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And to my wife Shirley, who has put up with this, and all my other 
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About the Author

I am fortunate in that I grew up the son of an engineer. My father was, 
and is, an electrical engineer, so is it not surprising that I also became 
an electrical engineer, earning my BSEE from Montana State University 
in 1986.

Being a somewhat rebellious youth, I didn’t go into RF like my father. 
Instead I embraced digital logic and microprocessors. My workbench at 
home was littered with surplus TTL parts, and the odd EEPROM and 
LED display; it was this early fascination with microprocessors that first 
led me down the path to embedded programming. 

In fact, my interest in embedded programming led to my first 
full-time summer job, working for a company that used the 6502 
microprocessor to build numerical controls for lathes and mills. I have 
held a number of jobs since that first summer: a year in avionics, eight 
years in gaming, six years in RF, and now five years in semiconductors.
But through it all, I have always retained my interest in microproces-
sor-based design.

It was my interest in microprocessors, in fact, that led me to apply
the design of hardware state machines to the process of software 
development. During my time at MSU, I attended a class taught by 
an engineer on sabbatical from Hewlett-Packard. The class subject was 
the design of embedded controls using linked state machines instead of 
microprocessors. While I didn’t immediately make a connection between 
hardware and software state machines, I did keep the textbook; after a 
stint as a consultant, and as time passed, I came to apply many of the 



techniques from hardware design to software design. The result has 
been the content of this book, a method for multitasking using linked 
software state machines. 

I hope you find the process useful, and I encourage you to evolve it 
as needed to fit your specific design style. Good luck, and remember, 
be verbose in your documentation, lest you be added to the product 
support groups’ speed dial.

xii About the Author



When I began this book, I decided that I wanted to keep it as generic 
as possible. My examples don’t favor a specific microcontroller family, 
and with the exception of including examples in C, I tried not to favor 
a specific language or compiler. With this in mind, I was somewhat 
hesitant to include a CD-ROM given that the purpose of the book is to 
teach a new design methodology, not create a specific embedded design 
example. However, there are templates and tools that help in the design 
process, so after consulting with my editor, I came to the decision that 
a CD-ROM that included these tools would be useful, while remaining 
true to the original intention of keeping the text generic.

The CD-ROM contains three main directories: examples, templates, 
and tools. The Examples directory contains all of the algorithm listings 
and code snippets from the book. They are included for anyone who 
would like to use them as a seed to start their own personal code library. 
The Templates directory contains template files for creating all three 
types of state machines: the various communications protocols in C, 
the example priority handlers, and the various timing systems. The final 
directory, Tools, contains two spreadsheets, one for calculating a system 
tick, and another for building an execution time database used in the 
Time Remaining priority handler. The Tools directory also contains an 
example document that outlines a naming convention.

To keep the files as universal as possible, all of the documents, algo-
rithms, code snippets, and templates are in a DOS text file format. The 
spreadsheets, however, had to be put in a format that could be loaded 
into a spreadsheet, so I chose Excel®, as it is the spreadsheet that I know 

What’s on the CD-ROM?



best. However, I also included the equations for the important cells so 
the tool can be translated into another spreadsheet package if the reader 
should desire to do so.

The reader is encouraged to use and modify the files, and I hope that 
it helps the reader develop a good coding technique. Just remember that 
the intent is to learn a new program development technique. 

Note: Copying and distributing the files is restricted, as outlined in 
the license agreement at the back of this book. In addition, the files are 
provided “AS IS.” Compatibility with a specific compiler, applicability 
to a specific purpose, or a completely error-free condition is neither 
warranted nor guaranteed. The sole purpose of the files is to aid in the 
understanding of the design methodology presented.

“Excel is a registered trademark of Microsoft Corporation in the 
United States and/or other countries.”

xiv What’s on the CD-ROM?



When I told my friends that I was writing a book, several of them told 
me that I had to have a very good opening. “A good opening,” they 
said, “fires the reader’s imagination and draws them into the book.” 
The theory being, I suppose, if the reader is drawn in, then they will 
have to buy the book. 

Well, being an engineer, I very seldom say things that fire the imagina-
tion. In fact, at parties, most people’s eyes tend to glaze over right after 
I tell them I am an engineer. So, I have decided instead to appeal to the 
universal sense of enlightened self-interest. In short, I will begin this 
book by demonstrating why good programming is in the best interest 
of every software designer. Now, it may not get you a cubicle with a 
window, or even an office with a door. But I can promise that producing 
products that are not profitable is the surest way to become unemployed. 
So, while there may not be a direct cash benefit to producing profitable 
products, the alternative is definitely worse. 

However, before we get into the explanation of profitability and 
engineering, we need to take a few moments and discuss some basic 
business concepts—specifically, how the price of a product is divided 
up between the various costs and profit.

If we consider a generic product, the sale price of the product is 
divided into two parts: the cost of producing the product and the profit 
on the sale. The cost of producing the product includes recurring and 
nonrecurring production costs, general and administrative overhead 
costs, cost of sales, and support costs. The profit is the difference between 
what the company spent to produce the product and what it was paid 

1
What’s In This Book, and 
Why Should I Read It?
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1 CSA is a registered trademark of the Canadian Standards Association. UL is a registered trademark of 
Underwriters Laboratories. CE is a registered trademark of The Council of the European Communities.

for the product. Essentially, profit is the company’s return on the invest-
ment it made in producing the product.

So, let’s take a little closer look at the costs, starting with the recur-
ring and nonrecurring production costs. 

A recurring production cost is any expense that is incurred each time a 
product is made. It includes the cost of the materials used to produce the 
product and the labor expense of having workers assemble the product. 
It can also include the cost of packaging, printing a user’s manual, license 
fees, even the material cost of the shrink wrap to seal up the package.

Nonrecurring production costs, on the other hand, are expenses that 
are incurred to enable a production run, and typically cover expenses 
such as investments in equipment, product testing such as Conformity 
European (CE®)/Underwriter’s Laboratory (UL®)/Canadian Standards 
Association (CSA®)1, and materials that enable production, but are not 
part of the product produced. For example, the cost of the plastic used 
to injection mold the case for a product is a recurring cost because it is 
incurred each time a unit is produced. However, the cost of testing for 
UL acceptance, assembly benches, tools, even the mold used to produce 
each unit are nonrecurring costs because they are incurred just once 
during the production cycle. 

Nonrecurring costs are also often referred to as fixed production costs, 
because they do not increase and decrease with the number of units 
produced. They can also be thought of as an investment in the produc-
tion process. For instance, the cost of having a special tool produced 
would be considered an investment because it reduced the recurring 
cost through shortening the assembly time. Nonrecurring costs are also 
typically amortized, or divided up, over some portion of the product’s 
lifetime. If a mold is to be used over the production of a million units, 
then .00001% of the cost of the mold is then added to the cost of each 
of the first one million units produced. Of course, the one million and 
first unit produced does not incur this cost, and as a result, the profit 
on that unit, and every one produced after it, is correspondingly higher, 
assuming the price and other costs remain constant.
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The next cost is also typically considered a fixed cost, that being 
the administrative and overhead cost. This cost, typically listed as the 
G&A (General and Accounting), is the expense of operating a business. 
It includes administrative cost, including the salaries of the company 
executives, the secretaries, the accountants, and even the janitors. It also 
includes costs for services, such as electricity, water, and phones. Basically, 
any expense that is incurred to pay for a general support function of the 
company will be lumped into this category. And, like a nonrecurring 
production cost, it is also divided up and tacked onto the production 
cost of the products. However, unlike a nonrecurring production cost, 
it never goes away.

A similar cost to that of G&A is the cost of sales. It includes expenses 
for things like advertising, shipping, product promotions, customer 
contests, even commissions paid to salesmen. These costs are those 
associated with putting the product in front of the customers, either 
through advertising, or through placing the product on the shelf in a 
local store. Any cost incurred that is directly tied to the act of selling the 
product typically falls under this category. This is one of the few general 
costs that is typically allocated based on the number of units sold. So, 
if the cost of sales is high for a group of units, then the profits for that 
group of units will be correspondingly lower. As a result, management 
will generally pay close attention to the cost of goods sold. 

The final costs are those tied to support of the product after the 
sale. These typically include expenses like a 24-hour support phone 
line, repair technicians, failure analysis, repair costs, and upgrades/bug 
fixes. Like G&A, support cost is also spread across the production run 
as a fixed expense. 

Note: Because the support cost is typically treated like an overhead 
expense, it is often hidden from management supervision. This leads 
some management to the mistaken assumption that a product is reliable 
and well-liked by the customer when in fact there is a quality problem 
and customer satisfaction is dropping. 
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A closer look at profits reveals that it is also divided up into multiple 
sections. Some of the profits are spent as dividends paid out to the 
investors. This increases the desirability of the stock in the company 
and can serve to attract additional investors who, in turn, add money 
to the company by buying stock. Some of the profit is held as a cash 
reserve, to cover future equipment purchases and expansion. And, most 
importantly to engineering, some of the profits are used to fund new 
product development.

See, I told you there was a reason why engineers should have a per-
sonal interest in making sure the products they design are profitable. 
The larger the profit on a product, the more money will be available to 
fund new equipment, hire more engineers, and pay for new projects. 
Now, this is not to say that all of the profits will be channeled into 
engineering. However, it does say that if the products are not profitable, 
then any new product development must be paid for using borrowed 
money. That means that the product will not only have to repay the 
money, plus interest, but will also have to do that before it generates 
any new monies to pay for future projects.

Engineering and Profits

So, if a profitable product produces the necessary surplus of cash required 
to fund new projects, and if engineers are responsible for the design 
of the profitable products, then it falls to us as software and hardware 
engineers to generate designs that will produce the best product for the 
least cost.

OK, how do we do that? We could just increase the cost of the prod-
uct. Some companies have tried this, although most who have are now 
owned by their competitors, so for now we will ignore that option. The 
better place to start is by understanding where the costs of a product 
come from, and then analyze what we can do as designers to minimize 
those costs. To do that, we have to understand the product life cycle.

A typical product has multiple phases in its lifetime. For the purpose 
of discussion here, we will limit this to five general phases:

1. Product definition: In this phase, the initial concept for the prod-
uct is generated and market research is conducted.
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2. Design: Engineering is charged with developing the product that 
will meet the market requirements, including performance, price 
and profit. 

3. Initial production: The design then moves to production, where a 
production facility is configured to produce the design. Product 
support will also analyze the design at this point to determine 
its support requirements.

4. Sustained production: At this point in the product’s life cycle, the 
production facility has reached its optimal production volume, 
and support is managing the day-to-day customer support re-
quirements of the product.

5. End of life : At this point, the product has reached the end of its 
profitability. The production facility will ramp down production, 
and support will plan for any remaining customer support 
needs.

Let’s start our analysis, with a quick description of each of the 
phases of a product’s life. We can then examine the different phases to 
determine where changes in a design strategy can be employed to help 
reduce cost.

The birth of a product is in the product definition phase of its life. 
The marketing group within a company is generally tasked with ongo-
ing market research, looking for new product ideas. When they find a 
potential product idea, they then do further research to determine how 
big the market is for the proposed product. What is the share of the 
market which the company can reasonably expect to capture? What 
features will the product need to be successful in the market? And what 
price point is needed to capture the anticipated market share?

Estimating the total size of a potential market is somewhat of an art, 
and I am certainly not qualified to either explain or critique the process. 
For our purposes here, just take it for granted that the marketing group 
is well versed in the subject and that their evaluation will result in a 
reasonably accurate estimate of the total number of products that the 
proposed market will demand and the expected market share that the 
company can expect to capture. They will also estimate the minimal 
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number of features required by potential users and the optimal price 
point that will allow capture of the market share. These numbers will 
then be analyzed to determine the potential profitability that the com-
pany can expect for the product.

If it looks as if the product will bring in a reasonable profit to 
justify the investment in a development phase, then the product idea 
will be summarized in a requirements document and passed on to the 
design phase. If the profitability of the product does not justify the 
development cost, the product idea will either be shelved for future 
consideration, re-evaluated by marketing with a different set of features, 
or just dropped.

In the design phase, engineering will then generate a design based 
on the requirements document. Once the design of the product is 
complete, engineering then oversees any certification testing required, 
such as FCC, CE, CSA, or UL. Any changes to the design required to 
correct any design deficiencies will then be made, and the product will 
be resubmitted until it passes.

The final step in the design process is to generate any collateral 
material required for the sale of the product. This material typically 
includes testing procedures and fixtures, user’s manuals, documenta-
tion for both the production and support groups, and any packaging 
or shipping containers.

Once the design phase is complete, initial production begins. In this 
phase, the production group works with engineering to determine the 
most cost-effective method to produce the design. The production group 
will also create any quality assurance documentation needed, as well as 
production jigs required by the design. The production and test staff 
will also receive training in the product production process.

The support group will also begin its analysis of the design with 
engineering, evaluating potential sources of faults and failures. They 
should also become fluent in the operation of the design to facilitate 
fault analysis and repair. The result of this analysis and training will be 
troubleshooting procedures and the purchase of the appropriate test 
equipment and stocks of repair parts. Further, the repair technicians 
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and the help desk operators will be trained to handle problems, perform 
fault analysis, and do cost-effective repairs.

Following the initial production phase of the product’s life, the 
product will enter sustained production. At this point, the production 
facility has ramped up to the normal production rate for the product. 
The production personnel are operating with only minimal support from 
engineering, and the production yields are at or above expected levels.

The support group at this time is analyzing failures, processing repairs, 
answering customer questions, and making any corrections to the de-
sign to fix bugs found either in production or in the field. The support 
group should also be performing an ongoing analysis of the type and 
number of failures to identify any potential problems with the design. 
If any are found, they are tasked with making the appropriate changes 
to the design to eliminate or minimize the potential fault.

In addition, the marketing group may also suggest changes and 
enhancements to the operation of the product, in an effort to extend 
the product lifetime. Engineering will be tasked to work with support 
to roll-in the proposed changes and work out a conversion process for 
product already in the field. 

Once the design has reached the end of its production, the product 
enters the end-of-life phase of its product life. This could be due to 
either the obsolescence of key components, low profitability due to less-
expensive competition, or the disappearance of its target market. For 
whatever reason, the company has decided that continued production 
is not profitable, and it has decided to terminate production.

For the production group, this means the disassembly of any cus-
tom production facilities and the retraining of production personnel 
for work on other active product lines. Production and test jigs will be 
put into storage or sold as scrap, and all relevant documentation will 
be archived.

For the support group, the challenge at end of a product’s life is to 
provide the expected level of customer support needed to support users 
that are still using the product. This means the support group will have 
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the task of buying appropriate quantities of repair parts while they are 
still available, or finding suitable substitutes for the repair parts if they 
are not available or run out before support is terminated.

During the course of a product’s life several costs are impacted directly 
by the design. As we have already established, reducing these costs is 
in the interest of the engineers working for the company. So our job at 
this point is to determine what the costs are, how the method of design 
affects the costs, and what can be done to minimize the cost.

Let’s start with costs affecting the product definition phase of the 
new product. In this phase, the purpose is to define a new product and 
determine if it is profitable. To do this, engineering must be able to give 
reasonable estimates of what the product will cost over the course of its 
life. These costs come from all phases of the life cycle, including design, 
initial and sustained production, and even end of life. 

Typically, the production and end-of-life numbers are estimated based 
on labor costs from similar recent products and a material cost based on 
a preliminary design and bill of material (BOM) from engineering. The 
design phase cost estimate will also rely on the preliminary design and 
BOM from engineering; however, it will also need an estimate of the time 
required to write and test the software associated with the project. 

If the estimate for the design time is low, then a marginally profit-
able project may be approved and the company will end up investing its 
money in a product that will contribute little or no profit. If the estimate 
for the design time is high, then potentially profitable products may be 
passed over. So, it is important that engineering be able to produce an 
accurate estimate of what the software development will cost. 

So, in the product definition phase it is important to be able to do an 
accurate preliminary design of the software system and this design must 
be sufficiently detailed so that accurate estimates for finishing the design 
are possible. This means that engineering’s opportunity to increase profit, 
is based on a design system that allows an accurate preliminary design 
of the system, with sufficient detail to allow accurate time estimates for 
the remainder of the design work.
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In the design phase of the life cycle, engineering is charged with the 
development and test of the product. They have the preliminary software 
design and the estimates for the remaining work. The preliminary design 
for the hardware is also finished, with its estimates for completion and 
testing. If engineering continues along this established design flow, then 
the product should complete at or near the preliminary estimates.

However, there are almost always unforeseen problems in any design 
effort. To prevent these problems from spinning a design out of control, 
the design process must be sufficiently flexible to be able to modify the 
design in process, without starting over. So, another opportunity for 
cutting costs is to use a design system that is also reasonably flexible, 
allowing changes in one section of the design to be isolated from most, 
if not all, other sections.

Another opportunity for cost reduction is the replacement of hard-
ware peripherals with software-based peripherals. This is the so-called 
hardware/software tradeoff, and it is a trade of processing power for the 
cost of a hardware peripheral. While this appears to be a bottomless well 
of cost savings, there are several drawbacks to any tradeoff:

1. Using software-based peripherals requires additional program 
memory to hold the additional code.

2. Software-based peripherals require more processor time to 
execute.

3. The additional execution overhead may require a higher clock 
speed or faster processor.

4. Using software-based peripherals increases the complexity of the 
software design and testing.

So, any decision to replace a hardware peripheral can only be made 
with accurate estimates of processing load and program memory require-
ments. This means that the tradeoffs can only be made later in the design, 
after the processing load and memory requirements are established, or 
that the design methodology is capable of making accurate predictions 
early in the design.
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One of the most valuable means of saving development costs is 
code reuse. This involves having a library of previously developed 
and tested software routines for common functions—for example, 
the math library bundled with a compiler. Rather than force users to 
develop their own math functions, the compiler designer has generated 
a library of previously developed and tested functions, saving the user 
a considerable amount of time and research. There is every reason to 
believe that engineering can also benefit from this practice by reusing 
previously developed code in their new designs. Note: this does incur 
some overhead in engineering due to the building and documentation 
of the library. However, if the design methodology used by engineering 
is modular and encourages documentation, this process can be relatively 
simple and inexpensive.

One of the early tasks of software development is to supply test 
code to the hardware group for the purpose of testing the prototype 
hardware. While most groups simply write a quick block of code to 
exercise the various inputs and outputs, a more extensive system can 
significantly shorten the testing performed by the hardware group. 
The typical objection to this practice is that the code will be thrown 
away after the design, so why put too much work into it? However, if 
a modular design approach is taken, then the routines used to exercise 
the hardware during testing can be reused, not only in the final software 
system, but also in production as part of the hardware testing performed 
in production. So, once again, a modular design methodology can help 
in the reduction of design costs.

Next, what about testing the software? Testing a complete software 
system is certainly more complex and takes longer than incremental test-
ing during the design. Incremental testing also simplifies the debugging
process because the potential list of suspects is significantly reduced. 
Further, if the incremental testing can be automated, then the depth 
of testing possible is also increased, producing significantly better code 
quickly.

Once the individual blocks of the software design are tested, then they 
can be combined together block by block in an incremental fashion. This 
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again limits the number of suspects when there are problems, and the test 
data from the individual blocks can also be useful in finding problems.

For this to work, the design must be modular with clearly defined 
specifications on the functions of each module, as well as the interface 
between the modules. There must also be a method for building a soft-
ware test jig that allows the inputs from other blocks to be simulated 
during automated testing.

The final requirement of the design phase is the generation of the 
design collateral. This includes testing procedures and fixtures, user’s 
manuals, documentation for both the production and support groups, 
and any packaging or shipping containers. All too often, no thought is 
given to this requirement until after the design is complete. As a result, 
the material is typically generated though a form of criminal investiga-
tion, reverse engineering the details from the final design, interviewing 
the designers, and trying to piece together the details of the system’s 
operation. All of this takes time and costs money. So, what can a well-
designed and documented product do to reduce cost at this phase?

In testing, good documentation will provide a clear explanation of 
how the product is supposed to work. This gives the test group a clear 
set of criteria for their testing procedures. It also defines which sections 
of the design are active during each operation, so the test procedure can 
skip over redundant test conditions, shortening the test time. The same 
information will also show the most efficient method for exercising all 
the functions in the shortest time possible.

A modular design also means that sections of the product software may 
be reused as test software for production. This shortens the job of generat-
ing the test software. It allows testers on the production line to exercise 
the various sections of the hardware design “on demand,” reducing the 
time and equipment required for testing. And custom test software can 
be used to partially debug any problems, reducing repair time.

Writing the various user manuals for the design also benefits from a 
top-down design with good documentation. A top-down design starts 
with a good overall description, and then flows down through each level 
of the design. This is the same format used by most manuals, so the 
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writers will have a complete outline to work from, with all the informa-
tion they need present in the documentation. If the documentation is 
sufficiently complete, there should only be minimal involvement from 
the actual design team during the writing. This should free the design 
team to start work on the next product definition or design.

For support, good documentation and a clear design flow are criti-
cal for their work. They will need it to understand the operation of the 
product, both when it is operating correctly and when it fails. This will 
help them not only design their own debugging documentation, but 
also train their people in the potential problems that customers will 
face. It will also allow them to find flaws quickly and produce fixes in 
a timely manner.

Finally, a good design can even ease the burden of generating packag-
ing. With predictable behavior and fewer bug fixes, there will be little 
need to add markings on the packaging for production revision. And 
the packaging is less likely to be opened repeatedly by production to 
include the latest bug fix, so the packaging can be made less expensive, 
without the requirement that it be a re-openable design.

In the design phase, the cost reduction opportunities are primarily in 
two areas: shortening the design and test process, and creating an easily 
understood and well-documented design. The design and testing por-
tion of the opportunity require a good top-down design approach and a 
modular format. This produces software that can be incrementally tested, 
reused in later designs and production test software, and more easily 
understood by the writers and support teams. Good documentation is 
also beneficial to the writers and the support teams in that it provides a 
clear picture of what the design is intended to do, as well as how it will 
respond to various failures.

In the initial and sustained production phases of the product life, 
most of the benefits outlined in the design phase come to fruition. 
The documentation provided on the design allows the production and 
support teams to become fluent in the design quickly in the initial pro-
duction phase. The modular nature of the design allows the generation 
of test software as well. And the combination of the documentation and 
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the modular nature of the design assist in the generation of troubleshoot-
ing guides and procedures for the support group.

Additional cost-saving opportunities arise when the design transi-
tions to sustained production. Any recurring material cost savings from 
a tradeoff of software for hardware begin in the sustained phase of the 
production, as do production labor cost savings from automated test-
ing provided by custom test software. And, on the support side, good 
documentation and a modular format allow the support team to identify 
the source of any software bugs early, and assist in their quick removal 
from the design.

Together, the initial and sustained production phases of the product 
life cycle are the source of the majority of the cost savings for the product. 
This is largely due to the volume of the production run. Any material 
cost savings in the unit cost will translate directly into a significant cost 
savings over the production of the product.

However, the volume can also increase costs for the support team. 
If a problem is found in the design, a high production volume can 
produce a significant volume of flawed units to be repaired. The best 
way to minimize this cost, without dropping production, is to identify 
problems early and fix them quickly. This requires both a good support 
team fluent in the design, and a clean modular design that allows the 
incorporation of changes with a minimum of testing.

For maximum cost savings in production, both initial and sustained, 
the design must use a modular, well-documented design method that 
supports easy modification and the ability to tradeoff software for hard-
ware. The ability to automate testing is also valuable in that it shortens 
the time required to qualify new bug fixes.

A final note on the sustained phase of the product’s life cycle: This is 
the time when the product is typically selling well, and marketing and 
management is looking for ways to stretch out the production. Usually, 
this means the introduction of similar products, some products with 
a subset of feature from the original design and a reduced price tag, or 
products with a specialized set of features designed to meet a specific 



14 Chapter 1

market niche. These products may not have a sufficient profit margin to 
justify their own development, but if they can be spun off the existing 
product with a minimum of design effort, they can extend the profit-
ability of the original design.

The best way to start this type of product development is to begin 
with the original product’s definition as a baseline. Marketing and 
engineering can then evaluate the various tradeoffs required to produce 
the spin-off product. This means that, once again, the design method 
used by engineering must be able to accurately predict what the new 
features and functions will cost in design and production. It also means 
that the documentation of the original produce development and the 
design notes from the original design must be accurate and complete 
so the projected costs for the new product are accurate.

Given that the design time available for this type of spin-off is typically 
minimal, the design process of modifying the original design must be 
fast and efficient. For that to work, engineering cannot afford to restart 
the development from scratch. They can only generate new software 
when needed to handle the new or modified features and functions. 
This means that the original design must be a top-down, modular, well-
documented design that will allow engineering to reuse the majority of 
the software design generated for the original product.

An added advantage to this form of spin-off design is that much of the 
collateral design and documentation generated for the original design will 
translate into collateral for the spin-off design. This means that manuals, 
test procedures, test fixtures, and the troubleshooting documentation 
generated by the support group will need only minimal modification 
to work for the new designs, provided that the groups generating this 
collateral know what has changed from the original design and how it 
will affect the collateral generated originally. This means that, just like 
the original design, the spin-off design must be a top-down design with 
good documentation and a modular format.

The final phase of the product life is the end-of-life support of the 
product. This can be one of the most difficult to estimate because so 
much of the hardware used in the design may have been obsolete by the 
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manufacturer. In fact, making end-of-life buys on components can be 
one of the most significant costs associated with end-of-life support. 

It follows that replacing obsolete material with either a suitable 
substitute, or software, is one of the cost savings options. For the most 
part, this will entail searching for similar products that can either be 
adapted or used directly for the obsolete hardware. However, there 
will be instances in which the missing hardware may be replaced with 
software. When this happens, it is important that the software design 
be modular to allow the replacement of the software driver associated 
with the hardware. It is also important to have good documentation on 
the original design, so that the impact of replacing the hardware with 
a software function can be gauged accurately. Customers will be happy 
if their system can be fixed, but they are typically very annoyed if the 
fix significantly changes the operation of the system. Knowing what to 
expect with a fix is important, before the customer is told that the fix 
is possible.

So, over the life of the product, there are several opportunities to 
reduce costs. In fact, some of the changes have the potential to signifi-
cantly reduce costs. And, as we discussed previously, reductions in costs 
increase the profitability of a product and make more capital available for 
use by engineering in the next design. Therefore, following the principle 
of enlightened self-interest, it is in every engineer’s best interest to design 
products using a design method with the following features:

1. A top down design method 
2. Modularity 
3. Good documentation

And, one final requirement that has not been specifically named so far:

4. Multitasking

While multitasking has not been specifically mentioned so far, it is 
one of the main points of this book, so it must have some advantage 
beyond a flashy title. And it does—the ability to run several functions at 
the same time, the ability to replace a hardware peripheral with software 
and still retain the real-time nature of the peripheral, and the ability to 
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temporarily add automated testing routines to simulate virtual input 
and output hardware.

OK, that makes sense, but why not just use an RTOS? It is certainly 
simpler than designing the software to be multitasking. Yes, an RTOS is 
simpler, the code can be written as linear segments and with the multiple 
tasks, it does promote modular design. 

However, there are some drawbacks to using an RTOS: it has a 
minimum footprint in the design, it will likely have a fee associated with 
its use, and it will have an impact on the performance and hardware 
requirements of the system.

So, let’s start with the minimal footprint. A typical RTOS has a 
minimum memory requirement for both data and program memory. 
Program memory is needed for the routines used by the RTOS, and for 
the kernel. The kernel is the core software for the RTOS that handles the 
swapping in and out of the tasks, communications between the tasks, 
timing, and establishing priorities in the system. Data memory is also 
needed to support the communications between tasks and storage of 
each task’s context information. Together, these requirements establish 
the minimum memory sizes required, just for the RTOS.

An RTOS also typically has a fee associated with its use. The fee may 
be recurring, meaning that some nominal fee will be charged for each 
product that uses it, or a nonrecurring fee will be charged when the 
RTOS is initially purchased. In either case, some cost will be incurred 
for the use of the software.

Next, there is the impact on the performance and hardware require-
ments of the system. We have already established the costs associated with 
the RTOS memory requirements. Additionally, there will be an impact 
on the processing load for the system, in the form of lost execution cycles 
required to execute the kernel and its associated routines. There may 
also be requirements on the hardware itself, such as interrupt capability 
and access to the system stack. Finally, there may also be limitations on 
which high-level language compilers are compatible with the RTOS.

So, while an RTOS does simplify the design, there are design trad-
eoffs; additional memory requirements, recurring or nonrecurring fees, 
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specific hardware requirements, and a requirement for specific develop-
ment software. Therefore, additional cost savings can be accomplished 
through the use of a design methodology that produces software that is 
multitasking without the use of an RTOS.

That pretty much defines the requirements for our proposed design
method. Each one is firmly rooted in one or more methods for reduc-
ing cost, so the profitability of the product is increased, and more 
capital is available for future design. Basically, use a design method that 
achieves the stated goals and the result should be a happier, healthier 
company which can afford to spend more money on engineering and 
new designs.

Now I know that this may not sway some engineers. There will be 
some that feel that it is their right to design as they see fit and no one 
can tell them how to do their job. Well, as an author, I would be remiss 
if I did not make an effort to try and bring these designers back into the 
fold. So, I will try to point out some of the immediate drawbacks.

First of all, poor documentation typically guarantees that the way-
ward engineer will be spending weeks to months at the end of every 
project with a technical writer camped out at the door of their cubical. 
Remember the collateral material requirement for a user’s manual and 
test procedures? And, if the technical writer has too much trouble with 
the documentation, management may decide to simply let the engineer 
write the documents. Not an appealing prospect when everyone else in 
engineering is gearing up on a new project.

Next, there are the long hours at the end of the project. If the design
method can’t accurately predict the time needed to do the design, man-
agement may simply decide to go with the low estimate, leaving the 
engineer to guess what their milestones should be to get the job done. 
And yes, this is a recipe for disaster, resulting is lost weekends and late 
nights. These occur on their own, the design method used by the engi-
neer should not increase their frequency.

With all these problems, specifically problems that come to man-
agement’s attention due to late deliveries, there is also the very real 
probability that management may not entrust the hot new project to 
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an engineer that has to struggle to meet dates. Typically these engineers 
are the ones lamenting, “I have seniority, why didn’t I get that project?” 
And the answer is, “Because we needed it on time.”

Finally, for all those engineers that feel “it was hard to design the 
software, so it should be hard to understand it,” let me point out that 
there is an innate flaw in being the only person that understands the 
software. It means the original engineer will also be the only person to 
work on the software. While it does mean that no one will mess up the 
code, it also means that when a bug is found, that engineer will have 
to drop any new projects and jump into the old project until the bug 
is found and fixed. This means that the new project will be later and 
later, resulting in long nights and weekends to get caught back up to 
the schedule. It means that the engineer will lose the respect of both 
their manager and the support people that have to answer the calls on 
the product. It means that the engineer runs the risk of a lateral move 
in occupation from engineering to support when the product becomes 
their entire career.

Basically, using a poor design methodology to generate software will 
pretty much guarantee:

That everyone else will get the new hot projects.

That the support people will have your extension on speed dial.

That you can plan on late nights and working weekends until 
you retire.

That other more efficient designers will be promoted over you.

And that during the next downsizing you can plan on being 
offered the option of layoff or transfer to support.

One final note, before we move on to the next chapter: throughout 
this book, you will note that I will use the term “designer” when talking 
about the person generating the software design. This is deliberate because 
I consider a designer to be someone that actually plans out, or designs, 
the development of their software. Because this is a book on the design 
of software, then anyone reading this book is either a designer already, 
or working to become one, so the title is appropriate in either case. 



The purpose of this chapter is to provide the designer with some basic 
concepts and terminology that will be used later in the book. It covers 
not only basic multitasking but also binary numbering systems, data 
storage, basic communications protocols, mathematics, conditional 
statements, and state machines. These concepts are covered here not 
only to refresh the designer’s understanding of their operations but also 
to provide sufficient insight so that designers will be able to “roll their 
own” functions if needed. While this chapter is not strictly required to 
understand the balance of the book, it is recommended.

It is understandable why state machines and multitasking need review, 
but why are all the other subjects included? And why would a designer 
ever want to “roll my own” routines? That is what a high-level language 
is for, isn’t it? Well, often in embedded design, execution speed, memory 
size, or both will become an issue. Knowing how a command works 
allows a designer to create optimized functions that are smaller and/or 
faster than the stock functions built into the language. It also gives the 
designer a reference for judging how efficient a particular implementa-
tion of a command may be. So, while understanding how a command 
works may not be required in order to write multitasking code, it is very 
valuable when writing in an embedded environment.

For example, a routine is required to multiply two values together, a 
16-bit integer and an 8-bit integer. A high-level language compiler will 
automatically type-convert the 8-bit value into a 16-bit value and then 
perform the multiplication using its standard 16-by-16 multiply. This 
is the most efficient format from the compiler’s point of view, because 

2
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it only requires an 8 × 8 multiply and 16 × 16 multiply in its library. 
However, this does creates two inefficiencies; one, it wastes two data 
memory locations holding values that will always be zero and, two, 
it wastes execution cycles on 8 additional bits of multiply which will 
always result in a zero. 

The more efficient solution is to create a custom 8 × 16 multiply 
routine. This saves the 2 data bytes and eliminates the wasted execution 
time spent multiplying the always-zero MSB of the 8-bit value. Also, 
because the routine can be optimized now to use an 8-bit multiplicand, 
the routine will actually use less program memory as it will not have the 
overhead of handling the MSB of the multiplicand. So, being able to 
“roll your own” routine allows the designer to correct small inefficiencies 
in the compiler strategy, particularly where data and speed limitations 
are concerned.

While “rolling your own” multiply can make sense in the example, 
it is not the message of this chapter that designers should replace all of 
the built-in functions of a high-level language. However, knowing how 
the commands in a language work does give designers the knowledge of 
what is possible for evaluating a suspect function and, more importantly, 
how to write a more efficient function if it is needed.

Numbering Systems

A logical place to start is a quick refresher on the base-ten number system 
and the conventions that we use with it. As the name implies, base ten 
uses ten digits, probably because human beings have ten fingers and ten 
toes so working in units or groups of ten is comfortable and familiar 
to us. For convenience in writing, we represent the ten values with the 
symbols “0123456789.”

To represent numbers larger than 9, we resort to a position-based 
system that is tied to powers of ten. The position just to the left of the 
decimal point is considered the ones position, or 10 raised to the zero-
th power. As the positions of the digits move to the left of the decimal 
point, the powers of ten increase, giving us the ability to represent 
ever-larger large numbers, as needed. So, using the following example, 
the number 234 actually represents 2 groups of a hundred, 3 groups of 
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ten plus 4 more. The left-most value, 2, represents 10^2. The 3 in the 
middle represents 10^1, and the right-most 4 represents 1 or 10^0. 

234
2   *10^2=  200
 3 *10^1=   30
  4 *10^0= +  4
    234

By using a digit-position-based system based on powers of 10, we 
have a simple and compact method for representing numbers.

To represent negative numbers, we use the convention of the minus 
sign ‘–’. Placing the minus sign in front of a number changes its meaning 
from a group of items that we have, to a group of items that are either 
missing or desired. So when we say the quantity of a component in the 
stock room is –3, that means that for the current requirements, we are 
tjree components short of what is needed. The minus sign is simply 
indicating that three more are required to achieve a zero balance.

To represent numbers between the whole numbers, we also resort to 
a position-based system that is tied to powers of ten. The only difference 
is that this time, the powers are negative, and the positions are to the 
right of the decimal point. The position just to the left of the decimal 
point is considered 10^0 or 1, as before, and the position just to the 
right of the decimal point is considered 10^–1 or 1/10. The powers of 
ten continue to increase negatively as the position of the digits moves 
to the right of the decimal point. So, the number 2.34, actually presents 
2 and 3 tenths, plus 4 hundredths. 

2.34
2   *10^0 =  2.

3 *10^–1 =   .30
  4 *10^–2 = +  .04
       2.34

For most everyday applications, the simple notation of numbers and 
a decimal point is perfectly adequate. However, for the significantly 
larger and smaller numbers used in science and engineering, the use of 
a fixed decimal point can become cumbersome. For these applications, 
a shorthand notation referred to as scientific notation was developed. In 
scientific notation, the decimal point is moved just to the right of the 
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left-most digit and the shift is noted by the multiplication of ten raised 
to the power of the new decimal point location. For example:

Standard notation Scientific notation
 2,648.00 2.648x10^3
 1,343,000.00 1.343x10^6

0.000001685 1.685x10^-6

As you can see, the use of scientific notation allows the representation 
of large and small values in a much more compact, and often clearer, 
format, giving the reader not only a feel for the value, but also an easy 
grasp of the number’s overall magnitude.

Note: When scientific notation is used in a computer setting, the nota-
tion 10^ is often replaced with just the capital letter E. This notation 
is easier to present on a computer screen and often easier to recognize 
because the value following the ^ is not raised as it would be in printed 
notation. So, 2.45x10^3 becomes 2.45E3. Be careful not to use a small 
“e” as that can be confusing with logarithms.

Binary Numbers

For computers, which do not have fingers and toes, the most conve-
nient system is binary or base two. The main reason for this choice is 
the complexity required in generating and recognizing more than two 
electrically distinct voltage levels. So, for simplicity, and cost savings, base 
two is the more convenient system to design with. For our convenience 
in writing binary, we represent these two values in the number system 
with the symbols “0” and “1”. Note: Other representations are also used 
in boolean logic, but for the description here, 0 and 1 are adequate. 

To represent numbers larger than one, we resort to a position-based 
system tied to powers of two, just as base 10 used powers of ten. The 
position just to the left of the decimal point is considered 2^0 or 1. The 
power of two corresponding to each digit increases as the position of the 
digits move to the left. So, the base two value 101, represents 1 groups of 
four, 0 groups of two, plus 1. The left-most digit, referred to as the most 
significant bit or MSB, represents 2^2 (or 4 in base ten). The position

Example 2.3
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of 0 denotes 2^1 (or 2 in base ten). The right-most digit, referred to as 
the least significant bit or LSB (1), represents 1 or 2^0. 

101
1   *2^2=  100  (1*4 in base ten)
 0 *2^1=  00 (0*2 in base ten)
  1 *2^0= + 1 (1*1 in base ten)
      101 (5 in base ten)

So, binary numbers behave pretty much the same as they do for base 
10 numbers. They only use two distinct digits, but they follow the same 
system of digit position to indicate the power of the base.

Signed Binary Numbers

To represent negative numbers in binary, two different conventions 
can be used, sign and magnitude, or two’s complement. Both are valid 
representations of signed numbers and both have their place in embed-
ded programming. Unfortunately, only two’s complement is typically 
supported in high-level language compilers. Sign and magnitude can 
also be implemented in a high-level language, but it requires additional 
programming for any math and comparisons functions required. Choos-
ing which format to use depends on the application and the amount of 
additional support needed. In either case, a good description of both, 
with their advantages and disadvantages, is presented here. 

The sign and magnitude format uses the same binary representation 
as the unsigned binary numbers in the previous section. And, just as 
base-ten numbers used the minus sign to indicate negative numbers, 
so too do sign and magnitude format binary numbers, with the ad-
dition of a single bit variable to hold the sign of the value. The sign 
bit can be either a separate variable, or inserted into the binary value 
of the magnitude as the most significant bit. Because most high-level 
language compilers do not support the notation, there is little in the 
way of convention to dictate how the sign bit is stored, so it is left up 
to the designer to decide.

While compilers do not commonly support the format, it is con-
venient for human beings in that it is a very familiar system. The sign 
and magnitude format is also a convenient format if the system being 
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controlled by the variable is vector-based—i.e., it utilizes a magnitude 
and direction format for control. 

For example, a motor speed control with an H-bridge output driver 
would typically use a vector-based format for its control of motor 
speed and direction. The magnitude controls the speed of the motor, 
through the duty cycle drive of the transistors in the H-bridge. The 
sign determines the motor’s direction of rotation by selecting which 
pair of transistors in the H-bridge are driven by the PWM signal. So, a 
sign and magnitude format is convenient for representing the control 
of the motor.

The main drawback with a sign and magnitude format is the overhead 
required to make the mathematics work properly. For example:

1.  Addition can become subtraction if one value is negative.

2.  The sign of the result will depend on whether the negative or 
positive value is larger.

3.  Subtraction can become addition if the one value is negative.

4.  The sign of the result will depend on whether the negative or 
positive value is larger and whether the positive or negative value 
is the subtracted value.

5.  Comparison will also have to include logic to determine the sign of 
both values to properly determine the result of the comparison.

As human beings, we deal with the complications of a sign and 
magnitude format almost without thinking and it is second nature 
to us. However, microcontrollers do not deal well with exceptions to 
the rules, so the overhead required to handle all the special cases in 
math and comparison routines makes the use of sign and magnitude 
cumbersome for any function involving complex math manipulation. 
This means that, even though the sign and magnitude format may be 
familiar to us, and some systems may require it, the better solution is 
a format more convenient for the math. Fortunately, for those systems 
and user interfaces that require sign and magnitude, the alternate system 
is relatively easy to convert to and from. 
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The second format for representing negative binary numbers is two’s 
complement. Two’s complement significantly simplifies the mathemat-
ics from a hardware point of view, though the format is less humanly 
intuitive than sign and magnitude. Positive values are represented in 
the same format as unsigned binary values, with the exception that they 
are limited to values, that do not set the MSB of the number. Negative 
numbers are represented as the binary complement of the correspond-
ing positive value, plus one. Specifically, each bit becomes its opposite, 
ones become zeros and zeros become ones. Then the value 1 is added 
to the result. The result is a value which, when added to another value 
using binary math, generates the same value as a binary subtraction. As 
an example, take the subtraction of 2 from 4, since this is the same as 
adding –2 and +4:

First, we need the two’s complement of 2 to represent –2

0010 Binary representation of 2
1101 Binary complement of 2 (1s become 0s, and

0s become 1s)
1110 Binary complement of 2 + 1, or –2 in two’s

complement

Then adding 4 to –2
1110 -2
+0100 +4
0010 2 with the msb clear indicating a positive

result

Representing numbers in two’s complement means that no additional 
support routines are needed to determine the sign and magnitude of 
the variables in the equation; the numbers are just added together and 
the sign takes care of itself in the math. This represents a significant 
simplification of the math and comparison functions and is the main 
reason why compilers use two’s complement over sign and magnitude in 
representing signed numbers.

Fixed-Point Binary Numbers

To represent numbers between the whole numbers in signed and 
unsigned binary values we once again resort to a position-based system, 
this time tied to decreasing negative powers of two for digit positions to 
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the right of the decimal point. The position just to the left of the deci-
mal point is considered 2^0 or 1, with the first digit to the right of the 
decimal point representing 2^–1. Each succeeding position represents 
an increasing negative power of two as the positions of the digits move 
to the right. This is the same format used with base-ten numbers and it 
works equally well for binary values. For example, the number 1.01 in 
binary is actually 1, plus 0 halves and 1 quarter. 

1.01
1   *2^0 = 1  (1*1 in base ten)

0 *2^-1 =  .0 (0*½ in base ten)
1 *2^-2 = + .01 (1*¼ in base ten)

  1.01 (1¾ in base ten)

While any base-ten number can be represented in binary, a problem 
is encountered when representing base-ten values to the right of the 
decimal point. Representing a base-ten 10 in binary is a simple 1010; 
however, converting 0.1 in base ten to binary is somewhat more difficult. 
In fact, to represent 0.1 in binary (.0000110011) requires 10 bits to get 
a value accurate to within 1%. This can cause intermittent inaccuracies 
when dealing with real-world control applications. 

For example, assume a system that measures temperature to .1 degrees 
C. The value from the analog-to-digital converter will be an integer 
binary value, and an internal calibration routine will then offset and 
divide the integer to get a binary representation of the temperature. 
Some decimal values, such as .5C will come out correctly, but others 
will have some degree of round-off error in the final value. Then, con-
verting values with round-off error back into decimal values for the user 
interface will further increase the problem, resulting in a display with 
a variable accuracy.

For all their utility in representing real numbers, fixed-point binary 
numbers have little support in commercial compilers. This is due to 
three primary reasons: 

1.  Determining a position for the decimal point is often applica-
tion specific, so finding a location that is universally acceptable 
is problematic.

Example 2.6
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2.  Multiply, and specifically divide, routines can radically shift the 
location of the decimal point depending upon the values being 
used.

3.  It has difficulty in representing small fractional base-ten values.

One alternative to the fixed-point format that does not require a 
floating-point format is to simply scale up all the values in a system until 
they are integers. Using this format, the temperature data from the previ-
ous example would be retained in integer increments of .1C, alleviating 
the problem of trying to represent .1C as a fixed-point value. Both the 
offset and divider values would have to be adjusted to accommodate the 
new location of the decimal point, as would any limits or test values. In 
addition, any routines that format the data for a user interface would 
have to correctly place the decimal point to properly represent the data. 
While this may seem like a lot of overhead, it does eliminate the problem 
with round off error, and once the constants are scaled, only minimal 
changes are required in the user interface routines. 

Floating-Point Binary Numbers

Another alternative is to go with a more flexible system that has an 
application-determined placement of the decimal point. Just as with 
base-ten numbers, a fixed decimal point representation of real numbers 
can be an inefficient use of data memory for very large or very small 
numbers. So, binary numbers have an equivalent format to scientific 
notation, referred to as floating-point.

In the scientific notation of base-ten numbers, the decimal point was 
moved to the right of the leftmost digit in the number, and an exponent 
notation was added to the righthand side. Floating-point numbers use a 
similar format, moving the decimal point to the right of the MSB in the 
value, or mantissa, and adding a separate exponent to the number. The 
exponent represents the power of two associated with the MSB of the 
mantissa and can be either positive or negative using a two’s complement 
format. This allows for extremely large and small values to be stored in 
floating-point numbers. 



28 Chapter 2

For storage of the value, typically both the exponent and the mantissa 
are combined into a single binary number. For signed floating-point 
values, the same format is used, except the MSB of the value is reserved 
for the sign, and the decimal point is placed to the right of the MSB 
of the matissa. 

In embedded applications, floating-point numbers are generally 
reserved for highly variable, very large or small numbers, and “rolling 
your own” floating-point math routines are usually not required. It is 
also beyond the scope of this book, so the exact number of bits reserved 
for the mantissa and exponent and how they are formatted will not be 
covered here. Any reader desiring more information concerning the im-
plementation of floating-point numbers and mathematics is encouraged 
to research the appropriate industry standards for additional information. 
One of the more common floating-point standards is IEEE® 754.

Alternate Numbering Systems

In our discussion of binary numbers, we used a representation of 1s and 
0s to specify the values. While this is an accurate binary representation, 
it becomes cumbersome when we move into larger numbers of bits. So, 
as you might expect, a couple of short-hand formats have been devel-
oped, to alleviate the writer’s cramp of writing binary numbers. One 
format is octal and the other is hexadecimal. The octal system groups 
bits together into blocks of 3 and represents the values using the digits 
0–7. Hexadecimal notation groups bits together into blocks of 4 bits 
and represents the values using the digits 0–9, and the letters A–F.
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Decimal Binary Octal Hexadecimal

0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 2
8 1000 10 8
9 1001 11 8
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Octal was originally popular because all 8 digits of its format could be 
easily displayed on a 7-segment LED display, and the 3-bit combinations 
were easy to recognize on the binary front panel switches and displays 
of the older mainframe computers. However, as time and technology 
advanced, problems with displaying hexadecimal values were eliminated 
and the binary switches and LEDs of the mainframe computer front 
panels were eventually phased out. Finally, due to its easy fit into 8-, 
16-, and 32-bit data formats, hexadecimal eventually edged out octal 
as a standard notation for binary numbers. Today, in almost every text 
and manual, values are listed in either binary, decimal (base ten), or 
hexadecimal.

Binary-Coded Decimal

Another binary numeric format is binary-coded decimal or BCD. BCD 
uses a similar format to hexadecimal in that it groups together 4 bits to 
represent data. The difference is that the top 6 combinations, represented 
by A–F in hexadecimal, are undefined and unused. Only the first 10 
combinations represented by 0–9 are used. 

Table 2.1
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The BCD format was originally developed for use in logic blocks 
such as decade counters and display decoders in equipment to provide 
a base-ten display and control format. The subsequent development of 
small 8-bit microcontrollers carried the format forward in the form of 
either a BCD addition/subtraction mode in the math instructions of 
the processor, or as a BCD adjust instruction that corrects BCD data 
handled by a binary addition/subtraction.

One of the main advantages of BCD is its ability to accurately rep-
resent base-ten values, such as decimal dollars and cents. This made 
BCD a valuable format for software handling financial and inventory 
information because it can accurately store fractional base-ten decimal 
values without incurring round-off errors. The one downside to BCD is 
its inefficiency in storing numbers. Sixteen bits of BCD can only store 
a value between 0 and 9999, while 16-bit binary can represent up to 
65535 values, a number over 60 times larger. 

From this discussion, you may think that BCD seems like a waste of 
data storage, and it can be, but it is also a format that has several specific 
uses. And even though most high-level languages don’t offer BCD as a 
storage option, some peripherals and most user interfaces need to convert 
binary numbers to and from BCD as a normal part of their operation. 
So, BCD is a necessary intermediate format for numbers being converted 
from binary to decimal for display on a user interface, or communica-
tion with other systems. Having an understanding of the format and 
being able to write routines that convert binary to BCD and back are, 
therefore, valuable skills for embedded designers.

ASCII

The last format to be discussed is ASCII. ASCII is an acronym for the 
American Standard Code for Information Interchange. It is a 7-bit code 
that represents letters, numbers, punctuation, and common control 
codes.

A hold-over data format from the time of mainframe computers, 
ASCII was one of two common formats for sending commands and 
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data serially to terminals and printers. The alternate code, an 8-bit code 
known as EBIDIC, has since disappeared, leaving ASCII as the de-facto 
standard with numerous file formats and command codes based on it. The 
following is a chart of all 128 ASCII codes, referenced by hexadecimal:

Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII

00 NUL 10 DLE 20 SP 30 0 40 @ 50 P 60 ` 70 p

01 SOH 11 DC1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 STX 12 DC2 22 “ 32 2 42 B 52 R 62 b 72 r

03 ETX 13 DC3 23 # 33 3 43 C 53 S 63 c 73 s

04 EOT 14 DC4 24 $ 34 4 44 D 54 T 64 d 74 t

05 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 e 75 u

06 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v

07 BEL 17 ETB 27 ‘ 37 7 47 G 57 W 67 g 77 w

08 BS 18 CAN 28 ( 38 8 48 H 58 X 68 h 78 x

09 HT 19 EM 29 ) 39 9 49 I 59 Y 69 I 79 y

0A LF 1A SUB 2A * 3A : 4A J 5A Z 6A j 7A z

0B VT 1B ESC 2B + 3B ; 4B K 5B [ 6B k 7B {

0C FP 1C FS 2C , 3C < 4C L 5C \ 6C l 7C |

0D CR 1D GS 2D - 3D = 4D M 5D ] 6D m 7D }

0E SO 1E RS 2E . 3E > 4E N 5E ^ 6E n 7E ~

0F SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL

Among the more convenient features of the code is the placement of 
the codes for the numbers 0–9. They are placed such that conversion 
between BCD and ASCII is accomplished by simply OR-ing on the top 
3 bits, or AND-ing them off. In addition, translation between upper and 
lower case just involves adding or subtracting hexadecimal 20. The code 
also includes all of the more common control codes such as BS (back 
space), LF (line feed), CR (carriage return), and ESC (escape)

Although ASCII was among the first computer codes generated, it 
has stood the test of time and most, if not all, computers use it in one 
form or another. It is also used extensively in small LCD and video 
controller chips, thermal printers and keyboard encoder chips. It has 
even left its mark on serial communications, in that most serial ports 
offer the option of 7-bit serial transmission.

Table 2.2
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Error Detection 

One of the things that most engineers ask when first exposed to ASCII 
is what to do with the eighth bit in an 8-bit system. It seems a waste 
of data memory to just leave it empty, and it doesn’t make sense that 
older computer systems wouldn’t use the bit in some way. It turns out 
that the eighth bit did have a use. It started out in serial communica-
tions where corruption of data in transit was not uncommon. When 
serially transmitted, the eighth bit was often used for error detection 
as a parity bit. 

The method involved including the parity bit which, when exclusive 
OR-ed with the other bits, would produce either a one or a zero. Even 
parity was designed to produce a zero result, and odd parity produced 
a one. By checking each byte as it came in, the receiver could detect 
single-bit errors, and when an error occurred, request a retransmission 
of the data. This is the same parity bit that is still used in serial ports 
today. Users are given the option to use even or odd, and can even choose 
no parity, which turns off the error checking.

Parity works fine for 7-bit ASCII data in an 8-bit system, but what 
about 8-, 16-, and 32-bit data? When computer systems began passing 
larger and larger blocks of data, a better system was needed—specifi-
cally, one that didn’t use up 12.5% of the bandwidth—so several other 
error-checking systems were developed. Some are able to determine 
multibit errors in a group of data bytes, while other simpler systems 
can only detect single-bit errors. Other, more complex, methods are 
even able to detect and correct bit errors in one or more bytes of data. 
While this area of design is indeed fascinating, it is also well beyond 
the scope of this book.

For our use here, we will concentrate on two of the simpler systems, 
the check sum, and the cyclic redundancy check or CRC.

The check sum is the simpler of the two systems and, just as it sounds, 
it is simply a one- or two-byte value that holds the binary sum of all the 
data. It can detect single-bit errors, and even some multibit errors, but 
it is by no means a 100% check on the data. 
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A CRC, on the other hand, uses a combination of shifts and boolean
functions to combine the data into a check value. Typically a CRC shifts 
each byte of data in the data block into the CRC value one bit at a time. 
Each bit, before it is shifted into the CRC value, is combined with 
feedback bits taken from the current value of the CRC. When all of the 
bits in the data block have been shifted into the CRC value, a unique 
CRC value has been generated that should detect single and more of the 
multibit errors. The number, type, and combination of bit errors that 
can be detected is determined by several factors. These include both the 
number of bits in the CRC and the specific combination of bits fed back 
from the CRC value during the calculation. As mentioned previously, an 
in-depth description of CRC systems, and even a critique of the relative 
merits of the different types of CRC algorithms is a subject sufficient 
to fill a book, and as such is beyond the scope of this text. Only this 
cursory explanation will be presented here. For more information on 
CRC systems, the reader is encouraged to research the subject further.

One final note on CRCs and check sums. Because embedded designs 
must operate in the real world, and because they will be subject to EMI, 
RFI, and a host of other disruptive forces, CRCs and check sums are 
also typically used to validate the contents of both program and data 
memory. Periodically running a check sum on the program memory, or 
a CRC check of the data in data memory is a convenient “sanity check” 
on the system. So, designers working in noisy environments with high 
functional and data integrity requirements should continue their research 
into these valuable tools of the trade.

Data Structures

In a typical high-level application, once the format for the data in a 
program has been determined, the next step is to define a data structure 
to hold the information. The structure will determine what modifying 
functions, such as assignment and math functions, are available. It will 
determine what other formats the data can be converted into, and what 
user interface possibilities exist for the data.

In an embedded design, a data structure not only defines storage for 
data, it also provides a control conduit for accessing control and data 
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registers of the system peripherals. Some peripheral functions may only 
need byte-wide access, while others may require single bit control. Still 
others may be a combination of both. In any case, it is essential that the 
right type of data structure be defined for the type of data to be stored 
or the type of control to be exercised over the peripheral. 

Therefore, a good understanding of the data structure’s inner work-
ings is important both for efficiency in data storage and for efficient 
connections to the system’s peripherals. Of specific interest is:

1.  What type of information can be stored in the data structure?

2.  What other functions are compatible with the data structure? 

3.  Can the data structures be used to access peripheral control and 
data registers? 

4.  How does the date structure actually store the information in 
memory?

5.  How do existing and new functions access the data?

A good understanding of the data structures is important both for 
efficiency in data storage and for an efficient conduit to the system’s 
peripherals. Knowing how a language stores information can also be pro-
active in the optimization process, in that it gives the designer insight into 
the consequences of using a particular data type as it applies to storage 
and access overhead. This information may allow the designer to choose 
wisely enough to avoid the need for custom routines altogether.

The following sections covering data structures will try to answer all five 
of these questions as they apply to each of the different data structures.

Simple Data Types

The term “simple data type” refers to variables that store only one instance 
of data and store only one format of data at a time. More complex data 
types, which hold more than one instance of data or hold more than 
one type of data, will be covered in the next section titled Complex Data 
Types.

BIT variable_name
Declaration 2.1
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The simplest data type is the boolean or BIT. This data type has 
only two possible states, 1 or 0. Alternately, TRUE or FALSE, and YES 
or NO can also be used with some compilers. It is typically used to 
carry the result of a boolean logical expression or the binary status of a 
peripheral or comparison. It can even be used as part of another data 
type to hold the sign of a value. In each case, the variable provides a 
simple on/off or yes/no functionality or status.

When BIT is used as a variable, it is assigned a value just like any 
other variable. The only difference with the BIT data structure is that 
it can also be assigned the result of a comparison using combinations of 
boolean logic and the standard comparison operators, < > and =. 

Note: A helpful debugging trick is to assign the result of a comparison 
to a BIT variable and then use the variable in the conditional statement. 
This allows the designer to monitor the status of the BIT variable and 
determine the path of execution without having to step through the 
entire code block step by step.

Flag = (Var_A > Var_B) & (Var_A < Var_C);
if Flag then printf(Var_A);

To use the BIT data structure as a conduit to a peripheral control 
register, the bit must be defined to reside at the corresponding address 
and bit of the peripheral function to be controlled. As this is not uni-
versally supported in C compilers, compilers that do support the feature 
may have different syntax. So, this is yet another point that must be 
researched in the user’s manual for the compiler. If the compiler does 
not allow the user to specify both the address and bit location, there is 
an alternate method using the STRUCTURE statement and that will 
be covered in the Complex Data Structures section of this chapter.

Due to the boolean’s simple data requirements, BIT is almost always 
stored as a single bit within a larger data word. The compiler may choose 
to store the binary value alone within a larger data word, or it may 
combine multiple bits and other small data structures for more efficient 

Code Snippet 2.1
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storage. The designer also has the option to force the combination of 
BITs and other small data structures within a larger data word for con-
venience, or for more efficient access to control bits within a peripheral’s 
control register. Additional information on this process is presented in 
the STRUCTURE data structure following.

To access a BIT, the compiler may copy the specific data bit to be 
accessed into a holding location and then shift it to a specific location. 
This allows the high-level language to optimize its math and comparison 
routines for a single bit location within a data word, making the math 
and comparison routines more efficient. However, this does place some 
overhead on the access routines for the BIT’s data structure. 

Other compilers, designed for target microcontrollers with instruc-
tions capable of setting, clearing, manipulating, and testing individual bits 
within a data word, avoid this overhead by simply designing their boolean 
and comparison routines to take advantage of the BIT instructions. 

To access the BIT directly in memory, the designer needs two pieces 
of information, the address of the data word containing the BIT, and 
the location of the BIT within the data word. The address of the byte 
containing the BIT is typically available through the variable’s label. 
The specific BIT within the byte may not be readily available, and may 
change as new variables are added to the design. For these reasons, it is 
generally best to only use manual access of a BIT defined using either 
a compiler function that allows the designer to specify the bit location, 
or a STRUCTURE

Using a STRUCTURE to define the location of a BIT is also useful 
in that it can be used to force the compiler to group specific variables 
together. It can also be used to force a group of commonly used BITs
into common bit locations for faster access. Finally, defining a BIT 
within a STRUCTURE and a UNION, gives the designer the option 
to access the BITs as either individual values or as a group for loading 
default states at start-up.

One point that should be noted concerning this data type is that not 
all high-level language compilers recognize it. And, many compilers that 
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do recognize the data type may not agree on its name or syntax, so the 
designers should review the user’s guide for any compiler they intend 
to use, as there may be differences in the syntax used or restrictions on 
the definition of this data type.

SIGNED CHAR  variable_name
UNSIGNED CHAR variable_name

The CHAR data type was originally designed to hold a single ASCII 
character, thus the name CHAR, which is short for character. CHARs 
are still commonly used for holding single ASCII characters, either for 
individual testing or as part of an output routine, or even grouped with 
other CHARs to form an array of characters called a STRING. However, 
over time, it has also come to be a generic variable type for 8-bit data. In 
fact, most if not all modern high-level languages allow the use of CHAR 
variables in math operations, conditional statements, and even allow the 
definition of a CHAR variable as either signed or unsigned.

In embedded programming, the CHAR is equally as important as 
the boolean/BIT data type because most peripheral control registers 
will be one or more bytes in length and the CHAR variable type is a 
convenient way to access these registers. Typically, a control register for 
a peripheral will be defined as a CHAR for byte-wide access, allowing 
the entire register to be set with one assignment. The CHAR may also 
be tied to a STRUCTURE of BITs using a UNION definition to allow 
both bit-wise control of the functions, as well as byte-wise access for 
initialization. More information on both the UNION and the STRUC-
TURE will be presented in later sections of this chapter.

An important point to note is that this variable may be assumed 
to be signed or unsigned by the C compiler if the words SIGNED or
UNSIGNED are not included in the definition of the variable. The only 
ANSI requirement is that the compiler be consistent in its definitions. 
Therefore, it is best to specify the form in the definition of the variable 
to avoid problems migrating between compilers.

Manually accessing a CHAR variable at the language level is very 
simple, as most compilers recognize the data structure as both a character 
variable, and a signed or unsigned binary value. Access at the assembly 

Declaration 2.2
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language level is also simple as the name given to the variable can be 
used as an address label to access the data memory. Because the CHAR 
represents the smallest data structure short of a BIT, the format used 
to store the data in memory is also simple. The 8-bit value is simply 
stored in the lower 8 bits of the data memory word. Because the data is 
stored as a single byte, no additional information, beyond the address, 
is required.

INT  variable_name
UNSIGNED INT variable_name

INT, short for integer, is the next larger data type. It is typically used 
to hold larger signed and unsigned binary values, and while the BITs 
and CHARs have consistent and predefined data lengths, the length of 
an INT is largely dependent on the specific implementation of the high-
level compiler. As a result, the actual number of bits in an INT can vary 
from as few as 16 bits, to whatever the upper limit of the compiler is. 
The only limitation on the size of an INT is that it must be larger than 
a CHAR and less than or equal to the size of a LONG. So, to determine 
the actual size of an INT in a specific compiler, it is necessary to consult 
the user’s manual for the compiler being used.

Because of an INT’s somewhat indeterminate length, it can present 
a problem for efficiently storing larger data. Some compilers may not 
allocate sufficient bits to hold an application’s data, while others may al-
locate too many bits, resulting in wasted data storage. This can be a very 
serious problem if the application using the data is to be shared across 
several different compilers and processors. To alleviate this problem, the 
designer has three basic options: 

1.  The large groups of data can be broken into individual bytes and 
stored as an array of unsigned CHARs, and then recreated in an 
INT when needed. This minimizes the storage requirements to 
the minimum number of required bytes, but it also complicates 
any math or comparison operation that may be required.

2.  The INT can be defined as LONGs within a STRUCTURE, 
allowing the designer to specify the number of bits to be used for 
the variable. This eliminates the math problem, but the compiler 

Declaration 2.3
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will incur additional overhead, when it automatically converts 
the data into a standard-length LONG prior to performing the 
math, and will then incur additional overhead converting it back 
when the math is complete.

3.  The best solution is to simply get to know the compilers to be 
used and define the variables appropriately for each implementa-
tion. The variable type casting will then force the compiler to use 
the appropriate math and comparison functions, resulting in a 
much simpler design, while incurring only a minimal processing 
overhead.

As with the CHAR variable type, the name given to the variable acts 
as a label and can be used as a pointer to the data in assembly language. 
However, the number of bytes reserved for the variable and the order in 
which the bytes are stored in data memory may differ from compiler to 
compiler. So, once again, it is up to the designers to do their homework 
and research the exact storage format used.

One of the important statements in the previous paragraph is often 
missed: “the order in which the bytes are stored in data memory may 
differ.” Specifically, does the compiler store the MSB in the first or last 
data memory location allocated to the variable? There are two formats 
that can be used: big endian and little endian. In the big endian format, 
the MSB is stored in the first data memory address (lowest memory 
address) and the LSB is stored in the last data memory address (highest 
memory address). In little endian, the reverse is true; the LSB is in the 
first memory address and the MSB in the last. So, to correctly access an 
INT in assembly, it is necessary not only to determine the number of 
bytes stored but also which storage format is used. This information is 
also typically found in the manual. However, if it is not explicitly stated, 
a simple test routine can answer the question. The test routine defines 
an INT variable and loads the value 4660 into the variable. Then, by 
examining data memory, the format can be determined. If the data in 
the lower memory address is the hexadecimal value 12 followed by the 
hex value 34, then the format is big endian; if the first byte is 0x34, 
then the format is little endian.



40 Chapter 2

Due to the generally variable length and format of the INT, it is not 
a good choice for accessing peripheral registers containing control bits or 
data. INTs can be, and often are, used for this purpose, but the practice 
can cause portability problems, including unexpectedly truncated data, 
the inclusion of data bits from adjacent peripherals, and even scrambled 
data. The practice is only recommended if the portability of the resulting 
routines is not a goal of the project.

LONG  variable_name
UNSIGNED LONG variable_name

LONG, short for long integer, is the next larger data type. It is typi-
cally used to hold very large signed and unsigned binary values, and while 
the BITs and CHARs have consistent and predefined data lengths, the 
length of a LONG is again, dependent on the specific implementation 
of the high-level compiler. As a result, the actual number of bits in a 
LONG can vary from as few as 16 bits, up to whatever the upper limit 
of the compiler defines for data types. The only limitation on the size 
of a LONG variable is that it must be at least as large, or larger, than 
an INT. Typically, a LONG is twice the size of an INT, but this is not 
specified by the ANSI2 standard. So, to determine the actual size of an 
INT in a specific compiler, it is necessary to consult the user’s manual 
for the compiler being used.

Because the LONG is somewhat nonstandard in length, it can also 
present problems for portability and efficiently storing larger data. As 
a result, the storage options that applied to the INT serve equally well 
for the LONG. 

Storage problems for larger groups of data can be handled by break-
ing the larger data blocks into individual bytes and storing as an array 
of unsigned CHARs, and then recreating in a LONG when needed. 
This minimizes the storage requirements to the minimum number of 
required bytes, but it also complicates any math or comparison opera-
tion that may be required.

The portability problems can be alleviated by simply getting to know 
the compilers being used, and defining the variables appropriately for each 
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implementation. The variable type casting will then force the compiler to 
use the appropriate math and comparison functions, resulting in a much 
simpler design, while incurring only a minimal processing overhead.

The actual length of the variable will also affect manual access to a 
LONG variable. As with the CHAR, the name given to the variable acts 
as a label when accessing the data in assembly language. However, the 
number of bytes stored for the variable and the order in which the bytes 
are stored in data memory may differ from compiler to compiler. So, 
once again, it is up to the designers to do their homework and research 
the exact storage format used.

 Due to the generally variable length and format of the LONG, and 
its excess length, it is almost never used for accessing peripheral registers 
containing control bits or data. In fact, due to their length, LONG data 
types will generally only be useful for very specialized data within the 
program, although a variable requiring the number of bits included in 
a LONG is generally rare. 

One place that LONG variables do find use is for intermediate results 
in calculations involving INTs, or as accumulation variables that hold the 
summation of a large number of data samples. While the LONG may 
seem attractive for this use, it is can have some unforeseen consequences. 
Remember that the compiler will typically convert all data in a math 
function to the largest data type prior to performing the operation. This 
can result in a shortage of temporary data storage during math opera-
tions on the LONG variables. As an example, performing a multiply 
on a 24-bit LONG variable can use up 12 bytes of data storage just for 
the temporary storage of the upgraded term variables. So, it is generally 
advisable to resort to either an array of CHARs or, in extreme cases, 
an array of INTs to store large data values. This allows the designer to 
more tightly regulate the amount of data storage required. It also limits 
the amount of temporary data storage required for math, even though 
it will require a custom, and somewhat complicated, math routine. 

Manually accessing a LONG variable uses the same process as ac-
cessing an INT; there are just more bytes to access. As with other data 
types, the variable name will act as a label for the starting data memory 
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address of the data, and the appropriate big/little endian format must 
be used to access the data in the proper sequence.

FLOAT variable_name
DOUBLE variable_name

FLOAT, short for floating-point, and DOUBLE, short for double 
precision floating-point, are another simple data structure common to 
embedded C programming. Typically the FLOAT and DOUBLE are 
used to hold very large or very small signed binary values. They accom-
plish this by using a system similar to scientific notation in base-ten 
numbers. The data structure maintains a base value, or mantissa, and 
an exponent which holds the power of two associated with the MSB 
of the mantissa. Together, the exponent and mantissa are concatenated 
into a single data structure. 

Most implementations assign 32 bits of storage for the exponent 
and mantissa of a FLOAT, and 64 bits for the DOUBLE. However, it 
is important to note that, like the INT and LONG, the exact size of the 
FLOAT is determined by the compiler implementation and, potentially, 
configuration options for the compiler. So, to determine the actual size of 
a FLOAT or DOUBLE in a specific compiler, it is necessary to consult 
the user’s manual for the compiler being used.

Because the actual implementation of both FLOATs and DOUBLEs 
is dependent upon the standard used by the compiler, and their size and 
complex nature tends to limit their application in embedded designs, 
they will not be discussed in any great detail here. Any reader interested 
in the specifics of FLOAT or DOUBLE data structures can find addi-
tional information in either an advanced computer science text or the 
IEEE specification IEEE 754.

pointer_name = *variable_name;
pointer_name = &variable_name;

Pointers are the last data structure to be covered in this chapter. A 
pointer, simply stated, is a variable that holds the address of another 
variable. With it, designers can access data memory independently of 
a specifically defined variable name. In fact, one of the primary uses of 
data pointers is to create dynamically allocated data storage, which is 
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essentially an unnamed variable created “on-the-fly” as the program is 
running. This ability to create storage is quite powerful, although the 
responsibility of monitoring the amount of available data storage shifts 
from the compiler to the designer.

Pointers are somewhat unique in that they are typically associated 
with another data type. The reason for this is because the pointer needs 
to know the storage format of the data so it can correctly interpret the 
data. It also needs this information if it is to be used to dynamically 
allocate variables, so it can reserve the right amount of memory. This 
is not to say that a pointer can’t be used to access one type of data with 
another type’s definition. In fact, this is one of the more powerful ca-
pabilities of the pointer type.

The syntax of the pointer data structure is also somewhat unique. 
The ‘*’ sign is used as a prefix for the variable being accessed, to indicate 
that the data held in the variable is to be loaded into the pointer. The 
‘&’ sign is used as a prefix for the variable being accessed, to indicate 
that the address of the variable is to be loaded into the pointer. What 
this means is that both the data and the address of a variable can be 
loaded into the pointer data structure. Having the ability to access both 
gives pointers the ability to not only pass addresses around, but also to 
perform math on the addresses.

Accessing pointers by machine language is typically not needed as 
most microcontrollers already have the ability to access data through 
index registers. This, plus the ability to use variable labels as constant 
values in assembly language provides all the functionality of a pointer. 
In addition, the number of bits used for a pointer will be dependent 
upon the addressing modes used by the compiler and the architectural 
specifics of the microcontroller. So, an explanation of how to access 
pointers through assembly language will be highly specific to both the 
microcontroller and the language, and of little additional value, so no 
attempt will be made to explain access here.

Complex Data Types

Complex data types refer to those variable types that either hold more 
than one type of data, STRUCTUREs and UNIONs, or more than 
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one instance of a simple data type, ARRAYs. These data types allow the 
designer to group blocks of data together, either for programming con-
venience or to allow simplified access to the individual data elements. 

One complex data type that will not be covered is POINTERs, 
mainly because their ability to dynamically allocate data is, in general, not 
particularly applicable to small embedded applications, where the data 
storage requirements tend to be static. In addition, the amount of memory 
available in small microcontrollers is insufficient to implement a heap of 
any reasonable size, so using pointers would be inefficient at best. 

STRUCT structure_name { 
variable_type variable_name; 
variable_type variable_name;
} variable_name;

The STRUCTURE data type is a composite data structure that can 
combine multiple variables and multiple variable types into a single 
variable structure. Any simple variable structure available in the lan-
guage can typically be included within a structure, and included more 
than once. The specific number of bits allocated to each variable can 
also be specified, allowing the designer to tailor the storage capacity of 
each variable. 

Each instance of the various data structures within the STRUCTURE 
is given a specific name and, when combined with the STRUCTURE’s 
name, can be accessed like any other variable in the system. Names for 
individual fields within a structure can even be repeated in different 
STRUCTUREs because the name of the different STRUCTUREs allows 
the high-level language to differentiate the two variables. 

Using this capability, related variables can even be grouped together 
under a single name and stored in a common location. While the im-
proved organization of storage is elegant and using a common group 
name improves readability, the biggest advantage of common storage 
for related variables is the ability to store and retrieve groups of data in 
a faster, more efficient manner. The importance of this capability will 
become clearer when context storage and switching are discussed later 
in the chapter.

Declaration 2.6



Basic Embedded Programming Concepts 45

The STRUCTURE is also very useful for creating control and data 
variables linked to the system peripherals, because it can be used to label 
and access individual flags and groups of bits, within an 8- or 16-bit 
peripheral control register. The labeling, order, and grouping of the bits 
is specified when the STRUCTURE is defined, allowing the designer to 
match up names and bits in the variables to the names and bits speci-
fied in the peripheral’s control and data registers. In short, the designer 
can redefine peripheral control and data bits and registers and unique 
variables accessible by the program.

For example, the following is a map of the control bits for an ana-
log-to-digital converter peripheral. In its control register are bits that 
specify the clock used by the ADC (ADCS1 & ADCS0), bits that specify 
the input channel, (CHS3--CHS0), a bit that starts the conversion and 
signals the completion of the conversion (GO/DONE), and a bit that 
enables the ADC (ADON).

ADCON0 (Analog to Digital Control Register)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE CHS3  ADON

To control the peripheral, some of these bits have to be set for each 
conversion, and others are set only at the initial configuration of the 
peripheral. Defining the individual bit groups with a STRUCTURE 
allows the designer to modify the fields individually, changing some, 
while still keeping others at their initialized values. A common prefix 
also helps in identifying the bits as belonging to a common register. 

STRUCT REGDEF{
 UNSIGNED INT ADON:1;
 UNSIGNED INT CHS3:1;
 UNSIGNED INT GODONE:1;
 UNSIGNED INT CHS:3;
 UNSIGNED INT ADCS:2;
 } ADCON0;

In the example, UNSIGNED INT data structures, of a specified 1-bit 
length are defined for bits 0 through 2, allowing the designer to access 
them individually to turn the ADC on and off, set the most significant 
channel select bit, and initiate and monitor the conversion process.
A 3-bit UNSIGNED INT is used to specify the lower 3 bits of the 
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channel selection, and a 2-bit UNSIGNED INT is tied to clock selection. 
Using these definitions, the controlling program for the analog-to-digital 
converter can now control each field individually as if they were separate 
variables, simplifying the code and improving its readability.

Access to the individual segments of the STRUCTURE is accom-
plished by using the STRUCTURE’s name, followed by a dot and the 
name of the specific field. For example, ADCON0.GODONE = 1, will set the 
GODONE bit within the ADCON0 register, initiating a conversion. As 
an added bonus, the names for individual groups of bits can be repeated 
within other STRUCTUREs. This means descriptive names can be reused 
in the STRUCTURE definitions for similar variables, although care 
should be taken to not repeat names within the same STRUCTURE.

Another thing to note about the STRUCTURE definition is that the 
data memory address of the variable is not specified in the definition. 
Typically, a compiler-specific language extension specifies the address of 
the group of variables labeled ADCON0. This is particularly important 
when building a STRUCTURE to access a peripheral control register, as 
the address is fixed in the hardware design and the appropriate definition 
must be included to fix the label to the correct address. Some compil-
ers combine the definition of the structure and the declaration of its 
address into a single syntax, while others rely on a secondary definition 
to fix the address of a previously defined variable to a specific location. 
So, it is up to the designer to research the question and determine the 
exact syntax required.

Finally, this definition also includes a type label “REGDEF” as part of 
the variable definition. This is to allow other variables to reuse the format 
of this STRUCTURE if needed. Typically, the format of peripheral con-
trol registers is unique to each peripheral, so only microcontrollers with 
more than one of a given peripheral would be able to use this feature. In 
fact, due to its somewhat dubious need, some compilers have dropped 
the requirement for this part of the definition, as it is not widely used. 
Other compilers may support the convention to only limited degrees, 
so consulting the documentation on the compiler is best if the feature 
is to be used.
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Access to a STRUCTURE from assembly language is simply a mat-
ter of using the name of the structure as a label within the assembly. 
However, access to the individual bits must be accomplished through 
the appropriate assembly language bit manipulation instructions.

UNION union_name {
variable_type variable_name; 
variable_type variable_name;
} variable_name;

In some applications, it can be useful to be able to access a given 
piece of data not only by different names, but also using different data 
structures. To handle this task, the complex data type UNION is used. 
What a UNION does is create two definitions for a common word, or 
group of words, in data memory. This allows the program to change its 
handling of a variable based on its needs at any one time.

For example, the individual groups of bits within the ADCON0 pe-
ripheral control register in the previous section were defined to give the 
program access to the control bits individually. However, in the initial 
configuration of the peripheral, it would be rather cumbersome and inef-
ficient to set each variable one at a time. Defining the STRUCTRUE from 
previous example in a UNION allows the designer to not only individually 
access the groups of bits within the peripheral control register, but it also 
allows the designer to set all of the bits at once via a single 8-bit CHAR.

UNION UNDEF{
 STRUCT REGDEF{
  SHORT ADON;
  SHORT CHS3;
  SHORT GODONE;
  UNSIGNED CHAR CHS:3;
  UNSIGNED CHAR ADCS:2;
  } BYBIT;
 UNSIGNED CHAR BYBYTE;
  } ADCON0 @ 0x1F;

In the example, the original STRUCTURE definition is now included 
within the definition of the UNION as one of two possible definitions 
for the common data memory. The STRUCTURE portion of the defini-
tion has been given the sub-name “BYBIT” and any access to this side of 
the definition will require its inclusion in the variable name. The second 
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definition for the same words of data memory is an unsigned CHAR 
data structure, labeled by the sub-name “BYBYTE.”

To access the control register’s individual fields, the variable name 
becomes a combination of the UNION and STRUCTURE’s naming 
convention; ADCON0.BYBIT.GODONE = 1. Byte-wide access is similarly 
accessed through the UNION’s name combined with the name of the 
unsigned CHAR: ADCON0.BYBYTE = 0x38.

data_type variable_name[max_array_size]

The ARRAY data structure is nothing more than a multielement col-
lection of the data type specified in the definition. Accessing individual 
elements in the array is accomplished through the index value supplied 
within the square brackets. Other than its ability to store multiple cop-
ies of the specified data structure, the variables that are defined in an 
array are indistinguishable from any other single element instance of the 
same data structure. It is basically a collection of identical data elements, 
organized into an addressable configuration. 

To access the individual data elements in an array, it is necessary to 
provide an index value that specifies the required element. The index 
value can be thought of as the address of the element within the group of 
data, much as a house address specifies a home within a neighborhood. 
One unique feature of the index value is that it can either be a single 
value for a 1-dimensional array, or multiple values for a multidimensional 
array. While the storage of the data is not any different for a 1-dimen-
sional array versus a multidimensional array, having more than one index 
variable can be convenient for separating subgroups of data within the 
whole, or representing relationships between individual elements.

By definition, the type of data within an array is the same throughout 
and can be of any type, including complex data types such as STRUC-
TUREs and UNIONs. The ARRAY just specifies the organization and 
access of the data within the block of memory. The declaration of the 
ARRAY also specifies the size of the data block, as well as the maximum 
value of all dimensions within the ARRAY. 

One exception to this statement that should be noted: Not all com-
pilers support ARRAYs of BOOLEANs or BITs. Even if the compiler 
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supports the data type, ARRAYs of BOOLEANs or BITs may still not 
be supported. The user’s manual should be consulted to determine the 
specific options available for arrays.

Accessing an array is just a matter of specifying the index of the data 
to be accessed as part of the variables; note:

ADC_DATA[current_value] = 34;

In this statement, the element corresponding to the index value 
in current_value is assigned the value 34. Current_value is the index 
value, 34 is the data, and ADC_DATA is the name of the array. For 
more dimensions in an ARRAY, more indexes are added, surrounded 
by square brackets. For instance:

ADC_DATA[current_value][date,time];

This creates a two-dimensional array with two index values required 
to access each data value stored in the array.

Accessing an array via assembly language becomes a little more 
complex, as the size of the data type in the array will affect the absolute 
address of each element. To convert the index value into a physical data 
memory address, it is necessary to multiply the index by the number of 
bytes in each element’s data type, and then add in the first address of 
the array. So, to find a specific element in an array of 16-bit integers, 
assuming 8-bit data memory, the physical memory address is equal to:

(Starting address of the ARRAY) + (2 * (index value))

The factor of 2, multiplied by the index value, accounts for the 2-byte 
size of the integer, and the starting address of the ARRAY is available 
through the ARRAY’s label. Also note that the index value can include 
0, and its maximum value must be 1 less than the size of the array when 
it was declared.

Accessing multidimensional ARRAYs is even more complex, as the 
dimensions of the array play a factor in determining the address of each 
element. In the following ARRAY the address for a specific element is 
found using this equation:

(starting address of the ARRAY)+(2*index1)+(2*index
2*(max_index1+1))

Code Snippet 2.3

Code Snippet 2.4

Equation 2.1

Equation 2.2
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The starting address of the array and index1 are the same as the previ-
ous example, but now both the maximum size of index1 and the value 
in index2 must be taken into account. By multiplying the maximum 
value of index1, plus 1, by the second index, we push the address up 
into the appropriate block of data. To demonstrate, take a 3 by 4 array 
of 16-bit integers defined by the following declaration:

Declaration 2.11

Table 2.3

Memory 2.1

Int K_vals[3][4] = { 0x0A01, 0x0A02, 0x0A03, 0x0B01, 0x0B02, 0x0B03,
0x0C01, 0x0C02, 0x0C03, 0x0D01, 0x0D02, 0x0D03}

This will load all 12, 16-bit, locations with data, incrementing 
through the first index variable. And then incrementing the second 
index variable each time the first variable rolls over. So, if you examine 
the array using X as the first index value, and Y as the second, you will 
see the data arrayed as follows:

X 0 1 2

Y
0 0x0A01 0x0A02 0x0A03
1 0x0B01 0x0B02 0x0B03
2 0x0C01 0x0C02 0x0C03
3 0x0D01 0x0D02 0x0D03

There are a couple of things to note about the arrangement of the 
data: One, the data loaded when the array was declared was loaded by 
incrementing through the first index and then the second. Two, the index 
runs from 0 to the declared size–1. This is because zero is a legitimate 
index value, so declaring an array as K_val[3] actually creates 3 locations 
within the array indexed by 0, 1, and 2.

Now, how was the data in the array actually stored in data memory? 
If we do a memory dump of the data memory starting at the beginning 
address of the array, and assume a big endian format, the data should 
appear in memory as follows:

0x0100: 0x0A 0x01 0x0A 0x02 0x0A 0x03 0x0B 0x01
0x0108: 0x0B 0x02 0x0B 0x03 0x0C 0x01 0x0C 0x02
0x0110: 0x0C 0x03 0x0D 0x01 0x0D 0x02 0x0D 0x03

So, using the previous equation to generate an address for the element 
stored at [1][3], we get:
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Address = 0x0100 + (byte_per_var*1) + (byte_per_
var*3*3)

Address = 0x0100 + (2*1) + (2*3*3)
Address = 0x0114

From the dump of data memory, the data at 0x0114 and 0x0115 is 
0x0D and 0x02, resulting in a 16-bit value of 0x0D02 which matches 
the value that should be in K_vals[1][3].

Communications Protocols

When two tasks in a multitasking system want to communicate, there 
are three potential problems that can interfere with the reliable com-
munication of the data. The receiving task may not be ready to accept 
data when the sending task wants to send. The sending task may not be 
ready when the receiving task needs the data. Or the two tasks may be 
operating at significantly different rates, which means one of the two 
tasks can be overwhelmed in the transfer. To deal with these timing re-
lated problems, three different communications protocols are presented 
to manage the communication process.

The simple definition of a protocol is “a sequence of instructions 
designed to perform a specific task.” There are diplomatic protocols, 
communications protocols, even medical protocols, and each one de-
fines the steps taken to achieve a desired result, whether the result is a 
treaty, transfer of a date, or treating an illness. The power of a protocol 
is that it plans out all the steps to be taken, the order in which they are 
performed, and the way in which any exceptions are to be handled. 

The communications protocols presented here are designed to handle 
the three different communications timing problems discussed previ-
ously. Broadcast is designed to handler transfers in which the sender is 
not ready when the receiver wants data. Semaphore is designed to handle 
transfers in which the receiver is not ready when the sender wants to 
send data. Buffer is designed to handle transfers in which the rates of 
the two tasks are significantly different.

Simple Data Broadcast

A simple broadcast data transfer is the most basic form of communica-
tions protocol. The transmitter places its information, and any updates, 
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in a common globally accessible variable. The receiver, or receivers, of 
the data then retrieve the information when they need it. Because the 
receiver is not required to acknowledge its reception of the data, and the 
transmitter provides no indication of changes in the data, the transfer is 
completely asynchronous. A side effect of this form of transfer is that no 
event timing is transferred with the data; it is purely a data transfer. 

This protocol is designed to handle data that doesn’t need to include 
event information as part of the transfer. This could be due to the nature 
of the data, or because the data only takes on significance when combined 
with other events. For example, a system that time stamps the reception 
of serial communications into a system. The current time would be 
posted by the real time clock, and updated as each second increments. 
However, the receiver of the current time information is not interested 
in each tick of the clock, it only needs to know the current time, when 
a new serial communication has been received. So, the information 
contained in the variables holding the current time are important, but 
only when tied to secondary event of a serial communication. While a 
handshaking protocol could be used for this transfer, it would involve 
placing an unreasonable overhead on the receiving task in that it would 
have to acknowledge event tick of the clock. 

Because this transfer does not convey event timing, there are some 
limitations associated with its use:

1.  The receiving tasks must be able to tolerate missing intermedi-
ate updates to the data. As we saw in the example, the receiver 
not only can tolerate the missing updates, it is more efficient to 
completely ignore the data until it needs it. 

2.  The sending task must be able to complete all updates to the 
data, before the information becomes accessible to the receiver. 
Specifically, all updates must be completed before the next time 
the receiving task executes; otherwise, the receiving task could 
retrieve corrupted data.

3.  If the sending task cannot complete its updates to the date before 
a receiving task gains access to the data, then: 
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a. The protocol must be expanded with a flag indicating that 
the data is invalid, a condition that would require the receiver 
to wait for completion of the update.

b. Or, the receiver must be able to tolerate invalid data without 
harm.

As the name implies, a broadcast data transfer is very much like a 
radio station broadcast. The sender regularly posts the most current 
information in a globally accessible location, where the receiver may 
retrieve the data when it needs it. The receiver then retrieves the data 
when its internal logic dictates. The advantage of this system is that the 
receiver only retrieves the data when it needs it and incurs no overhead 
to ignore the data when it does not need the data. The down side to this 
protocol is simple: the sender has no indication of when the receiver 
will retrieve the data, so it must continually post updates whether they 
are ultimately needed or not. This effectively shifts the overhead burden 
to the transmitter. And, because there is no handshaking between the 
sender and receiver, the sender has no idea whether the receiver is even 
listening. So, the transfer is continuous and indefinite. 

If we formalize the transfer into a protocol: 

  The transmitter posts the most recent current data to a global 
variable accessible by the receiver.

  The receiver then retrieves the current data, or not, whenever it 
requires the information.

  The transmitter posts updates to the data, as new information 
become available.

Because neither party requires any kind of handshaking from the 
other and the timing is completely open and the broadcast protocol is 
limited to only transferring data, no event timing is included. A receiver 
that polls the variable quickly enough may catch all the updates, but 
there is nothing in the protocol to guarantee it. So the receiving task 
only really knows the current value of the data and either does not know 
or care about its age or previous values. 
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The first question is probably, “Why all this window dressing for a 
transfer using a simple variable?” One task stores data in the holding 
variable and another retrieves the data, so what’s so complicated? That 
is correct—the mechanism is simple—but remember the limitations 
that went along with the protocol. They are important, and they more 
than justify a little window dressing:

1. The transmitting task must complete any updates to a broadcast 
variable before the receiver is allowed to view the data. 

2.  If the transmitting task cannot complete an update, it must 
provide an indication that the current data is not valid, and the 
receiving task must be able to tolerate this wait condition.

3.  Or, the receiver must be tolerant of partially updated data.

These restrictions are the important aspect of the Broadcast Transfer 
and have to be taken into account when choosing a transfer protocol, 
or the system could leak data.

Event-Driven Single Transfer

Data transfer in an event-driven single transfer involves not only the 
transfer of data but also creates a temporary synchronization between 
the transmitter and the receiver. Both information and timing cross 
between the transmitter and receiver. 

For example, a keyboard-scanning task detects a button press on 
the keyboard. It uses an event-driven single transfer to pass the code 
associated with the key onto a command-decoding task. While the code 
associated with the key is important, the fact that it is a change in the 
status of the keyboard is also important. If the event timing were not 
also passed as part of the transfer, the command decoding task would 
not be able to differentiate between the initial press of the key and a 
later repeat of the key press. This would be a major problem if the key 
being pressed is normally repeated as part of the system’s operations. 
So, event-driven single transfers of data require an indication of new 
data from the transmitter.

A less obvious requirement of an event-driven single transfer is the 
acknowledgment from the receiver indicating that the data has been 
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retrieved. Now, why does the transmitter need to know the receiver has 
the data? Well, if the transmitting routine sends one piece of data and 
then immediately generates another to send, it will need to either wait 
a sufficiently long period of time to guarantee the receiver has retrieved 
the first piece of data, or have some indication from the receiver that it 
is safe to send the second piece of data. Otherwise, the transmitter runs 
the risk of overrunning the receiver and losing data in the transfer. Of the 
two choices, an acknowledge from the receiver is the more efficient use 
of processor time, so an acknowledge is required as part of any protocol 
to handle event-driven single transfers.

What about data—is it a required part of the transfer? Actually, no, 
a specific transfer of data is not necessary because the information can 
be implied in the transfer. For example, when an external limit switch is 
closed, a monitoring task may set a flag indicating the closure. A receiv-
ing task acknowledges the flag by clearing it, indicating it acknowledges 
the event. No format data value crossed between the monitoring and 
receiving tasks because the act of setting the flag implied the data by 
indicating that the limit switch had closed.

So, the protocol will require some form of two-way handshaking to 
indicate the successful transfer of data, but it does not actually have to 
transfer data. For that reason, the protocol is typically referred to as a 
semaphore protocol, because signals for both transfer and acknowledg-
ment are required. 

The protocol for handling event-driven single transfers should look 
something like the following for a single transfer:

The transmitter checks the last transfer and waits if not 
complete.

The transmitter posts the current data to a global variable, 
accessible by the receiver (optional).

The transmitter sets a flag indicating new data is available.

The transmitter can either wait for a response or continue with 
other activities.
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The receiver periodically polls the new data flag from the 
transmitter.

If the flag is set, it retrieves the data (optional), and clears the 
flag to acknowledge the transfer. 

There are a few limitations to the protocol that should be discussed 
so the designer can accurately predict how the system will operate dur-
ing the transfer.

1. If the transmitter chooses to wait for an acknowledgement from 
the receiver, before continuing on with other activities: 

a. Then the transmitter can skip the initial step of testing for 
an acknowledge prior to posting new data.

b. However, the transmitter will be held idle until the receiver 
notices the flag and accepts the data.

2. If, on the other hand, the transmitter chooses to continue on 
with other activities before receiving the acknowledgement:

a. The transmitter will not be held idle waiting for the receiver 
to acknowledge the transmitter. 

b. However, the transmitter may be held idle at the initial step 
of testing for an acknowledge prior to most new data.

It is an interesting choice that must be made by the designer. Avoid 
holding the transmitter idle and risk a potential delay of the next byte 
to be transferred, or accept the delay knowing that the next transfer will 
be immediate. The choice is a trade-off of transmitter overhead versus 
a variable delay in the delivery of some data.

Other potential problems associated with the semaphore protocol can 
also appear at the system level and an in-depth discussion will be included 
in the appropriate chapters. For now, the important aspect to remember 
is that a semaphore protocol transfers both data and events.

Event-Driven Multielement Transfers

In an event-driven multielement transfer, the requirement for reliable 
transfer is the same as it is for the Event driven single transfer. However, 
due to radically different rates of execution, the transmitter and receiver 
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can not tolerate the synchronization required by the semaphore protocol. 
What is needed is a way to slow down the data from the transmitter, so 
the receiver can process it, all without losing the reliability of a hand-
shaking style of transfer. 

As an example, consider a control task sending a string of text to a 
serial output task. Because the serial output task is tied to the slower 
transfer rate of the serial port, its execution will be significantly slower 
than the control task. So, either the control task must slow down its 
execution to accommodate the serial task, or some kind of temporary 
storage is needed to hold the message until the serial task is ready to send 
it. Given the control task’s work is important and it can’t slow down to 
the serial task’s rate, then the storage option is the only one that makes 
sense in the application. 

So, the protocol will require at a minimum; some form of data stor-
age, a method for storing the data, and a method for retrieving it. It is 
also assumed that the storage and retrieval methods will have to com-
municate the number of elements to be transferred as well. 

A protocol could be set up that just sets aside a block of data memory 
and a byte counter. The transmitting task would load the data into the 
memory block and set the byte counter to the number of data elements. 
The receiving task can then retrieve data until its count equals the byte 
counter. That would allow the transmitting task to run at its rate loading 
the data, and allow the receiver to take that data at a rate it can handle. 
But what happens if the transmitting task has another block of data to 
transfer, before the receiving task has retrieved all the data? 

A better protocol is to create what is referred to as a circular buffer,
or just buffer protocol. A buffer protocol uses a block of data memory 
for storage, just as the last protocol did. The difference is that a buffer 
also uses two address pointers to mark the locations of the last store and 
retrieve of data in the data block. When a new data element is added 
to the data memory block, it is added in the location pointed to by the 
storage pointer and the pointer is incremented. When a data element 
is retrieved, the retrieval pointer is used to access the data and then it is 
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incremented. By comparing the pointers, the transmitting and receiving 
tasks can determine:

1. Is the buffer empty?

2. Is there data present to be retrieved?

3. Is the buffer is full?

So, as the transmitter places data in the buffer, the storage pointer 
moves forward through the block of data memory. And as the receiver 
retrieves data from the buffer, the retrieval pointer chases the storage 
pointer. To prevent the system from running out of storage, both pointers 
are designed to “wraparound” to the start of the data block when they 
pass the end. When the protocol is operating normally, the storage 
pointer will jump ahead of the retrieval pointer, and then the retrieval 
pointer will chase after it. Because the circular buffer is essentially infinite 
in length, because the pointers always wraparound, the storage space will 
be never run out. And the two pointers will chase each other indefinitely, 
provided the transmitter doesn’t stack up so much data that the storage 
pointer “laps” the retrieval pointer.

So, how does the buffer protocol look from the pointer of view of 
the transmitting task and the receiving task. Let’s start with the transmit 
side of the protocol:

The transmitter checks to see if the buffer is full, by comparing 
the storage pointer to the retrieval pointer.

If the buffer is not full, it places the data into the buffer using 
the storage pointer and increments the pointer.

If the transmitter wishes to check on the receiver’s progress, it 
simply compares the storage and retrieval pointers.

From the receiver’s point of view:

The receiver checks the buffer to see if data is present by compar-
ing the storage and retrieval pointers.

If the pointers indicate data is present, the receiver retrieves the 
data using the retrieval pointer and increments the pointer.
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So, the two tasks have handshaking through the two pointers, to 
guarantee the reliable transfer of data. But, using the data space and 
the pointers allows the receiving task to receive the data at a rate it can 
handle, without holding up the transmitter. 

Implementing a buffer protocol can be challenging though, due to 
the wraparound nature of the pointers. Any increment of the pointers 
must include a test for the end of the buffer, so the routine can wrap the 
pointer back around to the start of the buffer. And, the comparisons for 
buffer full, buffer empty, and data present can also become complicated 
due to the wraparound. 

In an effort to alleviate some of this complexity, the designer may 
choose to vary the definition of the storage and retrieval pointers to 
simplify the various comparisons. Unfortunately, no one definition 
will simplify all the comparisons, so it is up to the designer to choose 
which definition works best for their design. The following shows all 
four possible definitions for the storage and retrieval pointers, plus the 
comparisons required to determine the three buffer conditions.

Pointer definitions Comparisons Meaning
Storage > last element stored IF (Storage     == Retrieval) then buffer is empty
Retrieval > last element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage     <> Retrieval) then data present

Storage > last element stored IF (Storage+1 == Retrieval)  then buffer is empty
Retrieval > next element retrieved IF (Storage     == Retrieval) then buffer is full

IF (Storage+1 <> Retrieval) then data present

Storage > next element stored IF (Storage == Retrieval+1) then buffer is empty
Retrieval > last element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage <> Retrieval+1) then data present

Storage > next element stored IF (Storage     == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage     <> Retrieval) then data present

Table 2.4
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It is interesting that the comparisons required to test each condition 
don’t change with the definition of the pointers. All that does change 
is that one or the other pointer has to be incremented before the com-
parison can be made. The only real choice is which tests will have to 
temporarily increment a pointer to perform its test, the test for buffer 
full, or the test for buffer empty/data available. What this means for 
the designer is that the quicker compare can be delegated to either the 
transmitter (checking for buffer full), or the receiver (checking for data 
present). Since the transmitter is typically running faster, then options 
one or four are typically used.

Also note that the choices are somewhat symmetrical; options one 
and four are identical, and options two and three are very similar. This 
makes sense, since one and four use the same sense for their storage and 
retrieval pointers, while the pointer sense in two and three are opposite 
and mirrored. 

One point to note about buffers, because they use pointers to store 
and retrieve data and the only way to determine the status of the buffer 
is to compare the pointers, the buffer-full test always returns a full status 
when the buffer is one location short of being full. The reason for this 
is because the comparisons for buffer empty and buffer full turn out to 
be identical, unless the buffer-full test assumes one empty location.

If a buffer protocol solves the problem of transferring data between 
a fast and slow task, then what is the catch? Well, there is one and it is 
a bear. The basic problem is determining how big to make the storage 
space. If it is too small, then the transmitter will be hung up waiting for 
the receiver again because it will start running into buffer-full condi-
tions. If it is too large, then data memory is wasted because the buffer 
is under-utilized.

One final question concerning the buffer protocol is how is the size 
of the data storage block determined? The size can be calculated based 
on the rates of data storage, data retrieval, and the frequency of use. Or 
the buffer can be sized experimentally by starting with an oversized buffer 
and then repeatedly testing the system while decreasing the size. When 
the transmitting tasks starts hitting buffer-full conditions, the buffer is 
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optimized. For now, just assume that the buffer size is sufficient for the 
designs need, and a more in-depth explanation of the two methods will 
be presented in Chapter 5.

Mathematics

In embedded programming, mathematics is the means by which a pro-
gram models and predicts the operation of the system it is controlling. 
The math may take the form of thermodynamic models for predicting 
the best timing and mixture in an engine, or it may be a simple time 
delay calculation for the best toasting of bread. Either way, the math is 
how a microcontroller takes its view of the world and transforms that 
data into a prediction of how to best control it.

For most applications, the math libraries supplied with the compiler 
will be sufficient for the calculations required by our models and equa-
tions. However, on occasion, there will be applications where it may 
be necessary to “roll our own” routines, either for a specialized math 
function, or just to avoid some speed or data storage inefficiencies as-
sociated with the supplied routines. Therefore, a good understanding 
of the math underlying the libraries is important, not only to be able 
to replace the routines, but also to evaluate the performance of the sup-
plied functions. 

Binary Addition and Subtraction

Earlier in the chapter, it was established that both base ten and binary 
numbering system use a digit position system based on powers of the 
base. The position of the digit also plays a part in the operation of the 
math as well. Just as base-ten numbers handle mathematics one digit at 
a time, moving from smallest power to largest, so do binary numbers in 
a computer. And just like base-ten numbers, carry and borrow opera-
tions are required to roll up over- or under-flows from lower digits to 
higher digits. The only difference is that binary numbers carry up at 
the value 2 instead of ten. 

So, using this basic system, binary addition has to follow the fol-
lowing rules:
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If the carry_in from the next lower digit = 0
0 + 0 + carry_in results in 0 & carry_out = 0 
1 + 0 + carry_in results in 1 & carry_out = 0
0 + 1 + carry_in results in 1 & carry_out = 0
1 + 1 + carry_in results in 0 & carry_out = 1

If the carry_in from the next lower digit = 1
0 + 0 + carry_in results in 1 & carry_out = 0
1 + 0 + carry_in results in 0 & carry_out = 1
0 + 1 + carry_in results in 0 & carry_out = 1
1 + 1 + carry_in results in 1 & carry_out = 1

Using these rules in the following example of binary addition pro-
duces a result of 10101100. Note the carry_in values are in bold:

111 111 <--carry bits
00110101
+01110111

0 1 + 1  = 0 with carry_out
0  1 + 0 + carry_in = 0 with carry_out
1   1 + 1 + carry_in  = 1 with carry_out
1   0 + 0 + carry_in  = 1
0  1 + 1  = 0 with carry_out
1  1 + 1 + carry_in  = 1 with carry_out
0   1 + 0 + carry_in  = 0 with carry_out
1  0 + 0 + carry_in  = 1
10101100

Converting the two values to decimal, we get 53 + 119, for a total 
of 172. 172 in binary is 1010110, so the math checks.

Binary subtraction operates in a similar manner, using the borrow 
instead of carry. Building a similar table of rules for subtraction yields 
the following:

Example 2.7

Table 2.5

Table 2.6
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If the borrow_in from the next lower digit = 0
0 – 0 – borrow in results in 0 & borrow_out = 0 
1 – 0 – borrow in results in 1 & borrow_out = 0
0 – 1 – borrow in results in 1 & borrow_out = 1
1 – 1 – borrow in results in 0 & borrow_out = 0

If the borrow_in from the next lower digit = 1
0 – 0 – borrow in results in 1 & borrow_out = 1
1 – 0 – borrow in results in 0 & borrow_out = 0
0 – 1 – borrow in results in 0 & borrow_out = 1
1 – 1 – borrow in results in 1 & borrow_out = 1

Using these rules for subtraction in the following example produces 
a result of 00111110. Note the borrow values are in bold:

111111 <--borrow
10110101
-01110111

0 1 – 1 = 0
1  0 – 1 = 1 with borrow_out
1   1 – 1 – borrow_in  = 1 with borrow_out

1   0 – 0 – borrow_in  = 1 with borrow_out
1  1 – 1 – borrow_in  = 1 with borrow_out

1  1 – 1 – borrow_in  = 1 with borrow_out
0   0 – 1 – borrow_in  = 0 with borrow_out

0 1 – 0 – borrow_in  = 0
00111110

Converting the two values to decimal, we get 181 – 119, for a differ-
ence of 62. 62 in binary is 00111110, so, again, the math checks.

And, as expected, binary addition and subtraction are not any dif-
ferent than addition and subtraction in base ten. The carry_out carries 
up a value of 1 to the next digit, and a borrow_out carries up a value 
of –1 to the next digit. This makes sense—addition and subtraction 
are universal concepts, and should be independent of the base of the 
number system. 

Table 2.7

Example 2.8

Table 2.8
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Binary Multiplication

In addition, we added each digit together, one at a time, and carried the 
overflow up to the next digit as a carry. In multiplication, we multiply 
each digit together, one at a time, and carry the overflow up to the next 
digit as a carry as well. The only difference is that the carry may be 
greater than 1.

For multipliers with more than one digit, we again handle each one 
separately, multiplying the digit through all the digits of the multipli-
cand, and then add the results from each digit together to get a result, 
making sure to align the digits with the digit in the multiplier. For 
example:

123 Multiplicand
 x321 Multiplier

 123 (1 x 123 x 1) the x1 is due to the position of the 
1 in the multiplier  

 2460 (2 x 123 x 10) the x10 is due to the position of the 
2 in the multiplier

 +36900 (3 x 123 x 100) the x100 is due to the position of the 
3 in the multiplier

 37483 Result

Thus is the essence of long multiplication—straightforward and 
simple, if somewhat tedious. So, it should come as no surprise that 
the process is no different for binary multiplication. Each bit in the 
multiplier, 1 or 0, is multiplied by each of the bits in the multiplicand. 
And when all the bits have been multiplied, we add together the result, 
making sure that we keep each interim result lined up with its multiplier 
bit. Just as straightforward and simple, although a little less tedious as 
we only have to multiply by 1 or 0. 

So, if we convert 6 and 11 into binary and multiply them together, 
we should get the binary equivalent of 66. 

Example 2.9
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1011 (11 in decimal)
x0110 (6 in decimal)

00000000 (0 x 1011, the original value x 1)
00010110 (1 x 10110, the original value x 2)
00101100 (1 x 101100, the original value x 4)
+00000000 (0 x 1011000, the original value x 8)
01000010

And, 01000010 in decimal is 66, so once again the math checks 
out.

Before we move on to division, let’s take a minute and check out 
some interesting points in binary multiplication. 

1. The digit by digit multiply is only multiplying by 1 or 0, so the 
process of multiplying each bit of the multiplier with each bit 
of the multiplicand is very simple. In fact, algorithms for binary 
multiply typically don’t bother with the bit-by-bit multiply; they 
just check the multiplier bit and if it is set, they shift over the 
multiplicand and add it into the result. 

2. The act of shifting the multiplicand left to align with the multi-
plier, for each bit in the multiplier, would be a waste of time. It 
is simpler to just create a temporary variable to hold the shifted 
form of the multiplier from the last bit, and then shift it once for 
the next. That way the temporary variable only has to be shifted 
once for each bit of the multiplier.

3. The bits in the multiplier will have to be tested one at a time, 
from the LSB to the MSB, to perform the multiplication. If we 
can use a temporary variable to hold a shift copy of the multi-
plicand, why not use a temporary variable to hold a shifted copy 
of the multiplier that shifts to the right? That way the bit tested 
in the multiplier is always the LSB.

4. The result of the multiply was nearly twice the size of the multi-
plier and multiplicand. In fact, if the multiplier and multiplicand 
were both 1111, it would have been twice the size. So, to prevent 
losing any bits in the result to roll over, the multiply algorithm 
will have to have a result at least twice the size of input variables, 
or have a number of bits equal to the total bits in both the input 
variables, if they are different sizes. 

Example 2.10
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Using these insights, an efficient binary multiply routine can be 
created that is fairly simple. It is just a matter of shifting and adding 
inside a loop:

char A  ; multiplicand
char B  ; multiplier
int C  ; 16-bit result
int  temp_a ; 16-bit temp holding variable for
   multiplicand

char temp_b ; 8-bit temp holding variable for
  multiplier

C = 0
Temp_a = A
Temp_b = B
FOR I = 0 to 7 ; multiplier is 8 bits
 IF (LSB of B = 1) THEN C = C + temp_a
 SHIFT temp_a LEFT 1 ;multiplicand * 2
 SHIFT temp_b RIGHT 1 ; multiplier / 2
NEXT I

For each pass through the loop, the LSB of the multiplier is tested. 
If the bit is set, then the multiplicand is added to the result. If the bit 
is clear, the multiplicand is not added to the result. In either case, the 
temporary copy of the multiplicand is multiplied by 2 and the temporary 
copy of the multiplier is divided by 2 for the next pass through the loop. 
The loop repeats until all of the multiplicand bits have been tested.

Binary Division

Binary division is also a simplified version of base 10 long division. 
Remember the techniques for base 10 division from school? Take the 
divisor and see if it divides into the first digit of the dividend and if it 
does, put the number of times it does above the line. Then multiply that 
result by the divisor and subtract it from the dividend. Pass the remain-
der down to the next line and repeat the process until the remainder is 
less than the divisor. At that point, you have a result and any left-over 
remainder.

Algorithm 2.1
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Binary division operates in the same way; the divisor is left shifted 
until its LSB is in the same digit position as the MSB of the dividend, 
and the divisor is subtracted from the dividend. If the result is positive, 
the corresponding bit in the result is set, the divisor is right shifted one 
position, and the process is repeated until the result is less than the re-
mainder. As an example, let’s take 15 and divide it by 5. 15 is 1111 in 
binary, and 5 is 0101. Performing the divide:

Example 2.11

Example 2.12

0128
Divisor 12  1546

0000
1546
1200
346
240
106
96
10

result

dividend
(0 x 12 x 1000)

(1 x 12 x 100)

(2 x 12 x 10)

(8 x 12 x 1)
remainder

)Divisor 0101

Result

Dividend
(0 x 0101 x 1000)

(0 x 0101 x 0100)

(1 x 0101 x 0010)

(1 x 0101 x 0001)
Remainder

0011

0001111
0101000
−0010100
0001111
0010100
−0010100
0001111
−0001010
0000101
−0000101

0

We end up with a result of 0011, or 3 in decimal, with a 0 remainder. 
Since 15 divided by 5 is equal to 3 with no remainder, the math checks.

If we examine the division process, we find some of the same interest-
ing points that we found in examining the multiply process:

1. Prior to beginning the divide, the divisor had to be left-shifted 
until its LSB was in the same digit position as the dividend’s MSB. 
This means the algorithm will require a temporary variable for 
the divisor.

2. The difference between the dividend and the shifted devisor will 
also have to be held in a temporary variable.
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3. To accommodate the initial subtractions of the divisor, the divi-
dend had to be padded with additional zeros. So, the minimum 
length of the temporary variable used for the dividend must be 
at least equal to the total number of bits in the dividend and the 
divisor, –1. Remember that the first subtraction is with the LSB of 
the divisor in the same position as the MSB or the dividend. 

4. The temporary variable used to hold the dividend will hold the 
remainder at the end of the operation.

5. The bit set in the result for each successful subtraction of the 
divisor is the same digit position as the LSB of the divisor.

Using these insights, an efficient binary multiply routine can be 
created that is fairly simple. It is just a matter of shifting, testing and 
subtracting with a bit set. The resulting algorithm is similar to the 
multiplication algorithm:

Algorithm 2.2

char A  // divisor
char B  // dividend
char C  // result
char R  // remainder
int temp_a // 16-bit temp holding variable for divisor
int temp_b // 16-bit temp holding variable for dividend

C = 0
temp_a = SHIFT A LEFT 7 // left shift divisor 7x
temp_b = B   // dividend
FOR I = 0 to 7  // loop repeats 8x
  SHIFT C LEFT 1 // shift to next bit in R
  temp_b = temp_b – temp_a
  if (borrow = 0)
   then
    C = C + 1;
    ; set the bit
   else
    temp_b = temp_b + temp_a // undo subtract
  endif
  SHIFT temp_a RIGHT 1 // shift the divisor 1
NEXT I
R = temp_b
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At the start of the routine, the divisor and dividend are copied into 
their temporary variables, and the divisor is left-shifted 7 times. This 
leaves the divisor LSB in the same digit position as the MSB of the 
dividend. The divisor is subtracted from the dividend and the result 
is checked for a borrow; remember that the borrow indicated that the 
divisor is larger than the dividend, resulting in a negative difference. If 
the borrow is set, then the divisor is added back into the dividend to 
undo the subtraction. If the borrow is clear, then the dividend can be 
subtracted, and the corresponding bit in the result is set. The divisor is 
right-shifted, and the loop repeats for all 8 bits in the dividend. 

Note that the bit set in the result is always the LSB, and the result is 
shifted one position to the left at the start of each loop. But, from the 
section above, we expected to set the result bits from the MSB down to 
the LSB, corresponding with the LSB of the divisor. Why the change? 
The algorithm could be done as it is described previously, but it would 
require another temporary variable to hold a single bit corresponding 
to the LSB of the divisor. The bit would be shifted with the divisor, 
and if the divisor was subtracted, we would OR the bit into the result. 
However, by setting the LSB and shifting left each time the divisor is 
shifted right, we accomplish the same result, and it doesn’t require an 
additional temporary variable for a single bit.

Numeric Comparison

In the previous example of division, we compared the divisor to the 
dividend on each pass through the loop to determine if the divisor was 
less than or equal to the dividend. We did this with a subtraction and a 
test of the borrow flag. If the result of the subtraction was negative, then 
the divisor was greater than the dividend. But what about greater than, 
equal to, less than or equal to, or just plain not equal—how are those 
comparisons performed? The answer is that we still do a subtraction, 
but we just have to test for the right combination of positive, negative, 
or zero.

Fortunately, microcontrollers are well-equipped to perform these 
tests because whenever a microcontroller performs a subtraction, status 
flags in the microcontroller’s status register record information about 



70 Chapter 2

the result. Typically, this information includes both a borrow and zero 
flags. The borrow flag indicates whether the result of the operation was 
positive or negative and the zero flag tells us if the result of the opera-
tion was zero.

So, if we look at the results of a subtraction, by testing the flags we 
should be able to determine every combination of relationships between 
the two values: 

If the result of the subtraction is zero, then the two values are 
equal.

If the borrow flag is set, then the larger value was subtracted from 
a smaller value. 

If the borrow is clear, then the smaller was subtracted from the 
larger, unless the zero flag is also set, in which case the values are 
equal.

Fairly simple, but unfortunately, there is a little more to it than just 
less than, greater than, and equal. There is also greater than or equal, 
less than or equal, and just not equal. The microcontroller could just 
perform the subtraction and test for all of the possible combinations of 
flags, but if both flags have to be tested for every condition that could 
be inefficient. Some conditions will require that both flags be tested, 
and others will require only one test. Assuming that the tests exhibit 
some symmetry, it should be possible to swap the order of the variables 
in the subtraction to give us a set of operations that can determine the 
relationship with only one test. So, let’s build a table showing both pos-
sible ways the subtraction can be performed for each of the tests and see 
if we can find a single test for each condition. 
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Relationship Subtraction Result Tests required
A > B B – A Negative Borrow = true

A – B Positive & non-zero Borrow = false and Zero = false
A => B B – A Negative or zero Borrow = true or Zero = true

A – B Positive Borrow = false
A = B B – A Zero Zero = true

A – B Zero Zero = true
A <= B B – A Positive Borrow = false

A – B Negative or zero Borrow = true or Zero = true
A < B B – A Positive & non-zero Borrow = false and Zero = false

A – B Negative Borrow = true
A!= B B – A Non-zero Zero = false

A – B Non-zero Zero = false

From the table, we can determine that:

For A > B, subtract A from B and test for Borrow = true.

For A => B, subtract B from A and test for Borrow = false.

For A = B, subtract either variable from the other and test for 
Zero = true.

For A <= B, subtract A from B and test for Borrow = false.

For A < B, subtract B from A and test for Borrow = true.

For A != B, subtract either variable from the other and test for 
Zero = false.

As predicted, by swapping the order of the variables in some of the 
subtractions, we can simplify the tests down to a single bit test for each 
of the possible comparisons. 

Conditional Statements

Now that we have the math of the comparison figured out, what about 
the conditionals statements that use the comparison? If we assume 
a C-like programming language, the conditional statements include 
IF/THEN/ELSE, SWITCH/CASE, DO/WHILE, and FOR/NEXT. 
While some of the statements are related, each has its own unique func-
tion and requirements.

Table 2.9 Subtraction-Based Comparisons
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The IF/THEN/ELSE, or IF statement, is the most basic conditional 
statement. It makes a comparison and, based on the result, changes 
the flow of execution in the program. The change can be to include an 
additional section of the program, or to select between two different 
sections. The comparison can be simple or compound. The statements 
can even be nested to produce a complex decision tree. In fact, the IF 
statement is the basis for all of the conditional statements, including 
the SWITCH/CASE, DO/WHILE, and FOR/NEXT.

For now, let’s start with just the basic IF conditional statement. In a 
typical IF, a comparison is made using the techniques described in the 
last section. If the result of the comparison is true, the block of instruc-
tions associated with the THEN part of the statement is executed. If the 
result of the comparison is false, the block of instructions associated with 
the ELSE part of the statement is executed. Note, the ELSE portion of 
the statement is optional in most high-level languages. If the ELSE is 
omitted, then a false result will cause the program to fall through the 
instruction with no action taken. The implementation of the statement 
typically takes the following form:

IF (comparison)
 THEN
  {Section_a}
 ELSE
  {Section_b}
ENDIF  ; note some languages use {}

around the two
; sections in place of ENDIF

A common variation of the basic IF is to combine two or more state-
ments into a more complex comparison. This is commonly referred to 
as Nested IF statements, and may involve new IF statements in either, 
or both, the THEN or ELSE side of the statement. By nesting the IF 
statements, several different comparisons can be obtained:

Complex combinations, involving multiple variables, can be 
tested for a single combination.

A single variable can be compared to multiple values.

Or multiple variables can be compared against multiple values.

Code Snippet 2.5
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Let’s start with the simpler comparison, comparing multiple variables 
for a single combination. This comparison can be implemented by 
nesting multiple IF statements, the first IF comparing the first variable 
against its value and the THEN portion of the statement, another IF 
comparing the second variable against its value, and so on for all the 
variables and values. 

IF (Var_A > 5)
 THEN IF (Var_B < 3)
  THEN IF (Var_C <> 6)
   THEN
    {Section_a}
ENDIF
IF (Var_A <= 5) THEN {Section_b}
IF (Var_B >= 3) THEN {Section_b}
IF (Var_C == 6) THEN {Section_b}

However, this is an inefficient use of program memory because each 
statement includes the overhead of each IF statement. The ELSE con-
dition must be handled separately with multiple copies of the Section 
B code.

The better solution is to put all the variables and the values in a single 
compounded IF statement. All of the variables, compared against their 
values, are combined using boolean operators to form a single yes or no 
comparison. The available boolean operators are AND (&&), OR (||), 
and NOT (!). For example:

IF (Var_A > 5) && (Var_B < 3) && (Var_C <> 6)
 THEN
  {Section_a}
 ELSE
  {Section_b}
 ENDIF 

This conditional statement will execute Section_a if; Var_A > 5 and
Var_B < 3, and Var_C is not equal to 6. Any other combination will 
result in the execution of Section_b. So, this is a smaller, more com-
pact, implementation that is much easier to read and understand in the 
program listing.

Code Snippet 2.6

Code Snippet 2.7
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The next IF statement combination to examine involves compar-
ing a single variable against multiple values. One of the most common 
examples of this type of comparison is a WINDOW COMPARISON. 
In a window comparison, a single variable is compared against two values 
which form a window, or range, of acceptable or unacceptable values. 
For instance, if the temperature of a cup of coffee is greater than 40 
degrees C, but less than 50 degrees C, it is considered to have the right 
temperature. Warmer or colder, it either is too cold or too hot to drink. 
Implementing this in a IF statement would result in the following:

IF (Temperature > 40) && (Temperature < 50)
 THEN
  {Drink}
 ELSE
  {Don’t_Drink}
 ENDIF 

The compound IF statement checks for both a “too hot” and “too 
cool” condition, verifying that the temperature is within a comfortable 
drinking temperature range. The statement also clearly documents what 
range is acceptable and what is not.

Another implementation of comparing a single value against mul-
tiple values is the ELSE IF combination. In this configuration, a nested 
IF is placed in the ELSE portion of the statement, creating a string of 
comparisons with branches out of the string for each valid comparison. 
For instance, if different routines are to be executed for each of several 
different values in a variable, an ELSE IF combination can be used to 
find the special values and branch off to each one’s routine. The nested 
IF statement would look like the following:

IF (Var_A = 5)
 THEN
  {Routine_5}
 ELSE IF (Var_A = 6)
  THEN
   {Routine_6}
  ELSE IF (Var_A = 7)
   THEN
    {Routine_7}
   ELSE
    {Other_Routine}

Code Snippet 2.8

Code Snippet 2.9
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And,

If Var_A is 5, then only Routine_5 is executed. 

If Var_A is 6, then only Routine_6 is executed. 

If Var_A is 7, then only Routine_7 is executed. 

If Var_A is not 5, 6, or 7, then only the Other_Routine is 
executed.

Now, if each statement checks for its value, why not just have a list 
of IF statements? What value does nesting the statements have? There 
are three reasons to nest the IF statements:

1. Nesting the IF statements saves one IF statement. If the com-
parison was implemented as a list of IF statements, a window 
comparison would be required to determine when to run the 
Other_Routine. It is only run if the value is not 5, 6, or 7.

2. Nesting the statements speeds up the execution of the program. 
In the nested format, if Routine_5 is executed, then when it is 
done, it will automatically be routed around the rest of the IF 
statements and start execution after the last ELSE. In a list of 
IF statements, the other three comparisons would have to be 
performed to get past the list of IF statements.

3. If any of the routines modify Var_A, there is the possibility 
that one of the later comparisons in the last might also be true, 
resulting in two routines being executed instead of just the one 
intended routine.

So, nesting the ELSE IF statements has value in reduced program size, 
faster execution speed, and less ambiguity in the flow of the program’s 
execution.

For more complex comparisons involving multiple variables and 
values, IF/THEN/ELSE statements can be nested to create a decision 
tree. The decision tree quickly and efficiently compares the various 
conditions by dividing up the comparison into a series of branches. 
Starting at the root of the tree, a decision is made to determine which 
half of the group of results is valid. The branches of the first decision 
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then hold conditional statements that again determine which ¼ set of 
solutions are valid. The next branch of the second decision then deter-
mines which 1/8 set of solutions is valid, and so on, until there is only 
one possible solution left that meets the criteria. The various branches 
resemble a tree, hence the name “decision tree.” 

To demonstrate the process, assume that the letters of a name—
Samuel, Sally, Thomas, Theodore, or Samantha—are stored in an array 
of chars labeled NAME[]. Using a decision tree, the characters in the 
array can then be tested to see which name is present in the array. The 
following is an example of how a decision tree would be coded to test 
for the three names:

IF (NAME[0] == ‘S’)
 THEN IF (NAME[2] == ‘m’)
   THEN IF (NAME[3] == ‘a’)
    THEN Samantha_routine();
    ELSE Samuel_routine();
   ELSE Sally_routine
 ELSE IF (NAME[2] == ‘o’)
   THEN Thomas_routine();
   ELSE Theodore_routine();

The first IF statement uses the letter in location 0 to differentiate 
between S and T to separate out Thomas and Theodore from the list 
of possible solutions. The next IF in both branches uses the letter is 
location 2 to differentiate between M and L to separate out Sally from 
the list of possible solutions, and to differentiate between Thomas and 
Theodore. The deepest IF uses the letter in location 3 to differentiate 
between Samantha and Samuel. So, it only takes two comparisons to 
find Thomas, Theodore, or Sally, and it only three comparisons to find 
either Samantha or Samuel. 

If, on the other hand, the comparison used a list of IF statements 
rather than a decision tree, then each IF statement would have been more 
complex, and the number of comparisons would have increased. With 
each statement trying to find a distinct name, all of the differentiating 
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letters must be compared in each IF statement. The number of com-
parisons required to find a name jumps from a worst case of three (for 
Samantha and Samuel), to four and five for the last two names in the IF 
statement list. To provide a contrast, the list of IF statements to imple-
ment the name search is shown below:

IF (NAME[0] == ‘S’) && (NAME[2] == ‘m’) && (NAME[3]
== ‘a’)

 THEN Samantha_routine;
IF (NAME[0] == ‘S’) && (NAME[2] == ‘m’) && (NAME[3]

== ‘u’)
 THEN Samuel_routine;
IF (NAME[0] == ‘S’) && (NAME[2] == ‘a’)
 THEN Sally_routine;
IF (NAME[0] == ‘T’) && (NAME[2] == ‘o’)
 THEN Thomas_routine;
IF (NAME[0] == ‘T’) && (NAME[2] == ‘e’)
 THEN Theodore_routine;

As predicted, it will take four comparisons to find Thomas, and five 
to find Theodore, and the number of comparisons will grow for each 
name added to the list. The number of differentiating characters that 
will require testing will also increase and names that are similar to those 
in the list increase. A decision tree configuration of nested IF statements 
is both smaller and faster. 

Another conditional statement based on the IF statement is the 
SWITCH/CASE statement, or CASE statement as it is typically called. 
The CASE statement allows the designer to compare multiple values 
against a single variable in the same way that a list of IF statements can 
be used to find a specific value. While a CASE statement can use a com-
plex expression, we will use it with only a single variable to determine 
equality to a specific set of values, or range of values.

In its single variable form, the CASE statement specifies a controlling 
variable, which is then compared to multiple values. The code associ-
ated with the matching value is then executed. For example, assume a 
variable (Var_A) with five different values, and for each of the values a 
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different block of code must be executed. Using a CASE statement to 
implement this control results in the following:

SWITCH (Var_A)
{
 Case 0: Code_block_0();
   Break;
 Case 1: Code_block_1();
   Break;
 Case 2: Code_block_2();
   Break;
 Case 3: Code_block_3();
   Break;
 Case 4: Code_block_4();
   Break;
 Default: Break;
}

Note that each block of code has a break statement following it. The 
break causes the program to break out of the CASE statement when it 
has completed. If the break were not present, then a value of zero would 
have resulted in the execution of Code block 0, followed by Code block 
1, then Code block 2, and so on through all the blocks in order. For 
this example, we only wanted a single block to execute, but if the blocks 
were a sequence of instructions and the variable was only supplying the 
starting point in the sequence, the case statement could be used to start 
the sequence, with Var_A supplying the starting point.

Also note the inclusion of a Default case for the statement; this is 
a catch-all condition which will execute if no other condition is deter-
mined true. It is also a good error recovery mechanism when the variable 
in the SWITCH portion of the statement becomes corrupted. When 
we get to state machines, we will discuss further the advantages of the 
Default case.

Loops

Often it is not enough to simply change the flow of execution in a pro-
gram. sometimes what is needed is the ability to repeat a section until a 
desired condition is true, or while it is true. This ability to repeat until a 
desired result or do while a condition is true is referred to as an iteration 
statement, and it is very valuable in embedded programming. It allows 
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designers to write programs that can wait for desired conditions, poll 
for a specific event, or even fine tune a calculation until a desired result 
occurs. Building these conditional statements requires a combination of 
the comparison capabilities of the IF statement with a simple GOTO 
to form a loop. 

Typically there are three main types of iterating instructions, the 
FOR/NEXT, the WHILE/DO and the DO/WHILE. The three state-
ments are surprisingly similar; all use a comparison function to determine 
when to loop and when not to, and all use an implied GOTO command 
to form the loop. In fact, the WHILE/DO and the DO/WHILE are 
really variations of each other, with the only difference being when the 
comparison is performed. The FOR/NEXT is unique due to its ability 
to automatically increment/decrement its controlling variable.

The important characteristic of the WHILE/DO statement, is that 
it performs its comparison first. Basically, WHILE a condition is true, 
DO the enclosed loop. Its logic is such that if the condition is true, then 
the code inside the loop is executed. When the condition is false, the 
statement terminates and begins execution following the DO. This has 
an interesting consequence: if the condition is false prior to the start of 
the instruction, the instruction will terminate without ever executing 
the routine within the loop. However, if the condition is true, then the 
statement will execute the routine within the loop until the condition 
evaluates as false. The general syntax of a DO/WHILE loop is shown 
below:

WHILE (comparison)
 Routine();
DO

DO is a marker signifying the end of the routine to be looped, and 
the WHILE marks the beginning, as well as containing the comparison 
to be evaluated. Because the comparison appears at the beginning of 
the routine to be looped, it should be remembered that the condition 
is evaluated before the first execution of the routine and the routine is 
only executed if the condition evaluates to a true.

Code Snippet 2.13
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The mirror of the WHILE/DO is the DO/WHILE statement. It 
is essentially identical to the WHILE/DO, with the exception that it 
performs its comparison at the end. Basically, DO the enclosed loop, 
WHILE a condition is true. Its logic is such that, if the condition is true, 
then the code inside the loop is executed. When the condition is false, 
the statement terminates and begins execution following the WHILE. 
This has the alternate consequence that, even if the condition is false 
prior to the start of the instruction, the instruction will execute the rou-
tine within the loop at least once before terminating. If the condition is 
true, then the statement will execute the routine within the loop until 
the condition evaluates as false. The general syntax of a DO/WHILE 
loop is shown below:

DO
 Routine();
WHILE (comparison)

DO is a marker signifying the beginning of the routine to be looped, 
and the WHILE marks the end, as well as containing the comparison to 
be evaluated. Because the comparison appears at the end of the routine 
to be looped, it should be remembered that the condition is evaluated 
after the first execution of the routine.

So, why have two different versions of the same statement? Why a 
DO/WHILE and a WHILE/DO? Well, the DO/WHILE could more 
accurately be described as a REPEAT/UNTIL. The ability to execute 
the routine at least once is desirable because it may not be possible to 
perform the comparison until the routine has executed. Some value that 
is calculated, or retrieved by, the routine may be needed to perform the 
comparison in the WHILE section of the command. The WHILE/DO 
is desirable for exactly the opposite reason—it may be catastrophic to 
make a change unless it is determined that a change is actually needed. 
So, having the option to test before or test after is important, and is the 
reason that both variations of the commands exist. 

The third type of iteration statement is the FOR/NEXT, or FOR 
statement. The FOR statement is unique in that it not only evaluates 
a condition to determine if the enclosed routine is executed, but it also 
sets the initial condition for the variable used in the conditions, and 
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specifies how the variable is indexed on each iteration of the loop. This 
forms essentially a fully automatic loop structure, repeating any number 
of iterations of the loop until the termination condition is reached. For 
example, a FOR loop could look like the following:

FOR (Var_A=0; Var_A<100; Var_A=Var_A+5)
 routine();

In the example, a variable Var_A is initially set to zero at the begin-
ning of the loop. The value in Var_A is compared to 100, and if it is 
less than 100, then the routine is executed. After execution of the rou-
tine is complete, the variable is incremented by 5 and the comparison 
is repeated. The result is that the routine is executed, and the variable 
incremented by 5, over and over until the comparison is false.

Within the general format of the FOR statements are a couple of 
options:

1. The initial value of the variable doesn’t have to be zero. The value 
can be initialized to any convenient value for a specific calcula-
tion in the routine within the loop.

2. The increment value is similarly flexible. In fact, the increment 
value can be negative, resulting in a decrement of the value, or 
the increment value can be dynamic, changing on each pass 
through the loop.

3. The termination condition may also be dynamic, changing for 
each pass through the loop.

4. The variable used to control the loop is also accessible within 
the loop, allowing the routine to length, shorten, or even stop 
the loop by incrementing, decrementing or assigning a value to 
the variable.

5. If all three terms are left out of the FOR statement, then an 
infinite loop is generated which will never terminate.

Other Flow Control Statements

Three other program flow control statements are important in later 
discussions, GOTO, CALL, and RETURN. The GOTO statement is 
just as the name suggests. It is an unconditional jump from one place 
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in the program to another. The CALL is similar, except it retains the 
address of the next instruction, following the CALL instruction, in a 
temporary location. This return address is then used when the RETURN 
statement is reached to specify the jump-back location. 

The use of the GOTO statement is often criticized as an example 
of poor programming. If the program were properly designed, then 
looping and conditional statements are sufficient for proper program-
ming. Unfortunately, in embedded programming there are conditions 
and events beyond the designer’s control. As a result, it is sometimes 
required to break out of the program flow and either restart the program 
or rearrange its execution to correct a fault. So, while the GOTO is not 
a statement that should be used lightly, it is a statement that will be 
needed for certain fault recovery programming.

The CALL and RETURN are more acceptable to mainstream pro-
gramming, as they are the means of creating subroutines. When a section 
of programming is used in multiple places in the program, it is a more 
efficient use of program memory to build a small separate routine and 
access it through CALL and RETURN statements.

Although the CALL and RETURN statements are useful, their use 
should be tempered with the knowledge that each CALL will place 
two or more bytes of data onto a data structure called the STACK. The 
purpose of the STACK is to store temporary values that don’t have a 
specific storage location, such as the return address of a CALL. The issue 
with using the STACK is that: 

1. Data memory is often limited with small microcontrollers, and 
any function that increases data memory usage runs the risk of 
over-writing an existing variable.

2. The number of locations within the STACK is sometimes limited 
in small microcontrollers, and unnecessary calls may result in the 
loss of the oldest return address stored there.

3. Interrupt functions also use the STACK to store return addresses, 
making it difficult to gauge the exact number of locations in use 
at any given time.
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So, limiting the number of subroutines built into a program is only 
prudent.

One of the reasons often given for including a large number of 
subroutines in a program is the ability of subroutines to compress func-
tionality, making the program more readable to anyone following the 
designer. If the purpose of a subroutine is to alleviate complexity in the 
listing, then subroutines can still be used, they just have to include the 
INLINE statement in front of the CALL. What the INLINE statement 
does is force the language compiler to disregard the CALL/RETURN 
statements and compile the routines from the subroutine in line with the 
routines calling the subroutine. In this way, the readability enhancement 
of the subroutine is still achieved, while eliminating the impact on the 
amount of data memory available in the STACK. However, it should be 
noted that the use of the INLINE instruction is not a common practice. 
Typically, a macro performs the same function and is a more commonly 
used construct. So, for compatibility and general form, the INLINE 
statement should only be used if the designer is comfortable with its use 
and is aware of any impact its use might have on the resulting code.

State Machines

Control systems that manage electrical or mechanical systems must of-
ten be able to generate, or respond to, sequential events in the system. 
This ability to use time as part of the driver equation is in fact one of 
the important abilities of a microcontroller that makes it such a good 
control for electrical and mechanical systems. However, implementing 
multiple sequences can become long and involved if a linear coding 
style is used. 

A simple construct, called a state machine, simplifies the task of gen-
erating a sequence by breaking the sequence into a series of steps and 
then executing them sequentially. While this sounds like an arbitrary 
definition of a linear piece of code, the difference is that the individual 
sections, or steps in the sequence, are encoded within a SWITCH/CASE 
statement. This breaks the sequence into logical units that can be eas-
ily recognized in the software listing and, more importantly, it allows 
other functions to be performed between the individual steps. It does 
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this by only executing one step each time it is called. Repeatedly calling 
the state machine results in the execution of each step in the sequence. 
To retain the state machine’s place in the sequence, a storage variable 
is defined that determines which step in the sequence is to be executed 
next. This variable is referred to as the state variable, and it is used in 
the SWITCH/CASE statement to determine which step, or state, in the 
state machine is to be executed when the state machine is called. 

For this system to work, the state variable must be incremented at 
the completion of each state. However, it is also true that the sequence 
of states may need to change due to changes in the condition of the 
system. Given that the state variable determines which state is executed, 
it follows that to change the sequence of states, one must simply load 
the state variable with a new value corresponding with the new direction 
the sequence must go. As we will see in this book, this simple construct 
is very powerful, and is in fact the basis for multitasking. 

So, the short definition of a state machine is a collection of steps 
(states) selected for execution based on the value in a state variable. 
Further, manipulation of the value in the state variable allows the state 
machine to emulate all the conditional statements previously presented 
in this chapter.

One of the advantages of the state machine-based design is that it 
allows the easy generation of a sequence of events. Another advantage 
of state machine-based design is its ability to recognize a sequence of 
events. It does this by utilizing the conditional change of the state vari-
able, much as described in the previous paragraph. The only difference 
is that the state variable does not normally change its value, unless a 
specific event is detected. As an analogy, consider a combination lock: 
to open the lock, the numbers have to be entered in a specific sequence 
such as 5, 8, 3, 2. If the numbers were entered 2, 3, 5, 8, the lock would 
not open, so the combination is not only the numbers but their order. 
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If we were to create a state machine to recognize this sequence, it would 
look something like the following:

State = 0;
SWITCH (State)
{
 CASE 0: IF (in_key()==5) THEN state = 1;
  Break;
 CASE 1: IF (in_key()==8) THEN State = 2;
   Else State = 0;
  Break;
 CASE 2: IF (in_key()==3) THEN State = 3;
   Else State = 0;
  Break;
 CASE 3: IF (in_key()==2)  THEN UNLOCK();
   Else State = 0;
  Break;
}

Provided that the values returned by in_key() are in the order of 8, 5, 
3, 2, the state variable will step from 0 to 3 and the function UNLOCK() 
will be called. The state variable is only loaded with the value of the 
next state when the right value is received in the right state. If any of the 
values are out of sequence, even though they may be valid for another 
state, the state variable will reset to 0, and the state machine will start 
over. In this way, the state machine will step through its sequence only 
if the values are received in the same sequence as the states in the state 
machine are designed to accept.

So, state machines can be programmed to recognize a sequence of 
events, and they can be programmed to generate a sequence of events. 
Both rely on the history of the previous states and the programmable 
nature of the state-to-state transitions. 

Code Snippet 2.16
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Implementing a state machine is just a matter of:

1. Creating a state variable.

2. Defining a series of states.

3. Decoding the state variable to access the states.

4. Tying actions to the states.

5. Defining the sequence of the states, and any conditions that 
change the sequence.

For example, consider a state machine designed to make peanut and 
jelly sandwiches. The sequence of events is:

1. Get two slices of bread.
2. Open peanut butter jar.
3. Scoop out peanut butter.
4. Smear on first slice of bread.
5. Open jelly jar.
6. Scoop out jelly.
7. Smear on second slice of bread. 
8. Invert second slice of bread.
9. Put second slice on first slice of bread.
10. Eat.

OK, the first thing to do is create a state variable; let’s call it PBJ. It 
has a range of values from 1 to 10, and it probably defines as a CHAR. 
Next, we have to define the sequence of steps in the process, and create 
a means to decode the state variable.

If we take each of these instructions and build them into a CASE 
statement to handle decoding the state variable, then all it needs is 
the appropriate updates to the state variable and the state machine is 
complete.
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SWITCH(PBJ)
{

case 1: Get two slices.
  PBJ = 2
  break

case 2: Open peanut butter jar.
  PBJ = 3
  break

case 3: Scoop out peanut butter.
  PBJ = 4
  break

case 4: Smear on first slice of bread.
  PBJ = 5
  break

case 5: Open jelly jar.
  PBJ = 6
  break

case 6: Scoop out jelly.
  PBJ = 7
  break

case 7: Smear on second slice of bread. 
  PBJ = 8
  break

case 8: Invert second slice of bread.
  PBJ = 9
  break

case 9: Put second slice on first slice of bread.
  PBJ = 10
  break

case 10: Eat
  break

Default: break
}

The calling routine then simply calls the subroutine 10 times and 
the result is an eaten peanut butter and jelly sandwich.

Algorithm 2.3
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Why go to all this trouble? Wouldn’t it be simpler and easier to just 
write it as one long function? Well, yes, the routine could be done as 
one long sequence with the appropriate delays and timing. But this 
format has a couple of limitations. One, making a PB and J sandwich 
would be all the microcontroller could do during the process. And, 
two, making one kind of a PB and J sandwich would be all the routine 
would be capable of doing. There is an important distinction in those 
two sentences; the first states that the microcontroller would only be 
able to perform one task, no multitasking, and the second states that 
all the program would be capable of would be one specific kind of PB 
and J sandwich, no variations. 

Breaking the sequence up into a state machine means we can put other 
functions between the calls to the state machine. The other calls could 
cover housekeeping details such as monitoring a serial port, checking 
a timer, or polling a keyboard. Breaking the sequence up into a state 
machine also means we can use the same routine to make a peanut 
butter only sandwich simply by loading the state variable with state 8, 
instead of state 5 at the end of state 4. In fact, if we include other steps 
such as pouring milk and getting a cookie, and include some additional 
conditional state variable changes, we now have a routine that can make 
several different varieties of snacks, not just a PB and J sandwich.

The power of the state machine construct is not limited to just 
variations of a sequence. By controlling its own state variable, the state 
machine can become a form of specialized virtual microcontroller—basi-
cally a small, software-based controller with a programmable instruction 
set. In fact, the power and flexibility of the state machine will be the 
basis for the multitasking system described later in the book.

Before we dive into some of the more advanced concepts, it is im-
portant to understand some of the basics of state machine operation. 
The best place to start is with the three basic types of state machines: 
execution-indexed, data-indexed, and the hybrid state machine.

The execution-indexed state machine is the type of state machine that 
most people envision when they talk about a state machine, and it is the 
type of state machine shown in the previous examples. It has a CASE 
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statement structure with routine for each CASE, and a state variable 
that controls which state is executed when the state machine is called. A 
good example of an Execution-indexed state machine is the PB&J state 
machine in the previous example. The function performed by the state 
machine is specified by the value held in the state variable.

The other extreme is the data-indexed state machine. It is probably the 
least recognized form of a state machine, even though most designers 
have created several, because it doesn’t use a SWITCH/CASE statement. 
Rather, it uses an array variable with the state variable providing the 
index into the array. The concept behind a data-indexed state machine 
is that the sequence of instructions remains constant, and the data that 
is acted upon is controller by the state variable. 

A hybrid state machine combines aspects of both the data-indexed and 
the execution-indexed to create a state machine with the ability to vary 
both its execution and the data it operates on. This hybrid approach 
allows the varied execution of the execution indexed with the variable 
data aspect of the data-indexed state machine. 

We have three different formats, with different advantages and 
disadvantages. Execution indexed allows designers to vary the actions 
taken in each state, and/or respond to external sequences of events. Data 
indexed allows designers to vary the data acted upon in each state, but 
keep the execution constant. And, finally, the hybrid combines both 
to create a more efficient state machine that requires both the varied 
execution of the execution-indexed and the indexed data capability of 
the data-indexed state machine. Let’s take a closer look at the three types 
and their capabilities.

Data-Indexed State Machines

Consider a system that uses an analog-to-digital converter, or ADC, 
to monitor multiple sensors. Each sensor has its own channel into the 
ADC, its own calibration offset/scaling factors, and its own limits. To 
implement these functions using a data-indexed state machine, we start 
by assigning a state to each input and creating an array-based storage 
for all the values that will be required.
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Starting with the data storage, the system will need storage for the 
following:

1. Calibration offset and scaling values.

2. Upper and lower limit values.

3. The final, calibrated values.

Using a two-dimensional array, we can store the values in the fol-
lowing format. Assume that S_var is the state value associated with a 
specific ADC channel:

ADC_Data[0][ S_var] variable in the array holding the calibra-
tion offset values

ADC_Data[1][ S_var] variable in the array holding the calibra-
tion scaling values

ADC_Data[2][ S_var] variable in the array holding the upper 
limit values

ADC_Data[3][ S_var] variable in the array holding the lower 
limit values

ADC_Data[4][ S_var] variable in the array holding the ADC 
channel select command value

ADC_Data[5][ S_var] variable in the array holding the calibrated 
final values

The actual code to implement the state machine will look like the 
following:

Void ADC(char S_var, boolean alarm)
{
 ADC_Data[4][S_var] = (ADC*ADC_Data[1][S_

var])+ADC_Data[0][S_var];
 IF (ADC_Data[4][S_var]>ADC_Data[2][S_var]) THEN

Alarm = true;
 IF (ADC_Data[4][S_var]<ADC_Data[3][S_var]) THEN

Alarm = true;
 S_var++;
 IF (S_var > max_channel) then S_var = 0;
 ADC_control = ADC_Data[5][S_var];
 ADC_convert_start = true;
}

Code Snippet 2.17
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In the example, the first line converts the raw data value held in ADC 
into a calibrated value by multiplying the scaling factor and adding in 
the offset. The result is stored into the ADC_Data array. Lines 2 and 
3 perform limit testing against the upper and lower limits store in the 
ADC_Data array and set the error variable if there is a problem. Next, 
the state variable S_var is incremented, tested against the maximum 
number of channels to be polled, and wrapped around if it has incre-
mented beyond the end. Finally, the configuration data selecting the 
next channel is loaded into the ADC control register and the conver-
sion is initiated—a total of seven lines of code to scan as many ADC 
channels as the system needs, including both individual calibration and 
range checking.

From the example, it seems that data-indexed state machines are 
fairly simple constructs, so how do they justify the lofty name of state 
machine? Simple—by exhibiting the ability to change its operation based 
on internal and external influences. Consider a variation on the previous 
example. If we add another variable to the data array and place the next 
state information into that variable, we now have a state machine that 
can be reprogrammed “on the fly” to change its sequence of conversions 
based on external input.

ADC_Data[6][ S_var] variable in the array holding the next 
channel to convert

Void ADC(char S_var, boolean alarm)
{
 ADC_Data[4][S_var] = (ADC*ADC_Data[1][S_

var])+ADC_Data[0][S_var];
 IF (ADC_Data[4][S_var]>ADC_Data[2][S_var]) THEN

Alarm = true;
 IF (ADC_Data[4][S_var]<ADC_Data[3][S_var]) THEN

Alarm = true;
 S_var = ADC_Data[6][S_var];
 ADC_control = ADC_Data[5][S_var];
 ADC_convert_start = true;
}

Now the sequence of channels is controlled by the array ADC_Data. 
If the system does not require data from a specific channel, it just 
reprograms the array to route the state machine around the unneeded 
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channel. The state machine could also be built with two or more next 
channels, with the actual next channel determined by whether a fault 
has occurred, or an external flag is set, or a value reported by one of the 
channels has been exceeded.

Don’t let the simplicity of the state machine deceive you; there is 
power and flexibility in the data-indexed state machine. All that is 
required is the imagination to look beyond the simplicity and see the 
possibilities.

Execution-Indexed State Machines

Execution-indexed state machines, as described previously, are often 
mistakenly assumed to be little more than a CASE statement with the 
appropriate routines inserted for the individual states. While the CASE 
statement, or an equivalent machine language construct, is at the heart 
of an execution-based state machine, there is a lot more to their design 
and a lot more to their capabilities. 

For instance, the capability to control its own state variable lends 
itself to a wide variety of capabilities that rival normal linear coding. By 
selectively incrementing or loading the state variable, individual states 
within the state machine can implement:

Sequential execution.

Computed GOTO instructions.

DO/WHILE instructions.

WHILE/DO instructions.

FOR/NEXT instructions.

And even GOSUB/RETURN instructions.

Let’s run through some examples to demonstrate some of the capa-
bilities of the execution-indexed state machine type. 

First of all, to implement a sequence of state steps, it is simply a mat-
ter of assigning the value associated with the next state in the sequence, 
at the end of each state. For example:



Basic Embedded Programming Concepts 93

SWITCH(State_var)
{
 CASE 0:  State_var = 1;
   Break;
 CASE 1:  State_var = 2;
   Break;
 CASE 2:  State_var = 3;
   Break;
}

Somewhere in each state, the next state is loaded into the state 
variable. As a result, each execution of the state machine results in the 
execution of the current state’s code block and the advancement of the 
state variable to the next state. If the states are defined to be sequential 
values, the assignment can even be replaced with a simple increment. 
However, there is no requirement that the states be sequential, or that the 
state machine must sequence down the case statement on each successive 
call to the state machine. It is perfectly valid to have the state machine 
step through the case statement in whatever pattern is convenient, par-
ticularly if the pattern of values in the state variable is convenient for 
some other function in the system, such as the sequence of energized 
windings in a brushless motor. The next state can even be defined by 
the values in an array, making the sequence entirely programmable. 

Computed GOTO instructions are just a simple extension of the 
basic concept used in sequential execution. The only difference is the 
assignment is made from the result of a calculation. For example:

SWITCH(State_var)
{
 CASE 0: State_var = 10 * Var_a;
   Break;
 CASE 10: Function_A;
   State_var = 0;
   Break;
 CASE 20: Function_B;
   State_var = 0;
   Break;
 CASE 30: Function_C
   State_var = 0;
   Break;
}

Code Snippet 2.19

Code Snippet 2.20
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Based on the value present in Var_a, the state machine will execute 
one of three different states the next time it is called. This essentially 
implements a state machine that cannot only change its sequence of 
execution based on data, but can also change its execution to one of 
several different sequences based on data.

Another construct that can be implemented is the IF/THEN/ELSE 
statement. Based on the result of a comparison in one of the states, 
the state machine can step to one of two different states, altering its 
sequence. If the comparison in the conditional statement is true, then 
the state variable is loaded with the new state value associated with the 
THEN part of the IF statement and the next time the state machine 
is executed, it will execute the new state. If the comparison results in a 
false, then the state variable is loaded with a different value and the state 
machine executes the state associated with the ELSE portion of the IF 
statement. For example:

SWITCH(State_var)
{
 CASE 0:  IF (Var_A > Var_B) THEN State_var = 1;
      ELSE State_var = 2;
   Break;
 CASE 1:  Var_B = Var_A
   State_var = 0;
   Break;
 CASE 2:  Var_A = Var_B
   State_var = 0;
   Break;
}

In the example, whenever the value in Var_A is larger than the value 
in Var_B, the state machine advances to state 1 and the value in Var_A 
is copied into Var_B. The state machine then returns to state 0. If the 
value in Var_B is greater than or equal to Var_A, then Var_B is copied 
into Var_A, and the state machine returns to state 0.

Now, having seen both the GOTO and the IF/THEN/ELSE, it is 
a simple matter to implement all three iterative statements by simply 
combining the GOTO and the IF/THEN/ELSE. For example, a DO/
WHILE iterative statement would be implemented as follows:

Code Snippet 2.21
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 CASE 4:  Function;
    State_var = 5;
    Break;
 CASE 5:  IF (comparison)  THEN State_var = 4;
       ELSE State_var = 6;
    Break;
 CASE 6:

In the example, state 4 holds the (DO) function within the loop, and 
state 5 holds the (WHILE) comparison. And, a WHILE/DO iterative 
statement would be implemented as follows:

 CASE 4:  IF (comparison)  THEN State_var = 5;
       ELSE State_var = 6;
    Break;
 CASE 5:  Function;
    State_var = 4;
    Break;
 CASE 6:

In this example, state 4 holds the (WHILE) comparison, and state 
5 holds the (DO) function within the loop. A FOR/NEXT iterative 
statement would be implemented as follows:

 CASE 3:  Counter = 6;
   State_var = 4;
   Break;
 CASE 4:  IF (Counter > 0)  THEN State_var = 5;
      ELSE State_var = 6;
   Break;
 CASE 5:  Function;
   Counter = Counter – 1;
   State_var = 4;
   Break;
 CASE 6:

In the last example, the variable (Counter) in the FOR/NEXT is 
assigned its value in state 3, is compared to 0 in state 4 (FOR), and is 
then incremented and looped back in state 5 (NEXT).

These three iterative constructs are all simple combinations of the 
GOTO and IF/THEN/ELSE described previously. Building them into 
a state machine just required breaking the various parts out into separate 
states, and appropriately setting the state variable.

Code Snippet 2.22

Code Snippet 2.23

Code Snippet 2.24
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The final construct to examine in an execution-indexed state machine 
is the CALL/RETURN. Now, the question arises, why do designers need 
a subroutine construct in state machines? What possible use is it? 

Well, let’s take the example of a state machine that has to generate 
two different delays. State machine delays are typically implemented by 
repeatedly calling a do-nothing state, and then returning to an active 
state. For example, the following is a typical state machine delay:

 CASE 3:  Counter = 6;
    State_var = 4;
   Break;
 CASE 4:  IF (Counter == 0) THEN State_var = 5;
    Counter = Counter – 1;
   Break;
 CASE 5:

This routine will wait in state 4 a total of six times before moving 
on to state 5. If we want to create two different delays, or use the same 
delay twice, we would have to create two different wait states. However, 
if we build the delay as a subroutine state, implementing both the CALL 
and RETURN, we can use the same state over and over, saving program 
memory. For example:

 CASE 3: Counter = 6;
   State_var = 20;
   Back_var = 4
   Break;
  |  |
  |  |
 CASE 12: Counter = 10;
   State_var = 20;
   Back_var = 13
   Break;
  |  |
  |  |
 CASE 20: IF (Counter == 0) THEN State_var = Back_var;
   Counter = Counter – 1;
   Break;

Code Snippet 2.25

Code Snippet 2.26
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In the example, states 3 and 12 are calling states and state 20 is the 
subroutine. Both 3 and 12 loaded the delay counter with the delays 
they required, loaded Back_var with the state immediately following the 
calling state (return address), and jumped to the delay state 20 (CALL). 
State 20 then delayed the appropriate number of times, and transferred 
the return value in Back_var into the state variable (RETURN).

By providing a return state value, and setting the counter variable 
before changing state, a simple yet effective subroutine system was 
built into a state machine. With a little work and a small array for the 
Back_var, the subroutine could even call other subroutines.

Hybrid State Machines

Hybrid state machines are a combination of both formats; they have 
the CASE structure of an execution-based state machine, as well as the 
array-based data structure of a data-indexed state machine. They are 
typically used in applications that require the sequential nature of an 
execution-based state machine, combined with the ability to handle 
multiple data blocks.

A good example of this hybrid requirement is a software-based serial 
transmit function. The function must generate a start bit, 8 data bits, 
a parity bit and one or more stop bits. The start, parity, and stop bits 
have different functionality and implementing them within an execu-
tion-based state machine is simple and straightforward. However, the 
transmission of the 8 data bits does not work as well within the execution-
based format. It would have to be implemented as eight nearly identical 
states, which would be inefficient and a waste of program memory. So, a 
second data-driven state machine, embedded in the first state machine, 
is needed to handle the 8 data bits being transmitted. The following is 
an example of how the hybrid format would be implemented:
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SWITCH(Ex_State_var)
{
 CASE 0:     // waiting for new character
  IF (Data_avail == true) THEN Ex_State_var = 1;
  Break;

 CASE 1:     // begin with a start bit
  Output(0);
  Ex_State_var = 2;
  DI_State_var = 0;
  Break;

 CASE 2:     // sending bits 0-7
  If ((Tx_data & (2^DI_State_var))) == 0)
   Then   Output(0);
   Else  Output(1);
  DI_State_var++;
  If (DI_State_var == 8) Then Ex_State_var = 3;
  Break;

 CASE 3:     // Output Parity bit
  Output(Parity(Tx_data));
  Ex_State_var = 4;
  Break;

 CASE 4:     // Send Stop bit to end
  Output(1);
  Ex_State_var = 0
}

Note that the example has two state variables, Ex_State_var and 
DI_State_var. Ex_State_var is the state variable for the execution-indexed 
section of the state machine, determining which of the four cases in the 
SWITCH statement is executed. DI_State_var is the state variable for 
the data-indexed section of the state machine, determining which bit 
in the 8-bit data variable is transmitted on each pass through state 2. 
Together the two types of state machine produce a hybrid state machine 
that is both simple and efficient. 

On a side note, it should be noted that the Ex_State_var and DI_
State_var can be combined into a single data variable to conserve data 
memory. However, this is typically not done due to the extra overhead 

Code Snippet 2.27
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of separating the two values. Even if the two values are combined using 
a Structure declaration, the compiler will still have to include additional 
code to mask off the two values.

Multitasking

In this last section of Chapter 2, we finally get to the subject that defines 
this book, multitasking. Multitasking is the ability to execute multiple 
separate tasks in a fashion that is seemingly simultaneous. Note the 
phrase “seemingly simultaneous.” Short of a multiple processor system, 
there is no way to make a single processor execute multiple tasks at the 
same time. However, there is a way to create a system that seems to 
execute multiple tasks at the same time. The secret is to divide up the 
processor’s time so it can put a segment of time on each of the tasks on a 
regular basis. The result is the appearance that the processor is executing 
multiple tasks, when in actuality the processor is just switching between 
the tasks too quickly to be noticed.

As an example, consider four cars driving on a freeway. Each car has 
a driver and a desired destination, but no engine. A repair truck arrives, 
but it only has one engine. For each car to move toward its destination, 
it must use a common engine, shared with the other cars on the freeway. 
(See Figure 2.1.)

Now in one scenario, the engine could be given to a single car, until 
it reaches its destination, and then transferred to the next car until it 
reaches its destination, and so on until all the cars get where they are 
going. While this would accomplish the desired result, it does leave the 
other cars sitting on the freeway until the car with the engine finishes 
its trip. It also means that the cars would not be able to interact with 
each other during their trips.

A better scenario would be to give the engine to the first car for a 
short period of time, then move it to the second for a short period, 
then the third, then the fourth, and then back to first, continuing the 
rotation through the cars over and over. In this scenario, all of the cars 
make progress toward their destinations. They won’t make the same rate 
of progress that they would if they had exclusive use of the engine, but 
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they all do move together. This has a couple of advantages; the cars travel 
at a similar rate, all of the cars complete their trip at approximately the 
same time, and the cars are close enough during their trip to interact 
with each other.

This scenario is in fact, the common method for multitasking in 
an operating system. A task is granted a slice of execution time, then 
halted, and the next task begins to execute. When its time runs out, a 
third task begins executing, and so on. 

While this is an over-simplification of the process, it is the basic 
underlying principle of a multitasking operating system: multiple pro-
grams operating within small slices of time, with a central control that 
coordinates the changes. The central control manages the switching 
between the various tasks, handles communications between the tasks, 
and even determines which tasks should run next. This central control is 

Figure 2.1 Automotive Multitasking.
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in fact the multitasking operating system. If we plan to develop software 
that can multitask without an operating system, then our design must 
include all of the same elements of an operating system to accomplish 
multitasking.

Four Basic Requirements of Multitasking

The three basic requirements of a multitasking system are: context 
switching, communications, managing priorities. To these three func-
tions, a fourth—timing control—is required to manage multitasking 
in a real-time environment. Functions to handle each of these require-
ments must be developed within a system for that system to be able to 
multitask in real time successfully. 

To better understand the requirements, we will start with a general 
description of each requirement, and then examine how the two main 
classes of multitasking operating systems handle the requirements. 
Finally, we’ll look at how a stand-alone system can manage the require-
ments without an operating system. 

Context Switching

When a processor is executing a program, several registers contain data 
associated with the execution. They include the working registers, the 
program counter, the system status register, the stack pointer, and the 
values on the stack. For a program to operate correctly, each of these 
registers must have the right data and any changes caused by the execu-
tion of the program must be accurately retained. There may also be 
addition data, variables used by the program, intermediate values from 
a complex calculation, or even hidden variables used by utilities from a 
higher level language used to generate the program. All of this informa-
tion is considered the program, or task, context. 

When multiple tasks are multitasking, it is necessary to swap in and 
out all of this information or context, whenever the program switches 
from one task to another. Without the correct context, the program that 
is loaded will have problems, RETURNs will not go to the right address, 
comparisons will give faulty results, or the microcontroller could even 
lose its place in the program. 
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To make sure the context is correct for each task, a specific function 
in the operating system, called the Context Switcher, is needed. Its func-
tion is to collect the context of the previous task and save it in a safe 
place. It then has to retrieve the context of the next task and restore it 
to the appropriate registers. In addition to the context switcher, a block 
of data memory sufficient to hold the context of each task must also be 
reserved for each task operating. 

When we talk about multitasking with an operating system in the 
next section, one of the main differentiating points of operating systems 
is the event that triggers context switcher, and what effect that system 
has on both the context switcher and the system in general.

Communications

Another requirement of a multitasking system is the ability of the various 
tasks in the system to reliably communicate with one another. While 
this may seem to be a trivial matter, it is the very nature of multitasking 
that makes the communications between tasks difficult. Not only are 
the tasks never executing simultaneously, the receiving task may not be 
ready to receive when the sending task transmits. The rate at which the 
sending task is transmitting may be faster than the receiving task can 
accept the data. The receiving task may not even accept the communi-
cations. These complications, and others, result in the requirement for 
a communications system between the various tasks. Note: the generic 
term “intertask communications” will typically be used when describing 
the data passed through the communications system and the various 
handshaking protocols used.

Managing Priorities

The priority manager operates in concert with the context switcher, 
determining which tasks should be next in the queue to have execution 
time. It bases its decisions on the relative priority of the tasks and the 
current mode of operation for the system. It is in essence an arbitrator, 
balancing the needs of the various tasks based on their importance to
the system at a given moment. 

In larger operating systems, system configuration, recent operational 
history, and even statistical analysis of the programs can be used by the 
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priority manager to set the system’s priorities. Such a complicated system 
is seldom required in embedded programming, but some method for 
shifting emphasis from one task to another is needed for the system to 
adapt to the changing needs of the system.

Timing Control

The final requirement for real-time multitasking is timing control. It is 
responsible for the timing of the task’s execution. Now, this may sound 
like just a variation on the priority manager, and the timing control does 
interact with the priority manager to do its job. But, while the priority 
manager determines which tasks are next, it is the timing control that 
determines the order of execution, setting when the task executes. 

The distinction between the roles can be somewhat fuzzy. However, 
the main point to remember is that the timing control determines when
a task is executed, and it is the priority control that determines if the 
task is executed.

Balancing the requirements of the timing control and the priority 
manager is seldom simple nor easy. After all, real-time systems often 
have multiple asynchronous tasks, operating at different rates, interact-
ing with each other and the asynchronous real world. However, careful 
design and thorough testing can produce a system with a reasonable 
balance between timing and priorities. In fact, much of the system-level 
design in Chapters 3 and 4 will deal specifically with determining and 
managing these often-conflicting requirements.

Operating Systems

To better understand the requirements of multitasking, let’s take a look 
at how two different types of operating systems handle multitasking. 
The two types of operating system are preemptive and cooperative. Both 
utilize a context switcher to swap one task for another; the difference 
is the event that triggers the context switch. A preemptive operating 
system typically uses a timer-driven interrupt, which calls the context 
switcher through the interrupt service routine. A cooperative operating 
system relies on subroutine calls by the task to periodically invoke the 
context switcher. Both systems employ the stack to capture and retrieve 
the return address; it is just the method that differs. However, as we 
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will see below, this creates quite a difference in the operation of the 
operating systems.

Of the two systems, the more familiar is the preemptive style of 
operating system. This is because it uses the interrupt mechanism 
within the microcontroller in much the same way as an interrupt service 
routine does. 

When the interrupt fires, the current program counter value is pushed 
onto the stack, along with the status and working registers. The microcon-
troller then calls the interrupt service routine, or ISR, which determines 
the cause of the interrupt, handles the event, and then clears the interrupt 
condition. When the ISR has completed its task, the return address, status 
and register values are then retrieved and restored, and the main program 
continues on without any knowledge of the ISR’s execution.

The difference between the operation of the ISR and a preemptive 
operating system is that the main program that the ISR returns to is not 
the same program that was running when the interrupt occurred. That’s 
because, during the interrupt, the context switcher swaps in the context 
for the next task to be executed. So, basically, each task is operating within 
the ISR of every other task. And just like the program interrupted by the 
ISR, each task is oblivious to the execution of all the other tasks.

The interrupt driven nature of the preemptive operating system gives 
rise to some advantages that are unique to the preemptive operating 
system:

The slice of time that each task is allocated is strictly regulated. 
When the interrupt fires, the current task loses access to the 
microcontroller and the next task is substituted. So, no one 
task can monopolize the system by refusing to release the 
microcontroller.

Because the transition from one task to the next is driven by 
hardware, it is not dependent upon the correct operation of the 
code within the current task. A fault condition that corrupts the 
program counter within one task is unlikely to corrupt another 
current task, provided the corrupted task does not trample on 
another task’s variable space. The other tasks in the system should 
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still operate, and the operating system should still swap them in 
and out on time. Only the corrupted task should fail. While this 
is not a guarantee, the interrupt nature of the preemptive system 
does offer some protection. 

The programming of the individual tasks can be linear, without 
any special formatting to accommodate multitasking. This means 
traditional programming practices can be used for development, 
reducing the amount of training required to bring on-board a 
new designer.

However, because the context switch is asynchronous to the task 
timing, meaning it can occur at any time during the task execution, 
complex operations within the task may be interrupted before they 
complete, so a preemptive operating system also suffers from some 
disadvantages as well: 

Multibyte updates to variables and/or peripherals may not com-
plete before the context switch, leaving variable updates and 
peripheral changes incomplete. This is the reason preemptive 
operating systems have a communications manager to handle all 
communications. Its job is to only pass on updates and changes 
that are complete, and hold any that did not complete. 

Absolute timing of events in the task cannot rely on execution 
time. If a context switch occurs during a timed operation, the 
time between actions may include the execution time of one or 
more other tasks. To alleviate this problem timing functions must 
rely on an external hardware function that is not tied to the task’s 
execution. 

Because the operating system does not know what context 
variables are in use when the context switch occurs, any and all 
variables used by the task, including any variables specific to the 
high-level language, must be saved as part of the context. This 
can significantly increase the storage requirements for the context 
switcher. 

While the advantages of the preemptive operating system are attrac-
tive, the disadvantages can be a serious problem in a real-time system. 
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The communications problems will require a communications manager 
to handle multibyte variables and interfaces to peripherals. Any timed 
event will require a much more sophisticated timing control capable of 
adjusting the task’s timing to accommodate specific timing delays. And, 
the storage requirements for the context switcher can require upwards 
of 10–30 bytes, per task—no small amount of memory space as 5 to 10 
tasks are running at the same time. All in all, a preemptive system operates 
well for a PC, which has large amounts of data memory and plenty of 
program memory to hold special communications and timing handlers. 
However, in real-time microcontroller applications, the advantages are 
quickly outweighed by the operating system’s complexity.

The second form of multitasking system is the Cooperative operating 
system. In this operating system, the event triggering the context switch is 
a subroutine call to the operating system by the task currently executing. 
Within the operating system subroutine, the current context is stored 
and the next is retrieved. So, when the operating system returns from the 
subroutine, it will be to an entirely different task, which will then run 
until it makes a subroutine call to the operating system. This places the 
responsibility for timing on the tasks themselves. They determine when 
they will release the microcontroller by the timing of their call to the op-
erating system, thus the name cooperative. This solves some of the more 
difficult problems encountered in the preemptive operating system: 

Multibyte writes to variables and peripherals can be completed 
prior to releasing the microcontroller, so no special commu-
nications handler is required to oversee the communications 
process.

The timed events, performed between calls to the operating 
system, can be based on execution time, eliminating the need 
for external hardware-based delay systems, provided a call to the 
operating system is not made between the start and end of the 
event.

The context storage need only save the current address and the 
stack. Any variables required for statement execution, status, or 
even task variables do not need to be saved as all statement ac-
tivity is completed before the statement making the subroutine 
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call is executed. This means that a cooperative operating system 
has a significantly smaller context storage requirement than a 
preemptive system. This also means the context switcher does 
not need intimate knowledge about register usage in the high-
level language to provide context storage.

However, the news is not all good; there are some drawbacks to the 
cooperative operating system that can be just as much a problem as the 
preemptive operating system:

Because the context switch requires the task to make a call to the 
operating system, any corruption of the task execution, due to 
EMI, static, or programming errors, will cause the entire system 
to fail. Without the voluntary call to the operating system, a 
context switch cannot occur. Therefore, a cooperative operating 
system will typically require an external watchdog function to 
detect and recover from system faults.

Because the time of the context switch is dependent on the flow 
of execution within the task, variations in the flow of the program 
can introduce variations into the system’s long-term timing. Any 
timed events that span one or more calls to the operating system 
will still require an external timing function.

Because the periodic calls to the operating system are the means 
of initiating a context switch, it falls to the designer to evenly 
space the calls throughout the programming for all tasks. It also 
means that if a significant change is made in a task, the placement 
of the calls to the operating system may need to be adjusted. 
This places a significant overhead on the designer to insure that 
the execution times allotted to each task are reasonable and ap-
proximately equal.

As with the preemptive system, the cooperative system has several 
advantages, and several disadvantages as well. In fact, if you examine 
the lists closely, you will see that the two systems have some advantages 
and disadvantages that are mirror images of each other. The preemptive 
system’s context system is variable within the tasks, creating comple-
tion problems. The cooperative system gives the designer the power to 
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determine where and when the context switch occurs, but it suffers in 
its handling of fault conditions. Both suffer from complexity in rela-
tion to timing issues, both require some specialized routines within the 
operating system to execute properly, and both require some special 
design work by the designer to implement and optimize. 

State Machine Multitasking

So, if preemptive and cooperative systems have both good and bad points, 
and neither is the complete answer to writing multitasking software, is 
there a third alternative? The answer is yes, a compromise system de-
signed in a cooperative style with elements of the preemptive system.

Specifically, the system uses state machines for the individual tasks 
with the calls to the state machine regulated by a hardware-driven tim-
ing system. Priorities are managed based on the current value in the 
state variables and the general state of the system. Communications are 
handled through a simple combination of handshaking protocols and 
overall system design. 

The flowchart of the collective system is shown in Figure 2.2. Within 
a fixed infinite loop, each state machine is called based on its current 
priority and its timing requirements. At the end of each state, the state 
machine executes a return and the loop continues onto the next state 
machine. At the end of the loop, the system pauses, waiting for the start 
of the next pass, based on the timeout of a hardware timer. Communica-
tions between the tasks are handled through variables, employing various 
protocols to guarantee the reliable communications of data. 

As with both the preemptive and cooperative systems, there are also 
a number of advantages to a state machine-based system: 

The entry and exit points are fixed by the design of the individual 
states in the state machines, so partial updates to variables or 
peripherals are a function of the design, not the timing of the 
context switch.

A hardware timer sets the timing of each pass through the system 
loop. Because the timing of the loop is constant, no specific delay 
timing subroutines are required for the individual delays within 
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the task. Rather, counting passes through the loop can be used 
to set individual task delays.

Because the individual segments within each task are accessed via 
a state variable, the only context that must be saved is the state 
variable itself.

Because the design leaves slack time at the end of the loop and 
the start of the loop is tied to an external hardware timer, reason-
able changes to the execution time of individual states within the 
state machine do not affect the overall timing of the system.

Figure 2.2 State Machine Multitasking.
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The system does not require any third-party software to imple-
ment, so no license fees or specialized software are required to 
generate the system.

Because the designer designs the entire system, it is completely 
scalable to whatever program and data memory limitation may 
exist. There is no minimal kernel required for operation.

However, just like the other operating systems, there are a few disad-
vantages to the state machine approach to multitasking:

Because the system relies on the state machine returning at the 
end of each state, EMI, static, and programming flaws can take 
down all of the tasks within the system. However, because the 
state variable determines which state is being executed, and it is 
not affected by a corruption of the program counter, a watch-
dog timer driven reset can recover and restart uncorrupted tasks 
without a complete restart of the system.

Additional design time is required to create the state machines, 
communications, timing, and priority control system. 

The resulting state machine-based multitasking system is a collection 
of tasks that are already broken into function-convenient time slices, with 
fixed hardware-based timing and a simple priority and communication 
system specific to the design. Because the overall design for the system 
is geared specifically to the needs of the system, and not generalized for 
all possible designs, the operation is both simple and reliable if designed 
correctly.

The balance of this book will concentrate on the design methodol-
ogy required to create the minimal set of task state machines, timing 
controls, priority management, and communications required to meet 
the specific needs of almost any embedded system. 



In this chapter, we will start the actual software design process. Because 
we are using a top-down approach to the design, it follows that this 
chapter will deal primarily with the top level of the design. This level 
of design is referred to as the system level. At this level, the general orga-
nization of the software will be developed, including definition of the 
tasks, layout of the communications, determination of the overall system 
timing, and the high-level definition of the priority structure. 

These four areas—tasks, communications, timing, and priorities—
will be a recurring theme in this book. This should not be surprising, 
considering they are the four basic requirements for multitasking. The 
development of the system tasks includes context switching, but for 
our purposes, it is expanded to include: the creation of the tasks; the 
development of a communications plan to handle all the communica-
tions between tasks; a timing control system to insure that each task is 
active at the right time to accomplish its function; and, finally, a priority 
manager to shift execution time to those tasks that are important to the 
system at any given moment.

To begin the system-level design, the designer needs a clear under-
standing of what the final software design must accomplish. The source 
of this information is the system requirements document, or simply the 
requirements document. The requirements document should contain 
the functions required, their timing, their communications needs, and 
their priorities. 

3
System-Level Design
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If the requirements document does not contain all of these answers, 
and it typically doesn’t, then it is up to the designer to obtain this 
information. The answer may come through asking questions of the 
department that generated the document, such as Marketing. Some of 
the information may be implied through a reference to another docu-
ment, such as an industry standard on RS-232 serial communications. 
And, in some cases, the designer may simply have to choose. 

Wherever the answers come from, they should end up in the require-
ments document. As part of the design, this document will be a living 
entity throughout the design process. As the requirements change, either 
through external requests from other departments or through compro-
mises that surface in the design, the changes must be documented and 
must include an explanation of the reason for the change. In this way, 
the requirements document not only defines what the system should 
be, but also shows how it evolved during the development.

Some may ask, “Why go to all this trouble? Isn’t commenting in the 
listing sufficient?” Well, yes, the commenting is sufficient to explain 
how the software works, but it does not explain why the software was 
designed in a certain way. It can’t explain that the allocation of the tasks 
had to be a certain way to meet the system’s priorities. It can’t explain 
that halfway through the design additional functions were added to 
meet a new market need. And it can’t explain why other design options 
were passed over because of conflicts in the design. Commenting the 
listing conveys the how and what, while the requirements document 
conveys the why.

One note on documentation: over the course of this chapter and 
the next several important pieces of information will be generated. This 
information will, of course, be available in the requirements document. 
However, an effective shorthand technique is to also list the information 
in a design notes file. This file should be kept simple; a text file is typi-
cally best. In this file, all of the notes, decisions, questions, and answers 
should be noted. 
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Personally, I keep a text file open in the background to hold my design 
notes when I dissect a requirements document. That way, I can note 
important information as I come across it. Another good reason to keep 
a design notes text file is that it is an excellent source of documentation 
for commenting. Whether generating a header comment for a software 
function or source information for a user’s guide, all a designer has to 
do is copy and paste applicable information out of the design notes file. 
This saves time and eliminates errors in typing and memory. It also tends 
to produce more verbose header comments.

Dissecting the Requirements Document

While this may sound a little gruesome, it is accurate. The designer 
must carve up the document and wring out every scrap of information 
to feed the design process. In the following sections, we will categorize 
the information, document it in a couple of useful shorthand notations, 
and check the result for any vague areas or gaps. Only when the designer 
is sure that all the information is present and accounted for, should the 
design continue on. If not, then the designer runs the risk of having 
to start over. The five most frustrating words a designer ever hears are 
“What I really meant was.”

So what is needed in a requirements document? Taking a note from 
the previous section, the four basic requirements are:

Tasks: This includes a list of all the functions the software 
will be required to perform and any information concerning 
algorithms.

Communications: This includes all information about data size, 
input, output, or temporary storage and also any information 
about events that must be recognized, and how.

Timing: This includes not only the timing requirements for the 
individual tasks, but also the overall system timing.

Priorities: This includes the priorities for the system, priorities 
in different system modes, and the priorities within each task. 
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Together, these four basic requirements for the system define the 
development process from the system level, through the component 
level, down to the actual implementation. Therefore, they are the four 
areas of information that are needed in a requirements document.

So, where to start? As the saying goes, “Start at the beginning.” We 
start with the system tasks, which means all the functions that are to be 
performed by the tasks. And that means building a function list.

To aid in the understanding of the design process, and to provide 
a consistent set of examples, we will use the design of a simple alarm 
clock as an example. The following is a short description of the design 
and the initial requirement document:

Requirements Document

The final product is to be a 6-digit alarm clock 
with the following features:

1. 6-digit LED display, showing hours : minutes : 
seconds. The hours can be in either a 12 hour or 
24 hour format. In the 12 hour format a single 
LED indicator specifying AM / PM is included.

2. 6 controls, FAST_SET, SLOW_SET, TIME_SET, ALARM_
SET, ALARM_ON, SNOOZE.

3. The alarm shall both flash the display, and emit 
a AM modulated audio tone.

Function List

The first piece of documentation to build from the requirements docu-
ment is a comprehensive function list. The function list should include 
all of the software functions described in the requirements document, 
any algorithms that may be specified or implied, and the general flow 
of the functions operation. 

Reviewing the requirements document above, the following prelimi-
nary list of functions was compiled.

Document 3.1
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Preliminary Function List

1. Display functions to output data onto the 
displays
a. 12-hour display function for time 
b. 24-hour display function for time
c. 12-hour display function for alarm
d. 24-hour display function for alarm
e. Display flashing routine for the alarm

2. An input function to monitor and debounce the 
controls
a. Control input monitoring function
b. Debounce routine

3. A Command decoder function to decode the com-
mands entered by the controls

4. An alarm function to check the current time and 
generate the alarm when needed.
a. Turn alarm on / off
b. Snooze
c. Generate alarm tone
d. Set alarm

5. Real-time clock
a. Increment time at 1Hz
b. Set Time

Function List Questions

1. Display function questions
1.1. Are displays scanned or driven in parallel?
1.2. How is 12 / 24 hour operation selected?

2. Input function questions
2.1. How do the control inputs work?

3. A command decoder questions
3.1. What are the commands?
3.2. How do the commands work?

4. An alarm function questions
4.1. How does the user turn the alarm on and off?
4.2. How does the user know the alarm is on or off? 
4.3. How does the snooze function work?
4.4. How is the alarm set?
4.5. What frequency is the alarm tone?

List 3.1
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5. Real-time clock questions
5.1. What is the time reference for 1 Hz?
5.2. How does the time reference operate?
5.3. What happens if the power fails?
5.4. How is the time set?

How can something as simple as an alarm clock generate so many 
functions and so many questions? I know how an alarm clock works, so 
why can’t I just start writing code? While the designer may have a very 
good idea of how an alarm clock works, the purpose of this exercise is 
to get a very good idea of how marketing thinks the alarm clock should 
work, so we can design the alarm clock they want. Remember those five 
terrifying words, “what I really meant was.”

Note: The designer should not be concerned if some of the functions 
appear to be repeated, such as the functions for time set, alarm set, and 
the function to flash the display, for example. Duplicates will be removed 
when the functions are combined into the various system tasks. In addi-
tion, duplicate listings indicate that the functionality may be split across 
a couple functions, so they also serve to indicate some of the function 
design choices that are yet to be made. Don’t delete them until after the 
design decision is made. 

The questions raised are also important:

How will the LED display system be implemented in hardware? 
How are the controls implemented? How does the time reference 
operate and what will the software have to do? 

The group designing the hardware will have the answer to these 
questions.

How is the time and alarm time set? How is snooze initiated?
How is 12/24 hour operation selected? 

The answer to these questions will have to be answered by the group 
envisioning the product’s look and feel.
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As part of the function list, the designer should also include informa-
tion about any algorithms used by a function. For example, the algorithm 
for converting data into a 7-segment format, any math routines for the 
60 second/minute roll over, and even the algorithm for calculating the 
new alarm time when a snooze is activated. All of these will be a factor 
in the development of the different tasks in the system and should be 
recorded.

One final piece of information to note is the flow of the functions. 
Flow deals with the order in which things happen in a function. It can 
be simple and linear. For example: Increment seconds, if seconds = 60 
then seconds = 0 and increment minutes. Or, it can be complex and 
require a graphical flow chart to accurately depict its functionality. 

Figure 3.1 Flow Chart of Snooze Function.
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Either way, it needs to be clearly defined so the designer has a clear 
idea of how the function works, with a list of any exceptions. 

Note that there is nothing wrong with drawing pictures, and flow charts 
are very useful for graphically depicting the flow of a function. The use of 
pseudocode is another useful tool for describing how a function operates. 
Designers should not feel reluctant to drag out a large piece of paper and 
start drawing. If electronic copies of the documentation are required, the 
drawings can always be scanned and stored in a digital form.

Finally, when this section on the requirements document started, it 
was stated that any answers to questions should be included in a revi-
sion of the requirements document. So, including answers from all the 
groups, the document is rewritten with the new information:

REQUIREMENTS DOCUMENT

The final product is to be a 6-digit alarm clock 
with the following features:
1. A scanned 6-digit numeric LED display.

a. Time display is in either 24-hour or 12-hour 
AM/PM format with hours, minutes, and seconds 
displayed.

b. Single LED enunciators are included for both 
ALARM ON and PM time.

c. No indicator is used for AM or 24-hour 
operation.

d. No indication of snooze operation is required.
e. The alarm function can flash the display.
f. Battery operation can blank the display.

2. 6 controls, FAST_SET, SLOW_SET, TIME_SET, ALARM_
SET, ALARM_ON, SNOOZE.
a. All controls, except ALARM_ON are push but-

tons. Combinations of button presses initiate 
the various commands. ALARM_ON is a slide 
switch.

b. See below for command function information.
3. A Command decoder function to decode the com-

mands entered by the controls.
a. See below for detailed command operation.

4. An alarm function.
a. Alarm time shall be displayed in hours and 

minutes with the seconds display blank when 
in the alarm set mode. The format shall match 
the current time display.

b. The maximum number of snooze commands is not 
limited.

Document 3.2
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c. The display shall flash in time to the tone.
d. Turning the alarm on and off, setting the 

alarm time, and initiating snooze is de-
scribed in the Command function section of 
the document.

e. The alarm tone shall be 1 kHz, modulated at a 
1 Hz rate (50% duty cycle).

5. The clock shall use the 60-Hz power cycle as a 
time-keeping reference for the real-time clock 
function.
a. If 5 consecutive 60-Hz cycles are missed, the 

clock shall revert to the microcontroller 
clock.

b. A battery back-up system shall be included 
that requires no action from the microcon-
troller to operate.

c. While on battery operation, the display and 
alarm functions shall be disabled. If the 
alarm time passes during battery operation, 
then the alarm shall sound when 60-Hz power 
is restored.

d. When the microcontroller detects 5 consecu-
tive 60-Hz cycles, it shall revert to the 
power line time base.

e. See below for setting the time and selecting 
12/24-hour operation.

The new document, while verbose, is also much less ambiguous 
concerning the functionality of the system. Most of the questions have 
been answered and a significant amount of information has been added. 
The edits to the document are by no means complete, since there is 
information concerning communications, timing, and priorities yet 
to be examined. If you look carefully at the revised document, none 
of the questions concerning the operation of the commands have been 
answered. However, at this point most of the functionality of the various 
software functions has been clarified.

It is now time to answer the questions concerning the user interface, 
or command structure, of the system. In the previous section, questions 
concerning this information were asked but not answered. The reason 
is that the user interface, while contributing to the list of functions, is a 
sufficiently unique subject that it warrants special attention. Therefore, 
it is the next section to be covered.

Document 3.2
(continued)
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The User Interface 

A good user interface can make a product useful and a joy to use, while 
a bad user interface can be a source of frustration and pain. Although 
the science of developing a good user interface is sufficiently complex 
to fill several books this size, a fairly simple analysis of the proposed 
system can typically weed out most of the more common problems 
and inefficiencies. Additionally, the technique described in this section 
clearly documents the command structure and clearly shows any miss-
ing information. Even if the interface has been used extensively in older 
systems, it never hurts to revisit the evaluation, if only to get a clear 
picture of the command flow.

The first step is to storyboard, or flow chart, the command structure. 
This is accomplished by graphically showing the step-by-step sequence 
required to perform a command entry. For instance, setting the time 
on our alarm clock:

Figure 3.2 Command Structure Flow Chart of Time_Set.
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In the example, round bubbles are used to indicate inputs from the 
users and rectangular boxes indicate responses from the system. Arrows 
then indicate the flow of the process, with the point of the arrow indi-
cating the next event in the sequence. Some arrows have two or more 
points, indicating that two or more different directions are possible. For 
example, after the current time has been displayed by the system, the 
user has the option to release the TIME_SET button and terminate the 
command, or press either the FAST_SET or SLOW_SET buttons to 
change the current time.

At the top of the diagram is a line labeled IDLE and this is where the 
time set command sequence begins and ends. IDLE has been defined 
for this diagram to be the normal state of the system with the alarm 
disabled. Other system modes with mode-specific command sequences 
could include ALARM_ON, SNOOZE, and ALARM_ACTIVE. By 
using a specific system mode as a starting point, the diagram is indicat-
ing that the command is only available or recognized in that specific 
mode. If the label was ALL, then the command would be available in 
all system modes. Combinations of modes, such as ALARM_ON and 
ALARM_ACTIVE, can also be specified to indicate that a command 
is only available in the listed modes. However, most commands are 
typically available in all modes of the system, with only special-purpose 
commands restricted to a specific mode. For example, the ALARM_SET 
command would be available whether the alarm is enabled or disabled, 
while the SNOOZE command is only useful when the alarm is active, 
so it makes sense to only allow it for that specific mode.

Each command diagram should be complete, in that it shows all 
legitimate actions available for the command. It can also be useful to 
diagram sequences that generate an error, as this clarifies the error-han-
dling functions in the user interface. In our example of an alarm clock, 
the system’s response to an improper input is simply to ignore it. More 
complex systems may not have this luxury and may need a specific 
response to the unwanted input. To separate legitimate actions from 
errors, it is typically sufficient to draw the arrows for error conditions 
in red and the legitimate course of action in black. For diagrams that 
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will be copied in black and white, a bold line to indicate improper input 
can also be used.

In more complex systems, the storyboards for a command structure 
can become large and cumbersome. To avoid this problem, the designer 
can replace sections of the diagram with a substitution box indicating 
additional information is available in a subdiagram. See the dashed line 
box surrounding the “Press FAST_SET” and “Add 20 min to current 
time” boxes in Figure 3.2. This is particularly useful if a commonly used 
edit sequence, used in multiple places in the diagram, can be replaced 
with a single subdiagram. The only prudent limitation on the practice 
is that the substituted section should only have one entrance and one 
exit. Some systems may in fact be so complex that an overall command 
storyboard may be required, with the individual commands listed as 
subdiagrams.

When all the storyboards are complete, they should be shown to the 
group that designed the system so they can clarify any misunderstand-
ings. This is best done at the beginning, before several hundred lines of 
software are written and debugged. 

Once all of the storyboards are complete, take each storyboard and 
note down how many key presses are required to set each function, 
worst case. For the clock time set example, the worst-case number of 
key presses is 83, 1 for the initial press and hold of the TIME-SET but-
ton, 23 presses of the FAST_SET to set hours, and 59 presses of the 
SLOW_SET to set minutes. Next, calculate the time required to per-
form that number of button presses. Assume that a key can be pressed 
repeatedly at a rate of 2–3 presses per second. For the clock this means 
that the worst-case time required to set the time is 42 seconds if each 
key press is made individually, and as much as 83 seconds if the auto-
repeat feature is used.

Now, for the complete command structure, list the commands based 
on the frequency that each command is likely to be used, with most often 
used at the top of the list, and least often used at the bottom. Next to 
each command sequence name, list the worst-case number of key presses 
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required to perform the command and the estimated time required. See 
the following list for the commands used in the alarm clock:

Frequency of Use Function Name Button Presses Time
Most infrequent Set Time 83 42/83 sec
Infrequent Set Alarm 83 42/83 sec
Frequent Enable Alarm Slide Switch 1 sec
Frequent Disable Alarm Slide Switch 1 sec
Very frequent Snooze 1 ½ sec

The times and number of key presses should be the inverse of the 
frequency of use. Specifically, the most common commands should have 
the least number of key presses and the fastest time to perform, and the 
least-often used commands should have the largest number of key presses 
and the longest time to set. If any command is out of sequence, then 
the flow of that command should be reconsidered, so that it falls in line 
with the other commands. From the example, Set Time and Set Alarm 
time are the longest to set and the least frequently used. The Snooze 
command is the most frequently used and the fastest to activate.

Another criterion for menu-based command structures is the depth of 
the menu that holds a command. Commonly used commands should be 
at the top level, or at the most, one level deep in the command structure. 
Commands deeper in the menu structure should have progressively less 
frequent use. See the following example menu structure:

ROOT Menu
Delete
Edit Copy

   Paste
   Search Find
   Replace

File Open
   Save
   Close
   New Blank Template
     Select Template

Table 3.1

Structure 3.1
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In this example, the most-often used command is Delete and it is 
at the top of the menu. Edit commands and File commands come next, 
with the New file commands buried the deepest in the menu. Typically, 
a user can remember one or two levels of a menu structure, provided 
that each level has only three or four functions. Any deeper, and they 
will typically have to consult a manual (unlikely), or dig through the 
menus to find the function they want. While designers might wish 
that users used the manuals more often, making this a requirement by 
burying commonly used commands at the bottom of a complex menu 
structure will only drive customers to your competitors. 

Another obvious, but nonetheless often overlooked, requirement is 
that related commands should be in a common subdirectory, and the 
relationship of the commands should be viewed from the user’s point 
of view, not the designers. Just because Paste and Replace have similar 
functions does not mean that the user will look for them in the same 
submenu. The correct choice is to group the commands as shown, by 
their use by the user, rather than their inner workings.

One hallmark of a good user interface is reusing buttons for similar 
functions in different commands. For instance, in the clock example, 
there was a FAST_SET and SLOW_SET button. They are used to set 
the current time, so it makes sense that the same buttons would also be 
used to set the Alarm time. Keeping common functions with the same 
buttons allows the user to stereotype the button’s function in their minds 
and aids in their understanding of the command structure. With this 
in mind, it would be a major failing in a user interface to change the 
function of the control, unless and only unless, the second function is 
an extension of the control’s original function. For instance, changing 
from 12 hour to 24 hour by pressing FAST_SET and SLOW_SET 
buttons together is acceptable because it is an extension of the buttons’ 
original functions. Using the SNOOZE button in combination with 
the ALARM_SET button is just confusing for the user.

Once the user interface has been clearly defined, the requirements 
document should be updated to include the storyboards and any changes 
that may have come out of the analysis. Any changes or additions to 
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the function list, necessitated by the user interface, should also be made 
at this time. 

USER INTERFACE OPTIONS

So far, we have discussed interfaces based on just displays and buttons. 
Another method for entry is to use a rotary encoder as an input device. 
Designers today tend to forget that the original controls on tube radios 
were all knobs and dials. For all their simplicity, they did provide good 
resolution and responsive control, plus most users readily identify with 
the concept of turning a knob. Because they use only a two-bit Grey 
code to encode their movement, their interface is simple and the output 
is not tied to the absolute position of the rotary encoder, making them 
ideal for setting multiple values. 

Imagine the simplicity of setting the alarm clock in the previous 
example using a rotary encoder. Simply hold down the set button and 
turn the dial until the right time appears on the display. Because the knob 
can move in two directions and at a rate determined by the user, it gives 
them additional control that a simple two-button interface does not. 

Another trick with a rotary encoder is to tie the increment and decre-
ment stop size to the rate of rotation, giving the control an exponential 
control resolution. Several quick flips of the knob can run the value up 
quickly by incrementing the value using a large increment. Then slower, 
more precise, rotations adjust the value with a smaller increment, allow-
ing the user to fine-tune the value. 

Another handy rotary input device is the simple potentiometer combined 
with an analog-to-digital converter input. This is a single input with 
many of the same features as the rotary encoder, plus the potentiometer 
is also nonvolatile, meaning it will not lose its setting when the power 
is removed. It does present a problem in that it cannot turn through 
multiples of 360 degrees indefinitely, but depending on the control 
function, this may not be a problem.
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At the end of this phase of the dissection, the designer should have 
a revised function list. Any missing information in the requirements 
document should have been identified and answers found. A clear de-
scription of the user interface and command structure should have been 
generated, with storyboards. Any cumbersome or complicated sequences 
in the command structure should have been identified and rewritten to 
simplify the interface. And, finally, the requirements document should 
have been updated to include the new information. As always, any 
general notes on the system, with any applicable algorithms or specific 
information concerning the design, should also have been compiled.

The revised documents should look like the following:
Revised Function list

1) Display functions to output data onto the displays
a) 12-hour display function for time 
b) 24-hour display function for time
c) 12-hour display function for alarm
d) 24-hour display function for alarm
e) Display flashing routine for the alarm
f) PM indicator display function
g) Alarm on indicator display function
h) Function to scan LED displays

2) An input function to monitor and debounce the controls
a) input function to monitor buttons
b) Debounce routine 
c) Auto repeat routine
d) 60-Hz monitoring routine
e) 60-Hz Fail / Recovery monitoring routine

3) A Command decoder function to decode the commands 
entered by the controls
a) An alarm function to check the current time and 

generate the alarm when needed.
b) Snooze function to silence alarm for 10 minutes.
c) Alarm on / off toggling routine
d) Initiate Snooze
e) Generate alarm tone routine
f) Set alarm function

  i) Routine to increment alarm by 1 min
  ii) Routine to increment alarm by 20 min

g) Set Time function
  i) Routine to increment Time by 1 min
  ii) Routine to increment Time by 20 min

h) Toggle 12/24 hour mode

Document 3.3



System-Level Design 127

4) Real-time clock routine
a) Time increment routine based on 60-Hz power line 

time base
b) Time increment routine based on internal clock 

time base
c) Display blanking routine for operation from 

internal clock time base

DESCRIPTION OF THE USER INTERFACE
Display

  6-digit scanned LED display
  1 indicator for PM operation in 12-hour mode
  1 indicator to show alarm is active

Controls (inputs)
  1 slide switch to enable / disable the alarm
  1 push button for ALARM_SET
  1 push button for TIME_SET
  1 push button for FAST_SET
  1 push button for SLOW_SET
  1 push button for SNOOZE

Time base inputs
  60-Hz line time base
  System clock

DESCRIPTION OF THE COMMAND STRUCTURE
To set Time

  Hold the TIME_SET button 
  (display will show current time with seconds 

blank)
   Press SLOW_SET to increment time by 1 min
   Hold SLOW_SET to auto-increment time by 

1 min at 1-HZ rate
   Press FAST_SET to increment time by 20 min
   Hold FAST_SET to auto-increment time by 

20 min at 1-HZ rate
   (in 12-hour mode, time will roll over at 

12:59)
   (in 24-hour mode, time will roll over at 

23:59)
   Release the TIME_SET button to return to 

normal operation
   (Seconds will appear and start incrementing 

from 0)

Document 3.3 
(continued)

Command
Structure 3.1
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To set alarm time
  Hold the ALARM_SET button 
  (display will show current alarm time with sec-

onds blank)
   Press SLOW_SET to increment alarm time by 1 

min
   Hold SLOW_SET to auto-increment alarm time 

by 1 min at 1-HZ rate
   Press FAST_SET to increment alarm time by 20 

min
   Hold FAST_SET to auto-increment alarm time 

by 20 min at 1-HZ rate
   (in 12-hour mode, time will roll over at 

12:59)
   (in 24-hour mode, time will roll over at 

23:59)
   Release the ALARM_SET button to return to 

normal operation
   (display will show current time)

To turn alarm on
  Slide alarm control switch to on
  (alarm indicator will light)

To turn alarm off
  Slide alarm control switch to off
  (alarm indicator will go blank)

To activate snooze mode, alarm must be active
  Press the SNOOZE button
  (alarm will be remain enabled)
  (tone will stop for for 10 min and then sound 

again)

To toggle 12 hour / 24 hour mode
  Release ALARM_SET and TIME_SET buttons
  Hold the FAST_SET button
  Press the SLOW_SET button
  (12/24 hour mode will toggle)
  (if result is 24-hr mode, time is displayed in 

24-hr format on press)
  (if result is 12-hr mode, time is displayed in 

12-hr format on press)

As no major changes have been made to the requirements document 
since the last section, the document will not be repeated here.

Command
Structure 3.1
(continued)
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Communications

The next area of information to extract from the requirements document 
relates to communication pathways, both within the system and between 
the system and any external systems—specifically, information concern-
ing the volume and type of data that will have to be handled by each 
pathway. This gives the designer a basis to plan out the communications 
system and to estimate the necessary data memory space required. Some 
of this information will be specified in the form of communications 
protocols between the system and external entities such as terminals, 
remote systems, or autonomous storage. Some of the information will 
be dictated by the operation of the peripherals in the system, such as 
timers, A-to-D converters, and the system’s displays. And, some of the 
requirements will be dictated by the operations of the tasks themselves. 
As with the function list, we will have to play detective and determine 
what information is present, what is missing, and what is implied.

What kind of information are we looking for? We will have two 
forms of storage: dynamic and static. Dynamic storage handles a flow of 
information—for example, a serial peripheral that receives messages from 
another system. The task managing the peripheral will require storage 
for the message until it can be passed to a control task for processing. 
Because the peripheral may continue to receive new information while 
it is processing the old message, the storage will typically be larger to 
hold both the current message and the new one being received. This 
storage is therefore considered dynamic because the amount of data 
stored changes with time. The data storage is also not constant. While 
messages are being received, then the storage holds data. If all the mes-
sages received by the peripheral task have been processed, the storage is 
empty. Static storage, on the other hand, has a fixed storage requirement 
because the information is continuous, regardless of the current activity 
of its controlling task—for example, the variable structures that hold 
the current time and alarm time information in our clock example. The 
data may be regularly updated, but it doesn’t change in size, and there 
is always valid data in the variables, so static storage is constant in size 
and continuously holds data.
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All data pathways within a system will fall into one of these two 
categories. What we as designers need to do at this point in the de-
sign is find the various pathways, determine if the storage is static or 
dynamic, and make a reasonable estimate concerning the amount of 
storage required.

A good place to start is the peripherals that introduce information to 
the system. These include serial communications ports, button inputs, 
A-to-D converters (ADCs), even timers. These peripherals constitute 
sources of data for the system as their data is new to the system and 
not derived from other existing data. To determine whether their re-
quirements are static or dynamic, we will have to determine what the 
information is and how the system will ultimately use it. Let’s take a 
couple of examples, and determine which are static or dynamic:

An A-to-D that captures sensor data from several sources. In this 
example the A-to-D continuously samples multiple sources, voltage, 
current, temperature, and pressure. It then scales the resulting value and 
stores the information in a collection of status variables. This periph-
eral is collecting a continuous stream of data, but it is not storing the 
information as a stream of data. Rather, it is updating the appropriate 
status variable each time a new sample is converted. This is an example 
of static storage. The memory requirements are simply the collection 
of status variables, multiplied by their width. The number of variables 
does not change, and they all contain valid data continuously.

An A-to-D that captures a continuous stream of samples from a 
single source for digital signal processing. The data is stored in a large 
array, with the most current at the top and the oldest at the bottom. 
While this certainly sounds dynamic, it is actually static. As in the pre-
vious example, the amount of data does not change, but simply flows 
through the array of values. Each time a new value is added, the old 
value falls off the other end. The amount of storage required is the size 
of the array holding the collection of values, multiplied by their width. 
The number of variables does not change, and they all contain valid 
data continuously. 

Example 3.1

Example 3.2
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A command decoder that converts individual button presses into 
control commands for the system. This certainly sounds static: a button 
is pressed and a command comes out. However, the storage requirement 
is actually dynamic. In the definition of static and dynamic storage, it 
was stated that the amount of valid information in a static system must 
be constant. Here the output of the system can be a valid command, 
or the system may be idle with no valid data output. The amount of 
data changes, even if only from one command to zero commands, so 
the system is dynamic. 

A system that reads data from a disc drive. This system is definitely 
dynamic, since the data is read from the disc as the information passes 
under the heads in the drive, so the timing of the data’s arrival is dictated 
by the physics of the spinning disc. The system that uses the information 
is very probably not synchronized to the spin of the disc, so the system 
reading the disc will have to buffer up the information to handle the 
timing discrepancy between the disc and the receiving system. Because 
the timing is asynchronous, there is no way to predict the amount of 
time between the reception of the data and its subsequent transmission 
to the receiving system. So, the amount of data stored at any given mo-
ment is variable, ranging from zero to the maximum size of the disc file, 
and that makes this storage requirement dynamic.

OK, so some data is static, and we can readily determine the storage 
requirements for these functions, but how do we determine the maxi-
mum size of dynamic storage? The answer lies in the rate at which the 
information enters the system. In a typical system, such as a serial port, 
there will be three potential data rates. 

1. The maximum rate: Typically this is determined by the electrical 
characteristics of the peripheral, the maximum conversion rate 
of the A-to-D, the baud rate of a serial port, or the roll-over time 
of a timer. It represents the theoretical maximum possible rate at 
which data can be sent, and it should be used to set the timing 
requirements of the task that will manage the peripheral.

2. The average rate: Typically this is an indicator of the average data 
load on the system. For a serial port, this will be the number of 

Example 3.3

Example 3.4
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packets sent in a typical second, multiplied by the average size of 
the packets. It is not the fastest rate at which the peripheral will 
have to operate, but it does indicate how much data the system 
will have to handle on a regular basis. 

3. The peak rate: This rate is the worst-case scenario, short of the 
maximum rate defined for the peripheral. It indicates the maxi-
mum amount of data that will be transmitted in a given second. 
The word amount is the important distinction between the peak 
rate and the maximum rate. The maximum rate assumes a con-
tinuous flow of data forever. The peak rate indicates the amount 
of data sent, minus all the delays between packets, and characters 
in the flow of data. So, the peak rate, by definition, must be less 
than the maximum rate, and it represents the maximum data 
load on the system.

So, the maximum rate determines the speed at which the task 
managing the peripheral must operate, and the average and peak rates 
determine the average and worst-case data load on the system. How 
does this determine the amount of storage required? To answer the 
question, consider the example of a system that must receive serial data 
from another system. 

Data from an external system is transmitted in the following format: 
9600 baud, with 8-bit data, no parity, and 1 stop bit. Further, the data 
will be received in packets of 10 bytes, at an average rate of two packets 
every second.

So, to store the data received from the serial port, it is pretty obvi-
ous the temporary data storage structure will be an 8-bit CHAR. And, 
given a baud rate of 9600, with 8-bit data, 1 start bit, and 1 stop bit, the 
maximum rate at which 8-bit CHARs will be generated is 960 characters 
per second. That means that the receiving task will have to be called at 
least 960 times a second to keep up with the data. So far, so good, the 
maximum data rate is 960 characters a second.

960 = (9600baud/(8 bit data + 1 start bit + 1 stop bit)). 
Equation 3.1
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However, how big a buffer will be needed to handle the data? Well, the 
packet size is 10 bytes, so a packet requires 10 bytes of storage. Given that 
the average rate at which a packet can be received is 2 per second, then 
the system will have to process 20 characters a second. And the minimum 
storage would have to be 20 CHARs, 10 for the current packet, plus 10 
more to hold the accumulating data in the second packet. 

OK, the system needs a minimum of 20 CHARs to buffer the in-
coming data. However, what happens if the peak rate is five packets per 
second? Now we need more storage; a minimal 20 CHAR buffer will be 
overrun. How much more storage should actually be allocated? At the 
moment, we don’t have sufficient information to determine the exact 
storage needs, either average or peak. This is because we don’t know the 
rate at which the system will actually process the packets. However, a 
good guess can be made using the average and peak rate numbers. If 
the average rate is two packets per second, then the maximum time the 
system will have to process a packet is limited to ½ a second. If the peak 
rate is five packets per second, and the system can process packets at a 
rate of two per second, then the buffer storage will have to be at least 41 
CHARs. Five incoming packets each second, less one processed packet 
during the first half of the second, gives four packets of storage. At 10 
CHARs per packet, plus one extra for the pointers, that’s 41 CHARs. 
So, a good maximum size guess is 41 bytes for the storage.

One side note to consider, before we leave the discussion on buffer size 
and packet rates, if the control task is fast enough to process the data as 
it is received, why even user a buffer? Why not just process the data as it 
is received? Using this method would seem to be very appealing because 
it is both faster, and less wasteful of data memory. Unfortunately, there 
is an opportunity cost that is not readily apparent. If the control task is 
preoccupied with processing the data as it is received, it will not be able 
to handle other important conditions that may arise while the packet is 
in process. The response to other system conditions will quite literally by 
blocked by the reception of the data packet until it is complete. Using 
the buffer to queue up the complete packet allows the control task to 
handle the packet all at once, freeing it up to handle other important 
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events as they occur. So, the buffer system in effect trades off data storage 
for more efficient use of the control task’s execution time. 

Another point to consider: if the control task does not use a buf-
fer system and processes the data on a CHAR by CHAR basis, it can 
potentially be hung up if the data stream from the communications 
peripheral is interrupted in mid-packet. In fact, if the control task does 
not include some kind of time out timer, the control task may not notice 
even notice the interruption and hang the entire system waiting for a 
character that will never arrive. 

At this point, the information that should be collected is: 

1. What the data is, and its probable variable size.

2. Whether the storage requirement is static or dynamic.

3. Where the data comes from, and goes to.

4. The approximate amount of storage required for the storage.

5. And all information concerning the rate at which the data will 
appear.

Decisions concerning the actual format of the data storage and the 
final amount of data memory allocated will be left until later in the 
design, when more information concerning processing time is available. 
Until then, just note the information for each pathway in the system.

Having retrieved the specifications for data entering the system, the 
next step is to gather requirements for data leaving the system. And, 
again, the exits, like the entrances, will be through the peripherals and 
can be either static or dynamic. 

In the previous section, we determined that static variables were fixed 
in length and continuously held valid data. The same is true for output 
peripherals—for example, the LED displays in our clock example. The 
task that scans the information onto the displays will get its informa-
tion from one of two static variables that hold the current time and 
alarm time for the system. The data feed for the peripheral task has a 
constant size and continuously holds valid data, so the storage for the 
display is static.
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However, if the peripheral is a serial output port, then the storage 
is no longer static because the amount of data is probably variable in 
length, and once transmitted, it probably no longer be valid either. 
Therefore the output queue for a serial output task is probably dynamic. 
But be careful, it could be that the serial output task simply grabs data 
from fixed variables in the system, converts them into ASCII characters, 
and sends them out. In this case, storage for the serial port task may 
be static because it is constant in length and always holds valid data. 
Careful examination of the requirements document is required to make 
a proper determination.

As in the previous section, a determination of the amount of data 
memory needed to hold any dynamic storage will also have to be made. 
Unfortunately, there may not be any explicit peak and average data rates 
to base the calculation on. Instead, we will have to examine the require-
ments placed on the peripheral and make a best guess as to what the 
average and peak rates are for the peripheral.

For example, consider a serial port that will be used to return infor-
mation in response to queries from another system. Like the previous 
section, we will assume a 9600 baud rate, with 8-bit data, no parity, 
and one stop bit. This fixes the maximum rate of data transmission to 
960 characters a second. The trick is now to determine what the average 
and peak data rates will be.

Well, if the data is sent in response to queries, then we can estimate 
the worst-case needs using a little common sense and some math. For 
example, assume the largest response packet is 15 characters long. If 
the maximum rate that new packets can be generated is limited by the 
peak rate at which packets can be received, then the peak rate for new 
outgoing packets is 5 per second (from the previous section). Given 15 
CHARs per query, then the outgoing rate is 5 packets per second, or 
75 characters per second. That means that a reasonable guess for data 
storage is 75 CHARS.

The final section of communications-related data to retrieve from 
the requirements document is any significant data storage requirements 
not covered in the previous sections. It can include on-chip copies of 
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information stored in a nonvolatile memory; scratchpad memory for 
translating, compressing, or de-compressing files of data; or temporary 
storage of data to be moved to a secondary memory. Specifically, large 
blocks of data that hasn’t been accounted for in the input or output 
peripheral data pathways. 

As in previous sections, the data here can be static or dynamic as well. 
Static presents little challenge, as it is a permanent allocation. However, 
dynamic storage will again depend on the timing of the tasks sending 
and receiving the data, so we will again need to know the maximum, 
average, and peak rates at which the data will be transmitted. And, like 
the dynamic storage for the output peripherals, we will typically have 
to infer the rates from other specifications.

Let’s take a simple example: temporary storage for nonvolatile values 
stored in an external EEPROM memory. Having nonvolatile storage for 
calibration constants, identification data, even a serial number, is often 
a requirement of an embedded design. However, the time to retrieve 
the information from the external memory can unnecessarily slow the 
response of the system. Typically, nonvolatile memory requires additional 
overhead to access. This may involve the manipulation of address and 
data registers within an on-chip nonvolatile storage peripheral, or even 
communications with the memory through a serial bus. In either case, 
retrieving the data each time it is needed by the system would be inef-
ficient and time consuming. The faster method is to copy the data into 
faster internal data memory on power-up and use the internal copies 
for all calculations. 

And that is where the amount of internal memory becomes an issue, 
because:

1. It means that internal data memory must be allocated for the 
redundant storage of the information.

2. It means that the data will have to be copied from the external 
memory, and possibly de-compressed, before the system can start 
up.
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3. It means that all updates to the constants must also be copied 
out to the external memory, after being compressed, when the 
change is made. 

This adds up to several blocks of data: data memory to hold the 
on-chip copies of the calibration constants; more data memory will be 
needed for any compression/decompression of the data during retrieval, 
or storage of updates; and, finally, data memory to buffer up the com-
munications strings passed back and forth to the external memory. 

OK, so a few shadow variables will be needed for efficiency. And, cer-
tainly some buffer space for communications with the external memory 
is reasonable, but who builds a compression / decompression algorithm 
into a small embedded system? Well, it may be a requirement that data 
tables are compressed to maximize data storage in an external nonvola-
tile memory, such as a data logger counting tagged fish migrating in a 
stream. If the data logger is a 10-mile hike from the nearest road, and 
compression extends the time between downloads, then it makes sense 
to compress the data. If on-chip storage is limited, then packing bits 
from several variables into each byte saves the cost (in both dollars and 
time) required to augment the storage with external memory. 

Decompression may also be required for communications with an 
external peripheral. Take the example of an RTC, or real-time clock, 
peripheral. Its design is based on a silicon state machine, and the inter-
face is a simple serial transfer. Given the chip is completely hardware 
in nature, it follows that the data will typically use a format that is 
convenient for the state machine and the interface, and not necessarily 
a format that is convenient for the microcontroller talking to it. So, to 
retrieve the current data and time from the peripheral, it is certainly pos-
sible that the microcontroller will have to parse the required data from 
a long string of bits before they can be stored in the internal variables. 
It may also be necessary to translate the data from binary integers into 
BCD values for display.

All of these functions require data storage, some of it dynamic with 
an as yet undetermined length, and some of it static with a predictable 
length. Our purpose here is to gather as much information concerning 
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the communications needs of the system and determine the likely stor-
age requirements.

If we examine our clock project in light of these requirements, we 
come up with the following notes for our design file:

INPUT PERIPHERAL
Buttons: These inputs generate dynamic values a 
single bit in length. There are 6 inputs, with a 
maximum rate of 3 presses per second, an average of 
1 press per second, and a peak rate of 3 per sec-
ond. That means a storage requirement of 18 bits 
for a worst case.

60 Hz: This input is the 60-Hz line clock for the 
system. Its rate does not change under normal oper-
ating conditions, so the maximum, average, and peak 
rates are the same. That leaves us with 1 bit of 
storage.

OUTPUT PERIPHERAL 
Display: The display always has the same number of 
bytes, 7. One for each digit of the display, plus 
1 to keep track of the display currently being 
driven. So, the storage requirement is static. An 
additional bit is needed for blanking the display 
during the Alarm_active time.

Audio alarm: The alarm control is a single bit, 
with a maximum, average, and peak rate of 2 kHz, so 
a single static bit of storage. Note: The rate is 
determined by doubling the frequency of the tone, a 
1-kHz tone requires a bit rate of 2-kHz. Also, the 
rate was not in the requirements document, so the 
question was asked and marketing determined a 1-kHz 
tone was appropriately annoying to wake some one.

OTHER SIGNIFICANT STORAGE
Storage for the current time is needed, so six static 
4-bit variables to hold hours, minutes, and seconds.

Storage for the current alarm time is needed, so four 
static 4-bit variables to hold hours and minutes.

Storage for the snooze offset alarm time is needed, 
so another four static 4-bit variables to hold the 
offset hours and minutes.

Notes
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Storage for the following system set commands;
SLOW_SET_TIME, FAST_SET_TIME, SLOW_SET_ALARM_TIME, 
and FAST_SET_ALARM_TIME
These four dynamic variables have the same timing 
as the FAST_SET and SLOW_SET inputs, so 3 bits per 
variable or 12 bits total.

Storage for the following static system variables;
ALARM_ENABLED, ALARM_SET_ACTIVE, ALARM_ACTIVE, 
SNOOZE_ACTIVE
It is assumed that the button routine will directly 
set these status variables based on the inputs.

It should be noted that these requirements are just estimates at 
this point in the design, and they are subject to change as the design 
evolves. 

Timing Requirements

While the topic of timing has already been raised in the previous section, 
in this section the discussion will be expanded to include the execution 
and response time of the software functions.

When discussing timing in embedded software, there are typically 
two types of timing requirements, rate of execution and response time.
Rate of execution deals with the event-to-event timing within a soft-
ware function. It can be the timing between changes in an output, 
time between samples of an input, or some combination of both. The 
important thing is that the timing specification relates to the execution 
timing of the function only—for example, a software serial input routine 
that simulates a serial port. The rate of execution is related to the baud 
rate of the data being received. If the baud rate is 9600 baud, then the 
routine must be called 9600 times a second to accurately capture each 
bit as it is received. 

Response time, on the other hand, is the time between when a trigger 
event occurs and the time of the first response to the event within the 
function. The trigger is, by definition, an event external to the func-
tion, so the response-timing requirement is a constraint on the software 
system that manages and calls the software functions. Specifically, it 
determines how quickly the main program must recognize an event and 

Notes
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begin executing the appropriate software routine to handle it. Using the 
same software serial port routine as an example, the initial trigger for 
the routine is the falling edge of the start bit. To accurately capture the 
subsequent flow of data bits, the routine will have to sample near the 
center of each bit. So, at a maximum, the response time must be less 
than ¼ bit time; this will place the sample for the first bit within ¼ bit 
time of 50%. If the sample placement must be more accurate, then the 
response time must be correspondingly faster.

Both the rate of execution and response timing requirements should 
be specified in the requirements document, even if they are not critical. 
Listing the requirement at least indicates what timing the designer has 
chosen to meet in the design. It will also become important later in this 
chapter when we determine the system timing. 

Note, that for some software functions, the specifications maybe miss-
ing. It could an omission in the document or the specification may be 
hidden within the specification of another function. Either way, it once 
again falls to the designer to play detective and determine the timing 
requirements. As an example, consider the control function from our 
clock example. In the requirements document, there may not be a specific 
requirement for response time and rate of execution listed for the com-
mand decoder function. However, there should be timing specification 
for the maximum response time to a button command entered by the 
user. So, if the timing requirement states that the system response to a 
button press must be less than 200 msecs from the start of the button 
press, then 200 milliseconds is the maximum time allotted for:

The response time, plus execution time for the keyboard de-
bounce function responsible for scanning the keyboard, and 
determining when a valid button press has occurred.

Plus, the response time allotted to the control task, for the detec-
tion of a command.

Plus, the execution time allotted for processing of the command 
and making the appropriate change in the system.

Plus, the maximum time required to display the change of status 
on the system display.
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If we know the button may take as much as 100 ms to stop bouncing 
and the debounce routine will require a minimum of 50 ms to detect 
the stable button. And the display task scans through all the displays 60 
times a second. Then we can determine that the command function has 
a maximum of 34 msec to detect and process the command:

34 msec = 200 msec – 100 msec – 50 msec – (1/60 Hz) 

So, event through there is not specification for the individual func-
tions in the system, there may be an overall timing specification for the 
execution of the combination of functions. In fact, this will typically 
be the case with timing specifications. Timing requirements are most 
often for a combination of functions rather than the individual func-
tions determined by the designer. This makes sense, as the writers of the 
requirements document can only specify the performance for the system 
as a whole, because they will not know what the specific implementation 
chosen by the designer will look like in the product definition phase. So, 
designers should take care in their review of the requirements document; 
sometimes the important information may not be in the most convenient 
format, and it may in fact be buried within other specifications. 

Both timing parameters should also have tolerance requirements listed 
as well. The response time will typically have a single tolerance value, 
expressed as a plus percentage / minus percentage. And the execution 
rate will have at least one and possibly two, depending on the nature 
of the function. 

Because the response time is less complicated, let’s start with it first. 
The response timing tolerance is the amount of uncertainty in the tim-
ing of when a functions starts. Typically, it is specified as a plus/minus 
percentage on the response time, or it can also be specified as just the 
maximum response time allowed. If it is listed as a ± value, then the 
response time has both a minimum (Tresponse – X%) and maximum 
(Tresponse + X%) specification, and the response time is expected to fall 
within these timing limits. If, on the other hand, the only specification 
is a maximum response time, the more common form, then the mini-
mum is assumed to be 0 and the maximum is the specified maximum 
response time. Because the minimum and maximum times are the values 

Equation 3.2
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important to our design, either form works equally well. The designer 
need only determine the minimum and maximum and note them down 
in the design document for the appropriate software function.

The reason for two potentially different tolerances on execution rate 
is that first tolerance will typically specify the maximum variation for 
a single worst-case event-event timing, while the second specifies the 
total variation in the execution timing over a group of events. If only 
a single tolerance is specified, then it is assumed that it specifies both 
event-event, and the total variation for a group of events. To clarify, 
consider a serial port transmit function implemented in software. The 
routine accepts a byte of data to be sent, and then generates a string of 
ones and zeros on an output to transmit the start, data, parity, and stop 
bits. The event-to-event timing tolerance governs the bit-by-bit timing 
variation in the transitions of the ones and zeros sent. If the port were 
configured for 9600 baud, then the individual bit timing would be 
104 μs. The event-event timing tolerance specifies how much this timing 
can shift for a single bit period. Some bits may be longer, and others 
shorter than the optimal 104 μs, but as long as they are within the speci-
fication, the receiving system should be able to receive the data. 

The overall timing tolerance governs the accumulated average 
variation in bit timing for the complete byte sent by the routine, basi-
cally specifying the maximum variation over the course of the entire 
transmission. The reason this is important has to do with the idea of 
stacked tolerances. For example, say each bit time within a serial data 
transmission is allowed to vary as much as ± 10%. This means that the 
bit transitions may vary from as short as 94 μs, to as much as 114 μs. This 
is not a large amount, and for a single bit time, it is typically not critical. 
However, if the transmitted bits were all long by 10%, the timing error 
will accumulate and shift the position of the data bits. Over the course 
of 6 bits, the shift would be sufficient to move the fourth to fifth bit 
transition so far out that the receiving system would incorrectly think it 
is sampling the sixth data bit of data. If, on the other hand, the overall 
average error is kept below 4%, then even though the individual bits 
may vary by 10%, most of the individual bit timing errors will cancel. 
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In this scenario, the accumulated error should be sufficiently small to 
allow the receiver a marginal probability of receiving the valid data. 

If we consider the problem from a practical point of view, it makes 
sense. There will typically be some variation in the timing of output 
changes. As long as the variation averages out to zero, or some value suf-
ficiently small to be tolerable, then the overall frequency of the output 
changes will be relatively unaffected by the individual variation. So, 
note both values in the design notes for future use by the system in the 
timing analysis later in this chapter. 

One other point to note: Check for any exceptions to the timing re-
quirements, specifically any exception tied to a particular action in the 
function, such as, “The bit timing shall be 9600 baud ±3%, except for 
the stop bit, which shall be 9600 baud +100/–3”. What this requirement 
tells the designer is that the individual bits in the data stream must vary 
less than 3%. The one exception is the stop bit which can be as short as 
the other bits, but may be as long as two complete bits, before the next 
start bit in the data stream. This is a valuable piece of information that 
will help in the design of both the timing and priority control sections 
of the design and, again, it should be noted in the design notes for the 
project.

Using our alarm clock design as an example, we will first have to 
glean all the available timing information from the requirements docu-
ment, and then match it up with our preliminary function list. For those 
functions that are not specifically named with timing requirements, we 
will have to apply some deduction and either derive the information 
from the specifications that are provided, research the requirements in 
any reference specifications, or query the writers of the document for 
additional information. 

The following is the resulting modification to the requirements 
document. Note that timing information specified in other sections 
of the document have been moved to this new section, and additional 
information has been added as well.



144 Chapter 3

5) TIMING REQUIREMENTS.
a) Display function timing information

  i) The display shall scan at a rate greater 
than 60 Hz per digit (+20%/-0).

  ii) All display changes shall update within 
1 digit scan time maximum.

b) Alarm
  i) The alarm function will flash the display at a 

1-Hz rate (+/-10% event-event, +/-0% overall) 
Timing of flash shall be synchronous to real-
time clock update(+50 msec/-0).

  ii) The alarm tone shall be a 1-kHz tone +/-10% 
event-event, and overall. Modulation to be 
at a 1-Hz rate, 50% duty cycle +/-10% event-
event, +/-2% overall).

  iii) Alarm shall sound within 200 msec of when 
alarm time equals current time.

  iv) Alarm shall quiet within 200 msec of snooze 
detection, or 200 msec of alarm disable. 

a) Commands
  i) The minimum acceptable button press must 

be greater than 300 msec in duration, no 
maximum.

  ii) All button bounce will have damped out by 
100 msec after initial button press.

  iii) All commands shall provide a visual feedback 
(if applicable) within 200 msec of the ini-
tial button press.

  iv) For all two-button commands, the first but-
ton shall have stopped bouncing a minimum of 
100 msec before second button stops bounc-
ing for second button press to register as a 
valid command.

  v) Autorepeat function shall have a 1-Hz rate 
(+/-10% event-event,+/-0% overall) increment 
shall be synchronous to real-time clock update 
(+50msec/-0).

b) Time base
  i) If 5 consecutive 60-Hz cycles are missed, the 

clock shall revert to the microcontroller clock 
within 8 msec of 5th missing rising edge.

  ii) When the microcontroller detects 5 consecu-
tive 60-Hz cycles, it shall revert to the 
power line time base within 8 msec of 5th 
rising edge detected.

  iii) The real-time clock function shall have the 
same accuracy as its timebase (+/-0%). Up-
dates shall be within 16 msec of update 
event to the real-time clock function.

Notes
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Applying this new information to the functions listed in our function 
list should result in the following timing information for the project: 

SYSTEM TIMING REQUIREMENTS BY FUNCTION:
1. The LED scanning function rate of execution is 

360 Hz +20% / -0% event-event & overall, (6 digits 
* 60 Hz)

2. Display related functions have a response time of 
1 digit scan time maximum (see 1.)
Functions affected by this timing specification

12-hour display function for time
24-hour display function for time
12-hour display function for alarm
24-hour display function for alarm
PM indicator display function
Alarm on indicator display function  

3. The rate of execution for the alarm display 
flashing routine is (1 Hz rate +/-10% event-event, 
+/-0% overall)(synchronous to time update +50 
msec/-0)

4. The response time for display blanking due to a 
switchover to the internal time-base is 8 msec 
maximum, following detection of 5th missing rising 
edge.

5. All command functions have a response time of 34 
msec maximum 
34 msec = 200 msec (spec) – 100 msec (switch 
bounce) – 50 msec (debounce) – (1/60 Hz)
Functions affected by this timing specification are
Command decoder function plus

Alarm on/off toggling routine
Routine to increment alarm by 1 min
Routine to increment alarm by 20 min
Routine to increment Time by 1 min
Routine to increment Time by 20 min
Toggle 12/24 hour mode

6. No specification for debounce time is given. 
However, 100 msec is the maximum bounce time, 
therefore a 50 msec maximum time is chosen for 
worst-case debounce detection. Both the Control 
input monitoring function and debounce function 
must execute in this time.

7. Rate of execution for the Auto repeat function is 
1 Hz rate (+/- 10% event-event, +/-0% overall) 
event synchronous to time update (+50 msec/-0).

8. The response time for the alarm control function 
is 100 msec following new current time value equal 
to alarm time (includes tone startup time).

Notes
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9. The response time for a Snooze function is 50 msec 
maximum (includes tone off time)
50 msec = 200 msec (spec) – 100 msec (switch 
bounce) – 50 msec (debounce).

10) The execution rate of the alarm tone function rou-
tine 1-kHz tone +/-10% event-event and overall, 
modulated at a 1-Hz rate, 50% duty cycle +/-10% 
event-event, +/-2% overall).

11) The total response time of the 60-Hz monitoring 
and 60-Hz Fail/Recovery functions must be less 
than 8 msec of either the 5th detected 60-Hz pulse 
or its absence.

12) The rate of execution for the 60-Hz time base and 
internal time base shall be 1 Hz +/-0% overall 
relative to the source time base. Trigger to event 
response time of 16 msec maximum.

Once the information is complete, it should be noted in the design 
notes file for the project. Include any equations used to calculate the 
timing requirements and any special timing information—for example, 
the requirement in 3 and 7 requiring synchronous timing to the time 
update, and the notes in 8 and 9 concerning the inclusion of the startup 
and off times for the tone generator. At this point all the timing infor-
mation for the system should be known and documented.

System Priorities

An important topic, related to timing, is the priority requirements for 
the system. From our discussion earlier, priority handling is different 
from timing in that timing determines the rate at which a function 
must be executed, while priority handling is determining if a function 
should execute. With this in mind, the designer must extract informa-
tion from the requirements document concerning the operating modes 
of the system, the priorities within each mode, and when and why those 
modes change must be determined.

The logical place to start is to determine what operational modes the 
system has, specifically:

1. Does the system have both an active and passive mode? 

2. Does it have an idle mode in which it waits for an external 
event?

Notes
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3. Does it have two or more different active modes in which the 
system has different priorities?

4. Does it have a shut-down mode in which the system is powered 
but mostly inactive?

5. Does it have a configuration mode in which operational param-
eters are entered?

6. Is there a fault mode where system errors are handled?

For example, let’s generate a priority list for the alarm clock we are 
designing. From the requirements document, we know:

The alarm can be either enabled or disabled.

If enabled, the alarm can either have gone off, or not. Let’s call 
these pending/active.

If the alarm is active, then it can be temporarily silenced by a 
snooze command.

Both the current time and alarm time can be set by button 
commands.

If the power fails, the display is blank, time is kept, and alarm 
functions are inhibited.

If we assign different modes to the various combinations of system 
conditions, we get the following preliminary list of system modes: 

Timekeeping mode: Current time display, alarm is disabled, no 
commands are in progress, and normal power. 

Time set mode: Current time display, alarm is disabled, normal 
power, and time set commands are in operation. 

Alarm pending mode: Current time display, alarm is enabled, 
normal power, no commands in progress, and alarm is not 
active.

Alarm set mode: Alarm time display, normal power, alarm set 
commands are in operation, and alarm is not active. 

Alarm active mode: Flashing display of current time, alarmed is 
enabled, alarm is active, no commands in progress, and normal 
power.
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Snooze mode: Current display time, alarm is enabled, snooze is 
in progress, and normal power.

Power fail mode: Display is blank, internal time base in opera-
tion, alarm is inhibited, and battery supplied power. 

Note that each of the system modes is unique in its operation. Some 
modes are differentiated by the fact that commands are active, others 
because of the status of the alarm. In fact three of the modes are different 
states within the alarm function. It doesn’t really matter at this point 
in the design if we have five system modes, or thirty. What we want to 
determine is all the factors that affect how the system operates. When 
we get to the priority handler design section of this chapter, we will 
expand or contract the system mode list as needed to fit the design. For 
now we just need to generate a reasonable list of modes to hang some 
additional information on.

If we compare the preliminary list of modes to the previous criteria, 
we should notice that there is one mode missing, the error mode. We 
will need a mode to handle error conditions, such as the initial power 
up, when the system does not know the current time. If we establish 
this error mode, and define its behavior, we might have something like 
the following:

Error mode: Display flashing 12:00, alarm is inhibited, no com-
mand is in progress, and normal power.

Once the preliminary list of system modes has been established, the 
next step is to determine which functions are important in each mode. 
Each mode will have some central operation, or group of operations, that 
are important and others that are not so important. This translates into 
some software functions having a higher priority than other functions. 
In fact, some functions may have such a low priority that they may not 
even be active. So, using the description of the modes as a guide, we can 
take the list of functions and determine if each has a high, medium, or 
low priority in a given mode. Those that are not needed in a specific 
mode are left off the list. So, once again using our alarm clock as an 
example, the following preliminary priority list can be compiled:
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Priority List
1. Timekeeping mode

1.1. High Priority
60-Hz monitoring function
Time increment function based on 60-Hz 
power line time base

1.2. Medium Priority
Function to scan LED displays
12-hour display function for time 
24-hour display function for time
PM indicator display function

1.3. Low Priority
60-Hz Fail/Recovery monitoring function
Control input monitoring function
Debounce function 
Toggle 12/24 hour mode
Alarm on/off toggling function

2. Time set mode
2.1. High Priority

Control input monitoring function
   Debounce function 
   Auto repeat function
   Set Time function
   Routine to increment Time by 1 min
   Routine to increment Time by 20 min

2.2. Medium Priority
Function to scan LED displays

   12-hour display function for time 
   24-hour display function for time
   PM indicator display function

2.3. Low Priority
   60-Hz monitoring function
   60-Hz Fail/Recovery monitoring function

3. Alarm pending mode
3.1. High Priority

60-Hz monitoring function
   Time increment function based on 

60-Hz power line time base
   Alarm control function

3.2. Medium Priority
   Function to scan LED displays
   12-hour display function for time 
   24-hour display function for time
   PM indicator display function

List 3.2
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3.3. Low Priority 
   60-Hz Fail/Recovery monitoring function
   Control input monitoring function
   Debounce function 
   Toggle 12/24 hour mode
   Alarm on/off toggling function

4. Alarm set mode
4.1. High Priority 

   Time increment function based on 60-Hz 
power line time base

   Control input monitoring function
   Debounce function 
   Auto repeat function
   Alarm control function
   Set alarm function
   Routine to increment alarm by 1 min
   Routine to increment alarm by 20 min

4.2. Medium Priority
   Function to scan LED displays
   12-hour display function for alarm
   24-hour display function for alarm
   PM indicator display function

4.1. Low Priority
   60-Hz monitoring function
   60-Hz Fail/Recovery monitoring function

5. Alarm active mode
5.1. High Priority

   60-Hz monitoring function
   Time increment function based on 60-Hz 

power line time base
   Generate alarm tone function
   Alarm control function

5.2. Medium Priority
Function to scan LED displays 
Display flashing function for the alarm
12-hour display function for time
24-hour display function for time
PM indicator display function

5.3. Low Priority
   60-Hz Fail/Recovery monitoring function
   Control input monitoring function
   Debounce function 
   Toggle 12/24 hour mode
   Alarm on/off toggling function
   Snooze function

List 3.2
(continued)
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6. Snooze mode
6.1. High Priority

60-Hz monitoring function
Time increment function based on 60-Hz 
power line time base

Snooze function
Alarm control function 

6.2. Medium Priority
Function to scan LED displays
12-hour display function for time
24-hour display function for time
PM indicator display function

6.3. Low Priority
   60-Hz Fail/Recovery monitoring function

  Control input monitoring function
   Debounce function 
   Toggle 12/24 hour mode
   Alarm on/off toggling function

7. Power fail mode
7.1. High Priority

Time increment function based on 60Hz 
power line time base

60-Hz monitoring function 
7.2. Medium Priority

Function to scan LED displays
Display blanking function for operation 
from internal clock time base

7.3. Low Priority
   60-Hz Fail/Recovery monitoring function
   Time increment function based on internal 

clock time base

8. Error mode
8.1. High Priority

60-Hz monitoring function
8.2. Medium Priority

Function to scan LED displays
12-hour display function for time

8.3. Low Priority 
   60-Hz Fail/Recovery monitoring function

  Control input monitoring function
   Debounce function 

List 3.2
(continued)
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The eight modes are listed with the functions that are important 
in each mode. The priorities of each function, in each mode, are also 
established and those functions that are not required are left off the list 
indicating that they are not used in that particular mode. The result is a 
clear list of system modes and priorities. The only thing missing are the 
specific conditions that change the mode. These transitions are generally 
due to external conditions, such as a command entry or power failure. 
Transitions can also be due to internal events, such as the alarm time. 
Whatever the reason, the transition and the event triggering the transi-
tion need to be determined and noted. The following are the events 
triggering a transition in the alarm clock design:

Original Mode Next Mode Trigger Event
Powered down Error Initial power up
Error Time set Press of the TIME SET button
Error Alarm set Press of the ALARM SET button
Timekeeping Time set Press of the TIME SET button
Timekeeping Alarm set Press of the ALARM SET button
Time set Timekeeping Release of the TIME SET button
Alarm set Timekeeping Release of the ALARM SET button
Timekeeping Alarm pending Alarm control switch to enabled
Alarm pending Timekeeping Alarm control switch to disabled
Alarm active Timekeeping Alarm control switch to disabled
Alarm pending Alarm active Alarm time = current time
Alarm active Snooze Snooze command 
Snooze Alarm active Alarm time + snooze time = current time
{all modes} Power fail Fifth consecutive missing 60-Hz pulse
Power fail Timekeeping Fifth consecutive 60-Hz pulse
{all modes} Error Error condition

Table 3.2
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With these additions, the system modes and priorities are sufficiently 
defined for the design. 

The only functions that haven’t been specified are those functions 
that fall into the category of housekeeping functions. These functions 
have no specific timing or priority; rather, they are just executed when 
execution time is available. This could be because their typical timing 
is infrequent compared to other higher priority functions, or it could 
be that they are run as a sort of preventive maintenance for the system. 
Typical examples of this kind of function can include the following:

1. Periodic checks of the voltage of the battery used for battery 
backup.

2. Periodic checks of the ambient temperature.

3. Periodic verification of a data memory checksum.

4. Functions so low in priority that any other functions are run 
before they are.

5. Functions that may have a higher priority in other modes, but 
do not in the current mode.

Any function that is not in the system list of priorities could be in-
cluded in the list of housekeeping functions, so it can be included in the 
priority control system. Note that it is perfectly acceptable to have no 
housekeeping functions. And it is also acceptable to have functions in 
the list that are only present in some system modes. The only purpose 
of the list is to guarantee that all functions get execution time, some 
time during the operation of the system. For our example with the 
alarm clock, there are no housekeeping functions beyond those with 
low priority in the various system modes.
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Error Handling

The final section of information to glean from the requirements docu-
ment is error handling—specifically, what set of errors is the system 
designed to recognize and how will the system handle the errors. Some 
errors may be recoverable, such as syntax error in an input, out of paper 
in a printer, or a mechanical jam. Other errors are more serious and may 
not be recoverable, such as low battery voltage, failed memory data check 
sum, or an illegal combination of inputs from the sensors indicating a 
faulty connection. Whatever the illegal condition, the system should be 
able to recognize the error, indicate the error to the operator, and take 
the appropriate action.

The first step is to compile a list of errors and classify them as soft
errors, recoverable, or nonrecoverable hard errors. Soft errors include 
faults that can safely be ignored, or can be handled by clearing the fault 
and continuing operations. Typically soft faults are user input faults 
which can be safely either ignored, or handled by reporting a simple 
error condition. These include minor user input faults, incorrect syn-
tax, or even the entry of out-of-bound values. Recoverable errors are 
errors in the system due to transitory system faults that, once cleared, 
will allow the system to continue operation. These include corrupted 
data memory, control faults that require user intervention to clear, or a 
lost program counter. Finally, hard errors are those errors classified as a 
failure in the system hardware requiring diagnostics and repair to clear. 
These include the detection of an impossible combination of inputs, 
failure of the program memory checksum, or failure in the operation 
of a system peripheral.

After the list of errors has been compiled and classified, the criteria 
for detecting the error should be specified and all acceptable options for 
responding to the error. As an example, consider a simple lawn sprinkler 
controller. It is designed to accept data in the form of water time and 
duration. When the time corresponding to a watering time is equal to 
the current time, it turns on the sprinkler for the specified duration. 

However, what happens if a specified watering time of 25:20 is 
entered? Or the current time is 24:59? Or the checksum on the time 
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and duration data memory fails a routine check? These are examples of 
potential faults for a system. Compiling them into a list and classifying 
them, we get:

Soft Fault
Fault: User enters a start time >23:59.

Test: Determined at input by comparison to 23:59.

Response: Display “bad time” for 5 seconds and clear input.

Recoverable Fault

Fault: Data checksum fails.

Test: Determined by checksum housekeeping function.

Response: Display “MEMORY FAULT” and turn off all sprinklers, 
clear data memory, and wait for user to reset time and 
duration values.

Hard Fault
Fault: Clock peripheral reports > 24:59.

Test: Determined at time check by comparison to 23:59.

Response: Display “system failure” and turn off all sprinklers and 
shut down system.

In each of these possible problems, the system has both a means of 
detecting the fault, and a way to respond to the fault. If the fault, its 
detection, or recovery are not listed in the requirements document, then 
it is up to the designer to find answers to these questions and add them 
to the document.

Note that some faults should be included as a matter of good pro-
gramming practice, such as watchdog timer (WDT) fault, brownout 
reset (BOR) fault, and program/data corruption faults. In most micro-
controllers, there will typically be flags to indicate that the last reset was 
the result of a BOR or WDT. Handling these forms of reset will depend 
on the specific requirements of the system and suggestions will be made 
in Chapter 5 on implementation. 

Program and data corruption faults are a little different because 
they rely on software functions to check the CRC or checksum of the 

List 3.3
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data in data memory. While this can be, and typically is, relegated to a 
housekeeping function for a spot check, it should also be included in any 
routine that makes changes to the affected data. If it is not included in 
the modifying functions, the function could make it change, recalculate 
the checksum and never know that it just covered up a corrupted data 
value. So it is important to take data corruption seriously and make an 
effort to provide adequate checking in the design.

For our alarm clock example, the range of faults is fairly limited, but 
they must still be documented for the next phase of the design.

Soft Fault
Fault: Button pressed is not valid for current mode or command.

Press of SLOWSET without FASTSET, ALARMSET, or 
TIMESET held.

Press of SNOOZE when not in alarm active mode.

Press of any key in power fail mode.

Test: Comparison of decoded button command with legal 
commands, by mode.

Response: Ignore button press.  

Soft Fault
Fault: Button combination is invalid.

Press of SNOOZE with FASTSET, SLOWSET, ALARM-
SET, TIMESET.

Press of ALARMSET with TIMESET.

Test: Checked against acceptable combinations in command 
function.

Response: Ignore button press.

Recoverable Fault
Fault: Alarm time is out of range (Alarm time > 23:59).

Test: Alarm control function test of value before current time 
comparison.

List 3.4
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Response: If alarm is enabled, sound alarm until ALARMSET 
button press.

If in any other mode, ignore (fault will be identified when 
alarm is enabled).

Recoverable Fault
Fault: Power failure.

Test: 5th missing 60-Hz time base pulse.

Response: Goto power fail mode until 5th detected 60-Hz pulse.

Hard Fault

Fault: Watchdog timer timeout, brownout reset.

Test: Hardware supervisor circuits.

Response: System is reset. If BOR, then system held in reset until 
power is restored.

System will power up in error mode. 

With the compilation of the error condition list, this completes the 
dissection of the requirements document, and all the relevant informa-
tion required for the design should now be in the design notes file. In 
addition, all updates to the requirements document should be complete 
at this point in the design. If it is not, then the designs should make 
those updates now, before embarking on the system design. This is not 
just good coding practice—it will also save confusion and disagreement 
at a later date when the group responsible for testing the design begins 
comparing the operation of the design against the requirements docu-
ment. So, fix it now while the change is simple and still fresh in the 
designer’s mind, rather than later when the reasons for the change may 
have been forgotten.

System-Level Design

At this point, the system level of the design is generated. All the infor-
mation has been retrieved from the requirements document, and the 
designer should have a clear picture of how the design must operate. 
What happens now is the top, or system, level definition of the system. 

List 3.4
(continued)
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Tasks will be created and the various functions will be assigned to them. 
A communications plan will be developed to handle data transfers 
between the tasks. A system timing analysis will be performed to deter-
mine the system timing tick. The system modes and priorities will be 
analyzed, and a system-level error detection and handling system will 
be defined. Basically, a complete high-level blue print for the system 
will be generated, with module specifications for each of the tasks and 
major systems in the design.

Task Definition

The first step in the system-level design is task definition. Task defini-
tion is the process of gathering the various software functions from 
the requirements document dissection together and grouping them 
into a minimal number of tasks. Each task will be a separate execution 
module, with its own specific timing, priority, and communications 
pathways. Because of this, the functions within the module must be 
compatible, or at least capable of operating without interfering with 
one another. Now a typical question at this point is “Why a minimal 
number of tasks—why not create a task for every function?” That would 
eliminate the need to determine whether or not the various functions 
are compatible. However, there are two main problems: overhead and 
synchronization. Overhead is the amount of additional code required to 
manage a function, the switch statement, the timing handler, and any 
input/output routines required for communications. Synchronization 
is the need for some of the software functions to coordinate their func-
tion with other functions in the system. Placing compatible functions 
into a single task accomplishes both goals, the overhead for a group 
of functions is combined into a single task, and because the functions 
share a common task, they can coordinate activities without complex 
handshaking. An example would be combining a cursor function and a 
display-scanning function into a common task. Putting the two functions 
together reduces the additional code by half, and it allows the designers 
to coordinate their activity by combining them into a single execution 
string. So, there are valid reasons why some of the functions should be 
combined into a common task.
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This is not to say that all software functions should be combined into 
common tasks. After all, the whole purpose of this design methodology 
is to generate software that can execute more than one task simultane-
ously. And there are very good reasons why some software functions are 
so incompatible that they can’t or shouldn’t be combined into a common 
task. Part of task definition is to analyze the various software functions 
and determine which, if any, functions should be combined. 

So, how does a designer decide which functions are compatible and 
which are not? The simplest method is to start combining similar func-
tions into tasks, and then determine if the combination is compatible. 
To do this, start by writing the name of each function on a piece of 
tape. Drafting tape works best because it is designed to be stuck down 
and taken up repeatedly without much trouble. Next, take a large piece 
of paper and draw 10–15 large circles on it, each about 5–8 inches in 
diameter. The placement of the circles is not critical; just distribute 
them evenly on the paper. Then take the strips of tape with the func-
tion names, and place them within the circle on the sheet of paper. Try 
to group like functions together, and try to limit the number of circles 
used. Don’t worry at this point if some circles have more names inside 
than others do. We are just trying to generate a preliminary distribution 
of the functions. 

Once all the functions have been distributed into the circles on the 
paper, take a pencil (not a pen) and name the circles that have pieces of 
tape in them. Use a name that is generally descriptive of the collection 
of functions within the circle. For example, if a circle contains several 
functions associated with interpreting and executing user commands, 
then COMMAND would be a good label. Try not to be too specific, as 
the exact mix of functions will most likely change over the course of the 
analysis for compatibility. And don’t be concerned if all the functions 
are moved out of a specific circle. The names are just for convenience at 
this point. The final naming and grouping of functions will be decided 
at the end of the process.

Now that a preliminary grouping is complete, we can begin evaluating 
the compatibility of the various software functions within each circle. 
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The first step in the process is to place the strips of tape equidistant 
around the circumference of the circle. If there is not enough room 
for the tape to lay along the circle, place it on the circle, extending out 
radially like a star. Next, draw a line from each function to all of the 
other functions, and then repeat the process for any functions that are 
not connected to all the other functions. This web of lines defines all 
the possible relationships between all the functions in the circle, one 
line for each relationship. 

Now that we know all the different combinations to examine, we 
need a set of basic criteria on which to base our decisions. The criteria 
will be based on timing, priorities, and functionality. However, the 
designer should remember that the criteria are just guidelines, not hard 
and fast rules. The final choice will come down to a judgement call on 
the part of the designers as to which functions should be combined. 
For some functions there will be one criterion that states that two func-
tions should be combined, and another that states they should not. 
This should not come as a surprise; no single set of rules will apply to 
100% of all designs. When this happens, the designer should review the 
reasons given for compatibility and incompatibility and decide which 
is more important. For example, two functions could have completely 
different timing and priorities, which would demand that they couldn’t 
be combined. However, if they are also mutually exclusive in execution 
(they never execute at the same time), then they could be combined into 
a common task without conflict. The task will simply have to adjust its 
timing and priority level based on which function is currently active. It 
would then be up to the designer to decide whether the combination is 
worth the trouble, or if one or both of the functions should be shifted 
to another task.

Note: If two functions are combined against the recommendation of one 
or more criteria, the designer should note the reason in the design notes 
and make sure that the verbiage is included in the header comments 
for the resulting task. This will save any later engineer the trouble of 
determining why one of the compatibility criteria was disregarded.
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 If the designer finds a function that is incompatible with most or all 
of the other functions in a circle, it should be moved to another circle 
with similar functions, and evaluated there. The new circle should be 
an existing named task, but if it cannot be placed in an existing circle, 
it can be placed in a new empty circle as a last resort. Remember, we 
are trying to minimize the total number of tasks, but if the function is 
completely incompatible, it needs to have its own task. 

There will also be cases in which a function should be separated into 
its own task for priority reasons, specifically if the task is intermittent in 
operation. In the next chapter, we will examine a priority handler that 
can make use of this lone function characteristic to reduce the processing 
load on the system. Against that possibility, the intermittent task should 
be labeled and set within its own circle for later evaluation.

Criteria for Compatible Software Functions

The criteria in this section should be used to determine if a pair of 
software functions should or must be combined into a single task. Any 
criterion that states two functions should be combined is making a rec-
ommendation. Any criterion that states two functions must be combined 
is stating that the combination should be required and only overruled 
in the event of a serious incompatibility. Note that this list should be 
considered a good starting point for developing a designer’s own personal 
list; it is by no means all-inclusive. Over a designer’s career, a personal 
list of criteria should be compiled and fine-tuned as the complexity 
of their designs increase. Like a good library of custom functions, the 
design methodology of a designer should grow and improve with time. 
Therefore designers should feel free to add or modify these criteria to 
fit their level of experience and programming style.

Software functions that execute sequentially
This one is pretty obvious: if two software functions always 
execute one after the other, then it makes sense to put them in a 
common task. The state machine that implements the task will 
just execute the states required for the first function, and then 
continue on, executing the states of the second function. The 
only restriction to this criterion is that software functions that 
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have to execute simultaneously may need to be separated into 
different tasks. For more, see the next criterion.

Software functions that execute synchronously
This criterion has a number of restrictions on it. The functions 
must always execute at the same time, never separately. The func-
tions must also be linear. This means no branches, computed 
GOTOs, loops, or conditional statements—just a straight linear 
sequence for both functions. This type of task can also be difficult 
to implement because the two functions must be interleaved 
together into a single set of states. As a result, it is only recom-
mended for functions that meet the restrictions exactly. If not, 
then they must be combined.

Software functions that control a common peripheral
This criterion has to do with managing control over a peripheral. 
If two tasks exercise control over a common peripheral, then 
there is the possibility that they may come into contention. 
This happens when one task is using the peripheral with a spe-
cific configuration, and then the other task inadvertently takes 
control and changes that configuration without the first task’s 
knowledge. If both functions are placed in a common task, it 
removes the question of control arbitration entirely because the 
state machine can typically only execute one function at a time.
However, if the two functions are incompatible for other reasons, 
a good alternative is to generate a third task specifically designed 
to handle the arbitration between the original functions. This 
kind of task takes on the role of gatekeeper for the peripheral, 
granting control to one task and holding the other until the first 
task completes its operation. The second task is then granted 
control until its operation is complete. Because the separate 
peripheral task is the only software in direct control of the pe-
ripheral, and all data transfers must go through the peripheral 
task, contention is avoided and both controlling tasks eventually 
obtain undisturbed use of the peripheral.
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Software functions that arbitrate control of common data
This criterion is very similar to the last criterion concerning 
peripheral control, with the exception that it deals with control 
over a commonly controlled data variable. Just as two functions 
may come into contention over the control of a peripheral, two 
functions may also come into contention over control of a vari-
able. So, this criterion is designed to simplify the arbitration 
of control, by recommending the combination of the software 
functions into a common task. However, as with the peripheral 
criterion, if the two functions are incompatible for other reasons, 
then a third arbitrating function may need to be created to handle 
the actual updates to the variable. 

Software functions that are mutually exclusive in operation
Often in a design it may be necessary to force two functions to 
be mutually exclusive in their operations. The two functions 
may have opposite functions, such as heating and cooling, or 
they may control a common resource. In any event, mutually 
exclusive functions are defined as functions that never execute 
at the same time, or with any degree of overlap. So, functions 
that meet this requirement must be combined into a single task. 
This criterion may sound unimportant; after all, the reduction in 
overhead from combining functions is not so great that it would 
warrant the arbitrary combination of functions. However, what 
combining the functions into a single task will do is guarantee 
their mutually exclusive operation. This is because the state ma-
chine can typically only execute a single function at one time. 
By combining the two functions into a single task, the two func-
tions are accessed by the same state variable, and it will require a 
specific transition event to move from one function to the other, 
guaranteeing the mutually exclusive nature of the functions. 

Software functions that are extensions of other functions
This criterion is fairly obvious: if two or more functions are 
related in function, then they should reside in a common task. 
A good example of this relationship is the display function in 
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our alarm clock example. The functions for scanning the LED 
display and flashing the display in the case of an alarm are related, 
and the flashing function is really an extension of the scanning 
function. Both functions deal with the LED display, and the 
flashing function is really just a timed blanking of the displays, 
so combining them together into a single function makes sense. 
They affect a common resource, their operation is related, and 
their control of the common display peripheral may require 
arbitration between the functions. So, combining the functions 
is a must, it will reduce overhead, simplify the arbitration, and 
places both display related functions into a single object.

Software functions with common functionality
This criterion has to do with functions that share common 
aspects with one another—for example, two functions that 
require a common multistep math sequence, such as a run-
ning average. If the functions are placed in a common task, 
then the math functions can be coded into a common set 
of states within the task. If the functions are not combined, 
then the steps for the math function may have to be repeated 
in both tasks, at the cost of additional program memory. 
Combining the functions into a common task does save pro-
gram memory by eliminating the repeated states, but there 
is a restriction. By placing the two functions into a common 
task, the two functions are forced to be mutually exclusive in 
operation. So, if the two functions do not operate in a mutu-
ally exclusive fashion, then this criterion does not apply. See the 
incompatibility criterion following concerning subfunctions. 

Criteria for Incompatible Software Functions

The criteria in this section should be used to determine if a pair of 
software functions should not or must not be combined into a single 
task. Any criterion that states two functions shouldn’t be combined is 
making a recommendation. Any criterion that states two functions must 
not be combined is stating the combination should never be attempted. 



System-Level Design 165

Note, as previously, that this list should be considered a good starting 
point for developing a designer’s own personal list and is by no means 
all-inclusive. 

Software functions that have asynchronous timing
This criterion is pretty obvious. If two functions can execute 
at any time and with any degree of overlap in execution, then 
they must not be combined into a single task. Separating the 
functions gives them the freedom to execute at any time ap-
propriate to their operation without any interference from the 
other function. And, this is, after all, the reason for designing a 
multitasking system, so different functions can execute inde-
pendent of each other’s timing. 

Software functions that execute at different rates
This criterion is another obvious restriction, in that it excludes 
functions that have to operate at different rates. As an example, 
consider a software serial port operating at 1200 baud and a sound 
generator operating at 3 kHz. Due to its timing, the software 
serial port will be required to execute 1200 times a second, and 
the tone generator function will be required to execute at 6000 
a second. While a common state machine could be created to 
handle the two different functions, the overhead and timing 
problems make separate tasks a simpler solution. So, separating 
the two functions is a more efficient solution. However, if the 
two functions are mutually exclusive, then the complexity in 
the timing functions is alleviated, and the two functions could 
be combined. The timing for the task would then depend upon 
which function is currently operating, with the task itself switch-
ing the timing as needed for the two functions.

Software functions with different priorities
Just as with the previous criterion concerning timing, functions 
with different priorities should also be separated into different 
tasks. If two functions with differing priorities were to be com-
bined into a single task, the decision of whether to execute the 
task or not would have to take into account the current function 
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being performed by the task state machine. It would also require 
that some of the state transitions within the state machine might 
have to include additional input from the priority handler. This 
would unnecessarily complicate both the priority handler and the 
state machine, and any savings in program memory due to the 
combined overhead could be consumed in the more complicated 
coding of state machine and the priority handler. So, while it is 
recommended that the functions should reside in separate tasks, 
it is up to the designer to weigh any potential savings against the 
increased complexity. 

Software functions that operate as subfunctions to other tasks
Just as common routines in a linear program can be written as 
a single subroutine and called from two or more places in the 
program, a subroutine task can be used in a similar fashion by 
other tasks. While the optimal solution for minimal program 
memory would have been to combine the subfunction and both 
calling functions into a common task, incompatibilities between 
the calling functions may not allow that option. Breaking the 
subroutine function out into a separate task, which can then be 
called by the calling tasks, may be preferable to duplicating the 
function in both controlling tasks, even with the added overhead 
of a separate task. Separating the subfunction into a separate task 
will also alleviate any problems with arbitrating control of the 
subfunction.

Software functions that operate intermittently
One of the priority management systems, described later in this 
book, makes use of the fact that some tasks only need to be ac-
tive intermittently. If a function is not needed full time, then 
from the standpoint of efficient use of processing time, it makes 
sense to only call the function when it is needed. So part-time 
functions are good candidates for this type of priority control, 
provided the function is separated into its own task. Note, this 
does not preclude the combination of two or more intermittent 
functions into a common task, provided the functions are either 
synchronous or mutually exclusive in operation.
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One or more additional tasks may also be required to handle error 
conditions within the system. These tasks typically monitor the error 
condition of the various other tasks in the system and coordinate the 
recovery from all errors. For example, if a serial input task detects an 
error in an incoming packet, an error-handler task may have to perform 
several different functions to clear the error:

1. Reset the serial input task to clear the error.

2. Notify the sender of the current packet of data that an error has 
occurred.

3. Reset any tasks that might be in the process of operating on the 
serial data.

4. Reset any data buffer between the tasks.

In addition, the order of the sequence used to clear the error may 
be critical as well, so building this functionality into a separate error-
handling task gives the system the flexibility to handle the error outside 
the normal operation of the other tasks, especially if the response to the 
error requires the cooperation of more than one task. Complex systems 
may even require multiple error-handling tasks if the potential exists 
for more than one type of error to occur asynchronously. The designer 
should review the list of potential errors and list all the required recov-
ery mechanisms. Then group them like the software functions in the 
previous section and apply the criteria for compatible and incompatible 
functions. Don’t be surprised if the list of tasks grows by two or more 
tasks by the time the evaluation is complete.

Once all the software functions and error recovery functions have 
been placed in a circle of compatible functions, a final descriptive name 
for each task/circle can be decided, and a Task list can be compiled. The 
list should include the name and descriptions of the individual functions 
in each task, plus any special reasons for including the functions in the 
task, or excluding it from another task. 

Once the list is complete, it should be included in the design notes 
for the project. Again, be complete in documenting the task list, and be 
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verbose. When the documentation is complete, it should look something 
like the following:

TASK LIST FOR THE ALARM CLOCK PROJECT
Task1 Display

a) Function to scan LED displays
b) 12 hour display function for time 
c) 24 hour display function for time
d) 12 hour display function for alarm
e) 24 hour display function for alarm
f) PM indicator display function
g) Alarm on indicator display function
h) Display flashing function for the alarm
i) Display blanking function for operation from 

internal clock time base

Task2 TimeBase
a) Time increment function based on 60Hz power 

line time base
b) Time increment function based on internal 

clock time base
c) 60-Hz monitoring function
d) 60-Hz Fail/Recovery monitoring function

Task3 Buttons
a) Control input monitoring function
b) Debounce function 
c) Auto repeat function
d) Command Decode function (combined SetAlarm 

and SetTime functions)
e) Routine to increment alarm by 1 min
f) Routine to increment alarm by 20 min
g) Routine to increment Time by 1 min
h) Routine to increment Time by 20 min
i) Toggle 12/24 hour mode
j) Alarm on/off toggling function
k) Activate Snooze

Task4 AlarmControl
a) An alarm control function
b) Snooze function

Task5 AlarmTone
a) Generate alarm tone function

Task6 Error Task

List 3.5
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The decisions that lead to this combination of functions and tasks 
are listed below:

TASK1 DISPLAY

1. The function which scans the LED displays seems to be the 
primary function of this task.

2. All of the displays functions use a common peripheral with the 
LED display scanning function.

3. The 12/24 hour display functions for the alarm and current 
time drive a common aspect of a peripheral, the numeric LED 
display.

4. The 12/24 hour display functions for the alarm and current time 
are mutually exclusive in operation.

TASK2 TIMEBASE

1. The 60-Hz monitoring function seems to be the driving function 
of this task.

2. Both time base increment functions and the failure/recover 
monitoring function are extensions of the 60-Hz monitoring 
function.

3. The 60-Hz time increment function executes sequentially fol-
lowing the 60-Hz monitoring function.

4. The internal clock increment function is mutually exclusive in 
operation to the 60-Hz increment function, and the control of 
both functions is via the failure/recover monitoring function. 

5. The failure/recover monitoring function is executed sequentially 
after the 60-Hz monitoring function.

6. Both the 60-Hz time increment function and the internal time 
base increment function control a common variable, the current 
time.

List 3.6
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TASK3 BUTTONS

1. The control input monitoring function is seen as the overall 
function of this task.

2. The debounce function is executed under the control of the 
control input monitoring function.

3. The auto-repeat function is an extension of the debounce 
function.

4. The command decode function, a combination of the set alarm 
and set timer functions, is executed sequentially after the de-
bounce and auto-repeat functions.

5. The four alarm and time increment function perform nearly 
identical functions on the alarm and current time variables, 
denoting common functionality.

6. The four alarm and time increment functions mutually exclusive 
in operation.

7. The four alarm and time increment functions, plus the 12/24 
hour toggle function, and the alarm on/off function are executed 
sequentially following the command decode function.

Note: In this example, it proved to be more efficient not only to com-
bine the alarm and time set functions in a common task, but to also 
combine the SetTime, and SetAlarm functions into a common function 
within the task. 

TASK4 ALARM CONTROL

1. Both the alarm control and snooze functions control two com-
mon peripheral functions, the display and the tone generator 
function.

2. Both the alarm control and snooze functions have common 
functionality in the form of the alarm / current time comparison 
function.

List 3.6
(continued)
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TASK5 ALARMTONE

1. Looking toward the priority control section of the design, the 
tone generation function is isolated into a separate task due to 
its intermittent operation.

2. Two functions within the alarm control task control this func-
tion, so a separate task will allow arbitration, if needed.

TASK6 ERROR

This task is separate for control of other tasks.

So we have five separate tasks, with one additional task for error 
handling. All the tasks were generated using the same criteria listed previ-
ously, for compatible and incompatible functions. With the compilation 
of the final task list, this completes the task definition at the system-level 
design. The final task list, with the rationale behind the decisions, should 
be copied into the system design notes, and any changes or addendum 
to the requirements list should be made at this time.

Communications

The next step in the system level of the design is to map out the com-
munications between the various tasks and peripherals in the system. 
This accomplishes a couple of things for the design: one, it helps provide 
the designer with a rough estimate on the amount of data memory that 
the system will require and, two, it defines all of the variables in the sys-
tem, which is not specific to a task so they can be defined in a common 
header file. And, three, it provides a quick check for a very troublesome 
systemic communications problem called state lock.

The method employed to generate the communications plan is 
graphical, just like the method used in the task definition phase of the 
system-level design. The type of diagram used to map out the communi-
cations pathways is called a data flow diagram. It consists of a collection 
of circles 1–2 inch circles, each circle representing a peripheral or task 
within the system. The circles will be the sources and destinations for 
information moving around the system. Between the circle are arrows 
that represent the data pathways along which the information will flow. 

List 3.6
(continued)
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The direction of the arrow indicates the direction of the data flow. The 
resulting diagram should show graphically all the communications 
between the various tasks within the system. Any significant data stor-
age associated with the various tasks are also noted on the diagram. A 
variable list and dictionary is then compiled, based on the information 
in the data flow diagram. The resulting documentation will then form 
the basis of all system-level variable definitions in the next chapters. So, 
designers are encouraged to be as accurate as possible in both the diagram 
and the resulting variable documentation. Note: The usefulness of the 
data flow diagram does not end once the variable list and dictionary 
is completed. It also a graphical representation of all system-level data 
storage that is a convenient reference diagram during the component 
and implementation phases of the design. 

To start the diagram, take large piece of paper and draw a 2–3 inch 
circle for each of the tasks and peripherals in the system. Try to evenly 
space the circles on the entire sheet, with as much space between the 
circles as possible. Note: Don’t try to optimize the placement of the circle 
at this point in the design, as the diagram will be revised at least once 
during the course of this exercise. Just make sure that there is a circle 
for each source and destination for data in the system. Then, label each 
circle with the name of its associated task or peripheral.

For systems that link two or more subsystems by communications 
pathways, place circles in the diagram for the tasks in both systems. Sepa-
rate them on the diagram, with a boundary line to show the separation 
of the two systems, and label the tasks charged with communications 
between the systems. A short heavy line is used to indicate the system-
to-system communications pathway.

Once all the circles have been placed on the diagram, use the com-
munications information from requirements document dissection and 
the function listing in the task list, to draw arrows between the circles to 
represent information passed between the various tasks and peripherals. 
The arrows denote the various task-to-task and task-to-peripheral com-
munication pathways. Start the arrow at the circle representing the task, 
which contains the sending function, and place the head of the arrow on 
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the circle representing the task, which contains the receiving function. 
Each of the arrows should then be labeled with a name descriptive of 
the information being passed along the pathway. See Figure 3.3 for an 
example of a data flow diagram for our alarm clock project.

Note: The direction of the arrow should indicate the direction of the 
information flow. Some data pathways may have handshaking flags, 
which will pass in both directions as part of their communication. 
However, the direction of the arrow in this diagram is to indicate the 
direction of the actual communications, so even though handshaking 
may return, the direction of interest is the direction in which informa-
tion is actually moving.

For pathways that transfer information from one sending task to 
multiple receiving tasks, start each pathway arrow at the same point on 
the sending task’s circle to indicate that the same information is being 
sent to multiple destinations. Then, place the head of each arrow on 
the circle of each receiving task. Figure 3.3a shows this form of data 
pathway. It is also acceptable to branch an arrow off from an existing 
arrow, partway down its length. In fact, a very handy method of show-
ing the distribution of data from one task to multiple other tasks is to 
create pseudo distribution bus in the diagram, originating at the sending 
task, with arrows branching off to the receiving tasks as it passes near. 
Our only purpose here is to clearly indicate that multiple receivers are 
listening to a common sending task. There are no hard and fast rules to 
the diagram, and the designer is encouraged to generate whatever form 
of short hand is convenient.

In the very likely event that the diagram starts to become cluttered 
and confusing, try overwriting the pathways with different color pens 
to distinguish one pathway from another in the diagram. Be careful not 
to overwrite two crossing pathways with the same color as this will only 
add to the confusion. Also, make sure that pathway arrows only cross 
at right angles, to further reduce confusion. 
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If the diagram becomes too cluttered or confusing, it is perfectly ac-
ceptable to redraw it on a larger piece of paper and relocate the circles 
that are causing the problem. Remember, I did say that we would be 
redrawing this diagram at least once, and probably more than once. Plus, 
after making a few of the pathway connections, the designer will have a 

Figure 3.3 Alarm Clock Data Flow Diagram.

Figure 3.3a One Source, Multiple Destinations. Figure 3.3b  Storage Loop.
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better feel for where the task and peripheral circles should be located to 
simplify the connections. Just remember to follow same procedure and 
verify that no pathways are inadvertently left off the diagram.

The next step is to label each data pathway with a name and a gen-
eral description of the data moving along the pathway. If the diagram 
is sufficiently large, this information can be noted along the length 
of the data pathway arrow. If, on the other hand, the diagram is too 
convoluted or cramped, it is also acceptable to legend the arrow with a 
number and then build a list with the information. Particularly for larger 
systems, this method is typically easier to manage, and it also lends itself 
to electronic documentation better than trying to place the text along 
the arrow in the diagram.

Once all the data pathways between tasks are documented, it is time 
to add the information related to significant data storage. This infor-
mation was gathered at the end of the communications section of the 
requirements document dissection. To show the storage required by the 
individual tasks, draw an arrow from the task associated with the stor-
age, wrap it around 180 degrees, and place the head on the same task. 
Then label the loop with a name indicating the nature of the storage. 
Use the same form of notation used in the last section when describing 
task-to-task pathways. 

In the event that the information is also passed to another task, start 
the tail of the arrow at the same point on the circle as the arrow leading 
to the other task, and then loop the arrow around just like the other 
storage arrows. Label both the loop and the arrow with the same name 
to show that the information is local storage and a data pathway. Figure 
3.3b demonstrates an example of a storage loop.

When the diagram is complete, the designer should go back through 
the information from the requirements document dissection to verify 
that all task inputs and outputs have connections to other tasks. The 
designer should also review the function and task lists to verify that new 
connections have also been made. Often in the process of task defini-
tion, new communications pathways may be created, but through an 
oversight, the information was not back-annotated to the requirements 
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document. Checking the function and task lists should catch these 
missed pathways. Note: The designer is strongly discouraged from skip-
ping over this step as it is a valuable check on the design of the tasks as 
well as the communications layout of the system. 

Unconnected pathways can indicate any one of a number of system 
design problems:

The inadvertent generation of redundant data.

Missing data that must be generated.

An omission in the task list documentation.

Or, even a failure in the designer’s understanding of the operation 
of the system.

In any event, the problem should be identified and corrected before 
continuing on with the design and the affected documentation should 
also be revised to include the corrections. And yes, the function and task 
lists, as well as the requirements document should be updated. 

Once all questions have been resolved and the documentation up-
dated, the diagram should be redrawn one last time in a single color 
of ink with related peripherals and tasks grouped together so that the 
pathway arrows are reasonably straight and easy to follow. The diagram 
should also leave plenty of room for the addition of new pathways. And 
there will be additional data pathways generated as the design evolves. 
No design methodology, regardless of how methodical, can accurately 
predict every possible need in advance. A good methodology though, 
should be sufficiently adaptable to handle new requirements as the 
project progresses.

Next, make a list of all the data pathways, prioritizing the list by 
name of the pathway and the name of the sending task. For pathways 
with multiple destinations or sources, make a single entry in the list, 
but list all sources and destinations for the pathway. For each pathway, 
note the type of data to be transferred, whether the storage is static 
or dynamic, plus the estimated width and storage requirements. This 
information should have come from the dissection of the requirements 
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document earlier in this chapter. The designers should take their time 
in the generation of this list, making it as comprehensive as possible, as 
the list will be the basis for the final variable dictionary and the header 
file that will declare the variables used for communications. For dynamic 
variables, make a note of any estimates made concerning input and 
output data rates as well.

Once the preliminary list is complete, it is time to assign an appro-
priate data transfer protocol to each pathway. The protocol used, either 
broadcast, semaphore, or buffer, will depend on the needs of the pathway 
and the speeds of the sending and receiving tasks. If in doubt about the 
operation of the protocols, the designer is encouraged to review the 
protocol definitions in Chapter 2 before continuing with the design.

How do we determine which protocol is the right one for a given 
data path? Each protocol has specific advantages and limitations. The 
buffer protocol has the ability to cache data between fast and slow senders 
and receivers, but has difficulty with more than one receiving task. The 
semaphore protocol transfers not only information but also event timing 
information. However, it can introduce state lock problems if a circular 
link of pathways in generated. And the broadcast protocol is useful for 
sending data from one or more senders, to one or more receivers, but it 
does not transfer event timing. The secret is to match the needs of the 
pathway to the correct protocol.

The best place to start is with the pathways that were identified 
as needing dynamic. Because this type of storage is variable, it is best 
implemented with a buffer type of protocol. The buffer handles variable-
length storage well, and the circular storage format allows the sending 
task to start a second message, prior to the receiving task completing the 
first message. The only exception to this recommendation is for those 
pathways that use dynamic for the transmission of a single variable, such 
as a command flag. Leave these pathways unassigned for now.

Once the pathways using dynamic storage are identified, overwrite 
them with a green pencil or marker to identify them as buffer protocol 
pathways.



178 Chapter 3

The next group of pathways to identify are those that need to in-
clude event-timing information as part of their data transmission. These 
pathways will typically fall into a couple of categories:

Commands: data that initiate an activity by the system; this is 
typically a user-initiated command or request from external to 
the system.

Events: an event within the system requiring a response or action 
be taken in response to the event. This could be a flag indicating 
that a critical temperature or time has been reached.

Changes: a notification to the system that some important param-
eter has changed and the system must respond in some fashion. 
For example, a notification from one task to another that it has 
completed a its task and a common resource is now available for 
use.

The semaphore protocol is typically used for these pathways due to 
its ability to transmit both data and event timing information. The very 
nature of handshaking requires that both the sending and receiving tasks 
must temporarily synchronize their operation to complete the transfer. 
So, it makes the protocol invaluable for not only making sure the re-
ceiving task has current information, but also for making the receiving 
task aware that the current data has changed. Data pathways using the 
semaphore protocol should be overwritten using a red pencil or marker 
in the data flow diagram to identify them as semaphore protocols.

The remaining data pathways can be assigned the broadcast protocol. 
These pathways should be static, and should not require event timing 
information as part of the transfer. Pathways with multiple destinations 
should also use the broadcast protocol, due to the complexity involved 
in handshaking between multiple a sender and multiple receiving tasks. 
These will typically be system or task-specific status information within 
the system. For example, the current time in our alarm clock design 
should use a broadcast protocol. This is because the various tasks within 
the system will either not need to know each and every change in the 
current time. Or the receiving tasks can poll the current time with 
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sufficient speed to see any changes with out the need for an event timing 
information. Finally, overwrite all the broadcast protocol pathways in 
the data flow diagram with a blue pencil or marker to identify them.

Once protocols have been assigned and identified by color on the 
data flow diagram, the diagram should be examined to determine if a 
potential state lock condition is possible. To find this systemic problem, 
follow each Semaphore pathway, head to tail, from task to task, to de-
termine whether any combination of pathways will produce a complete 
loop. If they do, then the system is potentially susceptible to a state lock 
condition. Be sure to check not only pathways within the design, but 
also pathways that may travel over a communications link into another 
system. This is the reason that the data flow diagram of multiple linked 
systems must be drawn on a common diagram. 

In a state lock condition, two cross-coupled tasks have both initi-
ated a semaphore data transfer to the other before recognizing the each 
other’s transfer request. This can be between two adjacent tasks, or it can 
happen between two tasks that have several intermediate tasks between 
them. The only requirement is that all pathways that form the circle 
must be semaphore, as it is the handshaking nature of the semaphore 
that causes the problem.

Because both tasks in a state lock condition have sent data and are 
now waiting for the other to acknowledge the transfer, they have become 
locked, perpetually waiting for the other to respond. But, because they 
themselves are waiting, the condition cannot be resolved. Once in the 
state lock condition, the only remedy is to break the protocol for one 
of the transfers.

There are several methods to recover from state lock; however, the 
best solution is simply to avoid the condition in the first place. The first 
step is to recognize the possibility. Graphically representing the commu-
nications in the system makes this very easy; any complete loop formed 
exclusively by semaphore communications has the potential to exhibit 
state lock. The next step is to simply break the circle by replacing one 
of the semaphore pathways with either a broadcast or a buffer protocol. 
Even a buffer protocol with only a two-variable storage capability is 



180 Chapter 3

sufficient to break the cycle. All that has to happen is that one of the 
two tasks must have the ability to initiate a transfer and then continue 
on executing within the task. Eventually, the task will notice the other 
transfer and complete it, breaking the lock.

If all of the pathways in a circular link must be semaphore due to the 
nature of the software functions in the tasks, then the designer should 
back up one step and determine if the specific combination of functions 
is actually necessary. Often, by simply moving a function from one task 
to another, one or more of the semaphore pathways will shift to a differ-
ent task and the circle will be broken. Designers should remember that 
a design need not be fixed at the end of each step; sometimes a decision 
early in the design leads to a configuration that simply won’t work. When 
this happens, take the design back a step or two in the methodology and 
try something different. Because the design notes for the design detail 
every decision in the process, it is a simple process to back up and take 
the design in a different direction to avoid a problem.

If the problem can’t be avoided, the designer need not despair, there 
are other solutions for avoiding, recognizing, and recovering from state 
lock conditions. Unfortunately, they are not as simple as just changing a 
protocol, and they will require some additional overhead in the design, 
so the discussion on their operation will be tabled until the component 
phase of the design. For now, the designer should note the problem 
on the data flow diagram, so it can be addressed in a later phase of the 
design.

Once all of the potential state lock conditions have been addressed, 
the variable list should be updated with the selection of communica-
tions protocol. Any pathways that still have the potential for state lock 
should be identified and highlighted with a note concerning corrective 
action later in the design. The variable list for our alarm clock example is 
included following, with its associated data flow diagram (Figure 3.4).
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PRELIMINARY COMMUNICATONS VARIABLE LIST

Variable Source Destination Number & Size Type Protocol
• Current_Time TimeBase Display 6 BCD nibbles static Broadcast
  Buttons Alarm
• Alarm_time Alarm Display 4 BCD nibbles static Broadcast
  Buttons

• Blank TimeBase Display flag static Broadcast
• Alarm_enabled Buttons Alarm flag static Broadcast
  Display

• Alarm_active Alarm Display flag static Broadcast
  Alarm_tone

• Snooze Button Alarm flag static Semaphore
• AMPM_mode Button Display flag static Broadcast
• Display_alarm Button Display flag static Broadcast
• Segments Display LEDs 7 bit word static Broadcast
• Digits Display LEDs 6 bit word static Broadcast
• Indicators Display LEDs 2 flags static Broadcast
• Command buttons Switches Button 6 flags static Broadcast
• Time_error Timebase Error flag static Broadcast
• Alarm_error Alarm Error flag static Broadcast
• Display_error Display Error flag static Broadcast
• Button_error Button Error flag static Broadcast
• Reset_time Error Timebase flag static Semaphore
• Reset_alarm Error Alarm flag static Semaphore
• Reset_button Error button flag static Semaphore
• Reset_display Error display flag static Semaphore

Figure 3.4 Alarm Clock Data Flow Diagram.

Table 3.3
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There are several interesting things to note about the variable list 
compiled for our alarm clock example. One, all of the variables are static, 
even though several dynamic variables were identified in the require-
ments document dissection. This is because the dynamic storage was 
needed for communications between functions that were later combined 
into a single task. As a result, the sending and receiving functions are 
now operating at the same speed and no longer need dynamic storage 
to communicate. Two, there are no pathways using a buffer protocol in 
the list; this is because the only multibyte data transfers in the system 
are the time and alarm time values and they are a parallel transfer. And 
three, there are only five pathways that use a semaphore protocol. This 
is because the designer chose to put most of the user’s commands in the 
same task with the button test, debounce and command decoder. As a 
result, the only communications requiring event-timing information are 
the snooze command and the error reset flags from the error task. 

Timing Analysis

One of the key points in this design methodology is that it must generate 
real-time programming. So, it follows that the analysis of the system’s 
timing requirements should be part of the systems design. In this sec-
tion, we will examine the timing requirements of each of the software 
functions in the various tasks, and from this information, determine a 
timing system that will meet the systems needs.

The first step is to list all the timing specifications from the re-
quirements document. Note, if the functions grouped into a task have 
different requirements, then the specifications for each function should 
be included separately. Now is also a good time to review the reasons 
for combining the function to verify that they should really be in a 
common task. 

In the example shown following, the timing requirements for our 
alarm clock design example are listed. Entries for both the event-to-
event timing and response timing are included in the time domain. If 
the timing requirement is listed in the form of a frequency, it should be 
converted to the time domain at this time for easier comparison with 
the other timing requirements.
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Task1 Display
360Hz +20/-0 2.635 - 2.777mS
Alarm flash 0-50mS following time update (1Hz)

  50% duty cycle +/-10%
Blank 909.9mS to 1111.1mS +/-0 overall
Sync to Time update
Response to Blank 8mS maximum

Task2 TimeBase
1sec +/-0 overall relative to internal or 60Hz 
timebase switchover must occur within 8mS of pres-
ence or absence of 5th pulse

Task3 Buttons
Button bounce is 100mS
Debounce is 50mS
Response to decoded command 34mS maximum
Auto Repeat 909.9mS to 1111.1mS +/-0 overall
Sync to time update 0-50mS following time update

Task4 AlarmControl
Alarm response to time increment, 100mS maximum
including tone startup
Snooze response time 50mS including tone shutoff

Task5 AlarmTone
Alarm Tone .454mS min, .5mS typ, .555mS max
Modulation 454mS min, 500mS typ, 555mS max 

event to event
  492mS min, 500mS typ, 510mS max 

overall
Task6 Error Task

no timing specified.

From this information an overall timing chart for the individual 
tasks of the system can be compiled. This should list all optimum, 
minimum, and maximum timing values for both event-to-event and 
response timing requirements. Any notes concerning exceptions to the 
timing requirement should also be included.

List 3.7
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   Minimum Optimum Maximum
Task1

scan 2.635 2.777 2.777
flash response    0.000   25.000   50.000
flash offtime  450.000  500.000  550.000
blank  909.900 1000.000 1111.100
blank response    0.000    4.000   8.000

Task2
timebase  1000.000 1000.000 1000.000
switch response    0.000    4.000   8.000

Task3
bounce   100.000  100.000  100.000
debounce  0.000   25.000   50.000
command   0.000   17.000   34.000
autorepeat  909.900 1000.000 1111.100
aoutr response    0.000   25.000   50.000

Task4
time response    0.000   50.000  100.000
snooze response    0.000   25.000   50.000

Task5
tone     0.454    0.500   0.555
var modulation  454.000  500.000  555.000
modulation  492.000  500.000  510.000

Note: all values in milliseconds

All the information needed to determine the system tick is now pres-
ent. The system tick is the maximum common time increment, which fits 
the timing requirements of all the tasks in the system. The tick chosen 
must be the largest increment of time that will be divided into all of 
the timing requirements an integer number of times. While this sounds 
simple, it seldom is in practice. Timing requirements are seldom integer 
multiples of each other, so the only solution is to choose a tick that fits 
most of the requirements, and fits within the tolerance of all the rest. 
When a suitable tick is found, it should be noted in large letters at the 
bottom of the chart. This number is the heartbeat of the system and will 
be at the very center of all timing decisions from this point on.

The best tick for our alarm clock is 250 microseconds.

Table 3.4
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Sometimes even the tolerances on the timing specifications will not 
allow a reasonable size tick that will fit every requirement. When this 
happens, the designer is left with a limited number of options:

1. The designer can review the timing requirements for the system, 
looking for values that can be changed without changing the op-
eration of the system. Timing requirements for display scanning, 
keyboard scanning, tone generation, and others maybe a matter of 
esthetics rather than an externally imposed requirement. The only 
real requirement may only be that they have consistent timing. 
If the timing for one of these functions is the hard to fit value, 
experiment with the timing requirements for these functions. 
Often this will suggest other tick increments that may fit within 
the requirements of all the functions. For example, the timing for 
the scanning routine in our example is 2.635 ms to 2.777 ms. 
However, if it were reduced to 2.5 ms for the minimum, then 
the system Tick could be increased from 250 μS to 500 μS. This 
still scans the displays at a greater than 60-Hz rate, so no flicker 
would be introduced.

2. The second option is to consider moving some of the more 
difficult to accommodate tasks to a timer-based interrupt. The 
interrupt can be configured to operate at a faster rate that ac-
commodates the difficult tasks, and frees up the balance of the 
tasks to operate at a different rate. Note: if a task is moved to 
an interrupt, communications to and from the task will require 
either a semaphore or buffer protocol. This is because the task will 
be completely asynchronous to the other tasks, much as the tasks 
in a preemptive operating system. So, additional handshaking is 
required to prevent the transmission of partially updated com-
munications variables, in the event that the timer interrupt falls 
in the middle of a task’s update. More information concerning 
the use of interrupts is available in Chapter 5.

3. The third option is to consider using a tick that is smaller than 
the smallest task timing increment. Sometimes, using a tick that 
is 1/2 or 1/3 of the smallest task timing increment will create 
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integer multiples for hard to accommodate tasks. Note, this op-
tion will decrease the time available in each pass of the system 
and increase the scheduling job for the priority handler, so it is 
not generally recommended. If fact, the original tick value of 
250 μS was obtained using this option. However, shifting the 
display timing would eliminate the need for a smaller tick, so it 
was chosen instead.

At this point there should also be a quick mention of the system 
clock. Once the system tick has been determined, a hardware mechanism 
within the microcontroller will be needed to measure it accurately. Typi-
cally, this job falls to one of the system’s hardware timers. The timers 
in small microcontrollers usually have the option to either run from a 
dedicated crystal oscillator or from the main microcontroller oscillator. 
If a dedicated oscillator is available, then the oscillator frequency must 
be set at a 256 multiple of the desired system tick frequency. In our 
example, that would be 512 kHz, or 256 times 1/.5 ms. If the system 
clock is employed, a pre- or postscaler will be needed to allow the system 
clock to operate in the megahertz range. Assuming a prescaler based on 
powers of two, that means a 1.024 MHz, 2.048 MHz, 4.096 MHz, 
8.192 MHz, or 16.384 MHz oscillator. If none of these options are 
available, then an interrupt routine can be built around the timer, for 
the purposes of preloading the timer with a countdown value. This value 
is chosen so that the timer will overflow at the same rate as the desired 
tick. Note that an interrupt routine is needed for this job because there 
will very probably be task combinations that will periodically overrun 
the system tick. An interrupt routine is the only way to guarantee a 
consistent time delay between the roll-over and the preload of the timer. 
For our example, we will use a 4.096-MHz main system clock and a 
divide-by-8 prescaler to generate the appropriate timer roll-over rate for 
our system tick, and avoid the interrupt option.

Once a suitable timing tick is chosen, the skip rates for all of the 
system tasks can be calculated. This value will be used by software tim-
ers which will hold off execution of the state machine associated with 
the task, for X number of cycles. This slows the execution of the state 
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machine, so its operation is within its desired timing. Using the timing 
information from our alarm clock design, and assuming the modified 
Task1 scan timing, the following table is constructed.

Optimum Skip Rate
Task1

scan  2.500 5
flash response   25.000 50 ( 100)
flash offtime  500.000 1000 (1100)
blank  1000.000 2000 (2222)
blank response    4.000 8 (  16)

Task2
timebase  1000.000 2000
switch response 4.000 8 (  16)

Task3
bounce  100.000 200
debounce  25.000 50 ( 100)
command  17.000 34 (  68)
autorepeat 1000.000 2000 (2222)
aoutr response   25.000 50 ( 100)

Task4
time response   50.000 100 ( 200)
snooze response 25.000 50 ( 100)

Task5
tone     0.500    1
var modulation  500.000 1000 (1110)
modulation  500.000 1000 (1020)

Note the values in parentheses following the skip rates. These are the 
skip rates for the maximum times. Assuming that the optimum time is 
not the maximum, then these values constitute the amount of leeway 
that is still available in the task’s timing. We noted this information for its 
potential use later in the design, when we define the priority handlers.

Up to this point in the design, we have assumed that the system would 
use a rigid timing system that regulates the timing of the software loop 
holding the task state machines. However, there is another option for 
systems that are not required to comply with specific timing require-
ments. The option is to run the system without a timing control. By 
far, the first option using a rigid timing control is the most common. 

Table 3.5
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However, in rare instances, when the timing tolerances are very broad 
or nonexistent, the second option can be implemented. Now as a de-
signer, you may ask, “What is the advantage to a completely unregulated 
system and what possible design could possibly operate without some 
regulation?” The truth is, no system can operate completely without 
timing regulation, but some systems can operate by only regulating the 
functions that actually require specific timing. The other tasks in the 
system are run at the maximum speed of the main system loop. 

For example, consider a simple user interface terminal with a display 
and keyboard. Button presses on the keyboard result in ASCII data being 
sent to the host system, and data received from the host is scanned onto 
the display. The only functions in the system that require specific timing 
are the serial transmit and receive functions interfacing with the host 
system. The display and keyboard scanning rates only have to comply 
with a reasonable minimum scanning rate. In this example, the serial 
input and output tasks are typically regulated by the baud rate of the serial 
interface. The control, display scanning, and keyboard scanning tasks 
could then be run at the fastest rate possible given the microcontroller 
clock frequency. The rate at which these three tasks operate would be 
variable, based on the execution time of each task on each pass through 
the system loop. However, as long as the minimum scanning rates are 
achieved, the system should operate properly.

The advantage to this type of system is that it operates more efficiently 
and more quickly than regulated systems. There is no dead time at the 
end of each cycle as the system waits for the next tick; the system just 
jumps back to the top of the loop and starts into the next task. This saves 
program memory, complexity, and it means that every available system 
instruction cycle is used to perform a system function. As a result, the 
system is very efficient, and will outperform a more rigidly regulated 
system. The only down side is that the tasks within the loop cannot use 
the loop timing to regulate their operation. Instead, they must rely on 
hardware-based timer systems for accurate timing.
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The major downside to this system is that it requires a hardware timer 
for every software-timed function, and only works well for systems with 
few, if any, routines with strict timing requirements.

Priority Handler

So far in this chapter, we have gathered together the various priority 
requirements and used them to define the system’s modes. This covers 
the majority of the work at this level of the design. The only additional 
work is to update the table with the information from the task defini-
tion performed earlier in the chapter. Basically, we need to rewrite the 
priority list and the criteria for mode change list using the task names. 
We also need to note any functions that should be disabled by a specific 
system mode.

So, to review the information from the requirements document dis-
section, we have defined the following list of system modes:

Timekeeping mode: Current time display, alarm is disabled, no 
commands are in progress, and normal power. 

Time set mode: Current time display, alarm is disabled, normal 
power, and time set commands are in operation. 

Alarm pending mode: Current time display, alarm is enabled, nor-
mal power, no commands in progress, and alarm is not active.

Alarm set mode: Alarm time display, normal power, alarm set 
commands are in operation, and alarm is not active. 

Alarm active mode: Flashing display of current time, alarmed is 
enabled, alarm is active, no commands in progress, and normal 
power.

Snooze mode: Current display time, alarm is enabled, snooze is 
in progress, and normal power.

Power fail mode: Display is blank, internal time base in operation, 
alarm is inhibited, and battery supplied power. 
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Replacing the individual functions with the tasks that now incorpo-
rate the functions, we have the following priority list:

System Mode  High Priority Med Priority Low Priority
Timekeeping mode  Time Base Task Display Task Button Task

  Error Task

Time set mode  Button Task Display Task Time Base Task
  Error Task

Alarm pending mode  Time Base Task Display Task Button Task
Alarm Control Task Error Task

Alarm set mode  Button Task Display Task Error Task
Time Base Task

Alarm active mode  Time Base Task Display Task Button Task
Alarm Tone Task  Error Task
Alarm Control Task

Snooze mode  Time Base Task Display Task Button Task
Alarm Control Task Error Task

Power fail mode   Time Base Task Display Task Error Task

Error mode  Error Task Display Task Button Task 
Time Base Task

There are several interesting things to note about the new priority 
list. Many of the newly defined tasks include both low- and high-prior-
ity functions. This means that some tasks can be classified as either low, 
mid, or high priority. When compiling the table, always list the task only 
once, and at its highest priority. When we get to the implementation of 
the priority handler, we can adjust the task priority based on the value 
in the state variable, if needed.

Also, note that some of the functions do not change in priority. For 
example, the display task is always a medium priority. Other tasks do 
shift in priority based on the system mode; they may appear and disap-
pear, like the alarm tone and alarm control tasks, or they may just move 
up or down as the button and time base tasks do.

Table 3.6
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Once the priority list has been updated to reflect the task defini-
tion information, we also have to perform a quick sanity check on the 
criteria for changing the system modes. To be able to change mode, it 
make sense that the task charged with providing the information that 
triggers the change must be active before the change can occur. What 
we want to do at this point is review each criterion, checking that the 
task providing the trigger for the change is in fact active in the original 
mode. If not, then the priority list needs to be updated to include the 
task, typically at a mid or low level of priority. For example, using our 
alarm clock design example:

Table 3.7

Original mode Next mode Trigger event
Powered down Error Initial power up
Error Time set Press of the TIME SET button
Error Alarm set Press of the ALARM SET button
Timekeeping Time set Press of the TIME SET button
Timekeeping Alarm set Press of the ALARM SET button
Time set Timekeeping Release of the TIME SET button
Alarm set Timekeeping Release of the ALARM SET button
Timekeeping Alarm Pending Alarm Control Switch to enabled
Alarm Pending Timekeeping Alarm Control Switch to disabled
Alarm Active Timekeeping Alarm Control Switch to disabled
Alarm Pending Alarm Active Alarm time = Current time
Alarm Active Snooze Snooze Command 
Snooze Alarm Active Alarm time + snooze time = Current time
{all modes} Power Fail 5th consecutive missing 60-Hz pulse
Power Fail Timekeeping 5th consecutive 60-Hz pulse
{all modes} Error Error condition

In each of the original modes, the task responsible for providing the 
trigger, whether it is a button press or missing time base pulses, must be 
active at some priority level to provide the necessary triggering event. 
If the task is not active, then the system will hang in the mode with no 
means to exit. Note that there may be instances in which the response time 
requirement for a system mode change requires a higher priority for the 
task providing the mode change trigger. If so, then both system priority 
and timing requirements may have to shift in order to accommodate a 
faster response. Make sure to note the reason for the change in priority 
and timing in the design notes and adjust the priority list accordingly.
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Once all the priority information has been cataloged and the neces-
sary task trigger event information verified, copy both the priority list 
and the list of criteria for making a system mode change into the design 
notes for the system. Include any information relating the changes made 
to the design and list any options that were discarded and why they were 
discarded. Be clear and be verbose; any question you can answer in the 
text will save you time explaining the choices later when the support 
group takes over the design.

Error Recovery

So far in our design of the system, we have touched on a few error detec-
tion and recovery systems. These include error and default states for the 
task state machines, a system error task to handle errors that affect more 
than one task, and a definition of the severity of several system-level 
failures. In fact, one of the primary software functions in the design of 
the alarm clock is the automatic switch over to an internal time base if 
the 60-Hz time base stops; this is also an example of an error detection 
and recovery system.

What we have to do now is define how these faults will be handled 
and what tasks will be affected by the recovery systems. In our dissection 
of the requirements documents, we define soft, recoverable, and hard 
errors for the system:

Soft Fault

Fault: Button pressed is not valid for current mode or command.

Press of SLOWSET without FASTSET, ALARMSET, or 
TIMESET held.

Press of SNOOZE when not in alarm active mode.

Press of any key in power fail mode.

Test: Comparison of decoded button command with legal 
commands, by mode.

Response: Ignore button press.  

List 3.8
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Soft Fault

Fault: Button combination is invalid.

Press of SNOOZE with FASTSET, SLOWSET, ALARM-
SET, TIMESET.

Press of ALARMSET with TIMESET.

Test: Checked against acceptable combinations in command 
function.

Response: Ignore button press.

Recoverable Fault

Fault: Alarm time is out of range (Alarm time > 23:59).

Test: Alarm control function test of value before current time 
comparison.

Response: If alarm is enabled, sound alarm until ALARMSET 
button press.

If in any other mode, ignore (fault will be identified when 
alarm is enabled).

Recoverable Fault

Fault: Power failure.

Test: 5th missing 60-Hz time base pulse.

Response: Goto power fail mode until 5th detected 60-Hz pulse.

Hard Fault

Fault: Watchdog timer timeout, brownout reset.

Test: Hardware supervisor circuits.

Response: System is reset. If BOR, then system held in reset until 
power is restored.

System will power up in error mode. 

List 3.8
(continued)
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We now need to add any new faults that have come to light during 
the course of the design. These include error conditions within the state 
machines, or any communications errors between the tasks. We also 
need to decide on recovery mechanisms, the scope of their control, and 
whether the recovery system resides in the state machine, or the error 
task state machine.

Let’s start with a few examples. Consider a state variable range fault 
in the display task state machine. The detection mechanism is a simple 
range check on the state variables, and the recovery mechanism is to reset 
the state variable. Because the display task is a control end point, meaning 
it only accepts control and does not direct action in another task, the 
scope of control for the recovery mechanism is limited to the task state 
machine. As a result, it makes sense that the recovery mechanism can 
be included within the state machine and will not require coordination 
with recovery mechanisms in other tasks.

A fault in the time base task, however, could have ramifications that 
extend beyond the task state machine. For example, if the state machine 
performs a routine check on the current time and determines that the 
value is out of range, then the recovery mechanism will have to coordi-
nate with other tasks to recover from the fault. If the alarm control task 
is active, it may need to suspend any currently active alarm condition 
until after the current time value is reset by the user. The display task 
will have to display the fact that the current time value is invalid and 
the user needs to reset the current time. The time base task will have 
to reset the current time to a default value. And, the system mode will 
have to change to Error until the user sets a new current time value. 
All of this activity will require coordination by a central entity in the 
system, typically a separate error task acting as a watchdog. In fact, the 
specific value present in the error task state variable can be used as an 
indicator as to the presence and type of error currently being handled 
by the system.
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To document all this information, we will use the same format as 
before, classifying the fault as to severity, soft, recoverable, or hard. Name 
the fault with a label descriptive of the problem and the task generating 
the fault condition. List the method or methods for detecting the fault, 
and detail the recovery mechanism used by the system. Remember that 
each task will have a state machine, and each state machine will have at 
least one potential error condition, specifically the corruption of its state 
variable. In addition, there will likely be other potential error conditions, 
both in the operation of the task and its communications with external 
and internal data pathways. 

Another potential source of errors is from the communications sys-
tem. Semaphore protocol pathways have the potential to create potential 
state lock conditions. If the problem cannot be averted by changing one 
or more of the pathway protocols, then the state lock condition will be an 
error condition that must be detected and recovered from by the system. 
Buffers also have the potential to create error conditions, should they fill 
their buffer space. While these errors are typically considered soft errors 
because they don’t require user intervention, the error-handling system 
may need to be aware of the problem. Once all the potential system 
errors have been identified, the severity of the error condition must be 
determined, a test developed to detect the condition, and a recovery 
mechanism devised to handle the problem. 

This can be particularly problematic for communications errors, 
specifically potential state lock conditions. This is because both commu-
nications in a state lock condition are legitimate data transfers. However, 
due to the nature of the lock, one of the two pathways will likely have 
to drop their data, to allow the other communications to continue. 
So, basically, the error recovery system will have to decide which data 
pathway to flush and which to allow to continue. 
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Using our clock design as an example, the following additional error 
should be added to the system-level design:

Soft Error

Fault: Display task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Recoverable Error

Fault: Button task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Cancel any current command semaphores.

Reset all debounce and autorepeat counter variables.

Recoverable Error

Fault: Time base task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Range check time base timer variables.

If out of range, then reset and notify error task to clear 
potential alarm fault.

Recoverable Error

Fault: Alarm control task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

If alarm is active, disable then retest for alarm time.

If alarm enabled or active, range check alarm time.

If alarm time out of range, then notify error task of fault 
condition.

List 3.9
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Soft Error

Fault: Alarm tone task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Recoverable Error

Fault: Error task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Check status on other system state machines.

If error condition, then set error system mode, set current 
time to default.

Wait for user control input.

Recoverable Error

Fault: Alarm disabled but also active.

Test: Routine check by error task.

Response: Reset alarm control task state variable.

Recoverable Error

Fault: Snooze active when alarm is disabled.

Test: Routine check by error task.

Response: Reset alarm control task state variable.

Hard Error

Fault: Program memory fails a CRC test.

Test: CRC check on power-up.

Response: System locks, with a blank display.

These additional fault conditions and recovery mechanisms are then 
added to the design notes. The description of the fault condition should 
include an appropriate, verbose description of the type of error condition, 
the error condition itself, the method for detection of the error, and the 
recovery systems. Include notes on the placement of the new software 

List 3.9
(continued)
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functions to detect and correct the error condition, plus any options in 
the design that were discarded and the reasons why.

Notes concerning any additional software functions required to 
handle the error detection and recovery should also be added to the ap-
propriate task descriptions so they can be included in the state machine 
design. This includes both errors from the corruption of data variables 
and the corruption of the state variable for the task state machine. 

All notes concerning an Error task or tasks should also be added to 
the design notes. This includes updates to the task list, the system data 
flow diagram and variable dictionary, timing calculations, and priority 
handling information. Remember to review any additions to the com-
munications plan, for potential state lock conditions.

System-Level Design Documentation

At this point, the design should include all of the system-level design 
information for the design. It may not be final, but it should be as 
complete as possible. Remember, the next level of the design will use 
this information as the basis for design, so the information from this 
level must be as complete as possible.

To recap, the information generated so far includes the following:

The requirements document: Should be updated with all the 
current system information, including functions required for 
operation, communications and storage requirements, timing 
information, and priority information. It should also include 
detailed information concerning the user interface and finally, all 
information available on potential system errors, methods used 
to identify the error conditions, and methods for recovering from 
the errors.

Information retrieved from the requirements document: Should 
include information concerning the following: 

– Task Information: This includes a list of all the functions 
the design will be required to perform, any information 
concerning algorithms used by the functions, and a descrip-
tive write-up detailing the general flow of the functions.
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– Communication Information: This includes all information 
about the size and type of data, for internal communications 
between functions, external communications with off-system 
resources, and any significant temporary storage. Also any 
information about event timing that is tied to the variables 
used, as well as the classification of the data storage as either 
static or dynamic, plus all rate information for dynamic 
variables. Both peak and average should also be included.

– Timing Information: This includes not only the timing 
requirements for the individual tasks, but also the overall sys-
tem timing, including both event-to-event and response-time 
timing. Should also include all timing tolerance information, 
as well as any exceptions to the timing requirements based 
on specific system modes.

– Priority Information: This includes a detailed description 
of all system modes and the trigger events that change the 
system mode. Should also include the overall priorities for 
the system, changes in function priorities due to changes in 
the system mode, and the priorities within each task based 
on current activities. 

Documentation on the task definition phase of the system-level 
design: This should include descriptive names for the various new 
tasks in the system, what software functions have been grouped 
into the functions, and the reasons for combining or excluding 
the various software functions. In the event that conflicting cri-
teria recommend both combining and excluding a function, the 
reasoning behind the designer’s decision should also be included. 
The final documentation should also include the preliminary 
task list, plus any updates due to changes in subsequent areas of 
the system-level design. 

Documentation on the communications plan for the design: This 
should include all revisions of the system data-flow diagram, the 
preliminary variable list and all related documentation concern-
ing protocol assignments, memory requirements, and timing 
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information. Special note should be made of any combination 
of pathways that can result in a state lock condition, and the 
reasons for not alleviating the problem through the assignment 
of a different protocol for one of the problem pathways.

Documentation on the timing analysis for the system: This should 
include all calculations generated to determine the system tick, 
including both optimum and worst-case timing requirements. 
Reasons for the choice of system tick should be included, and 
any functions that are to be handled through an interrupt-based 
timing system. For systems with unregulated timing, the reasons 
for the decision to use an unregulated system should be included, 
along with the plan for any timing critical functions. Finally, the 
tick itself should be documented along with the skip timer values 
for all tasks in the system.

Documentation on the systems priorities: Include the updated 
priority list, using the task name generated in the task definition 
phase of the design. Note any tasks that combine lower priority 
and higher priority functions, and the new priority assigned to 
the task. Note all events that trigger a change in system mode 
and all information generated in the validation of the trigger 
event information.

Documentation on the error detection and recovery system in 
the design: Particularly any new error conditions resulting from 
the task state machines, potential communications problems, 
and general data corruption possibilities.

One final note on documentation of the system-level design: in all the 
design decisions made at this level, some will require back annotation to 
earlier design notes and even the requirements document for the system. 
As a designer, please do not leave this to the last moment; there will 
always be something missed in the rush to release the documentation
to the next level of the design. As a general rule, keep a text editor 
open on the computer desktop to make notes concerning the design. A 
second instantiation holding the requirements document is also handy. 
Bookmarks for tagging the main points of the design, such as task 
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definition, communications, priorities, and timing make accessing the 
documents quick and help to organize the notes. If the notes are made 
as the information is found, then the information is fresh in the mind 
of the designer, and the notes will be more complete.

I know this sounds like a broken record, but remember the points 
made in Chapter 1. Good documentation allows support designers to 
more readily take up the design with only minimal explanation for the 
designer. Good documentation also aids designers if they ever have to 
pick up the design in the future and rework all or part of the design. And, 
good documentation will help the technical writers in the development 
of the manuals and troubleshooting guides for the system. So, there are 
a wealth of reasons for being accurate and verbose in the documenta-
tion of the design, both for the designers themselves and for any other 
engineers that may have to pick up the design in the future.

At this point in the design, it is also a good idea to go back through 
the design notes and organize the information into four main areas: task, 
communications, timing, and priorities. The information in the design 
notes will be the basis for all of the design work in the next chapter, so 
spending a few hours at this point to clean it up and organize the data 
will be time well spent. Note—do save the original document under a 
different name in case information is lost in the translation and clean-
up.

We have now completed the system level of the design. In the next 
chapter, we will take the information gathered and generated at this 
level and push the design down to the component level. The next level 
will not involve actual writing of code for the design, but it will specify 
the actual layout of the program, and the generation of any algorithms 
not currently designed. Once the design is complete at the component 
level, then Chapter 5 will move into the actual implementation of the 
design.
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One final note: Throughout the design methodology presented in 
this book, we will be using either the C programming language or a 
pseudo C-like language for defining the algorithms to be used. While 
the methodology is equally applicable to both assembly and higher-level 
languages, we will be using C or pseudo-C, as it represents the design at 
a higher, less complex level. This helps us see the forest for the trees, as 
it were—basically allowing the reader to concentrate on the big picture 
of the design without obscuring the message with the more complex 
description in assembly.



In this chapter, we continue the design process, translating the 
system-level design from the last chapter into the individual software 
components that will make up the final system. While we will not begin 
the actual implementation of the software until the next chapter, we will 
be designing the state machines, timing controls, and priority handler, 
as well as defining the variables used for communications. When we 
are finished, we will have a collection of module specifications, one for 
each block in the system.

Task State Machines

Once again we start with the tasks. Our job at the component level of 
design is to determine the type of state machine, what states will be 
needed, what the various conditions are that will change the state, and 
what communications that state machine will need to operate in the 
final system.

From Chapter 2, we know that there are three types of state machine: 
data indexed, execution indexed, and hybrid. While the execution indexed 
will typically be the most common, we will start with the data indexed 
for simplicity. Once we are comfortable with it, we will move on to the 
execution indexed and the hybrid.

Data-indexed state machines execute the same block of code each 
time they are called, and it is the data operated on by the block of code 
that changes from call to call. This means that our state variable in a 
data-indexed state machine is responsible for indexing the data to be 
operated on. This typically implies that our data will be held in an array 

4
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data structure. In fact, if the processing of the data requires constants 
that must also be indexed, then it follows that the constants must be 
held in an array as well. Because variable and constant arrays use a lin-
ear addressing system, our states must be a linear collection of values 
as well. Typically, this means two to N states, starting at zero, and our 
state variable will be an unsigned CHAR, integer or long depending on 
the number of states required.

One of the simple things about a data-indexed state machine is that 
the number of states is relatively simple to determine. If a system will be 
operating on 15 values, then there will be 15 states. If the system operates 
on 200 values, then we will need 200 states. So, typically, the number 
of data values to be handled automatically determines the number of 
states and the size of the state variable. Defining the states is then just 
a simple matter of labeling the state and building any constant arrays 
that may be required.

So, what kinds of tasks lend themselves to a data-indexed state 
machine format? Tasks that handle more than one piece of data, tasks 
that continuously repeat the same task, and tasks that complete their 
function every time they are executed. Typically these types of tasks 
tend to be scanning functions, such as Display routines that scan data 
onto a multiplexed display such as LEDs or a CRT. Or they could be 
functions that poll inputs, such as a keyboard routine or an analog-to-
digital converter routine that monitors multiple signals, or even some 
math routines, such as a DSP filter that multiplies a group of samples 
by a group of coefficients to obtain a new result for each new sample. 
All of these tasks perform the same function each time they are called, 
whether it is output a digit on a display, poll a push button, or calcu-
late a value. They operate continuously, keeping up the refresh on the 
display, scanning for new key presses, or supplying a continuous stream 
of new output values. And they all operate on changing data, such as 
different digits, different push buttons, or different samples, each time 
the function is called. 
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One example is the LED display-scanning Task in our alarm clock 
example. Either the current time or alarm time is displayed on the six 
digits of numeric displays. There are six digits to be scanned for both 
of the current time display modes, and four digits to be scanned in the 
alarm time display modes. Because the four-digit display is a subset of 
the six-digit display, we can define the 6 states and only use the first four 
for the alarm time. The preliminary list of states would be as follows:

STATE DIGIT FUNCTION
0 Display tens of hours
1 Display ones of hours
2 Display tens of minutes
3 Display ones of minutes
4 Display tens of seconds
5 Display ones of seconds

When displaying the current time, the state machine will cycle 
through all six states; when displaying the alarm time, the state machine 
need only cycle through the first four states.

OK, we have determined what states we need, so what next? Well, 
as we noted previously, for some modes of the display, it will scan four 
displays, and for others, it will display all six. And wasn’t there a flash 
and a blank function as well? That would indicate that we may need ad-
ditional states for some modes and fewer states for other modes. However, 
to maintain the same perceived intensity, the percentage of time that a 
digit is lit will have to remain the same. So, we will have to scan through 
the same number of states for each of the different modes.

Let’s start with the current time display. Our current list has six states 
for six digits. If we can set up the other modes so they also step through 
six states, then the time each digit is lit will remain the same and the 
intensity won’t change. If we add two blank states that don’t light a digit 
but just take up a cycle in the state machine, then the four-digit mode 
for alarm time will have the same digit on time as the six-digit display of 
the current time. So, let’s add two blank states in 6 and 7, and define the 
state transitions based on the flag Alarm_Enable. To completely blank 
the display, we can then jump to the blank states and stay there until 
battery-powered operation ends. The result is the following state list:

Table 4.1
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STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds always 1
6 Blank display always 7
7 Blank display blank 6 1

If the display is showing alarm time, then the sequence is 0, 1, 2, 
3, 6, 7, 0. If the display is showing time, then the sequence is 0, 1, 2, 
3, 4, 5, 0. If a blank condition exists, then both sequences go to 6/7 
and stay there until the condition clears. Both time and alarm display 
sequences have six states, and alarm time display leaves the tens and 
ones of seconds blank. 

At this point, someone is probably asking, why go to all this trouble? 
Just disable the displays during states 4 and 5 if the display is showing 
alarm time. And if the display is blanked during battery operation, just 
blank all the digits and save the two extra states. Well, yes, that will work. 
It means adding in a conditional statement that tests for states greater 
than 3, and blanks the display if alarm time is active. It also means the 
conditional statement will have to blank the display if the blank signal 
is true. In fact, the resulting conditional statement would probably be 
smaller than the additional code to implement the state transitions.

However, it also means that any other state machine, or the priority 
handler, will also have to use a copy of that conditional to determine if 
the display is doing something that is high priority, or just wasting time 
in a blank. Creating the two new blank states allows every other task in 
the system to know exactly what the priority of the current activity in 

Algorithm 4.1
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the display task is, just by looking at its state variable. So, yes, the other 
method is smaller in the display task, but it also makes determining what 
the display task is doing more complex. It is also makes the code more 
cryptic, while a blank state is pretty obvious. In addition, using two 
identical conditional statements in two different places in the software 
is an accident waiting to happen. If someone in the future modifies the 
conditional in the display task, there is no guarantee that they will know 
to change the conditional other places in the project. Now other tasks 
and the priority handler are making erroneous priority decisions about 
what the display task is doing. Using a simple blank state predigests the 
conditional statement and publishes a clear flag of the result to any other 
entity in the system that is watching the display task’s operation.

OK, we have states and state transitions, so what else do we need? 
Any algorithms used by the state machine should be documented, as 
well as any assumptions made in the design. For instance, the algorithm 
for converting 24-hour time to 12-hour AM/PM time, and whether the 
current time and alarm time will be held in a 12- or 24-hour format. 
All inputs and outputs to the state machine should also be documented 
at this time. At the end of this phase of the design, the design notes 
for the project should contain the following notes on the Display state 
machine task:
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  DISPLAY STATE MACHINE TYPE: DATA INDEXED

STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds blank 7 1
6 Blank display always 7
7 Blank display blank 6 1

ALGORITHM FOR CONVERTING 24-HOUR TO AM PM
 K is a temporary variable
 digit0 is the tens of hours digit
 digit1 is the ones of hours digit

 K = (digit0 * 10) + digit1 // convert digits to 0-23 value

   // test for time of 13:00 – 23:59
   // in AMPM mode, displaying hours

 If (state = 0) and (AMPM_mode = true) and (K >= 13)
 {
  digit0 = (K – 12) / 10 // subtract 12 and take tens digit
  digit1 = (K – 12) – 10 // subtract 12 and take ones digit
 }

STATE MACHINE INPUTS:
  Three flags: alarm_enable, blank, AMPM_mode
   All three flags are positive true logic

  Two arrays: Time_data[6]* and Alarm_data[6]*
   *Note, data is in 24:00 hour format for

STATE MACHINE OUTPUTS:
  One state variable: Display_state

  Two I/O ports: Segments(7) and Digit_drivers(6)

  Two LED indicators: PM and ALARM_ON
   Indicators are positive true logic

Algorithm 4.2
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Note: One of the interesting characteristics of the C programming 
language is that, using dynamic variable allocation and data pointers, it 
is possible to create a linked list of data that does not require an index 
value to access the data. Using these constructs it is certainly possible to 
create a data-indexed state machine in which there are no defined states 
or a specific state variable. The system just links sequentially through 
the list using pointers. While the ability to dynamically allocate data is 
very powerful, most small microcontrollers do not have the resources to 
maintain a variable heap, and the design would be quite cryptic without 
extensive documentation, so this technique may be of only limited value 
in most applications. However, in larger systems this can be a powerful 
method for reducing the amount of data memory required for the system, 
particularly if the system is processing large quantities of data.

OK, data-indexed state machines work well for scanned and polled 
functions, but what about functions that execute different code in every 
state? To build a state machine that can handle this kind of function, we 
need to turn to the next form of state machine, the execution-indexed 
state machine.

In an execution-indexed state machine, the overall sequence of in-
structions that make up a task are broken into individual smaller blocks. 
These blocks become the states of the state machine. A state variable is 
then used to specify which block is executed each time the state machine 
is called. Conditional statements, added to each block, manipulate the 
state variable so that the original flow of the overall sequence of in-
structions is recreated when the state machine is called repeatedly. The 
challenge in designing an execution-indexed state machine is breaking 
up the overall sequence of instruction that make up the functionality 
of the task.

So, before we can start the design of the execution-indexed state 
machine, we must understand how the task operates. We need to un-
derstand how the functions themselves operate, and how they operate 
together to form the whole task. 
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Information on the operation of the software functions making up the 
task was gathered in our dissection of the requirements document in the 
last chapter. Information on how the functions operate together should 
have come from the description of the overall system operation, which 
should also be present in the requirements document. Together, they 
should give the designer a big-picture view of the task’s operation.

To illustrate the process, consider the Buttons task from our alarm 
clock example:

Task3 Buttons
 a) Control input monitoring function
 b) Debounce function
 c) Auto repeat function
 d) Command Decode function (combined SetAlarm

and SetTime functions)
 e) Routine to increment alarm by 1 min
 f) Routine to increment alarm by 20 min
 g) Routine to increment Time by 1 min
 h) Routine to increment Time by 20 min
 i) Toggle 12/24 hour mode
 j) Alarm on/off toggling function
 k) Initiate Snooze

From our understanding of how the user interface works, and our 
understanding of each of the software functions in the task, we know:

1. The control and input monitoring function first detects the but-
ton press.

2. The debounce function determines when the button has stopped 
bouncing. This prevents the system from trying to execute a 
command on every contact bounce.

3. The command decode function determines which command to 
execute based on the button pressed, or even if the button press 
is a valid command,

4. The appropriate command routine is executed.

5. If the command supports auto-repeat, the command is executed 
again at the repeat interval until the button is released.

Rewriting the previous description using a pseudocode format, we 
have the following algorithm, which outlines the task’s execution.

List 4.1
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Algorithm 4.3

Start
 Wait for a button press
 Wait for the button to stop bouncing
Repeat
 Decode the function of the button
 If button press is invalid then goto Start, Else decode the button
 If (increment alarm by 1) then alarm = alarm + 1
 If (increment alarm by 10) then alarm = alarm + 10
 If (increment time by 1) then time = time + 1
 If (increment time by 10) then time = time + 10
 If (toggle 12/24) then toggle AMPM_mode flag, goto

Release
 If (alarm on) then alarm_enable = true, goto

Start
 If (alarm off) then alarm_enable = false, goto

Start
 If (snooze) then toggle snooze, goto Release
 Delay
 If (button is still held down) then goto Repeat
      

Else goto Start
Release
 Wait for button release
 Goto Start

Two notes of explanation about the algorithm are needed. One, if 
a command is not followed by a GOTO, it is assumed that it will fall 
through the command decoder, to the Delay and then the IF statement 
that checks to see if “button is still held down.” Two, commands that do 
not have auto-repeat capability either go to the start of the algorithm or 
go to Release, where the state machine holds until the button is released. 
The wait for the release of the button prevents the inadvertent repeat 
of command.

We can now use the algorithm as a basis for the development of the 
task’s state machine. Note that the algorithm that is generated at this 
point and the next few steps in the design process will largely fix how 
the state machine will implement the operation of the functions, so the 
designer is encouraged to take the time needed and do a thoughtful de-
sign. It is also possible that the grouping of software functions within the 
task cannot be worked into a reasonable algorithm, even if the functions 
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did agree with all the task definition criteria from the last chapter. If this 
happens, revisit the decisions in the task-definition phase of the design 
and see if another grouping might be more efficient. There is no law 
that says that the group of functions within a task is fixed once the task 
definition is complete. In fact, part of the reason for doing a top-down 
design is to find these kinds of problems before the design progresses 
to thousands of lines of code. 

The next design challenge is to break up the flow of the algorithm 
into logical blocks, for the states of the state machine. This tells us how 
many states we need and how the execution will flow through the states 
to perform the operation of the state machine. With time, a designer 
will cultivate the ability to look at an algorithm and see where to break 
up a task. Until then, the following list of general rules provides a good 
guideline for determining how to break up the task:

1. Any place in the task where execution stops pending an exter-
nal event, such as the reception of a command or a signal from 
another task, should be a state change. This allows the system 
to poll for the condition until true, then move on by moving to 
the next state.

2. Any place in the function where execution stops waiting for a 
time delay, such as the delay between bits in a software serial 
output function, should be a state change. This allows the use 
of a delay state in the state machine to handle timing. When the 
timer times out, it just moves on to the next state.

3. Any place that the function will return to when executing a loop 
or a jump should mark the start of a state. This is necessary for 
the state machine to start execution at the loop-back point in 
the task. 

4. Any time a function reaches a point where the execution path 
splits to two or more directions should be the start of a new state 
for each alternative path.

5. Anywhere a linear segment of code is too large to execute within 
the system timing tick can be broken into two or more states.
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6. In rules 1 and 2, it was stated that a wait or delay should be 
immediately followed by a change of state. If the next action 
following the wait or delay is a change of state either always, 
or on a condition, the state change may follow the command 
changing state.

Continuing with our example of the button task, the task can be 
broken into the following states, based on the previous guidelines:

  (rule 3)
Start
 Wait for a button press
  (rule 1)
 Wait for the button to stop bouncing
  (rule 1 & 3)
Repeat
 Decode the function of the button
 If button press is invalid then goto Start, Else decode the button
  (rule 4)
 If (increment alarm by 1) then alarm = alarm + 1
  (rule 4)
 If (increment alarm by 10) then alarm = alarm + 10
  (rule 4)
 If (increment time by 1) then time = time + 1
  (rule 4)
 If (increment time by 10) then time = time + 10
  (rule 4)
 If (toggle 12/24) then toggle AMPM_mode flag, goto Release
  (rule 4)
 If (alarm on) then alarm_enable = true, goto Start
  (rule 4)
 If (alarm off) then alarm_enable = false, goto Start
  (rule 4)
 If (snooze) then initiate snooze, goto Release
  (rule 4)
 Delay
 {no state change, per rule 6}
 If (button is still held down) then goto Repeat
   Else goto Start
  (rule 4)
Release
 Wait for button release
 {no state change, per rule 6}
 Goto Start
  (rule 3)

Algorithm 4.4



214 Chapter 4

A quick count shows 13 states generated by splits in the execution 
path, waiting for external events, time delays, and looping. The next step 
is to give each state a name that is descriptive of the actions performed 
in the state. 

Again, using the Button task example, the following list of preliminary 
state names was generated:

Preliminary state names for Button task
1. Wait_4button Idle state, waiting for a button press
2. Wait_4bounce Wait state, waiting for the contacts to stop

bouncing
3. Decode The button is combined with other buttons and

decoded
4. Alarm_plus1 Command: Increment alarm time by 1 minute
5. Alarm_plus10 Command: Increment alarm time by 10 minutes
6. Time_plus1 Command: Increment current time by 1 minute
7. Time_plus10 Command: Increment current time by 10 minutes
8. Toggle_AMPM Command: Toggle AM/PM versus military time
9. Alarm_on Command: Disable alarm
10. Alarm_off Command: Enable alarm
11. Initiate_snooze Command: Snooze alarm
12. Repeat_delay Wait state for autorepeat of increment commands
13. Button_release End state for button release

In addition to the listed states, a minimum of two additional states 
should included: default and error. The purpose of the default state is 
to catch the error condition in which the state variable for the state 
machine has been corrupted. The cause could be static, EMI, or a low 
battery; whatever the cause, including a default state provides the state 
machine with a safeguard mechanism to handle the error and creates a 
place to put code for resetting the state variable. The related error state 
provides a place to put additional error-handling functions. The state 
may only contain an instruction to reset the state variable, or it may 
be a group of states that coordinate the reset of several state machines 
and the clearing of several variables. Regardless of the complexity of the 
system, an error state provides the state machine with a place to put 
error-handling functions defined in the requirements document. 

Algorithm 4.5
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Note: Error conditions within the Buttons task are limited to either a 
corrupted state variable or illegal button press combinations. Corruption 
of the state variable can be handled by simply resetting the state variable 
in the default state. Illegal button press combinations are just ignored, 
as defined in the user interface section of the requirements document, 
so no action is presently required in the error state. However, rather 
than delete the state, it should be retained for the sake of completeness. 
At some time in the future, different responses to illegal button press 
combinations may be required, and the error state will be needed. Hav-
ing the state present and decoded gives designers making that future 
change a place to put the new code. And having the state now doesn’t 
cost that much in program memory.

Now that the blocks have had states assigned to them and the states 
have been named, the next step is to define the state transitions and the 
conditions that cause them. The transitions are implemented by modi-
fying the contents of the state variable, so that the next time the state 
machine is called, a new state will be selected and executed. Using this 
method, all of the traditional conditional and looping constructs can 
be implemented. For more on this subject, refer to the state machine 
section of Chapter 2.
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Adding the state transition information to our list of states, we have 
the following:

Algorithm 4.6

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100-msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled &  Initiate_snooze Button_Release

Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode  Wait_4button

Button is held
Button_Release Button is released Wait_4button  Button_Release
Error Reset from Error task Wait_4button  Error
Default always Error

The final step is to assign actions to the states and document the 
inputs and outputs of the state machine. The actions come from our 
original algorithm for the task and can be documented in text or in the 
form of an algorithm. The inputs and outputs will be a list of the data 
pathways into and out of the task. Using our button example, the fol-
lowing is an example of the actions and input/output documentation:
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State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none  none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10  increment alarm time by 10 Alarm_time Alarm_time
Time_plus1  increment time Alarm_time Alarm_time
Time_plus10  increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine

Default set statevariable to Error none none

The list of states and the table of state transitions comprises the 
documentation required for an execution-indexed state machine. From 
this information, we will produce the state machine in the next chapter 
that implements the button task. There is a strong temptation to just 
skip ahead to the actual implementation of the state machine at this 
time. The designer is strongly cautioned against this; as the other state 
machines in the system are designed, there will be trade-offs made that 
will affect this design. Functions may move from one task to another, 
and the communications pathways may change as well. It is much more 
efficient to wait and have a complete definition for the system, rather 
than jump ahead now and have to rewrite the task later when the design 
of another task necessitates changes.

The final form of state machine is the hybrid design. It combines the 
data-indexing capabilities of our first state machine with the variable 
execution of the second. It should not come as a surprise to find that the 
design of a hybrid state machine is a combination of the design methods 
for both the execution and data-indexed state machines.

Typically, a hybrid design grows out of an execution-indexed design 
as part of an effort to make the original design more efficient. So, it 
makes sense to start the design exactly as we did for the solely execu-
tion-indexed state machine.

Table 4.2
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We start by gaining an understanding of how the functions within 
the state machine and the overall task operate. From this, we build an 
algorithm for the state machine. To illustrate the design, let’s take a 
software serial port transmit task as an example. In this task, the state 
machine will have to:

1. Wait in an idle state, pending detection of a
character to transmit.

2. Retrieve the character to be transmitted.
3. Start the transmission by sending a Start bit.
4. Send each bit of the character in turn.
5. Send a Parity bit.
6. Send a Stop bit, and return to its idle state.

The algorithm for this task is also relatively simple:

Idle
Wait for a Character to send
Retrieve the character
Send a zero as a start bit
Wait 1 bit time
Send bit 0 of the character
Wait 1 bit time
Send bit 1 of the character
Wait 1 bit time
Send bit 2 of the character
Wait 1 bit time
Send bit 3 of the character
Wait 1 bit time
Send bit 4 of the character
Wait 1 bit time
Send bit 5 of the character
Wait 1 bit time
Send bit 6 of the character
Wait 1 bit time
Send bit 7 of the character
Wait 1 bit time
Send a parity bit based on the character value
Wait 1 bit time
Send a one as a stop bit
Wait 1 bit time
Goto Idle

Algorithm 4.7

Algorithm 4.8
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In examining the algorithm, it is readily apparent that repeating the 
“send bit x of the character,” followed by “Wait 1 bit time,” eight times 
will be very inefficient, especially considering each bit would probably 
be assigned its own state. So, at this point in the design, we should have 
come to the obvious conclusion that we need a better way. Fortunately, 
a hybrid design is the better way, and it will be a much more efficient 
implementation for this task.

To design a hybrid state machine, we will continue as before with the 
design of a standard execution-indexed state machine. The only excep-
tion is that the algorithm will be modified to use data indexing for the 
transmission of the bits. The following shows the modified algorithm:

Idle
Wait for a Character to send
Retrieve the character
Set bitcounter = 8
Send a zero as a start bit
Wait 1 bit time

Loop
Send lsb of the character
Decrement bitcounter
Shift character left 1 bit
Wait 1 bit time
If (bitcounter>0) goto Loop

Send a parity bit based on the character value
Wait 1 bit time
Send a one as a stop bit
Wait 1 bit time
Goto Idle

The new algorithm has a number of changes in its design. First of 
all, the eight data bits are now transmitted by the data-indexed section 
of the design starting at Loop. Further, a new variable, bitcounter, is 
used to keep track of which bit is being sent. This makes bitcounter the 
state variable for the data-indexed portion of the design, even though 
the variable does not directly index access to the data. Once bitcounter 
reaches zero, the state machine returns to execution-indexed operation, 
and the parity and stop bits are sent.

Algorithm 4.9
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If we take this algorithm and apply the same rules for segmenting 
the task into states that we used in purely execution-indexed designs, 
we end up with the following:

  (rule 3)
Idle
 Wait for a Character to send
  (rule 1)
 Retrieve the character
 Set bitcounter = 8
 Send a zero as a start bit
 Wait 1 bit time
  (rule 2)
Loop
 Send lsb of the character
 Decrement bitcounter
 Shift character left 1 bit
 Wait 1 bit time
 If (bitcounter>0) goto Loop
  (rule 6)

 Send a parity bit based on the character value
 Wait 1 bit time
  (rule 2)
 Send a one as a stop bit
 Wait 1 bit time
 Goto Idle
  (rule 6)

This gives us six states, as opposed to the 12 or more states that 
would have been required in the original algorithm. Assigning names, 
and including a default and error state, we get the following list of states 
for the hybrid design:

Preliminary state names for Button task
  1. Idle  (wait for a character)
  2. Start  (send start bit)
  3. Data_bit  (data indexed section)
  4. Parity  (send parity bit)
  5. Stop  (send stop bit)
  6. Error
  7. Default

Algorithm 4.10

List 4.2
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Adding the state transition information to our list of states, we have 
the following:

Algorithm 4.11

Current State Condition Next State (if true) Next state (if false)
Idle Data ready to be sent START Idle
Start always Data_bit
Data_bit bitcounter = 0 Parity Data_bit
Parity always Stop
Stop always Idle
Error Reset from error task Idle Error

Default always Error

Performing the same design functions for the data-indexed portion 
of the design, we obtain the following states for data-indexed state 
variable:

STATE DIGIT FUNCTION
1. Transmit bit 0
2. Transmit bit 1
3. Transmit bit 2
4. Transmit bit 3
5. Transmit bit 4
6. Transmit bit 5
7. Transmit bit 6
8. Transmit bit 7

and the list of state transitions for the data-indexed state variable:

STATE FUNCTION Condition If true
1. Send bit 0 always 2.
2. Send bit 1 always 3.
3. Send bit 2 always 4.
4. Send bit 3 always 5.
5. Send bit 4 always 6.
6. Send bit 5 always 7.
7. Send bit 6 always 8.
8. Send bit 7  

The final step is to assign actions to the states, both data- and 
execution-indexed, and document the inputs and outputs of the state 
machine. As with the execution-indexed example, the actions come 
from our original algorithm for the task and can be documented in 
text or in the form of an algorithm. The inputs and outputs will be a 
list of the data pathways into and out of the task. Using our serial port 

List 4.3

Algorithm 4.12
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example, the following is an example of the actions and input/output 
documentation:

Algorithm 4.13

State Action Input Output
Idle Test for new character Ready_flag none
Start Send start bit none TX_PIN
Data_bit(1) Send bit 0 Char_in TX_PIN
Data_bit(2) Send bit 1 Char_in TX_PIN
Data_bit(3) Send bit 2 Char_in TX_PIN
Data_bit(4) Send bit 3 Char_in TX_PIN
Data_bit(5) Send bit 4 Char_in TX_PIN
Data_bit(6) Send bit 5 Char_in TX_PIN
Data_bit(7) Send bit 6 Char_in TX_PIN
Data_bit(8) Send bit 7 Char_in TX_PIN
Parity Calculate and send parity Char_in TX_PIN
Stop Send Stop bit none TX_PIN
Error  Notify error task & Reset PORT_error

Reset state machine
Default set statevariable to Error none none

The documentation for all three types of state machine should be 
included in the design notes for the design, and should include the 
same information:

1. A list of states, including a default and any necessary error 
states.

2. A list of all state transitions and the conditions that cause 
them.

3. A list of all actions performed in each state.

4. A list of all input and output pathways.

One final note on state machine design: just as no two artists are likely 
to paint a scene in exactly the same way, no two designers will design a 
state machine in exactly the same way. The design will be influenced by 
the designer’s experience and coding style. And, as I mentioned previ-
ously, the criteria for making the state breaks in the design will become 
individual to the designer doing the work. As long as the design works 
and performs the functions included within the task, then the design is 
good. However, this should not be taken as a license to build obfuscated 
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code. Remember, our purpose here is to design a project that can be 
easily understood by others, so it can be supported by individuals other 
than the original designer.

Communications

In the last chapter, we defined all of the data pathways within the system 
and any significant data storage associated with the individual tasks. 
Our purpose in this chapter is to define the individual variables of the 
various pathways and make any final decisions concerning the operation 
of the protocols used for each pathway.

Let’s start with some general guidelines concerning the naming of 
variables. Variable names must be descriptive. Naming a generic timer 
variable B232 may have been convenient when the code was written, 
but when trying to support the design, it is less than useless because it 
might lead the support engineer to the mistaken belief that it is actually 
a data variable for the B channel of an RS-232 serial interface. Using 
the name B_Timer is more descriptive, less confusing, and only takes 
three more characters. So, be descriptive, be verbose, and don’t scrimp 
on the characters. Disc space is cheaper than a support engineer’s time 
to reverse-engineer a unhelpful variable name.

Next, when generating variables that work together, consider giv-
ing all the variables a common prefix. For example, consider a circular 
buffer with an input and output pointer variable. Naming the buffer 
space Serial_in_buff is descriptive of both the function and the task 
that uses the buffer. Naming the input and output pointers Serial_
in_input and Serial_in_output is also descriptive of the function 
and task using the variable, but also indicates that they are associated 
with the Serial_in_buff variable and are likely part of the pathway’s 
communications protocol.

A descriptive postfix is also a good habit to cultivate. If all input and 
output pointers for buffer protocols also use _input and _output, then 
support engineers that follow will have a simple convention that tells 
them a great deal about the function of the variable, just by looking at 
the variable name. The flip side of this coin is that, once you establish a 
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convention, stick with it. Changing the convention in the middle of a 
design can be more confusing than having no convention at all.

Finally, make an entry in the system design notes, that clearly spells 
out what your conventions are and how they were applied. This simple 
piece of reference data will earn you the thanks and admiration of every 
support engineer that ever has to touch your code. Note: you might want 
to surround it with asterisks with a bold title, so it will be easier to find. 
And, as always, be verbose. If you developed a handy convention, the 
support engineers should recognize your ingenuity and continue the use 
of your convention throughout the support of the project. 

Another area that benefits from a good naming convention are con-
stant numeric and logical values. Most beginning programmers tend to 
put the value in the equation or the assignment statement. However, if 
the value is instead replaced with a descriptive label, it is easier to read 
and understand. For example, the equation A=B*3 could refer to any 
number of possible calculations, but with the equation A=B*PI there 
is very little doubt concerning what the constant is and how it is being 
used.

There is also another very good reason for replacing numeric con-
stants with labels—it makes changing the constants both easier and 
less error-prone. If a constant is used multiple places in a design, then 
changing that constant becomes a search-and-replace nightmare through 
multiple files. However, if the value is assigned to a label, then only the 
entry making the assignment need actually be changed. The compiler 
or assembler will do the actual work, guaranteeing that the substitution 
is made correctly in each and every instance the value is used.

Still another reason for replacing numeric constants with labels is to 
extend the scope of their use. Often when performing complex com-
putations within a task, there may be a need to combine two or more 
constants into a single value to simplify the math. If a numeric constant 
is used, then the origins of the constant will be lost in the simplification. 
However, using a label to represent the new constant, and defining the 
new constant based on the original constants, not only documents the 
origins of the new constant, it also guarantees any changes to the original 
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constants will be included in the calculation of the new constant as well. 
For example, simplifying 2*3.14159 into 6.28318 will simplify any 
math by pre-multiplying the two constant values. However, defining 
TWOPI = 2 * PI, and using the label TWOPI in any subsequent equa-
tion, accomplishes the same goal, and allows any updates of PI to flow 
down through all the equations that use the value.

As indicated previously, note all labels for constants in the design 
notes file on the design. You may have noticed that I seem to be harping 
on the notion of making notes in the design notes file for the design. 
Well, I have been, and there are several good reasons for it:

1. More documentation can only help in the creation of the design. 
The days when a designer could keep the complete picture of 
the design in their head is long gone.

2. Documentation helps the designer get back up to speed on a 
design, should there be a need to fix a bug or add a feature.

3. Documentation also helps the support engineer get up to speed 
on the design quickly. This limits the number of interrupting 
phone calls during the next design.

4. Documentation also facilitates the reuse of the code in the next 
design. And, yes, reusing variable definitions and protocols saves 
time, just as reusing a state machine or subroutine saves time.

5. Finally, and best of all, documentation in the design notes file is 
a ready source of copy and paste comments for the header and 
source files of the design, when it comes time to comment the 
code.

So, we have naming conventions for our variable storage, and labels 
for our constants. What else needs an alias? Well, one last place that a 
good naming convention is handy is the naming of peripheral control 
registers and input/output pins. For example, if the port pin used as 
the transmit output of a software-based serial port is labeled with the 
name SERIAL_TX instead of PORTD.5, then all that is needed to reuse 
the serial port routine in a new project is to define SERIAL_TX with the 
new port pin in the new design. 
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This practice has the somewhat cryptic name of hardware abstrac-
tion. Basically, it involves giving any hardware-specific value a generic 
name. This hides, or abstracts, the specifics of the hardware, and leaves 
the designer with a generic and very portable routine that can be used 
over and over. It also has the side benefit of making the code much 
easier to read and understand because the function of the pin is now 
defined clearly. For information on how to label specific bits within a 
register or I/O port with names, consult the section on STRUCTUREs
in Chapter 2.

One final note on good practices and general operating procedures: 
during the course of this design we will be creating separate tasks 
designed to communicate and work together. This causes a problem: 
while the code for each task, its constants, and even its internal variables 
can be grouped together into a task-specific header and source file, 
the communications variables have to cross the task boundaries and 
tie the various tasks together. So, where do the variable definitions for 
the communications variables go? We can’t scatter them through the 
task files, and picking one task and lumping them into its files is not a 
solution either.

The best solution is to create a single set of master source and header 
files. The master source file will call all of the initialization routines for 
each of the tasks and contain the main system look which calls all the 
individual tasks. The master header file contains all the communica-
tions variable definitions, all the hardware abstraction definitions, and 
the labels for any system-wide constants. This places all the global in-
formation in one central location and it keeps each individual task file 
more generic, so it can be cleaned up for inclusion in the developer’s 
code library. 

At this point, create a master header file for the design. This will give 
us a place to define our variable, a place to label our constants, and also 
to define hardware abstraction labels. 

Now that we have some standard operating procedures for the com-
munications system in place, it is time to determine what elements are 
needed in each protocol and in each pathway, and determine the variables 
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we will need, the algorithms we will use, and the interface functions 
that will be needed.

As broadcast is the simplest protocol, let’s start with it. A pathway using 
a broadcast protocol is defined to be either a single variable, or a single 
variable with a secondary flag, which is used to determine the validity 
of the data in the variable. So, any pathway using the broadcast protocol 
will need an appropriate variable and, potentially, a secondary flag.

In the master header file, a separate section should be generated for 
each broadcast data pathway, and a header comment generated. The 
header comment should include all the information from the variable 
dictionary generated in Chapter 3, including:

1. The type of data, CHARs, INTs, FLOATs.

2. The size of the data.

3. A list of all source and destination tasks that send or receive data 
through the pathway.

4. A range of acceptable values for the data.

5. Any information concerning the rate of new data.

A definition for the variable can then be generated using an appropri-
ate name, with any appropriate pre-and post-fixes to define its function. 
If a secondary data valid flag is needed, it should also be defined with 
the same prefix and an appropriate postfix to define its function. A
notation should also be made in the header comments section defining 
which states denote valid and invalid data.

The next pathway protocol to tackle is the semaphore. A pathway 
using a semaphore protocol is defined as either one or two flags used in 
a handshaking system with an optional data variable. This means we will 
need to define one or two flag variables, and a possible data variable.

The first step is to determine what form of handshaking system is 
needed. For this we have two options: a two-way handshaking system or 
a four-way system. Two-way systems are just simple set and acknowledge 
systems where the sender sets a flag indicating an event, and the receiver 
accepts the information and clears the flag to acknowledge the transfer. 
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Four-way systems expand the basic two-way system to include a 
secondary layer of send and acknowledge. The sender sets its flag sig-
naling an event and the receiver sets its flag to acknowledge the event. 
The receiver then processes the event, and clears its flag to indicate it 
has completed processing the information. The sender then clears its 
flag to acknowledge the receiver has completed its work.

The form of handshaking required will depend on the use that the 
receiver has for the data, and whether the sender needs to know that the 
receiver has completed its operation. Typically, a two-way system is suffi-
cient for a transfer as the sender is usually only interested in sending data. 
However, if the transfer of information is bidirectional—specifically, if 
the sender expects to receive data back from the receiver—then a four-
way system is needed. The bidirectional transfer could be handled by 
two semaphore protocol pathways, but remember that cross-linking two 
tasks with semaphore protocols can result in a state lock condition if the 
two state machines get out of synchronization. Using a four-way system 
accomplishes the same thing as cross-linking two semaphore pathways, 
but avoids the state lock condition, because the second semaphore is 
tied to the first as part of the protocol and the second transfer can only 
be initiated in response to the original request from the sender.

For example, if task B is charged with accepting raw commands 
from task A, decoding the raw command, and then passing the decoded 
information back to task A, it follows that two handshaking events are 
required, one to transfer the raw data from A to B, and a second to 
pass the decoded data back from B to A. However, with two separate 
semaphores, this opens up the system to a state lock because a simple 
two-way handshaking system releases task A, once task B has acknowl-
edged reception of the data. A four-way system does not release A until 
after B has both accepted and returned the data, thus avoiding the state 
lock condition. 

Moreover, the use of two flags also provides a simple method for 
determining a transfer fault condition. For example, after task B has 
completed decoding the command, it attempts to return its decoded 
data to A. But A has already ended the transfer by clearing its flag. Then 
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B knows that the transfer has been aborted by A and it can safely discard 
the data without any further direction from A. It will not be stuck wait-
ing for an acknowledgment from A because it knows A has already gone 
onto other business and lost interest in the returned data.

So, if four-way handshaking semaphore systems get around the 
problem of state lock, why not just define all semaphores as four-way 
systems? The reason is that four-way systems only work if the two trans-
fers are tied together in the same data pathway, making them essentially 
a single transfer. If we tried to tie two unrelated transfers together, then 
the only way the receiver could ever send data to the transmitter is when 
the transmitter specifically asked for it. And, that eliminates all event 
information from the data the receiver was trying to send. It would be 
no different than using a broadcast protocol to transfer the data from 
the receiver to the transmitter because the timing is still driven by the 
transmitter and not the event. And, making the sender wait for the re-
ceiver when it is not interested in the receiver’s status wastes the sender’s 
time, so four-way systems should only be used when needed.

After determining the type of handshaking, the definition of the 
variables becomes very similar to the procedure used with the broadcast 
protocol. A new section is added to the master header file for the sema-
phore protocol pathway, and the appropriate information is noted in the 
section’s header comments. One or two flag variables are defined, with 
appropriate names, prefixes, and postfixes. And the logic of the flag(s) 
is noted in the section’s comments. If a data variable is included in the 
pathway, it is also defined with an appropriate name, common prefix, 
and descriptive postfix. And information concerning its data type, width, 
and acceptable range of values is noted in the section’s comments.

For both the two-way and four-way systems, four functions should 
also be defined for use with the variables. These functions will handle 
the actual set, clear, and test of the two flags involved in the transfer. 
Comments showing the prototypes and algorithms for these functions 
should be included in the master header file, in the section associated 
with the semaphore variables. When we get to the next chapter, these 
functions will be generated and held in a source file associated with the 
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master header file. The documentation is included here as an explanation 
of how the variables will be used, and to note that the actual routines 
reside in the associated source file.

For a two-way handshaking system, the sender needs only a set func-
tion to set the flag and a test function to determine if the flag has been 
cleared by the receiver. The receiver has a corresponding clear function 
and its test function checks for the initial set of the flag. Both the set 
and clear functions should return an error in the event they are asked to 
set an already-set flag, or clear an already-cleared flag. This is to flag the 
sending and receiving tasks that a handshaking fault has occurred.

For a four-way handshaking system, things get a little more com-
plicated. Both tasks now have set/clear functions for their flags and 
test functions for their partner’s flag. In addition, the sender’s set/clear 
function is also subject to some special conditions. 

The sender can only set the flag if the receiver’s flag is cleared, and 
can clear the flag at any time, but must return an error if the receiver’s 
flag is still set. The interlock on setting the flag prevents the sender 
from over-running the receiver, and the error condition in clearing the 
flag confirms to the sender that it did abort the transfer. The sender’s 
test function returns both the current state of the receiver’s flag and the 
sender’s flag, so the current state of the semaphore is completely defined. 
This helps the sending task to determine what the receiver is doing, as 
well as what the receiver thinks the sender is doing. 

The receiver also has a set/clear function; the difference is that the 
receiver can only set its flag if the sending flag is set, and clear the flag 
only if the sending flag is clear. Any other action results in the return 
of an error. This prevents the receiver from inadvertently creating a 
transfer fault. 

Both tasks also have test functions for monitoring the state of the 
other task’s flags.

The first question is usually, “Why all this overhead for a simple set 
of flags? Why can’t I just set, clear, and test the bits directly in the state 
machine code?” There are two reasons. One: making them separate func-
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tions means the code inside the routines can be defined by a single macro, 
and that prevents copy and paste errors. It also means any problems will 
only have to be fixed once in the source macro, not repeatedly in each 
section of the code. Two: it provides a simple mechanism for connecting 
test drivers to the state machine tasks for testing. By renaming one, or 
at most two, source macros, all of the semaphore connections to a task’s 
state machine can be redirected to testing software, without touching 
the code in the state machine. 

Now, some may question the value of point two. I would point out 
that, when a supposedly tested and working subroutine suddenly stops 
working, it is typically due to some minor change made when the test 
hooks were removed from the code. Using a simple name substitution 
to replace one working macro with another will either cause a blowup 
at compile time due to a typing error, or it will work. The evils of copy 
and paste should not be underestimated!

One final aspect of semaphores to discuss is how to deal with potential 
state lock conditions. As we discussed in the last chapter, there will be 
designs that simply can’t avoid conditions leading to state lock. And if 
we can’t avoid a configuration that has the potential for state lock, then 
we will have to have some system for dealing with it. There are two basic 
methods: we can attempt to predict the condition and move to avoid 
it, or we can detect its occurrence and recover from it. Both methods 
have an upside and a downside. 

Let’s start with trying to prevent state lock from occurring. In our 
design system, we use state machines to implement the various tasks in 
the system, and use the state variables associated with the state machines 
to hold the task’s context while other tasks are running. So, it follows that 
any task in the system can determine the current activity of any other 
task in the system, by simply examining the other task’s state variable. 

Therefore, to prevent state lock, all a sending task need do is examine 
the value in the receiving task’s state variable to determine if that task is 
currently involved in a semaphore transfer. If the receiving task is busy 
with that transfer, the sending task must defer its transmission until 
the receiving task is in a state conducive to receiving its information. 
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For example, task A is preparing to send data to task B. Task A should 
then test the state variable of task B to see if B is already trying to send 
data to A. If it is, then task A will have to complete the transfer from B 
before it can attempt to transfer data to B.

The upside to this system is that it prevents the occurrence of state 
lock by deferring the second transfer until the first transfer is complete. 
The downside is that the logic for handling the handshaking just became 
significantly more complicated. Using this system, the routines in both 
tasks will have to be expanded to:

1. Test for every wait state in the receiving task state machine as-
sociated with a semaphore transfer.

2. If it detects a wait state, the sending task will have to put its cur-
rent transfer on hold.

3. Save its current context.

4. Jump to a state capable of receiving the transfer.

5. Then, once the transfer is complete,

6. Retrieve the saved context.

7. Return to the sending state and test once again.

8. Once it completes its transfer, it will then have to retrieve the 
received data.

9. Then respond appropriately.

As you can see, this method can become complicated and cumber-
some very quickly. Also, it still raises the question of which of the two 
tasks involved has the higher priority, which determines which task 
should defer to the other.

The second option is to detect the state lock condition and try to 
recover from it. This method changes state lock from a condition that 
we are trying to avoid, to an error condition requiring recovery. And, it 
means that the recovery will, by design, disrupt the operation of both 
state machines. Basically, we are designing our system to classify state lock 
as an error condition and then handle it as either a hard or soft error. 
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There are two relatively simple methods for detecting a state lock 
condition: one, a communications timeout timer; and two, a function in 
our system that looks for fatal combinations of state variable values. 

Of the options, the timeout timer is perhaps the easiest to implement. 
It involves adding a timer function to the state decoding logic of both 
tasks. Every time there is a state change, the timer is preset to its timeout 
value. If the state does not change from one call to the next, the timer 
is decremented. If the timer ever reaches zero, the current state variable 
value is saved in a temporary variable and the state is redirected to the 
error state associated with state lock. Then, the next call to the task will 
execute the recovery routine and resolve the conflict.

This assumes that the designer knows the maximum possible timeout 
for each pathway using a semaphore protocol. It also assumes that the 
task can wait until the timeout is reached without causing unrecoverable 
damage to other tasks in the system. 

Determining the timeout period is relatively easy if the operations of 
both tasks are well defined and their timing is constant. The designer 
simply has to count the maximum number of calls to the receiving task 
between states in which it tests for transfers from the sending task. The 
value is then scaled by the ratio of the skip timer values associated with 
the sending and receiving tasks. For example, task A has a skip timer 
reload value of 10, task B has a skip timer reload value of 5. Task B has 
a worst-case time of four calls between states in which it can monitor 
transfer requests from task A. This means that the timeout timer for 
task A must be 8, or 4 * (10 / 5). Task A is called twice as often as task 
B, so a wait of 4 in task B results in a wait of 8 in task A.

Determining the timeout period is not so easy if the operations of 
both tasks are not as predictable. The timeout may be dependent upon 
other conditions that affect either or both of the tasks involved. Plus, 
state lock conditions that pass through one or more secondary tasks 
in a loop add the timing uncertainty of those tasks as well. While this 
dependence can be predicted with sufficient time and paper, the simpler 
solution is often to just test the tasks using inputs that simulate a worst-
case timing condition.
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Once the timeout has been determined, the next step in the process 
is determining which transfer is more important, and which can be 
sacrificed to recover from the problem. Typically this involves testing 
the state variables of both tasks and making a determination as to which 
task has the higher priority state. But be careful; the decision should 
also factor in which transfer can be safely killed without causing other 
conflicts in the system. Once a set of rules has been defined, the error 
state can then either kill its own transfer by setting its state variable to 
a state that can receive the other transfer, or kill the other task’s transfer 
by setting its state variable to a receptive state, and just reloading its state 
variable with the value in the temporary holding variable.

One important thing to note with this system; only one of the tasks 
should have a timeout and error recovery function. If both tasks have 
timeout systems, then there is the potential for the two tasks to try and 
reset each other and cause yet another conflict. But what if a task has 
more than one potential partner that can cause state lock? Or there are 
more than two tasks with a potential state lock problem? In this case, 
the simplest system is often to define an error task, whose job it is to 
monitor the operation of all the other tasks in the system. The error task 
with then be the sole judge and jury for any problems and hand down 
one solution for all parties involved.

The second recovery option involves adding a monitoring routine to 
check for potentially fatal combinations of state variable values for all 
combinations of tasks that have the potential for state lock conditions. 
To accomplish this task, the function will need to regularly access all of 
the state variables associated with the at-risk tasks, and determine if a 
state locked combination has been created. This means the monitoring 
function will need access to all of the state variables, all of the skip timers, 
and a database of problem combinations, referenced by task and state. If 
it detects a combination that indicates state lock, the monitoring routine 
would then determines which transfer is less important and load the 
state variable of the appropriate task with a state value corresponding 
to a receptive state for the task. 
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As this system has many of the same complications associated with 
the first task, all of the same problems expressed previously are also pres-
ent here. How will the monitoring routine determine which transfer is 
more important, what if more than two tasks are involved in the loop, 
and what happens if routines for two different tasks conflict on the 
resolution? In addition, this method will require an extensive database 
to determine which combinations are a problem. This is complicated 
by the fact that there may be intermediate tasks that may or may not 
be contributing to the problem by their current states.

So, while adding a recovery mechanism may sound simple, the imple-
mentation of a detection and recovery mechanism is seldom simple. 
That is why the original recommendation of changing one or more of 
the pathway protocols was stressed so stridently. However, if there is no 
possible way to avoid the configuration, select a method for detection 
and error recovery and make the appropriate additions to the task list and 
the communications plan. Also, add a very verbose entry to the design 
notes concerning why the potential state lock configuration could not 
be avoided, along with a clear description of how the detection method 
will work, how the recovery system operates, and the criteria it will use 
to determine which transfer can be safely killed.

The master and task header files can then be updated appropriately 
with definitions for any variables, constants, and functions. Remember
to include all the associated information in the header comments for 
the variables. And, once again, be verbose in your description of the 
variables and their use. 

That covers broadcast and semaphore, but what about buffers? Well, 
like the semaphore, we have some decisions to make concerning how 
we will implement the system. 

Remember back in Chapter 2, when we were first introduced to 
buffers, we discovered that there are three conditions for a buffer that 
are important to us as designers. Those conditions were: when is the 
buffer empty, when is it full, and when is it not empty. Determining 
these conditions will depend on the convention we adopt for the input 
and output pointers. 
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The choice boils down to whether we want to increment the pointers 
before we use them or after we use them, and whether we treat them 
differently. The reason we examined all of those combinations was to 
determine whether one was significantly faster than the other to deter-
mine, and, if a specific combination was faster, was it faster for the faster 
task, or the slower task. 

Reviewing the information in Chapter 2:

Pointer definitions Comparisons Meaning
Storage > last element stored IF (Storage     == Retrieval) then buffer is empty
Retrieval > last element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage     <> Retrieval) then data present

Storage > last element stored IF (Storage+1 == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage     == Retrieval) then buffer is full

IF (Storage+1 <> Retrieval) then data present

Storage > next element stored IF (Storage == Retrieval+1) then buffer is empty
Retrieval > last element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage <> Retrieval+1) then data present

Storage > next element stored IF (Storage     == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage     <> Retrieval) then data present

It is given that the sending task is only interested in whether the 
buffer is full or not, and the receiving task is the one concerned with 
whether there is data present in the buffer or not. Then a faster sending 
task would prefer the second and third option because the buffer-full 
condition can be determined by a simple compare, while a faster receiving 
task would prefer the first or fourth option for the same reason. Choos-
ing a pointer convention is therefore a simple matter of reviewing the 
input and output rates specified for the data pathway and selecting the 
appropriate convention.

Once the pointer convention has been chosen, an estimate for the 
size of the buffer is needed. This comes from the information garnered 
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from the dissection of the requirements. Remember that we compared 
the peak and average rates and made an estimate of the buffer size re-
quired. Now don’t panic, we can only make an estimate at this point, 
and nothing is carved in stone. We will discuss additional techniques 
in Chapter 5 for testing that we have the optimum size buffer, but for 
now, we just need an estimate.

Given this information, we can make the appropriate additions to 
the master header file. A new section needs to be added with all the 
appropriate background information on the data in the pathway, type, 
size, name, and so on. To this we will add buffer size, pointer conventions, 
and prototypes for routines for adding and retrieving data from the buffer, 
as well as testing functions for determining if the buffer is full, empty, 
or has data available. Remember to use a common prefix for all variable 
names, and descriptive postfixes to denote the variable’s function.

Again, we are using prototypes for all the reasons put forth in the pre-
vious section. The only difference is that each instantiation of the buffer 
routines will have a separate constant to denote the size of the buffer. In 
fact, another advantage of the prototype and macro system for defining 
buffers is that, once all four conventions have been developed, they can 
be reused every time a buffer protocol is needed in a design. This alone 
is worth the trouble of defining separate routines in that I only had to 
fight through the design of the comparison routines once for each type, 
and then I never had to suffer through the frustration again.

Once all the information has been added to the master header file, 
and all of the variables, constants, and peripherals have been named 
and defined, we have completed the definition of the communications 
system at this level. The only thing remaining is to implement the actual 
routines for accessing the variables. We will do that in the next level of 
the design. In fact, it will be one of the first things we will do in the next 
level of design, as the communications system is the hook that we will 
use to drive the task state machines during their development.

At this point, we should also create a header file for each of the tasks 
in the system. In these header files will go the definitions for the state 
variable of the associated task, and any other variables specific to the 
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task’s operation. Of particular interest at this point of the design are any 
variables for the additional significant data storage that were specified 
in the communications plan in the last chapter.

To define the variables to handle this storage, we need to know a few 
things about how the variables will be used. Specifically, are the vari-
ables static or dynamic? Are the variables accessed by other tasks in the 
system? What type and size are the variables? And, will pointer variables 
be needed to access the data? Based on these answers, we can determine 
the number, type, and width of the variables to be defined.

Static variables are relatively simple and should be defined in the task 
header file first. Start by adding a new section to the task header file, 
and then create the definitions for the variables. Strive to group related 
variables together, and label them with an appropriate comment denot-
ing their shared function. 

In the event that the variables are used together as part of a more 
complex data structure or protocol, name the variables with a prefix that 
identifies the task, a name descriptive of the common function, and a 
postfix that is descriptive of the individual variables function within the 
group. This makes it very easy to determine a variable’s function with 
just a glance at the name, especially if a naming convention is used that 
employs common postfixes for common functions.

In the event that the variable stands alone in the system, name it with 
the same prefix as the other variables in the task, to identify the task as 
its owner. Then give it a name that is descriptive of its function within 
the task. If the variable is used as a generic holding variable, resist the 
urge to name it hold1 or hold2. The name is descriptive of the variables 
use, but it gives no information concerning what it might be holding 
at any given moment. The better solution is to give it a name that de-
scribes the function, or functions, within the task that will be using it. 
For example, a generic holding variable used by a function that converts 
ASCII values to hex could be called CMDTASK_ASCII2HEX_INTVAL.
This identifies the task that owns the variable, identifies the function 
that uses the variable, and describes its function as an intermediate value 
variable. Remember, be descriptive and BE VERBOSE.
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One final note, when defining the state variable for the task, include 
constant defines that give names to the specific state values in the state 
machine. This will make the SWITCH statement that will decode the 
state variable, and any state transitions, much easier to understand when 
the state machine is written. It will also make adding a new state to an 
existing state machine much easier, as the only updates required will be 
in the constant defines in the header file. Personally, I think this also 
makes the code look much more professional, and it certainly helps in 
getting back up to speed on a state machine, when I have to come back 
to it after an extended period of time.

Dynamic variables present more of a challenge to define because 
their storage requirements are not constant. So, just like the storage 
requirements for a buffer protocol pathway, we will have to make a few 
decisions about how the storage will be used before we can define it in 
the task header file.

The first step is to define how the information will be accessed. Typi-
cally dynamic storage will use data pointers for access, so a description 
of how the pointers work and their number will be needed. Next, we 
will need an estimate for the amount of storage needed for the raw mass 
of information. Both pieces of information should be readily available 
from the design of the task that will manage the data storage. If not, 
then a good estimate can be generated based on the peak and average 
rates at which data enters and leaves the storage. For a more detailed 
explanation of the estimating process, refer to the section in Chapter 3 
that discusses the dissection of the requirements document for storage 
requirements.

Once the pointers and the amount of memory required for the storage 
has been determined, the variables can be defined in the header file for 
the task. As with the static variables, a descriptive naming convention 
should be used, and the variables associated with the storage block should 
be defined with the definition, or block reservation, for the main stor-
age area. Remember to use common names, with descriptive suffixes to 
define each variable’s function, and use a prefix that identifies the task 
that has ownership of the variables.
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Because the variables are dynamic in nature, the comments for the 
storage block should also include information on inflow and outflow 
rates, the operation of the pointers, and any other information concern-
ing the access of the data. It is also a very good idea to use functions 
to access the data within the data block. This gives the designer the 
flexibility to place the information, either in general data storage or 
nonvolatile storage, simply by calling a different macro in the function 
definitions. Another good reason for this system is that the access and 
test routines for the storage will probably look very much like the access 
and test routines used for a buffer protocol, so the designer can save 
some work by reusing the existing macros.

System Timing

In the previous chapter, we defined a system tick. This tick set the execu-
tion time for each pass through the system loop, and determined values 
for the various task skip timers to be used by the system. What we will do 
in this chapter is define how the timing system will ultimately operate.

To start, let’s examine the tick in light of the system clock to determine 
how many execution cycles are available. To do this, we multiply the 
tick (in seconds) by the MIPs of the system (in instructions per second). 
The result will be the number of instructions that can be executed each 
system tick.

For typical designs, this number should be greater than 100–200 for 
projects in assembly language, and 300–500 for projects written in a 
high-level language. Our alarm clock example assumes a system speed 
of 1 MIP, and our calculated tick is 250 microseconds. So, we have 250 
instructions per tick, generally a little short for a high-level language, 
but typically more than adequate for an assembly language project. Note 
that the ranges of 100–200 and 300–500 assume only a moderately 
complex design. If the work performed in the tasks is more complex, 
then the values may need to be increased.

If the values for a design are less than the recommended ranges, we 
have a couple of options:
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1. The processing speed of the microcontroller can be increased by 
using a faster system clock. This is relatively simple, but there is 
an upper limit to this approach due to the electrical limitations 
of the microcontroller.

2. If the fast tick was driven by one or two fast tasks in the design, we 
can drive the fast tasks from a timer-based interrupt, as outlined 
in the previous chapter. We can then recalculate a newer, slower 
tick based on the remaining, slower timing requirements.

3. And finally, we can allow select states within task state machines 
to deliberately overrun the system tick. We are essentially allowing 
these states two ticks to execute. However, this can be a dangerous 
proposition, in that the long state must trigger a special operation 
in the system timer to adjust the skip timers appropriately and the 
priority handler must keep the second tick free of other tasks.

After we have settled on a final system tick and determined that we 
have sufficient execution time, the next task is to set up a hardware 
timer to measure off the tick. Depending on the specific hardware 
of the microcontroller, the hardware timer used can be either 8- or 
16-bit, with optional pre- and postscaler functions. For our purposes, 
we will have to find a combination that can count the requisite number 
of instruction cycles.

Now, the question at this point is typically “What if the number of 
instruction cycles per tick is not a convenient power of 2? The timer 
will not automatically roll over at the right time and our system tick 
will be off.” Yes, this is true, but don’t worry, we have several options 
to compensate. 

1. We can adjust the system clock so that the tick is a power of two, 
and the rollover is once again automatic. 

2. We can use a timer that has an automatic reload function. This 
automatically preloads the timer with a constant value each time 
it rolls over, creating a divide-by-N counter. 

3. We can build a timer interrupt service routine, driven by the 
rollover interrupt, to preload the timer manually.
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Of the three options, 1 and 2 are the most accurate as they are handled 
automatically in hardware. Option 3 is typically the most used, but it 
can suffer from accuracy problems due to variations in the interrupt 
response timing.

Once the method for timing the tick is determined, note the infor-
mation in the design notes files. And don’t forget to let the hardware 
designer know about any changes you have made in the system clock 
frequency requirements.

The next step is to determine the placement of the skip timer func-
tions for the various tasks in the system. The two choices are to either 
put the skip timer functions together in a common timer function, or 
put the skip timers into the individual state machines. Both options have 
advantages and disadvantages in the final design of the system.

If the skip timers are gathered together into a single function, then 
individual GO flags will be required to communicate between the timer 
function and the actual state machine routines. These GO flags can be 
convenient, because the priority handler can make use of them to defer 
execution of a given task, by simply clearing the flag temporarily. The skip 
timer for the task should have been automatically reloaded by the timer 
function when it reached zero, so clearing the flag will not have a lasting 
effect on the task timing—it will only defer the current execution.

A common timing routine also makes it much easier to coordinate 
the timeout of the skip timers. One of the priority systems we will ex-
plore later in this chapter offsets the initial skip timer values so that the 
timers will never time out together. This limits the execution load for 
each pass through the system loop, and requires little or no additional 
overhead to accomplish. However, if the timers are scattered throughout 
the various task state machines, then coordinating the initial values for 
such a system is more problematic.

Using a common timing function also makes the individual state 
machine more generic, in that the timing is regulated externally. As a 
result, reusing the state machine in the future only requires that the new 
system generate a GO flag at the appropriate rate to guarantee proper 
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operation. If the skip timer had been buried in the state machine itself, 
then reusing the task would require edits to the module to accommodate 
a potentially different system tick.

One final advantage of a common timer function is the ability to 
generate longer delay through the nesting of two or more skip timers 
within a prescaler timer. This reduces the overhead in that both timers 
can be smaller variables, and the additional decrement time for one of 
the skip timers in eliminated. For example:

if (--timer_prescaler == 0)
 timer_prescaler = prescaler_value
 if (--cmd_skiptimer == 0)
  cmd_skiptimer = cmd_skip_value
  cmd_task_go = true
 if (--key_skiptimer == 0)
  key_skiptimer = key_skip_value
  key_task_go = true

 Using this system, the code to decrement and test the cmd_skip-
timer and key_skiptimer variables is only executed when the 
timer_prescaler variable reaches zero. While this may not seem like 
a dramatic savings, it does save one byte of data storage and eliminates 
multiple instruction cycles from all but an occasional pass through the 
system loop. 

The downside to using a central timing system is that it requires the 
additional communication pathways, with their attendant overhead and 
the possibility of potential state lock problems, as the new GO variables 
typically use a semaphore protocol.

Placing the timers within the various task state machines, instead of 
within a common timer function, also has distinct advantages in that it 
allows each task the option to evaluate its need to execute on every pass 
through the system, essentially giving the tasks the option to disregard 
the skip timer, or modify its skip rate to accommodate the needs of the 
task.

This can be particularly valuable if the task is attempting to synchro-
nize its execution to an external trigger. On each pass through the system 
loop, the task can test for the trigger event and, when it occurs, the task 

Algorithm 4.14
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need only reload its skip timer with an appropriate value and execute the 
appropriate state. If the timers were in a common timer function, this 
activity would require the task to either reset the counter long distance, 
or use a handshaking flag to trigger the action in the timer function.

Self control of its own skip timer also allows the task to use a vari-
able skip rate based on its current activities. Because the task itself is 
responsible for reloading the timer, two or more different reload values 
can be used. For instance, two values, such as 23 and 24, can be alter-
nated as reload value for the skip timer, to produce a net skip rate of 
23.5. Or, the task can load the skip timer with a much smaller value to 
speed up execution of a given collection of states, creating in essence a 
turbo mode for certain states within the task. Or, the reload value can 
be adjusted dynamically on each pass to maintain synchronization with 
sequential external events.

Self control also has a downside in that each state machine will execute 
at least some code on each pass through the system. This overhead will 
tend to eat away at the execution cycles available in each pass, reduc-
ing the number of cycles available for actually accomplishing useful 
work in the system. It also makes the job of the priority handler more 
complicated in that it must now keep track of the timing for any task 
in which it defers execution.

Of the two systems, a central timing function is typically the least 
complicated and most efficient, for both timing and priority control. 
And, most, if not all, of the desirable features of the self-control timing 
system can be implemented in a central timing system with a little work 
and a few broadcast protocol variables and flags.

For our clock design example, we determined that a system clock 
rate of 1 MIP required that our time roll over at 250. However, if we 
push the system clock rate to 1.024 MIP, then the roll over happens at 
256, and we avoid the requirement for preloading the system. So, the 
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decision is made to run at the slightly higher rate, the hardware engineer 
is notified, and a note is added to the design notes to remind us to set 
up the 8-bit hardware without a pre- or postscaler. Because the tick is 
still 250 microseconds, no additional modifications are needed for the 
skip timer values.

With the system clock issue settled, we can now move on to design-
ing the system timer function. The first step is to review the skip timer 
information generated at the system level of the design:

   Optimum Skip Rate
Task1 (LED)
 scan  2.500 5
 flash response 25.000 50 ( 100)
 flash offtime 500.000 1000 (1100)
 blank  1000.000 2000 (2222)
 blank response 4.000 8 ( 16)

Task2 (TIME)
 timebase 1000.000 2000
 switch response 4.000 8 ( 16)

Task3 (CMD)
 bounce  100.000 200
 debounce 25.000 50 ( 100)
 command  17.000 34 ( 68)
 autorepeat 1000.000 2000 (2222)
 aoutr response 25.000 50 ( 100)

Task4 (ALARM)
 time response 50.000 100 ( 200)
 snooze response 25.000 50 ( 100)

Task5 (TONE)
 tone  0.500 1
 var modulation 500.000 1000 (1110)
 modulation 500.000 1000 (1020)

Table 4.3
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Taking each task in turn, we can now begin the design of timer func-
tions for each task. We start with the basic timing information for the 
task and a quick review of how the timing information is organized:

Notes
Task1 (LED)
 scan 5
 flash response 50 ( 100)
 flash offtime 1000 (1100)
 blank 2000 (2222)
 blank response 8 ( 16)

 LED Display task notes:

 Scan rate for the task is 360Hz +20/-0 (2.635 - 2.777mS)
 The scan rate if for one digit to the next digit update
 (not time between same digit updates)

 Alarm flash 0-50mS following time update
 Alarm flash is ½ second off, ½ second on +/-10%

 Blank time 909.9mS to 1111.1mS +/-0 overall
 (basically, if blank, then blank for full second)

 Blank response  within 8mS after time update, maximum
 Blank is synchronized to time update

Next, we separate the event-to-event timing requirements from the 
response time requirement. Continuing our example with the clock:

Notes
Task1 (LED)
Event-event
 scan 5
 flash offtime 1000 (1100)
 blank 2000 (2222)

Response
 flash response 50 ( 100) after time update
 blank response 8 ( 16) after time update

One important point to note about both response times is that the 
minimum can be zero; only the maximum is specified. So, it will typi-
cally be more convenient for the design to just use the event to trigger 
the start of the function, rather than create a skip timer for it. 
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The only caveat is that the task must recognize the event within 
the specified response times. The way we check this is to compare the 
response time skip timer values to the fastest task skip timer value. In 
this example, the scan skip timer is fastest at 5, and the response values 
are 8 and 50. So, as long as the LED task state machine can recognize a 
blank event in every possible state (8/5), and a flash event within every 10 
states (50/5), then the response times will be within the specification. 

If the task state machine cannot recognize an event within the speci-
fied time, then there are a couple of options open to us:

1. The skip rate of the task state machine could be reduced to in-
crease the number of LED task calls within the response time. In 
this example, reducing the LED scan task skip rate to 1 would 
mean the task would have 8 ticks (8/1) in which to respond to 
a blank event.

2. We can go back to the writers of the requirements document and 
ask if the response time actually has to be that fast. It could be 
that a slower response is acceptable, in which case the task state 
machine would have more time to respond to the event.

3. The timer can use its access to the state variable to force the state 
machine into a state that will recognize the event.

In this specific instance, the task is implemented using a data-indexed 
state machine. Because data-indexed state machines execute the same 
code each time they are called, we need only add a statement to test for 
the events and blank the display if needed. 

But, wait a minute. What if the blank condition occurs 3 to 4 cycles 
prior to the task skip timer reaching zero? If the state machine requires 
one state to recognize the event, and then blanks the display on the next 
state, those 3–4 cycles, plus the 5 between calls to the task, could push 
the blanking of the LEDs past the 8 millisecond response time. How do 
we meet the response time, if the display scan rate is too slow? 

Well, we either speed up the rate at which the state machine is called 
and recalculate the skip timer value, or we modify our scan state machine 
to use two skip timers and add logic to preset the next state to a blank 
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state. Our original task skip timer will still regulate how often the state 
machine executes a LED scanning state. And, the new skip timer will 
regulate a small routine in front of the state decoder which handles 
recognition of the events. For example:

Void LED_Scan_task()
{
 if (LED_Scan_task_test_go)
 {
  LED_Scan_task_go = false;
  If (LED_blank) LED_Scan_state_variable = 6

//blank_state
 }
 if (LED_Scan_go)
 {
  LED_Scan_go = false;

  {DATA INDEXED LED SCANNING STATE MACHINE}

 }
}

The new skip timer flag, LED_Scan_task_test_go will be driven 
by a skip timer with a two-tick timeout, causing the task to check for 
blank conditions on every other tick. If a blank event is detected, the 
state variable is then preset to the blank state, and the next scheduled 
output from the state machine turns off the displays. Because the dis-
play is now turned off in the next call to the state machine, rather than 
in two calls to the state machine, the response time is now less than 
the 5 tick time out of the task skip timer. The second skip timer flag, 
LED_Scan_go operates normally, and triggers the execution of the next 
state at the normal operating rate of the task. Using this system, the task 
state machine can now respond to a blank event within five ticks which 
meets the blank timing requirement of eight ticks.

Algorithm 4.15
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Once we are satisfied that the system can meet the timing require-
ments, we can design a timer system algorithm. Using the LED scan 
task example, we end up with something like the following:

Task1 (LED)
 If (--LED_scan_skiptimer == 0)
  LED_scan_skiptimer = 5
  LED_go  = true

 If (--LED_test_skiptimer == 0)
  LED_test_skiptimer = 2
  LED_test = true

 If (time_update)
  If (ALARM_flash)
    LED_flashtimer = 1000
  If (TIMEBASE_blank)
    LED_blanktimer = 2000
  Time_update = false

 if (LED_flashtimer > 0)
  LED_flashtimer—
  TIMER_blank = true
 else
  TIMER_flash = false

 If (LED_blanktimer > 0)
  LED_blanktimer—
  LED_blank = true
 else
  TIMER_blank = false

 LED_blank = TIMER_flash or TIMER_blank

 Examining the routine, we see that the first IF statement handles 
the normal five tick skip timer for scanning the display. The skip timer 
is predecremented and tested for zero. If zero, then the task GO flag is 
set and the skip timer is reloaded. The next IF statement is our new test 
skip timer for the state machine; it times out every other pass through 
the loop and it triggers the test function appended to the task state 
machine. When it times out, the displays are not scanned, but a test for 
a blank condition is evaluated and the next state is diverted to a blank 
state if needed.

Algorithm 4.16
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The third IF statement is our test for the time_update signal. If 
set, then we have to evaluate the state of both the blank and flash flags 
from the timebase and alarm tasks. If either condition is true, then their 
timeout timers are set.

The fourth and fifth IF statements are designed to blank the display 
in the event that the timeout timers, for either a flash or blank condition, 
are greater than zero, indicating that a timed blank of the display is in 
progress. This allows the system to turn off the display for a fixed period 
of time and then re-enable the display if the condition does not persist. 
For a blank condition, the timeout is chosen to be 1 second, this forces 
the display to remain blank until the next time_update. If the blank is 
not set at the next time update, the timer will timeout and the display 
will return. For the flash function, the timeout is set for ½ second. Even 
though the flash condition may persist, the short timeout allows the 
display to restart at the midpoint of each second. The result is a ½ on, 
½ off flash at a 1 Hz rate.

The final statement is just the binary or-ing of the two flags together 
into a single blank flag for the state machine. Note: while this system 
will work correctly, we can save some overhead by making one small 
change to the algorithm. We know when a blank condition becomes 
valid, because we test for the condition in the timer, so do we really need 
a second skip timer to force the state machine to a blank state. We could 
just force the condition in the timer as shown below:

LED_blank = TIMER_flash or TIMER_blank
If (LED_blank) LED_Scan_state_variable = 6 //blank_state
LED_blank = false

While this option certainly seems simpler, it is a poor design practice 
for several reasons:

1. Removing the blanking logic from the LED task hides the opera-
tion of the blanking logic in a non-standard location.

2. It complicates the debugging process because the LED scanning 
task cannot be tested independent of the timing system.

3. The LED scanning task is no longer a reusable module.

Algorithm 4.17
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4. And, any changes to the blanking design will now require the 
modification of two modules, instead of one. And anyone making 
the change must know about the split functionality to be able to 
do the job.

Remember, our purpose here is to make modular, easy to develop, 
easy to test, easy to support designs.

OK, so allowing the timer to preset the state variable is not a good 
idea. Then how does a task state machine make changes in the skip rate 
of a skip timer, if it is not allowed to reload the timer? And how do we 
synchronize the execution of the task to an external event? The answer 
is, we let the timer do the work.

If the reload value of a skip timer needs to change, then we pass a 
simple flag to the timer function and it reloads the skip timer with the 
appropriate value. For example:

If (--LED_scan_skiptimer == 0)
 LED_scan_skiptimer = LED_scan_value[rate_index]
 LED_go = true

Now each time the skip timer reaches zero, it will be reloaded from 
the LED_scan_value array which holds all the potential skip timer 
values that may be needed. The control variable rate_index is just a 
value supplied by the task to specify which value it needs. The control 
is simple, the coding is clean and descriptive of the function and, if 
necessary, the array could be replaced with a holding variable, set by 
the task, if the number of potential values becomes too large to manage 
with an array.

Coding to allow a skip timer to synchronize to an external event is 
also simple. The skip timer is set to a skip value that is always longer 
than the worst-case time between events, and the event itself is used as 
a replacement for the timeout of the timer. For example:

 If (--LED_scan_skiptimer == 0) or (external event)
  LED_scan_skiptimer = 100
  LED_go = true

The reason we leave the skip timer in the system is to guarantee that 
the task will be called even if the external event fails to occur. 

Algorithm 4.18

Algorithm 4.19
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In fact, a system like this will be used with the 60-Hz time base 
function in our alarm clock to provide time_events, even if the 60-Hz
signal disappears. We simply set the skip timer to a period slightly longer 
than the 60-Hz event, and if the skip timer times out, we know that one 
60-Hz signal is missing. When the system has missed four more, it will 
then reset the skip timer for an exact 60-Hz rate and use the skip timer 
timeout to generate time_events in place of the external 60-Hz signal.

OK, what next? Simple—we repeat the same design process for each 
of the other tasks in the system. When they are all complete, we gather up 
the design information with the hardware timer configuration informa-
tion from the first part of this section, and put it into the design notes 
for the system. We then gather up all the GO flags, temporary flags, and 
skip timer variables we generated and define them in the master header 
file for the system. The flags go in the master header file because they 
are an extension of the communications pathways for the system. The 
temporary flags and skip timers go in the master header file because the 
timer function will be housed in the main system source file along with 
the main system loop and priority manager. 

Note: It is a good practice to also note the new GO flags on the data 
flow diagram for the system and label them appropriately for future 
reference. The naming convention for the GO flags should also follow 
the same rules used for naming pathway variables.

Priority Handler

Now that the components of the timer system have been designed, we 
can turn to the companion function of the timers, the priority handler.
The priority handler, as we discussed in Chapter 2, works with the timer 
system to determine which tasks get execution time. However, while 
the timer system determined when the task was called, the purpose of 
the priority handler is to determine if the task should be called. This 
may not sound like much of a distinction but, as we will see shortly, it 
is definitely different in the implementation.
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In the previous chapter, we gleaned information concerning sys-
tem modes and priorities from our requirements document. We then 
organized it by task, so we know which tasks should have priority, given 
a specific system condition or mode. The challenge at this phase of the 
design is to find a priority handler, or combination of handlers, that can 
shift execution time appropriately, all while minimizing its impact on the 
system, in the form of lost execution time and program memory usage.

Let’s start by defining how a priority handler works in a real-time 
system. In any system that has to respond and operate according to a 
specific timing requirement, the software functions are typically de-
signed to operate at their fastest execution time. So, building a priority 
handler that adds execution time to a function that is already operating 
at its correct operating rate will cause timing problems with the func-
tion because it will be executing faster than it was originally designed. 
Therefore, the purpose of a priority handler in a real-time system is 
not to add execution time, but rather to make sure the function has 
its allotted time, at the time it needs it. We do this by denying time to 
other lower-priority functions that would conflict with the high-priority 
routine when it needs to run.

Our purpose is to make sure that high-priority routines have execution 
time, when they need the execution time. We can do this in a number of 
ways. We can defer the lower-priority function’s execution until after the 
higher-priority function has completed its task. Or, we can disable the 
lower-priority task to ensure that it cannot conflict with the execution of 
the higher-priority task. Or, we can arrange the timing of the two tasks, 
so that they will never conflict for execution time. The priority handlers 
that will be discussed fall into one of these three categories.

The first such system we shall examine falls into the third catego-
ry—specifically, systems that arrange the timing of tasks so that they 
never conflict. The system is referred to as a passive priority handler. It 
operates by manipulating the initial values in the skip timers used by 
the various tasks in the system. The idea is to create a situation in which 
none, or at least most, of the timers do not time out on the same pass 
through the system loop.
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The advantage to the system is that it requires no system resources to 
implement. The initial values loaded into the skip timers are offset from 
the values used to reload the timers. After the initial timeout, the actual 
reload values are used from that point on. The result is that the timers 
are offset or, in a sense, out of phase with one another, and remain offset 
throughout the continued execution of the system. Once offset, there 
is no code required to maintain the offset, and no variables required to 
track the tasks, save the skip timers themselves.

The downside of the system is that it is not adaptive to changes in 
the system’s mode. It only maintains the time separation of the tasks; it 
cannot defer the execution of a task to make room for another. While this 
would seem to exclude this system from the job of a priority handler, it 
should be pointed out that it does guarantee that the tasks will have clear 
time to operate during the execution of the system. And, its simplicity 
does make it very attractive as a priority-handling system.

OK, so how is this system designed? The first things required are the 
skip timer values for all the tasks that will be managed by the priority 
handler. These values are examined to find the largest common integer 
value that will divide into each of the values. For example, the following 
are the skip timer values for a selected group of tasks from our alarm 
clock design: 

 Task Skip timer value
Display Task 5
 Time Base Task 2000
 Alarm Control Task 100

 Largest common value 5

The value of 5 is the largest integer factor that divides into each of 
the skip timer values. So, if the skip timer initial values are offset by 1 
from each other, and the offset is never greater than 5, then the timers 
will never time out together on the same pass through the system loop. 
One possible configuration is shown below.

Task Initial Skip timer value Reload value
Display Task 5 5
Alarm Control Task 101 100
Time Base Task 2002 2000

List 4.4

List 4.5
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In the fifth pass through the system loop, the Display task will time 
out and be reloaded with the value 5. On pass 101, the Alarm control 
task will time out, and be reloaded with the value of 100. On pass 100, 
the Display task skip timer will have timed out, and will again on the 
105th pass. But, because the Alarm Control task is offset, it will always 
timeout on the pass immediately following a Display task timeout, never 
on the same pass. In a similar manner, the Display task will timeout on 
the 2000th pass through the system loop, the Alarm control task on the 
2001st pass, and the Time Base task on pass 2002. 

As you can see, this is a simple system that uses no resources beyond 
those already committed to the skip timers, and it takes no additional 
execution overhead to maintain. However, there are a few conditions 
required for the system to work, one: the skip timers must have a mini-
mum common factor to make the offset work, and two: the skip timer 
values for the tasks must be greater than 1. 

There are also two other conditions that can cause problems, and 
they must also be taken into account in the design. First of all, if a task 
uses its skip timer to regulate the rate at which it executes states, then the 
system operates normally. However, if the skip timer is used to regulate 
only an initial state transition, then the passive system must be modi-
fied to account for the additional states that are executed following the 
initial state transition. For example, if the Alarm Control task used its 
skip timer as a gating function on the initial state transition of a three 
state sequence, then the Alarm Control task would execute on the 2001st,
2002nd, and 2003rd pass through the system loop. The Alarm Control 
task’s execution on the 2002nd pass would therefore cause a collision 
with the Time Base task executing on the same pass.

However, as long as the initial offset of the Time Base Task skip 
timer accounts for the additional passes of execution, then the system 
would still be able to operate. When designing with tasks that use their 
skip timer timeouts as a state transition gating function, rather than 
a gate function for the entire state machine, it is important that the 
offset be sufficient to accommodate the worst-case number of states in 
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a sequence. Again, using the previous example, the design would look 
like the following:

Algorithm 4.20

Task Initial Skip timer value Reload value
Display Task 5  5
Alarm Control Task (3 states) 101 (102, 103) 100
 Time Base Task 2004  2000

The sequence of tasks would be the display task on pass 2000, the 
Alarm control task on pass 2001 through 2003, the Time Base task on 
pass 2004 and, finally, the Display task once again on 2005.

The other condition that can cause problems with a passive priority 
handler is the occasional execution of other tasks, which do not have 
skip timer values that fall on even multiples of the largest integer fac-
tor. The execution of these other tasks will therefore routinely coincide 
with the execution of some or all of the states in the tasks that use the 
priority handler. 

While juggling the offset values solved our previous problem, this 
problem is going to require a little more design effort. To solve this prob-
lem, we will have to do a timing study on all of the tasks in the system, 
building up a table of execution times for each state of each task. We 
can then identify those combinations of states and tasks that will take 
longer to execute than the available execution time in the system tick. 
We can then take the states in the tasks that cause a problem and break 
them into two or more states, reducing their execution time. The result 
is a collection of states in the handler-control tasks and coinciding states 
in the nonhandler-controlled tasks which can have coincident execution, 
without overrunning the system tick. 

For example, consider the previous example, combined with the 
execution of the Command task, which has a skip timer reload value 
of 34. 34 does not share the common integer factor of 5 with the other 
skip timer values in the Display, Alarm Control, and Time Base tasks. 
As a result, we can expect the Command task to execute coincident with 
all three of the priority handler controlled tasks during the course of the 
system’s execution. Looking at a hypothetical list of states and execution 
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times, shown below, and assuming 145 instruction cycles available per 
system tick, we can expect to overrun the system timing tick whenever 
the time required for a command state, added to a Display, Time Base, 
or Alarm Control state, exceeds 145 total cycles.

 Task Cycles
 Display  85
 Time Base state 1 15
  state 2 40
  state 3 70
 Alarm Control state 1 20
  state 2 50
  state 3 75
  state 4 60
  state 5 95

 Command state 1 12
  state 2 60
  state 3 48
  state 4 65

In this example, an overrun occurs whenever the following combina-
tions of states occur:

Command state 2 60 Display, Alarm Control(state 5)
state 4 65 Display, Alarm Control(state 5)

To correct this problem, we have three possible solutions. One, state 
2 and 4 in the command task can be broken into two or more smaller 
states with execution times less than 50 instruction cycles. This will 
guarantee that the execution times for these states cannot combine with 
the other task state machines and overrun the system timing. Two, we 
can use some of the timing leeway for the Command task, and change 
its skip timer reload value to a multiple of 5, such as 35. This would 
allow us to force the command task to always execute coincident with 
the Time Base task, which did not have a timing conflict with the com-
mand task. This solves the problem, without requiring modifications to 
the task state machine designs. And, three, we could allow the system to 
overrun the timing tick. This will cause some variance in the timing of 
inputs, and outputs, but the worst-case delay would be 15 instruction 
cycles, approximately 10.4%. The choice of solutions would depend on 

Table 4.4

Algorithm 4.21
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the timing requirements of the system and the difficulty in breaking the 
appropriate task states into smaller states.

Even with the difficulties in designing the system, the passive priority 
handler has several points in its favor: minimal design difficulty, no impact 
on system resources, and no ongoing drain on the system performance. 
The downside is that it cannot adjust to changing system requirements, 
and tasks outside the system may cause additional design time.

Concerning documentation, the design notes should be updated with 
information concerning the calculation of the largest common factor and 
the initial skip timer values. Additional notes concerning the evaluation 
of other tasks in the system and their impact on the processor workload 
should be included, plus any information concerning modifications to 
the tasks or the possibility of overrunning the system tick. All notes 
should include a clear and verbose explanation of the decisions involved 
with any design changes.

The next priority handler to be examined is the time-remaining
system. The time-remaining system is designed to get the most execu-
tion accomplished within a fixed time frame. In the case of our design 
methodology, the idea is to get the greatest number of tasks executed 
within a system’s timing tick. To accomplish this task, the priority 
handler requires two pieces of information—the amount of time that a 
task will require to execute its current state and the time remaining in 
the system timing tick.

The time remaining is reasonably simple to obtain; it is just a matter 
of reading the current value of the hardware timer, which controls the 
system tick. Knowing the period of the timer and the current value, the 
handler can then determine the number of instruction cycles left in the 
tick. This represents the amount of time remaining, and therefore the 
amount of time available for the execution of a task’s current state. The 
next step is to find a task whose current state can execute within the 
remaining time and call the task’s state machine.
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The advantage to this system is that it tries to optimize the execution 
throughput of the microcontroller, basically fitting together segments of 
execution with the objective of keeping the microcontroller busy 100% 
of the time. While 100% utilization of the microcontroller is not practi-
cal, it will give the designer the maximum processing power available, 
given the microcontroller and its clock frequency.

The downside of this system is that it requires an extensive knowl-
edge of the execution times for every state in every task state machine. 
Further, any future modifications to any of the state machines not 
only requires that the information be renewed, it also means that the 
resulting system will change the way and order in which tasks will be 
executed. After all, changing the number of cycles required to execute a 
task will affect the amount of time remaining after the task, which will 
subsequently change the number of potential states and tasks that will 
fit in the time remaining.

So, the first step in the design process is to build an execution timing 
database for all of the states, in all of the task state machines. Next, the 
latency times for the timing system and the priority handler have to be 
measured. Once this is complete, the execution database and system 
offset times can be built.

In operation, the priority handler will first read the current value of 
the system timer used to regulate the system tick. The next step is to 
subtract the offset value, representing the latency times for the timer 
and priority handler, from the time remaining. Then the resulting value 
is compared against the execution times for any tasks requesting execu-
tion. The highest priority task with a state that will execute within the 
remaining time is then executed, and its request for execution time is 
reset. Once the task finishes executing its current state, the handler once 
again checks the time remaining to determine if there is time remaining 
for another task to execute. 
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There are three aspects to this system that a designer should question: 
one, how can a task maintain constant timing, if it cannot be guaranteed 
execution time in a specific tick? Two, does the system give a preference 
for the best fit in the time remaining, or on the basis of priority? And,
three, how does the system respond to changes in the system mode? One: 
fixed timing can only be guaranteed by using a buffered input/output 
system that is tied to the main system timer. Two: the tasks are tested 
in the order they are encoded into the design of the priority handler, so 
tasks that are tested earlier in the tick have higher priority than tasks that 
are tested later in the list. As a result, order of testing translates directly 
to priority, however, if a higher priority task will not fit into the time 
remaining, it will be bypassed for a lower priority task that does fit in 
the time remaining. And, three: like the passive priority handler, there 
is no mechanism for changing the priorities of the system based on the 
system mode. However, combining this system with one of the later 
priority handlers does give the system that capability.

One other question that should come up: doesn’t the testing in the 
priority handler also decrease the time remaining in the tick? The answer 
is yes, it does, and, yes, it will affect the calculation of time remaining 
for each subsequent task that is tested. However, after each test, the re-
maining time can either be retrieved again from the system timer, or be 
offset by the test time through a simple subtraction from the test value. 
This will compensate for the time required to perform the last test, and 
keep the time-remaining value current for each new test.

While this system does get the optimum execution throughput out 
of the system, in many applications, the additional design and test 
overhead, plus the execution time required to determine which task 
should execute is often such a drain on the throughput that a point of 
diminishing returns is reached. When this happens, the priority handler 
is consuming more execution time than it saves and the system has no 
value. So, the designer is encouraged to carefully consider the time and 
resources required using this method of priority handler before investing 
large amounts of time in its design. Remember, a priority handler’s job 
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is getting the most from the available resources, not necessarily getting 
every last instruction cycle of throughput out of the microcontroller.

As an example, consider a system including three tasks, A, B, and 
C. Each of these tasks has between one and four states, with execution 
times represented in instruction cycles. Further, assume the timing for 
the system is regulated by a hardware countdown timer, Timer0. An
application algorithm of the time remaining system would look like 
the following:

Algorithm 4.22

Database[3][4] = {execution times for states, by task}
While(1)
 Switch (index)
  case 0: if Timer0 > Database[0][task0_statevariable]
    task0()
  case 1: if Timer0 > Database[1][task1_statevariable]
    task1()
  case 2: if Timer0 > Database[2][task2_statevariable]
    task2()
 System_timer()

The database is indexed by both task number and state number, and 
contains the time to execute every state in every task. The SWITCH
statement then searches through the three different tasks, looking for a 
state execution time that is less than the time remaining in the system 
tick. If it finds one, it calls the appropriate state machine and the state 
is executed and the next task is tested for the time remaining after the 
called task. If not, then the case statement falls through without execut-
ing the state machine and tests the next task in the list. When the time 
remaining is so small that no task will fit, the SWITCH statement will 
fall through to the end and the loop will wait out the end of the time 
in the timer function and then start the loop over again.

One method for simplifying the system is to combine the passive 
system with the time-remaining system. In this hybrid, the passive system 
manages the execution of the high-priority tasks in the system, and the 
time-remaining system attempts to fit in lower-priority tasks in the time 
left over. This eliminates the impact of shifting execution patterns from 
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the high-priority tasks, as well as guaranteeing them execution at specific 
times. And, it still attempts to get the maximum throughput out of the 
system by filling in the extra blocks of time with lower priority functions. 
The following algorithm shows how this would be accomplished:

Algorithm 4.23

Database[3][4] = {execution times for states, by task}
While(1)
 Hi_prioritytask_A()
 Hi_prioritytask_B()
  Switch (index)
  case 0: if Timer0 > Database[0][task0_statevariable]
   lo_priority_task0()
  case 1: if Timer0 > Database[1][task1_statevariable]
   lo_priority_task1()
  case 2: if Timer0 > Database[2][task2_statevariable]
   lo_priority_task2()
  System_timer()

A variation on this system is to use some other form of priority handler 
on the high and middle priority tasks, and use the time-remaining system 
to fit in so-called housekeeping functions. A housekeeping function is a 
task or software function with no definitive timing requirements—for 
example, a function to periodically check the battery voltage could 
be considered a housekeeping function, in that it has no specific time 
that it must be performed. As a result, the time-remaining system can 
fit it into the tick whenever there is sufficient excess execution time 
to accommodate it. The execution time is not guaranteed, but a good 
probability exists that it will be executed at some time when the right 
combination of higher-priority tasks leaves a window of execution time. 
The following is one example of an algorithm that would implement 
this type of system:

While(1)
 Hi_prioritytask_A()
 Hi_prioritytask_B()
 Hi_prioritytask_C()
 if Timer0 > Min_housekeeping
  housekeeping()
 System_timer()

Algorithm 4.24
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Of course, the probability can be based on an analysis of the execu-
tion times for the various states in the various tasks and the skip timer 
values for each of the tasks, though typically the easier solution is just to 
implement the system and then build in a software counter to count the 
number of calls to the housekeeping function while the system is tested. 
If the function is not called sufficiently often, the initial values used to 
load the skip timers for the other task can be juggled in an attempt to 
create more frequent open slots for the housekeeping task to execute.

For most of the priority handlers discussed in this section, a numerical 
spreadsheet, with the ability to graph its results, is often very helpful in 
trying different combinations of tasks, and in the search for patterns of 
dead time for the execution of infrequent tasks.

A priority handler that does respond to changes in the system mode, 
is the variable-order system. In the variable-order system, the number 
and order of task state machines called is dependent upon a variable 
driven by the system mode. When the mode changes, this system uses 
the variable to select a different calling order to change the priorities 
and availability of task state machines. This allows the system to create a 
custom calling list for each of the system modes and eliminate any tasks 
that are either not used or mutually exclusive to tasks that are needed 
in the current system mode.

The advantage to this system is that the tasks that are active in a 
given mode are only those tasks actually needed for operation. Other 
tasks are essentially removed from the system and do not constitute a 
drain on the systems resources. In addition, combining this system with 
another system, such as time remaining, allows the system to change 
the order of the tasks tested in time remaining, which in turn changes 
the priorities of the tasks.

The only information required to implement this type of system is 
the system modes and the tasks that are required for each mode. The 
rearrangement of the system is then handled through a SWITCH state-
ment driven by the mode variable. The only difficult part of the system 
is generating a function that quantifies the system mode into a simple 
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integer value. The following is an example of how this system could be 
applied to our alarm clock design example:

While(1)
 switch (mode)
  case Timekeeping: TimeBase_task()
   Display_task()
   Button_task()
   Error_Task()
   break
     
  case TimeSet: Button_task()
   Display_task()
   TimeBase_task()
   Error_Task()
   break
   
  case AlarmPending, SnoozeMode: TimeBase_task()
   AlarmControl_task()
   Display_task()
   Button_task()
   Error_Task()
   break
     
  case AlarmSet: Button_task()
   TimeBase_task()
   Display_task()
   Error_Task()
   break
     
  case AlarmActive: TimeBase_task()
   AlarmTone_task()
   AlarmControl_task()
   Display_task()
   Button_task()
   Error_Task()
   break
     
  case PowerFail: TimeBase_task()
   Display_task()
   Error_Task()
   break
      
  case ErrorMode: Error_Task()
   Display_task()
   Button_task()
   Break

Algorithm 4.25
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Note that the list of tasks follows exactly the priority list generated in 
the last chapter. The only addition is the SWITCH statement and the 
use of a switch variable mode. While this may look long and complex, 
it is actually very simple and surprisingly compact when compiled. The 
only additional code needed is the logic to load the mode variable with 
the appropriate value corresponding to the system mode.

One cautionary note on the generation of the value in the mode 
variable: if the value is generated either wholly, or in part, by the tasks 
themselves, then the designer must make sure that the tasks are present 
in the calling list for each system mode. If not, then it is possible to get 
the system into a mode, but not back out again, because the logic for 
determining the mode change has been disabled by the priority handler. 
So, now is a good time to evaluate which tasks contribute information 
concerning each to the mode changes, and the triggers that generate 
the change. While different tasks may contribute to a mode change, 
there must be at least one task active that can cause the system to exit 
any given mode.

Two related priority-handling systems are the excuse-me and excuse-you
systems. Both systems use knowledge of the system mode and the state 
of other tasks in the system to decide whether to defer execution if the 
demands on the system are heavy. The difference is whether the task mak-
ing the decision decides to defer its own execution, the excuse-me version, 
or force the deferment of another task, the excuse-you version.

 While the systems evaluated so far work on a system-wide scope, 
these two systems are tailored more toward a task-by-task priority con-
trol. They typically handle priority management on a more one-on-one 
format, releasing the resources of a specific task in favor of another task. 
As a result, the tasks in the system are typically related to each other in 
function. For example, Task A handles serial transmission of data over 
a serial port, Task B handles serial reception of data. In an excuse-me 
scenario, Task A would check on the status of Task B before initiating a 
serial transmission. If Task B is busy receiving data, then A excuses itself 
out of the system until B has completed its task. This is predicated on the 
premise that the priority of A is low until it begins transmission, and then 
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its priority increases. So, if it defers the initiation of a transmission, it is 
holding itself at a lower priority until system resources are freed up.

An excuse-you scenario would involve the receiving task B forcing 
the transmitting task A to hold in its low-priority state until B has 
completed its job. Then task A would be released by B and allowed to 
continue with its transmission.

While these two systems sound very similar, there are some important 
differences. In the excuse-me system, only the task deferring its own 
execution is held off. In the excuse-you system, more than one task 
could be held in a low-priority state. Also, the excuse-me system bases 
its decision to defer on its knowledge of what it is about to do, and what 
the other task is doing. The excuse-you system makes the assumption 
that the deferred task might make a state change that will affect its status, 
and the deciding task is preventing the other task from changing priority. 
So, you might consider the excuse-me system as the polite, politically 
correct system, and the excuse-you as the rude, domineering system.

Both systems have their place in a design; it will just depend on 
which tasks have their priority driven by external events, and which 
have the option to defer their shift in priority. The information to base 
these decisions on was retrieved from the requirements document, 
and decided at the system level of the design—specifically, when state 
changes within the task state machine caused a change in the task’s 
priority within the system and the relative priority of tasks based on 
the mode of the system.

To implement either system, excuse me or excuse you, the task making 
the decision will need to consider the general mode of the system. This 
implies that a variable, or collection of variables, is available with which 
to determine the system mode. The status of the other task involved 
also needs to be known; typically this is determined by interpreting the 
value in the state variable for the other task. Based on these two pieces of 
information, a decision is made to defer execution, and the appropriate 
task is forced to defer a change in its state.

As an example, consider the serial input and output tasks discussed 
earlier. The following examples show how the transmit task can be forced 
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to defer a state change using first the excuse-me system, and then the 
excuse-you system.

EXCUSE ME
Transmit()
{
 Switch(trans_statvar)
 {
  Case IDLE: If (receive_statevar == idle) & (data_available)
    trans_statvar = send
   break

EXCUSE YOU
Receive()
{
 Switch(recvr_statvar)
 {
  Case IDLE: if (rcvr_inbuff_full)
   Tx_defer = true
    Data_in = rcvr_inbuff

Transmit()
{
 Switch(trans_statvar)
 {
  Case IDLE: if (Tx_defer == false) & (data_available)
    trans_statvar = send
   break

The excuse-me system just requires a change to the state machine 
that is making the decision to defer its own state change. No modifica-
tion is required in the state machine that is benefiting from the decision 
to defer. The excuse-you system requires modifications to both state 
machines. The state machine that makes the decision to force the other 
state machine to defer needs the additional logic to make the decision, 
and the state machine being forced to defer needs logic to prevent it 
from making the state change.

One thing to remember—when forcing the state machine to defer a 
change in state, the logic to make the change must occur within the state 
change logic in the state machine. Using global access to another state 

Algorithm 4.26
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machine’s state variable, for the purpose of forcing it to defer a change, 
is a bad idea and poor programming practice for several reasons. One, 
if a task forces another state machine to change, or not change, its state, 
then the logic is hidden within the design of a seemingly unrelated task. 
It makes the design harder to debug, it is harder to document, it limits 
the portability of the code, and it will be that much harder to support. 
Adding the conditional statement in the state machine document which 
is deferring the change in state shows the connection between the state 
machines, and it shows the reason for deferring the change.

As always, all of the decisions and design information should be 
noted in the design notes for the design. And once again, be clear and 
verbose; every comment and note you add to the design notes file will 
save you phone calls later from the support group.

The last priority handler system we will examine is the parent/child
system. In this system, one or more parent tasks are assigned the respon-
sibility for the management of a child task. The parents determine when 
and why the child task is executed and what priority the child task will 
have in the system. When the functionality of the child task is required, 
then the parent of the child enables the task and supplies it with any 
pertinent information it requires. The child then executes its function 
and notifies the parent when it has completed its work. The parent can 
then either provide the child with additional work or disable the child, 
removing its overhead from the system.

Part of the value of the parent/child system is that the parent is as-
sumed to release its execution time requirements during the course of the 
child’s operation. In this way, the parent releases its priority in the system 
to the child, without requiring additional execution time resources for 
another task. Basically, the parent loans the child its execution time 
while the child is performing a task for the parent.

The usual question, is why not just add the child’s code to the parent 
and forget about the additional overhead? The reason has to do with 
decisions we made in the task definition section of the last chapter. Re-
member that there are certain functions, such as control of a common 
peripheral, that require some form of arbitration to prevent contention 
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between two control tasks. A child task is a very simple method for 
providing that arbitration. If a control task is currently using the re-
sources of the child task, it will have to enable the child task to manage 
the control. If a second control task wants to use the resources, it will 
be alerted that the resource is already in use because the child task is 
enabled. When the child completes the work given to it by the parent, 
it will be disabled. This will notify the second control task that the re-
sources are now available, and it can lock up the child task by enabling 
it, until such time as the child task has completed its work.

So, by wrapping the common peripheral with a simple child task, we 
can arbitrate control of the peripheral by simply enabling and disabling 
the child task. It does require the parent task to check the status of the 
child task’s enable, but this is a lot simpler than trying to determine 
whether another task is currently involved in a peripheral control op-
eration or not. The ability to arbitrate is not solely reserved for control 
of peripherals; the same system can also be used to regulate access and 
control of data variables, preventing different parent tasks from corrupt-
ing a variable by attempting to write to the variable at the same time.

The implementation of a child task is fairly simple. The child task 
state machine is modified to include a conditional statement which either 
decodes the task’s state variable or not, depending on the state of an en-
able bit. The parent task then need only enable the bit and the child task 
state machine will start decoding and executing states. When either the 
parent or the child clears the enable bit, then the next call to the state 
machine will result in a return, with decoding or executing a state. 

As an example, consider the Alarm_control and Alarm_tone tasks in 
our alarm clock design example. The Alarm_tone is only needed when 
the current time has reached the alarm time, assuming that the alarm 
function is enabled at the time. Then, and only then, the alarm_tone 
task is enabled to operate. During the operation of the alarm tone, 
the execution time requirements of the Alarm_control task are almost 
nonexistent, as its only job is to monitor for an alarm off or snooze 
command. The following algorithms show how the Alarm_control task 
could exert its control over the alarm_tone task.
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Alarm_tone()
{
 if (alarm_tone_enable == true)
  if (tone_modulation == true) alarm_tone_

state = ! alarm_tone_state
  else alarm_tone_state = false
  speaker_pin = alarm_tone_state
 else
  speaker_pin = 0
}

The control of the Alarm_tone state machine is implemented with a 
simple conditional statement at the top of the data-indexed state machine. 
If the enable bit is set, then the state variable toggles between one and 
zero, assuming the modulation time bit is set. The state is then output 
to the speaker to generate the tone. If the bit is cleared, then the speaker 
output is driven low and the state machine takes no further action.

Another method is to tie the enable bit into the skip timers. If the 
enable bit is cleared, then the skip timer is not decremented, the timer 
never times out, and the task is never called. When the bit is set, the skip 
timer behaves normally, and the task is called with the proper timing. This 
has a downside that the child task cannot be included in a passive priority 
handler system because the timing for the task is not predictable.

One of the good things about a parent/child priority handler is that 
the child task need not have an idle task. If the child task automatically 
disables itself when it completes its work, then an idle state is not needed, 
and the additional state decoding can be avoided. This requires either 
the parent task to preset the state variable before it enables the child, or 
the child will have to leave the correct starting value in the state variable, 
when it disables itself.

Concerning the documentation of a parent/child system, adequate 
notes concerning the relationship between the two tasks should be in-
cluded in the design notes for the system. The enable bit should also be 
included in the communications documentation for the system because 
it is specific to neither the parent nor the child, falling instead into the 
realm of intertask communications. And, finally, any notes concerning 
the default state of the child task state variable should also be included 
in the system.

Algorithm 4.27
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This concludes the examination of the individual priority handler 
systems. However, a typical system will not employ just one system; often 
two or more of the systems are combined to create a custom priority 
handler for the final design. Combination of the time-remaining system 
and the variable-order system are particularly useful in that the order of 
tasks in a time-remaining system dictates the priority of the tasks being 
controlled. Using variable order with time remaining allows the system 
to reorder the tasks based on the system mode. Other combinations of 
excuse me and you, with parent/child, can allow the system to create a 
priority handler that does not rely on a centralized priority handler, but 
rather disperses the load out to the individual tasks in the system.

There is no statement, expressed or implied, that these systems are the 
only system appropriate for embedded control designs. In fact, designers 
are encouraged to develop their own priority-handling systems, either 
based on these examples or taken from their own imagination. System 
requirements for specific markets and based on individual coding styles 
will tend to promote certain types of priority handling over others. 
Designers should be creative and develop systems that work for their 
markets and products. These examples are just that—examples designed 
to show what is possible, what controls are available, and ways in which 
the controls can be used to manage shifting priorities in a design.

Error Recovery System

At this level of the design, we now need to define the recovery mecha-
nisms for the system. Specifically, what is done when the error is 
detected, and what actions, if any, the user will have to take to correct 
the problem. 

In the last chapter, we separated the various failures into three classi-
fications: soft errors, recoverable errors, and hard errors. Soft errors were 
handled within the normal operation of the software; they typically deal 
with the user interface, syntax errors, input sequence errors, or out-of-
range values. Recoverable errors are more serious, usually involving some 
kind of transient failure in the hardware or software. Once the condition 
causing the failure is cleared, the system can recover and continue to 
operate. Recoverable errors may also require intervention by the user 
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to clear the problem. Hard errors are the most serious; they typically 
involve a more permanent failure in the system, and no intervention by 
an error recovery system or the user can clear the problem. These errors 
are usually permanent, barring repair of the system.

Our task in this phase of the design is to define the systems that will 
detect the errors, classify the severity of the error, and design recovery 
or management systems for handling the errors. Because the variety 
of possible errors, and the wide variety of possible recovery systems, is 
dependent upon the type of system being designed, it is probably best 
to demonstrate the process through an example. We will work through 
the error detection and recovery system needed for our alarm clock 
example. To begin the work, we need to revisit the errors that were de-
fined for the system in the last chapter. Starting with the soft failures, 
we have the following:

Soft Error

Fault: Button pressed is not valid for current mode or 
command.

Button combination is invalid.

Test: Comparison of decoded button command with legal 
commands, by mode.

Response: Ignore button press.

Soft Error

Fault: Display task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Soft Error

Fault: Alarm tone task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

List 4.6
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In the first error, the test is already performed in the button task, and 
the response is to simply ignore the button, so no special test or recovery 
mechanism is required. However, it is a good idea to review the design 
for the button task, just to make sure that illegal button combinations 
were not taken into account in the state machine design.

The second and third soft errors deal with corruption of a state vari-
able. As far as task state machines are considered, the display and alarm 
tone state machines are the least important. They generate no control 
or status signals used by the other tasks in the system, and their only 
purpose is as a user display function. So, if their state variables were 
to become corrupted, we can just reset either state variable, safe in the 
knowledge that the variable’s temporary corruption has not disrupted 
any of the other tasks in the system.

To create a detection and recovery system for this fault, we need 
only assign the default value to the variable, if the state machine ever 
calls the default state of the state machine. If the default state is called, 
it is because the value in the state variable does not correspond to a 
valid state value. The recovery code in the default state then just resets 
the state variable to one of the blank states for the display task, just in 
case the display was being blanked, or the zero state for the alarm tone 
state machine. Once the state variable is reset, the error condition is 
resolved. As far as our actions in this phase of the design, we need only 
add appropriate notes to the design notes for the display and alarm tone 
tasks. Because none of the actions required to clear the errors require 
user intervention, none of the errors will force an error mode for the 
system. The error conditions will just be cleared and the system will be 
allowed to continue.

Moving on to recoverable errors, we get into a little more complex 
problem. Now the errors become more severe, and there is the potential 
that the user will be involved in the process of clearing the error. The list 
of recoverable errors from the last chapter appears following.
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1. Recoverable Error
Fault: Alarm time is out of range (Alarm time > 23:59).
Test: Alarm control runction test of value before current 

time comparison.
 Response: If alarm is enabled, sound alarm until ALARMSET

button press.
  If in any other mode, ignore (fault will be identified 

when alarm is enabled).
2. Recoverable Error

Fault: Alarm disabled but also active.
Test: Routine check by error task.

 Response: Reset alarm control task state variable.
3. Recoverable Error

Fault: Snooze active when alarm is disabled.
Test: Routine check by error task.

 Response: Reset alarm control task state variable.
4. Recoverable Error

Fault: Alarm control task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
  If alarm is active, disable then retest for alarm time.
  If alarm enabled or active, range check alarm time.
  If alarm time out of range, then notify error task of 

fault condition.
5. Recoverable Error

Fault: Button task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
  Cancel any current command semaphores.
  Reset all debounce and autorepeat counter variables.

List 4.7
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6. Recoverable Error
Fault: Time-base task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
  Range check time base timer variables.
  If out of range, then reset and notify error task to 

clear potential alarm fault.
7. Recoverable Error

Fault: Error task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
  Check status on other system state machines.
  If error condition, then set error system mode, set 

current time to default.
  Wait for user control input.
8. Recoverable Error

Fault: Power failure.
Test: Fifth missing 60-Hz time base pulse.

 Response: Goto power fail mode until fifth detected 60-Hz
pulse.

The various errors can be broken into three main areas. Areas 1–3 
deal with corrupted data/control variables in the alarm task, 4–7 deal 
with corrupted state variables, and 8 deals with a system power failure. 
Of the different errors, number 8 is the easiest to deal with because the 
system is already designed to handle it. In fact, it is the main reason for 
a separate time-base task in the system, so we can ignore it and move 
on to the other eight errors.

Errors 1–3 handle errors in variables used by the alarm task. Error 
1 indicates corruption of the alarm time, which will require user in-
tervention to reset the value; 2 indicates that the alarm state machine 
has failed to notice a change in system mode—specifically, the task is 
active when the control input from the button task indicates it should 
be inactive; and 3 indicates that the snooze mode is active when the 
alarm is disabled. 

List 4.7
(continued)
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Let’s start with errors 2 and 3. Both are detected during a normal 
check by the error task, and both require a reset of the alarm control state 
variable as a corrective action. To build in the necessary mechanism to 
detect and correct the error, we need to add two states to the error task 
state machine. One that tests for both conditions, alarm or snooze active, 
while the alarm is disabled, and the second to reset the state variable for 
the alarm control task. If the first state detects either condition, it will 
then jump to the second state to reset the state variable. Note that this 
also means that the first state must be in a loop within the state machine, 
so it can routinely make tests for the conditions.

One side note on the error task: so far we have not made much men-
tion of the error task, or how it operates. That is because, until now, we 
have not had much in the way of information about its intended purpose. 
However, in this section on error recovery, we will be defining the error 
task’s operation, as it will be one of the primary systems handling general 
error detection and recovery for our design. At the end of this chapter, 
after we have defined all the error detection and recovery systems for the 
design, we will have all the necessary information to perform a general 
state machine design on the error task. At that point we will perform 
the component-level design of the error task, using the same methods 
employed in the design of all the other tasks in the system.

Error 1 is a little more serious, in that it requires intervention by the 
user to clear the problem. It is a corruption of the alarm time, detected 
by the alarm-control task as part of its alarm mode operation. The 
system’s response to the error is to continuously sound the alarm while 
the alarm is enabled. If the user disables the alarm, or presses the alarm 
set button to set the alarm, then the alarm will quiet for as long as the 
button is held or the alarm is disabled. If the button is released, or the 
alarm re-enabled with a corrupted value in the alarm-time variable, the 
alarm tone will start again.

To detect the condition, the state in the alarm task that checks for 
alarm time = current time, must be modified to include code to check 
the range of the values in the alarm-time variable. If the variable is out of 
range, then the alarm is activated just as if the current time had reached 
the alarm time.
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Recovering from error 1 is also somewhat more complicated. There 
needs to be a pathway established between the button task and the alarm-
control task to carry the current state of the alarm set button. This is so 
the alarm tone can be disabled when the alarm set button is pressed. The 
fast and slow alarm set commands also have to be modified; they have 
to first verify the alarm time is within a valid range and, if not, reset the 
alarm time to a default value prior to incrementing the variable.

All the changes to the alarm-control and buttons tasks should be 
noted in the design notes for the system and in the individual sections 
relating to each task. The additional data pathway should also be added 
to the communications plan, the data flow diagram, and the header 
files generated earlier in this chapter. A write-up of the error recovery 
system should also be added to the design notes in the sections dealing 
with the button task, the alarm-control task, communications, and er-
ror detection/recovery.

The next group of errors, errors 4 through 8, deals with the corruption 
of the various state variables used by the task state machines. Detection 
is typically accomplished through the default state of the various state 
machine state decoders. If the state is invalid, then the state decoder will 
jump to the default state, and code in the default state is responsible for 
effecting the error recovery. The only problem is that the corruption 
of some of the state machines may affect other state machines in the 
system, so the errors move from the classification of soft errors to the 
classification of recoverable errors. As recoverable errors, their recovery 
mechanism requires coordination through the error task. 

While the error is detected in the default state of the state machine, 
the actual recovery mechanism resides in the error task state machine. 
The reason to put the recovery into the error task is because the error 
task state machine is independent of the problem. It can reset any com-
bination of task state variables, in any order, something that a recovery 
routine in a default state cannot accomplish because resetting its state 
machine stops the recovery.

To pass the notification of the failure, we will need data pathways 
for each of the task default states, to the error task state machine. The 
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error task also needs to know the current state of all the state machines, 
so additional pathways will be required to carry this information. And,
finally, the error task will need a mechanism for resetting the state vari-
ables of each of the other tasks in the system.

All of the monitoring can be accomplished through additional path-
way links between the tasks and the error task. Because the function 
of the pathways is to allow the error task to monitor the other task’s 
real-time operation, the best protocol for the pathways is broadcast. It 
will not require the monitored task to handshake and the error task can 
choose to ignore the data if no error is currently being handled.

The control is a somewhat more complex problem. The tasks being 
reset by the error task may be in either a valid state, or in the default 
state when the error task attempts to reset. As a result, tasks being reset 
may not be able to respond to a reset command through the logic in 
the individual task states, so the control will have to be added through 
the command decoder logic for the state machines. Basically, we will be 
adding a semaphore pathway into each of the tasks. This semaphore is 
read by the state decoding logic each time the state machine is called, 
and if set, it resets the state variable. The state decoder then resets the 
semaphore to acknowledge the reset has occurred.

With both monitoring and control capability, the error task is then 
set up to monitor the error flags from each of the tasks. The monitoring 
function is implemented as a loop and when a specific error is detected, 
the loop then branches out to the specific sequence of states that will 
reset the appropriate state machines, in the appropriate order.

The last recovery mechanism to define is for recovering from a cor-
ruption of the error task state variable. Here, no monitoring system is 
needed, as the error task will know that its own state variable is cor-
rupted when the state decoder decodes the default state. The error task 
will then have to do a quick sanity check on the various tasks in the 
system to determine whether any of the other tasks needs to be reset. 
Since the sanity check is the normal operation of the error task, all that 
really needs to happen is that the state variable for the error task be reset 
so the task can return to polling for errors. Additional sanity checks can 
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be included in the sequence, prior to the reset of the state variable, such 
as a CRC check on program memory, a range check on any important 
variables, and/or verification of specific output controls.

With the last part of the design, the error task is finally defined. A
state machine design for the error task can now be completed using the 
design techniques shown at the beginning of the chapter. As with the 
other system designs, the various states will be defined, and the triggering 
events that cause a state change. Individual actions are then defined for 
each of the states and the input and output pathways are cataloged.

Appropriate changes and additions are then made to the communica-
tions plan, to accommodate the new monitoring and control functions 
added to the task’s list of responsibilities. The timing chosen for the er-
ror task should also be reviewed in light of the new responsibilities the 
task will have. Finally, the priority list should be reviewed to determine 
whether or not the error task will be active at all times to handle any 
errors the system might encounter.

Once the design is complete, the appropriate notes are added to the 
design notes for the system, the error task, the system communications 
plan, and the documentation on the priority-handling systems.

The last class of errors to be handled are hard errors. These errors are 
so severe that the system must be either reset through a power down or by 
repair of the system. In either event, the configuration of the system will 
be lost, and the user will be required to completely restart and reconfigure 
the software. For our design example, we have three hard errors:

Hard Error
Fault: Watchdog timer timeout.
Test: Hardware supervisor circuits.
Response: System is reset.

System will power up in error mode.
Hard Error
Fault: Brownout reset.
Test: Hardware supervisor circuits.
Response: System is reset, and held in reset until power is restored.

System will power up in error mode.

List 4.8
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Hard Error
Fault: Program memory fails a CRC test.
Test: CRC check on power up.
Response: System locks, with a blank display.

The first two errors are driven by hardware supervisory circuits in-
ternal to the design of the microcontroller, or attached externally to the 
reset line of the microcontroller. Both generate either a system reset or an 
interrupt. The system software then has to detect the reset or interrupt 
from these sources and leave the system in the error mode on power up. 
Detection of an internal watchdog or brownout is usually done through 
the testing of specific status bits in the microcontroller. For information 
on which bits and how the source is determined, the designer should 
refer to the documentation on the device, and any applicable applica-
tions notes generated by the manufacturer. 

For external sources, some kind of hardware method will be needed 
that allows the microcontroller to determine the source of the reset. 

There is also one reset that is missing from the list, that is the initial 
power-on reset. This is the first reset for the system following power-up, 
and like a watchdog or brownout reset, it should also bring the system 
up in the error mode. This is because on the first power-up, the system 
will not know what the current time is and, without that knowledge, 
both the time display and alarm functions are useless. So, putting the 
system into the error mode is a reasonable solution as well.

This means that all potential sources of reset have the same response, 
so we can lump them all together and just put the system into the error 
mode in the event of a system reset. What this means for the design is that 
all we will have to do to respond to a reset is to preset the mode variable 
in the Init_var() routine to the code corresponding to the error mode.

In the current design, the response to a watchdog timeout is that 
the system is reset. This is based on an assumption in the requirements 
document that a watchdog timer timeout is the direct result of a corrup-
tion of the program counter, and any corruption of the program counter 
introduces the possibility of corrupted data. So, resetting the system to 
a default condition that forces the user to reconfigure the clock is the 

List 4.8
(continued)
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only safe course. A reasonable assumption for the alarm clock design, 
but what about an automated control system for elevators, or an engine 
controller? A forced restart from zero could actually damage the engine 
if the controller resets while it is still running. 

Another possible response to a watchdog timeout might be to run 
a routine that shuts the engine down safely. This solves the problem of 
how to restart the system, but the optimum choice would be to recover 
and continue to manage the engine. While this scenario may seem 
unlikely, there are aspects of a state machine-based multitasking system 
that could make it possible.

Let’s assume for now that the system maintains redundant copies 
of the data, and that the data can be validated with a CRC. With two 
copies of the data, the design should be able to find one copy of clean 
data. If it can’t, then the system can always shut down using the previous 
option. However, if the system has clean data, then the only problem is 
restarting the state machines.

If the state variables were stored with the rest of the data, then they 
should be valid. Examining the skip timers can tell the system which 
task was running during the last tick. So, the system should be able to 
restart, just where it left off. All the reset routine need do is copy the 
good data into the corrupted data space, CRC the results, set the goflag 
for any task that has a skip timer equal to its reload value, and jump to 
the top of the loop. For most systems this should restart the system at 
the start of the last tick prior to the failure, and the system will never 
know the difference. 

For even greater reliability, additional steps can be taken to help 
ensure the correct restart of the system:

1. Set the watchdog timer timeout to a period slightly longer than 
the system tick. This will limit the amount of damage a corrupted 
program counter can do prior to the time out.

2. There should be only ONE clear watchdog command, and it 
should be at the top of the main system loop. Never put the clear 
watchdog instruction in the interrupt service routine.
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3. Keep one, or preferably two redundant copies of the data, and 
only copy the new data into the old data at the end of the tick. 
This should give one copy a decent chance of surviving the cor-
rupted program counter.

4. Fill all unused program memory locations with a GOTO that 
will direct the microcontroller to the reset routine.

5. If possible, put a write-protect circuit on the data memory that 
holds the redundant copy of the system variables. The write pro-
tect should use an unlock sequence, and it should automatically 
relock after a fixed number of instruction cycles.

That pretty much cover the error-detection and recovery mecha-
nisms for the system. The component level of the design should now 
be complete.

Before moving on to implementation, let’s take a few moments and 
review the documentation that should have been generated in this phase 
of the design.

From the state machine portion of the design, there should be a 
complete design package for each of the task state machines. 

For a data-indexed design, there should be a list of states. Naming the 
states is optional, as the primary use of the state variable is to index the 
array of data acted upon by the state machine. There should be a list of 
the state transitions and the events that trigger the change in state. Any 
important algorithms should be noted and commented with sufficient 
detail to explain their operation. And, all the state machines’ inputs and 
outputs should be noted, as well as any additions to the design for han-
dling error detection and recovery should have been added. The following 
is the updated documentation for the data-indexed display task.
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DISPLAY STATE MACHINE TYPE:  DATA INDEXED

STATE DIGIT FUNCTION Condition If true If false
 0 Display tens of hours always 1
 1 Display ones of hours always 2
 2 Display tens of minutes always 3
 3 Display ones of minutes alarm mode 6 4
 4 Display tens of seconds always 5
 5 Display ones of seconds blank 7 1
 6 Blank display always 7
 7 Blank display blank  6 1

ALGORITHM FOR CONVERTING 24HOUR TO AMPM
 K is a temporary variable
 digit0 is the tens of hours digit
 digit1 is the ones of hours digit

 K = (digit0 * 10) + digit1 // convert digits to 0-23 value

    // test for time of 13:00 – 23:59
    // in AMPM mode, displaying hours

 If (state = 0) and (AMPM_mode = true) and (K >= 13)
 {
  digit0 = (K – 12) / 10 // subtract 12 and take tens digit
  digit1 = (K – 12) – 10 // subtract 12 and take ones digit
 }

STATE MACHINE INPUTS:
  Three flags: alarm_enable, blank, AMPM_mode
   All three flags are positive true logic

  Two arrays: Time_data[6]* and Alarm_data[6]*
   *Note, data is in 24:00 hour format for

STATE MACHINE OUTPUTS:
  One state variable: Display_state

  Two I/O ports: Segments(7) and Digit_drivers(6)

  Two LED indicators: PM and ALARM_ON
   Indicators are positive true logic

ERROR DETECTION AND RECOVERY:
  If the statevariable is greater than 7, it should be reset to 6.

  No additional action required.

For execution-indexed state machines, the documentation should 
include a list of states, with descriptive names for each state. It should 
include a list of all the state transitions and the events or conditions that 

Notes
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trigger the change in state. It should also include a complete list of all the 
functions that are executed in each state with a clear description of any 
important algorithms. And, finally, a list of the inputs and outputs for 
the system should be compiled. If any updates were made to the design 
as part of the priority or error sections, they should also be included.

Notes
LIST OF STATE NAMES FOR THE BUTTON TASK

1. Wait_4button Idle state, waiting for a button press
2. Wait_4bounce Wait state, waiting for the contacts to stop bouncing
3. Decode The button is combined with other buttons and decoded
4. Alarm_plus1 Command: Increment alarm time by 1 minute
5. Alarm_plus10 Command: Increment alarm time by 10 minutes
6. Time_plus1 Command: Increment current time by 1 minute
7. Time_plus10 Command: Increment current time by 10 minutes
8. Toggle_AMPM Command: Toggle AM/PM versus military time
9. Alarm_on Command: Disable alarm
10. Alarm_off Command: Enable alarm
11. Initiate_snooze Command: Snooze alarm
12. Repeat_delay Wait state for autorepeat of increment commands
13. Button_release End state for button release
14. Error Error recovery state
15. Default All other state variable values decode to here

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled &  Initiate_snooze Button_Release
  Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode Wait_4button
  Button is held
Button_Release Button is released Wait_4button Button_Release
Error Reset from Error task Wait_4button Error
Default always Error
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State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10  increment alarm time by 10 Alarm_time Alarm_time
Time_plus1  increment time Alarm_time Alarm_time
Time_plus10  increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine
Default set statevariable to Error none none

Hybrid state machines’ documentation will consist of a combination 
of both the data and execution-indexed state machine documenta-
tion. There should be two state lists, one for the data-indexed half of 
the design, and a second for the execution-indexed half. There should 
also be an indication of which execution-indexed state holds the data-
indexed code. Both lists of state transitions should be included, with a 
description of how the data-indexed state variable triggers a change in 
the execution-indexed state variable. There should be one list of state 
actions, and one list of inputs and outputs for the hybrid.

Documentation for the communications system should include a 
main system header file, with variable declarations for all of the task-to-
task communication pathways. Constant definitions and labels for the 
system peripherals should also be included in the header file. 

The header file should also be linked to an include file that will even-
tually contain all the access and test routines for the various protocols 
used with the pathways. For now, the file should contain descriptions 
of the functions. 

Any pathways that could potentially create a state lock condition 
should be identified and flagged for additional error detection and recovery 
code. Methods for detection and recovery should be described, and any 

Notes
(continued)
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additions to the task state machine required to correct the problems should 
be clearly described, and the appropriate documentation updated. 

There should also be a clear and verbose description of a naming 
convention for naming variables. It should identify the pathway with a 
prefix and a postfix to identify the variable’s function. Including a varia-
tion on the naming convention for naming access and test routines is 
not a bad idea either.

 The next piece of documentation concerns the timing system. It 
should describe the general design of the timer, and the hardware system, 
if any, that regulates it. The description should include any constant 
values required for configuring the hardware and the description of the 
algorithm used to determine the timer roll-over.

If a timer interrupt is to be used, either to reload the hardware timer 
for shortened timeout, or as a high-speed timing driver, the interrupt 
service routine should be described in reasonable detail, including any 
additional configuration constants or interrupt enable flags that must 
be configured. Due to the asynchronous nature of interrupts, any com-
munications variables should use either a semaphore or buffer protocol 
and be defined in the system communications plan. All the variables and 
protocols required for communications pathways must be defined and 
added to the communications documentation listed previously.

Algorithms for all the skip timer routines should be defined in detail, 
and all constants, variables, and new communications pathways defined 
and documented both in the communications plan and the main system 
header and include files.

A clear description of what happens when the skip timer times out 
should also be defined, specifically if the time-out regulates the state-
by-state timing or if the time-out gates an initial state transition, which 
is followed by execution on each following tick.

Any notes concerning the main system clock frequency should be 
included in the design notes, along with calculations concerning the 
number of instruction cycles per tick and any mechanisms for shorten-
ing the timer roll-over using interrupts.
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All priority-handling routines should be defined clearly, noting which 
tasks they affect/control and which tasks control, or share control of 
another task’s priority. All timer calculations, decisions, and reasons for 
those decisions should also be noted.

If a priority handler makes use of information from another task’s 
state variable, then the communications plan must be updated to show 
the transfer of information. Any new control variables should also be 
included in the plan, and the appropriate variables generated and docu-
mented in the main system header and include files. 

Note that the system can use more than one priority-handling system, 
so the documentation should also contain any notes concerning the 
expected interaction between the two or more priority handlers.

All error detection and recovery systems should be clearly defined 
in the design notes for the project. This includes the operation of the 
error task, which should have documentation comparable to the docu-
mentation of the task state machines. All communications and control 
variables should be documented clearly in the main system header and 
include files, as should the timing and skip timer reload values for the 
error task timing. Any change or updates to the system task should also 
be complete, with a description of why the change was made and how 
the changes work with the error detection and recovery system.

Whew, that is a lot of information compiled in one place! And the 
detail of the information is formidable. Designers should not be surprised 
when the design notes file and the preliminary header and include files 
are large. In point of fact, we want them to be large—the larger the better. 
Remember that these files are the blueprint for every line of code that 
will be written for the final system. If done right, the answer to every 
question in the design should be present in the design notes.

This does not mean that any unanswered question is a failure in the 
design. It just means that we have one more question to answer next 
time. Like every other design, this is an experience-building exercise. 
We learn something from every system we design. I personally look at 
some of my early design work and wonder how it ever did what it was 
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supposed to. Designers should not be discouraged if an answer is miss-
ing here and there. 

While we are on the subject, designers should not consider this de-
sign methodology the “be all, end all” of design. As I mentioned earlier, 
every designer sees a problem a little differently. We all have different 
experiences that we draw from, so it should come as no surprise that 
there is no single best way to design a system. There is only the method 
that works best for the individual designer. 

The readers of this book are encouraged to take what works for 
them, incorporate it into their coding and design style, and leave the 
rest. Don’t force your design style to comply with the system—it will 
lead to frustration and problems. As I learned in writing this book, you 
have to speak or design with your own voice; anything else is a waste 
of time and energy.

With that said, it is now time to move on to the implementation 
phase of the design. That’s right, after 288 pages, we will finally start 
writing code! The difference is, we now know what to write.



In this chapter, we conclude the design process, translating the compo-
nent-level design from the last chapter into the actual software that will 
make up the final system. This chapter will cover not only the writing 
of the software but also individual module tests and integration testing 
of the complete system. When we are finished, we will have a complete, 
tested software solution for the design specified in the requirements 
document.

Before diving into the generation of the code, we should stop and 
take a minute to talk about the workspace that the software will be 
developed in. This workspace should be organized in such a way as to 
help in the development process. It should organize the work and allow 
separate development areas for the creation of the system’s individual 
components.

All too often in a design project, little if any thought is given to the 
organization of the development workspace. This typically leads to 
confusion over the progress of the project, and leads to mistakes that 
result in lost time and wasted effort. A well-organized workspace helps 
the designer track the progress of the project by organizing the work 
along the same lines as the project’s design. It should compartmental-
ize the work in the same way the design has been broken down into 
individual components. This allows the reuse of testing software on a 
variety of objects, and separates the different elements of the design, 
preventing interaction between the elements until it is time to integrate 
the project.

5
Implementation and Testing
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So, what kind of project workspace works best for the design meth-
odology we have been discussing? The first step is to organize a series of 
folders, each corresponding to the separate components designed in the 
last chapter. Separate folders should be generated for each of the task 
state machines, plus a separate folder for the timing control system, the 
priority handlers, and the communications variables with their accessing 
routines. Within each of these folders, another subfolder should also 
be created to hold development archives for each component. This is 
important to prevent clutter in the main folder over the course of the 
component development.

Once the file structure has been generated, the current version of the 
development tools should be loaded, using the installation instructions 
that came with the tools package. Note any anomalies during the course 
of the install, and work with the customer service group attached to 
the tools supplier to insure that the package is installed correctly and is 
operating properly before moving on to development. 

In addition to the development software, some form of archiving 
software should also be installed on the system. This can be a full back-
up system, generating automatic daily back-ups of the development 
environment, or just a simple compression package for the manual 
creation of an archive. The archives purpose is twofold: one, it provides 
a path back from failed development dead ends, and two, it maintains 
a recovery path in the event of a catastrophic system failure. 

In light of the second reason given for the need of an archive, it is 
also considered a very good idea to routinely copy archive files onto 
a separate media for storage, possibly even offsite storage, for protec-
tion from everything from fire to accidental erasure. I know that many 
programmers consider back-ups and archiving to be a waste of time. I 
also admit that I have even succumbed to this faulty line of reasoning 
on occasion. However, I can also admit that the practice has bitten me 
on more than one occasion. Not having a development archive to fall 
back on has cost me both time and money, recreating software that was 
already done and working.
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The next step is to create software projects for each of the folders, 
using the software development system that will be used to write the 
system. The projects should include paths leading the development sys-
tem back to common include and header files for the communications 
system, plus any common include files for peripherals ports. Templates 
for the source files should also be generated. These template files should 
include common include file commands, and stock header comments at 
the top of the file identifying the development project and the function 
of the software contained in each file. A start data and provisions for 
listing a revision history are also a good idea.

Note: The current version of the development software should be frozen 
for the duration of the project. If a significant problem is encountered 
with the development tools during the course of the project, then the 
new version can be installed. However, all testing performed prior to 
the change must be repeated to guarantee that no new problems have 
been generated by the change to the new version of software.

Copies of the design notes should also be linked into the project for 
quick access using the development editor used with the project. The 
design notes should not be copied into all of the folders, but rather 
should reside in a single location, with each development folder access-
ing it through a path definition in the system. All too often, multiple 
copies of a document will slowly grow apart, causing confusion of errors. 
Using a single copy prevents this problem.

Once the directory structure and the development tools have been 
configured, the next step is to create the source and header files for each 
of the component modules in the design. The names for the files should 
be descriptive and be readily recognizable as being linked to the specific 
task that they contain. Most common operating systems support the 
concept of long file names, so there should be no reason to limit the 
length of the name, or resort to cryptic naming conventions to make 
the name fit in an arbitrary length.

The development workspace is now set up and ready to start 
development of the system. However, there is one last step that must 
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be completed before we begin writing code for the system. That step is 
to familiarize yourself with the development tools.

The best way to do this with any system is to perform an audit of the 
development system. A typical Integrated Development Environment, 
or IDE, is composed of three parts: the system editor, the assembler or 
compiler, and a simulator or emulator interface. Each of these com-
ponents aids in the development of new software, and the ability to 
use them to their fullest potential is important if the software is to be 
developed with the minimum work required.

Starting with the editor for the system, the designer should become 
familiar with the editing and search functions available in the system. 
These will aid in the generation of the source files for the project. Of 
particular usefulness will be the SEARCH functions that allow the user 
to quickly scan through the listing for a specific section of the design. 
Often a similar structure called a BOOKMARK is also useful in this task. 
Whether SEARCH or a BOOKMARK is used, an understanding of how 
to configure and use the commands is necessary to be able to quickly 
search through a source file for an important scrap of information.

A good method for becoming familiar with the editor’s features 
and functions is to use the editor during the course of the system and 
component levels of the design for generating and editing the design 
notes for the system. The effort to organize the design notes at the end 
of the last chapter is also a valuable exercise for the designers to familiar-
ize themselves with the syntax of the editing and search commands of 
the IDE editor. By the end of the familiarization process, the designer 
should know most of the common commands by memory and have a 
quick reference guide readily available. I personally like to make a copy 
of the guide and tack it on the wall as a poster.

The next item to become familiar with is the simulator or emulator for 
the system. Both the simulator and emulator are valuable tools for testing 
and debugging the design during the course of the project. The simulator 
allows a low-cost alternative by building a virtual microcontroller in the 
development system computer, while the emulator performs a similar 
function within the target hardware. Both typically include the ability 
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to RESET, RUN, STOP, and STEP the development hardware for the 
purpose of watching the flow of the program. Specialized viewing win-
dows are typically included in the system to allow the designer to watch 
specific data memory locations and peripheral control registers. 

Specialized testing and halt functions, referred to as break points,
allow the designer to stop execution at specific points in the code for 
evaluation of the systems operation. When combined with a monitoring 
system referred to as a trace buffer, the designer cannot only stop at any 
location in the program, but can also view the flow of the execution prior 
to the stop. Together, these functions form a minimal set of features and 
functions for most simulation and emulation systems. A designer’s abil-
ity to make use of these features and functions quickly and effectively is 
important if the designer is to build and test the system efficiently.

A simulator is similar to an emulator in that it has most of the same 
commands and abilities, the main difference is the ability of an emulator 
to test the software using the external circuitry of the final design. This 
generally involves a plug-in system from the emulator, which samples the 
incoming data from the circuit and drives the outputs generated by the 
software. The simulator, on the other hand, will make up for its inability 
to connect to real hardware by its ability to simulate external hardware 
through a stimulus and monitoring system. This system creates virtual 
peripherals to nonexistent external systems which can be programmable 
through configuration menus or even a scripting language.

If the design work is to be done using an emulator, then the designer 
needs to become familiar with any limitations inherent in the system, 
such as a memory limitation on the trace buffer, and the maximum 
number of break points available in the system. The designer must also 
become fluent in the configuration and use of the emulator as part of 
the test and debugging process. Often, programmers learn just the basic 
commands of the emulator and then rely on conventional tricks of the 
trade to debug. While this practice is quick and relies on well-known 
techniques, designers owe it to themselves and the company that paid for 
the development to get the most value possible from the tools. Anything 
less is a waste of good hardware and valuable development time.
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For low-cost development, and even initial development in a system 
that will use an emulator, the simulator is a valuable development tool. 
Often the level of control possible using the virtual microcontroller 
within the development computer is greater than even those abilities 
in an emulator. The design sacrifices the ability to debug in the final 
system hardware, and the simulation will typically not be at the same 
speed as an emulator. However, the control and access of a simulator can 
significantly reduce the testing and debugging time of software modules. 
So, the designer is encouraged to learn the simulation system, even if an 
emulator is to be used as the final system development tool.

Another value of the simulator is the ability to debug code that 
might cause system damage, if it were to fail in the final hardware. For 
example, a control system driving an H-bridge motor drive must never 
turn on both transistors in the same leg of the driver. To do so would 
effectively short out the power supply of the driver. Initially testing the 
routine in the simulator allows the routine to fail without incurring 
the damage possible in the actual circuit. So, there will be times in the 
development cycle where the use of a simulator will have advantages 
over even development with an emulator.

A valuable feature of some emulator/simulator systems is the ability to 
link break points in the system to program labels within the software. This 
allows the designer to make semipermanent break points in the design 
that will retain their location in the listing even through multiple edits 
and recompile/assembly of the source file have been made. This elimi-
nates the need for the designer to reset the break points after every edit 
and recompile/assembly cycle in the development. There may also be the 
ability to time break point functions to changes in data memory, allowing 
the designer to determine which routines are attempting to set or access 
a specific data memory location. This data memory break point system 
can be VERY valuable when it comes time to start integration of the 
modules into a complete whole, as the typical error found at integration 
is the unintended corruption of one task’s variable by another task.

One final value of the use of a simulator for testing is the ability of 
the simulator to use either macros or a scripting language to provide a 
specific sequence of trigger inputs to the system as part of the testing 
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process. Because the timing and sequence is generated in software, the 
testing sequence can be repeated infinitely and varied by even the smallest 
detail, making it a valuable automated testing system. Simulator systems 
also typically have the ability to log output data from some peripherals 
in the system. This provides a ready-made conduit for test data out of 
the system. This test data can then be used to compare the operation of 
the software system from run to run over the course of the development 
process, allowing the designer to gauge and document the development 
and debugging process.

A scaled-down version of the emulator, often referred to as a debug-
ger, may also be available. This development tool typically has many of 
the same abilities as the emulator in regard to sampling and driving the 
inputs and outputs of the target hardware. However, debuggers tend 
to be limited in their ability to trace the execution of the software, or 
support multiple break points. Some are even limited in their ability to 
operate in real time, making some of the systems only marginally better 
than full software base simulation. However, the budget for the system 
may not be sufficient to cover the cost of an emulator, so the debugger 
may be the only realistic alternative for in-circuit testing. If the debug-
ger is to be used, then the designer must be aware of the difference in 
operation and the potential limitations to the development process.

The final piece of the IDE that designers need to familiarize them-
selves with is the compiler or assembler to be used in the system. An 
assembler is reasonably simple, and only requires the designer to become 
familiar with the variety of directives in the system and their syntax. Com-
pilers, on the other hand, are more complex and many have the ability 
to perform optimization of the final object file generated by the system. 
These tools will require the developer not only to learn the commands 
and syntax for the tool, but also to learn how to write code so that the 
compiler will generate the most efficient code possible at its output.

One of the many variables in embedded control design is driven 
by differences in the architecture of the microcontroller. Some micro-
controllers have features that augment their ability to perform math 
quickly, others have features suited to bit manipulation, and still others 
have features better suited to digital signal processing. The choice of the 
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microcontroller for the system must take into account these features and 
the need for these abilities in the system design. The choice of micro-
controller will also affect how the compiler will attempt to implement 
the various features of a level language, and the designer must be aware 
of how their writing style will either help or hinder the process.

To gain this awareness of the compiler and microcontroller interac-
tion, multiple pieces of test software, written in a variety of programming 
styles, must be compiled using the various optimization options within 
the compiler. The various outputs from the test can then be compared to 
determine which writing style will be most efficient. A typical collection 
of C commands for use in auditing a compiler is displayed below. 

For (index=0; index<100; index++);
For (index=100; index>0; index--);

Index++;
Index+=1;
Index=Index+1;

If ((A&B)==1);
C=A&B; If (C==1);

While(1);
For(;;);

Int A;
Float B,C;
C=3.14;
B=2160;
A=B*C

Int A,B,C;
C=314;
B=2160;
A=(B*C)/100;

While this list is not by any means exhaustive, it does give the 
reader an idea of the type of writing style that might affect the output 
of the compiler. The first pair of commands are intended to test for 
the compiler’s ability to take advantage of any decrement and branch 
if zero type commands in the microcontroller. The second set of com-
mands tests the compiler’s ability to optimize math operations and use 
any increment instructions resident in the microcontroller. The third 

Code Snippet 5.1

Code Snippet 5.2

Code Snippet 5.3

Code Snippet 5.4

Code Snippet 5.5

Code Snippet 5.6
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set tests for the compiler’s ability to recognize an infinite loop, and the 
final set determines the default math format that the compiler selects for 
every-day math operations. Given the wide variety of compilers available, 
and the equally wide range of features and optimization capabilities, it is 
suggested that designers develop a selection of coding examples for the 
purpose of auditing any compiler they might be asked to use in develop-
ment. A good set of examples is very valuable to a designer, particularly 
if the commands and data structures in the example are typical of the 
commands used in their designs.

Another area to explore in a compiler is the set of nonstandard 
compiler features. Most, if not all, compilers try to conform to one 
of a couple different ANSI standards that specify the minimum set of 
commands and data structures required to handle the C programming 
language. However, there may also be features and functions that go be-
yond the ANSI specification, typically taking advantage of some feature 
in the microcontroller. As a general rule, these features should only be 
used after careful consideration. The reason for this caution is that any 
modules developed that use these features may not be compatible with 
other compilers, and that incompatibility may render the module useless 
in other development environments. So, just because a compiler has an 
interesting feature does not mean that it should be used indiscriminately 
through a development project.

It does mean that the feature should be evaluated as to its usefulness 
in the design. If the feature is valuable, then it may be worth the effort 
to create a function, using ANSI compliant commands, that will emulate 
the feature so it can be migrated to other platforms.

Finally, remember to try the examples with different levels of optimi-
zation. Particular attention should be paid to the size of the object code 
and the execution speed. Generating a matrix showing the changes in 
output based on coding style and optimization level allows the designer 
to pick and choose their writing style, dependent upon the desired result, 
either speed, size, or both.

Once the development system has been configured and the designer 
is comfortable with its operation and command set, it is time to begin 
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the implementation of the design built through the last two chapters. 
The logical starting place is the main system loop that will eventually 
hold all the tasks, timing functions, and priority handlers. While we will 
not be tying all the functions together at once, the loop does provide 
a good framework in which to do the development and testing of the 
individual components of the design.

The loop follows a simple format in the primary source file of the 
project, an initialization routine followed by an infinite loop which 
will contain the task state machines, timing system, and the priority 
handler(s). The following is an example in C:

Void Init_variables()
{

Init_display_task();
Init_button_task();
Init_alarmcontrol_task();
Init_alarmtone_task();
Init_timebase_task();
Init_error_task();
Init_timers()
Return;

}
Void Main()
{

Init_variables();
Init_peripherals();
While(1)
{

  Get_inputs();
  Priority_handler();
  Timer();
  Put_outputs();

}
}

This basic format contains all the systems for the design, and it 
initializes all variables and peripherals. It then gets the input informa-
tion for the system to evaluate, calls the priority handler to determine 
which tasks should be run on this specific pass through the loop, updates 
all the skip timers and regulates the loop timing, and then drives the 
outputs from the system before jumping back to the top and the loop 
and starting over.

Code Snippet 5.7
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While this loop has calls for all of the functions in the loop, initially 
the routines that are called will typically only contain a return statement. 
These call/return routines, or stubs, in the system are just placeholders at 
this point in the implementation. As we move further into the design, we 
will replace these stubs with working routines to implement the system, 
or with test routines for exercising other sections of the design. However, 
for now they simply are there to remind us that a function is needed.

The first piece of the design to place in the main loop is the timing
control system. We start with the timing, because it is reasonably simple 
to implement and easy to test. It is also repetitive, so we can easily mea-
sure the timing of the system, skip timers, and various timer timeouts 
using an oscilloscope.

To provide the necessary outputs for measurement, combine the vari-
ous timeout flags and skip timer flags into 8-bit CHAR variables and 
output them to one or more of the parallel input/output ports on the 
microcontroller. The code to combine the flags and the actual output 
to the port should be placed in a copy of the Put_outputs() routine 
residing in the subdirectory reserved for development of the timing 
control system. It will then be a simple change to redirect the include 
file from the Put_outputs() routine in the main loop subdirectory, to 
the routine in the timing control development directory. An example of 
this type of Put_outputs() routine is shown below.

Void Put_outputs()
{

unsigned char GPIO_A, hold;
GPIO_A  = 0;
GPIO_A |= skptmr_display_task  *1;
GPIO_A |= skptmr_alarmcontrol_task *2;
GPIO_A |= skptmr_alarmtone_task  *4;
GPIO_A |= skptmr_button_task  *8;
GPIO_A |= skptmr_timebase_task  *16;
GPIO_A |= skptmr_Error_task   *32;
Hold    = GPIO_A | 64;
PORTA = Hold;
PORTA = GPIO_A;
return;

}

Code Snippet 5.8
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The exercise and test version of the Put_outputs() routine com-
bines all of the flags from the current pass through the system into a 
single 8-bit byte, and then outputs the value with the 7th bit set and 
then cleared. This parallel output tells us the current status of all the 
timer flags and provides a timing marker to indicate when the output 
was last updated. Using this output system, we will be able to use an 
oscilloscope to measure both the time period of the main system loop, 
and the divided output of the skip timers.

Note: It is always a good idea to keep all files, currently under develop-
ment, or in use for the development, in an isolated subdirectory. During 
the course of the development, we will be using custom replacements for 
some of the modules in the main loop, for the purpose of exercising and 
testing the tasks and function under development. By keeping the custom 
modules, and the modules being developed, in a separate directory, we 
limit the possibility of accidentally making modifications to the wrong 
file. And, more importantly, we eliminate the potential for accidentally 
replacing a completed file with a temporary exercise and test file.

Once the output function is written and tested using some simple 
bit set and bit clear commands inside the timer routine, we can begin 
the actual development of the system timer function.

The first step is to configure the hardware timer to be used for regu-
lating the system timer tick. The actual values required to configure the 
operation of the timer will be specific to the microcontroller used for 
the project, so we can’t show a generic example. However, the design of 
a microcontroller timer is such that it can be configured to provide a 
flag, and potentially an interrupt, when it rolls over from 0xFF to 00. If 
this feature is available on the microcontroller selected for the project, 
then this is the desired configuration. The preselector should also be 
programmed to match the specifications in the component-level design 
generated in the last chapter. Labels corresponding to the control registers 
for the timer peripheral should have already been defined in the include 
file supplied by the compiler, so configuration of the timer is simply a 
matter of adding a few assignment statements to the Init_Timers()
function in the timer development directory.
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The code required to sense the roll over can then be added to the 
Timer() routine. It should consist of a simple while statement that 
holds up execution of the routine until the timer roll-over flag is set. 
The routine can then clear the flag and return. This will fix the timing 
of the main loop to the roll-over period of the timer, which can then be 
verified by measuring the time between pulses on bit 6 of the parallel 
input/output port.

Code Snippet 5.9
While (status.tmr_ovrflo!==1); // routine will wait until overflow is set
Status.tmr_ovrflo=0; // clear overflo bit once detected

If the hardware timer in the microcontroller is not capable of gen-
erating an interrupt, or does not have an independent flag to indicate 
a roll-over, there are software methods for determining the 0xFF to 00 
transition. The method simply monitors the most significant bit of the 
timer and waits for it to change from 1 to 0. We could look for a value 
of 00 in the timer, but if the number of instruction cycles per system 
tick is less than 4–10 cycles, there is the possibility that the routine may 
miss the 00 state of the timer. Monitoring the most significant bit is 
safer and almost as simple a test.

While (timer.bit7==0); // hold while msb of timer is 0
While (timer.bit7==1); // hold while msb of timer is 1

The code operates by holding the timer routine while the msb of 
the timer is zero, then holding while the msb of the timer is set. This 
releases the hold condition on the high-to-low transition of the msb of 
the timer. Even if the msb is set, indicating that over half the tick has 
passed, this routine will hold until the msb clears once again indicating 
the high-to-low transition of the bit. And, the high-to-low transition 
only occurs when the timer rolls over from 0xFF to 00. Watching for 
the transition will still detect the roll-over; even if the routine is too 
slow to see the actual 00 value in the timer, it only has to detect the 
msb roll-over to register the roll-over of the counter. It does introduce 
a few instruction cycles of uncertainty to the detection, but no more 
uncertainty that watching the roll-over interrupt flag.

Code Snippet 5.10
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There was also the possibility that we would not be able to select a 
system clock that would allow the use of the 0xFF to 00 roll-over of the 
timer. As a result, we will need to also set up an interrupt function that is 
called on the roll-over of the timer. In this routine, the first action should 
be to load the timer with a value, which will force the timer to roll over 
prematurely. To calculate this value, use the following equation:

Timer_load_value = 256 – ((Tick / Instruction_time)/prescaler)

The equation calculates an offset for the timer, corresponding 
to the difference between the normal roll-over of the timer, and the 
shortened roll-over needed to generate the proper system tick. The 
Timer_load_value may need to be further offset to account for the 
interrupt response time of the microcontroller, so testing the tick using 
a flag on an input/output port is recommended. The offset can then be 
fine-tuned to produce the exact system tick required.

Once the interrupt routine is working, a simple semaphore flag can 
be used to communicate the roll-over condition to the system timer 
routine in the main loop. The timer routine in the main loop will then 
use the flag as its regulating flag, in place of the normal roll-over flag.

One of the more difficult problems in building the timer system is 
determining whether the system tick has been overrun. Basically, an 
overrun condition occurs whenever the time required to execute the 
code in the current pass through the loop is longer than the system tick. 
Detecting an overrun tick is important in that it is one of the more im-
portant error conditions in the system. It is also a condition that should 
be detected in the design and testing of the system, so having a test for 
the condition is helpful in the integration-testing phase of the design. 

One method for detecting an overrun condition is to test the timer 
overflow interrupt flag immediately following the call to the timer func-
tion. If the flag is set, then the timer has probably overrun the system 
tick. Loading the current value of the hardware timer should then give 
an indication of the amount of overrun, provided the system has not 
overrun the tick, twice over.

If the system has overrun the tick by a small amount, it may be 
possible to just restart the loop and live with the small timing offset on 

Equation 5.1
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that particular pass through the loop. If the overrun is larger, then an 
error recovery system will have to evaluate all the current skip timers 
to determine if a task missed its chance to execute. If not, skip timers 
would have timed out, and then even a large overrun can be forgiven. 
However, if a task was scheduled to run, and it was in the middle of 
a timing-critical function, then the system may have to declare a hard 
error. Then the system error recovery task can reset all of the software 
functions that were dependent upon the timing of the missed task and 
restart the system from a known good condition.

If there is the possibility that the system could overrun the system 
tick, twice over, then additional code may be needed in an interrupt 
routine. This additional code would be responsible for keeping track of 
the number of times the interrupt occurs without handshaking from the 
main system timer routine. The overrun counter operates by increment-
ing a counter every time the timer rolls over. When the timer routine 
in the main system loop detects the roll-over condition, it queries the 
counter to determine if it holds the value 01. If it does, the system did 
not overrun the tick, and the timer function can clear the counter and 
restart the loop. If the counter value is greater than 01, then the system 
has overrun the tick multiple times, and the error recovery task for the 
system will probably have to reset the system and restart from a known 
good condition.

Once the basic timing function is complete, then the skip timer sys-
tems can be added to generate the execution flags for the various tasks 
in the system. The general form for a skip timer is the following:

If (--display_task_skptmr == 0)
{

display_task_skptmr = display_task_reloadvalue;
display_task_goflag = true;

}

The skip timer is decremented and, if zero, reloaded with the skip value 
for the task, and a trigger flag is set to indicate to the task that it is time 
for it to run. The display_tsk_goflag will then be cleared by the task 
state machine, indicating to itself on the next pass that it has received the 
indication on the last pass and already executed a state in response.

Code Snippet 5.11
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Other variations of skip timer may also require an external event in 
conjunction with the skip timer timeout, or in place of the skip timer 
timeout. One such skip timer is the timebase task in our alarm clock 
example. In this case, a trigger from the external 60-Hz timebase is 
supposed to trigger an increment of the current time. However, if five 
consecutive pulses from the 60-Hz timebase are missed, then the system 
will switch over to an internal timebase. To implement this type of sys-
tem, a more complex function is required. The following is an example 
of how this system could be implemented:

Code Snippet 5.12

if (60Hz_pulse == true) 
{

if (system_mode!=Power_fail_mode) //normal operating modes for the system
{   //use a short timeout = to 60Hz period + 1

  timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;
  if (--60Hz_postscaler == 0)
  {  //the postscaler sets the goflags every 60
   60Hz_postscaler = 60;
   timebase_task_goflag = true;
   time_increment = true;
  }

}
else    //60Hz pulses have resumed after power fail
{

  if (--missed_60Hzpulse_counter == 0) system_mode = determine_sys_mode();
  timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;

}
}
If (--timebase_task_skptmr == 0) //skiptimer timeout, missed pulse, powerfail
{

if (system_mode == Power_fail_mode) //power fail, do goflags & set 1sec timeout
{

  timebase_task_skptmr = timebase_task_reloadvalue;
  timebase_task_goflag = true;
  time_increment = true;
}
else   //missing pulse, count & reload skiptimer
{
  timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;
  if (++missed_60Hzpulse_counter > 4)
  {  //5th missing pulse, change mode & timeout
   missed_60Hzpulse_counter = 5;
   system_mode = Power_fail_mode;
   timebase_task_skptmr = timebase_task_reloadvalue;
  }

}

}
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The resulting timer function operates two skip timer constructs 
simultaneously. The first is for the internal timebase and is driven by 
a conventional software skip timer timerbase_task_skptmr. The 
second construct is for the external timebase and is triggered by the 
60Hz_pulse flag. Both halves of the timer operate differently based 
on the state of the system, specifically if the system is in power-down 
mode or not.

Let’s start with the system in a nonpower-down mode where 60-Hz 
pulses are received regularly and the skip timer for the timebase task is 
reloaded to a period slightly longer than the period of the 60-Hz pulses. 
The result is that the skip timer never times out. Every 60 pulses from 
the 60-Hz input, the 60Hz_postscaler counter reaches zero, and the 
1Hz time_increment flag for the display task and the goflag for the 
timebase task are set.

If a 60-Hz pulse is not received before the skip timer times out, the 
skip timer is reloaded with the short period time-out value, and the miss-
ing pulse is counted in the missed_60Hzpulse_counter variable. If 
five 60-Hz pulses are not received, then the missed_60Hzpulse_coun-
ter variable reaches a value of 5, the system mode is changed to power 
fail, and the skip timer is reloaded with a value which will generate a 
1-Hz timeout.

While the system is in the power fail mode, the skip timer will 
continue to generate a goflag for the timebase task, generate a time_
increment flag for the display routine, and reload the skip timer for a 
1-second time-out.

When 60-Hz pulses resume, the skip timer for the timer is reloaded 
with the short time-out period, the missed_60Hzpulse_counter vari-
able is decremented, and no goflags or time_increment flags are 
generated. If five successive 60-Hz pulses are received, then the system 
mode is reset to the appropriate operating state, and the 60-Hz half of 
the timer system takes over operation.

While the system may seem complicated, it does handles the neces-
sary power loss detection and switch-over required for the time base of 
the clock as defined in the requirement document. If the description is 
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not adequate for understanding the operation of the skip timer, refer to 
the flowchart in Figure 5.1 for clarification. 

Figure 5.1 Flow Chart of Power Fail Detect

The algorithm in the previous example does have one problem with 
its operation—it loses the first five pulses, upon resumption of the 60-
Hz input. However, this inaccuracy is reasonably small, and will not be 
noticeable until 12 power fail/resume conditions have passed. At that 
point, the current time will have lost 1 second. This translates to an er-
ror of less than 5%, which is approximately the accuracy of an internal 
oscillator used in a typical microcontroller. So, even with the lost pulses, 
the error will be less than the typical error in the microcontroller internal 
oscillator over the course of 1–2 seconds. Assuming that clock operates 
for the majority of its life using the 60-Hz time-base, this would produce 
only a very small error in timekeeping compared to the inaccuracy of the 
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internal timebase. So, the potential error in timekeeping is within the 
tolerance of the internal timebase, and complies with the specification 
in the requirements document.

Once the skip timer systems have been added to the timer function 
and tested for accuracy, the timer function is essentially complete and 
can be fully commented. Remember that much of the text required 
for commenting the code is already written and stored in the design 
notes for the design. Simply copy the applicable text from the design 
notes file into the top of the timer source file and add the appropriate 
punctuation to designate it as a comment. Then the individual section 
of the timer source code can be commented using whatever reasonable 
comment style is appropriate. 

Note: Having a good header comments section in the source listing is 
not a license to fail to comment the individual lines of code. The com-
ments on the code should be descriptive of what the code is doing and 
not just an English translation of the command. All labels in the code 
should be descriptive and follow the naming convention developed in 
the last chapter. Any temporary variables should also have descriptive 
names and use the prefix designated for the timer system. If the way 
in which a routine is coded obscures the algorithm, then an additional 
header style comment may be called for just prior to the section of code 
in question. Remember that we are trying to answer any question now, 
rather than put up with an endless string of questioning phone calls 
later. Be accurate, be verbose, and supply any information that will be 
helpful in understanding the operation of the system later on.

Building a Testing Driver Routine

Because this design methodology produces software components, which 
are then combined together in the integration phase, much of the inter-
connectivity of the modules will not be available when the individual 
modules are being written and tested. So, we will need a test driver routine
to simulate the signals from the other modules in order to adequately 
test the individual modules in the design.
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A test driver routine is, at its simplest, a table-based arbitrary data 
generator. It is driven by the timer routine, and generates preprogrammed 
sequences of data on the task-to-task data pathways for the purpose of 
simulating the activity of another task in the system. To accomplish this 
function, it will need a skip timer in the timer to regulate its timing, 
and it will need access to the communications variables used to com-
municate with the tasks. You may remember that the reason given for 
using interface macros and subroutines was the ability of a test system 
to easily interface with the tasks without modifying their operation.

It is important to note that one of the reasons that we use a table-
based test driver is that the test system is then automatic, and requires 
no action from the designer to operate. It is in fact perfectly reasonable 
to design a test driver that could repeatedly test a task over and over, 
with only a minor change in timing between the tests. This is a valu-
able tool in that it allows very thorough automated testing sequences 
to be generated, certainly more thorough than could be accomplished 
by testing the software function manually.

Also, if the test driver is designed to link the tables into the driver 
through an include file, multiple different tables, performing multiple 
different test sequences, can be generated. This collection of different test 
sequences is a ready-made test library that can be modified to generate 
new test sequences, or reused as is to look for new problems that may 
have cropped up during the integration phase of the design. In short, 
using a test driver simplifies the testing process, automates the testing 
process, and can more thoroughly test than testing manually.

While the test driver is typically only an output to system, it can be 
modified to do some data capture as part of its operation. The captured 
data can then either be stored in memory on board the microcontroller, 
or sent serially to a collection computer with more storage. Also there is 
no reason that the test driver could not include both a time stamp and 
an indicator of what drive data was used to produce the captured data. 
Using this system, the designer can set up a test before going home for 
the evening, then retrieve and review the data the next morning. This 
is definitely better than pulling an all-nighter on the bench-testing 
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software, and the results are more likely to be accurate. The results could 
even be loaded into a spreadsheet for graphing and analysis.

How do we build a test driver? Well, as was stated previously, the driver 
is table driven, so it can be assumed that there will be a data table involved 
and the table will have constant data in it. If we borrow a concept from 
the port output test routine used to test the timer, we can even compress 
the data storage by packing multiple bits of data together to save space. 
Using this concept, the following initial design is a good place to start:

Code Snippet 5.13
(created in an included test file)

char testdate[180] = { test data}

(modifications to the main loop file)

#include <testdriver.inc>

void Get_inputs()
{

  test_driver();
  return;

}

void Priority_handler()
{

  display_task();
  return;

}

(created in a separate test driver file)

#include <testfile.inc>
#include <pathways.h>

int index = 0;

void test_driver()
{

  static int skiptimer = 0;
  if (--skiptimer == 0)
  {
   currenttime = testdata[index++]*65536;
   currenttime += testdata[index++]*256;
   currenttime += testdata[index++];
   blank = testdata[index] & 0x01;
   flash = testdata[index++] & 0x02;
   skiptimer = (testdata[index++]*256)+testdate[index++]
   if (index > 180) index=0;

)
return;

)   
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The resulting routine test_driver(), is capable of driving all the in-
put variables and functions of the display task. It accesses the display 
data through the currenttime variable, and controls flash and blanking 
through their communications variables. It even controls its own timing 
by reloading the skip timer from the table data.

The driver operates based on values stored in the two variables skip 
timer and index. Skip timer operates in the regular manner of all skip 
timers—it counts down each pass through the main system loop, and 
when it reaches zero, the driver generates new data for the task state 
machine. The variable “index” is the pointer into the test data and is 
used to retrieve the different values for driving the display task. Because 
skip timer is defined as static and index is defined outside the function, 
they will retain their data from one call of the test driver to the next. 
So, the system will step through the test data, placing the information 
into the communication pathway variables based on timing driven by 
the skip timer. 

There are two important features of the driver that should be noted: 
one, this skip timer is not reloaded with a fixed value, so it can shift its 
timing relative to the execution of the display task; and two, the pointer 
“index” wraps around from the top of the data array to the bottom, so 
the test can be set up to run continuously. This is particularly handy 
when trying to debug a problem using an oscilloscope, or when perform-
ing stress tests on the electronics driving the displays. All the designer 
needs to do is set up the test data and let the system run. The displays 
will cycle through the test sequence, exercising the display, drivers, and 
software. In fact, this particular setup would be a good piece of test code 
to pass on to the support group for debugging display-related problems 
in units returned for repair.
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One of the potential features mentioned previously is the ability to 
capture data and log it to some kind of in-system, or external storage. 
This allows the test system to not only exercise the hardware and task 
software, but also gather information about the performance of the sys-
tem. The exact method for storage will depend on the resources available 
in the microcontroller, so we will discuss three different options here. 

The first option is to store the information in an internal nonvolatile 
storage. The data can then typically be retrieved using a programmer for 
the microcontroller. However, due to the small size of typical on-chip 
storage, this method is of somewhat limited value as it can only store 
small amounts of data. The next option is to connect an external serial 
EEPROM to the microcontroller. These memories can hold upwards 
of 1–2 megabits of data, so the storage limitation is not as much of a 
problem. This system does have the drawback that a serial routine and 
programming commands will have to be created in the microcontroller. 
The third option is to serially link the microcontroller to a second 
system with non-volatile storage. This option has the capability for 
the largest storage, and the serial interface needs not be as complex as 
option two.

In the first option, due to the limited storage capability, the best 
method for storing data is to store only event information. This can be in 
the form of error counters, time-stamped events, or data capture triggered 
by specific events. The first step is to build the memory write routines 
for the internal storage. Typically there will be example routines in the 
datasheet for the microcontroller, the storage control routines need only 
pass an address and data, and the supplied write routine will store the 
value. The next step is to build a system that can trigger a write based 
on a specific trigger. This routine can monitor data—either system data 
or data in a peripheral control register—and when a match is detected, 
the routine passes the appropriate data to the write routine and the data 
is logged. The following is an example of such a routine:
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(modifications to the main loop file)
#include <testdriver.inc>
void Put_outputs()
{

  data_logger();
  return;

}

(created in a separate test driver file)

#include <pathways.h>
int  time_stamp = 0;

void write_ee(char data_in, address_in)
{ // code taken from the microcontroller data sheet

  return;
}

void data_logger()
{

  static   int  skiptimer = 0;
  unsigned char temp_cntr_data;
  if (--skiptimer == 0)
  {
   skiptimer = reload_value;
   If (time_error)
   {
    temp_cntr_data = read_ee(time_error_addr) + 1;
    write_ee(temp_cntr_data, time_error_addr);
    write_ee((time_stamp & 255), (time_error_addr+1));
    write_ee((time_stamp / 256), (time_error_addr+2));
   }
   If (display_error)
   {
    temp_cntr_data = read_ee(display_error_addr) + 1;
    write_ee(temp_cntr_data, display_error_addr);
    write_ee((time_stamp & 255), (display_error_addr+1));
    write_ee((time_stamp / 256), (display_error_addr+2));
   }
   time_stamp++;

)
return;

)   

Code Snippet 5.14
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The data-logging routine is designed to count the total number of 
timer and display errors in the system, as well as logging the time stamp 
of the last error. Because the system is only counting errors, and not log-
ging every occurrence, it only requires six memory locations for storage 
of the data. While logging the time stamp for every occurrence would 
be more helpful, the last time stamp does tell the designer where to look 
in the trace buffer memory of an emulator for the last event.

If the internal storage is insufficient, or not available, then external 
memory can be used to store data. Serial EEPROM memory typically 
uses one of two basic synchronous serial interface systems. Some micro-
controllers even have an on-chip synchronous serial interface peripheral 
designed to generate the physical layer of the various communications 
formats. However, the variety of memory sizes and interface protocols 
is too complex to go into here, so the reader is directed to the applicable 
application notes for the microcontroller to be used in the design. Most, 
if not all, manufacturers provide application information on how to 
interface external EEPROM memory to their microcontrollers.

If the microcontroller has an on-chip interface peripheral, the rou-
tines for communicating with the external memory are relatively simple. 
If the microcontroller does not have an on-chip interface peripheral, 
then the interface will have to be generated in software. And, even if an 
interface peripheral does exist, there is an advantage to generating the 
interface in software—the resulting software will be far more portable. 
This is because all microcontrollers have parallel I/O, but not all mi-
crocontrollers have a synchronous serial interface peripheral. So, if the 
system can afford the additional execution time, it is generally preferable 
to create the interface in software.

Because an external EEPROM memory can have so much more 
storage capability, the method of data logging can also be modified. 
Now instead of just counting the error, the routine can actually log each 
individual error with a time stamp. The following is an example of what 
this version of the data-logging routine might look like:
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(modifications to the main loop file)
#include <testdriver.inc>
void Put_outputs()
{

  data_logger();
  return;

}

(created in a separate test driver file)

#include <pathways.h>
int  time_stamp = 0;
int  index = 0;

void send_ee(char data_in)
{ // code taken from the microcontroller data sheet

  return;
}
void start_ee(int addr_in)
{ // code to start an eeprom data write 

  return;
}
void stop_ee()
{ // code to end the eeprom write command

  return;
}

void data_logger()
{

  static   int  skiptimer = 0;
  if (--skiptimer == 0)
  {
   skiptimer = reload_value;
   If (time_error)
   {
    start_ee(index);
    send_ee(time_error_code);
    send_ee(time_stamp & 255);
    send_ee(time_stamp / 256);
    send_ee(‘,’);
    stop_ee();
    index +=4;
   }
   If (display_error)
   {
    start_ee(index);
    send_ee(display_error_code);
    send_ee(time_stamp & 255);
    send_ee(time_stamp / 256);
    send_ee(‘,’);
    stop_ee();
    index +=4;
   }
   time_stamp++;
  )
  return;

)   

Code Snippet 5.15
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In this routine, if a time or display error condition is detected, the 
appropriate error code is stored along with the 16-bit time stamp. A 
comma is also inserted as a delimiter and to pad out the data to 4 bytes. 
The reason for padding the data is because EEPROM memories with 
a serial interface typically perform their write operations within a fixed 
block size in memory. The blocks can be between 16 and 128 bytes in 
length, and the boundaries are on regular increments of a power of two. 
What this means for the user is if a routine tries to write a multiple byte 
group of data that would cross one of these boundaries, then the logic 
in the memory will wrap the overlapping data back to the start of the 
memory block. This results in data being stored out of sequence, and 
valuable data at the start of the block would be over written. By padding 
the group of bytes to be written out to an even 4 bytes, the routine is 
guaranteed to never overlap a boundary in the external memory.

 Another feature of external serial interface memory, is the ability 
to load a group of bytes and then initiate the write of the entire group 
by ending the command. This routine takes advantage of this feature 
by creating three separate interface functions, one to start the write 
command and load the starting address, one to send a single data byte, 
and one to terminate the command, initiating the write process. While 
each byte could be written individually, it would require that the write 
command and address be sent prior to each byte, and the time required 
for the memory to complete its write function would be multiplied by 
4, one interval for each byte written.

The final version of the data-logging function is one in which the 
data is sent to a secondary system for storage. Typically, the secondary 
system is a PC or other type of workstation, and the serial interface is 
RS-232. The data is then sent serially over the interface, and a terminal 
program running on the second machine simply captures the data and 
stores it in a file on its disk. Because modern PC and workstations have 
such large hard drive storage capacity, the storage space for this type 
of data logger is essentially infinite. In addition, the available range of 
software tools available for PCs and workstations means that analyzing 
the data will be significantly simplified.
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The only problem with this type of data-logging system is the time 
required to transmit the data from the microcontroller to the second 
system. Serial interfaces on PCs and workstations are limited to 56K 
bits per second or slower. Even the slew rate capability of the RS-232 
transmitters and receivers will limit the upper speed of transmission and 
the distance between the microcontroller and the second system. So, 
while this system does have essentially an unlimited storage capacity, it 
does have a limited data bandwidth.

Using this type of data logging will require a combination of the 
previous two systems. We will no longer be able to store every occur-
rence of every error. Instead, we will have to pick and choose which 
events are important enough to log every event, and only keep totals on 
error data that is not so important. We also may have to create a serial 
transmit function in software, if the microcontroller does not have an 
on-chip asynchronous serial interface peripheral. Fortunately, this type 
of serial interface is not difficult to generate. However, it does require 
specific timing to operate properly. This means that the general timing 
of the system could be affected.

There are two options for dealing with this problem: one, a serial 
interface peripheral can be connected to the microcontroller using a 
faster synchronous serial interface; or two, the serial interface routine 
can provide an external signal indicating when it is active. In the first 
option, an asynchronous interface peripheral with a synchronous serial 
control interface can be connected to the microcontroller. There are a 
couple of devices available commercially to perform this function, or 
a separate microcontroller with the capability to receive asynchronous 
serial communication can be programmed to provide the translation 
function. In fact, building up just such a test fixture for a designer’s 
toolbox is good idea. 

While this method is not an economically attractive idea for the 
final design, using a simple translator for testing only costs the use of 
two to three input/output pins for the duration of the testing. And, by 
off-loading the overhead of generating the slower data stream to the 
external peripheral, the timing for the main microcontroller should 
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not be affected to any greater degree than interfacing to an external 
EEPROM memory.

The second option is probably easier to implement, but it does 
complicate timing measurements that need to be made as part of the 
software testing. Basically, a parallel input/output pin is programmed to 
operate as a busy indicator. When the output is high, the software serial 
peripheral engages in transmitting data to the second system. When the 
output is low, then the system is executing the normal system software. 
If the output is connected to the gate function of a counter time, then 
the total time spent in the serial interface routines can be measured and 
then subtracted from other measurements of the system’s performance. 
It will double up equipment requirements for measuring timing in the 
system, but it does eliminate any timing offset due to the data-logging 
test function of the system.

As far as software to support the interfaces, the routines developed 
for the external serial interfaces are equally applicable to option 1. Us-
ing the routines designed for data logging to internal memory are also 
equally applicable to option 2, with the provision that the busy output 
be set at the top of the routine and cleared at the bottom. 

So far, we have examined ways in which we can generate arbitrary 
sequences of data for driving software systems under development, and 
methods for logging data generated by the systems being developed. 
There is a third method for debugging system timing that should be 
examined. In previous sections of this chapter, we discussed a trouble-
shooting routine for development of the system timer. In that system, the 
individual goflags, driven by the skiptimers, were output on a collection 
of the microcontroller’s parallel input/output pins. This allowed us to 
measure the timing of the timer system directly with an oscilloscope.

We can design a similar system to aid in the debugging of a state 
machine. In a state machine, the state variable indicates the current state 
of the task by the value present in the variable. If we brought that value 
out and observed it in relation to other system stimuli, then we can see 
how the state machine is reacting to events in the system.
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A simple way to do this is to just copy the appropriate bits of the 
state variable to any open input/output pins available on the microcon-
troller. In fact, the pins only need to be available for the duration of the 
testing, so pins that have a use later in the development can be pressed 
into temporary service while the test is being carried out. Below is an 
example of a routine that could be used for this type of testing:

Code Snippet 5.16

(created in a separate test driver file)

#include <display.h>

// this function is called from the Put_output() routine in the main loop
void data_logger()
{

  unsigned char data_logger_temp;
  data_logger_temp = GPIO_PORT & 0xC3;
  GPIO_port = ((display_state_variable & 0x0F) * 4) | data_logger_temp;
  Return;

}  

The routine makes a copy of the current port data and masks off 
the bits that will be used to output the task state. It then copies the ap-
plicable bits from the task’s state variable, masks off any extra bits, and 
then shifts the bits to an open group of bits in the parallel input/output 
port. Both results are then or-ed together and output on the parallel 
port. For this example, it is assumed that bits 2–6 were available, so a 
multiplication of 4 is required, and bits 2–6 had to be masked off of 
the original port data.

Now, using a logic analyzer, the state of the task state machine can 
be monitored and compared to other inputs to the system. Other data 
within the system can even be compared with the state variable, provided 
the additional data is output using a similar routine.

Of the different troubleshooting techniques presented, this last 
technique is probably the most useful in that it uses test equipment that 
is typically already on the developer’s desk, and it can be reconfigured 
simply by changing the Put_output() routines. It also points out another 
simple technique that a designer may choose to exploit—specifically, the 
tendency of microcontroller manufacturers to create chips in families. 
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What this means for the designer is that the microcontroller chosen 
for the project may not be the largest chip made by the manufacturer. 
Other chips in the family may have larger program/data memory, 
and/or more pins and peripherals. Using larger chips in the family may 
provide additional resources during the development process. And, be-
cause both larger chips and the chip selected for the design are grouped 
into a family, the addresses chosen for the peripherals that are used by 
the system will typically not change when moving from one device to 
another. However, if the peripherals do move, all the designer need do 
is abstract the address and pin locations using #define statements and 
labels. The assembly/compiler will then do the translation, rendering 
the differences between the microcontrollers invisible to the code.

For now, this completes the section on development aids and tools. 
One thing that should be noted though is that all the time and effort 
spent on designing these tools and aids need not be lost when the module 
or the project is complete. In fact, the work invested in the develop-
ment of these tools is a valuable resource that should be used and reused 
throughout the design and the designer’s career. The designer is encour-
aged to save each version of test code created during the development 
of the project. The old routines can be modified into new routines for 
the various modules that make up the design. The old routines can even 
be checked into the designer’s library of functions for reuse on the next 
project. The old routines are even valuable to the support engineers 
that will be tasked with writing test programs for both production and 
return/repair. So take the time to document any test code that is gen-
erated as part of the design process, save it in the archives along with 
all the test data that is collected, and reuse it when possible to shorten 
the design process. It also wouldn’t hurt to put a small write-up on the 
test code in the design notes for the project, so the engineers that come 
along behind you know that it exists, and that it was the method for 
acquiring the test data included with the project files.

In the first two phases of the design, we defined the communications 
system for the design. The various paths that the data would move over 
were defined as data pathways. Further, a protocol was assigned to aid 
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in the data transfer and to guarantee the proper transmission of the 
data. Our next step in the design is to generate the macros and func-
tions needed to access and monitor the communications pathways of 
the design. These are the blocks that the tasks and systems within the 
design use to access the data in the communications pathways. 

The define statements for the variables should have been completed 
in the last chapter, so all that is needed are the code blocks that will be 
used to send, receive, and test for data. We will step through the various 
protocols, defining the necessary access functions needed to properly 
send and retrieve the data.

As the simplest of the three protocols, we will start with broadcast. 
In a broadcast protocol, the data to be sent is posted to a globally visible 
variable. No handshaking is required to implement the protocol, but 
a data valid flag may be included in the system to notify the receiver 
whether or not the data currently in the variable is complete and valid. 
So, for the simplest implementation, without the data valid flag, no 
additional code is required. The receiving function can access the data 
directly from the global variable, as the following example shows.

Display_data_hours = 5;

Or, If the data available flag is required, then a simple test function 
or macro is convenient to abstract the active/inactive convention of the 
variable.

Unsigned char CurrentTimeCheck()
{

if (currentTime_data!valid = false) return 1;
else return 0;

}

In this function using active true logic, a data not valid flag is inverted 
to produce a 1 if the data is valid, and a zero if it is not. This type of 
function is convenient for changing the logic of a variable if the conven-
tion of the variable is different between the various tasks that use it. In 
fact, this type of conversion/access function is also convenient if the data 
format is different between the various tasks. For example, if the most 
convenient format for Current_time in the timebase task is a long int, 

Code Snippet 5.17

Code Snippet 5.18
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and the most convenient format for the display task is multiple BCD 
nibbles, then a conversion is required. If the conversion is performed in 
the access routine, this simplifies both tasks and lets them communicate 
in the format that is most efficient for their operation. 

Code Snippet 5.19

Void get_current_display_time()
{

long cnvrt_var;
cnvrt_var = timebase_time;

display_data[5] = cnvrt_var / (60 * 60 * 10); // convert 10s of hours
cnvrt_var -= display_data[5] * 60 * 60 * 10;

display_data[4] = cnvrt_var / (60 * 60); // convert 1s of hours
cnvrt_var -= display_data[4] * 60 * 60;

display_data[3] = cnvrt_var / (60 * 10); // convert 10s of minutes
cnvrt_var -= display_data[3] * 60 * 10;

display_data[2] = cnvrt_var / 60); // convert 1s of minutes
cnvrt_var -= display_data[2] * 60;

display_data[1] = cnvrt_var / 10; // convert 10s of seconds
cnvrt_var -= display_data[1] * 10;

display_data[0] = cnvrt_var; // convert 1s of seconds
return;

}

Here, the data is sent by the timebase task and received by the display 
task, so the conversion is from long in the timebase to array of nibbles 
in the display. As long the native data formats for each task are specified 
in their respective listings, there should be no confusion concerning the 
transmission of the data. However, if the information in not included, 
then the designer can expect a phone call from support asking what is 
going on in the software. So, be clear and verbose in the commenting 
of both tasks and in the header file that defines the communication 
pathway variables.

There are a couple of options as to where the routines to access the 
pathway variables might reside. They can be appended to the include 
file that houses the task that they serve. This ties the operation of the 
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routine to the task that uses it, but its connection to the pathway vari-
ables is not readily apparent. In addition, any changes to the format of 
the pathway variable will necessitate searching through all the include 
files for the system. 

Alternately, the access routines could be placed in an include file tied 
to the main system header file that defines the system communication 
pathway variables. This ties it directly to the pathway variables them-
selves, but it leaves the connection to the task that utilized the routine 
somewhat hazy. Of the two options, the second is the preferred location 
for two very good reasons: one, if the design convention is to place access 
routines into the header’s include file, there will be only one place to go 
looking for these routines during the debugging process; and two, it gives 
the designer the option to replace the main system header’s include file 
with another file containing a test-driver system for automated testing 
of the task during development. 

So, we handle the problem of identifying the task that uses the func-
tion by good commenting and use the header’s include file for housing 
all access routines and macros.

Continuing on, the next protocol is the semaphore. As we discov-
ered in the last chapter, there are two different implementations for this 
protocol: the two-way handshake and the four-way handshake. Because 
the possibility exists for a communications error condition to occur with 
both the two- and four-way handshaking, not to mention state lock error 
conditions, it is strongly recommended that interface functions be used 
for testing and accessing semaphore communications data.

In the two-way system, we have one variable that is set by the sending 
function and cleared by the receiving function. While this seems simple 
enough, it is still a good design practice to build functions for the set, 
clear, and test activities, as they provide the design with clear documenta-
tion of the protocol within the main system header file. Most compilers 
will replace the function calls with an inline copy of the function during 
optimization anyway, so we improve the readability of the code and it 
won’t even cost the design any program memory space.



Implementation and Testing 323

char set_display_goflag()
{   // if flag is already set return an error

if (display_goflag == true) return 0xFF;
else
{

  display_goflag = true;
  return 0; // if flag was clear, set and return OK

}
}

char clear_display_goflag()
{   // if flag is already clear, return an error

if (display_goflag == false) return 0xFF;
else
{

  display_goflag = false;
  return 0; // if flag is set, clear and return OK

}
}

char test_display_goflag()
{

return display_goflag; // return the state of the flag

}

Note that the set and clear routines contain a test of the goflag, prior 
to the set or clear. This is included for two reasons: one, it can be used 
as a error test—if the bit is set and the sending routine tries to set it 
again, then the sending routine has overrun the receivers ability to ac-
cept data and the error code returned by the routine of problem; and 
two, having the test built into the set and clear routines can speed up 
the communications. For example, if the sending routine sets the bit 
and gets a zero back, then it knows the handshake has started. If it gets 
a 0xFF back, then it knows the bit is set and it will have to resend the 
event on its next pass. This saves the task the overhead of testing the bit 
before it attempts to set it. The same two reasons are valid for the clear 
function as well. So, the three routines can be reduced to just two, using 
the return error code system.

A four-way handshaking system operates in much the same way, 
with the exception that there is more error checking in the set, clear, 
and test routines. To recap, a four-way handshake starts with the sending 

Code Snippet 5.20
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task setting an alert flag. The receiver then sets its acknowledge flag to 
demonstrate that it has seen the alert. The receiver then processes the 
event and clears the acknowledge flag. This informs the sending task 
that the receiver has received and processed the event. The sender then 
clears the alert flag to end the handshaking. 

In addition, there are two error conditions possible with the four-way 
handshake. If the sender clears the alert flag before the receiver clears 
the acknowledge flag, then the transfer is being aborted by the sender. 
And, if the receiver sets the acknowledge flag without the alert flag set, 
then a synchronization fault has occurred.

As with the two-way handshaking system, set, clear, and test rou-
tines will be needed to handle the interface to the flags. In fact, due to 
the error check built into the transfer, the routines are not considered 
optional, as they were with the two-way system. The possibilities for 
missing an error condition more than justify the minor inconvenience 
of accessing the flags through function calls. Also, as was noted in the 
two-way discussion, most compilers will replace the function call with 
an inline copy of the routine anyway.

char set_display_goflag()
{   // if flag is already set or ack is set return an error

unsigned char errorcode;
if ((display_goflag == true) | (display_goack == true)) errorcode = 0xFF;
else
{

  display_goflag = true;
  errorcode =  0; // if flag was clear, set and return OK

}
return errorcode;

}

char clear_display_goflag()
{   // assume no error

unsigned char errorcode = 0;
   // if flag is already clear, return an error

if (display_goflag == false) errorcode = 0xFF;
else
{  // if ack flag is still set, return an abort

  if (display_goack == true) errorcode = 0x7F;
  display_goflag = false;

Code Snippet 5.21
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}
return errorcode;

}

char set_display_goack()
{   // if ack is already set or flag is clear return an error

unsigned char errorcode;
if ((display_goflag == false) | (display_goack == true)) errorcode = 0xFF;
else
{

  display_goack = true;
  errorcode = 0; // if ack was clear and flag was set, set and return OK

}
return errorcode;

}

char clear_display_goack()
{   //assume no error 

unsigned char errorcode = 0; 
   // if goack is already clear, return an error

if (display_goack == false) errorcode = 0xFF;
else
{  // if goflag was clear, return an abort

  if (display_goflag == clear) errorcode = 0x7F;
  display_goack = false;

}
return errorcode;

}

char test_send_condition()
{   // return the state of the flag(bit0) and ack (bit1)

unsigned char test_var = 0;
test_var = (test_display_goflag * 1) + (test_display_goack * 2);
return test_var;

}

The six routines comprise the four actions and single test routines 
required for a four-way handshake. The set and clear display_goflag 
routines set and clear the display_goflag and test for error conditions. 
The set and clear display_goack routines perform the same service for 
the acknowledge bit in the handshaking system. The test_send_condi-
tion returns a value equal to the two flags, the goflag is encoded into 
bit 0 of the return value, and the goack flag is encoded into bit1. In 
addition, the two clear routines also test for and return error codes for 
an abort condition.

Code Snippet 5.21
(continued)
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As you can see from the examples, using functions for this handshak-
ing system is well worth the effort. Trying to code the error and abort 
check directly into a state machine would make the resulting code very 
difficult to read, let alone modify, with any degree of confidence. In ad-
dition, making the set and clear functions into macros would allow the 
designer to create as many copies as needed for any number of four-way 
handshaking semaphore data pathways.

The final protocol requiring access and test routines is the buffer 
protocol. From the last chapter, we know that there are four ways to 
configure the two pointers in a buffer protocol implementation:

1. Input pointer points to the next location to receive a value in the 
buffer. Output pointer points to the next location to retrieve a 
value from the buffer.

2. Input pointer points to the next location to receive a value in 
the buffer. Output pointer points at the last location a value was 
retrieved from the buffer.

3. Input pointer points to the last value entered into the buffer.
Output pointer points to the next location to retrieve a value 
from the buffer.

4. Input pointer points to the last value entered into the buffer.
Output pointer points at the last location a value was retrieved 
from the buffer.

The difference between these four combinations is the comparison 
required to determine if the buffer is full, empty, or it contains data 
but is not full. Only two of these three conditions have relevance to 
design—full, and not empty. So, we need a test routine that tests for 
full, and not empty. We need access routines to save a value into the 
buffer, and one to retrieve a value from the buffer. And, we need sup-
port routines to increment the pointers, with wraparound, so they can 
increment circularly through the buffer space.

Let’s start with the pointer increment routines as they are used by all 
of the other routines. To make an increment routine for a circular buffer, 
we need to know the size of the buffer so we can wrap the pointer at the 
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correct value. It would also be nice to have a routine that can increment 
any pointer. The routine should accept the current value of the pointer 
and the maximum size of the buffer, and return the pointer value that 
corresponds with the next position in the buffer. For proper operation, 
the maximum buffer must be greater than 0, and equal to the number of 
locations in the buffer. A pointer value of zero should also point to the 
first location in the buffer. To make the routine as portable as possible, 
it should work for any 8-bit pointer and any buffer size up to 255. 

Given these requirements, our increment routines will look like the 
following:

Unsigned char inc_buff_pntr(unsigned char pntr, maxbuff)
{

if (++pntr >= maxbuff) pntr = 0;
return pntr;

}

This increment routine will increment any pointer value passed to 
it, until the value is equal to the maximum buffer size, at which point 
the value is reset to zero. If we have an array that was defined by the 
statement char buffer[Maxbuff], we can increment a pointer into 
this array using the function call pointer=inc_buff_pntr(pointer, 
Maxbuff).

A faster, smaller variation on this increment routine relies on the buf-
fer size being a power of two. In the variant, the increment command 
changes from a pre-increment command, embedded in a conditional, to 
a straight math function using a logical “and” to limit the value range. 
An example of this type of routine is shown below:

Code Snippet 5.22

Code Snippet 5.23

Unsigned char inc_buff_pntr(unsigned char pntr)
{

pntr = (++pntr & 0x0F); // variable range limited to 0-15
return pntr;

}

Using either of the increment functions, we can now create, store 
and retrieve functions for the buffer. Assume that our store pointer is 
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the global variable inbuff, the retrieval pointer is the global variable 
outbuff, and the buffer storage is a global array called buffr[maxbuff ]. 
Further assume that we will be incrementing the pointers after the data 
has been stored or retrieved (combination 1 from the previous table). 
Then, our routines should look like the following:

Void store(unsigned char datain)
{

buffr[inbuff] = datain;
inbuff = inc_buff_pntr(inbuff,maxbuff);
return;

}

unsigned char retrieve()
{

unsigned char get_buff_hold;
get_buff_hold = buffr[outbuff];
outbuff = inc_buff_pntr(outbuff,maxbuff);
return get_buff_hold;

}

The two test routines, test for buffer full and test for data in buffer, 
will rely on comparing the two pointers to determine the status of the 
buffer. From Chapter 2, we know the following about the pointers:

IF (Storage   == Retrieval) then buffer is empty
IF (Storage+1 == Retrieval) then buffer is full
IF (Storage   <> Retrieval) then data present

So, we need test routines which can determine if (Storage+1 == 
Retrieval) to detect a buffer-full condition, and (Storage <> Retrieval) 
to detect if data is available in the buffer. In addition, they must detect 
when (Storage+1 == Retrieval) is complicated by the wraparound nature 
of the pointers. However, we do have a pointer increment function, so 
the simplest test is just to increment the inbuff pointer and check for 
equality. The resulting test routines are shown following: 

Code Snippet 5.24

Table 5.1
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Unsigned char test_buffr_full()
{

if (inc_buff_pntr(inbuff,maxbuff) == outbuff) return 0xFF;
else return 0;

}

unsigned char test_data_available()
{

if (inbuff != outbuff) return 0xFF;
else return 0;

}

To create variations of these store-and-retrieve functions for the 
other pointer conventions, just substitute the appropriate increment 
and compare functions.

A note concerning the naming of access functions: just as the variables 
defined in the last chapter required a naming convention, the access 
functions written in this chapter should also have a naming conven-
tion that is consistent with the variable names. The name should have 
a prefix that connects the function to the data pathway that it handles. 
The name of the function should be descriptive of what the function 
does, and, if needed, have a postfix that defines something specific 
about the function. For example, a routine to store data into a buffer 
could be named currenttime_store_postinc(), to indicate that it stores 
data into a buffer in the currenttime data pathway, and it uses the post 
increment format. The more descriptive the name for the routine, the 
more readable the final task state machine code will be.

Once all of the access and test functions have been created for all of 
the data pathways, it is a good idea to create a second include file that 
consists of just the prototypes for the variable access and test functions. 
This template file can then be used to substitute test driver and data 
logging functions into the data pathways of the system for the purpose 
of testing the tasks and software functions during development and test. 
Having a template file simplifies the interface for the test driver, allowing 
the driver to be added through a simple function call in the template. 
It also guarantees that the format will be the same as the final pathway 
variables in the final system. The templates also make a convenient 

Code Snippet 5.25
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conduit for capturing support variables such as pointers and constants 
like maxbuff, because the data is already present within the function. 
Also, any modifications to the values, necessary to compress the data 
for storage, will not affect the original variables.

One quick note on the testing of access and testing routines for buffer 
protocols: make sure to test the functions with the pointers pointing at 
all combinations of the second to last, last, first, and second positions in 
the buffer. This should catch any error combinations of pointer conven-
tions. Remember, the buffer will always report it is full when there is 
one location still open in the buffer. This extra empty location is needed 
because, without it, the wraparound nature of the pointers causes a buf-
fer-full condition to look exactly like a buffer-empty condition.

Once all the functions for all of the protocols have been written and 
thoroughly tested, they should be rigorously commented. This should 
include a full header comment in the include file containing:

A list of tasks and software functions that use the function.

Variables that are used by or accessed using the function.

The range of values that the function is designed to handle.

Any applicable descriptions of algorithms that the functions em-
ploy. This would include the pre-or post-increment convention 
for pointers used to access a buffer.

Once the access and test routines are complete and the template file 
has been generated, it is time to move on to the implementation of the 
task state machines. One of the first decisions is which task to build first. 
When making this decision, I always consider which task will be the 
most helpful in creating the other tasks in the system. Input functions 
are useful for entering information into the system, but we already have 
the test driver system. We could build the error task, or the timebase 
task, but then we would have to rely on our debugging system to display 
the results. So, the best task to start with is generally whatever variation 
of display task is used by the system.

If we build the display task first, then we can use it to show us the re-
sults of the timebase task. Similarly, the button task, with its commands, 
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can use the display for debugging. About the only task that can’t make 
use of the display task directly is the error task, and, if we format the 
flags of the error task as numbers, even the error task benefits from 
having a working display.

So, we start with the display task. From the previous chapter, we 
know that the display task is a data-indexed state machine. It scans the 
six displays with two alternate states that produce blank digits in the 
fifth and sixth digit position. Recalling this information from the last 
chapter, we have:

DISPLAY STATE MACHINE TYPE: DATA INDEXED
STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds blank 7 1
6 Blank display always 7
7 Blank display blank 6 1

ALGORITHM FOR CONVERTING 24HOUR TO AMPM
K is a temporary variable
digit0 is the tens of hours digit
digit1 is the ones of hours digit

K = (digit0 * 10) + digit1  // convert digits to 0-23 value

   // test for time of 13:00 – 24:59
   // in AMPM mode, displaying hours

If (state = 0) and (AMPM_mode = true) and (K >= 13)
{

  digit0 = (K – 12) / 10  // subtract 12 and take tens digit
  digit1 = (K – 12) – 10  // subtract 12 and take ones digit

}

STATE MACHINE INPUTS:
Three flags: alarm_enable, blank, AMPM_mode

All three flags are positive true logic

Two arrays: Time_data[6]* and Alarm_data[6]*
*Note, data is in 24:00 hour format for 

STATE MACHINE OUTPUTS:
  One state variable: Display_state

  Two I/O ports: Segments(7) and Digit_drivers(6)

  Two LED indicators: PM and ALARM_ON 
   Indicators are positive true logic

Notes
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From this, we know what variables the system will require, the algo-
rithm for the AM/PM versus military timer conversion, the format of the 
hardware to be driven, and the individual states of the state machine.

Let’s start with the state decoding. The range of states is 0–7 inclu-
sive, so we can use an unsigned CHAR to hold the state of the state 
machines. Remembering our naming convention, we name the state 
variable Display_state. Based on the state transitions listed in the design 
documentation from the last chapter, we can build a basic state decoder 
with the appropriate state transitions. The following is one example of 
how this section could be written:

switch (state)
{

case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
case 3: if (alarm_enable == true) Display_state = 6;

       
   else Display_state = 4;

case 5, 7: if (blank == true) Display_state = 7;
       
   else Display_state = 1;
}

The SWITCH statement is convenient for grouping together those 
states that have a common transition, such as 0–4 and 6, and 5 and 7. 
This section should then be placed in the function call for the display 
task and tested using the test driver developed earlier. The result can 
then be viewed using a Put_output() style of function and a logic ana-
lyzer. If the control bits are also output, then the state transitions can 
be compared with the triggers that cause the transition.

Once the basic state logic is working, it is time to access the data 
and display it on the LEDs. For now, we will skip handling the 12/24 
hour switch-over, and just concentrate on getting data onto the LEDs. 
We will, however, put in the logic to switch between the alarm time 
and the current time information, as this is already built into our state 
decoding.

Code Snippet 5.26
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Void Display_task()
{

if (state < 6)
  {
   if (display_alarm == true)
    {
     temp_data = Alarm_data[Display_state];
    }
    else
    {
     temp_data = Time_data[Display_state];

    }
    segment = segment_table[temp_data];
    digit = column_table[Display_state];
    Alarm_indicator = Alarm_enable;
   }
   else
   {
    digit = all_off;
   }
  switch (state)
  {
   case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
   case 3:  if (alarm_enable == true) Display_state = 6;
      else Display_state = 4;
   case 5, 7: if (blank == true) Display_state = 7;
      else Display_state = 1;
  }
  return;

}

The first conditional statement separates the displaying states, 0–5, 
and the blank states, 6 and 7. In the blank states, the digit drivers are 
all turned off and the displays are blank. 

If the state variable points to one of the active display states, the first 
test is to determine whether it is the alarm time or current time displayed. 
This determines which array the data is pulled from, Alarm_data or 
Time_data. 

The digit value is then determined using a table and the state vari-
able. The result is then output to the hardware digit driver. One final 
action is to output the alarm-enabled indicator by setting the port pin 
connected to the indicator driver equal to the alarm-enabled flag.

Code Snippet 5.27
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The final section is the state transition logic developed previously 
in the example.

To test this section of the display task, we again set up our test driver 
to load a variety of values into both arrays and to periodically change the 
control variables alarm_enable and blank. A logic analyzer will once again 
be useful to monitor the progression of the digit drives, and to verify 
that the time an individual display is driven does not change between 
time display and alarm display. It would also be a good idea to run the 
system for an extended period of time displaying 88:88:88 to determine 
the stress on the hardware digit and segment drivers.

Note: The data tables being used to direct the test driver routine should 
be saved following each test, along with a short write-up of the test 
results. Of particular interest is any anomalous behavior and the cause 
of the problem. This information will be very valuable when we start 
integrating the various task state machines into a complete whole. 
Quite often, a problem that appears in module testing will reappear in 
integration testing. Knowing what caused the problem in the module 
test will typically provide the required insight to find the problem in 
the integration test, so be clear in the description of the problem and 
the cause, and be verbose. 

Once this section of the design has been verified, it is time to add 
the 12/24-hour conversion logic to the task. The difficulty with this 
conversion is that the most efficient way to handle this problem is “on 
the fly.” If we handle it prior to display, we will either have to have 
two sets of data, or we will have to make the conversion every time 
the current time or alarm time are incremented. As two sets of data is 
redundant, and changing on the second is really no more complicated 
that just converting as we display, we should just make the task capable 
of handling both types and convert as needed for the display. 

To do the conversion, we first need to determine if the digits about to 
be displayed need to be converted. This is easy; states 0 and 1 handle the 
tens and one of hours, so conversion is needed for states less than 2. The 
next step is to load a temporary variable with a binary value equal to the 
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hours. We can ten offset that value by subtracting a decimal 12 if needed. 
We then convert the result back to BCD and display appropriately. The 
following shows how this is added to our existing state machine:

Void Display_task()
{

if (state < 6)
  {
   if (display_alarm == true)
    {
     temp_data = Alarm_data[Display_state];
     if (state == 0) K = (Alarm_data[0] * 10) + Alarm_data[1];
    }
    else
    {
     temp_data = Time_data[Display_state];
     if (state == 0) K = (Time_data[0] * 10) + Time_data[1];

    }
   if (state < 2) & (AMPM_mode == true) & (K >= 13)

    then
    {
     AMPM_indicator = true;
     if (state == 0)
      {
       segment = segment_table[(K – 12) / 10];
      }
     if (state == 1)
      {
       segment = segment_table[(K – 12) – 10];
      }
    }
    else
    {
     AMPM_indicator = false;
     segment = segment_table[temp_data];
    }
    digit = column_table[Display_state];

    Alarm_indicator = Alarm_enable;
  }
  else
  {
   digit = all_off;
  }

switch (state)
{

  case 0, 1, 2, 4, 6: Display_state = Display_state + 1
  case 3:    if (alarm_enable = true) Display_state = 6
       else Display_state = 4

Code Snippet 5.28
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  case 5, 7:   if (blank = true) Display_state = 7
       else Display_state = 1

}
return;

}

The new temporary variable is K, and it holds the binary equivalent 
of the hours. We test for AMPM and if the time is after 12:59. If the 
conditions require it, we then subtract 12 and convert back to tens and 
ones of hours. The second conditional separates the result back into 
individual digits and outputs the segment data for the appropriate state, 
and 12/24-hour convention. Finally, the AMPM indicator is set if the 
time is after 12:59 and AMPM mode is set, otherwise it is cleared.

The only pieces left in the design are the additions for timing con-
trol, and error detection and correction. The timing control portion of 
the design limits execution of the task to only specific passes through 
the main loop based on the LED_goflag. And, we added a second flag 
(LED_test) to drive a test for a blank condition. The test was needed so 
we could blank the display within the required response time. 

Regarding the error detection and correction, the only test required 
was to check the range on the state variable and, if it was out of range, 
we are to reset it to a blank state to restart the task. 

Adding the timing controls as conditional statements, and adding 
a range check on the state variables, produces the following additional 
code:

Code Snippet 5.28
(continued)

Code Snippet 5.29

Void Display_task()
{

if (Display_state > 7)  Display_state = 7;
if (LED_test)
{

  if (blank == true)  Display_state = 7;
  LED_test = false;

}
if (LED_goflag)
{
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  LED_goflag = false;
  if (state < 6)
   {
    if (display_alarm == true)
     {
      temp_data = Alarm_data[Display_state];
      if (state == 0) K = (Alarm_data[0] * 10) + Alarm_data[1];
     }
     else
     {
      temp_data = Time_data[Display_state];
      if (state == 0) K = (Time_data[0] * 10) + Time_data[1];

     }
    if (state < 2) & (AMPM_mode == true) & (K >= 13)

     then
     {
      if (state == 0)
       {
         segment = segment_table[(K – 12) / 10];
       }
      if (state == 1)
       {
         segment = segment_table[(K – 12) – 10];
       }
     }
     else
     {
      segment = segment_table[temp_data];
     }
     digit = column_table[Display_state];

   }
   else
   {
    digit = all_off;
   }
  switch (state)
  {
   case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
   case 3:     if (alarm_enable == true) Display_state = 6;
         else Display_state = 4;
   case 5, 7:    if (blank == true) Display_state = 7;
         else Display_state = 1;
  }
  return;

}

Code Snippet 5.29
(continued)
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The first conditional statement checks the range of the state variable 
and resets it to a blank state if it is out of range. The next conditional 
statement looks for a blank flag on every other pass through the loop, 
and sets the state variable to a blank state if the flag is set. And, the third 
conditional statement only executes the state machine on every fifth 
pass through the loop, when the goflag is set. Note that both the second 
and third conditional statements include code to clear the appropriate 
flag. This closes the handshaking on the variables and prevents the task 
from repeating every pass through the loop. So, if the task is running 
too fast, look for this omission.

As before, test this final version of the code using the test driver 
software and a logic analyzer if available. Be sure to check the response 
timing to a blank flag, and adjust the relative timing between the 
display and test driver to verify the response time is always within the 
specification.

In this section, we have talked about testing the operation of the task 
using the test driver software and a logic analyzer. Now, I know that 
quite often, a project may not have the budget to afford a logic analyzer. 
There are a couple of options. One: the testing of the timing can be ac-
complished using a virtual microcontroller in a software simulator. There 
are a number of these available on the internet, and a little searching will 
often turn up a good simulator, for not much cash. Two: an oscilloscope 
can sometimes be substituted for a logic analyzer by encoding the digital 
information using resistor arrays. This involves using a digital-to-analog 
converter, or DAC, to convert multiple bits into a single voltage that 
can be displayed on a single channel of the oscilloscope. The DAC can 
also be implemented using an R2R ladder and an op-amp. The circuit 
is also available on the internet and in many textbooks on mixed-signal 
design.

Remember, not having the budget to get the perfect test equipment is 
not be a barrier, it is an opportunity to show off our ingenuity. After 
all, we are developing the display task first, because we want to use it as 
a simple logic analyzer for all the other tasks.
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The next type of state machine we will tackle is an example of an 
execution-indexed state machine. From the previous chapter, we have 
the component-level design for the button task state machine. To review 
the requirements, the notes appear below:

Notes

State names for Button task
0. Wait_4button Idle state, waiting for a button press
1. Wait_4bounce Wait state, waiting for the contacts to stop bouncing
2. Decode The button is combined with other buttons and decoded
3. Alarm_plus1 Command: Increment alarm time by 1 minute
4. Alarm_plus10 Command: Increment alarm time by 10 minutes
5. Time_plus1 Command: Increment current time by 1 minute
6. Time_plus10 Command: Increment current time by 10 minutes
7. Toggle_AMPM Command: Toggle AM/PM versus military time
8. Alarm_on Command: Disable alarm
9. Alarm_off Command: Enable alarm
10. Initiate_snooze Command: Snooze alarm
11. Repeat_delay Wait state for autorepeat of increment commands
12. Button_release End state for button release
13. Error Error conditions may use this state
14. Default Decode this state for all other values 

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled & Initiate_snooze Button_Release

Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode Wait_4button

Button is held
Button_Release Button is released Wait_4button  Button_Release
Error Reset from Error task Wait_4button  Error
Default always Error
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State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10 increment alarm time by 10 Alarm_time Alarm_time
Time_plus1 increment time Alarm_time Alarm_time
Time_plus10 increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine

Default set statevariable to Error none none

Notes
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Based on this information, we can start by defining a state variable and 
building a state decoder for the system. Using the naming convention, 
the state variable should be called Button_state. Using a SWITCH/CASE 
statement to implement the decoder, we get the following:

Void Button_task()
{

switch(Button_state)
{

  case Wait_4button:
    break;
  case Wait_4bounce:
    break;
  case Decode:
    break;
  case Alarm_plus1:
    break;
  case Alarm_plus10:
    break;
  case Time_plus1:
    break;
  case Time_plus10:
    break;
  case Toggle_AMPM:
    break;
  case Alarm_on:
    break;
  case Alarm_off:
    break;
  case Initiate_snooze:
    break;
  case Repeat_delay:
    break;
  case Button_release:
    break;
  case Error:
    break;
  case Default: 

}
return;

}

The basic framework is very simple, with a separate case of each state. 
And, because the various state names have been declared using a #define, 
we can use the name in place of an obscure number. If the system is to 
be implemented in assembly language, then the framework may not be 
quite this simple. Range checking will be required to decode the default 
state, and a jump table will be needed to decode the other states in the 

Code Snippet 5.30
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task. The microcontroller manufacturer’s web page will typically have 
examples of how to build a jump table. And if they don’t, check the 
internet for postings by other designers that have already developed a 
solution.

As with the data-indexed state machine, the decoder should be tested 
using the test driver and a variation of the Put_outputs() routine. Re-
member to test every possible value in the state variable; just because 
it catches the values just above the error state does not mean it will not 
mess up with higher values. As always, save your test file and results, as 
human memory is fallible and harddrive space is cheap. Be clear and 
be verbose in your write-up; it will save you phone calls from support 
later on.

Once the decoder is working, the next step is to build in the state 
transitions. These are just conditional statements that look for the trig-
ger events defined in the component level, and make assignments to 
the state variable. Also review the various looping, subroutine, and goto 
constructs described in Chapter 2, since this is where they will be used. 
With the addition of the state transition, the routine should look like 
the following:

Code Snippet 5.31

Void Button_task()
{

switch(Button_state)
{

  case Wait_4button: if (newbutton_press()) Button_state = Wait_4bounce;
   break;
  case Wait_4bounce: if (--button_dly_cntr == 0) Button_state = Decode;
   break;
  case Decode: switch (decode_bttn())
   {
   case Alrmset_Slow: button_state = Alarm_plus1;
     break;
   case Alrmset_Fast: button_state = Alarm_plus10;
     break;
   case Timeset_Slow: button_state = Time_plus1;
     break;
   case Timeset_Fast: button_state = Time_plus10;
     break;
   case Tggle12_24: button_state = Toggle_AMPM;
     break;
   case Alarm_On: button_state = Alarm_on;
     break;
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   case Alarm_Off: button_state = Alarm_off;
     break;
   case Snooze: if (Alarm_enabled & Alarm_active)
      { button_state = Alarm_plus1;
      }
      break;
     Default: break;
   }
   break;
  case Alarm_plus1: Button_state = Repeat_delay;
   break;
  case Alarm_plus10: Button_state = Repeat_delay;
   break;
  case Time_plus1: Button_state = Repeat_delay;
   break;
  case Time_plus10: Button_state = Repeat_delay;
   break;
  case Toggle_AMPM: Button_state = Repeat_delay;
   break;
  case Alarm_on: Button_state = Wait_4bounce;
   break;
  case Alarm_off: Button_state = Wait_4bounce;
   break;
  case Initiate_snooze: Button_state = Button_Release;
   break;
  case Repeat_delay: if ((--delay_cntr == 0) & button_held())
   {
     Button_state = Decode;
   }
   else Button_state = Wait_4button;
   break;
  case Button_release: if (button_held() == 0) Button_state = Wait_4button; 

Code Snippet 5.31
(continued)

   break;
  case Error: if (Button_fault == 0) Button_state = Wait_4button;
   break;
  case Default: Button_state = Error;

}
return;

}

As you may have noticed, there are a couple of shortcuts in the code. 
Some of the test conditions use procedures to return a binary deciding 
bit, and some new counter variables were introduced. However, overall, 
the code follows almost directly from the component definition gen-
erated in the last chapter. The documentation was such that the state 
transitions almost wrote themselves. This is one of the advantages of 
using a top-down design methodology—all the hard choices are made 
long before the designer starts typing.
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Once the state transitions are complete, it is back to the test driver 
for more testing. Remember to test both sides and all combinations of 
variables in each conditional statement. Record the results, as they will 
be helpful in debugging at the integration phase of the design.

The next step is to add in the functionality for each of the states. This 
will include increment routines for the time and alarm time, toggling 
of control bits, and writing the subroutines that were used in the last 
step to simplify the listing. Because of the size of the resulting code, it is 
becoming impractical to list the complete task code after every addition. 
So from this point on, the listing will be abbreviated to only include 
the relevant sections. In addition, sections that are substantially similar 
to a presented section may be passed over for brevity, and left to the 
reader as an exercise.

We’ll start with the newbutton_press() routine. This function 
checks the current state of the command buttons and determines if 
any have changed state; if so, then the routine returns a 1. To perform 
this check, we will need a variable, which represents the previous and 
current state of the inputs. From our design in Chapter 3, these flags 
were grouped into the data pathway named Command buttons. For 
convenience, we will assume that they are defined within a union, oc-
cupying bits 0–6 of an unsigned CHAR named Command_buttons.
port, and the individual bits use the extension Command_buttons.flags.
xxxx, with the xxxx representing the individual flag names. We will also 
define a static variable Command_buttons_old.

Code Snippet 5.32

Static unsigned char Command_buttons_old = 0x3F; //define with all switches open

Unsigned char Scan_buttons()
{

if ((Command_buttons.port & 0x3F) != Command_buttons_old)
{

  command_buttons_old = Command_buttons.port;
  return 0xFF;

}
return 0;

}
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The result is a relatively simple function that compares the old state 
against the current state—in fact, the routine is so simple that it seems 
inefficient to build a procedure around so simple a function. However, 
it should be remembered that one of the objectives is to create a software 
library. By building this into a function, we accomplish two things: one, 
it documents the function clearly, and two, if it ever becomes necessary 
to change the function, the change only has to be made in one logical 
location. And, the compiler optimize will probably remove the func-
tion call and include the code inline anyway, so why not go for better 
readability and documentation?

Another function that was thrown into the design was the decode_
bttn() function. Its purpose is to test the various combinations of button 
combinations and return an unsigned CHAR with a value corresponding 
to a valid command, or an out of range value that the switch statement can 
ignore. It will also return a value the switch statement will ignore, in the 
event that only one button of a two-button command has been pressed. 
Note, we will need the other half of the Command_buttons.flags.xxxx 
definition to build this function. So, we will assume the following:

Code Snippet 5.33

Command_buttons.flags.Fast = Fast Set button press, active low
Command_buttons.flags.slow = Slow Set button press, active low
Command_buttons.flags.Time = Time Set button press, active low
Command_buttons.flags.Alarm = Alarm Set button press, active low
Command_buttons.flags.Snooze = Snooze button press, active low
Command_buttons.flags.Alrmon = Alarm enable switch, enabled = active low
Unsigned char decode_bttn()
{

unsigned char dcodbtn_tempvar;
dcodbtn_tempvar = Command_buttons.port & 0x1F; // remove the alarm switch
switch(Command_buttons.port)
{

  case B’00011001’: return Timeset_Slow;
  case B’00011010’: return Timeset_Fast;
  case B’00010101’: return Alrmset_Slow;
  case B’00010110’: return Alrmset_Fast;
  case B’00011100’: return Tggle12_24;
  case B’00001111’: return Snooze;
  default:  if (Command_buttons.flags.alrmon) return Alarm_On;
     else return Alarm_Off;

}
}
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A little explanation is required for the operation of this routine. A 
momentary press of a two-button combination drives all of the com-
mands, with the exception of the alarm on and alarm off commands. 
So, the command cannot be executed until both buttons are pressed. 
However, the alarm’s on and off commands have to be executed on any 
change. To handle both cases, the system is designed to look for the 
two-button combination, and if it fails to find a valid combination, it 
sets either the alarm on or off depending on the state of the switch. This 
will cause an alarm on or off command, in the event of a single button 
press, an illegal button combination, or an actual change in the state of 
the alarm on off switch. But, because the alarm on and off commands 
just copies the state of the switch into the alarm_enabled flags, repeat-
edly executing an alarm on or off command does not harm the system, 
and it allows the routine to be quite simple.

However, this information does need to be copied into the documen-
tation for the function. If it is not, then the support group may spend 
days writing a fix for the routine, only to find out that the function 
was designed to work this way. Good documentation not only docu-
ments how things work, but also how they work in ways you may not 
suspect.

Once the various embedded functions are written and tested, the 
other code in each of the states can be generated and tested. For this 
routine, the code will mainly consist of increment by 1 and increment 
by 10 functions. To implement these functions, it will be necessary to 
create a BCD add function for the data in the alarm time and current 
time variables.

Now some may ask, why not just store these variables as INTs or 
LONGs? The math will be much simpler, and it will save space in the 
data memory. That is true but, remember, how often is the math needed 
and how often is the data displayed? By putting the math in the buttons 
and timebase tasks, the addition routines are only executed once a second 
at most. If we were to use INTs and LONGs for the data storage, that 
would mean that the conversion from INTs or LONGs to display data, 
would have to be executed every time the display task displayed the next 
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digit. This would be a heavy drain on processing power; the more ef-
ficient use of processing time is to keep the data in the most convenient 
format for the task that uses it most often. That is the display task, so 
we keep the data in BCD digits. Besides, if the addition takes more than 
once cycle to complete, it is not a serious problem. We would simply 
design the task to take two states to perform the addition, as opposed to 
just one state. The display task, on the other hand, has much less time 
between skip timer time-outs to do its job.

Using our knowledge of how math routines work from Chapter 1, 
and the order in which the data is stored in the array, a BCD addition 
of 10 minutes to the current time would look like the following:

Code Snippet 5.34

unsigned char Add10_tempvar;

case Time_plus10: Button_state = Repeat_delay;
Time_data[2]++; // +10 minutes
If (Time_data[2] > 9) // carry?
{

Time_data[2] = Time_data[2] - 10;
Time_data[1]++; // +1 hours
If (Time_data[1] > 9) // carry?
{

  Time_data[1] = Time_data[1] - 10;
  Time_data[0]++; // +10 hours
  Add10_tempvar = Time_data[1] + (Time_data[0] * 10);
  If (Add10_tempvar >= 25) // roll over?
  {
   Time_data[1] = 0;
   Time_data[0] = 1;
  }

}
}

While the routine is a little cumbersome, it will only be executed once 
or twice a second, and it is certainly simpler than performing a binary-
to-BCD conversion 360 times a second. The alarm set commands and 
the time-plus-1-minute blocks of code are done the same way.

Once all of the action section in each of the tasks has been added and 
the system is ready to test, we have two options: we can configure the test 
driver to exercise the task, or we can link it together with the finished 
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display task and test it manually. In reality, we should do both, using the 
display task for simple initial testing and the test driver to exercise the 
task fully. The display task is convenient in that we can press buttons 
and observe the results. However, the test driver can more thoroughly 
exercise all combinations of buttons and timing. Designers should not 
let the ease of testing with the display task lure them into skipping the 
test with the test driver. Problems that appear in the integration-testing 
phase of the design have their roots in problems in the task design. A 
more thorough test here and now will find these problems, and do it far 
easier than testing at the integration phase. There are few suspects at the 
task level, and the whole question of timing interaction is removed. So, 
test now while it is easier, rather than wait and pay more later.

There is a small housekeeping step that needs to be taken care of, that 
is to add in the logic that drives the display_alarm flag for the display 
task. This bit is set whenever the Alarm set button is pressed, this causes 
the display task to show the alarm time whenever the alarm time is being 
set. It is also a good time to review the design notes for any other small 
details that may have been dropped in the design process.

Once the details have been taken care of and the routine is complete 
and tested, it is time to add in the code to handle the timer goflag, and 
the code for handling error detection and recovery. Just like the display 
task, there is a skip timer for the button task. And, just like the display 
task, it will gate the execution of the state machine, so we need to add the 
same type of conditional statement to the top of the state machine:

Void Button_task()
{

if (Button_goflag)
{

  switch(Button_state)
   {

The error detection and recovery mechanisms designed in the previ-
ous chapter require that the button task report any recoverable or hard 
errors to the error task state machine. So, other than syntax errors in 
the user interface, the only error regularly checked in the button task, is 
the corruption of the state variable. The error is detected in the default 

Code Snippet 5.35
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state, and handled in the error state. The code necessary to handle these 
conditions appears below:

Code Snippet 5.36

  case Error: if (Test_Buttonfault() == 0) Button_state = Wait_4button;
   break;
  case Default: Set_Buttonfault();
   Button_state = Error;

}

}

The Button_fault variable is a semaphore flag between the button 
task and the error task. The Set_Buttonfault() routine sets the variable 
notifying the error task of the problem, and the error task allows the 
button task to reset by clearing the variable. 

The series of states in the error task associated with a button task error, 
poll the Button_fault flag, and when it is set, they take the appropriate 
action. For our design here, these actions include:

1. Clearing the alarm_display flag.

2. Verifying that the alarm_enable flag is set correctly.

3. Verifying that the alarm_active flag is cleared if the alarm_enable 
flag is cleared.

4. Disabling the Alarm tone task if the alarm_enable flag is 
cleared.

5. And resetting the Alarm control task if it is in the wrong state.

All this is done to insure that other tasks are not left in an inappropri-
ate state when the button task state variable is reset, although the test 
for the alarm_enable flag and the alarm_active flag are already handled 
separately by the error task, so they can be eliminated from the list if 
program memory becomes limited. They are included here for complete-
ness, but they are not absolutely necessary.

With the error detection and recovery systems in place, the button 
task is complete, and so is the design example for an execution-indexed 
state machine. The last type of state machine to be covered is the 
hybrid type. Fortunately, the hybrid is just what the name implies: a 
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combination of the data and execution-indexed types. So, the design 
format is very similar to those that have already been covered.

To begin the implementation, start with the data-indexed portion 
of the design, as this section is typically a sub-function to the execu-
tion-indexed section of the design. Build the data-indexed block of the 
hybrid state machine, in the same way as the data-indexed state machine. 
Define a state variable with an appropriately descriptive name and the 
arrays of data and constants. Next, build the state transitions section 
of the code. When these are complete, test them thoroughly using the 
test driver software.

Next, build in the algorithm for the state machine. For a sampling 
system, this would typically involve recovering data from the analog-to-
digital converter, testing it against supplied limits and saving the results. 
For a software serial peripheral, it would mean shifting the data through 
the carry bit, and copying the carry to the output pin. Once the activity 
has been coded, it should then, once again, be tested.

The final steps of designing in the timing and error handling are 
skipped as they will be coded into the execution-indexed portion of the 
system that is wrapped around the hybrid. Instead, the next step is to 
build the state decoder for the execution-indexed section of the design. 
This is accomplished in the same manner as the design in the previous 
section. Once coded, it is thoroughly tested with the test code and the 
test data, as always, archived with the project.

The next step is to build in the state transitions for the execution sec-
tion. Remember that the data-indexed section of the design will reside 
in one of the execution-indexed states, so there must be a condition that 
switches the design from data indexing, back to execution indexing. 
Typically, this is a condition based on the data-indexed state variable.

One note on state variables in hybrid state machine designs. The 
designer is often tempted to combine the data-indexing and execution-
indexing variables into a single variable. While this is possible, and it does 
save one more byte of data memory, in practice it can be complicated 
to implement. A group of states must be decoded to the same block of 
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code, and when using the variable as an index into an array, there must 
be an offset subtracted. If the number of states in the execution-indexed 
section of the design changes, then there is the very real possibility that 
the offset will have to change, for the data-indexed section to work 
correctly. So, while it is possible, there are other places in the design 
that are better sources of data memory savings. Using a combined state 
variable is complicated to implement, difficult to document, and the 
code is difficult to understand with its unexplained offsets and grouped 
states. The better choice is to use separate variables.

When the state decoder and state transitions have been tested, the next 
step is to add the actions in each state. This includes the data-indexed 
block that started this design. Making a header comment in front of the 
data-index section is a good idea, but it can also break up the flow of the 
execution-indexed state machine construct. A more readable alternative 
is to call the data-indexed block as a subroutine. The subroutine name 
should identify the block as the data-indexed portion of the design, and 
the state variable declaration will have to be external to the routine so its 
scope will include both the data and execution-indexed sections of the 
design. Using this format, a proper header comment can be placed over 
the data-indexed subroutine, and the flow of the execution-indexed part 
of the design is undisturbed. With the proper optimization setting in 
the compiler, the system should even delete the function call overhead 
and include the code inline within the execution-indexed routine.

As always, each step of the design should be thoroughly tested, with 
the test code archived and the test results included in the design notes 
for the design. And, while we are on the subject of documentation, the 
header comments for the various tasks should include the design notes 
generated in Chapters 2 and 3. Remember that part of the reason for 
documenting all the design details and notes was to have a source of 
comments for each of the system blocks. Using the notes from the design 
notes file automatically provides a clear description of the design. But, 
more than that, it also documents why the design was done the way it 
was. Understanding how something works is useful for understanding 
a new design when a support engineer receives it. Understanding why 
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it was designed a specific way tells the support engineer how it can be 
modified for bug fixes and upgrades, without introducing new problems 
that the designer has already encountered and designed around.

When all of the task state machines, including the error task, are 
complete and tested, it is time to start on the priority-handling system. 
In the last chapter we examined several different systems, both to man-
age a complete design and for handling smaller portions of the design. 
In this chapter, we need to implement and test the designs.

The first impulse is usually to start building the priority handlers 
around the complete task state machines. While this may seem like a 
good short-cut in the development, it suffers from one major drawback. 
When an error occurs, there is always the question, is it an integration 
problem, or is it a bug in the priority handler code? So, it is recom-
mended that, where possible, the design of the priority handler should 
be separated from the individual tasks.

For the passive system, this is done by once again routing the goflags 
out a parallel port. If the passive system is operating correctly, then no 
two bits on the ports should be set at the same time. A simple test with 
a logic analyzer should confirm the operation. 

For a more exhaustive test, the goflags can be used to trigger a data 
logging function. In this logging function, 16 flags are set up, one for 
each combination of goflags. Each time a goflag is set, the flag corre-
sponding to the current combination of flags is set. If the passive priority 
handler is working, then only the 1, 2, 4, and 8 flags should be set. If 
another flag is set, then the combination of goflags associated with that 
flag were active at the same time. To aid in troubleshooting, a 16-bit 
variable can be associated with each flag. When the flag is set, a time 
stamp is loaded into the 16-bit variable to show the most recent time 
the specific combination of flags was set. The following example code 
shows how this is accomplished.
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Union skip_flags
{

struct
{

  unsigned char display_goflag:1;
  unsigned char button_goflag:1;
  unsigned char alrm_cntrl_goflag:1;
  unsigned char timebase_goflag:1;
  unsigned char unused:4;

} flags;
unsigned char bytewide = 0;

}

Static unsigned char hit_flags[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Void data_logger()
{

if (skip_flags.bytewide > 0)
{

   hit_flags[skip_flags.bytewide] = 1;
}
skip_flags.bytewide = 0
return;

}

The declaration for the skip timer goflags combines all of the skip 
timers together into a single byte. The byte is then used to determine 
when a new flag is set; if the normal state of all flags is zero, then a value 
greater than zero indicates a new flag is set. The combination of the flags 
is then used to index into the array, setting the location corresponding 
to the combination of flags. Finally, the flags are cleared for the next 
pass through the system loop. The result will be an array of chars which 
should all be zero, expect for the locations 1, 2, 4, and 8. Note, if loca-
tions 1, 2, 4, and 8 are not all set, then this is also an indication of a 
problem as the missing set location was never called by its skip timer. 
The problem should be investigated and the problem corrected before 
running the test again.

Tuning the passive system requires that the designer adjust the ini-
tial values of the skip timers for all the tasks using the priority handler. 
While the optimal system is to calculate the initial values, there will be 
times when the overall execution time of some tasks may shift due to 

Code Snippet 5.37
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modifications that are made to the system. When this happens, the op-
timal system is still calculation. However, if the original documentation 
is not available, there is still the option to adjust the timing manually. 
But it will require that the support engineer adjust the values, and then 
test to validate the timing. This back and forth adjust and test format 
is slow, as the testing will require time to run, but eventually a new set 
of initial values can be determined using the system.

In a time-remaining priority handler, the basis of the system is know-
ing how much time is left in the system tick. To do this, it is necessary 
to access the hardware timer that drives the system timing. The value 
is then compared to a database of execution times, indexed by task and 
state. Reading the timer simply involves reading a 16-bit value from the 
hardware and accessing the database table; performing the comparison 
is simple. The challenge is compiling the information for the execu-
tion time database. The following shows how the code for the priority 
handler works:

Code Snippet 5.38

Static unsigned int database[4][16]; // array [task][state]

Void Time_remaining()
{

unsigned int time_diff;
if (timebase_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[3][timebase_statevar] < time_diff) timebase_task();

}
if (button_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[1][button_statevar] < time_diff) button_task();

}
if (display_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[0][display_statevar] < time_diff) display_task();

}
if (alarmcntrl_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[2][alarmcntrl_statevar] < time_diff) alarmcntrl_task();

}
}
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The four sections of the routine are identical, but they act upon differ-
ent tasks, based on a different index into the database and different state 
variables. In fact, this routine could be rewritten using a FOR/NEXT 
loop and a SWITCH statement, but the current implementation will not 
be significantly larger. Plus, it is easier to modify the order of the tasks in 
the current implementation, and the order places higher priority on the 
first task in the list, and a lower priority on the later tasks in the list.

To build the database, it is necessary to build a special data-logging 
system. This data-logger captures the start and return time each time a 
task is called. The start time is subtracted from the return time and the 
resulting value is the execution time for that task executing that state. 
The results are stored in a large data memory array that is indexed by 
task number and state number for the task. However, rather than just 
store the data, it is first compared to the data already in the array and 
only stored if it is greater than the original value. This builds up an ar-
ray of worst-case execution times for the various tasks and states. The 
following is an example of how this can be done:

Code Snippet 5.39
Static unsigned int database[4][16]; // array [task][state]
Static unsigned int start_time; // this value supplied by timer
Static unsigned char task_nmbr; // this value supplied by timer

Void time_logger()
{

unsigned int stop_time;
unsigned char gen_state;
unsigned int time_diff;

stop_time = sys_timer – K;  // K is number of cycles between call & now
switch (task_nmbr & 0x03)
{

  case 0: gen_state = display_statevar;
     break;
  case 1: gen_state = button_statevar;
     break;
  case 2: gen_state = alarmcntrl_statevar;
     break;
  case 3: gen_state = timebase_statevar;
     break;

}
time_diff = stop_time – start_time; // assumes an incrementing system counter
if (time_diff > database[task_nmbr][gen_state])
{     // if new time is larger replace old time

  database[task_nmbr][gen_state] = start_time – stop_time;
}
return;

}
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The timer function of the main loop is modified to supply two values, 
a number indicating the task that is running on this pass through the 
loop and the value of the timer just prior to the task state machine being 
called. The task number is used to access the correct state variable and 
to index into the timing database. If the new time is longer than the old 
time in the database, the new value replaces the old value.

The tasks are then set up in the system using the same offset skip 
timer system as the passive priority system. While the passive system 
will not get the optimal usage of execution time that a time-remaining 
system will, it does exercise the task sufficiently to perform the execu-
tion timing test.

Once the passive priority system is running with the tasks, data-log-
ger, and the test driver, the system is left to run through the test routine. 
Note that the various tasks should not be linked together, but should 
be completely driven by the test driver to minimize the potential for 
interaction problems. The test routine should also exercise all modes 
and combinations of task inputs, both the expected and unexpected. 
Remember that the purpose is to determine the worst-case timing, so 
try all combinations of inputs, even if the combination is not normal 
to the system.

The alternative time-remaining system is just a variation on the 
original. The only difference is that it calls an initial set of tasks using 
another system, such as the passive system, and then calls housekeep-
ing functions if time permits. This system uses the same routines as 
the previous implementation. The designer still needs to measure the 
execution timing of the housekeeping function so the system can know 
if there is sufficient time remaining for their execution. So, the only real 
difference in implementation is the initial group of tasks called before 
the priority handler.

The variable-order system is designed to call a different list of tasks, 
based on the system mode. This involves two design needs, a list of the 
tasks required in each mode, and a method for determining the system 
mode. For our clock example, we have the list of tasks by mode, and a 
common mode variable that multiple sources within the design update 



Implementation and Testing 357

as changes are needed. The only thing left is to build the SWITCH 
statement for the implementation. From the previous chapter, we have 
the following design notes on the system priorities:

Void variable_order(unsigned char mode)
{

switch (mode)
{

  case Timekeeping: TimeBase_task();
     Display_task();
     Button_task();
     Error_Task();
     break;
  case TimeSet: Button_task();
     Display_task();
     TimeBase_task();
     Error_Task();
     Break;
  case AlarmPending, SnoozeMode: TimeBase_task();
     AlarmControl_task();
     Display_task();
     Button_task();
     Error_Task();
     Break;
  case AlarmSet: Button_task();
     TimeBase_task();
     Display_task();
     Error_Task();
     Break;
  case AlarmActive: TimeBase_task();
     AlarmTone_task();
     AlarmControl_task();
     Display_task();
     Button_task();
     Error_Task();
     Break;
  case PowerFail: TimeBase_task();
     Display_task();
     Error_Task();
     Break;
  case ErrorMode: Error_Task();
     Display_task();
     Button_task();
     Break;
  Default:  mode = ErrorMode;

}

}

The system is quite simple to implement, as it just needs the vari-
ous lists of tasks for each system mode. It is even simple to combine 
this priority handler with some of the other priority-handling systems 

Code Snippet 5.40
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previously discussed. For example, using passive with this system just 
requires the designer to add the initial presets to the system, and add 
a simple mode change routine to re-offset the skip timers of tasks that 
have been disabled during the previous mode. This type of system is 
a good idea anyway, as a disabled task has probably timed out while it 
was disabled and re-enabling the task will mean the task will run on the 
first pass after a mode change.

Another system that can be combined with the variable-order system 
is the time-remaining system. Using this combination, the state machine 
of the variable order is modified with the basic block of the time-remain-
ing system. Specifically, each call to a task in the variable-order system 
is replaced with the similar block from the time-remaining routine. The 
following demonstrates the required change:

case PowerFail: TimeBase_task();
Display_task();
Error_Task();
Break;

is replaced with:

Code Snippet 5.41

Code Snippet 5.42

Case PowerFail:
if (timebase_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[3][timebase_statevar] < time_diff) timebase_task();

}
if (display_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[0][display_statevar] < time_diff) display_task();

}
if (error_goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[5][error_statevar] < time_diff) error_task();

}
break;

The result is a system that changes the list and priority of the tasks 
that are called, based on the system mode. Further, if a task has a low 
priority and the majority of the task has already been used, then the 
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task will be deferred to the next pass through the loop. This system 
optimizes the processor throughput and adjusts the task priorities based 
on the requirements of the system. To minimize the program memory 
impact, the basic building block of the time-remaining system could 
be boiled down into a single function, with the necessary information 
pass in. For example:

Code Snippet 5.43

Unsigned char time_test(char goflag, task_nmbr, state_var)
{

if (goflag)
{

  time_diff = 0xFFFF – sys_timer;
  if database[task_nmbr][state_var] < time_diff) return 0xFF;

}
return 0;

}

The main priority handler can now use this routine to determine 
whether to call a task or not, as the following code example shows.

Case PowerFail:
if (time_test(timebase_goflag, 3, timebase_statevar)) timebase_task();
if (time_test(display_goflag, 0, display_statevar)) display_task();
if (time_test(error_goflag, 5, error_statevar)) error_task();

break;

The result is smaller and much more readable in the final version 
of the routine.

The excuse-me, excuse-you system involves one task deferring its 
execution or state change based on the status of another task in the sys-
tem. The difference between the two systems is whether the task making 
the decision to defer is the task that will defer, or is the task that forces 
another task to defer.

Let’s start with the excuse-me version of the system. When a task is 
ready to change from a low-priority state to a high-priority state, the 
excuse-me system gates that decision with the status of a related task in 
the system. As an example, consider the alarm control and alarm tone 
tasks in our design. The alarm tone task operates much faster than the 

Code Snippet 5.44
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alarm control, so it has a high probability of executing on the same tick 
as the alarm control task. If the total execution time of the two tasks is 
sufficiently long to interfere with other tasks in the system, then some 
method is needed to prevent the two from stacking up and overrunning 
the system tick.

We use the excuse-me system to handle this. When the alarm control 
task determines that the alarm tone task should be run, it will defer 
any transition that will move the task into a high priority, specifically 
a high priority that will require longer execution times. It does this by 
monitoring the alarm tone task, to determine when the alarm tone task 
is busy generating a tone and when it is idle as part of the quiet section 
of the modulated alarm tone. 

By limiting its execution of high-priority, long execution states to 
only those times when the alarm tone is idle, it interleaves the execution 
of the two tasks so that both tasks never execute long states in the same 
tick. If the alarm tone task is not running, then the excuse-me system 
is idle and the alarm control task makes any transition required for its 
operation.

The implementation is fairly simple. The alarm control task includes 
a set of conditional statements at the top of its state machine that will 
only allow a transition if the alarm tone is not active, and, if the alarm 
tone task is not in a long execution state, or if the alarm control state 
transition is to a state with a short execution time. The following dem-
onstrates how this is coded.

Void alarm_control_task()
{

if ((alarm_tone_active==0)|
  (alarm_tone_statevar!=tonegen)|
  (executiontime[alarmcntrl_statevar] < tone_time))

{
  switch (alarmcntrl_statevar);

{

  case

The code gates the change in state by delaying the execution of the 
next state until such time that the alarm tone task is not active, not in 
its tone generation state, or the next alarm control state is short enough 

Code Snippet 5.45
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to not interfere. While this is fairly simple, it does assume that there is 
only one long execution state in the alarm tone task. In more complex 
systems, the conditional may have to rely on a second execution time 
database that holds the execution times of several states.

Of course, the test routines generated in the Time Remaining prior-
ity handler would work equally well here to build both execution time 
databases.

The excuse-you priority handler is a little more complex, in that it 
touches several tasks. The controlling task contains code to determine 
when one of its state changes will shift the priority of the task. When 
it detects such a transition, the task then broadcasts a flag indicating 
that all low-priority tasks must defer execution until such time as the 
controlling task transitions out of its high-priority mode. This means 
additional code for both the controlling tasks and the low-priority tasks 
that must defer their execution.

For example, when the error task in our alarm clock example deter-
mines that a server-error condition has occurred, the error task will then 
transition to a series of states that will reset the appropriate task state 
machines. Because the display and alarm tone tasks are not affected by 
this task reset, they are considered low priority and are deferred until 
the error task has completed its reset. The following shows how this 
would be coded.



362 Chapter 5

{additions to the display task}
Void Display_task()
{

if (defer_task != true)
{

  if (state < 6)
   then
   {
    if (display_alarm == true)
     then

{additions to the alarm tone task}
void alarmtone_task()
{

if (defer_task != true)
{

{additions to the error task}
case poll_timebase: if (timebase_error == true)

       {
        error_statevar = master_reset;

        defer_task = true;
       }
       break;
    |
    |
    |

case end_masterst:  error_statevar = poll_alarm_cntrl;

      defer_task = false;

The additions to the error task set and clear the defer flag used by 
the display and alarm tone flags. If the flags are set, the display and 
alarm tone tasks are essentially disabled until the error task completes its 
reset of the other system task state machines. While this is fairly drastic 
for the system, the error task will need to complete the reset quickly 
or else it may affect the accuracy of the time base. Less drastic systems 
could be employed, which only prevent a state transition to a higher 
priority state in the lower-priority tasks. In either case, the function of 
the priority handler is to free up execution time in the system tick for 
higher-priority tasks.

Code Snippet 5.46
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The last priority handler to examine is the parent/child system. In 
this priority handler, a parent controls the execution of a child. It is 
accomplished by including a conditional statement in the child state 
machine that only allows the child to decode its current state if the en-
abling flag is set. The parent then allows the child to operate by setting 
the enabling flag. Once the child has completed its task, it can then 
clear the enabling flag, putting itself back to sleep until it is needed once 
more. The parent may also force the child task to sleep, if it determines 
that the function performed by the task is no longer needed.

This form of priority handler is especially useful for arbitrating con-
trol between two parent tasks, over the control of a common child task. 
Whichever parent task takes control of the child task first, need only 
enabled to the task. The secondary parent is then prevented from taking 
control until the first parent releases the child by clearing its enabling 
bit, or until the child completes its task and clears the bit itself.

A good example of a task pair that would benefit from a parent/child 
priority handler is the alarm control and alarm tone task. The alarm tone 
is only used when the alarm control task determines that the alarm time 
is equal to the current time, and the alarm function is enabled. So, the 
alarm control task is already in control of the alarm tone’s operation. Us-
ing the parent/child system just simplifies the control of the alarm tone 
task. The following is an example of how this control would be coded.
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{additions to the alarm tone task}
void alarmtone_task()
{

if (child_alarmtone_enable == true)
{

{additions to the alarm control task}
case check_time: if (alarm_time_check() == 1)

  {
  alarmcontrol_statevar = generate_alarm;

  child_alarmtone_enable = true
  }
  break;
  |
  |
  |

case generate_alarm: if (alarm_enabled != true)
  {
  alarmcntrl_statevar = inactive;

  child_alarmtone_enable = false;

  }

The variable child_alarmtone_enable is the gating flag that the parent, 
alarm control, uses to control the execution of the child, alarm tone. 
When the variable is set, the child executes, and when it is cleared, the 
child does not. As before, getting the entire execution of the child is 
pretty drastic; however, the variable can also be used as part of a condition 
statement, which handles a state change as well. The only advantage to 
gating the execution of the entire task is that the child task is saved the 
overhead of implementing an IDLE state in which to wait for the next 
enable flag. This is an important point to note should a designer need 
to save a few program memory words here and there in the design.

The final block to implement is the error detection and recovery 
system. Fortunately, most, if not all, of the system has already been 
implemented in our creation of the system task. The only pieces left 
in the design are the initialization and configuration of any hard fault 
hardware-based supervisory system, and the error task itself.

Code Snippet 5.47



Implementation and Testing 365

The initialization and configuration of the hardware supervisory sys-
tems will be specific to the microcontroller hardware used, so discussing 
them here is not possible. The only recommendations that should be 
made are:

1. Label the individual control and configuration bits so they have 
descriptive names.

2. Clearly note in the design notes how the systems are configured 
and any algorithms specific to their use.

3. Build the functions into descriptively named routines.

4. Add all new communications pathways to the communications 
plan and documentation.

The error task state machine should also be completed at this time. It 
will typically be an execution-indexed state machine, although a hybrid 
may also have advantages. The specifics of its design will be unique to 
each design. The system for our example alarm clock design is designed 
using the requirements that have been accumulated during the course 
of the design and implementation exercise. Those requirements are 
documented here for reference, although the actual design of the state 
machine is left up to the reader, as an execution-indexed state machine 
design has already been presented.

List 5.1
State names for Error task
0. Initial power up state for the state machine
1. Poll_alarm check alarm control task for statevariable corruption
2. Poll_timebase check timebase task for statevariable corruption
3. Poll_buttons check button task for statevariable corruption
4. Sanity state to check alarm enabled, alarm active, and snooze
5. Restore_Sanity state to reset alarm enabled, alarm active, and snooze
6. Master_reset reset controlling task in the event of sv corruption
7. End_masterst release system from reset 
8. Error error condition in error task
9. Default all undefined states decode here
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Current State Condition Next State if true Next state if false
Initial Timeset command Poll_alarm Initial
Poll_alarm alarm task error Master_reset Poll_timebase
Poll_timebase timebase task error Master_reset Poll_buttons
Poll_buttons button task error Master_reset Sanity
Sanity Missmatched variables Restore Sanity Poll_alarm
Restore_Sanity always Poll_alarm
Master_reset always End_masterst
End_masterst ack of all resets Poll_alarm
Error always Master_reset
Default always Error

State Action Input Output
Initial Flash display & force 12:00 time Timeset Current_time

Flash
Mode

Poll_alarm Check alarm error flag & set mode Alarm_error Mode
Poll_timebase Check timebase error flag Timebase_error none
Poll_buttons Check buttons error flag Buttons_error none
Sanity Check alarm variables Alarm_enabled none

Alarm_active
Snooze

Restore_Sanity Reset alarm variables Alarm_on Alarm_enabled
Alarm_active
Snooze

Master_reset Clear control task none Reset_alarm
Reset_timebase
Reset_buttons

End_masterst Wait for acknowledge Reset_alarm none
Reset_timebase
Reset_buttons

Error Reset state machine none none
Default set statevariable to Error none none

Note that the error state machine should be built just like any other 
state machine in the system. Start with the state decoder, then the state 
transitions, the state actions, then the timing, and error detection/recov-
ery. The state machine should also have the same level of documentation, 
if not better documentation due to its interaction with all of the other 
tasks in the system. As with all the other tasks, after a section is written, 
it should be tested thoroughly using the test driver and whatever data-
logging routines are deemed necessary. Once each step of the testing is 
complete, then the test code should be archived and the results noted 
in the design notes for the system.

List 5.1
(continued)
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Once all of the tasks, timers, communications pathways, priority han-
dling, and error detection/ recovery systems have been built and tested, 
it is time to start integration and testing of the complete system. While 
this may seem like a simple enough task, it is typically one of the most 
frustrating to accomplish. Why should this be? All of the components are 
complete and working, so it should just be a simple matter of stringing 
all the components together to create a whole. Well, yes, the individual 
components are complete and tested, but they have not been tested with 
one another. It is less a matter of whether the components work, and 
more a matter of whether they work and play well with others.

The process of integration is also littered with numerous land mines 
waiting to catch the unwary designer. One of the worst is impatience. If 
a designer gets impatient and just throws the tasks together and hopes 
for the best, then the designer, with very rare exceptions, can expect to 
be severely disappointed. In all my designs, I have never had a group 
of tasks just drop together and work. There have always been at least 
two or more problems to be sorted out and the individual component 
testing did not find the problem.

So, how can the components be combined with the least trouble? We 
start by picking two tasks that have interleaved functions—for example, 
the button task and the display task. Or, alternatively, we could have 
chosen the time base and display tasks. The idea is to choose two tasks 
that interact with each other regularly. Personally, I would choose the 
display and button tasks, because they can be initially tested manually, 
without writing a test driver routine.

The next step is to link the two tasks with a common skip timer value 
and an offset that puts one task in the tick immediately following the 
first. This allows putting one breakpoint at the start of the first task, and 
stepping all the way through the end of the second task. Once the tasks 
are linked, step through their execution one tick at a time, watching the 
communications variables between the tasks. If the operation of both tasks 
is correct, then offset the two tasks by one state and step through again. 
Repeat this process until each state in the first task has been executed with 
every other state in the second task. This process should identify most, 
if not all, of the interaction problems between the two tasks.
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Once the tasks are working well together, add the normal skip timer 
reload values to the timer and allow the system to operate at its normal 
rate. To supply data from other related tasks that are not currently in-
cluded in the system, it may be necessary to add the test driver to the 
system. A test routine can then be used to generate the missing control 
and data that will normally be supplied by the missing tasks.

The test driver can also act as an exerciser for the system by overrid-
ing selected input variables to simulate input from the user. This will 
allow the designer to automate much of the integration testing for the 
system, performing a much more thorough test than could be accom-
plished manually.

The two main interactions that cannot be tested at the component 
level are inadvertent variable corruption and timing issues. Let’s start 
with variable corruption, as that is the simpler problem to tackle.

Even if a task tested out perfectly, and showed no outward signs of 
problems, there still exists the possibility that the task may inadvertently 
corrupt adjacent variable storage. There are a number of ways this can 
happen:

1. A pointer may not have been initialized the first time it was used 
to store a value.

2. A pointer may have been incremented beyond the last data value 
and then used for a read or write.

3. An index variable into an array may have been set beyond the 
last location in array and then used for a read or write.

4. If a pointer is used in a loop, the last pass through the loop may 
have left it in an undefined location. Then the next time the loop 
is used, the pointer points to an invalid location.

5. A hand-coded math routine may be used on the wrong data 
type.

Whatever the reason, a memory location was read or written to 
that does not belong to the routine doing the work. When the task 
was stand-alone, the problem would not have appeared, but now that 
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other routines have their data storage around the problem task’s data, 
it is becoming corrupted.

There are a couple of different ways to identify the problem and 
the likely suspect. The first is to limit the number of suspects by only 
adding one task to the design at a time. If a new task is added to the 
system and a problem appears, remove the task and see if the problem 
disappears. This one simple rule of thumb can save designers hours of 
debugging time, so go slow, add one at a time, and test thoroughly. Too 
many designers have pulled their hair out searching for a needle-sized 
problem in a proverbial haystack of suspects.

The second way to identify the problem is to review the test data 
from the component-level implementation. Remember that we tested 
both the normal and abnormal conditions through each step of the 
component implementation. This is why, if we know the symptom, 
by reviewing the test results we should be able to identify the suspect 
variable by searching for a similar symptom in the test results. It is then 
just a simple matter of reviewing the data memory map to find out 
which tasks have variables in close proximity, and now we have a list of 
suspects to examine.

The third method involves using an emulator for the microcontroller. 
Most emulator systems have an option to specify a group of variables 
for surveillance. When the emulator reaches a breakpoint, the values in 
these variables are then retrieved from the emulator and displayed. The 
user interface will also typically identify any variables that have changed 
from the last time the emulator was halted.

By placing a breakpoint at the start of the timer routine, and placing 
the variables used by a suspect task in the surveillance window, a designer 
will know in which system tick the corruption is occurring. It is then 
simply a matter of running the design from breakpoint to breakpoint, 
until one of the variables is changed, even though the task using the 
variable was not called. A quick check of the skip timers should then 
pinpoint the suspect task.

Once the suspect task has been identified, the state variable can be 
used to narrow down the search to a specific state. Note that the value 
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of the state variable is the next state to be executed, so it may take a 
little detective work to backtrack to the guilty section. If the problem is 
still elusive, put the breakpoint at the top of the suspect task and then 
repeatedly run the task until the variable is corrupted. This should narrow 
the search down to a specific command. Remember, the task works, it 
just has an unforeseen consequence to its operation. Designers should 
take their time and step through the problem logically.

The second group of suspects in problems that develop at integration 
are timing related. Often, the coding of a task state machine is designed 
around the mistaken assumption that the only place data will change 
is at the state in which the data is tested. This means that a change in 
the value of a variable partway through a sequence of states may have 
consequences that the designer did not consider. 

Another common pitfall is using actual input port registers as a source 
of data in a state. If the timing of the port bit change is asynchronous 
to the system-timing tick, then it is certainly possible that the state of a 
port may change during the execution of a task state, and can also change 
between states when the system is performing other tasks.

Both problems have a simple solution: if a variable is used over the 
course of several states, or the variable is an external port, then the value 
should be captured and stored in a shadow variable. The capture can 
occur either at the start of the sequence of states, or at the start of the 
current system tick. And the shadow copy of the data should be the 
variable used during the course of the task’s work. Because the designer 
controls when the data is copied from the source into the shadow vari-
able, the designer also establishes the variable’s lifetime.

While this solves the problem, it does not identify the suspect. To find 
the variable causing the problem, take the task back to the automated 
testing system using the test driver. Adjust the timing of the test driver 
so that the data present in the suspect group of variables is modified 
at a specific time relative to the operation of the task. Then repeat the 
test, slowly incrementing the timing offset between the test driver and 
the task, until the problem appears.
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Once the timing is known, move one variable at a time, back to the 
original timing, leaving the others with the timing of the failure. Retest 
between each variable timing change; when the error disappears, the 
last variable moved will be the suspect. 

A shadow variable can then be defined for the suspect variable, and 
the system can be retested with all of the variables changing at the time 
that exhibited the problem. If the problem does not reappear, then the 
problem has probably been corrected. To assure the problem is gone, 
repeat the time shift and test routine through all of the combinations 
of states and variables. If no new problems appear, the designer can be 
reasonably sure the problem is corrected.

Note that the code to change the variables on a sliding time scale is 
valuable and should be archived both in the design and in the designer’s 
personal library of valuable functions. This may have been the first time 
that the function was needed, but it won’t be the last.

Integration should then continue, adding functions one at a time, 
with thorough testing between each addition. Note that the error task 
should be saved for last, as its purpose will be to correct errors in the 
system. This means that, in order to test the task, it will be necessary to 
introduce errors to test this module. Adding the error task last prevents 
the error task from responding to errors that are in the process of being 
debugged, and it is probably best to only introduce new bugs once all 
of the design bugs have been removed.

To test the error task, the test driver should be included in the system, 
with a test program that can override specific variables in the system. 
These variables should include all the state variables for the various 
tasks, including the error task, and system status variables that the error 
task is charged with monitoring, such as alarm_enabled, alarm_active, 
and snooze. The test driver should also force the system into all of the 
different system modes, so the mechanisms for switching between modes 
can be thoroughly tested. This also allows the designer to test the system’s 
response to various system modes. 

Once all of the tasks have been added and the complete system 
thoroughly tested, the design work for the system is complete. However, 
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that is not to say that the designer’s job is done. There is still the task 
of harvesting useful routines for the designer’s library, and additional 
documentation that should be added to complete the system.

Let’s start with the documentation for the system, as it will be the 
more tedious task. First of all, the design notes should be reviewed for 
any additions or edits that may be needed. The file should have been 
kept current during the design process, but even I don’t always keep up 
with the edits like I should. So, now, before we forget, the design notes 
files should be cleaned up.

Once the notes file is current, the next step is to review and update 
the requirements document. During the course of the design, numerous 
changes will have been made, and the requirements document should 
reflect the final product. Any notes concerning features that did or did 
not work should be added in the appendix, so future documents can 
avoid problems that have already been identified. When reviewing and 
updating the requirements document, remember that the product will 
be marketed based on what this document says, not on what the product 
actually does, so it is critically important that the document accurately 
represent the features, functions and capabilities of the final system.

Next, any updates or additions to the main system file, its header file, 
and any main system include files should be made. This is also the point 
at which the files should have a revision history added to the header 
comments. This history will live with the design from this point forward, 
and the first version of code that is submitted to product testing should 
be labeled A0 or the equivalent for reference. Any changes from now on 
can be tracked, as well as the appropriate updates and changes made to 
the support documentation—specifically, the requirements document 
and the design notes.

Any updates and edits required for the individual task include files 
and header files should also be made at this point. Depending on the 
size of the project, individual revision histories may also be added at this 
point. Note that any change in the task files revision history should also 
be reflected in the main system revision history.
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An archive of all the test data, test procedures, and test functions 
should be compiled with a directory indicating the capabilities of each 
piece of test code, and the various test procedures that can be imple-
mented using the test code. Task, function being tested, and revision 
(if any) should categorize the test data. This will help the support staff 
understand how the test code can be used and how they can modify it 
for test and diagnostic functions, both in repair and for test code on 
the assembly line.

Finally, a short report with any information that the designer thinks 
may be relevant to the design should be compiled. This report need not 
have a specific format; it can even be a list of things to note about the de-
sign. The purpose is just to capture any and all information relevant to the 
design, before new design challenges and time purge the information.

At this point, the design work on the project is complete and all of 
the information can be archived. If the archive software has the ability 
to include file structure, placing the entire work environment into the 
archive is also a good idea. If there is ever a problem and the designer 
has to recreate the development system, this archive will be valuable in 
that it can recreate the look and feel of the environment, and that will 
make getting back into the design easier.

While the design is complete, there is still some work for the designer 
to accomplish. When we started out on this design methodology, one 
of the stated purposes was code reuse. Code reuse shortens design cycles 
by providing the designer with prefabricated building blocks to start 
the system. So, our last task as designers on this project is to mine the 
design for usable blocks for our library.

First of all, I strongly recommend that the files from which we mine 
the routines must be in a completely unrelated directory structure. 
There is nothing more annoying than completing a design and then 
inadvertently damaging one or more files while trying to carve out 
useful functions. So, make a different set of directories and copy the 
system design documentation off to a back-up before starting the min-
ing process. 
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A good place to start mining for library routines is the timing function 
for the main loop. The configuration and initialization constants for the 
hardware timer will be useful for any future design with this particular 
microcontroller. Also, most microcontroller families share one or more 
of the system peripherals, so there is a chance that the information may 
be applicable to more than one microcontroller.

To extract the function, simply copy the block of code into a text 
editor. If the block is a complete function, then retain the function 
definition and the header comment. Next, go to the test code archive 
and copy out any test functions used to verify the timer’s operation. 
Include it in the same file, but separate the code with comments and 
a description of what the test code verified. Also, go to the design 
document and gather together any specific information concerning the 
design decisions and calculations that went into the generation of the 
configuration and initialization constants and routines, or its test code. 
This information should be included in the text file above the header 
comment for the function.

Once the file is complete, give it a descriptive name and save it into 
the directory structure that holds the library. Add a couple of notes on 
the organization of the library, for convenience. Build a structure with 
folders for each different type of routine, timers, priority handlers, data 
functions, error detection/recovery, and state machines. This makes it 
easier to find a block because they are subdivided by type, and it reduces 
the number of candidates to review.

The skip timer section of the system timer is also a good source 
of library material. Even though the functions are relatively simple, a 
standard working template is always useful as both an example and a 
starting point for more complex functions. And, in our design example, 
the skip timer system for both the display and the time-base tasks were 
not all that simple.

The documentation generated for the skip timer and system timing 
design should also be copied and pasted out of the design notes. Any 
notes on decisions made concerning the operation of a timer interrupt 
and the main system clock should also be included. Configuration and 
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initialization of the interrupt structure and the interrupt service routine 
are also valuable.

Once all the code has been pulled together, any test routines and 
data should be appended to the file as well, before it is archived in the 
library.

Another good area to mine is the main system header file. We went 
to a considerable effort to create the various access and test functions 
for all the communications pathways, so it would be inconvenient if we 
couldn’t reuse that code. Copy all the related functions into a common 
file, include the variable definitions from the main system header file, 
and add all applicable header comments from both the functions and the 
definitions. Include any test functions and data from the test archive, as 
we did with the timer system. Separate the code with comments and, as 
always, your comments should be clear, complete, and verbose. Finally, 
go to the design notes and copy in all the design information for the 
individual pathway, include timing calculations, size estimates, and any 
design decisions that affected the design of the pathway protocol, func-
tions, and variable definitions.

The system tasks are some of the most valuable code for a library, 
but it can also be the most difficult to extract due to the combination 
of several software functions into a common task. So, extracting the 
code, start by copying over the complete task state machine, without 
modifications. That way, if there is ever any question about the design, 
we will know how the original was designed. Extract the test driver and 
test routines from the test archive and include them in the file as well. 
Be sure to separate the two blocks of code with comments, and add in all 
entries from the design notes that concern the operation of the block.

Only after the complete task has been copied in should modifica-
tions be made to try and strip out the unwanted sections of the design. 
Do this by copying the source into another file and then strip down the 
function. When the extraneous pieces have been removed, the task should 
be tested using the original test driver, with modified test functions that 
account for the stripped down nature of the state machine. After the 
new, stripped state machine has been tested and debugged, it can then 
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be copied into the original library source file for archiving. As with other 
pieces that we have mined from the design, the new test functions and 
test data should be included in the file with the state machine.

One final piece of information concerning the task should be 
included—the section of the requirements document that drove the 
original development. The reason to include this is for documenting 
future design requirements documents. During the course of this design, 
the requirements document was updated to reflect changes in the design 
goals. Putting a copy of the final version of the requirement in the library 
saves time in the next design by retaining well-worded descriptions of 
the task, which can be pasted into the next design’s requirements docu-
ment as part of its upgrade during the design.

Another good source for the library are the system priority handlers. 
These blocks controlled the order in which the functions within the 
design are called. As they are relatively simple, there will not be a great 
deal of code to copy. In fact, the scattered nature of the implementation 
will make some snippets obscure without the inclusion of some of the 
surrounding code. So, cut generously when you carve out the priority 
functions; the fat can always be trimmed in the next design. Also, the 
time and effort spent on the system and component level of the design 
is valuable in that it can save design time in the next system. Be sure to 
copy anything related to the priority information, and include all test 
functions and code as well.

The final section to mine is the error detection and recovery systems. 
This includes both the error task state machine and any embedded 
functions within the individual task state machines. As with the priority 
handlers, cut generously when the embedded functions are carved out 
of the state machines. Include all the design notes information related 
to the error functions, and include the appropriate sections from the 
requirements document as well.

Once all the various blocks have been removed, copy the new library 
files into their respective folders. It would also be helpful to include a 
text file in each folder that lists the name of the library files, and a short 
description of the functions that they contain. Some designers may want 
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to go so far as to distill the various files down further, into a standard 
library of basic functions. Whatever the level of effort expended, keep 
the file current and, with each new design, weed out older blocks that 
can be replaced by newer, more efficient examples. 

Also keep a separate back-up of the library folders in the event of a 
system crash. Over time, most designers become somewhat dependent 
upon their libraries, and often looe time and energy recreating functions 
that have been lost in a disk crash.

This completes the design methodology for creating multitasking 
code with state machines. I hope that you have found something in 
the process that will help you in your future designs. I have taught this 
system for several years now, and I am always amazed at the number of 
engineers that use this system or something very much like it.

On several occasions, I have talked with engineers after the presen-
tations that have stated, “I do almost exactly what you talked about 
except….” Initially, I apologized for what I thought was a waste of their 
time, but almost all have stated that it was not a waste because they felt 
validation that someone else was using a similar system to what they 
had developed.

So, I leave it to you as designers, to take from this system what works 
for you and incorporate it into your personal coding style. You should 
not feel obligated to take everything I have presented—just use what 
works for you and discard the rest. As I have stated several times in this 
book, design is influenced by the talents and outlook of the designer, so 
it should come as no surprise that we all create systems that are slightly 
different in the details, even if they agree in the main points.

The next chapter will examine whether or not this book has met 
its objectives. It is not a required part of the methodology, but it does 
clearly outline what the methodology should achieve. Read it or not as 
you see fit, and thank you for reading my words on a subject that I have 
come to feel strongly about.
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In Chapter 1, we established that it was in a designer’s own best inter-
est to design code that could accomplish several important goals. The 
code should be quick to write, efficiently use development time, and 
be simple to debug. It should help minimize material cost, generate 
clean documentation, and be modular in design. Further, it should be 
extensible and be able to multitask. The question is, does the design 
methodology presented here meet these lofty goals? 

Let’s start with quick development and efficient use of development 
time. With many designs, rewrites and modifications can significantly 
lengthen the development time, so any system that clarifies what the 
customer wants at the beginning should both shorten the development, 
which by definition makes a more efficient use of development time.

The design methodology presented here started out with a dissection 
of the designs requirements document. This dissection carved up the 
document, looking for every possible nuance of the design, from timing 
information to the functions and features of the design. When informa-
tion was found to be missing, the design was held until the questions 
and ambiguities were resolved. Only when a completely clear picture 
of the design was generated, did the methodology more on to even the 
highest level of the design.

So, yes, I would judge that the methodology did make an efficient 
use of the development time in that it reduced the rework associated 
with missed communications between the group that defined the system 
and the designers that actually generated it.

6
Does It Do the Job?
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Further, the top-down nature of the design methodology supported the 
efficient use of design time, because it forces designers to consider every 
aspect of the final product before they generate a single line of code.

The next point was the requirement that the system create code that 
is simple to debug. While the methodology does not prevent designers 
from making syntax errors, it does prevent unintended interactions by 
its modular nature, and the use of state machines to implement the indi-
vidual tasks. Typically problems are generated, not by the specific code, 
but by how different blocks of code interact in real time. Because this 
methodology forces the various blocks to execute at specific times, and 
with some degree of synchronization, the possibility of problems through 
interaction is reduced. Further, the build-and-test, build-and-test, se-
quence of the design limits the development of large bugs by eliminating 
the small bugs early, before they can evolve into the larger ones.

The top-down system design also forces the designer to consider how 
the various blocks in the system will interact, before the actual blocks 
are generated. In this way, the interactions are planned and accounted 
for in the design of the blocks, before they have a chance to create un-
intended interactions.

Concerning material cost, the free nature of the design methodology 
provides an initial reduction in the system cost by not introducing a usage 
fee. Further, the modular system nature of the design lends itself to the 
use of software-based peripherals in place of more expensive hardware. 
And that same modular nature facilitates the later introduction of hard-
ware replacement, when components of the system suffer end of life.

Concerning other production costs, the modular nature of the design 
methodology also lends itself to the creation of test and evaluation soft-
ware that uses many of the regular components of the software design. 
This shortens the test and qualification process for components, and 
reduces the support overhead required to maintain and upgrade the 
system over its product life. Its self-documenting nature also decreases 
the time required for support engineers or new designers to become 
fluent in the system’s operation.

 We mentioned documentation, and that is one of the key re-
quirements for the design methodology. That is, generating clear and 
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accurate documentation, so that support and collateral information 
can be generated quickly and accurately with only minimal support 
from the design team. This methodology generates design notes as part 
of the requirements document dissection, the system-level design, the 
component-level design, and the implementation/testing phase of the 
design. In short, the methodology generates documentation at every 
step of the design, noting not only how the system works, but also why 
the system works the way it does. “How” is important to the support 
engineers because it allows them to understand the system’s operation. 
The “why” is what allows them to go beyond support, to upgrade and 
modifications for bug fixes and product life extension.

Two related requirements are modularity and extensibility. Modu-
larity requires that each function or task within the system be its own 
standalone block, and that it be testable as a unit, and reusable with 
only a minimal understanding of its interface to the system. Extensibil-
ity takes the requirements of modularity and extends them to the full 
system. The interface between the modules, and the modules interface 
to the system, should be clearly defined so new modules can be added 
using the existing module interfaces as a prototype.

The modular nature of the task state machines, the system of com-
munications pathways, the timing system, and the priority handlers all 
combine to define a simple yet flexible system interface that will allow 
the addition of future modules with a predictable effect on the system. 
Further, due to the top-down nature of the design, the effect on the 
system can be predicted before the design of the new module is started. 
It need only have a system and component level of definition to be evalu-
ated for its compatibility with the existing design. So, by our definition 
of modularity and extensibility, the design methodology complies with 
these requirements as well.

The last two design requirements are reuse and multitasking. The 
modular nature of the various tasks and systems in the design make the 
reuse of software blocks within the system both simple and easy. This 
is because the top down design approach clearly defines the interface 
to every major code block in the design. With a knowledge of how the 
block works and how it is designed to connect to external systems, reuse 
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is just a matter of mining the blocks from the final design and building 
a series of folders to hold the blocks.

Multitasking is a requirement that is central to the design method-
ology. In fact, we spent a considerable amount of time in Chapter 2 
evaluating multitasking operating systems to determine what the specific 
needs are for multitasking. What we determined was that multitasking 
required, one, a method for switching between multiple tasks without 
losing context information; two, that a method for communication was 
needed to handle the transfer of information and event timing between 
the various tasks; three, that a system of regulating the execution timing 
of the individual tasks was necessary for real-time control and monitor-
ing; and four, that a method for shifting priorities in the system was 
needed to respond to changes in the system mode.

The design methodology presented creates systems to handle each 
of these requirements. State machines provide a means of breaking up 
tasks and provide a means whereby individual blocks of the task can be 
executed, in order, with only the state variable to maintain the current 
status of the task. A communications system composed of variables 
and access/test functions provides for the communications needs of 
the system. Specific protocols handle different communications needs, 
including different rates of transmission and reception, and the transfer 
of event timing. The timing system and the definition of a system tick 
provide for the regular timing of the system. Further, the flexible nature 
of the timing system provides a means for each task to change its timing 
as needed for changing requirements. Finally, simple priority-handling 
systems allow the system, and even small subsets of the tasks, to ship 
execution time from low priority tasks to higher priority tasks based on 
the needs of the system or the task.

So, overall, the methodology meets its requirements as set out in 
Chapter 1. It is modular, extensible, real-time, multitasking, self-docu-
menting, simpler to design, and promotes the reuse of software blocks. 
The result is a simple, low-cost method for designing better multitasking 
software systems without the use of packed software operating systems 
or specialized hardware. The final design is scalable, simple to support, 
and easy to modify with a predictable outcome.
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