
Copyright©1998-2015 by ACS, Sarasota, Florida 1 of 13 ALL RIGHTS RESERVED

6233 E. Sawgrass Rd Sarasota, FL. 34240 (941)377-5775 FAX(941)378-4226

www.acscontrol.com

26-Feb-15

ACS-CF-CFSoundIV - Digital Audio Repeater

General Description

The CFSound-IV is an extremely versatile digital audio player that plays Windows .WAV files recorded at multiple sample rates, 8 or 16-bit, mono or stereo off
of industry standard Secure Digital Flash (SD/SDHC) cards. Sounds may be associated with contact events or played autonomously by utilizing a file naming

convention. Extra sound playout functionality is provided via a text configuration file included on the CF card. A built-in ACS Basic interpreter may be used to

explicitly control the unit’s operation.

Features

 Uses inexpensive, industry standard Secure Digital FLASH (SD/SDHC)

Cards.

 Built-in 20 Watt Class D Stereo (2 x 10W) Amplifier.

 Runs on 12 – 15VDC with supplied 120 – 240VAC 50/60Hz wall
transformer

 Built-in 35mW @ 32 ohms Headphone Amplifier.

 RS-232 Serial Port for controlling audio play out via an attached computer

or PLC.

 Scriptable via built-in ACS Basic

 USB port for connection to PC as a Flash Drive or Serial device.

 Ethernet connection with programmable configuration and multiple protocol

support: DHCP client, FTP server, VNC server, HTTP, TCP/IP Raw, NTP

client, SMTP client (via Basic) and Art-Net™.

 Diagnostic LED’s to indicate operating status.

 Optional boards for contact inputs to activate sounds.

 Two built-in contact inputs to activate sounds.

 Optional boards for contact outputs activated with sounds for other control.

 Push-To-Talk (PTT) dry relay contact output that can optionally close
whenever a sound is played.

 Optional Power Over Ethernet operation.

 Digital Up/Down volume control push buttons with remote connector.

Typical Applications

 Museum Exhibit Control Paging and Alarm Systems

 Message on Hold Timed Identification

 Amusement Equipment Advertising Kiosks

Specifications
Enclosure Dimension: 6.1”(W) x 4.2”(D) x 1.8” (H)

Module Dimension (board): 5.7”(W) x 3.95”(D) x 1.1” (H)
Supply Voltage: 12 – 15VDC (wall transformer)

Supply Current (Idle): 85mA @ 12VDC

Supply Current (playing loud): 250mA @ 12VDC

PTT Output Contacts Rating: 1A @ 30VDC, 0.5A @ 120VAC

Contact Input Activation Current: 10mA sink @ 12VDC
Line Level Outputs: 1.0VRMS @ 47K ohm

Operating Temperature: 0 to +50 degrees C

Supplied wall transformer: 120-240VAC 50/60Hz input

Copyright©1998-2015 by ACS, Sarasota, Florida 2 of 13 ALL RIGHTS RESERVED

Connections

Speaker and Power

Connector

MAIN

G
R

O
U

N
D

1
0
V

 - 1
8
V
 D

C

1 2 3 4 5 6 7 8 9 10

P
T
T
 C

o
n
ta

c
t N

.O
.

P
T
T
 C

o
n
ta

c
t C

O
M

In
p
u
t C

o
n
ta

c
t 2

6

In
p
u
t C

o
n
ta

c
t 2

5

R
ig

h
t S

p
e
a
k
e
r +

L
e
ft S

p
e
a
k
e
r -

L
e
ft S

p
e
a
k
e
r +

R
ig

h
t S

p
e
a
k
e
r -

Pin # Signal Filename

1 Left Speaker +

2 Left Speaker -

3 Right Speaker +

4 Right Speaker -

5 Input Contact 25 19C.WAV / 19O.WAV

6 Input Contact 26 1AC.WAV / 1AO.WAV

7 PTT Contact COM

8 PTT Contact N.O.

9 10VDC – 18VDC

10 Ground

Mating Connector: 10-position removable Terminal Block (included)

Serial

Connector

RS232

PIN
DCE

Signal

JB1 as DCE

Direction

 DTE

Signal

JB1 as DTE

Direction

1 RS-485 B- I/O RS-485 B- I/O

2 RS-232 TxD OUT RS-232 RxD IN

3 RS-232 RxD IN RS-232 TxD OUT

4

5 GND PWR GND PWR

6 RS-485 A+ I/O RS-485 A+ I/O

7 RS-232 CTS IN RS-232 RTS OUT

8 RS-232 RTS OUT RS-232 CTS IN

9 +12-15VDC PWR +12-15VDC PWR

Mating connector: DB9 Female

JB1 Serial Configuration Jumpers

JB
1

JB
1

JB
1

JB
1

DEFAULT in copper traces

R
S-

4
8

5
D

TE

R
S-

2
3

2
D

C
E

The board is configured as RS-232 DCE to allow use of a 1 to 1 cable between the CFSound

and a PC. This configuration is established by copper jumpers on the bottom of the board between

the JB1 pins.

Copyright©1998-2015 by ACS, Sarasota, Florida 3 of 13 ALL RIGHTS RESERVED

Optional

Contact Sense 8 Modules

INP1

IN
P

U
T

8

IN
P

U
T

7

IN
P

U
T

6

IN
P

U
T

5

IN
P

U
T

4

IN
P

U
T

3

IN
P

U
T

2

G
R

O
U

N
D

IN
P

U
T

1

G
R

O
U

N
D

12345678910

INP1

INP1 Pin # Rear Signal Front Signal

1 GROUND GROUND

2 INPUT 1 INPUT 33

3 INPUT 2 INPUT 34

4 INPUT 3 INPUT 35

5 INPUT 4 INPUT 36

6 INPUT 5 INPUT 37

7 INPUT 6 INPUT 38

8 INPUT 7 INPUT 39

9 INPUT 8 INPUT 40

10 GROUND GROUND

Mating Connector: 10-position removable Terminal Block (included)

Optional

Contact Sense 24

Modules

INP1

INP2

INP3

IN
P

U
T

8

IN
P

U
T

7

IN
P

U
T

6

IN
P

U
T

5

IN
P

U
T

4

IN
P

U
T

3

IN
P

U
T

2

G
R

O
U

N
D

IN
P

U
T

1

G
R

O
U

N
D

12345678910
IN

P
U

T
1

6

IN
P

U
T

1
5

IN
P

U
T

1
4

IN
P

U
T

1
3

IN
P

U
T

1
2

IN
P

U
T

1
1

IN
P

U
T

1
0

G
R

O
U

N
D

IN
P

U
T

9

G
R

O
U

N
D

12345678910

IN
P

U
T

2
4

IN
P

U
T

2
3

IN
P

U
T

2
2

IN
P

U
T

2
1

IN
P

U
T

2
0

IN
P

U
T

1
9

IN
P

U
T

1
8

G
R

O
U

N
D

IN
P

U
T

1
7

G
R

O
U

N
D

12345678910

INP3 INP2 INP1

INP3 Pin # Rear Signal Front Signal INP2 Pin # Rear Signal Front Signal INP1 Pin # Rear Signal Front Signal

1 GROUND GROUND 1 GROUND GROUND 1 GROUND GROUND

2 INPUT17 INPUT49 2 INPUT9 INPUT41 2 INPUT1 INPUT33

3 INPUT18 INPUT50 3 INPUT10 INPUT42 3 INPUT2 INPUT34

4 INPUT19 INPUT51 4 INPUT11 INPUT43 4 INPUT3 INPUT35

5 INPUT20 INPUT52 5 INPUT12 INPUT44 5 INPUT4 INPUT36

6 INPUT21 INPUT53 6 INPUT13 INPUT45 6 INPUT5 INPUT37

7 INPUT22 INPUT54 7 INPUT14 INPUT46 7 INPUT6 INPUT38

8 INPUT23 INPUT55 8 INPUT15 INPUT47 8 INPUT7 INPUT39

9 INPUT24 INPUT56 9 INPUT16 INPUT48 9 INPUT8 INPUT40

10 GROUND GROUND 10 GROUND GROUND 10 GROUND GROUND

Mating Connectors: 10-position removable Terminal Block (included)

Copyright©1998-2015 by ACS, Sarasota, Florida 4 of 13 ALL RIGHTS RESERVED

Optional

Contact I/O 8 Modules

INP1

OUT1

OUT2

IN
P

U
T

8

IN
P

U
T

7

IN
P

U
T

6

IN
P

U
T

5

IN
P

U
T

4

IN
P

U
T

3

IN
P

U
T

2

G
R

O
U

N
D

IN
P

U
T

1

G
R

O
U

N
D

12345678910

INP1

INP1 Pin # Rear Signal Front Signal

1 GROUND GROUND

2 INPUT 1 INPUT 33

3 INPUT 2 INPUT 34

4 INPUT 3 INPUT 35

5 INPUT 4 INPUT 36

6 INPUT 5 INPUT 37

7 INPUT 6 INPUT 38

8 INPUT 7 INPUT 39

9 INPUT 8 INPUT 40

10 GROUND GROUND

O
U

T
 4

 N
.O

.

O
U

T
 4

 C
O

M

O
U

T
 3

 N
.O

.

O
U

T
 3

 C
O

M

O
U

T
 2

 N
.O

.

O
U

T
 1

 C
O

M

O
U

T
 2

 C
O

M

O
U

T
 1

 N
.O

.

12345678910

O
U

T
 4

 N
.C

.

O
U

T
 3

 N
.C

.

OUT1

O
U

T
 8

 N
.O

.

O
U

T
 8

 C
O

M

O
U

T
 7

 N
.O

.

O
U

T
 7

 C
O

M

O
U

T
 6

 N
.O

.

O
U

T
 5

 C
O

M

O
U

T
 6

 C
O

M

O
U

T
 5

 N
.O

.

12345678910

O
U

T
 8

 N
.C

.

O
U

T
 7

 N
.C

.

OUT2

OUT2 Pin # Rear Signal Front Signal OUT1 Pin # Rear Signal Front Signal

1 OUT 5 N.O. OUT 37 N.O. 1 OUT 1 N.O. OUT 33 N.O.

2 OUT 5 COM OUT 37 COM 2 OUT 1 COM OUT 33 COM

3 OUT 6 N.O. OUT 38 N.O. 3 OUT 2 N.O. OUT 34 N.O.

4 OUT 6 COM OUT 38 COM 4 OUT 2 COM OUT 34 COM

5 OUT 7 N.O. OUT 39 N.O. 5 OUT 3 N.O. OUT 35 N.O.

6 OUT 7 COM OUT 39 COM 6 OUT 3 COM OUT 35 COM

7 OUT 7 N.C. OUT 39 N.C. 7 OUT 3 N.C. OUT 35 N.C.

8 OUT 8 N.O. OUT 40 N.O. 8 OUT 4 N.O. OUT 36 N.O.

9 OUT 8 COM OUT 40 COM 9 OUT 4 COM OUT 36 COM

10 OUT 8 N.C. OUT 40 N.C. 10 OUT 4 N.C. OUT 36 N.C.

Mating Connectors: 10-position removable Terminal Block (included)

Copyright©1998-2015 by ACS, Sarasota, Florida 5 of 13 ALL RIGHTS RESERVED

Mechanical

File Naming Format for CFSound style operation
(see CFSound-III User’s Manual for more detailed information)

Filename format: XX[COPRSBNFD].WAV

Where:
XX Two digit ASCII Hex identifier 01 - FE, may be associated contact number

C File plays on Closure of contact XX, may not be used with O

O File plays on Opening of contact XX, may not be used with C

P File plays while contact XX is closed or open, may not be used with B

R File repeats, may not be used with B

S On board PTT relay and contact XX will activate while sound is playing

B File plays as background when no other sound is playing, may not be used with C, O, P, R or N

N File playing is non-interruptable, may not be used with R or B

F Matching DMX channel number Fades up/down with sound start/stop

D First 32 channels set to entries in associated DMX scene file with sound start/stop

.WAV File extension identifies Windows PCM sound file format

Copyright©1998-2015 by ACS, Sarasota, Florida 6 of 13 ALL RIGHTS RESERVED

CFSOUND.INI Configuration File
(see CFSound-III User’s Manual for more detailed information)

[Section] / Parameter Description

[Comm] Communications Port Section

BaudRate=ddddd Sets the serial port baudrate to the decimal value ddddd.

Default=2400.

[DEBUG] Debug Section

ShowStartStop=TRUE/FALSE Enables RS-232 message display of sound start/stop events.

Default=FALSE.

[Background] Background Section

BackgroundDelay=ddddd Sets the delay in seconds between background sound playouts to the decimal value ddddd.

Default=0.

BackgroundRestart=TRUE/FALSE Enables interrupted background sound to restart from the beginning instead of where it was interrupted.

Default=FALSE.

[Quiz] Quiz Section

QuizMode=TRUE/FALSE Enables Quiz/Kiosk mode of operation.

Default=FALSE.

QuestionContacts=dd Sets the number of question contacts to the decimal value dd.

Default=4.

AnswerContacts=dd Sets the number of answer contacts to the decimal value dd.

Default=4.

NoAnswerTimeout=dd Sets the delay in seconds between the end of the question sound and the timeout answer sound to the decimal value dd.

Default=5.

AwaitAnswerSound=xx Sets the hexadecimal sound number xx to play after the question sound before the timeout answer sound.

Default=0 (no sound).

AnswerWithoutQuestionSound=xx Sets the hexadecimal sound number xx to play if an answer contact is activated before a question contact.

Default=0 (no sound).

[Contacts] Contacts Section

Force=TRUE/FALSE Setting this value to TRUE restores the original CFSound contact behavior wherein the contact's active status is 'forced' upon reset, power-up or

card-insertion. This will cause associated sound activation if the contact was active.

Setting this value to FALSE (the default) causes the new behavior wherein the contact's current status is sampled upon reset, power-up or card-

insertion. This will cause no associated sound activation until the contact is re-activated.

Default=FALSE.

SequenceContactNumber=dd Sets the number of the contact that will play sounds in sequence to the decimal value dd.

Default=0 (no sequencing)

FirstSoundNumber=dd Sets the first sound number that will be played in sequence to the decimal value dd.

Default=1 (sound #1)

LastSoundNumber=dd Sets the last sound number that will be played in sequence to the decimal value dd.

Default=127 (sound #127)

SaveNIContacts=TRUE/FALSE Setting this value to TRUE will remember any contact events that occur while a non-interruptible sound is playing. Note that this can cause a

non-interruptible sound to play again if its contact is re-activated while it is playing.

Default=FALSE

OutputContactModulus=dd Setting this value to non-zero will cause the output contacts associated with sounds to repeat on the modulo value if QuizMode=FALSE.

Example: OutputContactModulus=4 activates contact outputs 1 through 4 for sounds 1 through 4, contact outputs 1 through 4 for sounds 5

through 8, etc.

Default=0

RandomSequence=TRUE/FALSE Setting this value to TRUE will cause each activation of the SequenceContactNumber to play a random sound from the range

FirstSoundNumber to LastSoundNumber.

Default=FALSE

OffsetContactNumber=dd Sets the number of the contact that will offset the sounds associated with the other contacts by ContactOffsetAmount to the decimal value dd.

Does not affect Sequence or Quiz mode.

Default=0 (no offset)

ContactOffsetAmount=dd Sets the value that will be added the the input contact number when the OffsetContactNumber input is active, to offset the actual sound number

that will play to the decimal value dd. Does not affect Sequence or Quiz mode.

Default=0 (no offset amount)

AutoplayEntireSequence=

TRUE/FALSE

Setting AutoplayEntireSequence to TRUE causes the entire sequence of sounds to be played once whenever the SequenceContactNumber

activates one time.

Default=FALSE (no autoplay)

LineInputEnableContactNumber=dd Sets the number of the contact that will stop any sound currently playing and enable the Line level Input to the decimal value dd. Audio on the

Line level Input is amplified to the current volume setting and appears on the speaker and Line level Output.

Default=0 (no Line In control contact)

PttOutputWithLineInputEnableContact

=TRUE/FALSE

Setting this value to TRUE will cause the PTT relay to follow the non-zero LineInputEnableContactNumber state, otherwise the PTT relay

activation is controlled by sounds with the Relay attribute in their filename.

Default=FALSE (PTT for sounds w/Relay attr)

[LineIn] LineIn Section

LineInputAlwaysEnabled=TRUE/FALSE Setting this value to TRUE enables the Line level Input always. when no sound is playing. When this is FALSE, the Line level Input is

controlled by the LineInputEnableContactNumber.

Default=FALSE (Line level Input disabled)

Copyright©1998-2015 by ACS, Sarasota, Florida 7 of 13 ALL RIGHTS RESERVED

RS-232 Protocol
(see CFSound-III User’s Manual for more detailed information)

SOH / ETX Commands / Responses
Command Serial Character Sequence

Start a Sound

<SOH>

”p”
“+”

{Sound number in two digit ASCII Hex, (01 – FE)}

<ETX>

Stop a Sound

<SOH>
”p”

“-”
{Sound number in two digit ASCII Hex, “00” stops currently playing sound}

<ETX>

Queue a Sound

<SOH>

”p”
“&”

{Sound number in two digit ASCII Hex, (01 – FE)}

<ETX>

Flush queued Sounds

<SOH>

”p”

“~”
<ETX>

Stop playing Sound

and flush queued Sounds

<SOH>

”p”

“!”
<ETX>

Set volume

<SOH>

”v”
“=”

{volume in two digit ASCII Hex, 00 – 3F}

<ETX>

Increase volume

<SOH>
”v”

“+”

{volume increase in two digit ASCII Hex, 00 – 3F}
<ETX>

Decrease volume

<SOH>

”v”

“-”

{volume increase in two digit ASCII Hex, 00 – 3F}

<ETX>

Fade volume

<SOH>

”v”

“<”
{fade volume to zero in seconds expressed as two digit ASCII Hex, 00 – 3F}

<ETX>

Mute amplifier

<SOH>

”a”
“-”

<ETX>

Un-mute amplifier

<SOH>
”a”

“+”

<ETX>

Copyright©1998-2015 by ACS, Sarasota, Florida 8 of 13 ALL RIGHTS RESERVED

ACS Basic Commands
(see ACS CFSound-IV Basic Programming Manual for more detailed information)

Variables
 ACS Basic has four types of variables:

o 32-bit Integer Numeric, 32-bit Integer Numeric Arrays, unsigned 8-bit character Strings and unsigned 8-bit character String Arrays.

 Variable names are case sensitive. The may contain letters, numbers and underscore but they must start with a letter. They can be up to 32 characters

long. String variables names must end with a ‘$’.

 Numeric variables can assume the integer values (–2,147,483,648 ≤ variable ≤ +2,147,483,647).

 Character Strings are limited to 255 characters in length.

 Variable arrays are indexed with up to three array subscripts separated by commas and enclosed in square brackets [] and must be DIMensioned before

they are used.

 The number of variables is limited only by the available memory.

System Variables
@TIMER[x] (10) 16-bit timers that decrement at 50Hz (20mSEC) until zero.

@PORT[x[(256) 8-bit expansion port access for rear I/O module

@PORT2[x[(256) 8-bit expansion port access for front I/O module

@CONTACT[x[(56) contact I/O access

@CLOSURE[x[(56) contact closure event access

@OPENING[x[(56) contact opening event access

@FEOF[#N[End of File on file #N

@FILE.SIZE[#N] Size in bytes of previously opened file #N

@FILE.POSITION[#N] Ascertain or set the position of the next file read / write operation of a previously opened file #N

@SOCKET.EVENT[#N] Determine the state of an opened streaming socket connection

@SOCKET.TIMEOUT[#N] Control the timeout period of a socket connection send / receive data phases

@SECOND,@MINUTE,@HOUR,

@DAY,@DATE,@MONTH,@YEAR

Real Time Clock / Calendar:

@SECOND 00 <= seconds <= 59

@MINUTE 00 <= minutes <= 59

@HOUR 00 <= hour <= 23

@DOW 1 <= day of week <= 7

@DATE 1 <= date of month <= 31

@MONTH 1 <= month of year <= 12

@YEAR 00 <= year <= 99

@SOUND$ Sound playing queue access

@VOL Sound volume access

@NSVOL Sound volume access without saving

@BAUD Serial Port baud rate access

@MSG$ Serial Port delimited message access

@SOM Delimited message Start Of Message character

@EOM Delimited message End Of Message character

@MSGENABLE Enable / disable MSG$ parsing of the serial data stream

@EOT Returns 1 when any PRINT serial data has finished transmitting

@SMTP.EVENT Returns the last Simple Mail Transfer Protocol event

@SMTP.MESSAGE$ Returns any text message associated with the @SMTP.EVENT

@PTT Push-to-Talk relay control

@MUTE Mute / Un-mute the speaker amplifier

@LINEIN Line level input control

@DMX.CHANNELS Sets the number of transmitted channels sent via ArtNet™

@DMX.DATA[x] Gets or Sets the current value of the channel data x

@SOUNDFRAMEPRESCALER Sets the number of ticks between @SOUNDFRAMESYNC events while sound is playing

@SOUNDFRAMESYNC Gets the frame number of the currently playing sound

@CONFIG.ITEMS Returns the total number of configuration items

@CONFIG.TYPE[n]

Returns the type of the configuration item n:

@CONFIG.TYPE[n] Item Type Fields

1 Byte 0

2 Boolean 0

3 Unsigned short 0

4 Baudrate selector 0

5 Parity selector 0

6 Data Bits selector 0

7 Stop Bits selector 0

8 Keybeep selector 0

9 Firmware Version 0

10 Keypad style 0

11 Keypad scheme 0

12 Protocol selector 0

13 MAC address 6

14 IP address (only display if static) 4

15 IP address 4

Copyright©1998-2015 by ACS, Sarasota, Florida 9 of 13 ALL RIGHTS RESERVED

16 Hex Byte 0

17 Hex Unsigned short 0

18 Hex Array 8

19 Short 0

20 RS485 Mode 0

@CONFIG.NAME$[n] Returns the name of the configuration item n

@CONFIG.VALUE$[n {, f]} Returns the human readable value of the configuration item n {optional field number f}

@CONFIG.MIN[n] Returns the allowed minimum value of configuration item n

@CONFIG.MAX[n] Returns the allowed maximum value of the configuration item n

@CONFIG.FIELDS[n] Returns the number of fields for configuration item n

@CONFIG.FIELD$[n, f] Returns the human readable value of the configuration item n field f

@CONFIG.SEPARATORS[n, f] Returns the human readable value of the configuration item n field f field separator

@CONFIG.VALUE[n {, f}] Gets or Sets the value of the configuration item n {optional field number f}

@CONFIG.DEFAULT[n {, f]} Gets the default value of the configuration item n {optional field number f}

@CONFIG.WRITE[n {, f}] Writes the current value of the configuration item n {optional field number f} to NVM

@CARD.MOUNT Mount / Unmount the SD card

Statements
BREAK {line / `label} Exit from within FOR / NEXT or WHILE / WEND loops {optionally going to a line / `label]

CHANGE string, replacement Searches program for string then prompts for replacement

CLEAR Erase variables

CLOSE #N Close file #N(0 – 9) opened with OPEN statement

CONST var{$}=value {, var{$}=value …} Defines one or more constant variables that can’t be modified after they are created

CONTINUE Continues the next iteration of FOR / NET or WHILE / WEND loops

DATA Inline DATA statements for READ and ORDER statements

DEL path Delete CF card files

DELAY value Pause program execution for value * 20mSEC

DIM var{$}[size1{, size2{, size3}}] Dimension numeric or string variable to hold up to size1 elements {optional up to 3 dimensions]

DIR {path} Show files on the SD card with optional path / wildcards

EDIT line Edit line on connected ANSI terminal

END Terminate program with no message

ERROR value Force a program error

FOR var=init TO limit [STEP increment] Perform counted loop of statements until NEXT statement with optional BREAK / CONTINUE

FINPUT #N, var{$}, … , var{$} Get the value for one or more variables from a single line from previously opened file #N

FPRINT #N, expr {, expr …} Write the value of one or more expressions to a single line into previously opened file #N

FOPEN #N, recordlength, “path” Open file #N for fixed length record I/O

FREAD #N, recordnumber, var[$], var[$], … , var[$] Reads ASCII data from fixed length record file #N at recordnumber into variables

FWRITE #N, recordnumber, var[$], var[$], … , var[$] Writes ASCII data to fixed length record file #N at recordnumber from variables

FINSERT #N, recordnumber, var[$], var[$], … , var[$] Inserts ASCII data to fixed length record file #N at recordnumber from variables

FDELETE #N, recordnumber Deletes recordnumber from fixed length record file #N

FUNCTION name{$}(parm1{$}, … parmN{$}) Define a user function name with zero or more integer or string parameters

ENDFUNCTION Ends a user defined function

GOSUB line / `label Call a subroutine starting at line / `label

GOTO line / `label Jump to program line / `label

INCLUDE path Include ACS Basic statements from file path

IF test THEN line/statement [ELSE line/statement] IF test evaluates non-zero jump to program line or execute statement, optional ELSE clause

INPUT [“prompt”,]var Get value of variable from serial port with optional prompt

INPUT #N, var Get value of variable from file #N

{LET }var{$}=expr{$} (default statement) Sets variable = expression, LET is optional

LIF test THEN statement{ : statement} IF test evaluates non-zero execute statements to end of line

LIST {start {, end}} LIST program lines to the serial port

LIST #N{ start {, end}} LIST program lines to OPENed file #N

LOAD path LOAD (or chain to) program from SD card

MD path Makes a new Directory on SD card

MEMORY Displays the currently available program, resource and SD card memory

NEW Erase all program statements and clear variables

NEXT [var] End of a counted loop of statements from FOR statement

ON expr, GOSUB line0,line1,line2,…,lineN Case statement subroutine dispatch

ON expr, GOTO line0,line1,line2,…,lineN Case statement execution dispatch

ONERROR GOTO line One-shot error handling

ONEVENT @specialvar, GOSUB line

Semi-asynchronous event handling via subroutine

Special Variable Event

@TIMER[x]

event occurs one time whenever the timer counts down to zero.

Special variable @TIMER(0) is the highest priority, followed by
@TIMER(1), … then @TIMER(9). 0 <= x <= 9

@CLOSURE[x]
event occurs whenever the associated CFSound-4 contact has

closed. 0 <= x <= 55

@OPENING[x]
event occurs whenever the associated CFSound-4 contact has
opened. 0 <= x <= 55

@FEOF[#N] event occurs after FREAD #N reaches end of file #N

@SECOND event occurs once per second.

@MINUTE event occurs once per minute.

Copyright©1998-2015 by ACS, Sarasota, Florida 10 of 13 ALL RIGHTS RESERVED

@HOUR event occurs once per hour.

@DOW event occurs once per day.

@DATE event occurs once per day.

@MONTH event occurs once per month.

@YEAR event occurs once per year.

@MSG$
event occurs after receipt of a serial character stream delineated by

the @SOM and @EOM characters.

@EOT event occurs after complete transmission of serial data stream

@SOUND$
event occurs after the last queued @SOUND$ sound has finished
playing.

OPEN #N,”path”,”options” OPEN filename path as file #N for access via DIR #, INPUT # or PRINT# statements

ORDER line Position READ data pointer to statement line number

PLAY file Play sound file and wait for completion

PRINT expr{$} {, expr{$} …} PRINT one or more numeric or string expressions to the serial port

PRINT #N, expr{$} {, expr{$} …} PRINT one or more numeric or string expressions to opened file #N

PRINT USING fmt$ expr{$} {, expr{$} …} PRINT zero or more formatted numeric or string expressions to the serial port

PRINT #N, USING fmt$ expr{$} {, expr{$} …} PRINT zero or more formatted numeric or string expressions to opened file #N

READ var{$} {, var{$} …} READ data from DATA statements into numeric or string variables

RETURN RETURN from subroutine invoked via GOSUB statement

REM Comment, remainder of line is ignored

REN oldfile, newfile REName oldfile to newfile on SD card

RESQ {start{-end}{, new}{, incr}} Resequences program lines start through end and writes them to programname.RSQ

RUN {line} / RUN {path} Execute program in memory or from path at lowest or line number

SAVE {path} SAVE the current program to a SD card file

SEARCH string {filename} Performs case insensitive search for string in memory or optional filename with wildcards

SIGNAL @specialvar SIGNAL event associated with specialvar

SORT var{$} Sorts an integer or string array variable in ascending order

SMTP.SERVER name, ipaddr{,port{,userb64,passb64}} Prepares the SMTP network stack for subsequent SMTP.SEND operation

SMTP.SEND from, to, cc, subject, message Sends a text message via the previously configured SMTP.SERVER

SMTP.SEND #N, from, to, cc, subject{,header} Sends the contents of a previously opened file #N via the previously configured SMTP.SERVER

SOCKET.ASYNC.CONNECT #N, “ip:port”, connect(

), send(), recv()

Initiates an outgoing asynchronous network socket connection as file #N on ip address / port

number where execution is controlled by the connect(), send() and recv() functions

SOCKET.ASYNC.LISTEN #N, “:port”, connect(),

recv(), send()

Initiates an incoming asynchronous network socket reception as file #N on ip port number where

execution is controlled by the connect(), recv() and send() functions

STOP Terminate program and display message

TYPE path Display SD card file on serial port

VARS Displays a table of the name, type and current value of variables currently defined or used

WAIT @systemvar Pause execution until systemvar event occurs

WHILE test : statement{s} : WEND Conditional execution code block loop with BREAK / CONTINUE

Operators
Operator Description Priority

NOT Logical NOT 7

- Unary minus (negate) 7

~ Bitwise NOT (1’s complement) 7

* , / , % Multiplication, division, modulus 6

+ Addition, string concatenation 5

- Subtraction 5

<< , >> Left Shift, Right Shift 4

= , <> Assign / test equal, test NOT equal (numeric or

string)

3

< , <= , > , >= LT, LE, GT, GE (numeric only) 3

& , | , ^ AND, OR, Exclusive OR 2

AND , OR Logical AND, OR 1

Copyright©1998-2015 by ACS, Sarasota, Florida 11 of 13 ALL RIGHTS RESERVED

Functions
ASC(char) Returns integer value of ASCII character argument

ABS(expr) Returns absolute value of numeric expression argument

CHR$(expr) Returns character equivalent of expression value argument

COS(expr) Returns an integer scaled cosine value of the degree expression where -1024 ≤ COS() ≤ 1024

ERR() Returns last error number

ERR$() Returns string error message of last error number

FILE.EXISTS(path$) Returns one of the file specified by “path” exists else returns zero

FIND(var$,searchstr$ {, startpos})
Returns zero based position of searchstr$ in string variable argument starting at zero (or optional startpos) or -
1 if not found

FMT$(fmt$ {,expr{$}, … , expr{$}})

Returns formatted ASCII string of zero or more expressions using printf() style fmt$ argument:

% {Flags}{Width}{.Precision}Type

Type

Required character that determines whether the associated argument is interpreted as a
character, a string, or a number:

c character

d signed decimal integer

i signed decimal integer

u unsigned decimal integer

s string

o unsigned octal integer

x unsigned hexadecimal integer

X unsigned HEXADECIMAL integer

Flags

Optional character or characters that control justification of output and printing of signs, blanks,

and octal and hexadecimal prefixes. More than one flag can appear in a format specification.

- left align the result in the given field width

+ prefix the output with a sign (+/-) if the type is signed

0

 if Width is prefixed with 0, zeros are added until the minimum width is

reached. If 0 and – appear, the 0 is ignored. If 0 is specified with an integer

format, the 0 is ignored.

blank(‘ ‘)
 prefix the output with a blank if the result is signed and positive; the blank is

ignored if both the blank and + flags appear

 when used with o, x or X format, prefix any nonzero output value with 0, 0x

or 0X respectively, otherwise ignored

Width

Nonnegative decimal integer controlling the minimum number of characters printed. If the
number of characters in the output value is less than the specified width, blanks are added to the

left or the right of the values — depending on whether the – flag (for left alignment) is specified

— until the minimum width is reached. If Width is prefixed with 0, zeros are added until the
minimum width is reached (not useful for left-aligned numbers). The Width specification never

causes a value to be truncated. If the number of characters in the output value is greater than the

specified width, or if Width is not given, all characters of the value are printed (subject to the

Precision specification).

Precision

Specifies a nonnegative decimal integer, preceded by a period (.), which specifies the number of

characters to be printed, the number of decimal places, or the number of significant digits.
Unlike the Width specification, the precision specification can cause truncation of the output

value. If Precision is specified as 0 and the value to be converted is 0, the result is no characters

output.

c Precision has no effect

d,i,u,o,
x,X

 Precision specifies the minimum number of digits to be output. If the number of

digits is less than Precision, the output is padded on the left with zeroes. The

value is not truncated when the number of digits exceeds Precision

s
 Precision specifies the maximum number of characters to be output. Characters
in excess of Precision are not output

GETCH(expr)
Returns next available serial character or -1 if none available if expression is zero else waits for and returns

next character

HEX.STR$(expr {,digits}) Returns a string hex representation of expression optionally constrained to digits length

HEX.VAL(expr$) Returns the numeric value of the string hex expression

INSERT$(var$, start, var2$) Returns string variable with string variable2 inserted at zero based start character position

LEFT$(var$,length) Returns leftmost length characters of string variable argument

LEN(var$) Returns length of string variable argument

MID$(var$,start,length) Returns length number of characters of string variable from zero based start character position

MULDIV(number,multiplier,divisor)
Returns a 32 bit result of ((number * multiplier) / divisor) where number, multiplier and divisor are 64-bit

internally

MULMOD(number,multiplier,divisor)
Returns a 32 bit result of ((number * multiplier) % divisor) where number, multiplier and divisor are 64-bit

internally

RIGHT$(var$,length) Returns rightmost length characters of string variable argument

REPLACE$(var$, start, var2$) Returns string variable overwritten with string variable2 at zero based start character position

RND(expr) Returns a pseudo random number from 0 to value of expression – 1

SIN(expr) Returns an integer scaled sine value of the degree expression where -1024 ≤ SIN() ≤ 1024

STR$(expr) Returns a string representation of numeric expression

SOCKET.SYNC.CONNECT(#N,

“ip:port”, connect(), send(), recv())

Initiates an outgoing synchronous network socket connection as file #N on ip address / port number where

execution is controlled by the connect(), send() and recv() functions

Copyright©1998-2015 by ACS, Sarasota, Florida 12 of 13 ALL RIGHTS RESERVED

SOCKET.SYNC.LISTEN(#N, “:port”,

connect(), recv(), send())

Initiates an incoming synchronous network socket reception as file #N on ip port number where execution is

controlled by the connect(), recv() and send() functions

UBOUND(dimVar{[dimNumber]} Returns the size of dimVar dimension zero as declared in the DIM statement optionally other dimensions.

VAL(expr$) Returns numeric value of string expression representation of a number

Errors
Error # Error Message Causes

1 "Syntax error in line dd" Incorrect statement format

2 "Illegal program command error in line dd" Direct mode only statement in program mode

3 "Illegal direct command error in line dd" Program mode only statement in direct mode

4 "Line number error in line dd" Target line number not in program

5 "Wrong expression type error in line dd" Numeric value when String expected or vice versa

6 "Divide by zero error in line dd" Division by zero

7 "Nesting error in line dd " NEXT without preceding FOR, RETURN without preceding GOSUB

8 "File not open error in line dd " CLOSE#, LIST#, PRINT# or INPUT# without successful OPEN statement

9 "File already open error in line dd " OPEN# on already open file

10 “File # Out of Range error in line dd “ #N argument not 0 <= #N <= 9

11 "Input error in line dd " Numeric value expected in INPUT # statement

12 "Dimension error in line dd " Subscript on non-dimensioned variable

13 “Index Out of Range error in line dd “ Subscript out of range

14 "Data error in line dd " ORDER line # not DATA statement, READ past DATA statements

15 "Out of memory error in line dd " Insufficient memory

16 "No File System error in line dd " ACS Basic running without CF card

17 “Unknown @var error in line dd “ Unknown special variable

18 "Timer # out of range error in line dd " @TIMER(x) subscript out of range 0 - 9

19 "Port # out of range error in line dd " @PORT(x) subscript out of range 0 - 255

20 "Contact # out of range error in line dd " @CONTACT(x), @CLOSURE(x), @OPENING(x) subscript out of range

21 "Stack Overflow error in line dd " Too many nested FOR and/or GOSUB and/or events

22 "No CF card error in line dd " Statement requiring Compact Flash card with no card detected

23 "Invalid .WAV file error in line dd " .WAV file format not 44.1KHz 16-bit mono or stereo

24 “LCDx arguments Out of Range” One or more argument to a LCDx statement are out of range

25 “FWRITE record # Out of Range” FWRITE record number out of range

26 “FWRITE exceeds record length error” FWRITE record length exceeds FOPEN record length

27 “FINSERT record # Out of Range” FINSERT record number out of range

28 “FINSERT exceeds record length error” FINSERT record length exceeds FOPEN record length

29 “FDELETE past end of file error” FDELETE record number past the current end of file

30 “Can’t delete file” Error deleting file

31 “Can’t make directory” Error creating directory

32 “Can’t rename file” Error renaming file

33 “No DMX module error in line dd” @DMX--- specialvar access attempted with no DMX I/O module present

34 “DMX Channel # Out of Range error in line dd” @DMXDATA(x) access where x >= 511

35 “DMX Analog # Out of Range error in line dd” @DMXANALOG(x) access where x >= 7

36 “DMX Analog # Read Only error in line dd” Attempt to set @DMXANALOG(x)

37 “Unknown command” Unknown command

38 “Can’t use @VAR in line dd” Illegal use of specialvar in FOR, DIM, INPUT, READ, FREAD or FINPUT statement

39 “Mis-matched quotes in line dd” Missing one of a pair of double quotes delimiting a string

40 “Resource already exists”

41 “Font # out of range”

42 “.fonts file invalid”

43 “Scheme # out of range”

44 “.schemes file invalid”

45 “Obj # out of range”

46 “Screen # out of range”

47 “.screens file invalid”

48 “Config # out of range”

49 “Config Item < min or > max”

50 “DRAW.POLYGON”

51 “SD Card”

52 “File System”

53 “Read Only” Attempt to write to a CONST variable

54 “Option # Out of Range”

55 “Data # Out of Range”

56 – 57 ACS Internal Usage

58 “SMTP Connection Failed”

57 - 32767 “x error in line dd” ERROR x statement

Copyright©1998-2015 by ACS, Sarasota, Florida 13 of 13 ALL RIGHTS RESERVED

Please Read Carefully:

Information in this document is provided solely in conjunction with ACS products. ACS reserves the right to make changes,

corrections, modifications or improvements, to this document, and the products and services described herein at any time without

notice.

All ACS products are sold pursuant to ACS’ terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ACS products and services described herein, and ACS

assumes no liability whatsoever relating to the choice, selection or use of the ACS products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any

part of this document refers to any third party products or services it shall not be deemed a license or grant by ACS for the use of

such third party products and services, or any intellectual property contained therein or considered a warranty covering the use in

any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ACS’ TERMS AND CONDITIONS OF SALE ACS DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ACS PRODUCTS

INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ACS PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ACS PRODUCTS DESIGNED OR

AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING OR

SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTICAL APPLICATIONS;

(C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS. THE

PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ACS HAS BEEN INFORMED IN

WRITING OF SUCH USAGE.

Resale of ACS products with provisions different from the statements and/or technical features set forth in this document shall

immediately void any warranty granted by ACS for the ACS product or service described herein and shall not create or extend in

any manner whatsoever, any liability of ACS.

ACS and the ACS logo are trademarks of ACS.

Information in this document supersedes and replaces all information previously supplied.

©2015 ACS – All rights reserved

www.acscontrol.com

	ACS-CF-CFSoundIV - Digital Audio Repeater
	Features

