 With Arduino ·· 7

6.2 With Raspberry Pi ·· 9

7. Reference ··· 18

7.1 Register Map ··· 18

7.2 Spectrum Response Curve ·· 18

8. Resource ·· 20

1

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to

product quality, such as operating without following manual guide, natural disasters or force

majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published

which covered the latest product description and specification. The content of this manual is

subject to change without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any

action to violate relevant right of our product will be penalized through law. Please consciously

observe relevant local laws in the use of this product.

2

1. Introduction

This module is based on the I2C light-to-digital converter TSL2561 to transform light intensity to a

digital signal. Different from traditional analog light sensor, as Grove - Light Sensor, this digital

module features a selectable light spectrum range due to its dual light sensitive diodes: infrared

and full spectrum.

You can switch among three detection modes to take your readings. They are infrared mode, full

spectrum and human visible mode. When running under the human visible mode, this sensor will

give you readings just close to your eye feelings.

http://www.seeedstudio.com/depot/grove-light-sensorp-p-1253.html?cPath=144_148
http://www.seeedstudio.com/wiki/File:Digital_Light_Sensor.jpg

3

2. Features

 Selectable detection modes

 High resolution 16-Bit digital output at 400 kHz I2C Fast-Mode

 Wide dynamic range: 0.1 - 40,000 LUX

 Wide operating temperature range: -40°C to 85°C

 Programmable interrupt function with User-Defined Upper and lower threshold settings

4

3. Specifications

Items Min Type Max Unit

Supply voltage, VDD 3.3 5 5.1 V

Operating temperature -30 \ 70 ℃

SCL,SDA input low voltage -0.5 \ 0.8 V

SCL,SDA input high voltage 2.3 \ 5.1 V

5

4. Interface Function

 U1: TSL2561 IC, Light-To-Digital Converter.

 U3: XC6206MR332 IC, Positive Voltage Regulators.

 Q1,Q2: BSN20 IC, N-channel Enhancement Mode Vertical D-MOS Transistor.

 SCL,SDA: I2C Signal Interface

http://www.seeedstudio.com/wiki/File:TSL2561_Interface_.jpg

6

5. TSL2561 Functional Block Diagram

http://www.seeedstudio.com/wiki/File:Functional_Block_Diagram_2.jpg

7

6. Usage

6.1 With Arduino

1. Plug the Grove - Digital Light Sensor onto the I2C port on Grove - Base Shield, and then plug

the base shield onto Arduino;

2. Download the library from here Digital Light Sensor Library;

3. Unzip it into the libraries file of Arduino IDE by the path: ..\arduino-1.0.1\libraries.

4. Create an Arduino sketch and paste the following codes to it or open the code directly by the

path:File -> Example ->Digital_Light_Sensor->Digital_Light_Sensor.

/*

 * Digital_Light_Sensor.ino

 * A library for TSL2561

 *

 * Copyright (c) 2012 seeed technology inc.

 * Website : www.seeed.cc

 * Author : zhangkun

 * Create Time:

 * Change Log :

 *

 * The MIT License (MIT)

 *

 * Permission is hereby granted, free of charge, to any person obtaining a copy

http://www.seeedstudio.com/wiki/Arduino
https://github.com/Seeed-Studio/Grove_Digital_Light_Sensor
http://www.seeedstudio.com/wiki/File:Digital_Light_Sensor_Connector.jpg

8

 * of this software and associated documentation files (the "Software"), to deal

 * in the Software without restriction, including without limitation the rights

 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

 * copies of the Software, and to permit persons to whom the Software is

 * furnished to do so, subject to the following conditions:

 *

 * The above copyright notice and this permission notice shall be included in

 * all copies or substantial portions of the Software.

 *

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

 * THE SOFTWARE.

 */

#include <Wire.h>

#include <Digital_Light_TSL2561.h>

void setup()

{

 Wire.begin();

 Serial.begin(9600);

 TSL2561.init();

}

void loop()

{

 Serial.print("The Light value is: ");

 Serial.println(TSL2561.readVisibleLux());

 delay(1000);

}

5. Upload the code. Please click here if you do not know how to upload.

6. Open the serial monitor to see the result.

http://www.seeedstudio.com/wiki/Upload_Code

9

In the case of completely light matte, The output result is 0.

6.2 With Raspberry Pi

1. You should have got a raspberry pi and a grovepi or grovepi+.

2. You should have completed configuring the development enviroment, otherwise follow here.

3. Connection

 Plug Digital Light Sensor to the I2C sockets on grovepi.

4. Navigate to the demos' directory:

 cd yourpath/GrovePi/Software/Python/grove_i2c_digital_light_sensor/

 To see the code

nano grove_i2c_digital_light_sensor.py # "Ctrl+x" to exit #

import time

import smbus

from Adafruit_I2C import Adafruit_I2C

import RPi.GPIO as GPIO

http://www.seeedstudio.com/wiki/GrovePi%2B
http://www.seeedstudio.com/wiki/GrovePi%2B#Introducing_the_GrovePi.2B
http://www.seeedstudio.com/wiki/File:Digital_Light_Sensor_Score_Picture.jpg

10

import grovepi

from smbus import SMBus

global I2C_ADDRESS

global I2C_SMBUS

global _CMD

global _CMD_CLEAR

global _CMD_WORD

global _CMD_BLOCK

global _REG_CONTROL

global _REG_TIMING

global _REG_ID

global _REG_BLOCKREAD

global _REG_DATA0

global _REG_DATA1

global _POWER_UP

global _POWER_DOWN

global _GAIN_LOW

global _GAIN_HIGH

global _INTEGRATION_START

global _INTEGRATION_STOP

global _INTEGRATE_13

global _INTEGRATE_101

global _INTEGRATE_402

global _INTEGRATE_DEFAULT

global _INTEGRATE_NA

global _GAIN

global _MANUAL

global _INTEG

global _CHANNEL0

global _CHANNEL1

global _D0

global _D1

global _LUX

bus parameters

rev = GPIO.RPI_REVISION

if rev == 2 or rev == 3:

 I2C_SMBUS = smbus.SMBus(1)

else:

 I2C_SMBUS = smbus.SMBus(0)

Default I2C address

11

I2C_ADDRESS = 0x29

Commands

_CMD = 0x80

_CMD_CLEAR = 0x40

_CMD_WORD = 0x20

_CMD_BLOCK = 0x10

Registers

_REG_CONTROL = 0x00

_REG_TIMING = 0x01

_REG_ID = 0x0A

_REG_BLOCKREAD = 0x0B

_REG_DATA0 = 0x0C

_REG_DATA1 = 0x0E

Control parameters

_POWER_UP = 0x03

_POWER_DOWN = 0x00

Timing parameters

_GAIN_LOW = 0b00000000

_GAIN_HIGH = 0b00010000

_INTEGRATION_START = 0b00001000

_INTEGRATION_STOP = 0b00000000

_INTEGRATE_13 = 0b00000000

_INTEGRATE_101 = 0b00000001

_INTEGRATE_402 = 0b00000010

_INTEGRATE_DEFAULT = _INTEGRATE_402

_INTEGRATE_NA = 0b00000011

Testing parameters

ambient = None

IR = None

_ambient = 0

_IR = 0

_LUX = None

class Tsl2561(object):

 i2c = None

 def _init__(self, bus = I2C_SMBUS, addr = I2C_ADDRESS, debug = 1, pause = 0.8): # set debug

= 0 stops debugging output on screen

12

 assert(bus is not None)

 assert(addr > 0b000111 and addr < 0b1111000)

 self.i2c = Adafruit_I2C(addr)

 self.pause = pause

 self.debug = debug

 self.gain = 0

 self._bus = bus

 self._addr = addr

 ambient = None

 IR = None

 self._ambient = 0

 self._IR = 0

 self._LUX = None

 self._control(_POWER_UP)

 self._partno_revision()

@property

 def _lux(self, gain):

 '''

 Returns a lux value. Returns None if no valid value is set yet.

 '''

 var = readLux(gain)

 ambient = var[0]

 IR = var[1]

 self._ambient = var[2]

 self._IR = var[3]

 self_LUX = var[4]

 return (ambient, IR, self._ambient, self._IR, self._LUX)

 def setGain(self, gain = 1):

 """ Set the gain """

 if (gain != self.gain):

 if (gain==1):

 cmd = _CMD | _REG_TIMING

 value = 0x02

 self.i2c.write8(cmd, value) # Set gain = 1X and timing = 402 mSec

 if (self.debug):

 print "Setting low gain"

 else:

 cmd = _CMD | _REG_TIMING

13

 value = 0x12

 self.i2c.write8(cmd, value) # Set gain = 16X and timing = 402 mSec

 if (self.debug):

 print "Setting high gain"

 self.gain=gain; # Safe gain for calculation

 time.sleep(self.pause) # Pause for integration (self.pause must be bigger

than integration time)

 def readWord(self, reg):

 """ Reads a word from the TSL2561 I2C device """

 try:

 wordval = self.i2c.readU16(reg)

 newval = self.i2c.reverseByteOrder(wordval)

 if (self.debug):

 print("I2C: Device 0x%02X: returned 0x%04X from reg 0x%02X" %

(self._addr, wordval & 0xFFFF, reg))

 return newval

 except IOError:

 print("Error accessing 0x%02X: Chcekcyour I2C address" % self._addr)

 return -1

 def readFull(self, reg = 0x8C):

 """ Read visible + IR diode from the TSL2561 I2C device """

 return self.readWord(reg);

 def readIR(self, reg = 0x8E):

 """ Reads only IR diode from the TSL2561 I2C device """

 return self.readWord(reg);

 def readLux(self, gain = 0):

 """ Grabs a lux reading either with autoranging (gain=0) or with specific gain (1,

16) """

 if (self.debug):

 print "gain = ", gain

 if (gain == 1 or gain == 16):

 self.setGain(gain) # Low/highGain

 ambient = self.readFull()

 IR = self.readIR()

 elif (gain == 0): # Auto gain

 self.setGain(16) # First try highGain

 ambient = self.readFull()

 if (ambient < 65535):

14

 IR = self.readIR()

 if (ambient >= 65535 or IR >= 65535): # Value(s) exeed(s) datarange

 self.setGain(1) # Set lowGain

 ambient = self.readFull()

 IR = self.readIR()

 # If either sensor is saturated, no acculate lux value can be achieved.

 if (ambient == 0xffff or IR == 0xffff):

 self._LUX = None

 self._ambient = None

 self._IR = None

 return (self.ambient, self.IR, self._ambient, self._IR, self._LUX)

 if (self.gain == 1):

 self._ambient = 16 * ambient # Scale 1x to 16x

 self._IR = 16 * IR # Scale 1x to 16x

 else:

 self._ambient = 1 * ambient

 self._IR = 1 * IR

 if (self.debug):

 print "IR Result without scaling: ", IR

 print "IR Result: ", self._IR

 print "Ambient Result without scaling: ", ambient

 print "Ambient Result: ", self._ambient

 if (self._ambient == 0):

 # Sometimes, the channel 0 returns 0 when dark ...

 self._LUX = 0.0

 return (ambient, IR, self._ambient, self._IR, self._LUX)

 ratio = (self._IR / float(self._ambient)) # Change to make it run under python 2

 if (self.debug):

 print "ratio: ", ratio

 if ((ratio >= 0) and (ratio <= 0.52)):

 self._LUX = (0.0315 * self._ambient) - (0.0593 * self._ambient * (ratio **

1.4))

 elif (ratio <= 0.65):

 self._LUX = (0.0229 * self._ambient) - (0.0291 * self._IR)

 elif (ratio <= 0.80):

 self._LUX = (0.0157 * self._ambient) - (0.018 * self._IR)

 elif (ratio <= 1.3):

 self._LUX = (0.00338 * self._ambient) - (0.0026 * self._IR)

 elif (ratio > 1.3):

15

 self._LUX = 0

 return (ambient, IR, self._ambient, self._IR, self._LUX)

 def _partno_revision(self):

 """ Read Partnumber and revision of the sensor """

 cmd = _CMD | _REG_ID

 value = self.i2c.readS8(cmd)

 part = str(value)[7:4]

 if (part == "0000"):

 PartNo = "TSL2560CS"

 elif (part == "0001"):

 PartNo = "TSL2561CS"

 elif (part == "0100"):

 PartNo = "TSL2560T/FN/CL"

 elif (part == "0101"):

 PartNo = "TSL2561T/FN/CL"

 else:

 PartNo = "not TSL2560 or TSL 2561"

 RevNo = str(value)[3:0]

 if (self.debug):

 print "responce: ", value

 print "PartNo = ", PartNo

 print "RevNo = ", RevNo

 return (PartNo, RevNo)

 def _control(self, params):

 if (params == _POWER_UP):

 print "Power ON"

 elif (params == _POWER_DOWN):

 print "Power OFF"

 else:

 print "No params given"

 cmd = _CMD | _REG_CONTROL | params

 self.i2c.write8(self._addr, cmd) # select command register and power on

 time.sleep(0.4) # Wait for 400ms to power up or power down.

def main():

 TSL2561 = Tsl2561()

 TSL2561._init__(I2C_SMBUS, I2C_ADDRESS)

 while (True):

 gain=0

16

 val = TSL2561.readLux(gain)

 ambient = val[0]

 IR = val[1]

 _ambient = val[2]

 _IR = val[3]

 _LUX = val[4]

 if (ambient == 0xffff or IR == 0xffff):

 print ("Sensor is saturated, no lux value can be achieved:")

 print ("ambient = " + ambient)

 print ("IR = " + IR)

 print ("light = " + _LUX)

 elif (_ambient == 0):

 print ("It's dark:")

 print ("ambient = " + str(ambient))

 print ("IR = " + str(IR))

 print ("_ambient = " + str(_ambient))

 print ("_IR = " + str(_IR))

 print ("Light = " + str(_LUX) + " lux.")

 else:

 print ("There is light:")

 print ("ambient = " + str(ambient))

 print ("IR = " + str(IR))

 print ("_ambient = " + str(_ambient))

 print ("_IR = " + str(_IR))

 print ("Light = " + str(_LUX) + " lux.")

 time.sleep(2)

 ambient = None

 IR = None

 _ambient = 0

 _IR = 0

 _LUX = None

 TSL2561._control(_POWER_DOWN)

if __name__=="__main__":

 main()

5. Run the demo.

 sudo python grove_i2c_digital_light_sensor.py

6. Result

17

http://www.seeedstudio.com/wiki/File:Grovepi_digital_light_sensor_00.png

18

7. Reference

7.1 Register Map

The TSL2561 is controlled and monitored by sixteen registers (three are reserved) and a command

register accessed through the serial interface. These registers provide for a variety of control

functions and can be read to determine results of the ADC conversions. The register set is

summarised as show below.

7.2 Spectrum Response Curve

http://www.seeedstudio.com/wiki/File:Register.jpg
http://www.seeedstudio.com/wiki/File:Spectral_responsivity.jpg

19

Two channels of the digital light sensor have different response characteristic. That's why you can

choose its working mode by having both of them on or one of them off.

20

8. Resource

 Grove - Digital Light Sensor Eagle File

 Grove - Digital Light Sensor Schematic

 Library Github Repo

 TSL2561 Datasheet

http://www.seeedstudio.com/wiki/File:Digital_light_sensor_eagle_file.zip
http://www.seeedstudio.com/wiki/File:Digital_light_sensor.pdf
https://github.com/Seeed-Studio/Grove_Digital_Light_Sensor
http://www.seeedstudio.com/wiki/File:TSL2561T.pdf

