
 APPLICATION NOTE

R01AN2632EJ0100 Rev.1.00 Page 1 of 19

Aug 21, 2015

Renesas USB MCU

USB Peripheral Mass Storage Class Driver (PMSC)

Introduction

This application note describes the USB peripheral mass storage class driver. This module operates in combination with

the USB basic firmware (USB-BASIC-FW). After a while calls this sample software PMSC.

The sample program of this application note is created based on "RZ/T1 group Initial Settings Rev.1.00". Please refer to

"RZ/T1 group Initial Settings application note (R01AN2554EJ0100)" about operating environment.

Target Device

RZ/T1 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

1. USB Revision 2.0 Specification

2. USB Mass Storage Class Specification Overview Revision 1.1

3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol

http://www.usb.org/developers/docs/

4. RZ/T1 Group User’s Manual: Hardware (Document No.R01UH0483)

5. RZ/T1 Group Initial Settings (Document No.R01AN2554)

6. USB Peripheral Basic Firmware (Document No.R01AN2630)

 Renesas Electronics Website

http://www.renesas.com/

 USB Devices Page

http://www.renesas.com/prod/usb/

Content

 Overview ... 2

 Software Configuration ... 3

 Peripheral Mass Storage Class Driver (PMSC) .. 4

 Sample Application ... 15

R01AN2632EJ0100

Rev.1.00

Aug 21, 2015

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 2 of 19

Aug 21, 2015

 Overview

The PMSC comprises the BOT protocol in USB Mass Storage Class. When combined with USB-BASIC-FW, it enables

communication with a USB host as a BOT-compatible storage device.

This module supports the following functions.

・ Response to mass storage device class requests from a USB host

・ Response to storage commands which are encapsulated in the BOT protocol

Limitations

HMSC is subject to the following limitations.

The structures contain members of different types. (Depending on the compiler, this may cause address

misalignment of structure members.)

Terms and Abbreviations

APL : Application program

BOT : Mass storage class Bulk Only Transport.

CBW : Command Block Wrapper

CSW : Command Status Wrapper

PCD : Peripheral control driver of USB-BASIC-FW

PMSC : Peripheral mass storage USB class driver

USB-BASIC-FW : USB basic firmware for Renesas USB device

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 3 of 19

Aug 21, 2015

 Software Configuration

Figure 2-1 shows the configuration of PMSC, and Table 2-1 lists the modules.

User Application (APL)

Peripheral Mass Storage Class Driver (PMSC)

USB Peripheral Control Driver (PCD)

USB Peripheral H/WMedia

Figure 2-1 Software Configuration Diagram

Table 2-1 Module Function Overview

Module Description

APL User application program (Please prepare for your system)

PMSC

Peripheral Mass Storage Class Driver

・ respond class request

・ control BOT protocol

・ receive and analyze CBW

・ processes storage commands

・ create and send CSW

・ accesses the media

PCD USB Peripheral H/W Control driver (USB-BASIC-FW)

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 4 of 19

Aug 21, 2015

 Peripheral Mass Storage Class Driver (PMSC)

3.1 Basic Functions

The functions of PMSC are as follows:

1. Respond to mass storage class requests from USB host.

2. Respond to USB host storage commands which are encapsulated in the BOT protocol.

3.2 Class Request

Table 3-1 lists the class requests supported by the PMSC.

Table 3-1 Supported MSC Class Requests

Request bRequest Description Supported

Mass Storage Reset 0xFF Resets the connection interface to the mass storage device. Y

Get Max Lun 0xFE Reports the logical numbers supported by the device. Y

Y：Implemented N：Not implemented(Stall response)

3.3 BOT Protocol Overview

The BOT is a transfer protocol that, encapsulates command, data, and status (results of commands) using only two

endpoints (one bulk in and one bulk out).

The storage commands and the response status are embedded in the CBW and the CSW.

Figure 3-1 shows an overview of how the BOT protocol progresses with command and status data flowing between

USB host and peripheral.

Ready

Command Block Wrapper
Command Transfer

(Host→Device)

Command Status Wrapper
Status transfer
(Device→Host)

Data-Out
(Host→Device)

Data-In
(Device→Host)

CBW transfer stage
(Command packet)

Data transfer stage
(Data packet)

CSW transfer stage
(Status packet)

Figure 3-1 BOT protocol Overview

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 5 of 19

Aug 21, 2015

3.3.1 CBW processing

When PMSC receives a CBW from the host, it first verifies the validity of the CBW. If the CBW is valid, PMSC

analysis the storage command contained in the CBW (CBWCB). PMSC finally performs processing based on the

analysis (command validity, data transfer direction and size).

When the transfer data size exceeds USB_ATAPI_BLOCK_UNIT, the data is divided into smaller units and transferred.

Data transmission commands except READ10 is created from the response data table which prepared by PMSC.

The response data table follows storage command set.

Table 3-2 lists the storage commands supported by the PMSC.

Table 3-2 Supported Storage Commands

Command Code Description Type Supported

TEST_UNIT_READY 0x00
Checks the state of the peripheral

device.
No Data Y

REQUEST_SENSE 0x03 Gets the state of the peripheral device. IN Y

FORMAT_UNIT 0x04 Formats the logical unit. OUT N

INQUIRY 0x12
Gets the parameter information of the

logical unit.
IN Y

MODE_SELECT6 0x15 Specifies parameters. OUT N

MODE_SENSE6 0x1A Gets the parameters of the logical unit. IN N

START_STOP_UNIT 0x1B Enables/disabled logical unit access. No Data N

PREVENT_ALLOW 0x1E Enables/disabled media removal. No Data Y

READ_FORMAT_CAPACITY 0x23 Gets the format table capacity. IN Y

READ_CAPACITY 0x25
Gets the capacity information of the

logical unit.
IN Y

READ10 0x28 Reads data. IN Y

WRITE10 0x2A Writes data. OUT Y

SEEK 0x2B Moves to a logical block address. No Data N

WRITE_AND_VERIFY 0x2E Writes data with verification. OUT N

VERIFY10 0x2F Verifies data. No Data N

MODE_SELECT10 0x55 Specifies parameters. OUT Y

MODE_SENSE10 0x5A Gets the parameters of the logical unit. IN Y

Y：Implemented N：Not implemented(Stall response)

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 6 of 19

Aug 21, 2015

3.3.2 Sequence of storage commands for no data transmit/receive

(a). CBW transfer stage

PMSC issues a CBW receive request to PCD. When PCD receives the CBW, it executes a callback function which

starts the CBW transfer stage. PMSC verifies the validity of the CBW and analyzes the CBWCB.

PMSC confirms that the command is no data, compares the storage command analysis results and the information in

CBW, execute the storage command.

(b). CSW transfer stage

PMSC creates a CSW based on the execution result and transmits it to the host via PCD.

Figure 3-2 shows the sequence.

Host PCD PMSC

CSW transfer stage
Create CSW

CSW transmit resuest

CSW transmit

CBW transfer state

CBW receive

TEST_UNIT_READY

(CBW data)

CBW receive end

callback

CBW receive request

* Error checking to classify 13 types of data transfer state between the host and peripherals.

 Please refer to the 6.7 The Thirteen Cases of BOT specification details.

(transfer status)

CSW transmit end

callbak

（CSW information）

Transfer end interrupt

Verify CBW validity

Verify CBW meaning

13-case identification *

Analyze storage

command

Execute storage

command

Transfer end interrupt

CBW receive request

Figure 3-2 Sequence of storage commands for no data Transmit/Receive

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 7 of 19

Aug 21, 2015

3.3.3 Sequence of storage commands for transmit (IN) data

(a). CBW transfer stage

The same as 3.3.2 (a).

(b). Data IN transfer stage

PMSC notifies PCD of the data storage area and data size based on the execution result, and data communication with

the USB host. PMSC the transmission completion is notified by the PCD, to verify that the transmission of the

requested size is complete. If not completed, the DATA transmission request again to continue the DATA transfer stage.

If completed, shifts to the CSW transfer stage.

(c). CSW transfer stage

The same as 3.3.2 (b).

Figure 3-3 shows the sequence.

Host PCD PMSC

Data(IN) transfer stage

IN Data

(transmit status)

Transfer end

callback

(transmit Information

& transmit data)

DATA Transfer

request

CBW transfer state

CBW receive

READ10

(CBW data)

CBW receive end

callback

CBW receive request

Transfer end interrupt

Verify CBW validity

Verify CBW meaning

13-case identification *

Analyze storage

command

Execute storage

command

* Error checking to classify 13 types of data transfer state between the host and peripherals.

 Please refer to the 6.7 The Thirteen Cases of BOT specification details.

CSW transfer stage
Create CSW

CSW transmit resuest

CSW transmit

(transfer status)

CSW transmit end

callbak

（CSW information）

Transfer end interrupt

CBW receive request

Transfer end interrupt

Execute storage

command

(Final data)

Figure 3-3 Sequence of Storage Commands for Transmit (IN) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 8 of 19

Aug 21, 2015

3.3.4 Sequence of storage commands for receive (OUT) data

(a). CBW transfer stage

The same as 3.3.2 (a).

(b). Data OUT transfer stage

PMSC notifies PCD of the data storage area and data size based on the execution result, and data communication with

the USB host. PMSC the reception completion is notified by the PCD, to verify that the reception of the requested size

is complete. If not completed, the DATA reception request again to continue the DATA transfer stage. If completed,

shifts to the CSW transfer stage.

(c). CSW transfer stage

The same as 3.3.2 (b).

Figure 3-4 shows the sequence.

Host PCD PMSC

Data(OUT) transfer stage

OUT data

(receive status &

receive data)

Transfer end

callback

(receive Information)

DATA Transfer

request

CBW transfer state

CBW receive

WRITE10

(CBW data)

CBW receive end

callback

CBW receive request

Transfer end interrupt

Verify CBW validity

Verify CBW meaning

13-case identification *

Analyze storage

command

Execute storage

command

* Error checking to classify 13 types of data transfer state between the host and peripherals.

 Please refer to the 6.7 The Thirteen Cases of BOT specification details.

CSW transfer stage
Create CSW

CSW transmit resuest

CSW transmit

(transfer status)

CSW transmit end

callbak

（CSW information）

Transfer end interrupt

CBW receive request

Transfer end interrupt

Execute storage

command

(Final data)

Figure 3-4 Sequence of Storage Command for Receive (OUT) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 9 of 19

Aug 21, 2015

3.3.5 Sequence of class request

(a). Setup Stage

When PCD receives the SETUP, the process moves to the SETUP stage, to notify the reception in PMSC.

 PMSC create a response data in according to the SETUP.

(b). Data Stage

PMSC executes the control transfer data stage and notifies PCD of data stage end by means of a callback function.

(c). Status Stage

PCD executes the status stage and ends the control transfer.

Figure 3-5 shows the sequence.

Host PCD PMSC

SETUP stage

OUT

GetMaxLUN

Transmit request
DATA stage

STAUS stage

Create

GetMaxLUN

response

Control transfer

callbackTransfer end

interrupt

Class request

MaxLUN transmit

ACK

Figure 3-5 Sequence for Class Request

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 10 of 19

Aug 21, 2015

3.4 API

All API calls and their supporting interface definitions are located in r_usb_pmsc_if.h.

Please modify r_usb_pmsc_config.h when User sets the module configuration option.

Table 3-3 shows the option name and the setting value.

Table 3-3 Configuration options of PMSC

Define name Default value Description

USB_PMSC_USE_PIPE_IN USB_PIPE1 Pipe number of IN transfer

USB_PMSC_USE_PIPE_OUT USB_PIPE2 Pipe number of OUT transfer

USB_ATAPI_BLOCK_UNIT 0x200ul
ATAPI block size

(byte unit)

USB_RAM_PP 0 Definition of RAM disk type

USB_SDRAM_PP 1 Definition of RAM disk type

USB_MEDIA_TYPE_PP USB_SDRAM_PP Setting of Media type

RAMDISK_MEDIA_SIZE (64ul * 1024ul * 1024ul)
Size of RAM disk type

(byte unit)

RAMDISK_SECT_SIZE 0x200ul
Sector size of RAM disk

(byte unit)

RAMDISK_TOTALSECT (RAMDISK_MEDIASIZE / RAMDISK_SECTSIZE) number of RAM disk sector

MEDIA_ADDRESS 0x68000000 Header address of Media

Table 3-4 shows list API functions.

Table 3-4 List of API Functions

Function Name Description

R_usb_pmsc_Open Open PMSC

R_usb_pmsc_SetInterface Processing of PMSC SET_INTERFACE

R_usb_pmsc_CtrlTrans Processing of PMSC control transfer

R_usb_pmsc_poll Processing of PMSC polling

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 11 of 19

Aug 21, 2015

3.4.1 R_usb_pmsc_Open

Open PMSC

Format

void R_usb_pmsc_Open(void)

Argument

－

Return Value

－

Description

This function is registered as a callback function to the member (devconfig) of USB_PCDREG_t structure.

This function sets the CBW reception setting.

Note

－

Example

void usb_pmsc_task_start(void)

{

 USB_PCDREG_t driver;

 driver.devconfig = &R_usb_pmsc_Open;

 R_usb_pstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 12 of 19

Aug 21, 2015

3.4.2 R_usb_pmsc_Registration

Processing of PMSC SET_INTERFACE

Format

void R_usb_pmsc_SetInterface(uin16_t data1)

Arguments

data1 Alternate number

Return Values

－

Description

This function is registered as a callback function to the member(interface) of USB_PCDREG_t

structure.

This function sets the CBW reception setting.

Notes

－

Example

void usb_pmsc_task_start(void)

{

 USB_PCDREG_t driver;

 driver.interface = &R_usb_pmsc_SetInterface;

 R_usb_pstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 13 of 19

Aug 21, 2015

3.4.3 R_usb_pmsc_CtrlTrans

Processing for MSC control transfer

Format

void R_usb_pmsc_CtrlTrans (USB_REQUEST_t *preq, uint16_t ctsq)

Argument

*preq Pointer to a class request message

ctsq Control transfer stage information

 USB_CS_IDST Idle or setup stage

 USB_CS_RDDS Control read data stage

 USB_CS_WRDS Control write data stage

 USB_CS_WRND Control write no data status stage

 USB_CS_RDSS Control read status stage

 USB_CS_WRSS Control write status stage

 USB_CS_SQER Sequence error

Return Value

－

Description

Register this API to the member “ctrltrans” in USB_PCDREG_t structure as the call-back function.

When the request type is a MSC class request, this function calls the processing that corresponds to the control
transmit stage.

Note

－

Example

void usb_pmsc_task_start(void)

{

 USB_PCDREG_t driver;

 driver.ctrltrans = &R_usb_pmsc_CtrlTrans;

 R_usb_pstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 14 of 19

Aug 21, 2015

3.4.4 R_usb_pmsc_poll

Processing of PMSC polling

Format

void R_usb_pmsc_poll(void)

Argument

－

Return Value

－

Description

Call this function in the main loop.

It is determined whether or not the transfer is complete, the case of the transfer is complete, and proceed with the

BOT protocol processing sequence.

Note

－

Example

void usb_apl(void)

{

while(1)

{

R_usb_pstd_poll();

R_usb_pmsc_poll();

}

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 15 of 19

Aug 21, 2015

 Sample Application

This section describes the initial settings necessary for using the PMSC and USB-BASIC-F/W in combination as a USB

driver and presents an example of data transfer by means of processing by the main routine and the use of API functions.

4.1 Operating environment

Figure 4-1 shows an example operating environment for the PMSC.

Emulator

Emulator Host

PC

Emulator Cable

User

Cable

Evaluation
Board

USB Host PC

Periphral Mass Storage Class

Driver (PMSC)

+

USB Basic Peripheral Driver

Enumeration
(Control Transfer)

Bulk Data Communication
(Bulk Transfer)

USB
PORT

USB
PORT

USB Cable

Figure 4-1 Example Operating Environment

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 16 of 19

Aug 21, 2015

4.2 Specifications

The sample application comprises two parts: initial settings and main loop.

The PMSC to process file write and file read to the storage area or the like to the request from the USB host. Therefore,

the sample application performs no processing on data transferred from the host and only periodically call the USB

driver.

Figure 4 2 shows a process flowchart of the sample application.

PMSC APL

(usbf_main)

Initial settings
(pmsc_registration)

(R_USB_Open)
(msc_init)

Main loop
(R_usb_pstd_poll)
(R_usb_pmsc_poll)

Figure 4-2 Flowchart

Sample application will be recognized as a removable disk when connected with the USB host. It is possible to perform

the data transfer, such as file reading and writing.

Figure 4-3 shows the operating screen of a PC connection.an example operating environment for the PMSC.

Figure 4-3 Operating screen

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 17 of 19

Aug 21, 2015

4.3 Initial settings

Sample settings are shown below.

void usbf_main(void)

{

/* Initial setting of USB driver (Refer to “4.3.1”) */

pmsc_registration();

/* Startup USB module (Refer to “4.3.2”) */

R_USB_Open();

/* Initial setting of Application (Refer to “4.3.3”) */

msc_init();

/* main loop */

while(1)

{

R_usb_pstd_poll();

R_usb_pmsc_poll();

}

}

4.3.1 Initial setting of USB driver

After specifying the necessary information in the members of the class driver registration structure (USB_PCDREG_t),

call R_usb_pstd_DriverRegistration() to register the class driver information for the USB-BASIC-F/W.

Pipe information table and descriptor information is described in r_usb_pmsc_descriptor.c.

Create each descriptor based on USB specification.

A sample of information specified in the structure declared by USB_PCDREG_t is shown below.

void pmsc_registration(void)

{

USB_PCDREG_t driver; /* Structure for the class driver registration */

/* Pipe information table setting */

driver.pipetbl = &usb_gpmsc_EpTbl[0];

/* Set the Device Descriptor table */

driver.devicetbl = (uint8_t*)&usb_gpmsc_DeviceDescriptor;

/* Set the Qualifier Descriptor table */

driver.qualitbl = (uint8_t*)&usb_gpmsc_QualifierDescriptor;

/* Set the Configuration Descriptor table */

driver.configtbl = (uint8_t**)&usb_gpmsc_ConPtr; // Note1

/* Set the Other Configuration Descriptor */

driver.othertbl = (uint8_t**)&usb_gpmsc_ConPtrOther; // Note1

/* Set the String Descriptor */

driver.stringtbl = (uint8_t**)&usb_gpmsc_StrPtr; // Note1

/* Set the function which is called when changing to the default state */

driver.devdefault = &msc_default;

/* Set the function which is called when completing the enumeration */

driver.devconfig = &msc_configured;

/* Set the function which is called when disconnecting USB device */

driver.devdetach = &msc_detach;

/* Set the function which is called when changing the suspend state */

driver.devsuspend = &msc_suspended;

/* Set the function which is called when resuming from the suspend state */

driver.devresume = &msc_resume;

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 18 of 19

Aug 21, 2015

/* Set the function which is called when changing the interface */

driver.interface = &R_usb_pmsc_SetInterface;

/* Set the function which is called when processing the control transfer

other than the standard request */

driver.ctrltrans = &R_usb_pmsc_CtrlTrans;

/* Register the class driver information to PCD */

R_usb_pstd_DriverRegistration(&driver);

}

[Note]

1. Set the start address of array which is set the descriptor start address in this member.

[Example]

uint8_t *usb_gpmsc_StrPtr[] =

{

 usb_gpmsc_StringDescriptor0,

 usb_gpmsc_StringDescriptor1,

 usb_gpmsc_StringDescriptor2,

}

4.3.2 Startup USB module

Call the R_USB_Open() (API function of USB-BASIC-FW), set the USB module according to the initial setting

sequence of the hardware manual, the USB interrupt handler registration and USB interrupt enable setting.

4.3.3 Initial setting of application

The sample application uses the SDRAM area in the media area of the removable disk.

It is implemented by assigning a global variable(g_ramdisk_mem[RAMDISK_MEDIASIZE]) in the

file(r_ram_disk_format_data.c) to SDRAM area. If you want to change the media area, the memory arrangement in

accordance with the operating environment, please change the defined values MEDIA_ADDRESS (see Table 3-3).

The SDRAM area cleared to zero at software startup. Then it is FAT16 file system formatted by writing a global

variable(ram_disk_boot_sector[RAMDISK_SECTSIZE]) in file(r_ram_disk_format_data.c) to the top of the SDRAM

area.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN2632EJ0100 Rev.1.00 Page 19 of 19

Aug 21, 2015

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-20

Revision History

Rev. Date

Description

Page Summary

1.00 Aug 21, 2015 — First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,

and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a

product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

