COEN-4720 Embedded Systems Design
Lecture 3
Intro to ARM Cortex-M3 (CM3) and LPC17xx MCU

Cristinel Ababei
Dept. of Electrical and Computer Engineering
Marquette University

Outline

Overview of ARM Cortex-M3 processor
— Main features, pipeline, memory space
— Assembly

NXP LPC17xx microcontroller unit (MCU)
APPENDIX A: Instruction Set Architecture (ISA)
APPENDIX B: ARM Instruction Set

Cortex-M3 Processor

RISC general purpose 32-bit microprocessor
Released in 2006
Cortex-M3 differs from previous generations of ARM

processors by defining a number of key peripherals as
part of the core:

— interrupt controller

— system timer

— debug and trace hardware (including external interfaces)
This enables for real-time operating systems and
hardware development tools such as debugger
interfaces be common across the family of processors

Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and
memory

Cortex-M3 Processor

Greater performance efficiency: more work to be done
without increasing the frequency or power requirements
— Implements the new Thumb-2 instruction set architecture

* 70% more efficient per MHz than an ARM7TDMI-S processor
executing Thumb instructions

* 35% more efficient than the ARM7TDMI-S processor executing ARM
instructions for Dhrystone benchmark

Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

Improved code density: code fits in even the smallest
memory footprints

Core pipeline has 3 stages

— Instruction Fetch

— Instruction Decode

— Instruction Execute

Simplified Cortex-M3 Architecture

e e e e —

1
1
Cortex-M3 i
1

1 1
1 1
1 1
1
i | CM3 Core |, NVIC |,
! ¢ I Interrupts
! ! SysTick ; !
i | Inst Data e
1 FY Fy 1
1 1
1 1
1 1
1 1
1 1
| —_— |
1 1
1 - 1
i E ey (o0
=
i p (_i_p DCode
: M MI S‘_‘,’Srﬂl’l’l
—
1
1
1
1
1

Simplified Cortex-M3 Architecture

Interrupts

Cortex-M3 !
Processor Core System
5 _ Register | &
N| B ST s Bank e
=] 2 g g AN ",
S8 26 e =1t Debug | } Trace
== 2@ a ST system [
g= = ALU |2
o
=
= y 1}
Memory Interface b
Memory
Instruction Bus === Protection M= Data Bus
Unit
Debug
Bus Interconnect l— Debug + »>
Interface
= = = = _ = !
d B d B d N
Code Memory System Private)
Memory and Peripherals Peripherals Optional

Cortex-M3 Processor Architecture

* Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)

* Processor is not memory starved: it permits accessing
data and instruction memories simultaneously
* From CM3 perspective, everything looks like memory
— Only differentiates between instruction fetches and data
accesses
* Interface between CM3 and manufacturer specific
hardware is through three memory buses:

— ICode, DCode, and System (for peripherals), which are
defined to access different regions of memory

Cortex-M3 Processor

* Cortex-M3 is a load/store architecture with
three basic types of instructions

1. Register-to-register operations for
processing data

2. Memory operations which move data
between memory and registers

3. Control flow operations enabling
programming language control flow such as
if and while statements and procedure calls

Cortex-M3 Pipeline

* The Cortex-M3 Uses the 3-stage pipeline for instruction
executions

— Fetch = Decode = Execute

— Pipeline design allows effective throughput to increase to one
instruction per clock cycle

— Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st

2nd

3rd

i i i f } time

Cortex-M3 Pipeline

= Cortex-M3 has 3-stage fetch-decode-execute pipeline

= Similar to ARM7
= Cortex-M3 does more in each stage to increase overall
performance

1st Stage - Fetch 2 Stage - Decode 3™ Stage - Execute

Add Data Phase
AGU Phase :swsrle { Load/Store &
Back Branch
—— Instruction
EERILE L > Multiply & Divide Write
(Prefetch) Register Read
e T mecu—mﬁ[— shift]{uumm»

=
Execute stage branch (ALU branch & Load Store Branch)

This is Slide #27 of “ARM Cortex-M3 Introduction, ARM
University Relations”. Download from:
http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

Processor Register Set

* Cortex-M3 core has 16 user-visible registers
— All processing takes place in these registers

* Three of these registers have dedicated functions

— program counter (PC) - holds the address of the next
instruction to execute

— link register (LR) - holds the address from which the
current procedure was called

— “the” stack pointer (SP) - holds the address of the
current stack top (CM3 supports multiple execution
modes, each with their own private stack pointer).

* Processor Status Register (PSR) which is implicitly
accessed by many instructions

Processor Register Set

r0
rl
r2
3
rd
rH
6
r7
r8
9
rl0
rll
rl2
rl3 (SP) | PSP | | MSP |
rl4 (LR)
rl5 (PC)

PSR

Cortex-M3 Memory Address Space

* ARM Cortex-M3 processor has
a single 4 GB address space

* The SRAM and Peripheral
areas are accessed through

the System Bus

* The “Code” region is accessed

through the ICode

(instructions) and DCode

(constant data) buses

0xXFFFFFFFF
N
/\N\,w\,’l'/\/‘
ALY,
W\/\/\/\
0x60000000
0xEFFFFFFF
Peripheral
0.5GB
0x40000000
0x3FFFFFFF
SRAM
0.5GB
0x20000000
0x 1FFFFFFF
Code
0.5GB
0x00000000

Private peripherals including
build-in interrupt controller
(NVIC), MPU control
registers, and debug
components

Mainly used as external
peripherals

Mainly used as external
memory

Mainly used as peripherals

Mainly used as static RAM

Memory OxFFFFFFFF
M a p System level
OxE0000000
0xDFFFFFFF
External device
O ADC00000
0x9FFFFFFF
External RAM
050000000
Ox5FFFFFFF)
Peripherals
O0x40000000
Ox3FFFFFFF
SRAM
0x20000000
0w 1FFFFFFF
CODE
0x00000000

Mainly used for program
code. Also provides exception
vector table after power up

M emo ry ciEoeL 000 External PPB Vendor Specific
ETM
M I Private Peripheral Bus - External | g,r0040000(
d p g TrI T Private Peripheral Bus - Internal :gg::::::
H & OXDFFFFFFF
- D etal | S OxE0OSFFFF
0xEQ00F000 Beseaved
0xE000E000 C External Device 1GB
0xE0003000. Reserved
0xE0002000 FPB
0xE0001000 DWT OXOFFFFFFF
0xE0000000 ™
External RAM 1GB
0x43FFFFFF
Bit band alias Y
0x42000000 0x60000000
Ox4FFFFFF OxSFFFFFFF
0x40100000 - - Peripheral 0.5GB
0x40000000 Bit band region
0x40000000
Ox3FFFFFFF
0x23FFFFFF S Sk on
Bit band alias
0%22000000 0x20000000
0x21FFFFFF A/// Ox1FFFFFFF
0:20100000 : Code 0.5GB
it band region
0x20000000 esioeiiise

OxEOOFFFFF

0xEQ0FF000 ROM table

OxFFFFFFFF

1.

2.

Program Memory Model

* RAM for an executing program is divided into three regions
Data in RAM are allocated during the link process and initialized by

startup code at reset

The (optional) heap is managed at runtime by library code
implementing functions such as the malloc and free which are part

of the standard C library

The stack is managed at runtime by compiler generated code which
generates per-procedure-call stack frames containing local

variables and saved registers

RAM End (high) — —
Main Stack

!
I

Data

RAM Start (low) —

—SP

«— Heap End

«— Heap Start

Operating Modes

Cortex-M3 processor has two modes and two privilege
levels

The operation modes - determine whether the
processor is running a normal program or running an
exception handler

— thread mode

— handler mode

The privilege levels - provide a mechanism for
safeguarding memory accesses to critical regions as
well as providing a basic security model

— privileged level Privieged User

When running an exception handler | Handler mode

— user level

When not running an exception

handler (e.g., main program) Thread mode | Thread mode

Nested Vector Interrupt Controller (NVIC)

* A programmable device that sits between the CM3 core
and the microcontroller
* CM3 uses a prioritized vectored interrupt model —the

vector table is defined to reside starting at memory
location 0

* First 16 entries in this table are defined for all Cortex-M3
implementations while the remainder, up to 240, are
implementation specific

* NVIC supports dynamic redefinition of priorities with up
to 256 priority levels

* Two entries in the vector table are especially important:
— address 0 contains the address of the initial stack pointer

— address 4 contains the address of the “reset handler” to be
executed at boot time

Nested Vector Interrupt Controller (NVIC)

* Provides key system control registers including the
System Timer (SysTick) that provides a regular timer
interrupt

* Provision for a built-in timer across the Cortex-M3
family has the significant advantage of making
operating system code highly portable — all operating
systems need at least one core timer for time-slicing

* Registers used to control the NVIC are defined to reside
at address OxEOOOEOOO and are defined by the Cortex-
M3 specification

* These registers are accessed with the system bus

Thumb-2 Instruction Set

* Thumb-2 instruction set is a superset of the previous 16-bit Thumb instruction
set
* Provides
— Alarge set of 16-bit instructions, enabling 2 instructions per memory fetch
— A small set of 32-bit instructions to support more complex operations
Specific details of this ISA not our focus (we’ll mostly program in C)
See APPENDIX A of these slides for more details on ISA...

" Thumb2 T~

- Instruction Set
(32-bit and 16-bit)

Cortex-M3

'I, / " Thumb \ s'l

\ ! (Instructions

\ NI Ay 4

10

Outline

Overview of ARM Cortex-M3 processor
— Main features, pipeline, memory space
— Assembly

NXP LPC17xx microcontroller unit (MCU)
APPENDIX A: Instruction Set Architecture (ISA)
APPENDIX B: ARM Instruction Set

Unified Assembly Language (UAL)

e UAL supports generation of either Thumb-2 or ARM instructions
from the same source code

— same syntax for both the Thumb code and ARM code
— enable portability of code for different ARM processor families

* Interpretation of code type is based on the directive listed in the
assembly file

* Example:
— For GNU Assembler, the directive for UAL is
.syntax unified
— For ARM assembler, the directive for UAL is
THUMB

See comprehensive listing of Cortex-M3 instruction set in
Appendix A of book: Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2009 (download from link provided here:
http://dejazzer.com/coen4720/lectures.html).

11

http://dejazzer.com/coen4720/lectures.html

Example 1

data:

.byte 0x12, 20, 0x20, -1
func:

mov r0, #0

mov rd, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1ldrb r2, [rl],1

add r4, r4, r2
add r0, r0, #1
cmp r0, #4

bne top

AG.7.76 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the
condition flags based on the value.

Encoding T1 ARMvE-M, ARMvT-M If <Rd> and <Am- both from RO-R7,
otherwize all versions of the Thumb ISA
MOV<c> <Ri, <Rm= If «Rd 15 the PC. must be outside or last in IT block
151413121110 9 8 7 6 5 4 3 2 1 0
010001|10|D| Rm | Rd | From ARM
Architecture

d = UInt(D:Rd); m = UInt{Rm); setflags = FALSE;
if d == 15 & InTTElock() & !LastInITBlock() then UNPREDICTABLE; Reference Manual
Encoding T2 All versions of the Thumb ISA.

MOVS <R, <Rm £ d L oL R A 48} Not permutted mside IT block
151413121110 9 8 7 6 5 4 3 2 1 0
‘ooo‘oo‘ooooo‘ m‘ Rd ‘

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions) etc.

d = UInt(Rd); m = UInt(Rm); setflags = TRUE;
if InITBlock() then UNPREDICTAELE;

Encoding T3 ARMvT-M
MOV{5}<c> W <Rd>, <R

1514131211109 8 7 6 5 43 21015014151211109 &8 7 6 5 43210
1110 1|0 1|00 1 0|3‘1 11 1||(0)‘0 00‘ Rd |o 00 o‘ Ru ‘

d = UInt{Rd); m = UInt{Rm); setflags = (5 = "1");
if setflags & (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if Isetflags && (d = 15 || m = 15 || (d = 13 & m == 13)) then UNPREDICTAELE;

12

AB.T.T8 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the
contents of the bottom halfvord.

Encoding T1 ARMVI-M
MNTac> <R, #<immlbs

151413121110 2 8 7 6 5 4 3 21 01514131211 109 8 7 6 5 4 3 210
11110‘i|10‘1|1‘0‘0| inmd Ho‘m3| Rd | imms

d = UInt(Rd); immlé = immd:i:imm3:immd;
if d IN {13,15} then UMPREDICTABLE;

Assembler syntax

MWTeCeage Rd-, #F<immlbes

‘where:

<Cr<l> See Standard assembler pmtax fields on page A6-7.

<R Specifies the destination register.

<immi6= Specifies the immediate value to be written to <Rd=. It must be m the range 0-65535.
Operation

if ConditionPassed{) then
EncodingSpecificOperations();
R[d]<31:16> = immiG;
/7 R[d]<15:8> unchanged

Example 2

int counter;
int Counter_ Inc(void) {
return counter ++;

}
Resulting (annotated) assembly language with
corresponding machine code:

Counter_ Inc:

0: £240 0300 movw r3 , #:lowerl6:counter // r3 = &counter
4: £2c0 0300 movt r3 , #:upperl6:counter

8: 6818 1ldr r0 , [r3 , #0] // r0 = *r3

a: 1lc42 adds r2 , r0 , #1 // r2 = r0 + 1
c: 60la str r2 , [r3 , #0] // *r3 = r2

e: 4740 bx 1r // return r0

* Two 32-bit instructions (movw, movt) are used to load
the lower/upper halves of the address of counter
(known at link time, and hence 0 in the code listing)

* Then, three 16-bit instructions load (ldr) the value of

counter, increment (adds) the value, and write back
(str) the updated value

* Finally, the procedure returns the original counter

* Key points:
— Cortex-M3 utilizes a mixture of 32-bit and 16-bit

instructions (mostly the latter) and the core interacts with
memory solely through load and store instructions

— While there are instructions that load/store groups of
registers (in multiple cycles) there are no instructions that
directly operate on memory locations

How does an assembly language program
get turned into a executable program image?

Binary program

file (.bin)
Assembly Object Executable
files (.s) files (.0) image f11e
(11nker‘) E> D
(assembler)
Memory
layout
_ Disassembled
Linker code (.lst)

script (.1d)

14

Outline

Overview of ARM Cortex-M3 processor

— Main features, pipeline, memory space

— Assembly

NXP LPC17xx microcontroller unit (MCU)
APPENDIX A: Instruction Set Architecture (ISA)
APPENDIX B: ARM Instruction Set

Cortex-M3 processor vs.
CM3-based Microcontroller Units

minisinisininininisinininislsinininin}
0 Cortex-M3 Chip =
[= L]
g Cortex-M3 Debug B
E Core - _Sy_sr_em--f:—g
= _ —1 |k
g 1T =]
d | Internal Bus | B
g JL P
O]
[=)]
d Peripherals Memory b
[=]
O]
[=]
g Clock and A
d [l{e} =
d Reset b
O m]
OO0 ooooooooOoog

Al NN

Developed by

-

T OGN R e
32bit ALY
. S
Hardware divider ;
[
Thumb-2 decode

Instruction interface ' Data interface

= B e D B

ARM

L A B B B B B B BB

Developed by
chip
manufacturers

15

While there is significant overlap between the families and
their peripherals, there are also important differences
In the lab of this course we focus on the NXP’s LPC17xx family

o Actel ATNEL

POWER MATTERS

®

L N
7 Cvpress | B DUST

PERFORM

i3 TEXAS
INSTRUMENTS

LPC17xx

LPC17xx (of NXP) is an ARM Cortex-M3 based microcontroller

The Cortex-M3 is also the basis for microcontrollers from other
manufacturers including Tl, ST, Toshiba, Atmel, etc.

LPC1768 operates at up to a 100 MHz CPU frequency
Sophisticated clock system
Peripherals include:

up to 512 kB of flash memory, up to 64 kB of data memory
Ethernet MAC

a USB interface that can be configured as either Host, Device, or OTG
8 channel general purpose DMA controller

4 UARTSs, 2 CAN channels, 2 SSP controllers, SPI interface

3 12C interfaces, 2-input plus 2-output 12S interface

8 channel 12-bit ADC, 10-bit DAC, motor control PWM
Quadrature Encoder interface, 4 general purpose timers,
6-output general purpose PWM

ultra-low power RTC with separate battery supply

up to 70 general purpose I/0 pins

16

LPC1768

Tmer TG P um i B B
Fodt infesiace inarface infarface = 2
[1 [
5 | TesiDebug inferiece Clock Genemfon
g Eemst Power Canbal,
| ARM Cortex-M3 Ercamcut Detect,
£ and ot
—T = system furclions
78 |z8 |e%
g |52 [5§
Fzsh Flash
Aczsiersior[| 512 KB
T S & -
ROM
5kB
AHE o AHB o
are brigge
AFH alave group 0 APS slave group 1
UARTE 0 &1 UARTEZ &3
Fereiie et
,—| Timer
Timers D& 1
Timers 2 & 3
——
Extemal Intemupts
e ey
e —
Encoder|
x_x Real Time Clack
o= Note: shaded peripheral biocks
20 byles ofbacAup General Purpose OMA
rEgls
RTC Power Domain

Abstract Representation of a Development Board

(such as LandTiger 2.0)

User I/O

Analog
Input

Configuration |
Jumpers
LPC17xx Reset & Interrupt

usB
Power & COM

(Or variant) Buttons

— LCD Display

e Dual RS232

CPU - Dual CAN

i

fe——]

f
II

Joystick
— Port LEDs

SD Card

ff

L] Ethernet Recall from lecture#1:

17

LPC1768

LPC1768 microcontrollers are based on the Cortex-M3
processor with a set of peripherals distributed across three
buses — Advanced High-performance Bus (AHB) and its two
Advanced Peripheral Bus (APB) sub-buses APB1 and APB2.
These peripherals:

— are controlled by the CM3 core with load and store instructions
that access memory mapped registers

— can “interrupt” the core to request attention through peripheral
specific interrupt requests routed through the NVIC

Data transfers between peripherals and memory can be
automated using DMA

Labs will cover among others:

— basic peripheral configuration

— how interrupts can be used to build effective software

— how to use DMA to improve performance and allow processing
to proceed in parallel with data transfer

LPC1768

Peripherals are “memory-mapped”
— core interacts with the peripheral hardware by reading and writing peripheral
“registers” using load and store instructions
The various peripheral registers are documented in the user and reference
manuals
— documentation include bit-level definitions of the various registers and info on
how to interpret those bits
— actual physical addresses are also found in the reference manuals

Examples of base addresses for several peripherals (see page 14 of the
LPC17xx user manual):

0x40010000 UART1

0x40020000 SPI

0x40028000 GPIO interrupts

0x40034000 ADC

No real need for a programmer to look up all these values as they are
defined in the library file lpc17xx.h as:

LPC_UART1_BASE

LPC_SPI_BASE

LPC_GPIOINT_ BASE

LPC_ADC_BASE

18

LPC1768

* Typically, each peripheral has:
1. Control registers to configure the peripheral

2. Status registers to determine the current
peripheral status

3. Data registers to read data from and write
data to the peripheral

LPC1768

* In addition to providing the addresses of the
peripherals, Ipc17xx.h also provides C language
level structures that can be used to access each
peripheral

* For example, the SPI and GPIO ports are defined
by the following register structures:

typedef struct
{
__ IO uint32_t SPCR;
_ I wuint32_t SPSR;
__ IO uint32_t SPDR;
__IO uint32_t SPCCR;
uint32_t RESERVEDO[3];
__IO uint32_t SPINT;
} LPC_SPI_TypeDef;

19

typedef struct

{

union {
__IO0 uint32_t FIODIR;
struct {
IO uintlé_t FIODIRL;
__TO uintlé_t FIODIRH;

struct {

IO uint8_t FIODIRO;
IO uint8_t FIODIR1;
IO uint8_t FIODIR2;
__TO uint8_t FIODIR3;

LPC1768

union {

I0 uint32_t FIOPIN;

struct {

}i

__I0 uintl6_t FIOPINL;
__I0 uintl6_t FIOPINH;

struct {

}i
}i

__I0 uint8_t FIOPINO;
__I0 uint8_t FIOPINI;
__I0 uint8_t FIOPIN2;
__I0 uint8_t FIOPIN3;

union {

__ O uint32_t FIOCLR;
struct {
_ O uintlé_t FIOCLRL;
__ O uintl6_t FIOCLRH;
}i
struct {
O wuint8_t FIOCLRO;

O wuint8_t FIOCLR1;

O wuint8_t FIOCLR2;

~ 0 uint8_t FIOCLR3;

}i
}i

Y
uint32_t RESERVEDO[3];

union {
__I0 uint32_t FIOSET;
struct {

} LPC_GPIO_TypeDef;

union {

__I0 uint32_t FIOMASK;

__I0 uintl6é_t FIOSETL;
__I0 uintl6é_t FIOSETH;

struct { }:

__IO uintl6_t FIOMASKL; struct {

__ IO uintl6_t FIOMASKH; _ IO uint8_t FIOSETO;
Y __ IO uint8_t FIOSET1;
struct { _ IO uint8_t FIOSET2;

__ IO uint8_t FIOMASKO; __ IO uint8_t FIOSET3;

__ IO uint8_t FIOMASKI1; Y

__ IO uint8_t FIOMASK2; Y

IO uint8_t FIOMASK3;

LPC1768

* The register addresses of the various ports are defined in the
library (see Ipc17xx.h):

#define LPC_APBO_BASE

#define LPC_UART1_BASE
#define LPC_SPI_BASE
#define LPC_GPIOINT BASE
#define LPC_ADC_BASE

(0x40000000UL)

(LPC_APBO_BASE
(LPC_APBO_BASE
(LPC_APBO_BASE
(LPC_APBO_BASE

0x10000)
0x20000)
0x28080)

+
+
+
+ 0x34000)

#define LPC_GPIOl ((LPC_GPIO TypeDef *) LPC_GPIOl_BASE)

* For example, to turn on the LED marked as D11 on the
LandTiger 2.0 board (which is driven by the pin P2.1 of the
MCU), the following code can be used:

LPC_GPIO1l->FIOSET |= 1 << 1;

20

Memory

* On-chip flash memory system
— Up to 512 kB of on-chip flash memory
— Flash memory accelerator maximizes performance for
use with the two fast AHB-Lite buses
— Can be used for both code and data storage
. .
* On-chip Static RAM
— Up to 64 kB of on-chip static RAM memory
— Up to 32 kB of SRAM, accessible by the CPU and all
three DMA controllers are on a higher-speed bus
— Devices with more than 32 kB SRAM have two
additional 16 kB SRAM blocks
534010 0000 APB1 peripherals LPC1768 memory space
0:4COF cooo [31]__system control] fes L IUIFFFF FRER
xb00C 0000 [2078 'es;:ec reserved 2010 0000 AHE peripherals o020 C000
%Zﬂ?aiggg 74 s contel PN private peripheral bus 0xE000 0000 z 127 4 reserved £
04008 4000 |12 reserved z recarved P 3 USB controlier [—
x400B 000D |12 |repesiive interupt fmer 05020 0000 12 resenved 05000 8000
0x400A CODD 1; "95;:“ AHE periherals P ' 1 GPOMA controer | oo anon
0xA004 EDOD |- p— z reserved =z 0 | Sthemet controller |
0x4004 4000 04400 0000 0x5000 DODD
Dx4004 000 | & 262 — (%4200 0000
04008 C000 |7 UART3 | = reserved z
04000 2000 |9 UART2 ! - fx4010 0000 APBO peripherals
Dx4008 4000 |2 Timer 3 APE1 peripherals 0x4008 0000 Ml 024008 0000
o i Timer 2 168 APED peripherals GwEd00 oaog T g - 0x£00 0000
%4008 0000 £ pa ' 23 2C1 024005 CO00
Dx4008 CO00 |3 DAC T reserved T 0x2400 0000 ; 22- 18 reserved *
x40 2000 |2 55P0 ! " = 024004 COOD
1-0 reserved 0x2200 0000 H ki 024004 3000
0x4008 0000 ! E reserved 2142008 0000 : 7 CANI 54004 4000
GFIO ' 18 CAM commen | gy4004 0000
E - 2008 CO00 ! 15 | CANAF registers | npa003 cono
= reserved =“Ix2008 4000 ! 14 CAN AF RAM %4003 8000
nscE 0x2007 CO0D ‘ 13 ADC 04003 4000
= reserved ZetFFF 2000 [5P 04003 0000
z reserved Z1x1000 8000 i0 GPIO interupts | gy4002 8000
32 kB local static RAM 1000 0000 9 | RTG + backup registers | ;4002 4000
'""":'::‘;3‘:::; * 8 P 024002 0000
1 I 1 7 12c0 0x4001 COOO0
PWM
0x0000 0400 + 256 words : reserved ux:uu_ jum
01000 0000 (00 oo AR B
Jes| [512kB on-chip flash 140000 0000 4 034001 0000
3 UARTD 04000 CODO
2 TIMERT 024000 3000
1 TIMERD 0x4000 4000
0 woT 024000 0000

References & Credits

Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2007

LPC17xx microcontroller USER MANUAL

Cortex-M3 Processor TECHNICAL REFERENCE
MANUAL

Lab manual (G. Brown, Indiana)
EECS-373, UMich

See website of class for links to download any of the above:
http://dejazzer.com/coen4720/index.html

Outline

Overview of ARM Cortex-M3 processor
— Main features, pipeline, memory space
— Assembly

NXP LPC17xx microcontroller unit (MCU)
APPENDIX A: Instruction Set Architecture (ISA)
APPENDIX B: ARM Instruction Set

22

http://dejazzer.com/coen4720/index.html

APPENDIX A:
Instruction Set Architecture (ISA)

* |nstruction set
— Addressing modes
— Word size
— Data formats
— Operating modes
— Condition codes

Thumb-2 Instruction Set

Thumb-2 instruction set is a superset of the previous 16-bit Thumb
instruction set

Provides
— A large set of 16-bit instructions, enabling 2 instructions per memory fetch
— A small set of 32-bit instructions to support more complex operations
Specific details of this ISA not our focus (we’ll mostly program in C)

" Thumb2 T~

- Instruction Set
(32-bit and 16-bit)

Cortex-M3 S

l". Ve " Thumb \ s'l

4 | | Instructions

23

32-bits

Major Elements of ISA

RO

A

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R1

R12

R13 (SP)

R14 (LR)

R15 (PC
xPSR

Endigdness

31 30 29 28 27 26

mov ro, #1

1d ri, [re

v
ri=mem((re)+5)

bne loop

subs r2, #1

s#5]

32-bits

System

Private peripheral bus - Extemal

Private peripheral bus - Intemal

External device 1.0G8

External RAM 1.0GB

Peripheral ~ 0.5GB

Endianess

OxFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xA0000000

0x 60000000

0x 40000000

0x20000000

0x00000000

N|Z|C|V|Q

A\ 4

RESEEVED

Addressing: Big Endian vs Little Endian

* Endian-ness: ordering of bytes within a word
— Little - increasing numeric significance with increasing memory

add

resses

— Big — The opposite, most significant byte first
— MIPS is big endian, x86 is little endian

Memory

a:a
a+l: E
a+2:E
a+3:ﬁ

Register

0AOBOCOD

Register

0AO0BOCOD

-«

- |

-
-

Big-endian

— a:ﬁ
R a+l:E

Memory

a+2: E

Y

Little-endian

a+3:a

24

Instruction Encoding

* Instructions are encoded in machine language

opcodes

Instructions

Register Value Memory Value

movs ro, #10

movs rl, #0O

001 |00 000 | 00001010
0a 20 90 21
001 |00 001 | 00000000

ARMv7 ARM

Encoding T1

All versions of the Thumb ISA.

MIVS <Rds, #<imds Qutside IT block.

MWVec> <Rds,#<immB> Inside IT block.
151413121110 9 8 7 6 5 4 3 210

0 a0 1({00 Rd mm8

d = UInt{Rd); serflags = !InITElock(); imm32 = ZeroExtend{imm8, 32); carry = APSR.C;

16bit Thumb-2

Some of the changes used to reduce the length of the

instructions from 32 bits to 16 bits

— reduce the number of bits used to identify the register
* less number of registers can be used

— reduce the number of bits used for the immediate value
* smaller number range

— remove options such as ‘S’
* make it default for some instructions

— remove conditional fields (N, Z, V, C)

— no conditional executions (except branch)

— remove the optional shift (and no barrel shifter operation
* introduce dedicated shift instructions

— remove some of the instructions
* more restricted coding

25

Thumb-2 Implementation

* The 32-bit ARM Thumb-2 instructions are added

through the space occupied by the Thumb BL and
BLX instructions

31 16 15 0
Hwl Hw2

32-bit Thumb-2 Instruction format

* The first Halfword (Hw1)
— determines the instruction length and functionality
* |If the processor decodes the instruction as 32-bit long

— the processor fetches the second halfword (hw2) of the
instruction from the instruction address plus two

32bit Instruction Encoding
Example: ADD instruction format

* ARM 32-bit encoding for ADD with immediate field

31 28 27 26 25 24 2120 19 16 15 12 1 8 7]
‘cono [Mall| Mi [S{Rn [Rd | IR | IN
f 1 1 1
Condition Minor Destination 8-bit immediate
flags) opcode register number
Major Set 4-bit
opcode status rotate field
Immediate fl2g pirst
flag operand
Typical settings: register

Major opcode = 00 (this indicates data operation instructions)
Minor opcode = 0100 (specifically, 100 => ADD instruction)

Immediate flag=1 (immediate field in operand 2)

Set status flag = 1 (set carry flag after operation)

26

ARM and 16-bit Instruction Encoding

ARM 32-bit encoding: ADDS r1,

rl, #2
K 28 2726 25 24 2120 13 16 15 121 87 0
| 1110 oo 1| 0100 [1] o001 [T0601| oooo | 00000010
—— ~
o /
- -

[00/14]07007] 0000 0010

15 1312 1110 8 7 o

* Equivalent 16-bit Thumb instruction: ADD rl, #2

No condition flag

— Use 3-bit encoding for the register

No rotate field for the immediate number

Shorter opcode with implicit flag settings (e.g. the set status flag is

always set)
15 14 13 12 11 10 9 8 T 6 4 3 1
1 0jojo Op Offsets Rs Rd Move shifted register
T h um b 2 Jofofoln ‘ 1] ‘ Op| Rn/offsets Rs Rd Addsubtract
Instruction * °|°|"| * | ™ o fubrsct mdie
4 0j1j0]j0|0D]O Op Rs Rd ALU operations
S et 5 ojt1jo0jojo]1 Op |H1|H2 Rs/Hs Rd/Hd Hi register operations
fbranch exchange
6 o|1jo0f0o]1 Rd Word8 PC-relative load
7 oj1j0]1|L|B|D Ro Rb Rd Load]store with register
offset
8 0]J1]jO0]l1|H|S|1 Ro Rb Rd Load/store sign-extended
byte/halfword
9 o|l1j1|{BJ|L Offsets Rb Rd Load/store with immediate
offset
0 |1 |0j0|0]|L Offsets Rb Rd Load/store halfword
17 |1]0j0(1]L Rd Word8 SP-relative load/store
2 |10 1]0/SP Rd Word8 Load address
13 1{o0|1f(1]j0of0]j0Of0O]|S SWord7 Add offset to stack pointer
14 1{of1f{1|L|[1T]0[R Rlist Push/pop registers
5 (1 |1]0]|0]|L Rb Rlist Multiple load/store
6 | 11|01 Cond Soffsetd Conditional branch
AR ERERE ‘ 1 | 1 Valued Software Interrupt
8 |11 0|0 Offset11 Unconditional branch
19 1111]|H Offset Long branch with link
15 14 13 12 11 10 8 8 T 6 4 3 1

See 6_THUMB_Instr_Set_pt3.pdf included in lab2_{files.zip

27

Application Program Status Register (APSR)

31 30 29 28 27 26 0

N

Z|C|V|Q RESERVED

APSR bat fields are in the following two categories:

Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits 1s available m The special-purpose pragram status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
1s regarded as a two's complement signed integer, then N == 1 1f the result is negative and
N =0 if it is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 1f the result of the instruction 1s zero, and to 0 otherwise.

A result of zero often mdicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 1f an SSAT or USAT mstruction changes (saturates) the input value for the signed or
unsigned range of the result.

Reminder on
“saturating”
operations:
Saturation means
that when a
calculation
overflows, the result
is set to the largest
positive or most
negative number,
rather than a
modulo calculation a
in 2’s complement
arithmetic. Useful in
multimedia apps
(e.g., volume knob)

Conditional Execution

* Each data processing instruction
prefixed by condition code

* Result —smooth flow of instructions through pipeline

* 16 condition codes:

EQ |equal MI | negative HI | unsigned higher | GT tsri]gT]ed IEE
NE | not equal PL | positive or zero | LS gng?,lzd T LE fr:%?legrlggﬁ al
CS (et e | VS [overton | e (O | n | avays

CC | unsigned lower | VC | no overflow LT | signed less than | NV | special purpose

28

Conditional Execution

* Every ARM (32 bit) instruction is conditionally executed.

* The top four bits are ANDed with the CPSR condition codes, If
they do not matched the instruction is executed as NOP

* The AL condition is used to execute the instruction irrespective
of the value of the condition code flags.

* By default, data processing instructions do not affect the
condition code flags but the flags can be optionally set by using
“S” Ex: SUBSrl,rl,#1

* Conditional Execution improves code density and performance
by reducing the number of forward branch instructions.

Normal Conditional

CMP r3#0 CMP r3#0
BEQ skip ADDNE r0,r1,r2
ADD 10,11,

skip

Conditional Execution and Flags

* ARM instructions can be made to execute conditionally by post-
fixing them with the appropriate condition code

— This can increase code density and increase performance by reducing the
number of forward branches

CMP r0, rl r0 - r1, compare r0 with r1 and set flags
ADDGT r2, r2, #1 if > r2=r2+1 flags remain unchanged
ADDLE r3, r3, #1 if <= r3=r3+1 flags remain unchanged

* By default, data processing instructions do not affect the condition
flags but this can be achieved by post fixing the instruction (and any
condition code) with an “S”

loop
ADD r2, r2, r3
suBs r1, rl, #0x0r I S

29

Conditional execution examples

C source code

ARM instructions

unconditional conditional

if (0 == 0) CMP r0, #0 CMP r0, #0
{ BNE else ADDEQ rl, rl,

rl = rl + 1; ADD rl, rl, #1 #1
} B end ADDNE r2, r2,
else else #1
{ ADD r2, r2, #1

r2 = r2 + 1; end
}

= 5 instructions
s 5 words
= 5or6 cycles

= 3 instructions
= 3 words
= 3 cycles

Outline

Overview of ARM Cortex-M3 processor

— Main features, pipeline, memory space

— Assembly
NXP LPC17xx microcontroller unit (MCU)

APPENDIX A: Instruction Set Architecture (ISA)
APPENDIX B: ARM Instruction Set

30

ARM Instruction Set

Data Processing Instructions

* Arithmetic and logical operations
* 3-address format:

— Two 32-bit operands (op1 is register, op2 is
register or immediate)

— 32-bit result placed in a register

* Barrel shifter for op2 allows full 32-bit shift
within instruction cycle

31

Data Processing Instructions

Arithmetic operations:

— ADD, ADDC, SUB, SUBC, RSB, RSC
Bit-wise logical operations:

— AND, EOR, ORR, BIC

Register movement operations:
— MOV, MVN

* Comparison operations:

— TST, TEQ, CMP, CMN

Data Processing Instructions

Conditional codes
+
Data processing instructions
+

Barrel shifter

Powerful tools for efficient coded programs

32

Data Processing Instructions

e.g.:
Rn Rm
if (z==1) R1=R2+(R3*4) [_Jrﬁ
Barrel shifter
compiles to |
EQADDS R].,RZ,R3, LSL #2 &%rilhmclic logic uniy
(SINGLE INSTRUCTION !) Rld

Multiply Instructions

Integer multiplication (32-bit result)

Long integer multiplication (64-bit result)
Built in Multiply Accumulate Unit (MAC)

Multiply and accumulate instructions add
product to running total

33

MUL

MULA

UMULL

UMLAL

SMULL

SMLAL

Multiply Instructions

Multiply

Multiply accumulate

Unsigned multiply

Unsigned multiply accumulate
Signed multiply

Signed multiply accumulate

32-bit result

32-bit result

64-bit result

64-bit result

64-bit result

64-bit result

Data Transfer Instructions

* Load/store instructions
* Used to move signed and unsigned
* Word, Half Word and Byte to and from registers

* Can be used to load PC (if target address is beyond
branch instruction range)

LDR Load Word STR Store Word

LDRH Load Half Word STRH | Store Half Word
LDRSH | Load Signed Half Word | STRSH | Store Signed Half Word
LDRB Load Byte STRB | Store Byte

LDRSB | Load Signed Byte STRSB | Store Signed Byte

34

Addressing Modes

* Offset Addressing
— Offset is added or subtracted from base register
— Result used as effective address for memory access
— [<Rn>, <offset>]

* Pre-indexed Addressing
— Offset is applied to base register
— Result used as effective address for memory access
— Result written back into base register
— [<Rn>, <offset>]!

* Post-indexed Addressing
— The address from the base register is used as the EA
— The offset is applied to the base and then written back
— [<Rn>], <offset>

<offset> options

* An immediate constant
—#10

* Anindex register
— <Rm>

* Ashifted index register
— <Rm>, LSL #<shift>

35

Block Transfer Instructions

* Load/Store Multiple instructions

(LDM/STM)

* Whole register bank or a subset
copied to memory or restored
with single instruction

Swap Instruction

* Exchanges a word
between registers

* Two cycles
but

single atomic action

* Support for RT
semaphores

RO

R1

R2

R7

R8

R15

36

Modifying the Status Registers

Only indirectly

MSR moves contents

from CPSR/SPSR to
selected GPR

MRS moves contents

from selected GPR to

CPSR/SPSR

modes

Only in privileged

RO
R1

| |

MRS | |

L R7
CPSR MsR R®
SPSR i i

|

R14
R15

Software Interrupt

e SWI/ instruction

— Forces CPU into supervisor mode

— Usage: SWI #n
31 28 27 24 23
Cond Opcode |Ordinal

« Maximum 224 calls

» Suitable for running privileged code and
making OS calls

37

Branching Instructions

Branch (B):
— jumps forwards/backwards up to 32 MB

Branch link (BL):
— same + saves (PC+4) in LR

Suitable for function call/return

Condition codes for conditional branches

Branching Instructions

Table A4-1 Branch instructions

Instruction Usage Range

B on page A6-40 Branch to target address +-1MBE

CENZ, CBZ on page A6-52 Compare and Branch on Nonzero, 0-136 B
Compare and Branch on Zero

EBI on page A6-49 Call a subroutine +-16 MB

BLY {register) on page A6-30 Call a subroutine, opticnally change Any
instruction set

BX on page A6-51 Branch to target address. change Any
mnstruction set

IBE, TBH on page AG6-258 Table Branch (byte offsets) 0-510B
Table Branch (halfword offsets) 0-131070 B

38

IF-THEN Instruction

Another alternative to execute conditional code is the new
16-bit IF-THEN (IT) instruction

— no change in program flow
— no branching overhead

Can use with 32-bit Thumb-2 instructions that do not
support the ‘S’ suffix

Example:
CMP R1, R2 ;IfR1=R2
ITEQ ; execute next (1st)

; instruction
ADDEQ R2, R1, RO ; lstinstruction

The conditional codes can be extended up to 4 instructions

Barrier instructions

Useful for multi-core & Self-modifying code

DMB Data memory barrier; ensures that all memory accesses are

completed before new memory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are

ISB

completed before next instruction is executed

Instruction synchronization barrier; flushes the pipeline and ensures
that all previous instructions are completed before executing new
instructions

39

