

Embedded
Multitasking

This Page Intentionally Left Blank

Embedded
Multitasking

Keith Curtis

AMSTERDAM BOSTON HEIDELBERG LONDON
NEW YORK OXFORD PARIS SAN DIEGO

SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2006, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You
may also complete your request online via the Elsevier homepage (www.elsevier.com), by selecting
“Customer Support” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on
acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Curtis, Keith, 1961-
 Embedded multitasking / Keith Curtis.
 p. cm.
 Includes index.
 ISBN 0-7506-7918-2 (pbk. : alk. paper) 1. Embedded computer systems. 2.
Computer firmware--Design. 3. Embedded computer systems--Programming. I.
Title.
 TK7895.E42C87 2006
 004’.35--dc22
 2005029822

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-0-7506-7918-3
ISBN-10: 0-7506-7918-2

For information on all Newnes publications
visit our website at www.books.elsevier.com.

06 07 08 09 10 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Dedication

Paraphrasing an old saying:

“Give a man a tool, he becomes a repair man.”

“Teach him how to make his own tools, he becomes an engineer!”

This book is dedicated to all the embedded engineers out there adding
intelligence to the everyday things in our lives.

And to my wife Shirley, who has put up with this, and all my other
projects, through a combination of patience and understanding.

This Page Intentionally Left Blank

Contents

About the Author xi

What’s on the CD-ROM? xiii

1 What’s In This Book, and Why Should I Read It? 1

Engineering and Profits 4

2 Basic Embedded Programming Concepts 19

Numbering Systems 20
Binary Numbers 22
Signed Binary Numbers 23
Fixed-Point Binary Numbers 25
Floating-Point Binary Numbers 27
Alternate Numbering Systems 28
Binary-Coded Decimal 29
ASCII 30
Error Detection 32

Data Structures 33
Simple Data Types 34
Complex Data Types 43

Communications Protocols 51
Simple Data Broadcast 51
Event-Driven Single Transfer 54
Event-Driven Multielement Transfers 56

Mathematics 61
Binary Addition and Subtraction 61
Binary Multiplication 64

viii Contents

Binary Division 66
Numeric Comparison 69

Conditional Statements 71
Loops 78
Other Flow Control Statements 81

State Machines 83
Data-Indexed State Machines 89
Execution-Indexed State Machines 92
Hybrid State Machines 97

Multitasking 99
Four Basic Requirements of Multitasking 101
Context Switching 101
Communications 102
Managing Priorities 102
Timing Control 103
Operating Systems 103
State Machine Multitasking 108

3 System-Level Design 111

Dissecting the Requirements Document 113
Function List 114
Function List Questions 115
The User Interface 120
Communications 129
Timing Requirements 139
System Priorities 146
Error Handling 154

System-Level Design 157
Task Definition 158
Criteria for Compatible Software Functions 161
Criteria for Incompatible Software Functions 164
Communications 171
Timing Analysis 182
Priority Handler 189
Error Recovery 192
System-Level Design Documentation 198

Contents ix

4 Component-Level Design 203

Task State Machines 203
Communications 223
System Timing 240
Priority Handler 252
Error Recovery System 271

5 Implementation and Testing 289

Building a Testing Driver Routine 307

6 Does It Do the Job? 379

Index 383

This Page Intentionally Left Blank

About the Author

I am fortunate in that I grew up the son of an engineer. My father was,
and is, an electrical engineer, so is it not surprising that I also became
an electrical engineer, earning my BSEE from Montana State University
in 1986.

Being a somewhat rebellious youth, I didn’t go into RF like my father.
Instead I embraced digital logic and microprocessors. My workbench at
home was littered with surplus TTL parts, and the odd EEPROM and
LED display; it was this early fascination with microprocessors that first
led me down the path to embedded programming.

In fact, my interest in embedded programming led to my first
full-time summer job, working for a company that used the 6502
microprocessor to build numerical controls for lathes and mills. I have
held a number of jobs since that first summer: a year in avionics, eight
years in gaming, six years in RF, and now five years in semiconductors.
But through it all, I have always retained my interest in microproces-
sor-based design.

It was my interest in microprocessors, in fact, that led me to apply
the design of hardware state machines to the process of software
development. During my time at MSU, I attended a class taught by
an engineer on sabbatical from Hewlett-Packard. The class subject was
the design of embedded controls using linked state machines instead of
microprocessors. While I didn’t immediately make a connection between
hardware and software state machines, I did keep the textbook; after a
stint as a consultant, and as time passed, I came to apply many of the

techniques from hardware design to software design. The result has
been the content of this book, a method for multitasking using linked
software state machines.

I hope you find the process useful, and I encourage you to evolve it
as needed to fit your specific design style. Good luck, and remember,
be verbose in your documentation, lest you be added to the product
support groups’ speed dial.

xii About the Author

When I began this book, I decided that I wanted to keep it as generic
as possible. My examples don’t favor a specific microcontroller family,
and with the exception of including examples in C, I tried not to favor
a specific language or compiler. With this in mind, I was somewhat
hesitant to include a CD-ROM given that the purpose of the book is to
teach a new design methodology, not create a specific embedded design
example. However, there are templates and tools that help in the design
process, so after consulting with my editor, I came to the decision that
a CD-ROM that included these tools would be useful, while remaining
true to the original intention of keeping the text generic.

The CD-ROM contains three main directories: examples, templates,
and tools. The Examples directory contains all of the algorithm listings
and code snippets from the book. They are included for anyone who
would like to use them as a seed to start their own personal code library.
The Templates directory contains template files for creating all three
types of state machines: the various communications protocols in C,
the example priority handlers, and the various timing systems. The final
directory, Tools, contains two spreadsheets, one for calculating a system
tick, and another for building an execution time database used in the
Time Remaining priority handler. The Tools directory also contains an
example document that outlines a naming convention.

To keep the files as universal as possible, all of the documents, algo-
rithms, code snippets, and templates are in a DOS text file format. The
spreadsheets, however, had to be put in a format that could be loaded
into a spreadsheet, so I chose Excel®, as it is the spreadsheet that I know

What’s on the CD-ROM?

best. However, I also included the equations for the important cells so
the tool can be translated into another spreadsheet package if the reader
should desire to do so.

The reader is encouraged to use and modify the files, and I hope that
it helps the reader develop a good coding technique. Just remember that
the intent is to learn a new program development technique.

Note: Copying and distributing the files is restricted, as outlined in
the license agreement at the back of this book. In addition, the files are
provided “AS IS.” Compatibility with a specific compiler, applicability
to a specific purpose, or a completely error-free condition is neither
warranted nor guaranteed. The sole purpose of the files is to aid in the
understanding of the design methodology presented.

“Excel is a registered trademark of Microsoft Corporation in the
United States and/or other countries.”

xiv What’s on the CD-ROM?

When I told my friends that I was writing a book, several of them told
me that I had to have a very good opening. “A good opening,” they
said, “fires the reader’s imagination and draws them into the book.”
The theory being, I suppose, if the reader is drawn in, then they will
have to buy the book.

Well, being an engineer, I very seldom say things that fire the imagina-
tion. In fact, at parties, most people’s eyes tend to glaze over right after
I tell them I am an engineer. So, I have decided instead to appeal to the
universal sense of enlightened self-interest. In short, I will begin this
book by demonstrating why good programming is in the best interest
of every software designer. Now, it may not get you a cubicle with a
window, or even an office with a door. But I can promise that producing
products that are not profitable is the surest way to become unemployed.
So, while there may not be a direct cash benefit to producing profitable
products, the alternative is definitely worse.

However, before we get into the explanation of profitability and
engineering, we need to take a few moments and discuss some basic
business concepts—specifically, how the price of a product is divided
up between the various costs and profit.

If we consider a generic product, the sale price of the product is
divided into two parts: the cost of producing the product and the profit
on the sale. The cost of producing the product includes recurring and
nonrecurring production costs, general and administrative overhead
costs, cost of sales, and support costs. The profit is the difference between
what the company spent to produce the product and what it was paid

1
What’s In This Book, and
Why Should I Read It?

2 Chapter 1

1 CSA is a registered trademark of the Canadian Standards Association. UL is a registered trademark of
Underwriters Laboratories. CE is a registered trademark of The Council of the European Communities.

for the product. Essentially, profit is the company’s return on the invest-
ment it made in producing the product.

So, let’s take a little closer look at the costs, starting with the recur-
ring and nonrecurring production costs.

A recurring production cost is any expense that is incurred each time a
product is made. It includes the cost of the materials used to produce the
product and the labor expense of having workers assemble the product.
It can also include the cost of packaging, printing a user’s manual, license
fees, even the material cost of the shrink wrap to seal up the package.

Nonrecurring production costs, on the other hand, are expenses that
are incurred to enable a production run, and typically cover expenses
such as investments in equipment, product testing such as Conformity
European (CE®)/Underwriter’s Laboratory (UL®)/Canadian Standards
Association (CSA®)1, and materials that enable production, but are not
part of the product produced. For example, the cost of the plastic used
to injection mold the case for a product is a recurring cost because it is
incurred each time a unit is produced. However, the cost of testing for
UL acceptance, assembly benches, tools, even the mold used to produce
each unit are nonrecurring costs because they are incurred just once
during the production cycle.

Nonrecurring costs are also often referred to as fixed production costs,
because they do not increase and decrease with the number of units
produced. They can also be thought of as an investment in the produc-
tion process. For instance, the cost of having a special tool produced
would be considered an investment because it reduced the recurring
cost through shortening the assembly time. Nonrecurring costs are also
typically amortized, or divided up, over some portion of the product’s
lifetime. If a mold is to be used over the production of a million units,
then .00001% of the cost of the mold is then added to the cost of each
of the first one million units produced. Of course, the one million and
first unit produced does not incur this cost, and as a result, the profit
on that unit, and every one produced after it, is correspondingly higher,
assuming the price and other costs remain constant.

What’s In This Book, and Why Should I Read It? 3

The next cost is also typically considered a fixed cost, that being
the administrative and overhead cost. This cost, typically listed as the
G&A (General and Accounting), is the expense of operating a business.
It includes administrative cost, including the salaries of the company
executives, the secretaries, the accountants, and even the janitors. It also
includes costs for services, such as electricity, water, and phones. Basically,
any expense that is incurred to pay for a general support function of the
company will be lumped into this category. And, like a nonrecurring
production cost, it is also divided up and tacked onto the production
cost of the products. However, unlike a nonrecurring production cost,
it never goes away.

A similar cost to that of G&A is the cost of sales. It includes expenses
for things like advertising, shipping, product promotions, customer
contests, even commissions paid to salesmen. These costs are those
associated with putting the product in front of the customers, either
through advertising, or through placing the product on the shelf in a
local store. Any cost incurred that is directly tied to the act of selling the
product typically falls under this category. This is one of the few general
costs that is typically allocated based on the number of units sold. So,
if the cost of sales is high for a group of units, then the profits for that
group of units will be correspondingly lower. As a result, management
will generally pay close attention to the cost of goods sold.

The final costs are those tied to support of the product after the
sale. These typically include expenses like a 24-hour support phone
line, repair technicians, failure analysis, repair costs, and upgrades/bug
fixes. Like G&A, support cost is also spread across the production run
as a fixed expense.

Note: Because the support cost is typically treated like an overhead
expense, it is often hidden from management supervision. This leads
some management to the mistaken assumption that a product is reliable
and well-liked by the customer when in fact there is a quality problem
and customer satisfaction is dropping.

4 Chapter 1

A closer look at profits reveals that it is also divided up into multiple
sections. Some of the profits are spent as dividends paid out to the
investors. This increases the desirability of the stock in the company
and can serve to attract additional investors who, in turn, add money
to the company by buying stock. Some of the profit is held as a cash
reserve, to cover future equipment purchases and expansion. And, most
importantly to engineering, some of the profits are used to fund new
product development.

See, I told you there was a reason why engineers should have a per-
sonal interest in making sure the products they design are profitable.
The larger the profit on a product, the more money will be available to
fund new equipment, hire more engineers, and pay for new projects.
Now, this is not to say that all of the profits will be channeled into
engineering. However, it does say that if the products are not profitable,
then any new product development must be paid for using borrowed
money. That means that the product will not only have to repay the
money, plus interest, but will also have to do that before it generates
any new monies to pay for future projects.

Engineering and Profits

So, if a profitable product produces the necessary surplus of cash required
to fund new projects, and if engineers are responsible for the design
of the profitable products, then it falls to us as software and hardware
engineers to generate designs that will produce the best product for the
least cost.

OK, how do we do that? We could just increase the cost of the prod-
uct. Some companies have tried this, although most who have are now
owned by their competitors, so for now we will ignore that option. The
better place to start is by understanding where the costs of a product
come from, and then analyze what we can do as designers to minimize
those costs. To do that, we have to understand the product life cycle.

A typical product has multiple phases in its lifetime. For the purpose
of discussion here, we will limit this to five general phases:

1. Product definition: In this phase, the initial concept for the prod-
uct is generated and market research is conducted.

What’s In This Book, and Why Should I Read It? 5

2. Design: Engineering is charged with developing the product that
will meet the market requirements, including performance, price
and profit.

3. Initial production: The design then moves to production, where a
production facility is configured to produce the design. Product
support will also analyze the design at this point to determine
its support requirements.

4. Sustained production: At this point in the product’s life cycle, the
production facility has reached its optimal production volume,
and support is managing the day-to-day customer support re-
quirements of the product.

5. End of life : At this point, the product has reached the end of its
profitability. The production facility will ramp down production,
and support will plan for any remaining customer support
needs.

Let’s start our analysis, with a quick description of each of the
phases of a product’s life. We can then examine the different phases to
determine where changes in a design strategy can be employed to help
reduce cost.

The birth of a product is in the product definition phase of its life.
The marketing group within a company is generally tasked with ongo-
ing market research, looking for new product ideas. When they find a
potential product idea, they then do further research to determine how
big the market is for the proposed product. What is the share of the
market which the company can reasonably expect to capture? What
features will the product need to be successful in the market? And what
price point is needed to capture the anticipated market share?

Estimating the total size of a potential market is somewhat of an art,
and I am certainly not qualified to either explain or critique the process.
For our purposes here, just take it for granted that the marketing group
is well versed in the subject and that their evaluation will result in a
reasonably accurate estimate of the total number of products that the
proposed market will demand and the expected market share that the
company can expect to capture. They will also estimate the minimal

6 Chapter 1

number of features required by potential users and the optimal price
point that will allow capture of the market share. These numbers will
then be analyzed to determine the potential profitability that the com-
pany can expect for the product.

If it looks as if the product will bring in a reasonable profit to
justify the investment in a development phase, then the product idea
will be summarized in a requirements document and passed on to the
design phase. If the profitability of the product does not justify the
development cost, the product idea will either be shelved for future
consideration, re-evaluated by marketing with a different set of features,
or just dropped.

In the design phase, engineering will then generate a design based
on the requirements document. Once the design of the product is
complete, engineering then oversees any certification testing required,
such as FCC, CE, CSA, or UL. Any changes to the design required to
correct any design deficiencies will then be made, and the product will
be resubmitted until it passes.

The final step in the design process is to generate any collateral
material required for the sale of the product. This material typically
includes testing procedures and fixtures, user’s manuals, documenta-
tion for both the production and support groups, and any packaging
or shipping containers.

Once the design phase is complete, initial production begins. In this
phase, the production group works with engineering to determine the
most cost-effective method to produce the design. The production group
will also create any quality assurance documentation needed, as well as
production jigs required by the design. The production and test staff
will also receive training in the product production process.

The support group will also begin its analysis of the design with
engineering, evaluating potential sources of faults and failures. They
should also become fluent in the operation of the design to facilitate
fault analysis and repair. The result of this analysis and training will be
troubleshooting procedures and the purchase of the appropriate test
equipment and stocks of repair parts. Further, the repair technicians

What’s In This Book, and Why Should I Read It? 7

and the help desk operators will be trained to handle problems, perform
fault analysis, and do cost-effective repairs.

Following the initial production phase of the product’s life, the
product will enter sustained production. At this point, the production
facility has ramped up to the normal production rate for the product.
The production personnel are operating with only minimal support from
engineering, and the production yields are at or above expected levels.

The support group at this time is analyzing failures, processing repairs,
answering customer questions, and making any corrections to the de-
sign to fix bugs found either in production or in the field. The support
group should also be performing an ongoing analysis of the type and
number of failures to identify any potential problems with the design.
If any are found, they are tasked with making the appropriate changes
to the design to eliminate or minimize the potential fault.

In addition, the marketing group may also suggest changes and
enhancements to the operation of the product, in an effort to extend
the product lifetime. Engineering will be tasked to work with support
to roll-in the proposed changes and work out a conversion process for
product already in the field.

Once the design has reached the end of its production, the product
enters the end-of-life phase of its product life. This could be due to
either the obsolescence of key components, low profitability due to less-
expensive competition, or the disappearance of its target market. For
whatever reason, the company has decided that continued production
is not profitable, and it has decided to terminate production.

For the production group, this means the disassembly of any cus-
tom production facilities and the retraining of production personnel
for work on other active product lines. Production and test jigs will be
put into storage or sold as scrap, and all relevant documentation will
be archived.

For the support group, the challenge at end of a product’s life is to
provide the expected level of customer support needed to support users
that are still using the product. This means the support group will have

8 Chapter 1

the task of buying appropriate quantities of repair parts while they are
still available, or finding suitable substitutes for the repair parts if they
are not available or run out before support is terminated.

During the course of a product’s life several costs are impacted directly
by the design. As we have already established, reducing these costs is
in the interest of the engineers working for the company. So our job at
this point is to determine what the costs are, how the method of design
affects the costs, and what can be done to minimize the cost.

Let’s start with costs affecting the product definition phase of the
new product. In this phase, the purpose is to define a new product and
determine if it is profitable. To do this, engineering must be able to give
reasonable estimates of what the product will cost over the course of its
life. These costs come from all phases of the life cycle, including design,
initial and sustained production, and even end of life.

Typically, the production and end-of-life numbers are estimated based
on labor costs from similar recent products and a material cost based on
a preliminary design and bill of material (BOM) from engineering. The
design phase cost estimate will also rely on the preliminary design and
BOM from engineering; however, it will also need an estimate of the time
required to write and test the software associated with the project.

If the estimate for the design time is low, then a marginally profit-
able project may be approved and the company will end up investing its
money in a product that will contribute little or no profit. If the estimate
for the design time is high, then potentially profitable products may be
passed over. So, it is important that engineering be able to produce an
accurate estimate of what the software development will cost.

So, in the product definition phase it is important to be able to do an
accurate preliminary design of the software system and this design must
be sufficiently detailed so that accurate estimates for finishing the design
are possible. This means that engineering’s opportunity to increase profit,
is based on a design system that allows an accurate preliminary design
of the system, with sufficient detail to allow accurate time estimates for
the remainder of the design work.

What’s In This Book, and Why Should I Read It? 9

In the design phase of the life cycle, engineering is charged with the
development and test of the product. They have the preliminary software
design and the estimates for the remaining work. The preliminary design
for the hardware is also finished, with its estimates for completion and
testing. If engineering continues along this established design flow, then
the product should complete at or near the preliminary estimates.

However, there are almost always unforeseen problems in any design
effort. To prevent these problems from spinning a design out of control,
the design process must be sufficiently flexible to be able to modify the
design in process, without starting over. So, another opportunity for
cutting costs is to use a design system that is also reasonably flexible,
allowing changes in one section of the design to be isolated from most,
if not all, other sections.

Another opportunity for cost reduction is the replacement of hard-
ware peripherals with software-based peripherals. This is the so-called
hardware/software tradeoff, and it is a trade of processing power for the
cost of a hardware peripheral. While this appears to be a bottomless well
of cost savings, there are several drawbacks to any tradeoff:

1. Using software-based peripherals requires additional program
memory to hold the additional code.

2. Software-based peripherals require more processor time to
execute.

3. The additional execution overhead may require a higher clock
speed or faster processor.

4. Using software-based peripherals increases the complexity of the
software design and testing.

So, any decision to replace a hardware peripheral can only be made
with accurate estimates of processing load and program memory require-
ments. This means that the tradeoffs can only be made later in the design,
after the processing load and memory requirements are established, or
that the design methodology is capable of making accurate predictions
early in the design.

10 Chapter 1

One of the most valuable means of saving development costs is
code reuse. This involves having a library of previously developed
and tested software routines for common functions—for example,
the math library bundled with a compiler. Rather than force users to
develop their own math functions, the compiler designer has generated
a library of previously developed and tested functions, saving the user
a considerable amount of time and research. There is every reason to
believe that engineering can also benefit from this practice by reusing
previously developed code in their new designs. Note: this does incur
some overhead in engineering due to the building and documentation
of the library. However, if the design methodology used by engineering
is modular and encourages documentation, this process can be relatively
simple and inexpensive.

One of the early tasks of software development is to supply test
code to the hardware group for the purpose of testing the prototype
hardware. While most groups simply write a quick block of code to
exercise the various inputs and outputs, a more extensive system can
significantly shorten the testing performed by the hardware group.
The typical objection to this practice is that the code will be thrown
away after the design, so why put too much work into it? However, if
a modular design approach is taken, then the routines used to exercise
the hardware during testing can be reused, not only in the final software
system, but also in production as part of the hardware testing performed
in production. So, once again, a modular design methodology can help
in the reduction of design costs.

Next, what about testing the software? Testing a complete software
system is certainly more complex and takes longer than incremental test-
ing during the design. Incremental testing also simplifies the debugging
process because the potential list of suspects is significantly reduced.
Further, if the incremental testing can be automated, then the depth
of testing possible is also increased, producing significantly better code
quickly.

Once the individual blocks of the software design are tested, then they
can be combined together block by block in an incremental fashion. This

What’s In This Book, and Why Should I Read It? 11

again limits the number of suspects when there are problems, and the test
data from the individual blocks can also be useful in finding problems.

For this to work, the design must be modular with clearly defined
specifications on the functions of each module, as well as the interface
between the modules. There must also be a method for building a soft-
ware test jig that allows the inputs from other blocks to be simulated
during automated testing.

The final requirement of the design phase is the generation of the
design collateral. This includes testing procedures and fixtures, user’s
manuals, documentation for both the production and support groups,
and any packaging or shipping containers. All too often, no thought is
given to this requirement until after the design is complete. As a result,
the material is typically generated though a form of criminal investiga-
tion, reverse engineering the details from the final design, interviewing
the designers, and trying to piece together the details of the system’s
operation. All of this takes time and costs money. So, what can a well-
designed and documented product do to reduce cost at this phase?

In testing, good documentation will provide a clear explanation of
how the product is supposed to work. This gives the test group a clear
set of criteria for their testing procedures. It also defines which sections
of the design are active during each operation, so the test procedure can
skip over redundant test conditions, shortening the test time. The same
information will also show the most efficient method for exercising all
the functions in the shortest time possible.

A modular design also means that sections of the product software may
be reused as test software for production. This shortens the job of generat-
ing the test software. It allows testers on the production line to exercise
the various sections of the hardware design “on demand,” reducing the
time and equipment required for testing. And custom test software can
be used to partially debug any problems, reducing repair time.

Writing the various user manuals for the design also benefits from a
top-down design with good documentation. A top-down design starts
with a good overall description, and then flows down through each level
of the design. This is the same format used by most manuals, so the

12 Chapter 1

writers will have a complete outline to work from, with all the informa-
tion they need present in the documentation. If the documentation is
sufficiently complete, there should only be minimal involvement from
the actual design team during the writing. This should free the design
team to start work on the next product definition or design.

For support, good documentation and a clear design flow are criti-
cal for their work. They will need it to understand the operation of the
product, both when it is operating correctly and when it fails. This will
help them not only design their own debugging documentation, but
also train their people in the potential problems that customers will
face. It will also allow them to find flaws quickly and produce fixes in
a timely manner.

Finally, a good design can even ease the burden of generating packag-
ing. With predictable behavior and fewer bug fixes, there will be little
need to add markings on the packaging for production revision. And
the packaging is less likely to be opened repeatedly by production to
include the latest bug fix, so the packaging can be made less expensive,
without the requirement that it be a re-openable design.

In the design phase, the cost reduction opportunities are primarily in
two areas: shortening the design and test process, and creating an easily
understood and well-documented design. The design and testing por-
tion of the opportunity require a good top-down design approach and a
modular format. This produces software that can be incrementally tested,
reused in later designs and production test software, and more easily
understood by the writers and support teams. Good documentation is
also beneficial to the writers and the support teams in that it provides a
clear picture of what the design is intended to do, as well as how it will
respond to various failures.

In the initial and sustained production phases of the product life,
most of the benefits outlined in the design phase come to fruition.
The documentation provided on the design allows the production and
support teams to become fluent in the design quickly in the initial pro-
duction phase. The modular nature of the design allows the generation
of test software as well. And the combination of the documentation and

What’s In This Book, and Why Should I Read It? 13

the modular nature of the design assist in the generation of troubleshoot-
ing guides and procedures for the support group.

Additional cost-saving opportunities arise when the design transi-
tions to sustained production. Any recurring material cost savings from
a tradeoff of software for hardware begin in the sustained phase of the
production, as do production labor cost savings from automated test-
ing provided by custom test software. And, on the support side, good
documentation and a modular format allow the support team to identify
the source of any software bugs early, and assist in their quick removal
from the design.

Together, the initial and sustained production phases of the product
life cycle are the source of the majority of the cost savings for the product.
This is largely due to the volume of the production run. Any material
cost savings in the unit cost will translate directly into a significant cost
savings over the production of the product.

However, the volume can also increase costs for the support team.
If a problem is found in the design, a high production volume can
produce a significant volume of flawed units to be repaired. The best
way to minimize this cost, without dropping production, is to identify
problems early and fix them quickly. This requires both a good support
team fluent in the design, and a clean modular design that allows the
incorporation of changes with a minimum of testing.

For maximum cost savings in production, both initial and sustained,
the design must use a modular, well-documented design method that
supports easy modification and the ability to tradeoff software for hard-
ware. The ability to automate testing is also valuable in that it shortens
the time required to qualify new bug fixes.

A final note on the sustained phase of the product’s life cycle: This is
the time when the product is typically selling well, and marketing and
management is looking for ways to stretch out the production. Usually,
this means the introduction of similar products, some products with
a subset of feature from the original design and a reduced price tag, or
products with a specialized set of features designed to meet a specific

14 Chapter 1

market niche. These products may not have a sufficient profit margin to
justify their own development, but if they can be spun off the existing
product with a minimum of design effort, they can extend the profit-
ability of the original design.

The best way to start this type of product development is to begin
with the original product’s definition as a baseline. Marketing and
engineering can then evaluate the various tradeoffs required to produce
the spin-off product. This means that, once again, the design method
used by engineering must be able to accurately predict what the new
features and functions will cost in design and production. It also means
that the documentation of the original produce development and the
design notes from the original design must be accurate and complete
so the projected costs for the new product are accurate.

Given that the design time available for this type of spin-off is typically
minimal, the design process of modifying the original design must be
fast and efficient. For that to work, engineering cannot afford to restart
the development from scratch. They can only generate new software
when needed to handle the new or modified features and functions.
This means that the original design must be a top-down, modular, well-
documented design that will allow engineering to reuse the majority of
the software design generated for the original product.

An added advantage to this form of spin-off design is that much of the
collateral design and documentation generated for the original design will
translate into collateral for the spin-off design. This means that manuals,
test procedures, test fixtures, and the troubleshooting documentation
generated by the support group will need only minimal modification
to work for the new designs, provided that the groups generating this
collateral know what has changed from the original design and how it
will affect the collateral generated originally. This means that, just like
the original design, the spin-off design must be a top-down design with
good documentation and a modular format.

The final phase of the product life is the end-of-life support of the
product. This can be one of the most difficult to estimate because so
much of the hardware used in the design may have been obsolete by the

What’s In This Book, and Why Should I Read It? 15

manufacturer. In fact, making end-of-life buys on components can be
one of the most significant costs associated with end-of-life support.

It follows that replacing obsolete material with either a suitable
substitute, or software, is one of the cost savings options. For the most
part, this will entail searching for similar products that can either be
adapted or used directly for the obsolete hardware. However, there
will be instances in which the missing hardware may be replaced with
software. When this happens, it is important that the software design
be modular to allow the replacement of the software driver associated
with the hardware. It is also important to have good documentation on
the original design, so that the impact of replacing the hardware with
a software function can be gauged accurately. Customers will be happy
if their system can be fixed, but they are typically very annoyed if the
fix significantly changes the operation of the system. Knowing what to
expect with a fix is important, before the customer is told that the fix
is possible.

So, over the life of the product, there are several opportunities to
reduce costs. In fact, some of the changes have the potential to signifi-
cantly reduce costs. And, as we discussed previously, reductions in costs
increase the profitability of a product and make more capital available for
use by engineering in the next design. Therefore, following the principle
of enlightened self-interest, it is in every engineer’s best interest to design
products using a design method with the following features:

1. A top down design method
2. Modularity
3. Good documentation

And, one final requirement that has not been specifically named so far:

4. Multitasking

While multitasking has not been specifically mentioned so far, it is
one of the main points of this book, so it must have some advantage
beyond a flashy title. And it does—the ability to run several functions at
the same time, the ability to replace a hardware peripheral with software
and still retain the real-time nature of the peripheral, and the ability to

16 Chapter 1

temporarily add automated testing routines to simulate virtual input
and output hardware.

OK, that makes sense, but why not just use an RTOS? It is certainly
simpler than designing the software to be multitasking. Yes, an RTOS is
simpler, the code can be written as linear segments and with the multiple
tasks, it does promote modular design.

However, there are some drawbacks to using an RTOS: it has a
minimum footprint in the design, it will likely have a fee associated with
its use, and it will have an impact on the performance and hardware
requirements of the system.

So, let’s start with the minimal footprint. A typical RTOS has a
minimum memory requirement for both data and program memory.
Program memory is needed for the routines used by the RTOS, and for
the kernel. The kernel is the core software for the RTOS that handles the
swapping in and out of the tasks, communications between the tasks,
timing, and establishing priorities in the system. Data memory is also
needed to support the communications between tasks and storage of
each task’s context information. Together, these requirements establish
the minimum memory sizes required, just for the RTOS.

An RTOS also typically has a fee associated with its use. The fee may
be recurring, meaning that some nominal fee will be charged for each
product that uses it, or a nonrecurring fee will be charged when the
RTOS is initially purchased. In either case, some cost will be incurred
for the use of the software.

Next, there is the impact on the performance and hardware require-
ments of the system. We have already established the costs associated with
the RTOS memory requirements. Additionally, there will be an impact
on the processing load for the system, in the form of lost execution cycles
required to execute the kernel and its associated routines. There may
also be requirements on the hardware itself, such as interrupt capability
and access to the system stack. Finally, there may also be limitations on
which high-level language compilers are compatible with the RTOS.

So, while an RTOS does simplify the design, there are design trad-
eoffs; additional memory requirements, recurring or nonrecurring fees,

What’s In This Book, and Why Should I Read It? 17

specific hardware requirements, and a requirement for specific develop-
ment software. Therefore, additional cost savings can be accomplished
through the use of a design methodology that produces software that is
multitasking without the use of an RTOS.

That pretty much defines the requirements for our proposed design
method. Each one is firmly rooted in one or more methods for reduc-
ing cost, so the profitability of the product is increased, and more
capital is available for future design. Basically, use a design method that
achieves the stated goals and the result should be a happier, healthier
company which can afford to spend more money on engineering and
new designs.

Now I know that this may not sway some engineers. There will be
some that feel that it is their right to design as they see fit and no one
can tell them how to do their job. Well, as an author, I would be remiss
if I did not make an effort to try and bring these designers back into the
fold. So, I will try to point out some of the immediate drawbacks.

First of all, poor documentation typically guarantees that the way-
ward engineer will be spending weeks to months at the end of every
project with a technical writer camped out at the door of their cubical.
Remember the collateral material requirement for a user’s manual and
test procedures? And, if the technical writer has too much trouble with
the documentation, management may decide to simply let the engineer
write the documents. Not an appealing prospect when everyone else in
engineering is gearing up on a new project.

Next, there are the long hours at the end of the project. If the design
method can’t accurately predict the time needed to do the design, man-
agement may simply decide to go with the low estimate, leaving the
engineer to guess what their milestones should be to get the job done.
And yes, this is a recipe for disaster, resulting is lost weekends and late
nights. These occur on their own, the design method used by the engi-
neer should not increase their frequency.

With all these problems, specifically problems that come to man-
agement’s attention due to late deliveries, there is also the very real
probability that management may not entrust the hot new project to

18 Chapter 1

an engineer that has to struggle to meet dates. Typically these engineers
are the ones lamenting, “I have seniority, why didn’t I get that project?”
And the answer is, “Because we needed it on time.”

Finally, for all those engineers that feel “it was hard to design the
software, so it should be hard to understand it,” let me point out that
there is an innate flaw in being the only person that understands the
software. It means the original engineer will also be the only person to
work on the software. While it does mean that no one will mess up the
code, it also means that when a bug is found, that engineer will have
to drop any new projects and jump into the old project until the bug
is found and fixed. This means that the new project will be later and
later, resulting in long nights and weekends to get caught back up to
the schedule. It means that the engineer will lose the respect of both
their manager and the support people that have to answer the calls on
the product. It means that the engineer runs the risk of a lateral move
in occupation from engineering to support when the product becomes
their entire career.

Basically, using a poor design methodology to generate software will
pretty much guarantee:

That everyone else will get the new hot projects.

That the support people will have your extension on speed dial.

That you can plan on late nights and working weekends until
you retire.

That other more efficient designers will be promoted over you.

And that during the next downsizing you can plan on being
offered the option of layoff or transfer to support.

One final note, before we move on to the next chapter: throughout
this book, you will note that I will use the term “designer” when talking
about the person generating the software design. This is deliberate because
I consider a designer to be someone that actually plans out, or designs,
the development of their software. Because this is a book on the design
of software, then anyone reading this book is either a designer already,
or working to become one, so the title is appropriate in either case.

The purpose of this chapter is to provide the designer with some basic
concepts and terminology that will be used later in the book. It covers
not only basic multitasking but also binary numbering systems, data
storage, basic communications protocols, mathematics, conditional
statements, and state machines. These concepts are covered here not
only to refresh the designer’s understanding of their operations but also
to provide sufficient insight so that designers will be able to “roll their
own” functions if needed. While this chapter is not strictly required to
understand the balance of the book, it is recommended.

It is understandable why state machines and multitasking need review,
but why are all the other subjects included? And why would a designer
ever want to “roll my own” routines? That is what a high-level language
is for, isn’t it? Well, often in embedded design, execution speed, memory
size, or both will become an issue. Knowing how a command works
allows a designer to create optimized functions that are smaller and/or
faster than the stock functions built into the language. It also gives the
designer a reference for judging how efficient a particular implementa-
tion of a command may be. So, while understanding how a command
works may not be required in order to write multitasking code, it is very
valuable when writing in an embedded environment.

For example, a routine is required to multiply two values together, a
16-bit integer and an 8-bit integer. A high-level language compiler will
automatically type-convert the 8-bit value into a 16-bit value and then
perform the multiplication using its standard 16-by-16 multiply. This
is the most efficient format from the compiler’s point of view, because

2
Basic Embedded Programming Concepts

20 Chapter 2

it only requires an 8 × 8 multiply and 16 × 16 multiply in its library.
However, this does creates two inefficiencies; one, it wastes two data
memory locations holding values that will always be zero and, two,
it wastes execution cycles on 8 additional bits of multiply which will
always result in a zero.

The more efficient solution is to create a custom 8 × 16 multiply
routine. This saves the 2 data bytes and eliminates the wasted execution
time spent multiplying the always-zero MSB of the 8-bit value. Also,
because the routine can be optimized now to use an 8-bit multiplicand,
the routine will actually use less program memory as it will not have the
overhead of handling the MSB of the multiplicand. So, being able to
“roll your own” routine allows the designer to correct small inefficiencies
in the compiler strategy, particularly where data and speed limitations
are concerned.

While “rolling your own” multiply can make sense in the example,
it is not the message of this chapter that designers should replace all of
the built-in functions of a high-level language. However, knowing how
the commands in a language work does give designers the knowledge of
what is possible for evaluating a suspect function and, more importantly,
how to write a more efficient function if it is needed.

Numbering Systems

A logical place to start is a quick refresher on the base-ten number system
and the conventions that we use with it. As the name implies, base ten
uses ten digits, probably because human beings have ten fingers and ten
toes so working in units or groups of ten is comfortable and familiar
to us. For convenience in writing, we represent the ten values with the
symbols “0123456789.”

To represent numbers larger than 9, we resort to a position-based
system that is tied to powers of ten. The position just to the left of the
decimal point is considered the ones position, or 10 raised to the zero-
th power. As the positions of the digits move to the left of the decimal
point, the powers of ten increase, giving us the ability to represent
ever-larger large numbers, as needed. So, using the following example,
the number 234 actually represents 2 groups of a hundred, 3 groups of

Basic Embedded Programming Concepts 21

ten plus 4 more. The left-most value, 2, represents 10^2. The 3 in the
middle represents 10^1, and the right-most 4 represents 1 or 10^0.

234
2 *10^2= 200
 3 *10^1= 30
 4 *10^0= + 4
 234

By using a digit-position-based system based on powers of 10, we
have a simple and compact method for representing numbers.

To represent negative numbers, we use the convention of the minus
sign ‘–’. Placing the minus sign in front of a number changes its meaning
from a group of items that we have, to a group of items that are either
missing or desired. So when we say the quantity of a component in the
stock room is –3, that means that for the current requirements, we are
tjree components short of what is needed. The minus sign is simply
indicating that three more are required to achieve a zero balance.

To represent numbers between the whole numbers, we also resort to
a position-based system that is tied to powers of ten. The only difference
is that this time, the powers are negative, and the positions are to the
right of the decimal point. The position just to the left of the decimal
point is considered 10^0 or 1, as before, and the position just to the
right of the decimal point is considered 10^–1 or 1/10. The powers of
ten continue to increase negatively as the position of the digits moves
to the right of the decimal point. So, the number 2.34, actually presents
2 and 3 tenths, plus 4 hundredths.

2.34
2 *10^0 = 2.

3 *10^–1 = .30
 4 *10^–2 = + .04
 2.34

For most everyday applications, the simple notation of numbers and
a decimal point is perfectly adequate. However, for the significantly
larger and smaller numbers used in science and engineering, the use of
a fixed decimal point can become cumbersome. For these applications,
a shorthand notation referred to as scientific notation was developed. In
scientific notation, the decimal point is moved just to the right of the

Example 2.1

Example 2.2

22 Chapter 2

left-most digit and the shift is noted by the multiplication of ten raised
to the power of the new decimal point location. For example:

Standard notation Scientific notation
 2,648.00 2.648x10^3
 1,343,000.00 1.343x10^6

0.000001685 1.685x10^-6

As you can see, the use of scientific notation allows the representation
of large and small values in a much more compact, and often clearer,
format, giving the reader not only a feel for the value, but also an easy
grasp of the number’s overall magnitude.

Note: When scientific notation is used in a computer setting, the nota-
tion 10^ is often replaced with just the capital letter E. This notation
is easier to present on a computer screen and often easier to recognize
because the value following the ^ is not raised as it would be in printed
notation. So, 2.45x10^3 becomes 2.45E3. Be careful not to use a small
“e” as that can be confusing with logarithms.

Binary Numbers

For computers, which do not have fingers and toes, the most conve-
nient system is binary or base two. The main reason for this choice is
the complexity required in generating and recognizing more than two
electrically distinct voltage levels. So, for simplicity, and cost savings, base
two is the more convenient system to design with. For our convenience
in writing binary, we represent these two values in the number system
with the symbols “0” and “1”. Note: Other representations are also used
in boolean logic, but for the description here, 0 and 1 are adequate.

To represent numbers larger than one, we resort to a position-based
system tied to powers of two, just as base 10 used powers of ten. The
position just to the left of the decimal point is considered 2^0 or 1. The
power of two corresponding to each digit increases as the position of the
digits move to the left. So, the base two value 101, represents 1 groups of
four, 0 groups of two, plus 1. The left-most digit, referred to as the most
significant bit or MSB, represents 2^2 (or 4 in base ten). The position

Example 2.3

Basic Embedded Programming Concepts 23

of 0 denotes 2^1 (or 2 in base ten). The right-most digit, referred to as
the least significant bit or LSB (1), represents 1 or 2^0.

101
1 *2^2= 100 (1*4 in base ten)
 0 *2^1= 00 (0*2 in base ten)
 1 *2^0= + 1 (1*1 in base ten)
 101 (5 in base ten)

So, binary numbers behave pretty much the same as they do for base
10 numbers. They only use two distinct digits, but they follow the same
system of digit position to indicate the power of the base.

Signed Binary Numbers

To represent negative numbers in binary, two different conventions
can be used, sign and magnitude, or two’s complement. Both are valid
representations of signed numbers and both have their place in embed-
ded programming. Unfortunately, only two’s complement is typically
supported in high-level language compilers. Sign and magnitude can
also be implemented in a high-level language, but it requires additional
programming for any math and comparisons functions required. Choos-
ing which format to use depends on the application and the amount of
additional support needed. In either case, a good description of both,
with their advantages and disadvantages, is presented here.

The sign and magnitude format uses the same binary representation
as the unsigned binary numbers in the previous section. And, just as
base-ten numbers used the minus sign to indicate negative numbers,
so too do sign and magnitude format binary numbers, with the ad-
dition of a single bit variable to hold the sign of the value. The sign
bit can be either a separate variable, or inserted into the binary value
of the magnitude as the most significant bit. Because most high-level
language compilers do not support the notation, there is little in the
way of convention to dictate how the sign bit is stored, so it is left up
to the designer to decide.

While compilers do not commonly support the format, it is con-
venient for human beings in that it is a very familiar system. The sign
and magnitude format is also a convenient format if the system being

Example 2.4

24 Chapter 2

controlled by the variable is vector-based—i.e., it utilizes a magnitude
and direction format for control.

For example, a motor speed control with an H-bridge output driver
would typically use a vector-based format for its control of motor
speed and direction. The magnitude controls the speed of the motor,
through the duty cycle drive of the transistors in the H-bridge. The
sign determines the motor’s direction of rotation by selecting which
pair of transistors in the H-bridge are driven by the PWM signal. So, a
sign and magnitude format is convenient for representing the control
of the motor.

The main drawback with a sign and magnitude format is the overhead
required to make the mathematics work properly. For example:

1. Addition can become subtraction if one value is negative.

2. The sign of the result will depend on whether the negative or
positive value is larger.

3. Subtraction can become addition if the one value is negative.

4. The sign of the result will depend on whether the negative or
positive value is larger and whether the positive or negative value
is the subtracted value.

5. Comparison will also have to include logic to determine the sign of
both values to properly determine the result of the comparison.

As human beings, we deal with the complications of a sign and
magnitude format almost without thinking and it is second nature
to us. However, microcontrollers do not deal well with exceptions to
the rules, so the overhead required to handle all the special cases in
math and comparison routines makes the use of sign and magnitude
cumbersome for any function involving complex math manipulation.
This means that, even though the sign and magnitude format may be
familiar to us, and some systems may require it, the better solution is
a format more convenient for the math. Fortunately, for those systems
and user interfaces that require sign and magnitude, the alternate system
is relatively easy to convert to and from.

Basic Embedded Programming Concepts 25

The second format for representing negative binary numbers is two’s
complement. Two’s complement significantly simplifies the mathemat-
ics from a hardware point of view, though the format is less humanly
intuitive than sign and magnitude. Positive values are represented in
the same format as unsigned binary values, with the exception that they
are limited to values, that do not set the MSB of the number. Negative
numbers are represented as the binary complement of the correspond-
ing positive value, plus one. Specifically, each bit becomes its opposite,
ones become zeros and zeros become ones. Then the value 1 is added
to the result. The result is a value which, when added to another value
using binary math, generates the same value as a binary subtraction. As
an example, take the subtraction of 2 from 4, since this is the same as
adding –2 and +4:

First, we need the two’s complement of 2 to represent –2

0010 Binary representation of 2
1101 Binary complement of 2 (1s become 0s, and

0s become 1s)
1110 Binary complement of 2 + 1, or –2 in two’s

complement

Then adding 4 to –2
1110 -2
+0100 +4
0010 2 with the msb clear indicating a positive

result

Representing numbers in two’s complement means that no additional
support routines are needed to determine the sign and magnitude of
the variables in the equation; the numbers are just added together and
the sign takes care of itself in the math. This represents a significant
simplification of the math and comparison functions and is the main
reason why compilers use two’s complement over sign and magnitude in
representing signed numbers.

Fixed-Point Binary Numbers

To represent numbers between the whole numbers in signed and
unsigned binary values we once again resort to a position-based system,
this time tied to decreasing negative powers of two for digit positions to

Example 2.5

26 Chapter 2

the right of the decimal point. The position just to the left of the deci-
mal point is considered 2^0 or 1, with the first digit to the right of the
decimal point representing 2^–1. Each succeeding position represents
an increasing negative power of two as the positions of the digits move
to the right. This is the same format used with base-ten numbers and it
works equally well for binary values. For example, the number 1.01 in
binary is actually 1, plus 0 halves and 1 quarter.

1.01
1 *2^0 = 1 (1*1 in base ten)

0 *2^-1 = .0 (0*½ in base ten)
1 *2^-2 = + .01 (1*¼ in base ten)

 1.01 (1¾ in base ten)

While any base-ten number can be represented in binary, a problem
is encountered when representing base-ten values to the right of the
decimal point. Representing a base-ten 10 in binary is a simple 1010;
however, converting 0.1 in base ten to binary is somewhat more difficult.
In fact, to represent 0.1 in binary (.0000110011) requires 10 bits to get
a value accurate to within 1%. This can cause intermittent inaccuracies
when dealing with real-world control applications.

For example, assume a system that measures temperature to .1 degrees
C. The value from the analog-to-digital converter will be an integer
binary value, and an internal calibration routine will then offset and
divide the integer to get a binary representation of the temperature.
Some decimal values, such as .5C will come out correctly, but others
will have some degree of round-off error in the final value. Then, con-
verting values with round-off error back into decimal values for the user
interface will further increase the problem, resulting in a display with
a variable accuracy.

For all their utility in representing real numbers, fixed-point binary
numbers have little support in commercial compilers. This is due to
three primary reasons:

1. Determining a position for the decimal point is often applica-
tion specific, so finding a location that is universally acceptable
is problematic.

Example 2.6

Basic Embedded Programming Concepts 27

2. Multiply, and specifically divide, routines can radically shift the
location of the decimal point depending upon the values being
used.

3. It has difficulty in representing small fractional base-ten values.

One alternative to the fixed-point format that does not require a
floating-point format is to simply scale up all the values in a system until
they are integers. Using this format, the temperature data from the previ-
ous example would be retained in integer increments of .1C, alleviating
the problem of trying to represent .1C as a fixed-point value. Both the
offset and divider values would have to be adjusted to accommodate the
new location of the decimal point, as would any limits or test values. In
addition, any routines that format the data for a user interface would
have to correctly place the decimal point to properly represent the data.
While this may seem like a lot of overhead, it does eliminate the problem
with round off error, and once the constants are scaled, only minimal
changes are required in the user interface routines.

Floating-Point Binary Numbers

Another alternative is to go with a more flexible system that has an
application-determined placement of the decimal point. Just as with
base-ten numbers, a fixed decimal point representation of real numbers
can be an inefficient use of data memory for very large or very small
numbers. So, binary numbers have an equivalent format to scientific
notation, referred to as floating-point.

In the scientific notation of base-ten numbers, the decimal point was
moved to the right of the leftmost digit in the number, and an exponent
notation was added to the righthand side. Floating-point numbers use a
similar format, moving the decimal point to the right of the MSB in the
value, or mantissa, and adding a separate exponent to the number. The
exponent represents the power of two associated with the MSB of the
mantissa and can be either positive or negative using a two’s complement
format. This allows for extremely large and small values to be stored in
floating-point numbers.

28 Chapter 2

For storage of the value, typically both the exponent and the mantissa
are combined into a single binary number. For signed floating-point
values, the same format is used, except the MSB of the value is reserved
for the sign, and the decimal point is placed to the right of the MSB
of the matissa.

In embedded applications, floating-point numbers are generally
reserved for highly variable, very large or small numbers, and “rolling
your own” floating-point math routines are usually not required. It is
also beyond the scope of this book, so the exact number of bits reserved
for the mantissa and exponent and how they are formatted will not be
covered here. Any reader desiring more information concerning the im-
plementation of floating-point numbers and mathematics is encouraged
to research the appropriate industry standards for additional information.
One of the more common floating-point standards is IEEE® 754.

Alternate Numbering Systems

In our discussion of binary numbers, we used a representation of 1s and
0s to specify the values. While this is an accurate binary representation,
it becomes cumbersome when we move into larger numbers of bits. So,
as you might expect, a couple of short-hand formats have been devel-
oped, to alleviate the writer’s cramp of writing binary numbers. One
format is octal and the other is hexadecimal. The octal system groups
bits together into blocks of 3 and represents the values using the digits
0–7. Hexadecimal notation groups bits together into blocks of 4 bits
and represents the values using the digits 0–9, and the letters A–F.

Basic Embedded Programming Concepts 29

Decimal Binary Octal Hexadecimal

0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 2
8 1000 10 8
9 1001 11 8
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Octal was originally popular because all 8 digits of its format could be
easily displayed on a 7-segment LED display, and the 3-bit combinations
were easy to recognize on the binary front panel switches and displays
of the older mainframe computers. However, as time and technology
advanced, problems with displaying hexadecimal values were eliminated
and the binary switches and LEDs of the mainframe computer front
panels were eventually phased out. Finally, due to its easy fit into 8-,
16-, and 32-bit data formats, hexadecimal eventually edged out octal
as a standard notation for binary numbers. Today, in almost every text
and manual, values are listed in either binary, decimal (base ten), or
hexadecimal.

Binary-Coded Decimal

Another binary numeric format is binary-coded decimal or BCD. BCD
uses a similar format to hexadecimal in that it groups together 4 bits to
represent data. The difference is that the top 6 combinations, represented
by A–F in hexadecimal, are undefined and unused. Only the first 10
combinations represented by 0–9 are used.

Table 2.1

30 Chapter 2

The BCD format was originally developed for use in logic blocks
such as decade counters and display decoders in equipment to provide
a base-ten display and control format. The subsequent development of
small 8-bit microcontrollers carried the format forward in the form of
either a BCD addition/subtraction mode in the math instructions of
the processor, or as a BCD adjust instruction that corrects BCD data
handled by a binary addition/subtraction.

One of the main advantages of BCD is its ability to accurately rep-
resent base-ten values, such as decimal dollars and cents. This made
BCD a valuable format for software handling financial and inventory
information because it can accurately store fractional base-ten decimal
values without incurring round-off errors. The one downside to BCD is
its inefficiency in storing numbers. Sixteen bits of BCD can only store
a value between 0 and 9999, while 16-bit binary can represent up to
65535 values, a number over 60 times larger.

From this discussion, you may think that BCD seems like a waste of
data storage, and it can be, but it is also a format that has several specific
uses. And even though most high-level languages don’t offer BCD as a
storage option, some peripherals and most user interfaces need to convert
binary numbers to and from BCD as a normal part of their operation.
So, BCD is a necessary intermediate format for numbers being converted
from binary to decimal for display on a user interface, or communica-
tion with other systems. Having an understanding of the format and
being able to write routines that convert binary to BCD and back are,
therefore, valuable skills for embedded designers.

ASCII

The last format to be discussed is ASCII. ASCII is an acronym for the
American Standard Code for Information Interchange. It is a 7-bit code
that represents letters, numbers, punctuation, and common control
codes.

A hold-over data format from the time of mainframe computers,
ASCII was one of two common formats for sending commands and

Basic Embedded Programming Concepts 31

data serially to terminals and printers. The alternate code, an 8-bit code
known as EBIDIC, has since disappeared, leaving ASCII as the de-facto
standard with numerous file formats and command codes based on it. The
following is a chart of all 128 ASCII codes, referenced by hexadecimal:

Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII

00 NUL 10 DLE 20 SP 30 0 40 @ 50 P 60 ` 70 p

01 SOH 11 DC1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 STX 12 DC2 22 “ 32 2 42 B 52 R 62 b 72 r

03 ETX 13 DC3 23 # 33 3 43 C 53 S 63 c 73 s

04 EOT 14 DC4 24 $ 34 4 44 D 54 T 64 d 74 t

05 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 e 75 u

06 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v

07 BEL 17 ETB 27 ‘ 37 7 47 G 57 W 67 g 77 w

08 BS 18 CAN 28 (38 8 48 H 58 X 68 h 78 x

09 HT 19 EM 29) 39 9 49 I 59 Y 69 I 79 y

0A LF 1A SUB 2A * 3A : 4A J 5A Z 6A j 7A z

0B VT 1B ESC 2B + 3B ; 4B K 5B [6B k 7B {

0C FP 1C FS 2C , 3C < 4C L 5C \ 6C l 7C |

0D CR 1D GS 2D - 3D = 4D M 5D] 6D m 7D }

0E SO 1E RS 2E . 3E > 4E N 5E ^ 6E n 7E ~

0F SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL

Among the more convenient features of the code is the placement of
the codes for the numbers 0–9. They are placed such that conversion
between BCD and ASCII is accomplished by simply OR-ing on the top
3 bits, or AND-ing them off. In addition, translation between upper and
lower case just involves adding or subtracting hexadecimal 20. The code
also includes all of the more common control codes such as BS (back
space), LF (line feed), CR (carriage return), and ESC (escape)

Although ASCII was among the first computer codes generated, it
has stood the test of time and most, if not all, computers use it in one
form or another. It is also used extensively in small LCD and video
controller chips, thermal printers and keyboard encoder chips. It has
even left its mark on serial communications, in that most serial ports
offer the option of 7-bit serial transmission.

Table 2.2

32 Chapter 2

Error Detection

One of the things that most engineers ask when first exposed to ASCII
is what to do with the eighth bit in an 8-bit system. It seems a waste
of data memory to just leave it empty, and it doesn’t make sense that
older computer systems wouldn’t use the bit in some way. It turns out
that the eighth bit did have a use. It started out in serial communica-
tions where corruption of data in transit was not uncommon. When
serially transmitted, the eighth bit was often used for error detection
as a parity bit.

The method involved including the parity bit which, when exclusive
OR-ed with the other bits, would produce either a one or a zero. Even
parity was designed to produce a zero result, and odd parity produced
a one. By checking each byte as it came in, the receiver could detect
single-bit errors, and when an error occurred, request a retransmission
of the data. This is the same parity bit that is still used in serial ports
today. Users are given the option to use even or odd, and can even choose
no parity, which turns off the error checking.

Parity works fine for 7-bit ASCII data in an 8-bit system, but what
about 8-, 16-, and 32-bit data? When computer systems began passing
larger and larger blocks of data, a better system was needed—specifi-
cally, one that didn’t use up 12.5% of the bandwidth—so several other
error-checking systems were developed. Some are able to determine
multibit errors in a group of data bytes, while other simpler systems
can only detect single-bit errors. Other, more complex, methods are
even able to detect and correct bit errors in one or more bytes of data.
While this area of design is indeed fascinating, it is also well beyond
the scope of this book.

For our use here, we will concentrate on two of the simpler systems,
the check sum, and the cyclic redundancy check or CRC.

The check sum is the simpler of the two systems and, just as it sounds,
it is simply a one- or two-byte value that holds the binary sum of all the
data. It can detect single-bit errors, and even some multibit errors, but
it is by no means a 100% check on the data.

Basic Embedded Programming Concepts 33

A CRC, on the other hand, uses a combination of shifts and boolean
functions to combine the data into a check value. Typically a CRC shifts
each byte of data in the data block into the CRC value one bit at a time.
Each bit, before it is shifted into the CRC value, is combined with
feedback bits taken from the current value of the CRC. When all of the
bits in the data block have been shifted into the CRC value, a unique
CRC value has been generated that should detect single and more of the
multibit errors. The number, type, and combination of bit errors that
can be detected is determined by several factors. These include both the
number of bits in the CRC and the specific combination of bits fed back
from the CRC value during the calculation. As mentioned previously, an
in-depth description of CRC systems, and even a critique of the relative
merits of the different types of CRC algorithms is a subject sufficient
to fill a book, and as such is beyond the scope of this text. Only this
cursory explanation will be presented here. For more information on
CRC systems, the reader is encouraged to research the subject further.

One final note on CRCs and check sums. Because embedded designs
must operate in the real world, and because they will be subject to EMI,
RFI, and a host of other disruptive forces, CRCs and check sums are
also typically used to validate the contents of both program and data
memory. Periodically running a check sum on the program memory, or
a CRC check of the data in data memory is a convenient “sanity check”
on the system. So, designers working in noisy environments with high
functional and data integrity requirements should continue their research
into these valuable tools of the trade.

Data Structures

In a typical high-level application, once the format for the data in a
program has been determined, the next step is to define a data structure
to hold the information. The structure will determine what modifying
functions, such as assignment and math functions, are available. It will
determine what other formats the data can be converted into, and what
user interface possibilities exist for the data.

In an embedded design, a data structure not only defines storage for
data, it also provides a control conduit for accessing control and data

34 Chapter 2

registers of the system peripherals. Some peripheral functions may only
need byte-wide access, while others may require single bit control. Still
others may be a combination of both. In any case, it is essential that the
right type of data structure be defined for the type of data to be stored
or the type of control to be exercised over the peripheral.

Therefore, a good understanding of the data structure’s inner work-
ings is important both for efficiency in data storage and for efficient
connections to the system’s peripherals. Of specific interest is:

1. What type of information can be stored in the data structure?

2. What other functions are compatible with the data structure?

3. Can the data structures be used to access peripheral control and
data registers?

4. How does the date structure actually store the information in
memory?

5. How do existing and new functions access the data?

A good understanding of the data structures is important both for
efficiency in data storage and for an efficient conduit to the system’s
peripherals. Knowing how a language stores information can also be pro-
active in the optimization process, in that it gives the designer insight into
the consequences of using a particular data type as it applies to storage
and access overhead. This information may allow the designer to choose
wisely enough to avoid the need for custom routines altogether.

The following sections covering data structures will try to answer all five
of these questions as they apply to each of the different data structures.

Simple Data Types

The term “simple data type” refers to variables that store only one instance
of data and store only one format of data at a time. More complex data
types, which hold more than one instance of data or hold more than
one type of data, will be covered in the next section titled Complex Data
Types.

BIT variable_name
Declaration 2.1

Basic Embedded Programming Concepts 35

The simplest data type is the boolean or BIT. This data type has
only two possible states, 1 or 0. Alternately, TRUE or FALSE, and YES
or NO can also be used with some compilers. It is typically used to
carry the result of a boolean logical expression or the binary status of a
peripheral or comparison. It can even be used as part of another data
type to hold the sign of a value. In each case, the variable provides a
simple on/off or yes/no functionality or status.

When BIT is used as a variable, it is assigned a value just like any
other variable. The only difference with the BIT data structure is that
it can also be assigned the result of a comparison using combinations of
boolean logic and the standard comparison operators, < > and =.

Note: A helpful debugging trick is to assign the result of a comparison
to a BIT variable and then use the variable in the conditional statement.
This allows the designer to monitor the status of the BIT variable and
determine the path of execution without having to step through the
entire code block step by step.

Flag = (Var_A > Var_B) & (Var_A < Var_C);
if Flag then printf(Var_A);

To use the BIT data structure as a conduit to a peripheral control
register, the bit must be defined to reside at the corresponding address
and bit of the peripheral function to be controlled. As this is not uni-
versally supported in C compilers, compilers that do support the feature
may have different syntax. So, this is yet another point that must be
researched in the user’s manual for the compiler. If the compiler does
not allow the user to specify both the address and bit location, there is
an alternate method using the STRUCTURE statement and that will
be covered in the Complex Data Structures section of this chapter.

Due to the boolean’s simple data requirements, BIT is almost always
stored as a single bit within a larger data word. The compiler may choose
to store the binary value alone within a larger data word, or it may
combine multiple bits and other small data structures for more efficient

Code Snippet 2.1

36 Chapter 2

storage. The designer also has the option to force the combination of
BITs and other small data structures within a larger data word for con-
venience, or for more efficient access to control bits within a peripheral’s
control register. Additional information on this process is presented in
the STRUCTURE data structure following.

To access a BIT, the compiler may copy the specific data bit to be
accessed into a holding location and then shift it to a specific location.
This allows the high-level language to optimize its math and comparison
routines for a single bit location within a data word, making the math
and comparison routines more efficient. However, this does place some
overhead on the access routines for the BIT’s data structure.

Other compilers, designed for target microcontrollers with instruc-
tions capable of setting, clearing, manipulating, and testing individual bits
within a data word, avoid this overhead by simply designing their boolean
and comparison routines to take advantage of the BIT instructions.

To access the BIT directly in memory, the designer needs two pieces
of information, the address of the data word containing the BIT, and
the location of the BIT within the data word. The address of the byte
containing the BIT is typically available through the variable’s label.
The specific BIT within the byte may not be readily available, and may
change as new variables are added to the design. For these reasons, it is
generally best to only use manual access of a BIT defined using either
a compiler function that allows the designer to specify the bit location,
or a STRUCTURE

Using a STRUCTURE to define the location of a BIT is also useful
in that it can be used to force the compiler to group specific variables
together. It can also be used to force a group of commonly used BITs
into common bit locations for faster access. Finally, defining a BIT
within a STRUCTURE and a UNION, gives the designer the option
to access the BITs as either individual values or as a group for loading
default states at start-up.

One point that should be noted concerning this data type is that not
all high-level language compilers recognize it. And, many compilers that

Basic Embedded Programming Concepts 37

do recognize the data type may not agree on its name or syntax, so the
designers should review the user’s guide for any compiler they intend
to use, as there may be differences in the syntax used or restrictions on
the definition of this data type.

SIGNED CHAR variable_name
UNSIGNED CHAR variable_name

The CHAR data type was originally designed to hold a single ASCII
character, thus the name CHAR, which is short for character. CHARs
are still commonly used for holding single ASCII characters, either for
individual testing or as part of an output routine, or even grouped with
other CHARs to form an array of characters called a STRING. However,
over time, it has also come to be a generic variable type for 8-bit data. In
fact, most if not all modern high-level languages allow the use of CHAR
variables in math operations, conditional statements, and even allow the
definition of a CHAR variable as either signed or unsigned.

In embedded programming, the CHAR is equally as important as
the boolean/BIT data type because most peripheral control registers
will be one or more bytes in length and the CHAR variable type is a
convenient way to access these registers. Typically, a control register for
a peripheral will be defined as a CHAR for byte-wide access, allowing
the entire register to be set with one assignment. The CHAR may also
be tied to a STRUCTURE of BITs using a UNION definition to allow
both bit-wise control of the functions, as well as byte-wise access for
initialization. More information on both the UNION and the STRUC-
TURE will be presented in later sections of this chapter.

An important point to note is that this variable may be assumed
to be signed or unsigned by the C compiler if the words SIGNED or
UNSIGNED are not included in the definition of the variable. The only
ANSI requirement is that the compiler be consistent in its definitions.
Therefore, it is best to specify the form in the definition of the variable
to avoid problems migrating between compilers.

Manually accessing a CHAR variable at the language level is very
simple, as most compilers recognize the data structure as both a character
variable, and a signed or unsigned binary value. Access at the assembly

Declaration 2.2

38 Chapter 2

language level is also simple as the name given to the variable can be
used as an address label to access the data memory. Because the CHAR
represents the smallest data structure short of a BIT, the format used
to store the data in memory is also simple. The 8-bit value is simply
stored in the lower 8 bits of the data memory word. Because the data is
stored as a single byte, no additional information, beyond the address,
is required.

INT variable_name
UNSIGNED INT variable_name

INT, short for integer, is the next larger data type. It is typically used
to hold larger signed and unsigned binary values, and while the BITs
and CHARs have consistent and predefined data lengths, the length of
an INT is largely dependent on the specific implementation of the high-
level compiler. As a result, the actual number of bits in an INT can vary
from as few as 16 bits, to whatever the upper limit of the compiler is.
The only limitation on the size of an INT is that it must be larger than
a CHAR and less than or equal to the size of a LONG. So, to determine
the actual size of an INT in a specific compiler, it is necessary to consult
the user’s manual for the compiler being used.

Because of an INT’s somewhat indeterminate length, it can present
a problem for efficiently storing larger data. Some compilers may not
allocate sufficient bits to hold an application’s data, while others may al-
locate too many bits, resulting in wasted data storage. This can be a very
serious problem if the application using the data is to be shared across
several different compilers and processors. To alleviate this problem, the
designer has three basic options:

1. The large groups of data can be broken into individual bytes and
stored as an array of unsigned CHARs, and then recreated in an
INT when needed. This minimizes the storage requirements to
the minimum number of required bytes, but it also complicates
any math or comparison operation that may be required.

2. The INT can be defined as LONGs within a STRUCTURE,
allowing the designer to specify the number of bits to be used for
the variable. This eliminates the math problem, but the compiler

Declaration 2.3

Basic Embedded Programming Concepts 39

will incur additional overhead, when it automatically converts
the data into a standard-length LONG prior to performing the
math, and will then incur additional overhead converting it back
when the math is complete.

3. The best solution is to simply get to know the compilers to be
used and define the variables appropriately for each implementa-
tion. The variable type casting will then force the compiler to use
the appropriate math and comparison functions, resulting in a
much simpler design, while incurring only a minimal processing
overhead.

As with the CHAR variable type, the name given to the variable acts
as a label and can be used as a pointer to the data in assembly language.
However, the number of bytes reserved for the variable and the order in
which the bytes are stored in data memory may differ from compiler to
compiler. So, once again, it is up to the designers to do their homework
and research the exact storage format used.

One of the important statements in the previous paragraph is often
missed: “the order in which the bytes are stored in data memory may
differ.” Specifically, does the compiler store the MSB in the first or last
data memory location allocated to the variable? There are two formats
that can be used: big endian and little endian. In the big endian format,
the MSB is stored in the first data memory address (lowest memory
address) and the LSB is stored in the last data memory address (highest
memory address). In little endian, the reverse is true; the LSB is in the
first memory address and the MSB in the last. So, to correctly access an
INT in assembly, it is necessary not only to determine the number of
bytes stored but also which storage format is used. This information is
also typically found in the manual. However, if it is not explicitly stated,
a simple test routine can answer the question. The test routine defines
an INT variable and loads the value 4660 into the variable. Then, by
examining data memory, the format can be determined. If the data in
the lower memory address is the hexadecimal value 12 followed by the
hex value 34, then the format is big endian; if the first byte is 0x34,
then the format is little endian.

40 Chapter 2

Due to the generally variable length and format of the INT, it is not
a good choice for accessing peripheral registers containing control bits or
data. INTs can be, and often are, used for this purpose, but the practice
can cause portability problems, including unexpectedly truncated data,
the inclusion of data bits from adjacent peripherals, and even scrambled
data. The practice is only recommended if the portability of the resulting
routines is not a goal of the project.

LONG variable_name
UNSIGNED LONG variable_name

LONG, short for long integer, is the next larger data type. It is typi-
cally used to hold very large signed and unsigned binary values, and while
the BITs and CHARs have consistent and predefined data lengths, the
length of a LONG is again, dependent on the specific implementation
of the high-level compiler. As a result, the actual number of bits in a
LONG can vary from as few as 16 bits, up to whatever the upper limit
of the compiler defines for data types. The only limitation on the size
of a LONG variable is that it must be at least as large, or larger, than
an INT. Typically, a LONG is twice the size of an INT, but this is not
specified by the ANSI2 standard. So, to determine the actual size of an
INT in a specific compiler, it is necessary to consult the user’s manual
for the compiler being used.

Because the LONG is somewhat nonstandard in length, it can also
present problems for portability and efficiently storing larger data. As
a result, the storage options that applied to the INT serve equally well
for the LONG.

Storage problems for larger groups of data can be handled by break-
ing the larger data blocks into individual bytes and storing as an array
of unsigned CHARs, and then recreating in a LONG when needed.
This minimizes the storage requirements to the minimum number of
required bytes, but it also complicates any math or comparison opera-
tion that may be required.

The portability problems can be alleviated by simply getting to know
the compilers being used, and defining the variables appropriately for each

Declaration 2.4

2 ANSI and the ANSI logo are registered trademarks of the American National Standards Institute

Basic Embedded Programming Concepts 41

implementation. The variable type casting will then force the compiler to
use the appropriate math and comparison functions, resulting in a much
simpler design, while incurring only a minimal processing overhead.

The actual length of the variable will also affect manual access to a
LONG variable. As with the CHAR, the name given to the variable acts
as a label when accessing the data in assembly language. However, the
number of bytes stored for the variable and the order in which the bytes
are stored in data memory may differ from compiler to compiler. So,
once again, it is up to the designers to do their homework and research
the exact storage format used.

 Due to the generally variable length and format of the LONG, and
its excess length, it is almost never used for accessing peripheral registers
containing control bits or data. In fact, due to their length, LONG data
types will generally only be useful for very specialized data within the
program, although a variable requiring the number of bits included in
a LONG is generally rare.

One place that LONG variables do find use is for intermediate results
in calculations involving INTs, or as accumulation variables that hold the
summation of a large number of data samples. While the LONG may
seem attractive for this use, it is can have some unforeseen consequences.
Remember that the compiler will typically convert all data in a math
function to the largest data type prior to performing the operation. This
can result in a shortage of temporary data storage during math opera-
tions on the LONG variables. As an example, performing a multiply
on a 24-bit LONG variable can use up 12 bytes of data storage just for
the temporary storage of the upgraded term variables. So, it is generally
advisable to resort to either an array of CHARs or, in extreme cases,
an array of INTs to store large data values. This allows the designer to
more tightly regulate the amount of data storage required. It also limits
the amount of temporary data storage required for math, even though
it will require a custom, and somewhat complicated, math routine.

Manually accessing a LONG variable uses the same process as ac-
cessing an INT; there are just more bytes to access. As with other data
types, the variable name will act as a label for the starting data memory

42 Chapter 2

address of the data, and the appropriate big/little endian format must
be used to access the data in the proper sequence.

FLOAT variable_name
DOUBLE variable_name

FLOAT, short for floating-point, and DOUBLE, short for double
precision floating-point, are another simple data structure common to
embedded C programming. Typically the FLOAT and DOUBLE are
used to hold very large or very small signed binary values. They accom-
plish this by using a system similar to scientific notation in base-ten
numbers. The data structure maintains a base value, or mantissa, and
an exponent which holds the power of two associated with the MSB
of the mantissa. Together, the exponent and mantissa are concatenated
into a single data structure.

Most implementations assign 32 bits of storage for the exponent
and mantissa of a FLOAT, and 64 bits for the DOUBLE. However, it
is important to note that, like the INT and LONG, the exact size of the
FLOAT is determined by the compiler implementation and, potentially,
configuration options for the compiler. So, to determine the actual size of
a FLOAT or DOUBLE in a specific compiler, it is necessary to consult
the user’s manual for the compiler being used.

Because the actual implementation of both FLOATs and DOUBLEs
is dependent upon the standard used by the compiler, and their size and
complex nature tends to limit their application in embedded designs,
they will not be discussed in any great detail here. Any reader interested
in the specifics of FLOAT or DOUBLE data structures can find addi-
tional information in either an advanced computer science text or the
IEEE specification IEEE 754.

pointer_name = *variable_name;
pointer_name = &variable_name;

Pointers are the last data structure to be covered in this chapter. A
pointer, simply stated, is a variable that holds the address of another
variable. With it, designers can access data memory independently of
a specifically defined variable name. In fact, one of the primary uses of
data pointers is to create dynamically allocated data storage, which is

Code Snippet 2.2

Declaration 2.5

Basic Embedded Programming Concepts 43

essentially an unnamed variable created “on-the-fly” as the program is
running. This ability to create storage is quite powerful, although the
responsibility of monitoring the amount of available data storage shifts
from the compiler to the designer.

Pointers are somewhat unique in that they are typically associated
with another data type. The reason for this is because the pointer needs
to know the storage format of the data so it can correctly interpret the
data. It also needs this information if it is to be used to dynamically
allocate variables, so it can reserve the right amount of memory. This
is not to say that a pointer can’t be used to access one type of data with
another type’s definition. In fact, this is one of the more powerful ca-
pabilities of the pointer type.

The syntax of the pointer data structure is also somewhat unique.
The ‘*’ sign is used as a prefix for the variable being accessed, to indicate
that the data held in the variable is to be loaded into the pointer. The
‘&’ sign is used as a prefix for the variable being accessed, to indicate
that the address of the variable is to be loaded into the pointer. What
this means is that both the data and the address of a variable can be
loaded into the pointer data structure. Having the ability to access both
gives pointers the ability to not only pass addresses around, but also to
perform math on the addresses.

Accessing pointers by machine language is typically not needed as
most microcontrollers already have the ability to access data through
index registers. This, plus the ability to use variable labels as constant
values in assembly language provides all the functionality of a pointer.
In addition, the number of bits used for a pointer will be dependent
upon the addressing modes used by the compiler and the architectural
specifics of the microcontroller. So, an explanation of how to access
pointers through assembly language will be highly specific to both the
microcontroller and the language, and of little additional value, so no
attempt will be made to explain access here.

Complex Data Types

Complex data types refer to those variable types that either hold more
than one type of data, STRUCTUREs and UNIONs, or more than

44 Chapter 2

one instance of a simple data type, ARRAYs. These data types allow the
designer to group blocks of data together, either for programming con-
venience or to allow simplified access to the individual data elements.

One complex data type that will not be covered is POINTERs,
mainly because their ability to dynamically allocate data is, in general, not
particularly applicable to small embedded applications, where the data
storage requirements tend to be static. In addition, the amount of memory
available in small microcontrollers is insufficient to implement a heap of
any reasonable size, so using pointers would be inefficient at best.

STRUCT structure_name {
variable_type variable_name;
variable_type variable_name;
} variable_name;

The STRUCTURE data type is a composite data structure that can
combine multiple variables and multiple variable types into a single
variable structure. Any simple variable structure available in the lan-
guage can typically be included within a structure, and included more
than once. The specific number of bits allocated to each variable can
also be specified, allowing the designer to tailor the storage capacity of
each variable.

Each instance of the various data structures within the STRUCTURE
is given a specific name and, when combined with the STRUCTURE’s
name, can be accessed like any other variable in the system. Names for
individual fields within a structure can even be repeated in different
STRUCTUREs because the name of the different STRUCTUREs allows
the high-level language to differentiate the two variables.

Using this capability, related variables can even be grouped together
under a single name and stored in a common location. While the im-
proved organization of storage is elegant and using a common group
name improves readability, the biggest advantage of common storage
for related variables is the ability to store and retrieve groups of data in
a faster, more efficient manner. The importance of this capability will
become clearer when context storage and switching are discussed later
in the chapter.

Declaration 2.6

Basic Embedded Programming Concepts 45

The STRUCTURE is also very useful for creating control and data
variables linked to the system peripherals, because it can be used to label
and access individual flags and groups of bits, within an 8- or 16-bit
peripheral control register. The labeling, order, and grouping of the bits
is specified when the STRUCTURE is defined, allowing the designer to
match up names and bits in the variables to the names and bits speci-
fied in the peripheral’s control and data registers. In short, the designer
can redefine peripheral control and data bits and registers and unique
variables accessible by the program.

For example, the following is a map of the control bits for an ana-
log-to-digital converter peripheral. In its control register are bits that
specify the clock used by the ADC (ADCS1 & ADCS0), bits that specify
the input channel, (CHS3--CHS0), a bit that starts the conversion and
signals the completion of the conversion (GO/DONE), and a bit that
enables the ADC (ADON).

ADCON0 (Analog to Digital Control Register)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE CHS3 ADON

To control the peripheral, some of these bits have to be set for each
conversion, and others are set only at the initial configuration of the
peripheral. Defining the individual bit groups with a STRUCTURE
allows the designer to modify the fields individually, changing some,
while still keeping others at their initialized values. A common prefix
also helps in identifying the bits as belonging to a common register.

STRUCT REGDEF{
 UNSIGNED INT ADON:1;
 UNSIGNED INT CHS3:1;
 UNSIGNED INT GODONE:1;
 UNSIGNED INT CHS:3;
 UNSIGNED INT ADCS:2;
 } ADCON0;

In the example, UNSIGNED INT data structures, of a specified 1-bit
length are defined for bits 0 through 2, allowing the designer to access
them individually to turn the ADC on and off, set the most significant
channel select bit, and initiate and monitor the conversion process.
A 3-bit UNSIGNED INT is used to specify the lower 3 bits of the

Definition 2.1

Declaration 2.7

46 Chapter 2

channel selection, and a 2-bit UNSIGNED INT is tied to clock selection.
Using these definitions, the controlling program for the analog-to-digital
converter can now control each field individually as if they were separate
variables, simplifying the code and improving its readability.

Access to the individual segments of the STRUCTURE is accom-
plished by using the STRUCTURE’s name, followed by a dot and the
name of the specific field. For example, ADCON0.GODONE = 1, will set the
GODONE bit within the ADCON0 register, initiating a conversion. As
an added bonus, the names for individual groups of bits can be repeated
within other STRUCTUREs. This means descriptive names can be reused
in the STRUCTURE definitions for similar variables, although care
should be taken to not repeat names within the same STRUCTURE.

Another thing to note about the STRUCTURE definition is that the
data memory address of the variable is not specified in the definition.
Typically, a compiler-specific language extension specifies the address of
the group of variables labeled ADCON0. This is particularly important
when building a STRUCTURE to access a peripheral control register, as
the address is fixed in the hardware design and the appropriate definition
must be included to fix the label to the correct address. Some compil-
ers combine the definition of the structure and the declaration of its
address into a single syntax, while others rely on a secondary definition
to fix the address of a previously defined variable to a specific location.
So, it is up to the designer to research the question and determine the
exact syntax required.

Finally, this definition also includes a type label “REGDEF” as part of
the variable definition. This is to allow other variables to reuse the format
of this STRUCTURE if needed. Typically, the format of peripheral con-
trol registers is unique to each peripheral, so only microcontrollers with
more than one of a given peripheral would be able to use this feature. In
fact, due to its somewhat dubious need, some compilers have dropped
the requirement for this part of the definition, as it is not widely used.
Other compilers may support the convention to only limited degrees,
so consulting the documentation on the compiler is best if the feature
is to be used.

Basic Embedded Programming Concepts 47

Access to a STRUCTURE from assembly language is simply a mat-
ter of using the name of the structure as a label within the assembly.
However, access to the individual bits must be accomplished through
the appropriate assembly language bit manipulation instructions.

UNION union_name {
variable_type variable_name;
variable_type variable_name;
} variable_name;

In some applications, it can be useful to be able to access a given
piece of data not only by different names, but also using different data
structures. To handle this task, the complex data type UNION is used.
What a UNION does is create two definitions for a common word, or
group of words, in data memory. This allows the program to change its
handling of a variable based on its needs at any one time.

For example, the individual groups of bits within the ADCON0 pe-
ripheral control register in the previous section were defined to give the
program access to the control bits individually. However, in the initial
configuration of the peripheral, it would be rather cumbersome and inef-
ficient to set each variable one at a time. Defining the STRUCTRUE from
previous example in a UNION allows the designer to not only individually
access the groups of bits within the peripheral control register, but it also
allows the designer to set all of the bits at once via a single 8-bit CHAR.

UNION UNDEF{
 STRUCT REGDEF{
 SHORT ADON;
 SHORT CHS3;
 SHORT GODONE;
 UNSIGNED CHAR CHS:3;
 UNSIGNED CHAR ADCS:2;
 } BYBIT;
 UNSIGNED CHAR BYBYTE;
 } ADCON0 @ 0x1F;

In the example, the original STRUCTURE definition is now included
within the definition of the UNION as one of two possible definitions
for the common data memory. The STRUCTURE portion of the defini-
tion has been given the sub-name “BYBIT” and any access to this side of
the definition will require its inclusion in the variable name. The second

Declaration 2.8

Declaration 2.9

48 Chapter 2

definition for the same words of data memory is an unsigned CHAR
data structure, labeled by the sub-name “BYBYTE.”

To access the control register’s individual fields, the variable name
becomes a combination of the UNION and STRUCTURE’s naming
convention; ADCON0.BYBIT.GODONE = 1. Byte-wide access is similarly
accessed through the UNION’s name combined with the name of the
unsigned CHAR: ADCON0.BYBYTE = 0x38.

data_type variable_name[max_array_size]

The ARRAY data structure is nothing more than a multielement col-
lection of the data type specified in the definition. Accessing individual
elements in the array is accomplished through the index value supplied
within the square brackets. Other than its ability to store multiple cop-
ies of the specified data structure, the variables that are defined in an
array are indistinguishable from any other single element instance of the
same data structure. It is basically a collection of identical data elements,
organized into an addressable configuration.

To access the individual data elements in an array, it is necessary to
provide an index value that specifies the required element. The index
value can be thought of as the address of the element within the group of
data, much as a house address specifies a home within a neighborhood.
One unique feature of the index value is that it can either be a single
value for a 1-dimensional array, or multiple values for a multidimensional
array. While the storage of the data is not any different for a 1-dimen-
sional array versus a multidimensional array, having more than one index
variable can be convenient for separating subgroups of data within the
whole, or representing relationships between individual elements.

By definition, the type of data within an array is the same throughout
and can be of any type, including complex data types such as STRUC-
TUREs and UNIONs. The ARRAY just specifies the organization and
access of the data within the block of memory. The declaration of the
ARRAY also specifies the size of the data block, as well as the maximum
value of all dimensions within the ARRAY.

One exception to this statement that should be noted: Not all com-
pilers support ARRAYs of BOOLEANs or BITs. Even if the compiler

Declaration 2.10

Basic Embedded Programming Concepts 49

supports the data type, ARRAYs of BOOLEANs or BITs may still not
be supported. The user’s manual should be consulted to determine the
specific options available for arrays.

Accessing an array is just a matter of specifying the index of the data
to be accessed as part of the variables; note:

ADC_DATA[current_value] = 34;

In this statement, the element corresponding to the index value
in current_value is assigned the value 34. Current_value is the index
value, 34 is the data, and ADC_DATA is the name of the array. For
more dimensions in an ARRAY, more indexes are added, surrounded
by square brackets. For instance:

ADC_DATA[current_value][date,time];

This creates a two-dimensional array with two index values required
to access each data value stored in the array.

Accessing an array via assembly language becomes a little more
complex, as the size of the data type in the array will affect the absolute
address of each element. To convert the index value into a physical data
memory address, it is necessary to multiply the index by the number of
bytes in each element’s data type, and then add in the first address of
the array. So, to find a specific element in an array of 16-bit integers,
assuming 8-bit data memory, the physical memory address is equal to:

(Starting address of the ARRAY) + (2 * (index value))

The factor of 2, multiplied by the index value, accounts for the 2-byte
size of the integer, and the starting address of the ARRAY is available
through the ARRAY’s label. Also note that the index value can include
0, and its maximum value must be 1 less than the size of the array when
it was declared.

Accessing multidimensional ARRAYs is even more complex, as the
dimensions of the array play a factor in determining the address of each
element. In the following ARRAY the address for a specific element is
found using this equation:

(starting address of the ARRAY)+(2*index1)+(2*index
2*(max_index1+1))

Code Snippet 2.3

Code Snippet 2.4

Equation 2.1

Equation 2.2

50 Chapter 2

The starting address of the array and index1 are the same as the previ-
ous example, but now both the maximum size of index1 and the value
in index2 must be taken into account. By multiplying the maximum
value of index1, plus 1, by the second index, we push the address up
into the appropriate block of data. To demonstrate, take a 3 by 4 array
of 16-bit integers defined by the following declaration:

Declaration 2.11

Table 2.3

Memory 2.1

Int K_vals[3][4] = { 0x0A01, 0x0A02, 0x0A03, 0x0B01, 0x0B02, 0x0B03,
0x0C01, 0x0C02, 0x0C03, 0x0D01, 0x0D02, 0x0D03}

This will load all 12, 16-bit, locations with data, incrementing
through the first index variable. And then incrementing the second
index variable each time the first variable rolls over. So, if you examine
the array using X as the first index value, and Y as the second, you will
see the data arrayed as follows:

X 0 1 2

Y
0 0x0A01 0x0A02 0x0A03
1 0x0B01 0x0B02 0x0B03
2 0x0C01 0x0C02 0x0C03
3 0x0D01 0x0D02 0x0D03

There are a couple of things to note about the arrangement of the
data: One, the data loaded when the array was declared was loaded by
incrementing through the first index and then the second. Two, the index
runs from 0 to the declared size–1. This is because zero is a legitimate
index value, so declaring an array as K_val[3] actually creates 3 locations
within the array indexed by 0, 1, and 2.

Now, how was the data in the array actually stored in data memory?
If we do a memory dump of the data memory starting at the beginning
address of the array, and assume a big endian format, the data should
appear in memory as follows:

0x0100: 0x0A 0x01 0x0A 0x02 0x0A 0x03 0x0B 0x01
0x0108: 0x0B 0x02 0x0B 0x03 0x0C 0x01 0x0C 0x02
0x0110: 0x0C 0x03 0x0D 0x01 0x0D 0x02 0x0D 0x03

So, using the previous equation to generate an address for the element
stored at [1][3], we get:

Basic Embedded Programming Concepts 51

Address = 0x0100 + (byte_per_var*1) + (byte_per_
var*3*3)

Address = 0x0100 + (2*1) + (2*3*3)
Address = 0x0114

From the dump of data memory, the data at 0x0114 and 0x0115 is
0x0D and 0x02, resulting in a 16-bit value of 0x0D02 which matches
the value that should be in K_vals[1][3].

Communications Protocols

When two tasks in a multitasking system want to communicate, there
are three potential problems that can interfere with the reliable com-
munication of the data. The receiving task may not be ready to accept
data when the sending task wants to send. The sending task may not be
ready when the receiving task needs the data. Or the two tasks may be
operating at significantly different rates, which means one of the two
tasks can be overwhelmed in the transfer. To deal with these timing re-
lated problems, three different communications protocols are presented
to manage the communication process.

The simple definition of a protocol is “a sequence of instructions
designed to perform a specific task.” There are diplomatic protocols,
communications protocols, even medical protocols, and each one de-
fines the steps taken to achieve a desired result, whether the result is a
treaty, transfer of a date, or treating an illness. The power of a protocol
is that it plans out all the steps to be taken, the order in which they are
performed, and the way in which any exceptions are to be handled.

The communications protocols presented here are designed to handle
the three different communications timing problems discussed previ-
ously. Broadcast is designed to handler transfers in which the sender is
not ready when the receiver wants data. Semaphore is designed to handle
transfers in which the receiver is not ready when the sender wants to
send data. Buffer is designed to handle transfers in which the rates of
the two tasks are significantly different.

Simple Data Broadcast

A simple broadcast data transfer is the most basic form of communica-
tions protocol. The transmitter places its information, and any updates,

52 Chapter 2

in a common globally accessible variable. The receiver, or receivers, of
the data then retrieve the information when they need it. Because the
receiver is not required to acknowledge its reception of the data, and the
transmitter provides no indication of changes in the data, the transfer is
completely asynchronous. A side effect of this form of transfer is that no
event timing is transferred with the data; it is purely a data transfer.

This protocol is designed to handle data that doesn’t need to include
event information as part of the transfer. This could be due to the nature
of the data, or because the data only takes on significance when combined
with other events. For example, a system that time stamps the reception
of serial communications into a system. The current time would be
posted by the real time clock, and updated as each second increments.
However, the receiver of the current time information is not interested
in each tick of the clock, it only needs to know the current time, when
a new serial communication has been received. So, the information
contained in the variables holding the current time are important, but
only when tied to secondary event of a serial communication. While a
handshaking protocol could be used for this transfer, it would involve
placing an unreasonable overhead on the receiving task in that it would
have to acknowledge event tick of the clock.

Because this transfer does not convey event timing, there are some
limitations associated with its use:

1. The receiving tasks must be able to tolerate missing intermedi-
ate updates to the data. As we saw in the example, the receiver
not only can tolerate the missing updates, it is more efficient to
completely ignore the data until it needs it.

2. The sending task must be able to complete all updates to the
data, before the information becomes accessible to the receiver.
Specifically, all updates must be completed before the next time
the receiving task executes; otherwise, the receiving task could
retrieve corrupted data.

3. If the sending task cannot complete its updates to the date before
a receiving task gains access to the data, then:

Basic Embedded Programming Concepts 53

a. The protocol must be expanded with a flag indicating that
the data is invalid, a condition that would require the receiver
to wait for completion of the update.

b. Or, the receiver must be able to tolerate invalid data without
harm.

As the name implies, a broadcast data transfer is very much like a
radio station broadcast. The sender regularly posts the most current
information in a globally accessible location, where the receiver may
retrieve the data when it needs it. The receiver then retrieves the data
when its internal logic dictates. The advantage of this system is that the
receiver only retrieves the data when it needs it and incurs no overhead
to ignore the data when it does not need the data. The down side to this
protocol is simple: the sender has no indication of when the receiver
will retrieve the data, so it must continually post updates whether they
are ultimately needed or not. This effectively shifts the overhead burden
to the transmitter. And, because there is no handshaking between the
sender and receiver, the sender has no idea whether the receiver is even
listening. So, the transfer is continuous and indefinite.

If we formalize the transfer into a protocol:

 The transmitter posts the most recent current data to a global
variable accessible by the receiver.

 The receiver then retrieves the current data, or not, whenever it
requires the information.

 The transmitter posts updates to the data, as new information
become available.

Because neither party requires any kind of handshaking from the
other and the timing is completely open and the broadcast protocol is
limited to only transferring data, no event timing is included. A receiver
that polls the variable quickly enough may catch all the updates, but
there is nothing in the protocol to guarantee it. So the receiving task
only really knows the current value of the data and either does not know
or care about its age or previous values.

54 Chapter 2

The first question is probably, “Why all this window dressing for a
transfer using a simple variable?” One task stores data in the holding
variable and another retrieves the data, so what’s so complicated? That
is correct—the mechanism is simple—but remember the limitations
that went along with the protocol. They are important, and they more
than justify a little window dressing:

1. The transmitting task must complete any updates to a broadcast
variable before the receiver is allowed to view the data.

2. If the transmitting task cannot complete an update, it must
provide an indication that the current data is not valid, and the
receiving task must be able to tolerate this wait condition.

3. Or, the receiver must be tolerant of partially updated data.

These restrictions are the important aspect of the Broadcast Transfer
and have to be taken into account when choosing a transfer protocol,
or the system could leak data.

Event-Driven Single Transfer

Data transfer in an event-driven single transfer involves not only the
transfer of data but also creates a temporary synchronization between
the transmitter and the receiver. Both information and timing cross
between the transmitter and receiver.

For example, a keyboard-scanning task detects a button press on
the keyboard. It uses an event-driven single transfer to pass the code
associated with the key onto a command-decoding task. While the code
associated with the key is important, the fact that it is a change in the
status of the keyboard is also important. If the event timing were not
also passed as part of the transfer, the command decoding task would
not be able to differentiate between the initial press of the key and a
later repeat of the key press. This would be a major problem if the key
being pressed is normally repeated as part of the system’s operations.
So, event-driven single transfers of data require an indication of new
data from the transmitter.

A less obvious requirement of an event-driven single transfer is the
acknowledgment from the receiver indicating that the data has been

Basic Embedded Programming Concepts 55

retrieved. Now, why does the transmitter need to know the receiver has
the data? Well, if the transmitting routine sends one piece of data and
then immediately generates another to send, it will need to either wait
a sufficiently long period of time to guarantee the receiver has retrieved
the first piece of data, or have some indication from the receiver that it
is safe to send the second piece of data. Otherwise, the transmitter runs
the risk of overrunning the receiver and losing data in the transfer. Of the
two choices, an acknowledge from the receiver is the more efficient use
of processor time, so an acknowledge is required as part of any protocol
to handle event-driven single transfers.

What about data—is it a required part of the transfer? Actually, no,
a specific transfer of data is not necessary because the information can
be implied in the transfer. For example, when an external limit switch is
closed, a monitoring task may set a flag indicating the closure. A receiv-
ing task acknowledges the flag by clearing it, indicating it acknowledges
the event. No format data value crossed between the monitoring and
receiving tasks because the act of setting the flag implied the data by
indicating that the limit switch had closed.

So, the protocol will require some form of two-way handshaking to
indicate the successful transfer of data, but it does not actually have to
transfer data. For that reason, the protocol is typically referred to as a
semaphore protocol, because signals for both transfer and acknowledg-
ment are required.

The protocol for handling event-driven single transfers should look
something like the following for a single transfer:

The transmitter checks the last transfer and waits if not
complete.

The transmitter posts the current data to a global variable,
accessible by the receiver (optional).

The transmitter sets a flag indicating new data is available.

The transmitter can either wait for a response or continue with
other activities.

56 Chapter 2

The receiver periodically polls the new data flag from the
transmitter.

If the flag is set, it retrieves the data (optional), and clears the
flag to acknowledge the transfer.

There are a few limitations to the protocol that should be discussed
so the designer can accurately predict how the system will operate dur-
ing the transfer.

1. If the transmitter chooses to wait for an acknowledgement from
the receiver, before continuing on with other activities:

a. Then the transmitter can skip the initial step of testing for
an acknowledge prior to posting new data.

b. However, the transmitter will be held idle until the receiver
notices the flag and accepts the data.

2. If, on the other hand, the transmitter chooses to continue on
with other activities before receiving the acknowledgement:

a. The transmitter will not be held idle waiting for the receiver
to acknowledge the transmitter.

b. However, the transmitter may be held idle at the initial step
of testing for an acknowledge prior to most new data.

It is an interesting choice that must be made by the designer. Avoid
holding the transmitter idle and risk a potential delay of the next byte
to be transferred, or accept the delay knowing that the next transfer will
be immediate. The choice is a trade-off of transmitter overhead versus
a variable delay in the delivery of some data.

Other potential problems associated with the semaphore protocol can
also appear at the system level and an in-depth discussion will be included
in the appropriate chapters. For now, the important aspect to remember
is that a semaphore protocol transfers both data and events.

Event-Driven Multielement Transfers

In an event-driven multielement transfer, the requirement for reliable
transfer is the same as it is for the Event driven single transfer. However,
due to radically different rates of execution, the transmitter and receiver

Basic Embedded Programming Concepts 57

can not tolerate the synchronization required by the semaphore protocol.
What is needed is a way to slow down the data from the transmitter, so
the receiver can process it, all without losing the reliability of a hand-
shaking style of transfer.

As an example, consider a control task sending a string of text to a
serial output task. Because the serial output task is tied to the slower
transfer rate of the serial port, its execution will be significantly slower
than the control task. So, either the control task must slow down its
execution to accommodate the serial task, or some kind of temporary
storage is needed to hold the message until the serial task is ready to send
it. Given the control task’s work is important and it can’t slow down to
the serial task’s rate, then the storage option is the only one that makes
sense in the application.

So, the protocol will require at a minimum; some form of data stor-
age, a method for storing the data, and a method for retrieving it. It is
also assumed that the storage and retrieval methods will have to com-
municate the number of elements to be transferred as well.

A protocol could be set up that just sets aside a block of data memory
and a byte counter. The transmitting task would load the data into the
memory block and set the byte counter to the number of data elements.
The receiving task can then retrieve data until its count equals the byte
counter. That would allow the transmitting task to run at its rate loading
the data, and allow the receiver to take that data at a rate it can handle.
But what happens if the transmitting task has another block of data to
transfer, before the receiving task has retrieved all the data?

A better protocol is to create what is referred to as a circular buffer,
or just buffer protocol. A buffer protocol uses a block of data memory
for storage, just as the last protocol did. The difference is that a buffer
also uses two address pointers to mark the locations of the last store and
retrieve of data in the data block. When a new data element is added
to the data memory block, it is added in the location pointed to by the
storage pointer and the pointer is incremented. When a data element
is retrieved, the retrieval pointer is used to access the data and then it is

58 Chapter 2

incremented. By comparing the pointers, the transmitting and receiving
tasks can determine:

1. Is the buffer empty?

2. Is there data present to be retrieved?

3. Is the buffer is full?

So, as the transmitter places data in the buffer, the storage pointer
moves forward through the block of data memory. And as the receiver
retrieves data from the buffer, the retrieval pointer chases the storage
pointer. To prevent the system from running out of storage, both pointers
are designed to “wraparound” to the start of the data block when they
pass the end. When the protocol is operating normally, the storage
pointer will jump ahead of the retrieval pointer, and then the retrieval
pointer will chase after it. Because the circular buffer is essentially infinite
in length, because the pointers always wraparound, the storage space will
be never run out. And the two pointers will chase each other indefinitely,
provided the transmitter doesn’t stack up so much data that the storage
pointer “laps” the retrieval pointer.

So, how does the buffer protocol look from the pointer of view of
the transmitting task and the receiving task. Let’s start with the transmit
side of the protocol:

The transmitter checks to see if the buffer is full, by comparing
the storage pointer to the retrieval pointer.

If the buffer is not full, it places the data into the buffer using
the storage pointer and increments the pointer.

If the transmitter wishes to check on the receiver’s progress, it
simply compares the storage and retrieval pointers.

From the receiver’s point of view:

The receiver checks the buffer to see if data is present by compar-
ing the storage and retrieval pointers.

If the pointers indicate data is present, the receiver retrieves the
data using the retrieval pointer and increments the pointer.

Basic Embedded Programming Concepts 59

So, the two tasks have handshaking through the two pointers, to
guarantee the reliable transfer of data. But, using the data space and
the pointers allows the receiving task to receive the data at a rate it can
handle, without holding up the transmitter.

Implementing a buffer protocol can be challenging though, due to
the wraparound nature of the pointers. Any increment of the pointers
must include a test for the end of the buffer, so the routine can wrap the
pointer back around to the start of the buffer. And, the comparisons for
buffer full, buffer empty, and data present can also become complicated
due to the wraparound.

In an effort to alleviate some of this complexity, the designer may
choose to vary the definition of the storage and retrieval pointers to
simplify the various comparisons. Unfortunately, no one definition
will simplify all the comparisons, so it is up to the designer to choose
which definition works best for their design. The following shows all
four possible definitions for the storage and retrieval pointers, plus the
comparisons required to determine the three buffer conditions.

Pointer definitions Comparisons Meaning
Storage > last element stored IF (Storage == Retrieval) then buffer is empty
Retrieval > last element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage <> Retrieval) then data present

Storage > last element stored IF (Storage+1 == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage+1 <> Retrieval) then data present

Storage > next element stored IF (Storage == Retrieval+1) then buffer is empty
Retrieval > last element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage <> Retrieval+1) then data present

Storage > next element stored IF (Storage == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage <> Retrieval) then data present

Table 2.4

60 Chapter 2

It is interesting that the comparisons required to test each condition
don’t change with the definition of the pointers. All that does change
is that one or the other pointer has to be incremented before the com-
parison can be made. The only real choice is which tests will have to
temporarily increment a pointer to perform its test, the test for buffer
full, or the test for buffer empty/data available. What this means for
the designer is that the quicker compare can be delegated to either the
transmitter (checking for buffer full), or the receiver (checking for data
present). Since the transmitter is typically running faster, then options
one or four are typically used.

Also note that the choices are somewhat symmetrical; options one
and four are identical, and options two and three are very similar. This
makes sense, since one and four use the same sense for their storage and
retrieval pointers, while the pointer sense in two and three are opposite
and mirrored.

One point to note about buffers, because they use pointers to store
and retrieve data and the only way to determine the status of the buffer
is to compare the pointers, the buffer-full test always returns a full status
when the buffer is one location short of being full. The reason for this
is because the comparisons for buffer empty and buffer full turn out to
be identical, unless the buffer-full test assumes one empty location.

If a buffer protocol solves the problem of transferring data between
a fast and slow task, then what is the catch? Well, there is one and it is
a bear. The basic problem is determining how big to make the storage
space. If it is too small, then the transmitter will be hung up waiting for
the receiver again because it will start running into buffer-full condi-
tions. If it is too large, then data memory is wasted because the buffer
is under-utilized.

One final question concerning the buffer protocol is how is the size
of the data storage block determined? The size can be calculated based
on the rates of data storage, data retrieval, and the frequency of use. Or
the buffer can be sized experimentally by starting with an oversized buffer
and then repeatedly testing the system while decreasing the size. When
the transmitting tasks starts hitting buffer-full conditions, the buffer is

Basic Embedded Programming Concepts 61

optimized. For now, just assume that the buffer size is sufficient for the
designs need, and a more in-depth explanation of the two methods will
be presented in Chapter 5.

Mathematics

In embedded programming, mathematics is the means by which a pro-
gram models and predicts the operation of the system it is controlling.
The math may take the form of thermodynamic models for predicting
the best timing and mixture in an engine, or it may be a simple time
delay calculation for the best toasting of bread. Either way, the math is
how a microcontroller takes its view of the world and transforms that
data into a prediction of how to best control it.

For most applications, the math libraries supplied with the compiler
will be sufficient for the calculations required by our models and equa-
tions. However, on occasion, there will be applications where it may
be necessary to “roll our own” routines, either for a specialized math
function, or just to avoid some speed or data storage inefficiencies as-
sociated with the supplied routines. Therefore, a good understanding
of the math underlying the libraries is important, not only to be able
to replace the routines, but also to evaluate the performance of the sup-
plied functions.

Binary Addition and Subtraction

Earlier in the chapter, it was established that both base ten and binary
numbering system use a digit position system based on powers of the
base. The position of the digit also plays a part in the operation of the
math as well. Just as base-ten numbers handle mathematics one digit at
a time, moving from smallest power to largest, so do binary numbers in
a computer. And just like base-ten numbers, carry and borrow opera-
tions are required to roll up over- or under-flows from lower digits to
higher digits. The only difference is that binary numbers carry up at
the value 2 instead of ten.

So, using this basic system, binary addition has to follow the fol-
lowing rules:

62 Chapter 2

If the carry_in from the next lower digit = 0
0 + 0 + carry_in results in 0 & carry_out = 0
1 + 0 + carry_in results in 1 & carry_out = 0
0 + 1 + carry_in results in 1 & carry_out = 0
1 + 1 + carry_in results in 0 & carry_out = 1

If the carry_in from the next lower digit = 1
0 + 0 + carry_in results in 1 & carry_out = 0
1 + 0 + carry_in results in 0 & carry_out = 1
0 + 1 + carry_in results in 0 & carry_out = 1
1 + 1 + carry_in results in 1 & carry_out = 1

Using these rules in the following example of binary addition pro-
duces a result of 10101100. Note the carry_in values are in bold:

111 111 <--carry bits
00110101
+01110111

0 1 + 1 = 0 with carry_out
0 1 + 0 + carry_in = 0 with carry_out
1 1 + 1 + carry_in = 1 with carry_out
1 0 + 0 + carry_in = 1
0 1 + 1 = 0 with carry_out
1 1 + 1 + carry_in = 1 with carry_out
0 1 + 0 + carry_in = 0 with carry_out
1 0 + 0 + carry_in = 1
10101100

Converting the two values to decimal, we get 53 + 119, for a total
of 172. 172 in binary is 1010110, so the math checks.

Binary subtraction operates in a similar manner, using the borrow
instead of carry. Building a similar table of rules for subtraction yields
the following:

Example 2.7

Table 2.5

Table 2.6

Basic Embedded Programming Concepts 63

If the borrow_in from the next lower digit = 0
0 – 0 – borrow in results in 0 & borrow_out = 0
1 – 0 – borrow in results in 1 & borrow_out = 0
0 – 1 – borrow in results in 1 & borrow_out = 1
1 – 1 – borrow in results in 0 & borrow_out = 0

If the borrow_in from the next lower digit = 1
0 – 0 – borrow in results in 1 & borrow_out = 1
1 – 0 – borrow in results in 0 & borrow_out = 0
0 – 1 – borrow in results in 0 & borrow_out = 1
1 – 1 – borrow in results in 1 & borrow_out = 1

Using these rules for subtraction in the following example produces
a result of 00111110. Note the borrow values are in bold:

111111 <--borrow
10110101
-01110111

0 1 – 1 = 0
1 0 – 1 = 1 with borrow_out
1 1 – 1 – borrow_in = 1 with borrow_out

1 0 – 0 – borrow_in = 1 with borrow_out
1 1 – 1 – borrow_in = 1 with borrow_out

1 1 – 1 – borrow_in = 1 with borrow_out
0 0 – 1 – borrow_in = 0 with borrow_out

0 1 – 0 – borrow_in = 0
00111110

Converting the two values to decimal, we get 181 – 119, for a differ-
ence of 62. 62 in binary is 00111110, so, again, the math checks.

And, as expected, binary addition and subtraction are not any dif-
ferent than addition and subtraction in base ten. The carry_out carries
up a value of 1 to the next digit, and a borrow_out carries up a value
of –1 to the next digit. This makes sense—addition and subtraction
are universal concepts, and should be independent of the base of the
number system.

Table 2.7

Example 2.8

Table 2.8

64 Chapter 2

Binary Multiplication

In addition, we added each digit together, one at a time, and carried the
overflow up to the next digit as a carry. In multiplication, we multiply
each digit together, one at a time, and carry the overflow up to the next
digit as a carry as well. The only difference is that the carry may be
greater than 1.

For multipliers with more than one digit, we again handle each one
separately, multiplying the digit through all the digits of the multipli-
cand, and then add the results from each digit together to get a result,
making sure to align the digits with the digit in the multiplier. For
example:

123 Multiplicand
 x321 Multiplier

 123 (1 x 123 x 1) the x1 is due to the position of the
1 in the multiplier

 2460 (2 x 123 x 10) the x10 is due to the position of the
2 in the multiplier

 +36900 (3 x 123 x 100) the x100 is due to the position of the
3 in the multiplier

 37483 Result

Thus is the essence of long multiplication—straightforward and
simple, if somewhat tedious. So, it should come as no surprise that
the process is no different for binary multiplication. Each bit in the
multiplier, 1 or 0, is multiplied by each of the bits in the multiplicand.
And when all the bits have been multiplied, we add together the result,
making sure that we keep each interim result lined up with its multiplier
bit. Just as straightforward and simple, although a little less tedious as
we only have to multiply by 1 or 0.

So, if we convert 6 and 11 into binary and multiply them together,
we should get the binary equivalent of 66.

Example 2.9

Basic Embedded Programming Concepts 65

1011 (11 in decimal)
x0110 (6 in decimal)

00000000 (0 x 1011, the original value x 1)
00010110 (1 x 10110, the original value x 2)
00101100 (1 x 101100, the original value x 4)
+00000000 (0 x 1011000, the original value x 8)
01000010

And, 01000010 in decimal is 66, so once again the math checks
out.

Before we move on to division, let’s take a minute and check out
some interesting points in binary multiplication.

1. The digit by digit multiply is only multiplying by 1 or 0, so the
process of multiplying each bit of the multiplier with each bit
of the multiplicand is very simple. In fact, algorithms for binary
multiply typically don’t bother with the bit-by-bit multiply; they
just check the multiplier bit and if it is set, they shift over the
multiplicand and add it into the result.

2. The act of shifting the multiplicand left to align with the multi-
plier, for each bit in the multiplier, would be a waste of time. It
is simpler to just create a temporary variable to hold the shifted
form of the multiplier from the last bit, and then shift it once for
the next. That way the temporary variable only has to be shifted
once for each bit of the multiplier.

3. The bits in the multiplier will have to be tested one at a time,
from the LSB to the MSB, to perform the multiplication. If we
can use a temporary variable to hold a shift copy of the multi-
plicand, why not use a temporary variable to hold a shifted copy
of the multiplier that shifts to the right? That way the bit tested
in the multiplier is always the LSB.

4. The result of the multiply was nearly twice the size of the multi-
plier and multiplicand. In fact, if the multiplier and multiplicand
were both 1111, it would have been twice the size. So, to prevent
losing any bits in the result to roll over, the multiply algorithm
will have to have a result at least twice the size of input variables,
or have a number of bits equal to the total bits in both the input
variables, if they are different sizes.

Example 2.10

66 Chapter 2

Using these insights, an efficient binary multiply routine can be
created that is fairly simple. It is just a matter of shifting and adding
inside a loop:

char A ; multiplicand
char B ; multiplier
int C ; 16-bit result
int temp_a ; 16-bit temp holding variable for
 multiplicand

char temp_b ; 8-bit temp holding variable for
 multiplier

C = 0
Temp_a = A
Temp_b = B
FOR I = 0 to 7 ; multiplier is 8 bits
 IF (LSB of B = 1) THEN C = C + temp_a
 SHIFT temp_a LEFT 1 ;multiplicand * 2
 SHIFT temp_b RIGHT 1 ; multiplier / 2
NEXT I

For each pass through the loop, the LSB of the multiplier is tested.
If the bit is set, then the multiplicand is added to the result. If the bit
is clear, the multiplicand is not added to the result. In either case, the
temporary copy of the multiplicand is multiplied by 2 and the temporary
copy of the multiplier is divided by 2 for the next pass through the loop.
The loop repeats until all of the multiplicand bits have been tested.

Binary Division

Binary division is also a simplified version of base 10 long division.
Remember the techniques for base 10 division from school? Take the
divisor and see if it divides into the first digit of the dividend and if it
does, put the number of times it does above the line. Then multiply that
result by the divisor and subtract it from the dividend. Pass the remain-
der down to the next line and repeat the process until the remainder is
less than the divisor. At that point, you have a result and any left-over
remainder.

Algorithm 2.1

Basic Embedded Programming Concepts 67

Binary division operates in the same way; the divisor is left shifted
until its LSB is in the same digit position as the MSB of the dividend,
and the divisor is subtracted from the dividend. If the result is positive,
the corresponding bit in the result is set, the divisor is right shifted one
position, and the process is repeated until the result is less than the re-
mainder. As an example, let’s take 15 and divide it by 5. 15 is 1111 in
binary, and 5 is 0101. Performing the divide:

Example 2.11

Example 2.12

0128
Divisor 12 1546

0000
1546
1200
346
240
106
96
10

result

dividend
(0 x 12 x 1000)

(1 x 12 x 100)

(2 x 12 x 10)

(8 x 12 x 1)
remainder

)Divisor 0101

Result

Dividend
(0 x 0101 x 1000)

(0 x 0101 x 0100)

(1 x 0101 x 0010)

(1 x 0101 x 0001)
Remainder

0011

0001111
0101000
−0010100
0001111
0010100
−0010100
0001111
−0001010
0000101
−0000101

0

We end up with a result of 0011, or 3 in decimal, with a 0 remainder.
Since 15 divided by 5 is equal to 3 with no remainder, the math checks.

If we examine the division process, we find some of the same interest-
ing points that we found in examining the multiply process:

1. Prior to beginning the divide, the divisor had to be left-shifted
until its LSB was in the same digit position as the dividend’s MSB.
This means the algorithm will require a temporary variable for
the divisor.

2. The difference between the dividend and the shifted devisor will
also have to be held in a temporary variable.

68 Chapter 2

3. To accommodate the initial subtractions of the divisor, the divi-
dend had to be padded with additional zeros. So, the minimum
length of the temporary variable used for the dividend must be
at least equal to the total number of bits in the dividend and the
divisor, –1. Remember that the first subtraction is with the LSB of
the divisor in the same position as the MSB or the dividend.

4. The temporary variable used to hold the dividend will hold the
remainder at the end of the operation.

5. The bit set in the result for each successful subtraction of the
divisor is the same digit position as the LSB of the divisor.

Using these insights, an efficient binary multiply routine can be
created that is fairly simple. It is just a matter of shifting, testing and
subtracting with a bit set. The resulting algorithm is similar to the
multiplication algorithm:

Algorithm 2.2

char A // divisor
char B // dividend
char C // result
char R // remainder
int temp_a // 16-bit temp holding variable for divisor
int temp_b // 16-bit temp holding variable for dividend

C = 0
temp_a = SHIFT A LEFT 7 // left shift divisor 7x
temp_b = B // dividend
FOR I = 0 to 7 // loop repeats 8x
 SHIFT C LEFT 1 // shift to next bit in R
 temp_b = temp_b – temp_a
 if (borrow = 0)
 then
 C = C + 1;
 ; set the bit
 else
 temp_b = temp_b + temp_a // undo subtract
 endif
 SHIFT temp_a RIGHT 1 // shift the divisor 1
NEXT I
R = temp_b

Basic Embedded Programming Concepts 69

At the start of the routine, the divisor and dividend are copied into
their temporary variables, and the divisor is left-shifted 7 times. This
leaves the divisor LSB in the same digit position as the MSB of the
dividend. The divisor is subtracted from the dividend and the result
is checked for a borrow; remember that the borrow indicated that the
divisor is larger than the dividend, resulting in a negative difference. If
the borrow is set, then the divisor is added back into the dividend to
undo the subtraction. If the borrow is clear, then the dividend can be
subtracted, and the corresponding bit in the result is set. The divisor is
right-shifted, and the loop repeats for all 8 bits in the dividend.

Note that the bit set in the result is always the LSB, and the result is
shifted one position to the left at the start of each loop. But, from the
section above, we expected to set the result bits from the MSB down to
the LSB, corresponding with the LSB of the divisor. Why the change?
The algorithm could be done as it is described previously, but it would
require another temporary variable to hold a single bit corresponding
to the LSB of the divisor. The bit would be shifted with the divisor,
and if the divisor was subtracted, we would OR the bit into the result.
However, by setting the LSB and shifting left each time the divisor is
shifted right, we accomplish the same result, and it doesn’t require an
additional temporary variable for a single bit.

Numeric Comparison

In the previous example of division, we compared the divisor to the
dividend on each pass through the loop to determine if the divisor was
less than or equal to the dividend. We did this with a subtraction and a
test of the borrow flag. If the result of the subtraction was negative, then
the divisor was greater than the dividend. But what about greater than,
equal to, less than or equal to, or just plain not equal—how are those
comparisons performed? The answer is that we still do a subtraction,
but we just have to test for the right combination of positive, negative,
or zero.

Fortunately, microcontrollers are well-equipped to perform these
tests because whenever a microcontroller performs a subtraction, status
flags in the microcontroller’s status register record information about

70 Chapter 2

the result. Typically, this information includes both a borrow and zero
flags. The borrow flag indicates whether the result of the operation was
positive or negative and the zero flag tells us if the result of the opera-
tion was zero.

So, if we look at the results of a subtraction, by testing the flags we
should be able to determine every combination of relationships between
the two values:

If the result of the subtraction is zero, then the two values are
equal.

If the borrow flag is set, then the larger value was subtracted from
a smaller value.

If the borrow is clear, then the smaller was subtracted from the
larger, unless the zero flag is also set, in which case the values are
equal.

Fairly simple, but unfortunately, there is a little more to it than just
less than, greater than, and equal. There is also greater than or equal,
less than or equal, and just not equal. The microcontroller could just
perform the subtraction and test for all of the possible combinations of
flags, but if both flags have to be tested for every condition that could
be inefficient. Some conditions will require that both flags be tested,
and others will require only one test. Assuming that the tests exhibit
some symmetry, it should be possible to swap the order of the variables
in the subtraction to give us a set of operations that can determine the
relationship with only one test. So, let’s build a table showing both pos-
sible ways the subtraction can be performed for each of the tests and see
if we can find a single test for each condition.

Basic Embedded Programming Concepts 71

Relationship Subtraction Result Tests required
A > B B – A Negative Borrow = true

A – B Positive & non-zero Borrow = false and Zero = false
A => B B – A Negative or zero Borrow = true or Zero = true

A – B Positive Borrow = false
A = B B – A Zero Zero = true

A – B Zero Zero = true
A <= B B – A Positive Borrow = false

A – B Negative or zero Borrow = true or Zero = true
A < B B – A Positive & non-zero Borrow = false and Zero = false

A – B Negative Borrow = true
A!= B B – A Non-zero Zero = false

A – B Non-zero Zero = false

From the table, we can determine that:

For A > B, subtract A from B and test for Borrow = true.

For A => B, subtract B from A and test for Borrow = false.

For A = B, subtract either variable from the other and test for
Zero = true.

For A <= B, subtract A from B and test for Borrow = false.

For A < B, subtract B from A and test for Borrow = true.

For A != B, subtract either variable from the other and test for
Zero = false.

As predicted, by swapping the order of the variables in some of the
subtractions, we can simplify the tests down to a single bit test for each
of the possible comparisons.

Conditional Statements

Now that we have the math of the comparison figured out, what about
the conditionals statements that use the comparison? If we assume
a C-like programming language, the conditional statements include
IF/THEN/ELSE, SWITCH/CASE, DO/WHILE, and FOR/NEXT.
While some of the statements are related, each has its own unique func-
tion and requirements.

Table 2.9 Subtraction-Based Comparisons

72 Chapter 2

The IF/THEN/ELSE, or IF statement, is the most basic conditional
statement. It makes a comparison and, based on the result, changes
the flow of execution in the program. The change can be to include an
additional section of the program, or to select between two different
sections. The comparison can be simple or compound. The statements
can even be nested to produce a complex decision tree. In fact, the IF
statement is the basis for all of the conditional statements, including
the SWITCH/CASE, DO/WHILE, and FOR/NEXT.

For now, let’s start with just the basic IF conditional statement. In a
typical IF, a comparison is made using the techniques described in the
last section. If the result of the comparison is true, the block of instruc-
tions associated with the THEN part of the statement is executed. If the
result of the comparison is false, the block of instructions associated with
the ELSE part of the statement is executed. Note, the ELSE portion of
the statement is optional in most high-level languages. If the ELSE is
omitted, then a false result will cause the program to fall through the
instruction with no action taken. The implementation of the statement
typically takes the following form:

IF (comparison)
 THEN
 {Section_a}
 ELSE
 {Section_b}
ENDIF ; note some languages use {}

around the two
; sections in place of ENDIF

A common variation of the basic IF is to combine two or more state-
ments into a more complex comparison. This is commonly referred to
as Nested IF statements, and may involve new IF statements in either,
or both, the THEN or ELSE side of the statement. By nesting the IF
statements, several different comparisons can be obtained:

Complex combinations, involving multiple variables, can be
tested for a single combination.

A single variable can be compared to multiple values.

Or multiple variables can be compared against multiple values.

Code Snippet 2.5

Basic Embedded Programming Concepts 73

Let’s start with the simpler comparison, comparing multiple variables
for a single combination. This comparison can be implemented by
nesting multiple IF statements, the first IF comparing the first variable
against its value and the THEN portion of the statement, another IF
comparing the second variable against its value, and so on for all the
variables and values.

IF (Var_A > 5)
 THEN IF (Var_B < 3)
 THEN IF (Var_C <> 6)
 THEN
 {Section_a}
ENDIF
IF (Var_A <= 5) THEN {Section_b}
IF (Var_B >= 3) THEN {Section_b}
IF (Var_C == 6) THEN {Section_b}

However, this is an inefficient use of program memory because each
statement includes the overhead of each IF statement. The ELSE con-
dition must be handled separately with multiple copies of the Section
B code.

The better solution is to put all the variables and the values in a single
compounded IF statement. All of the variables, compared against their
values, are combined using boolean operators to form a single yes or no
comparison. The available boolean operators are AND (&&), OR (||),
and NOT (!). For example:

IF (Var_A > 5) && (Var_B < 3) && (Var_C <> 6)
 THEN
 {Section_a}
 ELSE
 {Section_b}
 ENDIF

This conditional statement will execute Section_a if; Var_A > 5 and
Var_B < 3, and Var_C is not equal to 6. Any other combination will
result in the execution of Section_b. So, this is a smaller, more com-
pact, implementation that is much easier to read and understand in the
program listing.

Code Snippet 2.6

Code Snippet 2.7

74 Chapter 2

The next IF statement combination to examine involves compar-
ing a single variable against multiple values. One of the most common
examples of this type of comparison is a WINDOW COMPARISON.
In a window comparison, a single variable is compared against two values
which form a window, or range, of acceptable or unacceptable values.
For instance, if the temperature of a cup of coffee is greater than 40
degrees C, but less than 50 degrees C, it is considered to have the right
temperature. Warmer or colder, it either is too cold or too hot to drink.
Implementing this in a IF statement would result in the following:

IF (Temperature > 40) && (Temperature < 50)
 THEN
 {Drink}
 ELSE
 {Don’t_Drink}
 ENDIF

The compound IF statement checks for both a “too hot” and “too
cool” condition, verifying that the temperature is within a comfortable
drinking temperature range. The statement also clearly documents what
range is acceptable and what is not.

Another implementation of comparing a single value against mul-
tiple values is the ELSE IF combination. In this configuration, a nested
IF is placed in the ELSE portion of the statement, creating a string of
comparisons with branches out of the string for each valid comparison.
For instance, if different routines are to be executed for each of several
different values in a variable, an ELSE IF combination can be used to
find the special values and branch off to each one’s routine. The nested
IF statement would look like the following:

IF (Var_A = 5)
 THEN
 {Routine_5}
 ELSE IF (Var_A = 6)
 THEN
 {Routine_6}
 ELSE IF (Var_A = 7)
 THEN
 {Routine_7}
 ELSE
 {Other_Routine}

Code Snippet 2.8

Code Snippet 2.9

Basic Embedded Programming Concepts 75

And,

If Var_A is 5, then only Routine_5 is executed.

If Var_A is 6, then only Routine_6 is executed.

If Var_A is 7, then only Routine_7 is executed.

If Var_A is not 5, 6, or 7, then only the Other_Routine is
executed.

Now, if each statement checks for its value, why not just have a list
of IF statements? What value does nesting the statements have? There
are three reasons to nest the IF statements:

1. Nesting the IF statements saves one IF statement. If the com-
parison was implemented as a list of IF statements, a window
comparison would be required to determine when to run the
Other_Routine. It is only run if the value is not 5, 6, or 7.

2. Nesting the statements speeds up the execution of the program.
In the nested format, if Routine_5 is executed, then when it is
done, it will automatically be routed around the rest of the IF
statements and start execution after the last ELSE. In a list of
IF statements, the other three comparisons would have to be
performed to get past the list of IF statements.

3. If any of the routines modify Var_A, there is the possibility
that one of the later comparisons in the last might also be true,
resulting in two routines being executed instead of just the one
intended routine.

So, nesting the ELSE IF statements has value in reduced program size,
faster execution speed, and less ambiguity in the flow of the program’s
execution.

For more complex comparisons involving multiple variables and
values, IF/THEN/ELSE statements can be nested to create a decision
tree. The decision tree quickly and efficiently compares the various
conditions by dividing up the comparison into a series of branches.
Starting at the root of the tree, a decision is made to determine which
half of the group of results is valid. The branches of the first decision

76 Chapter 2

then hold conditional statements that again determine which ¼ set of
solutions are valid. The next branch of the second decision then deter-
mines which 1/8 set of solutions is valid, and so on, until there is only
one possible solution left that meets the criteria. The various branches
resemble a tree, hence the name “decision tree.”

To demonstrate the process, assume that the letters of a name—
Samuel, Sally, Thomas, Theodore, or Samantha—are stored in an array
of chars labeled NAME[]. Using a decision tree, the characters in the
array can then be tested to see which name is present in the array. The
following is an example of how a decision tree would be coded to test
for the three names:

IF (NAME[0] == ‘S’)
 THEN IF (NAME[2] == ‘m’)
 THEN IF (NAME[3] == ‘a’)
 THEN Samantha_routine();
 ELSE Samuel_routine();
 ELSE Sally_routine
 ELSE IF (NAME[2] == ‘o’)
 THEN Thomas_routine();
 ELSE Theodore_routine();

The first IF statement uses the letter in location 0 to differentiate
between S and T to separate out Thomas and Theodore from the list
of possible solutions. The next IF in both branches uses the letter is
location 2 to differentiate between M and L to separate out Sally from
the list of possible solutions, and to differentiate between Thomas and
Theodore. The deepest IF uses the letter in location 3 to differentiate
between Samantha and Samuel. So, it only takes two comparisons to
find Thomas, Theodore, or Sally, and it only three comparisons to find
either Samantha or Samuel.

If, on the other hand, the comparison used a list of IF statements
rather than a decision tree, then each IF statement would have been more
complex, and the number of comparisons would have increased. With
each statement trying to find a distinct name, all of the differentiating

Code Snippet 2.10

Basic Embedded Programming Concepts 77

letters must be compared in each IF statement. The number of com-
parisons required to find a name jumps from a worst case of three (for
Samantha and Samuel), to four and five for the last two names in the IF
statement list. To provide a contrast, the list of IF statements to imple-
ment the name search is shown below:

IF (NAME[0] == ‘S’) && (NAME[2] == ‘m’) && (NAME[3]
== ‘a’)

 THEN Samantha_routine;
IF (NAME[0] == ‘S’) && (NAME[2] == ‘m’) && (NAME[3]

== ‘u’)
 THEN Samuel_routine;
IF (NAME[0] == ‘S’) && (NAME[2] == ‘a’)
 THEN Sally_routine;
IF (NAME[0] == ‘T’) && (NAME[2] == ‘o’)
 THEN Thomas_routine;
IF (NAME[0] == ‘T’) && (NAME[2] == ‘e’)
 THEN Theodore_routine;

As predicted, it will take four comparisons to find Thomas, and five
to find Theodore, and the number of comparisons will grow for each
name added to the list. The number of differentiating characters that
will require testing will also increase and names that are similar to those
in the list increase. A decision tree configuration of nested IF statements
is both smaller and faster.

Another conditional statement based on the IF statement is the
SWITCH/CASE statement, or CASE statement as it is typically called.
The CASE statement allows the designer to compare multiple values
against a single variable in the same way that a list of IF statements can
be used to find a specific value. While a CASE statement can use a com-
plex expression, we will use it with only a single variable to determine
equality to a specific set of values, or range of values.

In its single variable form, the CASE statement specifies a controlling
variable, which is then compared to multiple values. The code associ-
ated with the matching value is then executed. For example, assume a
variable (Var_A) with five different values, and for each of the values a

Code Snippet 2.11

78 Chapter 2

different block of code must be executed. Using a CASE statement to
implement this control results in the following:

SWITCH (Var_A)
{
 Case 0: Code_block_0();
 Break;
 Case 1: Code_block_1();
 Break;
 Case 2: Code_block_2();
 Break;
 Case 3: Code_block_3();
 Break;
 Case 4: Code_block_4();
 Break;
 Default: Break;
}

Note that each block of code has a break statement following it. The
break causes the program to break out of the CASE statement when it
has completed. If the break were not present, then a value of zero would
have resulted in the execution of Code block 0, followed by Code block
1, then Code block 2, and so on through all the blocks in order. For
this example, we only wanted a single block to execute, but if the blocks
were a sequence of instructions and the variable was only supplying the
starting point in the sequence, the case statement could be used to start
the sequence, with Var_A supplying the starting point.

Also note the inclusion of a Default case for the statement; this is
a catch-all condition which will execute if no other condition is deter-
mined true. It is also a good error recovery mechanism when the variable
in the SWITCH portion of the statement becomes corrupted. When
we get to state machines, we will discuss further the advantages of the
Default case.

Loops

Often it is not enough to simply change the flow of execution in a pro-
gram. sometimes what is needed is the ability to repeat a section until a
desired condition is true, or while it is true. This ability to repeat until a
desired result or do while a condition is true is referred to as an iteration
statement, and it is very valuable in embedded programming. It allows

Code Snippet 2.12

Basic Embedded Programming Concepts 79

designers to write programs that can wait for desired conditions, poll
for a specific event, or even fine tune a calculation until a desired result
occurs. Building these conditional statements requires a combination of
the comparison capabilities of the IF statement with a simple GOTO
to form a loop.

Typically there are three main types of iterating instructions, the
FOR/NEXT, the WHILE/DO and the DO/WHILE. The three state-
ments are surprisingly similar; all use a comparison function to determine
when to loop and when not to, and all use an implied GOTO command
to form the loop. In fact, the WHILE/DO and the DO/WHILE are
really variations of each other, with the only difference being when the
comparison is performed. The FOR/NEXT is unique due to its ability
to automatically increment/decrement its controlling variable.

The important characteristic of the WHILE/DO statement, is that
it performs its comparison first. Basically, WHILE a condition is true,
DO the enclosed loop. Its logic is such that if the condition is true, then
the code inside the loop is executed. When the condition is false, the
statement terminates and begins execution following the DO. This has
an interesting consequence: if the condition is false prior to the start of
the instruction, the instruction will terminate without ever executing
the routine within the loop. However, if the condition is true, then the
statement will execute the routine within the loop until the condition
evaluates as false. The general syntax of a DO/WHILE loop is shown
below:

WHILE (comparison)
 Routine();
DO

DO is a marker signifying the end of the routine to be looped, and
the WHILE marks the beginning, as well as containing the comparison
to be evaluated. Because the comparison appears at the beginning of
the routine to be looped, it should be remembered that the condition
is evaluated before the first execution of the routine and the routine is
only executed if the condition evaluates to a true.

Code Snippet 2.13

80 Chapter 2

The mirror of the WHILE/DO is the DO/WHILE statement. It
is essentially identical to the WHILE/DO, with the exception that it
performs its comparison at the end. Basically, DO the enclosed loop,
WHILE a condition is true. Its logic is such that, if the condition is true,
then the code inside the loop is executed. When the condition is false,
the statement terminates and begins execution following the WHILE.
This has the alternate consequence that, even if the condition is false
prior to the start of the instruction, the instruction will execute the rou-
tine within the loop at least once before terminating. If the condition is
true, then the statement will execute the routine within the loop until
the condition evaluates as false. The general syntax of a DO/WHILE
loop is shown below:

DO
 Routine();
WHILE (comparison)

DO is a marker signifying the beginning of the routine to be looped,
and the WHILE marks the end, as well as containing the comparison to
be evaluated. Because the comparison appears at the end of the routine
to be looped, it should be remembered that the condition is evaluated
after the first execution of the routine.

So, why have two different versions of the same statement? Why a
DO/WHILE and a WHILE/DO? Well, the DO/WHILE could more
accurately be described as a REPEAT/UNTIL. The ability to execute
the routine at least once is desirable because it may not be possible to
perform the comparison until the routine has executed. Some value that
is calculated, or retrieved by, the routine may be needed to perform the
comparison in the WHILE section of the command. The WHILE/DO
is desirable for exactly the opposite reason—it may be catastrophic to
make a change unless it is determined that a change is actually needed.
So, having the option to test before or test after is important, and is the
reason that both variations of the commands exist.

The third type of iteration statement is the FOR/NEXT, or FOR
statement. The FOR statement is unique in that it not only evaluates
a condition to determine if the enclosed routine is executed, but it also
sets the initial condition for the variable used in the conditions, and

Code Snippet 2.14

Basic Embedded Programming Concepts 81

specifies how the variable is indexed on each iteration of the loop. This
forms essentially a fully automatic loop structure, repeating any number
of iterations of the loop until the termination condition is reached. For
example, a FOR loop could look like the following:

FOR (Var_A=0; Var_A<100; Var_A=Var_A+5)
 routine();

In the example, a variable Var_A is initially set to zero at the begin-
ning of the loop. The value in Var_A is compared to 100, and if it is
less than 100, then the routine is executed. After execution of the rou-
tine is complete, the variable is incremented by 5 and the comparison
is repeated. The result is that the routine is executed, and the variable
incremented by 5, over and over until the comparison is false.

Within the general format of the FOR statements are a couple of
options:

1. The initial value of the variable doesn’t have to be zero. The value
can be initialized to any convenient value for a specific calcula-
tion in the routine within the loop.

2. The increment value is similarly flexible. In fact, the increment
value can be negative, resulting in a decrement of the value, or
the increment value can be dynamic, changing on each pass
through the loop.

3. The termination condition may also be dynamic, changing for
each pass through the loop.

4. The variable used to control the loop is also accessible within
the loop, allowing the routine to length, shorten, or even stop
the loop by incrementing, decrementing or assigning a value to
the variable.

5. If all three terms are left out of the FOR statement, then an
infinite loop is generated which will never terminate.

Other Flow Control Statements

Three other program flow control statements are important in later
discussions, GOTO, CALL, and RETURN. The GOTO statement is
just as the name suggests. It is an unconditional jump from one place

Code Snippet 2.15

82 Chapter 2

in the program to another. The CALL is similar, except it retains the
address of the next instruction, following the CALL instruction, in a
temporary location. This return address is then used when the RETURN
statement is reached to specify the jump-back location.

The use of the GOTO statement is often criticized as an example
of poor programming. If the program were properly designed, then
looping and conditional statements are sufficient for proper program-
ming. Unfortunately, in embedded programming there are conditions
and events beyond the designer’s control. As a result, it is sometimes
required to break out of the program flow and either restart the program
or rearrange its execution to correct a fault. So, while the GOTO is not
a statement that should be used lightly, it is a statement that will be
needed for certain fault recovery programming.

The CALL and RETURN are more acceptable to mainstream pro-
gramming, as they are the means of creating subroutines. When a section
of programming is used in multiple places in the program, it is a more
efficient use of program memory to build a small separate routine and
access it through CALL and RETURN statements.

Although the CALL and RETURN statements are useful, their use
should be tempered with the knowledge that each CALL will place
two or more bytes of data onto a data structure called the STACK. The
purpose of the STACK is to store temporary values that don’t have a
specific storage location, such as the return address of a CALL. The issue
with using the STACK is that:

1. Data memory is often limited with small microcontrollers, and
any function that increases data memory usage runs the risk of
over-writing an existing variable.

2. The number of locations within the STACK is sometimes limited
in small microcontrollers, and unnecessary calls may result in the
loss of the oldest return address stored there.

3. Interrupt functions also use the STACK to store return addresses,
making it difficult to gauge the exact number of locations in use
at any given time.

Basic Embedded Programming Concepts 83

So, limiting the number of subroutines built into a program is only
prudent.

One of the reasons often given for including a large number of
subroutines in a program is the ability of subroutines to compress func-
tionality, making the program more readable to anyone following the
designer. If the purpose of a subroutine is to alleviate complexity in the
listing, then subroutines can still be used, they just have to include the
INLINE statement in front of the CALL. What the INLINE statement
does is force the language compiler to disregard the CALL/RETURN
statements and compile the routines from the subroutine in line with the
routines calling the subroutine. In this way, the readability enhancement
of the subroutine is still achieved, while eliminating the impact on the
amount of data memory available in the STACK. However, it should be
noted that the use of the INLINE instruction is not a common practice.
Typically, a macro performs the same function and is a more commonly
used construct. So, for compatibility and general form, the INLINE
statement should only be used if the designer is comfortable with its use
and is aware of any impact its use might have on the resulting code.

State Machines

Control systems that manage electrical or mechanical systems must of-
ten be able to generate, or respond to, sequential events in the system.
This ability to use time as part of the driver equation is in fact one of
the important abilities of a microcontroller that makes it such a good
control for electrical and mechanical systems. However, implementing
multiple sequences can become long and involved if a linear coding
style is used.

A simple construct, called a state machine, simplifies the task of gen-
erating a sequence by breaking the sequence into a series of steps and
then executing them sequentially. While this sounds like an arbitrary
definition of a linear piece of code, the difference is that the individual
sections, or steps in the sequence, are encoded within a SWITCH/CASE
statement. This breaks the sequence into logical units that can be eas-
ily recognized in the software listing and, more importantly, it allows
other functions to be performed between the individual steps. It does

84 Chapter 2

this by only executing one step each time it is called. Repeatedly calling
the state machine results in the execution of each step in the sequence.
To retain the state machine’s place in the sequence, a storage variable
is defined that determines which step in the sequence is to be executed
next. This variable is referred to as the state variable, and it is used in
the SWITCH/CASE statement to determine which step, or state, in the
state machine is to be executed when the state machine is called.

For this system to work, the state variable must be incremented at
the completion of each state. However, it is also true that the sequence
of states may need to change due to changes in the condition of the
system. Given that the state variable determines which state is executed,
it follows that to change the sequence of states, one must simply load
the state variable with a new value corresponding with the new direction
the sequence must go. As we will see in this book, this simple construct
is very powerful, and is in fact the basis for multitasking.

So, the short definition of a state machine is a collection of steps
(states) selected for execution based on the value in a state variable.
Further, manipulation of the value in the state variable allows the state
machine to emulate all the conditional statements previously presented
in this chapter.

One of the advantages of the state machine-based design is that it
allows the easy generation of a sequence of events. Another advantage
of state machine-based design is its ability to recognize a sequence of
events. It does this by utilizing the conditional change of the state vari-
able, much as described in the previous paragraph. The only difference
is that the state variable does not normally change its value, unless a
specific event is detected. As an analogy, consider a combination lock:
to open the lock, the numbers have to be entered in a specific sequence
such as 5, 8, 3, 2. If the numbers were entered 2, 3, 5, 8, the lock would
not open, so the combination is not only the numbers but their order.

Basic Embedded Programming Concepts 85

If we were to create a state machine to recognize this sequence, it would
look something like the following:

State = 0;
SWITCH (State)
{
 CASE 0: IF (in_key()==5) THEN state = 1;
 Break;
 CASE 1: IF (in_key()==8) THEN State = 2;
 Else State = 0;
 Break;
 CASE 2: IF (in_key()==3) THEN State = 3;
 Else State = 0;
 Break;
 CASE 3: IF (in_key()==2) THEN UNLOCK();
 Else State = 0;
 Break;
}

Provided that the values returned by in_key() are in the order of 8, 5,
3, 2, the state variable will step from 0 to 3 and the function UNLOCK()
will be called. The state variable is only loaded with the value of the
next state when the right value is received in the right state. If any of the
values are out of sequence, even though they may be valid for another
state, the state variable will reset to 0, and the state machine will start
over. In this way, the state machine will step through its sequence only
if the values are received in the same sequence as the states in the state
machine are designed to accept.

So, state machines can be programmed to recognize a sequence of
events, and they can be programmed to generate a sequence of events.
Both rely on the history of the previous states and the programmable
nature of the state-to-state transitions.

Code Snippet 2.16

86 Chapter 2

Implementing a state machine is just a matter of:

1. Creating a state variable.

2. Defining a series of states.

3. Decoding the state variable to access the states.

4. Tying actions to the states.

5. Defining the sequence of the states, and any conditions that
change the sequence.

For example, consider a state machine designed to make peanut and
jelly sandwiches. The sequence of events is:

1. Get two slices of bread.
2. Open peanut butter jar.
3. Scoop out peanut butter.
4. Smear on first slice of bread.
5. Open jelly jar.
6. Scoop out jelly.
7. Smear on second slice of bread.
8. Invert second slice of bread.
9. Put second slice on first slice of bread.
10. Eat.

OK, the first thing to do is create a state variable; let’s call it PBJ. It
has a range of values from 1 to 10, and it probably defines as a CHAR.
Next, we have to define the sequence of steps in the process, and create
a means to decode the state variable.

If we take each of these instructions and build them into a CASE
statement to handle decoding the state variable, then all it needs is
the appropriate updates to the state variable and the state machine is
complete.

Basic Embedded Programming Concepts 87

SWITCH(PBJ)
{

case 1: Get two slices.
 PBJ = 2
 break

case 2: Open peanut butter jar.
 PBJ = 3
 break

case 3: Scoop out peanut butter.
 PBJ = 4
 break

case 4: Smear on first slice of bread.
 PBJ = 5
 break

case 5: Open jelly jar.
 PBJ = 6
 break

case 6: Scoop out jelly.
 PBJ = 7
 break

case 7: Smear on second slice of bread.
 PBJ = 8
 break

case 8: Invert second slice of bread.
 PBJ = 9
 break

case 9: Put second slice on first slice of bread.
 PBJ = 10
 break

case 10: Eat
 break

Default: break
}

The calling routine then simply calls the subroutine 10 times and
the result is an eaten peanut butter and jelly sandwich.

Algorithm 2.3

88 Chapter 2

Why go to all this trouble? Wouldn’t it be simpler and easier to just
write it as one long function? Well, yes, the routine could be done as
one long sequence with the appropriate delays and timing. But this
format has a couple of limitations. One, making a PB and J sandwich
would be all the microcontroller could do during the process. And,
two, making one kind of a PB and J sandwich would be all the routine
would be capable of doing. There is an important distinction in those
two sentences; the first states that the microcontroller would only be
able to perform one task, no multitasking, and the second states that
all the program would be capable of would be one specific kind of PB
and J sandwich, no variations.

Breaking the sequence up into a state machine means we can put other
functions between the calls to the state machine. The other calls could
cover housekeeping details such as monitoring a serial port, checking
a timer, or polling a keyboard. Breaking the sequence up into a state
machine also means we can use the same routine to make a peanut
butter only sandwich simply by loading the state variable with state 8,
instead of state 5 at the end of state 4. In fact, if we include other steps
such as pouring milk and getting a cookie, and include some additional
conditional state variable changes, we now have a routine that can make
several different varieties of snacks, not just a PB and J sandwich.

The power of the state machine construct is not limited to just
variations of a sequence. By controlling its own state variable, the state
machine can become a form of specialized virtual microcontroller—basi-
cally a small, software-based controller with a programmable instruction
set. In fact, the power and flexibility of the state machine will be the
basis for the multitasking system described later in the book.

Before we dive into some of the more advanced concepts, it is im-
portant to understand some of the basics of state machine operation.
The best place to start is with the three basic types of state machines:
execution-indexed, data-indexed, and the hybrid state machine.

The execution-indexed state machine is the type of state machine that
most people envision when they talk about a state machine, and it is the
type of state machine shown in the previous examples. It has a CASE

Basic Embedded Programming Concepts 89

statement structure with routine for each CASE, and a state variable
that controls which state is executed when the state machine is called. A
good example of an Execution-indexed state machine is the PB&J state
machine in the previous example. The function performed by the state
machine is specified by the value held in the state variable.

The other extreme is the data-indexed state machine. It is probably the
least recognized form of a state machine, even though most designers
have created several, because it doesn’t use a SWITCH/CASE statement.
Rather, it uses an array variable with the state variable providing the
index into the array. The concept behind a data-indexed state machine
is that the sequence of instructions remains constant, and the data that
is acted upon is controller by the state variable.

A hybrid state machine combines aspects of both the data-indexed and
the execution-indexed to create a state machine with the ability to vary
both its execution and the data it operates on. This hybrid approach
allows the varied execution of the execution indexed with the variable
data aspect of the data-indexed state machine.

We have three different formats, with different advantages and
disadvantages. Execution indexed allows designers to vary the actions
taken in each state, and/or respond to external sequences of events. Data
indexed allows designers to vary the data acted upon in each state, but
keep the execution constant. And, finally, the hybrid combines both
to create a more efficient state machine that requires both the varied
execution of the execution-indexed and the indexed data capability of
the data-indexed state machine. Let’s take a closer look at the three types
and their capabilities.

Data-Indexed State Machines

Consider a system that uses an analog-to-digital converter, or ADC,
to monitor multiple sensors. Each sensor has its own channel into the
ADC, its own calibration offset/scaling factors, and its own limits. To
implement these functions using a data-indexed state machine, we start
by assigning a state to each input and creating an array-based storage
for all the values that will be required.

90 Chapter 2

Starting with the data storage, the system will need storage for the
following:

1. Calibration offset and scaling values.

2. Upper and lower limit values.

3. The final, calibrated values.

Using a two-dimensional array, we can store the values in the fol-
lowing format. Assume that S_var is the state value associated with a
specific ADC channel:

ADC_Data[0][S_var] variable in the array holding the calibra-
tion offset values

ADC_Data[1][S_var] variable in the array holding the calibra-
tion scaling values

ADC_Data[2][S_var] variable in the array holding the upper
limit values

ADC_Data[3][S_var] variable in the array holding the lower
limit values

ADC_Data[4][S_var] variable in the array holding the ADC
channel select command value

ADC_Data[5][S_var] variable in the array holding the calibrated
final values

The actual code to implement the state machine will look like the
following:

Void ADC(char S_var, boolean alarm)
{
 ADC_Data[4][S_var] = (ADC*ADC_Data[1][S_

var])+ADC_Data[0][S_var];
 IF (ADC_Data[4][S_var]>ADC_Data[2][S_var]) THEN

Alarm = true;
 IF (ADC_Data[4][S_var]<ADC_Data[3][S_var]) THEN

Alarm = true;
 S_var++;
 IF (S_var > max_channel) then S_var = 0;
 ADC_control = ADC_Data[5][S_var];
 ADC_convert_start = true;
}

Code Snippet 2.17

Basic Embedded Programming Concepts 91

In the example, the first line converts the raw data value held in ADC
into a calibrated value by multiplying the scaling factor and adding in
the offset. The result is stored into the ADC_Data array. Lines 2 and
3 perform limit testing against the upper and lower limits store in the
ADC_Data array and set the error variable if there is a problem. Next,
the state variable S_var is incremented, tested against the maximum
number of channels to be polled, and wrapped around if it has incre-
mented beyond the end. Finally, the configuration data selecting the
next channel is loaded into the ADC control register and the conver-
sion is initiated—a total of seven lines of code to scan as many ADC
channels as the system needs, including both individual calibration and
range checking.

From the example, it seems that data-indexed state machines are
fairly simple constructs, so how do they justify the lofty name of state
machine? Simple—by exhibiting the ability to change its operation based
on internal and external influences. Consider a variation on the previous
example. If we add another variable to the data array and place the next
state information into that variable, we now have a state machine that
can be reprogrammed “on the fly” to change its sequence of conversions
based on external input.

ADC_Data[6][S_var] variable in the array holding the next
channel to convert

Void ADC(char S_var, boolean alarm)
{
 ADC_Data[4][S_var] = (ADC*ADC_Data[1][S_

var])+ADC_Data[0][S_var];
 IF (ADC_Data[4][S_var]>ADC_Data[2][S_var]) THEN

Alarm = true;
 IF (ADC_Data[4][S_var]<ADC_Data[3][S_var]) THEN

Alarm = true;
 S_var = ADC_Data[6][S_var];
 ADC_control = ADC_Data[5][S_var];
 ADC_convert_start = true;
}

Now the sequence of channels is controlled by the array ADC_Data.
If the system does not require data from a specific channel, it just
reprograms the array to route the state machine around the unneeded

Code Snippet 2.18

92 Chapter 2

channel. The state machine could also be built with two or more next
channels, with the actual next channel determined by whether a fault
has occurred, or an external flag is set, or a value reported by one of the
channels has been exceeded.

Don’t let the simplicity of the state machine deceive you; there is
power and flexibility in the data-indexed state machine. All that is
required is the imagination to look beyond the simplicity and see the
possibilities.

Execution-Indexed State Machines

Execution-indexed state machines, as described previously, are often
mistakenly assumed to be little more than a CASE statement with the
appropriate routines inserted for the individual states. While the CASE
statement, or an equivalent machine language construct, is at the heart
of an execution-based state machine, there is a lot more to their design
and a lot more to their capabilities.

For instance, the capability to control its own state variable lends
itself to a wide variety of capabilities that rival normal linear coding. By
selectively incrementing or loading the state variable, individual states
within the state machine can implement:

Sequential execution.

Computed GOTO instructions.

DO/WHILE instructions.

WHILE/DO instructions.

FOR/NEXT instructions.

And even GOSUB/RETURN instructions.

Let’s run through some examples to demonstrate some of the capa-
bilities of the execution-indexed state machine type.

First of all, to implement a sequence of state steps, it is simply a mat-
ter of assigning the value associated with the next state in the sequence,
at the end of each state. For example:

Basic Embedded Programming Concepts 93

SWITCH(State_var)
{
 CASE 0: State_var = 1;
 Break;
 CASE 1: State_var = 2;
 Break;
 CASE 2: State_var = 3;
 Break;
}

Somewhere in each state, the next state is loaded into the state
variable. As a result, each execution of the state machine results in the
execution of the current state’s code block and the advancement of the
state variable to the next state. If the states are defined to be sequential
values, the assignment can even be replaced with a simple increment.
However, there is no requirement that the states be sequential, or that the
state machine must sequence down the case statement on each successive
call to the state machine. It is perfectly valid to have the state machine
step through the case statement in whatever pattern is convenient, par-
ticularly if the pattern of values in the state variable is convenient for
some other function in the system, such as the sequence of energized
windings in a brushless motor. The next state can even be defined by
the values in an array, making the sequence entirely programmable.

Computed GOTO instructions are just a simple extension of the
basic concept used in sequential execution. The only difference is the
assignment is made from the result of a calculation. For example:

SWITCH(State_var)
{
 CASE 0: State_var = 10 * Var_a;
 Break;
 CASE 10: Function_A;
 State_var = 0;
 Break;
 CASE 20: Function_B;
 State_var = 0;
 Break;
 CASE 30: Function_C
 State_var = 0;
 Break;
}

Code Snippet 2.19

Code Snippet 2.20

94 Chapter 2

Based on the value present in Var_a, the state machine will execute
one of three different states the next time it is called. This essentially
implements a state machine that cannot only change its sequence of
execution based on data, but can also change its execution to one of
several different sequences based on data.

Another construct that can be implemented is the IF/THEN/ELSE
statement. Based on the result of a comparison in one of the states,
the state machine can step to one of two different states, altering its
sequence. If the comparison in the conditional statement is true, then
the state variable is loaded with the new state value associated with the
THEN part of the IF statement and the next time the state machine
is executed, it will execute the new state. If the comparison results in a
false, then the state variable is loaded with a different value and the state
machine executes the state associated with the ELSE portion of the IF
statement. For example:

SWITCH(State_var)
{
 CASE 0: IF (Var_A > Var_B) THEN State_var = 1;
 ELSE State_var = 2;
 Break;
 CASE 1: Var_B = Var_A
 State_var = 0;
 Break;
 CASE 2: Var_A = Var_B
 State_var = 0;
 Break;
}

In the example, whenever the value in Var_A is larger than the value
in Var_B, the state machine advances to state 1 and the value in Var_A
is copied into Var_B. The state machine then returns to state 0. If the
value in Var_B is greater than or equal to Var_A, then Var_B is copied
into Var_A, and the state machine returns to state 0.

Now, having seen both the GOTO and the IF/THEN/ELSE, it is
a simple matter to implement all three iterative statements by simply
combining the GOTO and the IF/THEN/ELSE. For example, a DO/
WHILE iterative statement would be implemented as follows:

Code Snippet 2.21

Basic Embedded Programming Concepts 95

 CASE 4: Function;
 State_var = 5;
 Break;
 CASE 5: IF (comparison) THEN State_var = 4;
 ELSE State_var = 6;
 Break;
 CASE 6:

In the example, state 4 holds the (DO) function within the loop, and
state 5 holds the (WHILE) comparison. And, a WHILE/DO iterative
statement would be implemented as follows:

 CASE 4: IF (comparison) THEN State_var = 5;
 ELSE State_var = 6;
 Break;
 CASE 5: Function;
 State_var = 4;
 Break;
 CASE 6:

In this example, state 4 holds the (WHILE) comparison, and state
5 holds the (DO) function within the loop. A FOR/NEXT iterative
statement would be implemented as follows:

 CASE 3: Counter = 6;
 State_var = 4;
 Break;
 CASE 4: IF (Counter > 0) THEN State_var = 5;
 ELSE State_var = 6;
 Break;
 CASE 5: Function;
 Counter = Counter – 1;
 State_var = 4;
 Break;
 CASE 6:

In the last example, the variable (Counter) in the FOR/NEXT is
assigned its value in state 3, is compared to 0 in state 4 (FOR), and is
then incremented and looped back in state 5 (NEXT).

These three iterative constructs are all simple combinations of the
GOTO and IF/THEN/ELSE described previously. Building them into
a state machine just required breaking the various parts out into separate
states, and appropriately setting the state variable.

Code Snippet 2.22

Code Snippet 2.23

Code Snippet 2.24

96 Chapter 2

The final construct to examine in an execution-indexed state machine
is the CALL/RETURN. Now, the question arises, why do designers need
a subroutine construct in state machines? What possible use is it?

Well, let’s take the example of a state machine that has to generate
two different delays. State machine delays are typically implemented by
repeatedly calling a do-nothing state, and then returning to an active
state. For example, the following is a typical state machine delay:

 CASE 3: Counter = 6;
 State_var = 4;
 Break;
 CASE 4: IF (Counter == 0) THEN State_var = 5;
 Counter = Counter – 1;
 Break;
 CASE 5:

This routine will wait in state 4 a total of six times before moving
on to state 5. If we want to create two different delays, or use the same
delay twice, we would have to create two different wait states. However,
if we build the delay as a subroutine state, implementing both the CALL
and RETURN, we can use the same state over and over, saving program
memory. For example:

 CASE 3: Counter = 6;
 State_var = 20;
 Back_var = 4
 Break;
 | |
 | |
 CASE 12: Counter = 10;
 State_var = 20;
 Back_var = 13
 Break;
 | |
 | |
 CASE 20: IF (Counter == 0) THEN State_var = Back_var;
 Counter = Counter – 1;
 Break;

Code Snippet 2.25

Code Snippet 2.26

Basic Embedded Programming Concepts 97

In the example, states 3 and 12 are calling states and state 20 is the
subroutine. Both 3 and 12 loaded the delay counter with the delays
they required, loaded Back_var with the state immediately following the
calling state (return address), and jumped to the delay state 20 (CALL).
State 20 then delayed the appropriate number of times, and transferred
the return value in Back_var into the state variable (RETURN).

By providing a return state value, and setting the counter variable
before changing state, a simple yet effective subroutine system was
built into a state machine. With a little work and a small array for the
Back_var, the subroutine could even call other subroutines.

Hybrid State Machines

Hybrid state machines are a combination of both formats; they have
the CASE structure of an execution-based state machine, as well as the
array-based data structure of a data-indexed state machine. They are
typically used in applications that require the sequential nature of an
execution-based state machine, combined with the ability to handle
multiple data blocks.

A good example of this hybrid requirement is a software-based serial
transmit function. The function must generate a start bit, 8 data bits,
a parity bit and one or more stop bits. The start, parity, and stop bits
have different functionality and implementing them within an execu-
tion-based state machine is simple and straightforward. However, the
transmission of the 8 data bits does not work as well within the execution-
based format. It would have to be implemented as eight nearly identical
states, which would be inefficient and a waste of program memory. So, a
second data-driven state machine, embedded in the first state machine,
is needed to handle the 8 data bits being transmitted. The following is
an example of how the hybrid format would be implemented:

98 Chapter 2

SWITCH(Ex_State_var)
{
 CASE 0: // waiting for new character
 IF (Data_avail == true) THEN Ex_State_var = 1;
 Break;

 CASE 1: // begin with a start bit
 Output(0);
 Ex_State_var = 2;
 DI_State_var = 0;
 Break;

 CASE 2: // sending bits 0-7
 If ((Tx_data & (2^DI_State_var))) == 0)
 Then Output(0);
 Else Output(1);
 DI_State_var++;
 If (DI_State_var == 8) Then Ex_State_var = 3;
 Break;

 CASE 3: // Output Parity bit
 Output(Parity(Tx_data));
 Ex_State_var = 4;
 Break;

 CASE 4: // Send Stop bit to end
 Output(1);
 Ex_State_var = 0
}

Note that the example has two state variables, Ex_State_var and
DI_State_var. Ex_State_var is the state variable for the execution-indexed
section of the state machine, determining which of the four cases in the
SWITCH statement is executed. DI_State_var is the state variable for
the data-indexed section of the state machine, determining which bit
in the 8-bit data variable is transmitted on each pass through state 2.
Together the two types of state machine produce a hybrid state machine
that is both simple and efficient.

On a side note, it should be noted that the Ex_State_var and DI_
State_var can be combined into a single data variable to conserve data
memory. However, this is typically not done due to the extra overhead

Code Snippet 2.27

Basic Embedded Programming Concepts 99

of separating the two values. Even if the two values are combined using
a Structure declaration, the compiler will still have to include additional
code to mask off the two values.

Multitasking

In this last section of Chapter 2, we finally get to the subject that defines
this book, multitasking. Multitasking is the ability to execute multiple
separate tasks in a fashion that is seemingly simultaneous. Note the
phrase “seemingly simultaneous.” Short of a multiple processor system,
there is no way to make a single processor execute multiple tasks at the
same time. However, there is a way to create a system that seems to
execute multiple tasks at the same time. The secret is to divide up the
processor’s time so it can put a segment of time on each of the tasks on a
regular basis. The result is the appearance that the processor is executing
multiple tasks, when in actuality the processor is just switching between
the tasks too quickly to be noticed.

As an example, consider four cars driving on a freeway. Each car has
a driver and a desired destination, but no engine. A repair truck arrives,
but it only has one engine. For each car to move toward its destination,
it must use a common engine, shared with the other cars on the freeway.
(See Figure 2.1.)

Now in one scenario, the engine could be given to a single car, until
it reaches its destination, and then transferred to the next car until it
reaches its destination, and so on until all the cars get where they are
going. While this would accomplish the desired result, it does leave the
other cars sitting on the freeway until the car with the engine finishes
its trip. It also means that the cars would not be able to interact with
each other during their trips.

A better scenario would be to give the engine to the first car for a
short period of time, then move it to the second for a short period,
then the third, then the fourth, and then back to first, continuing the
rotation through the cars over and over. In this scenario, all of the cars
make progress toward their destinations. They won’t make the same rate
of progress that they would if they had exclusive use of the engine, but

100 Chapter 2

they all do move together. This has a couple of advantages; the cars travel
at a similar rate, all of the cars complete their trip at approximately the
same time, and the cars are close enough during their trip to interact
with each other.

This scenario is in fact, the common method for multitasking in
an operating system. A task is granted a slice of execution time, then
halted, and the next task begins to execute. When its time runs out, a
third task begins executing, and so on.

While this is an over-simplification of the process, it is the basic
underlying principle of a multitasking operating system: multiple pro-
grams operating within small slices of time, with a central control that
coordinates the changes. The central control manages the switching
between the various tasks, handles communications between the tasks,
and even determines which tasks should run next. This central control is

Figure 2.1 Automotive Multitasking.

Basic Embedded Programming Concepts 101

in fact the multitasking operating system. If we plan to develop software
that can multitask without an operating system, then our design must
include all of the same elements of an operating system to accomplish
multitasking.

Four Basic Requirements of Multitasking

The three basic requirements of a multitasking system are: context
switching, communications, managing priorities. To these three func-
tions, a fourth—timing control—is required to manage multitasking
in a real-time environment. Functions to handle each of these require-
ments must be developed within a system for that system to be able to
multitask in real time successfully.

To better understand the requirements, we will start with a general
description of each requirement, and then examine how the two main
classes of multitasking operating systems handle the requirements.
Finally, we’ll look at how a stand-alone system can manage the require-
ments without an operating system.

Context Switching

When a processor is executing a program, several registers contain data
associated with the execution. They include the working registers, the
program counter, the system status register, the stack pointer, and the
values on the stack. For a program to operate correctly, each of these
registers must have the right data and any changes caused by the execu-
tion of the program must be accurately retained. There may also be
addition data, variables used by the program, intermediate values from
a complex calculation, or even hidden variables used by utilities from a
higher level language used to generate the program. All of this informa-
tion is considered the program, or task, context.

When multiple tasks are multitasking, it is necessary to swap in and
out all of this information or context, whenever the program switches
from one task to another. Without the correct context, the program that
is loaded will have problems, RETURNs will not go to the right address,
comparisons will give faulty results, or the microcontroller could even
lose its place in the program.

102 Chapter 2

To make sure the context is correct for each task, a specific function
in the operating system, called the Context Switcher, is needed. Its func-
tion is to collect the context of the previous task and save it in a safe
place. It then has to retrieve the context of the next task and restore it
to the appropriate registers. In addition to the context switcher, a block
of data memory sufficient to hold the context of each task must also be
reserved for each task operating.

When we talk about multitasking with an operating system in the
next section, one of the main differentiating points of operating systems
is the event that triggers context switcher, and what effect that system
has on both the context switcher and the system in general.

Communications

Another requirement of a multitasking system is the ability of the various
tasks in the system to reliably communicate with one another. While
this may seem to be a trivial matter, it is the very nature of multitasking
that makes the communications between tasks difficult. Not only are
the tasks never executing simultaneously, the receiving task may not be
ready to receive when the sending task transmits. The rate at which the
sending task is transmitting may be faster than the receiving task can
accept the data. The receiving task may not even accept the communi-
cations. These complications, and others, result in the requirement for
a communications system between the various tasks. Note: the generic
term “intertask communications” will typically be used when describing
the data passed through the communications system and the various
handshaking protocols used.

Managing Priorities

The priority manager operates in concert with the context switcher,
determining which tasks should be next in the queue to have execution
time. It bases its decisions on the relative priority of the tasks and the
current mode of operation for the system. It is in essence an arbitrator,
balancing the needs of the various tasks based on their importance to
the system at a given moment.

In larger operating systems, system configuration, recent operational
history, and even statistical analysis of the programs can be used by the

Basic Embedded Programming Concepts 103

priority manager to set the system’s priorities. Such a complicated system
is seldom required in embedded programming, but some method for
shifting emphasis from one task to another is needed for the system to
adapt to the changing needs of the system.

Timing Control

The final requirement for real-time multitasking is timing control. It is
responsible for the timing of the task’s execution. Now, this may sound
like just a variation on the priority manager, and the timing control does
interact with the priority manager to do its job. But, while the priority
manager determines which tasks are next, it is the timing control that
determines the order of execution, setting when the task executes.

The distinction between the roles can be somewhat fuzzy. However,
the main point to remember is that the timing control determines when
a task is executed, and it is the priority control that determines if the
task is executed.

Balancing the requirements of the timing control and the priority
manager is seldom simple nor easy. After all, real-time systems often
have multiple asynchronous tasks, operating at different rates, interact-
ing with each other and the asynchronous real world. However, careful
design and thorough testing can produce a system with a reasonable
balance between timing and priorities. In fact, much of the system-level
design in Chapters 3 and 4 will deal specifically with determining and
managing these often-conflicting requirements.

Operating Systems

To better understand the requirements of multitasking, let’s take a look
at how two different types of operating systems handle multitasking.
The two types of operating system are preemptive and cooperative. Both
utilize a context switcher to swap one task for another; the difference
is the event that triggers the context switch. A preemptive operating
system typically uses a timer-driven interrupt, which calls the context
switcher through the interrupt service routine. A cooperative operating
system relies on subroutine calls by the task to periodically invoke the
context switcher. Both systems employ the stack to capture and retrieve
the return address; it is just the method that differs. However, as we

104 Chapter 2

will see below, this creates quite a difference in the operation of the
operating systems.

Of the two systems, the more familiar is the preemptive style of
operating system. This is because it uses the interrupt mechanism
within the microcontroller in much the same way as an interrupt service
routine does.

When the interrupt fires, the current program counter value is pushed
onto the stack, along with the status and working registers. The microcon-
troller then calls the interrupt service routine, or ISR, which determines
the cause of the interrupt, handles the event, and then clears the interrupt
condition. When the ISR has completed its task, the return address, status
and register values are then retrieved and restored, and the main program
continues on without any knowledge of the ISR’s execution.

The difference between the operation of the ISR and a preemptive
operating system is that the main program that the ISR returns to is not
the same program that was running when the interrupt occurred. That’s
because, during the interrupt, the context switcher swaps in the context
for the next task to be executed. So, basically, each task is operating within
the ISR of every other task. And just like the program interrupted by the
ISR, each task is oblivious to the execution of all the other tasks.

The interrupt driven nature of the preemptive operating system gives
rise to some advantages that are unique to the preemptive operating
system:

The slice of time that each task is allocated is strictly regulated.
When the interrupt fires, the current task loses access to the
microcontroller and the next task is substituted. So, no one
task can monopolize the system by refusing to release the
microcontroller.

Because the transition from one task to the next is driven by
hardware, it is not dependent upon the correct operation of the
code within the current task. A fault condition that corrupts the
program counter within one task is unlikely to corrupt another
current task, provided the corrupted task does not trample on
another task’s variable space. The other tasks in the system should

Basic Embedded Programming Concepts 105

still operate, and the operating system should still swap them in
and out on time. Only the corrupted task should fail. While this
is not a guarantee, the interrupt nature of the preemptive system
does offer some protection.

The programming of the individual tasks can be linear, without
any special formatting to accommodate multitasking. This means
traditional programming practices can be used for development,
reducing the amount of training required to bring on-board a
new designer.

However, because the context switch is asynchronous to the task
timing, meaning it can occur at any time during the task execution,
complex operations within the task may be interrupted before they
complete, so a preemptive operating system also suffers from some
disadvantages as well:

Multibyte updates to variables and/or peripherals may not com-
plete before the context switch, leaving variable updates and
peripheral changes incomplete. This is the reason preemptive
operating systems have a communications manager to handle all
communications. Its job is to only pass on updates and changes
that are complete, and hold any that did not complete.

Absolute timing of events in the task cannot rely on execution
time. If a context switch occurs during a timed operation, the
time between actions may include the execution time of one or
more other tasks. To alleviate this problem timing functions must
rely on an external hardware function that is not tied to the task’s
execution.

Because the operating system does not know what context
variables are in use when the context switch occurs, any and all
variables used by the task, including any variables specific to the
high-level language, must be saved as part of the context. This
can significantly increase the storage requirements for the context
switcher.

While the advantages of the preemptive operating system are attrac-
tive, the disadvantages can be a serious problem in a real-time system.

106 Chapter 2

The communications problems will require a communications manager
to handle multibyte variables and interfaces to peripherals. Any timed
event will require a much more sophisticated timing control capable of
adjusting the task’s timing to accommodate specific timing delays. And,
the storage requirements for the context switcher can require upwards
of 10–30 bytes, per task—no small amount of memory space as 5 to 10
tasks are running at the same time. All in all, a preemptive system operates
well for a PC, which has large amounts of data memory and plenty of
program memory to hold special communications and timing handlers.
However, in real-time microcontroller applications, the advantages are
quickly outweighed by the operating system’s complexity.

The second form of multitasking system is the Cooperative operating
system. In this operating system, the event triggering the context switch is
a subroutine call to the operating system by the task currently executing.
Within the operating system subroutine, the current context is stored
and the next is retrieved. So, when the operating system returns from the
subroutine, it will be to an entirely different task, which will then run
until it makes a subroutine call to the operating system. This places the
responsibility for timing on the tasks themselves. They determine when
they will release the microcontroller by the timing of their call to the op-
erating system, thus the name cooperative. This solves some of the more
difficult problems encountered in the preemptive operating system:

Multibyte writes to variables and peripherals can be completed
prior to releasing the microcontroller, so no special commu-
nications handler is required to oversee the communications
process.

The timed events, performed between calls to the operating
system, can be based on execution time, eliminating the need
for external hardware-based delay systems, provided a call to the
operating system is not made between the start and end of the
event.

The context storage need only save the current address and the
stack. Any variables required for statement execution, status, or
even task variables do not need to be saved as all statement ac-
tivity is completed before the statement making the subroutine

Basic Embedded Programming Concepts 107

call is executed. This means that a cooperative operating system
has a significantly smaller context storage requirement than a
preemptive system. This also means the context switcher does
not need intimate knowledge about register usage in the high-
level language to provide context storage.

However, the news is not all good; there are some drawbacks to the
cooperative operating system that can be just as much a problem as the
preemptive operating system:

Because the context switch requires the task to make a call to the
operating system, any corruption of the task execution, due to
EMI, static, or programming errors, will cause the entire system
to fail. Without the voluntary call to the operating system, a
context switch cannot occur. Therefore, a cooperative operating
system will typically require an external watchdog function to
detect and recover from system faults.

Because the time of the context switch is dependent on the flow
of execution within the task, variations in the flow of the program
can introduce variations into the system’s long-term timing. Any
timed events that span one or more calls to the operating system
will still require an external timing function.

Because the periodic calls to the operating system are the means
of initiating a context switch, it falls to the designer to evenly
space the calls throughout the programming for all tasks. It also
means that if a significant change is made in a task, the placement
of the calls to the operating system may need to be adjusted.
This places a significant overhead on the designer to insure that
the execution times allotted to each task are reasonable and ap-
proximately equal.

As with the preemptive system, the cooperative system has several
advantages, and several disadvantages as well. In fact, if you examine
the lists closely, you will see that the two systems have some advantages
and disadvantages that are mirror images of each other. The preemptive
system’s context system is variable within the tasks, creating comple-
tion problems. The cooperative system gives the designer the power to

108 Chapter 2

determine where and when the context switch occurs, but it suffers in
its handling of fault conditions. Both suffer from complexity in rela-
tion to timing issues, both require some specialized routines within the
operating system to execute properly, and both require some special
design work by the designer to implement and optimize.

State Machine Multitasking

So, if preemptive and cooperative systems have both good and bad points,
and neither is the complete answer to writing multitasking software, is
there a third alternative? The answer is yes, a compromise system de-
signed in a cooperative style with elements of the preemptive system.

Specifically, the system uses state machines for the individual tasks
with the calls to the state machine regulated by a hardware-driven tim-
ing system. Priorities are managed based on the current value in the
state variables and the general state of the system. Communications are
handled through a simple combination of handshaking protocols and
overall system design.

The flowchart of the collective system is shown in Figure 2.2. Within
a fixed infinite loop, each state machine is called based on its current
priority and its timing requirements. At the end of each state, the state
machine executes a return and the loop continues onto the next state
machine. At the end of the loop, the system pauses, waiting for the start
of the next pass, based on the timeout of a hardware timer. Communica-
tions between the tasks are handled through variables, employing various
protocols to guarantee the reliable communications of data.

As with both the preemptive and cooperative systems, there are also
a number of advantages to a state machine-based system:

The entry and exit points are fixed by the design of the individual
states in the state machines, so partial updates to variables or
peripherals are a function of the design, not the timing of the
context switch.

A hardware timer sets the timing of each pass through the system
loop. Because the timing of the loop is constant, no specific delay
timing subroutines are required for the individual delays within

Basic Embedded Programming Concepts 109

the task. Rather, counting passes through the loop can be used
to set individual task delays.

Because the individual segments within each task are accessed via
a state variable, the only context that must be saved is the state
variable itself.

Because the design leaves slack time at the end of the loop and
the start of the loop is tied to an external hardware timer, reason-
able changes to the execution time of individual states within the
state machine do not affect the overall timing of the system.

Figure 2.2 State Machine Multitasking.

110 Chapter 2

The system does not require any third-party software to imple-
ment, so no license fees or specialized software are required to
generate the system.

Because the designer designs the entire system, it is completely
scalable to whatever program and data memory limitation may
exist. There is no minimal kernel required for operation.

However, just like the other operating systems, there are a few disad-
vantages to the state machine approach to multitasking:

Because the system relies on the state machine returning at the
end of each state, EMI, static, and programming flaws can take
down all of the tasks within the system. However, because the
state variable determines which state is being executed, and it is
not affected by a corruption of the program counter, a watch-
dog timer driven reset can recover and restart uncorrupted tasks
without a complete restart of the system.

Additional design time is required to create the state machines,
communications, timing, and priority control system.

The resulting state machine-based multitasking system is a collection
of tasks that are already broken into function-convenient time slices, with
fixed hardware-based timing and a simple priority and communication
system specific to the design. Because the overall design for the system
is geared specifically to the needs of the system, and not generalized for
all possible designs, the operation is both simple and reliable if designed
correctly.

The balance of this book will concentrate on the design methodol-
ogy required to create the minimal set of task state machines, timing
controls, priority management, and communications required to meet
the specific needs of almost any embedded system.

In this chapter, we will start the actual software design process. Because
we are using a top-down approach to the design, it follows that this
chapter will deal primarily with the top level of the design. This level
of design is referred to as the system level. At this level, the general orga-
nization of the software will be developed, including definition of the
tasks, layout of the communications, determination of the overall system
timing, and the high-level definition of the priority structure.

These four areas—tasks, communications, timing, and priorities—
will be a recurring theme in this book. This should not be surprising,
considering they are the four basic requirements for multitasking. The
development of the system tasks includes context switching, but for
our purposes, it is expanded to include: the creation of the tasks; the
development of a communications plan to handle all the communica-
tions between tasks; a timing control system to insure that each task is
active at the right time to accomplish its function; and, finally, a priority
manager to shift execution time to those tasks that are important to the
system at any given moment.

To begin the system-level design, the designer needs a clear under-
standing of what the final software design must accomplish. The source
of this information is the system requirements document, or simply the
requirements document. The requirements document should contain
the functions required, their timing, their communications needs, and
their priorities.

3
System-Level Design

112 Chapter 3

If the requirements document does not contain all of these answers,
and it typically doesn’t, then it is up to the designer to obtain this
information. The answer may come through asking questions of the
department that generated the document, such as Marketing. Some of
the information may be implied through a reference to another docu-
ment, such as an industry standard on RS-232 serial communications.
And, in some cases, the designer may simply have to choose.

Wherever the answers come from, they should end up in the require-
ments document. As part of the design, this document will be a living
entity throughout the design process. As the requirements change, either
through external requests from other departments or through compro-
mises that surface in the design, the changes must be documented and
must include an explanation of the reason for the change. In this way,
the requirements document not only defines what the system should
be, but also shows how it evolved during the development.

Some may ask, “Why go to all this trouble? Isn’t commenting in the
listing sufficient?” Well, yes, the commenting is sufficient to explain
how the software works, but it does not explain why the software was
designed in a certain way. It can’t explain that the allocation of the tasks
had to be a certain way to meet the system’s priorities. It can’t explain
that halfway through the design additional functions were added to
meet a new market need. And it can’t explain why other design options
were passed over because of conflicts in the design. Commenting the
listing conveys the how and what, while the requirements document
conveys the why.

One note on documentation: over the course of this chapter and
the next several important pieces of information will be generated. This
information will, of course, be available in the requirements document.
However, an effective shorthand technique is to also list the information
in a design notes file. This file should be kept simple; a text file is typi-
cally best. In this file, all of the notes, decisions, questions, and answers
should be noted.

System-Level Design 113

Personally, I keep a text file open in the background to hold my design
notes when I dissect a requirements document. That way, I can note
important information as I come across it. Another good reason to keep
a design notes text file is that it is an excellent source of documentation
for commenting. Whether generating a header comment for a software
function or source information for a user’s guide, all a designer has to
do is copy and paste applicable information out of the design notes file.
This saves time and eliminates errors in typing and memory. It also tends
to produce more verbose header comments.

Dissecting the Requirements Document

While this may sound a little gruesome, it is accurate. The designer
must carve up the document and wring out every scrap of information
to feed the design process. In the following sections, we will categorize
the information, document it in a couple of useful shorthand notations,
and check the result for any vague areas or gaps. Only when the designer
is sure that all the information is present and accounted for, should the
design continue on. If not, then the designer runs the risk of having
to start over. The five most frustrating words a designer ever hears are
“What I really meant was.”

So what is needed in a requirements document? Taking a note from
the previous section, the four basic requirements are:

Tasks: This includes a list of all the functions the software
will be required to perform and any information concerning
algorithms.

Communications: This includes all information about data size,
input, output, or temporary storage and also any information
about events that must be recognized, and how.

Timing: This includes not only the timing requirements for the
individual tasks, but also the overall system timing.

Priorities: This includes the priorities for the system, priorities
in different system modes, and the priorities within each task.

114 Chapter 3

Together, these four basic requirements for the system define the
development process from the system level, through the component
level, down to the actual implementation. Therefore, they are the four
areas of information that are needed in a requirements document.

So, where to start? As the saying goes, “Start at the beginning.” We
start with the system tasks, which means all the functions that are to be
performed by the tasks. And that means building a function list.

To aid in the understanding of the design process, and to provide
a consistent set of examples, we will use the design of a simple alarm
clock as an example. The following is a short description of the design
and the initial requirement document:

Requirements Document

The final product is to be a 6-digit alarm clock
with the following features:

1. 6-digit LED display, showing hours : minutes :
seconds. The hours can be in either a 12 hour or
24 hour format. In the 12 hour format a single
LED indicator specifying AM / PM is included.

2. 6 controls, FAST_SET, SLOW_SET, TIME_SET, ALARM_
SET, ALARM_ON, SNOOZE.

3. The alarm shall both flash the display, and emit
a AM modulated audio tone.

Function List

The first piece of documentation to build from the requirements docu-
ment is a comprehensive function list. The function list should include
all of the software functions described in the requirements document,
any algorithms that may be specified or implied, and the general flow
of the functions operation.

Reviewing the requirements document above, the following prelimi-
nary list of functions was compiled.

Document 3.1

System-Level Design 115

Preliminary Function List

1. Display functions to output data onto the
displays
a. 12-hour display function for time
b. 24-hour display function for time
c. 12-hour display function for alarm
d. 24-hour display function for alarm
e. Display flashing routine for the alarm

2. An input function to monitor and debounce the
controls
a. Control input monitoring function
b. Debounce routine

3. A Command decoder function to decode the com-
mands entered by the controls

4. An alarm function to check the current time and
generate the alarm when needed.
a. Turn alarm on / off
b. Snooze
c. Generate alarm tone
d. Set alarm

5. Real-time clock
a. Increment time at 1Hz
b. Set Time

Function List Questions

1. Display function questions
1.1. Are displays scanned or driven in parallel?
1.2. How is 12 / 24 hour operation selected?

2. Input function questions
2.1. How do the control inputs work?

3. A command decoder questions
3.1. What are the commands?
3.2. How do the commands work?

4. An alarm function questions
4.1. How does the user turn the alarm on and off?
4.2. How does the user know the alarm is on or off?
4.3. How does the snooze function work?
4.4. How is the alarm set?
4.5. What frequency is the alarm tone?

List 3.1

116 Chapter 3

5. Real-time clock questions
5.1. What is the time reference for 1 Hz?
5.2. How does the time reference operate?
5.3. What happens if the power fails?
5.4. How is the time set?

How can something as simple as an alarm clock generate so many
functions and so many questions? I know how an alarm clock works, so
why can’t I just start writing code? While the designer may have a very
good idea of how an alarm clock works, the purpose of this exercise is
to get a very good idea of how marketing thinks the alarm clock should
work, so we can design the alarm clock they want. Remember those five
terrifying words, “what I really meant was.”

Note: The designer should not be concerned if some of the functions
appear to be repeated, such as the functions for time set, alarm set, and
the function to flash the display, for example. Duplicates will be removed
when the functions are combined into the various system tasks. In addi-
tion, duplicate listings indicate that the functionality may be split across
a couple functions, so they also serve to indicate some of the function
design choices that are yet to be made. Don’t delete them until after the
design decision is made.

The questions raised are also important:

How will the LED display system be implemented in hardware?
How are the controls implemented? How does the time reference
operate and what will the software have to do?

The group designing the hardware will have the answer to these
questions.

How is the time and alarm time set? How is snooze initiated?
How is 12/24 hour operation selected?

The answer to these questions will have to be answered by the group
envisioning the product’s look and feel.

System-Level Design 117

As part of the function list, the designer should also include informa-
tion about any algorithms used by a function. For example, the algorithm
for converting data into a 7-segment format, any math routines for the
60 second/minute roll over, and even the algorithm for calculating the
new alarm time when a snooze is activated. All of these will be a factor
in the development of the different tasks in the system and should be
recorded.

One final piece of information to note is the flow of the functions.
Flow deals with the order in which things happen in a function. It can
be simple and linear. For example: Increment seconds, if seconds = 60
then seconds = 0 and increment minutes. Or, it can be complex and
require a graphical flow chart to accurately depict its functionality.

Figure 3.1 Flow Chart of Snooze Function.

118 Chapter 3

Either way, it needs to be clearly defined so the designer has a clear
idea of how the function works, with a list of any exceptions.

Note that there is nothing wrong with drawing pictures, and flow charts
are very useful for graphically depicting the flow of a function. The use of
pseudocode is another useful tool for describing how a function operates.
Designers should not feel reluctant to drag out a large piece of paper and
start drawing. If electronic copies of the documentation are required, the
drawings can always be scanned and stored in a digital form.

Finally, when this section on the requirements document started, it
was stated that any answers to questions should be included in a revi-
sion of the requirements document. So, including answers from all the
groups, the document is rewritten with the new information:

REQUIREMENTS DOCUMENT

The final product is to be a 6-digit alarm clock
with the following features:
1. A scanned 6-digit numeric LED display.

a. Time display is in either 24-hour or 12-hour
AM/PM format with hours, minutes, and seconds
displayed.

b. Single LED enunciators are included for both
ALARM ON and PM time.

c. No indicator is used for AM or 24-hour
operation.

d. No indication of snooze operation is required.
e. The alarm function can flash the display.
f. Battery operation can blank the display.

2. 6 controls, FAST_SET, SLOW_SET, TIME_SET, ALARM_
SET, ALARM_ON, SNOOZE.
a. All controls, except ALARM_ON are push but-

tons. Combinations of button presses initiate
the various commands. ALARM_ON is a slide
switch.

b. See below for command function information.
3. A Command decoder function to decode the com-

mands entered by the controls.
a. See below for detailed command operation.

4. An alarm function.
a. Alarm time shall be displayed in hours and

minutes with the seconds display blank when
in the alarm set mode. The format shall match
the current time display.

b. The maximum number of snooze commands is not
limited.

Document 3.2

System-Level Design 119

c. The display shall flash in time to the tone.
d. Turning the alarm on and off, setting the

alarm time, and initiating snooze is de-
scribed in the Command function section of
the document.

e. The alarm tone shall be 1 kHz, modulated at a
1 Hz rate (50% duty cycle).

5. The clock shall use the 60-Hz power cycle as a
time-keeping reference for the real-time clock
function.
a. If 5 consecutive 60-Hz cycles are missed, the

clock shall revert to the microcontroller
clock.

b. A battery back-up system shall be included
that requires no action from the microcon-
troller to operate.

c. While on battery operation, the display and
alarm functions shall be disabled. If the
alarm time passes during battery operation,
then the alarm shall sound when 60-Hz power
is restored.

d. When the microcontroller detects 5 consecu-
tive 60-Hz cycles, it shall revert to the
power line time base.

e. See below for setting the time and selecting
12/24-hour operation.

The new document, while verbose, is also much less ambiguous
concerning the functionality of the system. Most of the questions have
been answered and a significant amount of information has been added.
The edits to the document are by no means complete, since there is
information concerning communications, timing, and priorities yet
to be examined. If you look carefully at the revised document, none
of the questions concerning the operation of the commands have been
answered. However, at this point most of the functionality of the various
software functions has been clarified.

It is now time to answer the questions concerning the user interface,
or command structure, of the system. In the previous section, questions
concerning this information were asked but not answered. The reason
is that the user interface, while contributing to the list of functions, is a
sufficiently unique subject that it warrants special attention. Therefore,
it is the next section to be covered.

Document 3.2
(continued)

120 Chapter 3

The User Interface

A good user interface can make a product useful and a joy to use, while
a bad user interface can be a source of frustration and pain. Although
the science of developing a good user interface is sufficiently complex
to fill several books this size, a fairly simple analysis of the proposed
system can typically weed out most of the more common problems
and inefficiencies. Additionally, the technique described in this section
clearly documents the command structure and clearly shows any miss-
ing information. Even if the interface has been used extensively in older
systems, it never hurts to revisit the evaluation, if only to get a clear
picture of the command flow.

The first step is to storyboard, or flow chart, the command structure.
This is accomplished by graphically showing the step-by-step sequence
required to perform a command entry. For instance, setting the time
on our alarm clock:

Figure 3.2 Command Structure Flow Chart of Time_Set.

System-Level Design 121

In the example, round bubbles are used to indicate inputs from the
users and rectangular boxes indicate responses from the system. Arrows
then indicate the flow of the process, with the point of the arrow indi-
cating the next event in the sequence. Some arrows have two or more
points, indicating that two or more different directions are possible. For
example, after the current time has been displayed by the system, the
user has the option to release the TIME_SET button and terminate the
command, or press either the FAST_SET or SLOW_SET buttons to
change the current time.

At the top of the diagram is a line labeled IDLE and this is where the
time set command sequence begins and ends. IDLE has been defined
for this diagram to be the normal state of the system with the alarm
disabled. Other system modes with mode-specific command sequences
could include ALARM_ON, SNOOZE, and ALARM_ACTIVE. By
using a specific system mode as a starting point, the diagram is indicat-
ing that the command is only available or recognized in that specific
mode. If the label was ALL, then the command would be available in
all system modes. Combinations of modes, such as ALARM_ON and
ALARM_ACTIVE, can also be specified to indicate that a command
is only available in the listed modes. However, most commands are
typically available in all modes of the system, with only special-purpose
commands restricted to a specific mode. For example, the ALARM_SET
command would be available whether the alarm is enabled or disabled,
while the SNOOZE command is only useful when the alarm is active,
so it makes sense to only allow it for that specific mode.

Each command diagram should be complete, in that it shows all
legitimate actions available for the command. It can also be useful to
diagram sequences that generate an error, as this clarifies the error-han-
dling functions in the user interface. In our example of an alarm clock,
the system’s response to an improper input is simply to ignore it. More
complex systems may not have this luxury and may need a specific
response to the unwanted input. To separate legitimate actions from
errors, it is typically sufficient to draw the arrows for error conditions
in red and the legitimate course of action in black. For diagrams that

122 Chapter 3

will be copied in black and white, a bold line to indicate improper input
can also be used.

In more complex systems, the storyboards for a command structure
can become large and cumbersome. To avoid this problem, the designer
can replace sections of the diagram with a substitution box indicating
additional information is available in a subdiagram. See the dashed line
box surrounding the “Press FAST_SET” and “Add 20 min to current
time” boxes in Figure 3.2. This is particularly useful if a commonly used
edit sequence, used in multiple places in the diagram, can be replaced
with a single subdiagram. The only prudent limitation on the practice
is that the substituted section should only have one entrance and one
exit. Some systems may in fact be so complex that an overall command
storyboard may be required, with the individual commands listed as
subdiagrams.

When all the storyboards are complete, they should be shown to the
group that designed the system so they can clarify any misunderstand-
ings. This is best done at the beginning, before several hundred lines of
software are written and debugged.

Once all of the storyboards are complete, take each storyboard and
note down how many key presses are required to set each function,
worst case. For the clock time set example, the worst-case number of
key presses is 83, 1 for the initial press and hold of the TIME-SET but-
ton, 23 presses of the FAST_SET to set hours, and 59 presses of the
SLOW_SET to set minutes. Next, calculate the time required to per-
form that number of button presses. Assume that a key can be pressed
repeatedly at a rate of 2–3 presses per second. For the clock this means
that the worst-case time required to set the time is 42 seconds if each
key press is made individually, and as much as 83 seconds if the auto-
repeat feature is used.

Now, for the complete command structure, list the commands based
on the frequency that each command is likely to be used, with most often
used at the top of the list, and least often used at the bottom. Next to
each command sequence name, list the worst-case number of key presses

System-Level Design 123

required to perform the command and the estimated time required. See
the following list for the commands used in the alarm clock:

Frequency of Use Function Name Button Presses Time
Most infrequent Set Time 83 42/83 sec
Infrequent Set Alarm 83 42/83 sec
Frequent Enable Alarm Slide Switch 1 sec
Frequent Disable Alarm Slide Switch 1 sec
Very frequent Snooze 1 ½ sec

The times and number of key presses should be the inverse of the
frequency of use. Specifically, the most common commands should have
the least number of key presses and the fastest time to perform, and the
least-often used commands should have the largest number of key presses
and the longest time to set. If any command is out of sequence, then
the flow of that command should be reconsidered, so that it falls in line
with the other commands. From the example, Set Time and Set Alarm
time are the longest to set and the least frequently used. The Snooze
command is the most frequently used and the fastest to activate.

Another criterion for menu-based command structures is the depth of
the menu that holds a command. Commonly used commands should be
at the top level, or at the most, one level deep in the command structure.
Commands deeper in the menu structure should have progressively less
frequent use. See the following example menu structure:

ROOT Menu
Delete
Edit Copy

 Paste
 Search Find
 Replace

File Open
 Save
 Close
 New Blank Template
 Select Template

Table 3.1

Structure 3.1

124 Chapter 3

In this example, the most-often used command is Delete and it is
at the top of the menu. Edit commands and File commands come next,
with the New file commands buried the deepest in the menu. Typically,
a user can remember one or two levels of a menu structure, provided
that each level has only three or four functions. Any deeper, and they
will typically have to consult a manual (unlikely), or dig through the
menus to find the function they want. While designers might wish
that users used the manuals more often, making this a requirement by
burying commonly used commands at the bottom of a complex menu
structure will only drive customers to your competitors.

Another obvious, but nonetheless often overlooked, requirement is
that related commands should be in a common subdirectory, and the
relationship of the commands should be viewed from the user’s point
of view, not the designers. Just because Paste and Replace have similar
functions does not mean that the user will look for them in the same
submenu. The correct choice is to group the commands as shown, by
their use by the user, rather than their inner workings.

One hallmark of a good user interface is reusing buttons for similar
functions in different commands. For instance, in the clock example,
there was a FAST_SET and SLOW_SET button. They are used to set
the current time, so it makes sense that the same buttons would also be
used to set the Alarm time. Keeping common functions with the same
buttons allows the user to stereotype the button’s function in their minds
and aids in their understanding of the command structure. With this
in mind, it would be a major failing in a user interface to change the
function of the control, unless and only unless, the second function is
an extension of the control’s original function. For instance, changing
from 12 hour to 24 hour by pressing FAST_SET and SLOW_SET
buttons together is acceptable because it is an extension of the buttons’
original functions. Using the SNOOZE button in combination with
the ALARM_SET button is just confusing for the user.

Once the user interface has been clearly defined, the requirements
document should be updated to include the storyboards and any changes
that may have come out of the analysis. Any changes or additions to

System-Level Design 125

the function list, necessitated by the user interface, should also be made
at this time.

USER INTERFACE OPTIONS

So far, we have discussed interfaces based on just displays and buttons.
Another method for entry is to use a rotary encoder as an input device.
Designers today tend to forget that the original controls on tube radios
were all knobs and dials. For all their simplicity, they did provide good
resolution and responsive control, plus most users readily identify with
the concept of turning a knob. Because they use only a two-bit Grey
code to encode their movement, their interface is simple and the output
is not tied to the absolute position of the rotary encoder, making them
ideal for setting multiple values.

Imagine the simplicity of setting the alarm clock in the previous
example using a rotary encoder. Simply hold down the set button and
turn the dial until the right time appears on the display. Because the knob
can move in two directions and at a rate determined by the user, it gives
them additional control that a simple two-button interface does not.

Another trick with a rotary encoder is to tie the increment and decre-
ment stop size to the rate of rotation, giving the control an exponential
control resolution. Several quick flips of the knob can run the value up
quickly by incrementing the value using a large increment. Then slower,
more precise, rotations adjust the value with a smaller increment, allow-
ing the user to fine-tune the value.

Another handy rotary input device is the simple potentiometer combined
with an analog-to-digital converter input. This is a single input with
many of the same features as the rotary encoder, plus the potentiometer
is also nonvolatile, meaning it will not lose its setting when the power
is removed. It does present a problem in that it cannot turn through
multiples of 360 degrees indefinitely, but depending on the control
function, this may not be a problem.

126 Chapter 3

At the end of this phase of the dissection, the designer should have
a revised function list. Any missing information in the requirements
document should have been identified and answers found. A clear de-
scription of the user interface and command structure should have been
generated, with storyboards. Any cumbersome or complicated sequences
in the command structure should have been identified and rewritten to
simplify the interface. And, finally, the requirements document should
have been updated to include the new information. As always, any
general notes on the system, with any applicable algorithms or specific
information concerning the design, should also have been compiled.

The revised documents should look like the following:
Revised Function list

1) Display functions to output data onto the displays
a) 12-hour display function for time
b) 24-hour display function for time
c) 12-hour display function for alarm
d) 24-hour display function for alarm
e) Display flashing routine for the alarm
f) PM indicator display function
g) Alarm on indicator display function
h) Function to scan LED displays

2) An input function to monitor and debounce the controls
a) input function to monitor buttons
b) Debounce routine
c) Auto repeat routine
d) 60-Hz monitoring routine
e) 60-Hz Fail / Recovery monitoring routine

3) A Command decoder function to decode the commands
entered by the controls
a) An alarm function to check the current time and

generate the alarm when needed.
b) Snooze function to silence alarm for 10 minutes.
c) Alarm on / off toggling routine
d) Initiate Snooze
e) Generate alarm tone routine
f) Set alarm function

 i) Routine to increment alarm by 1 min
 ii) Routine to increment alarm by 20 min

g) Set Time function
 i) Routine to increment Time by 1 min
 ii) Routine to increment Time by 20 min

h) Toggle 12/24 hour mode

Document 3.3

System-Level Design 127

4) Real-time clock routine
a) Time increment routine based on 60-Hz power line

time base
b) Time increment routine based on internal clock

time base
c) Display blanking routine for operation from

internal clock time base

DESCRIPTION OF THE USER INTERFACE
Display

 6-digit scanned LED display
 1 indicator for PM operation in 12-hour mode
 1 indicator to show alarm is active

Controls (inputs)
 1 slide switch to enable / disable the alarm
 1 push button for ALARM_SET
 1 push button for TIME_SET
 1 push button for FAST_SET
 1 push button for SLOW_SET
 1 push button for SNOOZE

Time base inputs
 60-Hz line time base
 System clock

DESCRIPTION OF THE COMMAND STRUCTURE
To set Time

 Hold the TIME_SET button
 (display will show current time with seconds

blank)
 Press SLOW_SET to increment time by 1 min
 Hold SLOW_SET to auto-increment time by

1 min at 1-HZ rate
 Press FAST_SET to increment time by 20 min
 Hold FAST_SET to auto-increment time by

20 min at 1-HZ rate
 (in 12-hour mode, time will roll over at

12:59)
 (in 24-hour mode, time will roll over at

23:59)
 Release the TIME_SET button to return to

normal operation
 (Seconds will appear and start incrementing

from 0)

Document 3.3
(continued)

Command
Structure 3.1

128 Chapter 3

To set alarm time
 Hold the ALARM_SET button
 (display will show current alarm time with sec-

onds blank)
 Press SLOW_SET to increment alarm time by 1

min
 Hold SLOW_SET to auto-increment alarm time

by 1 min at 1-HZ rate
 Press FAST_SET to increment alarm time by 20

min
 Hold FAST_SET to auto-increment alarm time

by 20 min at 1-HZ rate
 (in 12-hour mode, time will roll over at

12:59)
 (in 24-hour mode, time will roll over at

23:59)
 Release the ALARM_SET button to return to

normal operation
 (display will show current time)

To turn alarm on
 Slide alarm control switch to on
 (alarm indicator will light)

To turn alarm off
 Slide alarm control switch to off
 (alarm indicator will go blank)

To activate snooze mode, alarm must be active
 Press the SNOOZE button
 (alarm will be remain enabled)
 (tone will stop for for 10 min and then sound

again)

To toggle 12 hour / 24 hour mode
 Release ALARM_SET and TIME_SET buttons
 Hold the FAST_SET button
 Press the SLOW_SET button
 (12/24 hour mode will toggle)
 (if result is 24-hr mode, time is displayed in

24-hr format on press)
 (if result is 12-hr mode, time is displayed in

12-hr format on press)

As no major changes have been made to the requirements document
since the last section, the document will not be repeated here.

Command
Structure 3.1
(continued)

System-Level Design 129

Communications

The next area of information to extract from the requirements document
relates to communication pathways, both within the system and between
the system and any external systems—specifically, information concern-
ing the volume and type of data that will have to be handled by each
pathway. This gives the designer a basis to plan out the communications
system and to estimate the necessary data memory space required. Some
of this information will be specified in the form of communications
protocols between the system and external entities such as terminals,
remote systems, or autonomous storage. Some of the information will
be dictated by the operation of the peripherals in the system, such as
timers, A-to-D converters, and the system’s displays. And, some of the
requirements will be dictated by the operations of the tasks themselves.
As with the function list, we will have to play detective and determine
what information is present, what is missing, and what is implied.

What kind of information are we looking for? We will have two
forms of storage: dynamic and static. Dynamic storage handles a flow of
information—for example, a serial peripheral that receives messages from
another system. The task managing the peripheral will require storage
for the message until it can be passed to a control task for processing.
Because the peripheral may continue to receive new information while
it is processing the old message, the storage will typically be larger to
hold both the current message and the new one being received. This
storage is therefore considered dynamic because the amount of data
stored changes with time. The data storage is also not constant. While
messages are being received, then the storage holds data. If all the mes-
sages received by the peripheral task have been processed, the storage is
empty. Static storage, on the other hand, has a fixed storage requirement
because the information is continuous, regardless of the current activity
of its controlling task—for example, the variable structures that hold
the current time and alarm time information in our clock example. The
data may be regularly updated, but it doesn’t change in size, and there
is always valid data in the variables, so static storage is constant in size
and continuously holds data.

130 Chapter 3

All data pathways within a system will fall into one of these two
categories. What we as designers need to do at this point in the de-
sign is find the various pathways, determine if the storage is static or
dynamic, and make a reasonable estimate concerning the amount of
storage required.

A good place to start is the peripherals that introduce information to
the system. These include serial communications ports, button inputs,
A-to-D converters (ADCs), even timers. These peripherals constitute
sources of data for the system as their data is new to the system and
not derived from other existing data. To determine whether their re-
quirements are static or dynamic, we will have to determine what the
information is and how the system will ultimately use it. Let’s take a
couple of examples, and determine which are static or dynamic:

An A-to-D that captures sensor data from several sources. In this
example the A-to-D continuously samples multiple sources, voltage,
current, temperature, and pressure. It then scales the resulting value and
stores the information in a collection of status variables. This periph-
eral is collecting a continuous stream of data, but it is not storing the
information as a stream of data. Rather, it is updating the appropriate
status variable each time a new sample is converted. This is an example
of static storage. The memory requirements are simply the collection
of status variables, multiplied by their width. The number of variables
does not change, and they all contain valid data continuously.

An A-to-D that captures a continuous stream of samples from a
single source for digital signal processing. The data is stored in a large
array, with the most current at the top and the oldest at the bottom.
While this certainly sounds dynamic, it is actually static. As in the pre-
vious example, the amount of data does not change, but simply flows
through the array of values. Each time a new value is added, the old
value falls off the other end. The amount of storage required is the size
of the array holding the collection of values, multiplied by their width.
The number of variables does not change, and they all contain valid
data continuously.

Example 3.1

Example 3.2

System-Level Design 131

A command decoder that converts individual button presses into
control commands for the system. This certainly sounds static: a button
is pressed and a command comes out. However, the storage requirement
is actually dynamic. In the definition of static and dynamic storage, it
was stated that the amount of valid information in a static system must
be constant. Here the output of the system can be a valid command,
or the system may be idle with no valid data output. The amount of
data changes, even if only from one command to zero commands, so
the system is dynamic.

A system that reads data from a disc drive. This system is definitely
dynamic, since the data is read from the disc as the information passes
under the heads in the drive, so the timing of the data’s arrival is dictated
by the physics of the spinning disc. The system that uses the information
is very probably not synchronized to the spin of the disc, so the system
reading the disc will have to buffer up the information to handle the
timing discrepancy between the disc and the receiving system. Because
the timing is asynchronous, there is no way to predict the amount of
time between the reception of the data and its subsequent transmission
to the receiving system. So, the amount of data stored at any given mo-
ment is variable, ranging from zero to the maximum size of the disc file,
and that makes this storage requirement dynamic.

OK, so some data is static, and we can readily determine the storage
requirements for these functions, but how do we determine the maxi-
mum size of dynamic storage? The answer lies in the rate at which the
information enters the system. In a typical system, such as a serial port,
there will be three potential data rates.

1. The maximum rate: Typically this is determined by the electrical
characteristics of the peripheral, the maximum conversion rate
of the A-to-D, the baud rate of a serial port, or the roll-over time
of a timer. It represents the theoretical maximum possible rate at
which data can be sent, and it should be used to set the timing
requirements of the task that will manage the peripheral.

2. The average rate: Typically this is an indicator of the average data
load on the system. For a serial port, this will be the number of

Example 3.3

Example 3.4

132 Chapter 3

packets sent in a typical second, multiplied by the average size of
the packets. It is not the fastest rate at which the peripheral will
have to operate, but it does indicate how much data the system
will have to handle on a regular basis.

3. The peak rate: This rate is the worst-case scenario, short of the
maximum rate defined for the peripheral. It indicates the maxi-
mum amount of data that will be transmitted in a given second.
The word amount is the important distinction between the peak
rate and the maximum rate. The maximum rate assumes a con-
tinuous flow of data forever. The peak rate indicates the amount
of data sent, minus all the delays between packets, and characters
in the flow of data. So, the peak rate, by definition, must be less
than the maximum rate, and it represents the maximum data
load on the system.

So, the maximum rate determines the speed at which the task
managing the peripheral must operate, and the average and peak rates
determine the average and worst-case data load on the system. How
does this determine the amount of storage required? To answer the
question, consider the example of a system that must receive serial data
from another system.

Data from an external system is transmitted in the following format:
9600 baud, with 8-bit data, no parity, and 1 stop bit. Further, the data
will be received in packets of 10 bytes, at an average rate of two packets
every second.

So, to store the data received from the serial port, it is pretty obvi-
ous the temporary data storage structure will be an 8-bit CHAR. And,
given a baud rate of 9600, with 8-bit data, 1 start bit, and 1 stop bit, the
maximum rate at which 8-bit CHARs will be generated is 960 characters
per second. That means that the receiving task will have to be called at
least 960 times a second to keep up with the data. So far, so good, the
maximum data rate is 960 characters a second.

960 = (9600baud/(8 bit data + 1 start bit + 1 stop bit)).
Equation 3.1

System-Level Design 133

However, how big a buffer will be needed to handle the data? Well, the
packet size is 10 bytes, so a packet requires 10 bytes of storage. Given that
the average rate at which a packet can be received is 2 per second, then
the system will have to process 20 characters a second. And the minimum
storage would have to be 20 CHARs, 10 for the current packet, plus 10
more to hold the accumulating data in the second packet.

OK, the system needs a minimum of 20 CHARs to buffer the in-
coming data. However, what happens if the peak rate is five packets per
second? Now we need more storage; a minimal 20 CHAR buffer will be
overrun. How much more storage should actually be allocated? At the
moment, we don’t have sufficient information to determine the exact
storage needs, either average or peak. This is because we don’t know the
rate at which the system will actually process the packets. However, a
good guess can be made using the average and peak rate numbers. If
the average rate is two packets per second, then the maximum time the
system will have to process a packet is limited to ½ a second. If the peak
rate is five packets per second, and the system can process packets at a
rate of two per second, then the buffer storage will have to be at least 41
CHARs. Five incoming packets each second, less one processed packet
during the first half of the second, gives four packets of storage. At 10
CHARs per packet, plus one extra for the pointers, that’s 41 CHARs.
So, a good maximum size guess is 41 bytes for the storage.

One side note to consider, before we leave the discussion on buffer size
and packet rates, if the control task is fast enough to process the data as
it is received, why even user a buffer? Why not just process the data as it
is received? Using this method would seem to be very appealing because
it is both faster, and less wasteful of data memory. Unfortunately, there
is an opportunity cost that is not readily apparent. If the control task is
preoccupied with processing the data as it is received, it will not be able
to handle other important conditions that may arise while the packet is
in process. The response to other system conditions will quite literally by
blocked by the reception of the data packet until it is complete. Using
the buffer to queue up the complete packet allows the control task to
handle the packet all at once, freeing it up to handle other important

134 Chapter 3

events as they occur. So, the buffer system in effect trades off data storage
for more efficient use of the control task’s execution time.

Another point to consider: if the control task does not use a buf-
fer system and processes the data on a CHAR by CHAR basis, it can
potentially be hung up if the data stream from the communications
peripheral is interrupted in mid-packet. In fact, if the control task does
not include some kind of time out timer, the control task may not notice
even notice the interruption and hang the entire system waiting for a
character that will never arrive.

At this point, the information that should be collected is:

1. What the data is, and its probable variable size.

2. Whether the storage requirement is static or dynamic.

3. Where the data comes from, and goes to.

4. The approximate amount of storage required for the storage.

5. And all information concerning the rate at which the data will
appear.

Decisions concerning the actual format of the data storage and the
final amount of data memory allocated will be left until later in the
design, when more information concerning processing time is available.
Until then, just note the information for each pathway in the system.

Having retrieved the specifications for data entering the system, the
next step is to gather requirements for data leaving the system. And,
again, the exits, like the entrances, will be through the peripherals and
can be either static or dynamic.

In the previous section, we determined that static variables were fixed
in length and continuously held valid data. The same is true for output
peripherals—for example, the LED displays in our clock example. The
task that scans the information onto the displays will get its informa-
tion from one of two static variables that hold the current time and
alarm time for the system. The data feed for the peripheral task has a
constant size and continuously holds valid data, so the storage for the
display is static.

System-Level Design 135

However, if the peripheral is a serial output port, then the storage
is no longer static because the amount of data is probably variable in
length, and once transmitted, it probably no longer be valid either.
Therefore the output queue for a serial output task is probably dynamic.
But be careful, it could be that the serial output task simply grabs data
from fixed variables in the system, converts them into ASCII characters,
and sends them out. In this case, storage for the serial port task may
be static because it is constant in length and always holds valid data.
Careful examination of the requirements document is required to make
a proper determination.

As in the previous section, a determination of the amount of data
memory needed to hold any dynamic storage will also have to be made.
Unfortunately, there may not be any explicit peak and average data rates
to base the calculation on. Instead, we will have to examine the require-
ments placed on the peripheral and make a best guess as to what the
average and peak rates are for the peripheral.

For example, consider a serial port that will be used to return infor-
mation in response to queries from another system. Like the previous
section, we will assume a 9600 baud rate, with 8-bit data, no parity,
and one stop bit. This fixes the maximum rate of data transmission to
960 characters a second. The trick is now to determine what the average
and peak data rates will be.

Well, if the data is sent in response to queries, then we can estimate
the worst-case needs using a little common sense and some math. For
example, assume the largest response packet is 15 characters long. If
the maximum rate that new packets can be generated is limited by the
peak rate at which packets can be received, then the peak rate for new
outgoing packets is 5 per second (from the previous section). Given 15
CHARs per query, then the outgoing rate is 5 packets per second, or
75 characters per second. That means that a reasonable guess for data
storage is 75 CHARS.

The final section of communications-related data to retrieve from
the requirements document is any significant data storage requirements
not covered in the previous sections. It can include on-chip copies of

136 Chapter 3

information stored in a nonvolatile memory; scratchpad memory for
translating, compressing, or de-compressing files of data; or temporary
storage of data to be moved to a secondary memory. Specifically, large
blocks of data that hasn’t been accounted for in the input or output
peripheral data pathways.

As in previous sections, the data here can be static or dynamic as well.
Static presents little challenge, as it is a permanent allocation. However,
dynamic storage will again depend on the timing of the tasks sending
and receiving the data, so we will again need to know the maximum,
average, and peak rates at which the data will be transmitted. And, like
the dynamic storage for the output peripherals, we will typically have
to infer the rates from other specifications.

Let’s take a simple example: temporary storage for nonvolatile values
stored in an external EEPROM memory. Having nonvolatile storage for
calibration constants, identification data, even a serial number, is often
a requirement of an embedded design. However, the time to retrieve
the information from the external memory can unnecessarily slow the
response of the system. Typically, nonvolatile memory requires additional
overhead to access. This may involve the manipulation of address and
data registers within an on-chip nonvolatile storage peripheral, or even
communications with the memory through a serial bus. In either case,
retrieving the data each time it is needed by the system would be inef-
ficient and time consuming. The faster method is to copy the data into
faster internal data memory on power-up and use the internal copies
for all calculations.

And that is where the amount of internal memory becomes an issue,
because:

1. It means that internal data memory must be allocated for the
redundant storage of the information.

2. It means that the data will have to be copied from the external
memory, and possibly de-compressed, before the system can start
up.

System-Level Design 137

3. It means that all updates to the constants must also be copied
out to the external memory, after being compressed, when the
change is made.

This adds up to several blocks of data: data memory to hold the
on-chip copies of the calibration constants; more data memory will be
needed for any compression/decompression of the data during retrieval,
or storage of updates; and, finally, data memory to buffer up the com-
munications strings passed back and forth to the external memory.

OK, so a few shadow variables will be needed for efficiency. And, cer-
tainly some buffer space for communications with the external memory
is reasonable, but who builds a compression / decompression algorithm
into a small embedded system? Well, it may be a requirement that data
tables are compressed to maximize data storage in an external nonvola-
tile memory, such as a data logger counting tagged fish migrating in a
stream. If the data logger is a 10-mile hike from the nearest road, and
compression extends the time between downloads, then it makes sense
to compress the data. If on-chip storage is limited, then packing bits
from several variables into each byte saves the cost (in both dollars and
time) required to augment the storage with external memory.

Decompression may also be required for communications with an
external peripheral. Take the example of an RTC, or real-time clock,
peripheral. Its design is based on a silicon state machine, and the inter-
face is a simple serial transfer. Given the chip is completely hardware
in nature, it follows that the data will typically use a format that is
convenient for the state machine and the interface, and not necessarily
a format that is convenient for the microcontroller talking to it. So, to
retrieve the current data and time from the peripheral, it is certainly pos-
sible that the microcontroller will have to parse the required data from
a long string of bits before they can be stored in the internal variables.
It may also be necessary to translate the data from binary integers into
BCD values for display.

All of these functions require data storage, some of it dynamic with
an as yet undetermined length, and some of it static with a predictable
length. Our purpose here is to gather as much information concerning

138 Chapter 3

the communications needs of the system and determine the likely stor-
age requirements.

If we examine our clock project in light of these requirements, we
come up with the following notes for our design file:

INPUT PERIPHERAL
Buttons: These inputs generate dynamic values a
single bit in length. There are 6 inputs, with a
maximum rate of 3 presses per second, an average of
1 press per second, and a peak rate of 3 per sec-
ond. That means a storage requirement of 18 bits
for a worst case.

60 Hz: This input is the 60-Hz line clock for the
system. Its rate does not change under normal oper-
ating conditions, so the maximum, average, and peak
rates are the same. That leaves us with 1 bit of
storage.

OUTPUT PERIPHERAL
Display: The display always has the same number of
bytes, 7. One for each digit of the display, plus
1 to keep track of the display currently being
driven. So, the storage requirement is static. An
additional bit is needed for blanking the display
during the Alarm_active time.

Audio alarm: The alarm control is a single bit,
with a maximum, average, and peak rate of 2 kHz, so
a single static bit of storage. Note: The rate is
determined by doubling the frequency of the tone, a
1-kHz tone requires a bit rate of 2-kHz. Also, the
rate was not in the requirements document, so the
question was asked and marketing determined a 1-kHz
tone was appropriately annoying to wake some one.

OTHER SIGNIFICANT STORAGE
Storage for the current time is needed, so six static
4-bit variables to hold hours, minutes, and seconds.

Storage for the current alarm time is needed, so four
static 4-bit variables to hold hours and minutes.

Storage for the snooze offset alarm time is needed,
so another four static 4-bit variables to hold the
offset hours and minutes.

Notes

System-Level Design 139

Storage for the following system set commands;
SLOW_SET_TIME, FAST_SET_TIME, SLOW_SET_ALARM_TIME,
and FAST_SET_ALARM_TIME
These four dynamic variables have the same timing
as the FAST_SET and SLOW_SET inputs, so 3 bits per
variable or 12 bits total.

Storage for the following static system variables;
ALARM_ENABLED, ALARM_SET_ACTIVE, ALARM_ACTIVE,
SNOOZE_ACTIVE
It is assumed that the button routine will directly
set these status variables based on the inputs.

It should be noted that these requirements are just estimates at
this point in the design, and they are subject to change as the design
evolves.

Timing Requirements

While the topic of timing has already been raised in the previous section,
in this section the discussion will be expanded to include the execution
and response time of the software functions.

When discussing timing in embedded software, there are typically
two types of timing requirements, rate of execution and response time.
Rate of execution deals with the event-to-event timing within a soft-
ware function. It can be the timing between changes in an output,
time between samples of an input, or some combination of both. The
important thing is that the timing specification relates to the execution
timing of the function only—for example, a software serial input routine
that simulates a serial port. The rate of execution is related to the baud
rate of the data being received. If the baud rate is 9600 baud, then the
routine must be called 9600 times a second to accurately capture each
bit as it is received.

Response time, on the other hand, is the time between when a trigger
event occurs and the time of the first response to the event within the
function. The trigger is, by definition, an event external to the func-
tion, so the response-timing requirement is a constraint on the software
system that manages and calls the software functions. Specifically, it
determines how quickly the main program must recognize an event and

Notes

140 Chapter 3

begin executing the appropriate software routine to handle it. Using the
same software serial port routine as an example, the initial trigger for
the routine is the falling edge of the start bit. To accurately capture the
subsequent flow of data bits, the routine will have to sample near the
center of each bit. So, at a maximum, the response time must be less
than ¼ bit time; this will place the sample for the first bit within ¼ bit
time of 50%. If the sample placement must be more accurate, then the
response time must be correspondingly faster.

Both the rate of execution and response timing requirements should
be specified in the requirements document, even if they are not critical.
Listing the requirement at least indicates what timing the designer has
chosen to meet in the design. It will also become important later in this
chapter when we determine the system timing.

Note, that for some software functions, the specifications maybe miss-
ing. It could an omission in the document or the specification may be
hidden within the specification of another function. Either way, it once
again falls to the designer to play detective and determine the timing
requirements. As an example, consider the control function from our
clock example. In the requirements document, there may not be a specific
requirement for response time and rate of execution listed for the com-
mand decoder function. However, there should be timing specification
for the maximum response time to a button command entered by the
user. So, if the timing requirement states that the system response to a
button press must be less than 200 msecs from the start of the button
press, then 200 milliseconds is the maximum time allotted for:

The response time, plus execution time for the keyboard de-
bounce function responsible for scanning the keyboard, and
determining when a valid button press has occurred.

Plus, the response time allotted to the control task, for the detec-
tion of a command.

Plus, the execution time allotted for processing of the command
and making the appropriate change in the system.

Plus, the maximum time required to display the change of status
on the system display.

System-Level Design 141

If we know the button may take as much as 100 ms to stop bouncing
and the debounce routine will require a minimum of 50 ms to detect
the stable button. And the display task scans through all the displays 60
times a second. Then we can determine that the command function has
a maximum of 34 msec to detect and process the command:

34 msec = 200 msec – 100 msec – 50 msec – (1/60 Hz)

So, event through there is not specification for the individual func-
tions in the system, there may be an overall timing specification for the
execution of the combination of functions. In fact, this will typically
be the case with timing specifications. Timing requirements are most
often for a combination of functions rather than the individual func-
tions determined by the designer. This makes sense, as the writers of the
requirements document can only specify the performance for the system
as a whole, because they will not know what the specific implementation
chosen by the designer will look like in the product definition phase. So,
designers should take care in their review of the requirements document;
sometimes the important information may not be in the most convenient
format, and it may in fact be buried within other specifications.

Both timing parameters should also have tolerance requirements listed
as well. The response time will typically have a single tolerance value,
expressed as a plus percentage / minus percentage. And the execution
rate will have at least one and possibly two, depending on the nature
of the function.

Because the response time is less complicated, let’s start with it first.
The response timing tolerance is the amount of uncertainty in the tim-
ing of when a functions starts. Typically, it is specified as a plus/minus
percentage on the response time, or it can also be specified as just the
maximum response time allowed. If it is listed as a ± value, then the
response time has both a minimum (Tresponse – X%) and maximum
(Tresponse + X%) specification, and the response time is expected to fall
within these timing limits. If, on the other hand, the only specification
is a maximum response time, the more common form, then the mini-
mum is assumed to be 0 and the maximum is the specified maximum
response time. Because the minimum and maximum times are the values

Equation 3.2

142 Chapter 3

important to our design, either form works equally well. The designer
need only determine the minimum and maximum and note them down
in the design document for the appropriate software function.

The reason for two potentially different tolerances on execution rate
is that first tolerance will typically specify the maximum variation for
a single worst-case event-event timing, while the second specifies the
total variation in the execution timing over a group of events. If only
a single tolerance is specified, then it is assumed that it specifies both
event-event, and the total variation for a group of events. To clarify,
consider a serial port transmit function implemented in software. The
routine accepts a byte of data to be sent, and then generates a string of
ones and zeros on an output to transmit the start, data, parity, and stop
bits. The event-to-event timing tolerance governs the bit-by-bit timing
variation in the transitions of the ones and zeros sent. If the port were
configured for 9600 baud, then the individual bit timing would be
104 μs. The event-event timing tolerance specifies how much this timing
can shift for a single bit period. Some bits may be longer, and others
shorter than the optimal 104 μs, but as long as they are within the speci-
fication, the receiving system should be able to receive the data.

The overall timing tolerance governs the accumulated average
variation in bit timing for the complete byte sent by the routine, basi-
cally specifying the maximum variation over the course of the entire
transmission. The reason this is important has to do with the idea of
stacked tolerances. For example, say each bit time within a serial data
transmission is allowed to vary as much as ± 10%. This means that the
bit transitions may vary from as short as 94 μs, to as much as 114 μs. This
is not a large amount, and for a single bit time, it is typically not critical.
However, if the transmitted bits were all long by 10%, the timing error
will accumulate and shift the position of the data bits. Over the course
of 6 bits, the shift would be sufficient to move the fourth to fifth bit
transition so far out that the receiving system would incorrectly think it
is sampling the sixth data bit of data. If, on the other hand, the overall
average error is kept below 4%, then even though the individual bits
may vary by 10%, most of the individual bit timing errors will cancel.

System-Level Design 143

In this scenario, the accumulated error should be sufficiently small to
allow the receiver a marginal probability of receiving the valid data.

If we consider the problem from a practical point of view, it makes
sense. There will typically be some variation in the timing of output
changes. As long as the variation averages out to zero, or some value suf-
ficiently small to be tolerable, then the overall frequency of the output
changes will be relatively unaffected by the individual variation. So,
note both values in the design notes for future use by the system in the
timing analysis later in this chapter.

One other point to note: Check for any exceptions to the timing re-
quirements, specifically any exception tied to a particular action in the
function, such as, “The bit timing shall be 9600 baud ±3%, except for
the stop bit, which shall be 9600 baud +100/–3”. What this requirement
tells the designer is that the individual bits in the data stream must vary
less than 3%. The one exception is the stop bit which can be as short as
the other bits, but may be as long as two complete bits, before the next
start bit in the data stream. This is a valuable piece of information that
will help in the design of both the timing and priority control sections
of the design and, again, it should be noted in the design notes for the
project.

Using our alarm clock design as an example, we will first have to
glean all the available timing information from the requirements docu-
ment, and then match it up with our preliminary function list. For those
functions that are not specifically named with timing requirements, we
will have to apply some deduction and either derive the information
from the specifications that are provided, research the requirements in
any reference specifications, or query the writers of the document for
additional information.

The following is the resulting modification to the requirements
document. Note that timing information specified in other sections
of the document have been moved to this new section, and additional
information has been added as well.

144 Chapter 3

5) TIMING REQUIREMENTS.
a) Display function timing information

 i) The display shall scan at a rate greater
than 60 Hz per digit (+20%/-0).

 ii) All display changes shall update within
1 digit scan time maximum.

b) Alarm
 i) The alarm function will flash the display at a

1-Hz rate (+/-10% event-event, +/-0% overall)
Timing of flash shall be synchronous to real-
time clock update(+50 msec/-0).

 ii) The alarm tone shall be a 1-kHz tone +/-10%
event-event, and overall. Modulation to be
at a 1-Hz rate, 50% duty cycle +/-10% event-
event, +/-2% overall).

 iii) Alarm shall sound within 200 msec of when
alarm time equals current time.

 iv) Alarm shall quiet within 200 msec of snooze
detection, or 200 msec of alarm disable.

a) Commands
 i) The minimum acceptable button press must

be greater than 300 msec in duration, no
maximum.

 ii) All button bounce will have damped out by
100 msec after initial button press.

 iii) All commands shall provide a visual feedback
(if applicable) within 200 msec of the ini-
tial button press.

 iv) For all two-button commands, the first but-
ton shall have stopped bouncing a minimum of
100 msec before second button stops bounc-
ing for second button press to register as a
valid command.

 v) Autorepeat function shall have a 1-Hz rate
(+/-10% event-event,+/-0% overall) increment
shall be synchronous to real-time clock update
(+50msec/-0).

b) Time base
 i) If 5 consecutive 60-Hz cycles are missed, the

clock shall revert to the microcontroller clock
within 8 msec of 5th missing rising edge.

 ii) When the microcontroller detects 5 consecu-
tive 60-Hz cycles, it shall revert to the
power line time base within 8 msec of 5th
rising edge detected.

 iii) The real-time clock function shall have the
same accuracy as its timebase (+/-0%). Up-
dates shall be within 16 msec of update
event to the real-time clock function.

Notes

System-Level Design 145

Applying this new information to the functions listed in our function
list should result in the following timing information for the project:

SYSTEM TIMING REQUIREMENTS BY FUNCTION:
1. The LED scanning function rate of execution is

360 Hz +20% / -0% event-event & overall, (6 digits
* 60 Hz)

2. Display related functions have a response time of
1 digit scan time maximum (see 1.)
Functions affected by this timing specification

12-hour display function for time
24-hour display function for time
12-hour display function for alarm
24-hour display function for alarm
PM indicator display function
Alarm on indicator display function

3. The rate of execution for the alarm display
flashing routine is (1 Hz rate +/-10% event-event,
+/-0% overall)(synchronous to time update +50
msec/-0)

4. The response time for display blanking due to a
switchover to the internal time-base is 8 msec
maximum, following detection of 5th missing rising
edge.

5. All command functions have a response time of 34
msec maximum
34 msec = 200 msec (spec) – 100 msec (switch
bounce) – 50 msec (debounce) – (1/60 Hz)
Functions affected by this timing specification are
Command decoder function plus

Alarm on/off toggling routine
Routine to increment alarm by 1 min
Routine to increment alarm by 20 min
Routine to increment Time by 1 min
Routine to increment Time by 20 min
Toggle 12/24 hour mode

6. No specification for debounce time is given.
However, 100 msec is the maximum bounce time,
therefore a 50 msec maximum time is chosen for
worst-case debounce detection. Both the Control
input monitoring function and debounce function
must execute in this time.

7. Rate of execution for the Auto repeat function is
1 Hz rate (+/- 10% event-event, +/-0% overall)
event synchronous to time update (+50 msec/-0).

8. The response time for the alarm control function
is 100 msec following new current time value equal
to alarm time (includes tone startup time).

Notes

146 Chapter 3

9. The response time for a Snooze function is 50 msec
maximum (includes tone off time)
50 msec = 200 msec (spec) – 100 msec (switch
bounce) – 50 msec (debounce).

10) The execution rate of the alarm tone function rou-
tine 1-kHz tone +/-10% event-event and overall,
modulated at a 1-Hz rate, 50% duty cycle +/-10%
event-event, +/-2% overall).

11) The total response time of the 60-Hz monitoring
and 60-Hz Fail/Recovery functions must be less
than 8 msec of either the 5th detected 60-Hz pulse
or its absence.

12) The rate of execution for the 60-Hz time base and
internal time base shall be 1 Hz +/-0% overall
relative to the source time base. Trigger to event
response time of 16 msec maximum.

Once the information is complete, it should be noted in the design
notes file for the project. Include any equations used to calculate the
timing requirements and any special timing information—for example,
the requirement in 3 and 7 requiring synchronous timing to the time
update, and the notes in 8 and 9 concerning the inclusion of the startup
and off times for the tone generator. At this point all the timing infor-
mation for the system should be known and documented.

System Priorities

An important topic, related to timing, is the priority requirements for
the system. From our discussion earlier, priority handling is different
from timing in that timing determines the rate at which a function
must be executed, while priority handling is determining if a function
should execute. With this in mind, the designer must extract informa-
tion from the requirements document concerning the operating modes
of the system, the priorities within each mode, and when and why those
modes change must be determined.

The logical place to start is to determine what operational modes the
system has, specifically:

1. Does the system have both an active and passive mode?

2. Does it have an idle mode in which it waits for an external
event?

Notes

System-Level Design 147

3. Does it have two or more different active modes in which the
system has different priorities?

4. Does it have a shut-down mode in which the system is powered
but mostly inactive?

5. Does it have a configuration mode in which operational param-
eters are entered?

6. Is there a fault mode where system errors are handled?

For example, let’s generate a priority list for the alarm clock we are
designing. From the requirements document, we know:

The alarm can be either enabled or disabled.

If enabled, the alarm can either have gone off, or not. Let’s call
these pending/active.

If the alarm is active, then it can be temporarily silenced by a
snooze command.

Both the current time and alarm time can be set by button
commands.

If the power fails, the display is blank, time is kept, and alarm
functions are inhibited.

If we assign different modes to the various combinations of system
conditions, we get the following preliminary list of system modes:

Timekeeping mode: Current time display, alarm is disabled, no
commands are in progress, and normal power.

Time set mode: Current time display, alarm is disabled, normal
power, and time set commands are in operation.

Alarm pending mode: Current time display, alarm is enabled,
normal power, no commands in progress, and alarm is not
active.

Alarm set mode: Alarm time display, normal power, alarm set
commands are in operation, and alarm is not active.

Alarm active mode: Flashing display of current time, alarmed is
enabled, alarm is active, no commands in progress, and normal
power.

148 Chapter 3

Snooze mode: Current display time, alarm is enabled, snooze is
in progress, and normal power.

Power fail mode: Display is blank, internal time base in opera-
tion, alarm is inhibited, and battery supplied power.

Note that each of the system modes is unique in its operation. Some
modes are differentiated by the fact that commands are active, others
because of the status of the alarm. In fact three of the modes are different
states within the alarm function. It doesn’t really matter at this point
in the design if we have five system modes, or thirty. What we want to
determine is all the factors that affect how the system operates. When
we get to the priority handler design section of this chapter, we will
expand or contract the system mode list as needed to fit the design. For
now we just need to generate a reasonable list of modes to hang some
additional information on.

If we compare the preliminary list of modes to the previous criteria,
we should notice that there is one mode missing, the error mode. We
will need a mode to handle error conditions, such as the initial power
up, when the system does not know the current time. If we establish
this error mode, and define its behavior, we might have something like
the following:

Error mode: Display flashing 12:00, alarm is inhibited, no com-
mand is in progress, and normal power.

Once the preliminary list of system modes has been established, the
next step is to determine which functions are important in each mode.
Each mode will have some central operation, or group of operations, that
are important and others that are not so important. This translates into
some software functions having a higher priority than other functions.
In fact, some functions may have such a low priority that they may not
even be active. So, using the description of the modes as a guide, we can
take the list of functions and determine if each has a high, medium, or
low priority in a given mode. Those that are not needed in a specific
mode are left off the list. So, once again using our alarm clock as an
example, the following preliminary priority list can be compiled:

System-Level Design 149

Priority List
1. Timekeeping mode

1.1. High Priority
60-Hz monitoring function
Time increment function based on 60-Hz
power line time base

1.2. Medium Priority
Function to scan LED displays
12-hour display function for time
24-hour display function for time
PM indicator display function

1.3. Low Priority
60-Hz Fail/Recovery monitoring function
Control input monitoring function
Debounce function
Toggle 12/24 hour mode
Alarm on/off toggling function

2. Time set mode
2.1. High Priority

Control input monitoring function
 Debounce function
 Auto repeat function
 Set Time function
 Routine to increment Time by 1 min
 Routine to increment Time by 20 min

2.2. Medium Priority
Function to scan LED displays

 12-hour display function for time
 24-hour display function for time
 PM indicator display function

2.3. Low Priority
 60-Hz monitoring function
 60-Hz Fail/Recovery monitoring function

3. Alarm pending mode
3.1. High Priority

60-Hz monitoring function
 Time increment function based on

60-Hz power line time base
 Alarm control function

3.2. Medium Priority
 Function to scan LED displays
 12-hour display function for time
 24-hour display function for time
 PM indicator display function

List 3.2

150 Chapter 3

3.3. Low Priority
 60-Hz Fail/Recovery monitoring function
 Control input monitoring function
 Debounce function
 Toggle 12/24 hour mode
 Alarm on/off toggling function

4. Alarm set mode
4.1. High Priority

 Time increment function based on 60-Hz
power line time base

 Control input monitoring function
 Debounce function
 Auto repeat function
 Alarm control function
 Set alarm function
 Routine to increment alarm by 1 min
 Routine to increment alarm by 20 min

4.2. Medium Priority
 Function to scan LED displays
 12-hour display function for alarm
 24-hour display function for alarm
 PM indicator display function

4.1. Low Priority
 60-Hz monitoring function
 60-Hz Fail/Recovery monitoring function

5. Alarm active mode
5.1. High Priority

 60-Hz monitoring function
 Time increment function based on 60-Hz

power line time base
 Generate alarm tone function
 Alarm control function

5.2. Medium Priority
Function to scan LED displays
Display flashing function for the alarm
12-hour display function for time
24-hour display function for time
PM indicator display function

5.3. Low Priority
 60-Hz Fail/Recovery monitoring function
 Control input monitoring function
 Debounce function
 Toggle 12/24 hour mode
 Alarm on/off toggling function
 Snooze function

List 3.2
(continued)

System-Level Design 151

6. Snooze mode
6.1. High Priority

60-Hz monitoring function
Time increment function based on 60-Hz
power line time base

Snooze function
Alarm control function

6.2. Medium Priority
Function to scan LED displays
12-hour display function for time
24-hour display function for time
PM indicator display function

6.3. Low Priority
 60-Hz Fail/Recovery monitoring function

 Control input monitoring function
 Debounce function
 Toggle 12/24 hour mode
 Alarm on/off toggling function

7. Power fail mode
7.1. High Priority

Time increment function based on 60Hz
power line time base

60-Hz monitoring function
7.2. Medium Priority

Function to scan LED displays
Display blanking function for operation
from internal clock time base

7.3. Low Priority
 60-Hz Fail/Recovery monitoring function
 Time increment function based on internal

clock time base

8. Error mode
8.1. High Priority

60-Hz monitoring function
8.2. Medium Priority

Function to scan LED displays
12-hour display function for time

8.3. Low Priority
 60-Hz Fail/Recovery monitoring function

 Control input monitoring function
 Debounce function

List 3.2
(continued)

152 Chapter 3

The eight modes are listed with the functions that are important
in each mode. The priorities of each function, in each mode, are also
established and those functions that are not required are left off the list
indicating that they are not used in that particular mode. The result is a
clear list of system modes and priorities. The only thing missing are the
specific conditions that change the mode. These transitions are generally
due to external conditions, such as a command entry or power failure.
Transitions can also be due to internal events, such as the alarm time.
Whatever the reason, the transition and the event triggering the transi-
tion need to be determined and noted. The following are the events
triggering a transition in the alarm clock design:

Original Mode Next Mode Trigger Event
Powered down Error Initial power up
Error Time set Press of the TIME SET button
Error Alarm set Press of the ALARM SET button
Timekeeping Time set Press of the TIME SET button
Timekeeping Alarm set Press of the ALARM SET button
Time set Timekeeping Release of the TIME SET button
Alarm set Timekeeping Release of the ALARM SET button
Timekeeping Alarm pending Alarm control switch to enabled
Alarm pending Timekeeping Alarm control switch to disabled
Alarm active Timekeeping Alarm control switch to disabled
Alarm pending Alarm active Alarm time = current time
Alarm active Snooze Snooze command
Snooze Alarm active Alarm time + snooze time = current time
{all modes} Power fail Fifth consecutive missing 60-Hz pulse
Power fail Timekeeping Fifth consecutive 60-Hz pulse
{all modes} Error Error condition

Table 3.2

System-Level Design 153

With these additions, the system modes and priorities are sufficiently
defined for the design.

The only functions that haven’t been specified are those functions
that fall into the category of housekeeping functions. These functions
have no specific timing or priority; rather, they are just executed when
execution time is available. This could be because their typical timing
is infrequent compared to other higher priority functions, or it could
be that they are run as a sort of preventive maintenance for the system.
Typical examples of this kind of function can include the following:

1. Periodic checks of the voltage of the battery used for battery
backup.

2. Periodic checks of the ambient temperature.

3. Periodic verification of a data memory checksum.

4. Functions so low in priority that any other functions are run
before they are.

5. Functions that may have a higher priority in other modes, but
do not in the current mode.

Any function that is not in the system list of priorities could be in-
cluded in the list of housekeeping functions, so it can be included in the
priority control system. Note that it is perfectly acceptable to have no
housekeeping functions. And it is also acceptable to have functions in
the list that are only present in some system modes. The only purpose
of the list is to guarantee that all functions get execution time, some
time during the operation of the system. For our example with the
alarm clock, there are no housekeeping functions beyond those with
low priority in the various system modes.

154 Chapter 3

Error Handling

The final section of information to glean from the requirements docu-
ment is error handling—specifically, what set of errors is the system
designed to recognize and how will the system handle the errors. Some
errors may be recoverable, such as syntax error in an input, out of paper
in a printer, or a mechanical jam. Other errors are more serious and may
not be recoverable, such as low battery voltage, failed memory data check
sum, or an illegal combination of inputs from the sensors indicating a
faulty connection. Whatever the illegal condition, the system should be
able to recognize the error, indicate the error to the operator, and take
the appropriate action.

The first step is to compile a list of errors and classify them as soft
errors, recoverable, or nonrecoverable hard errors. Soft errors include
faults that can safely be ignored, or can be handled by clearing the fault
and continuing operations. Typically soft faults are user input faults
which can be safely either ignored, or handled by reporting a simple
error condition. These include minor user input faults, incorrect syn-
tax, or even the entry of out-of-bound values. Recoverable errors are
errors in the system due to transitory system faults that, once cleared,
will allow the system to continue operation. These include corrupted
data memory, control faults that require user intervention to clear, or a
lost program counter. Finally, hard errors are those errors classified as a
failure in the system hardware requiring diagnostics and repair to clear.
These include the detection of an impossible combination of inputs,
failure of the program memory checksum, or failure in the operation
of a system peripheral.

After the list of errors has been compiled and classified, the criteria
for detecting the error should be specified and all acceptable options for
responding to the error. As an example, consider a simple lawn sprinkler
controller. It is designed to accept data in the form of water time and
duration. When the time corresponding to a watering time is equal to
the current time, it turns on the sprinkler for the specified duration.

However, what happens if a specified watering time of 25:20 is
entered? Or the current time is 24:59? Or the checksum on the time

System-Level Design 155

and duration data memory fails a routine check? These are examples of
potential faults for a system. Compiling them into a list and classifying
them, we get:

Soft Fault
Fault: User enters a start time >23:59.

Test: Determined at input by comparison to 23:59.

Response: Display “bad time” for 5 seconds and clear input.

Recoverable Fault

Fault: Data checksum fails.

Test: Determined by checksum housekeeping function.

Response: Display “MEMORY FAULT” and turn off all sprinklers,
clear data memory, and wait for user to reset time and
duration values.

Hard Fault
Fault: Clock peripheral reports > 24:59.

Test: Determined at time check by comparison to 23:59.

Response: Display “system failure” and turn off all sprinklers and
shut down system.

In each of these possible problems, the system has both a means of
detecting the fault, and a way to respond to the fault. If the fault, its
detection, or recovery are not listed in the requirements document, then
it is up to the designer to find answers to these questions and add them
to the document.

Note that some faults should be included as a matter of good pro-
gramming practice, such as watchdog timer (WDT) fault, brownout
reset (BOR) fault, and program/data corruption faults. In most micro-
controllers, there will typically be flags to indicate that the last reset was
the result of a BOR or WDT. Handling these forms of reset will depend
on the specific requirements of the system and suggestions will be made
in Chapter 5 on implementation.

Program and data corruption faults are a little different because
they rely on software functions to check the CRC or checksum of the

List 3.3

156 Chapter 3

data in data memory. While this can be, and typically is, relegated to a
housekeeping function for a spot check, it should also be included in any
routine that makes changes to the affected data. If it is not included in
the modifying functions, the function could make it change, recalculate
the checksum and never know that it just covered up a corrupted data
value. So it is important to take data corruption seriously and make an
effort to provide adequate checking in the design.

For our alarm clock example, the range of faults is fairly limited, but
they must still be documented for the next phase of the design.

Soft Fault
Fault: Button pressed is not valid for current mode or command.

Press of SLOWSET without FASTSET, ALARMSET, or
TIMESET held.

Press of SNOOZE when not in alarm active mode.

Press of any key in power fail mode.

Test: Comparison of decoded button command with legal
commands, by mode.

Response: Ignore button press.

Soft Fault
Fault: Button combination is invalid.

Press of SNOOZE with FASTSET, SLOWSET, ALARM-
SET, TIMESET.

Press of ALARMSET with TIMESET.

Test: Checked against acceptable combinations in command
function.

Response: Ignore button press.

Recoverable Fault
Fault: Alarm time is out of range (Alarm time > 23:59).

Test: Alarm control function test of value before current time
comparison.

List 3.4

System-Level Design 157

Response: If alarm is enabled, sound alarm until ALARMSET
button press.

If in any other mode, ignore (fault will be identified when
alarm is enabled).

Recoverable Fault
Fault: Power failure.

Test: 5th missing 60-Hz time base pulse.

Response: Goto power fail mode until 5th detected 60-Hz pulse.

Hard Fault

Fault: Watchdog timer timeout, brownout reset.

Test: Hardware supervisor circuits.

Response: System is reset. If BOR, then system held in reset until
power is restored.

System will power up in error mode.

With the compilation of the error condition list, this completes the
dissection of the requirements document, and all the relevant informa-
tion required for the design should now be in the design notes file. In
addition, all updates to the requirements document should be complete
at this point in the design. If it is not, then the designs should make
those updates now, before embarking on the system design. This is not
just good coding practice—it will also save confusion and disagreement
at a later date when the group responsible for testing the design begins
comparing the operation of the design against the requirements docu-
ment. So, fix it now while the change is simple and still fresh in the
designer’s mind, rather than later when the reasons for the change may
have been forgotten.

System-Level Design

At this point, the system level of the design is generated. All the infor-
mation has been retrieved from the requirements document, and the
designer should have a clear picture of how the design must operate.
What happens now is the top, or system, level definition of the system.

List 3.4
(continued)

158 Chapter 3

Tasks will be created and the various functions will be assigned to them.
A communications plan will be developed to handle data transfers
between the tasks. A system timing analysis will be performed to deter-
mine the system timing tick. The system modes and priorities will be
analyzed, and a system-level error detection and handling system will
be defined. Basically, a complete high-level blue print for the system
will be generated, with module specifications for each of the tasks and
major systems in the design.

Task Definition

The first step in the system-level design is task definition. Task defini-
tion is the process of gathering the various software functions from
the requirements document dissection together and grouping them
into a minimal number of tasks. Each task will be a separate execution
module, with its own specific timing, priority, and communications
pathways. Because of this, the functions within the module must be
compatible, or at least capable of operating without interfering with
one another. Now a typical question at this point is “Why a minimal
number of tasks—why not create a task for every function?” That would
eliminate the need to determine whether or not the various functions
are compatible. However, there are two main problems: overhead and
synchronization. Overhead is the amount of additional code required to
manage a function, the switch statement, the timing handler, and any
input/output routines required for communications. Synchronization
is the need for some of the software functions to coordinate their func-
tion with other functions in the system. Placing compatible functions
into a single task accomplishes both goals, the overhead for a group
of functions is combined into a single task, and because the functions
share a common task, they can coordinate activities without complex
handshaking. An example would be combining a cursor function and a
display-scanning function into a common task. Putting the two functions
together reduces the additional code by half, and it allows the designers
to coordinate their activity by combining them into a single execution
string. So, there are valid reasons why some of the functions should be
combined into a common task.

System-Level Design 159

This is not to say that all software functions should be combined into
common tasks. After all, the whole purpose of this design methodology
is to generate software that can execute more than one task simultane-
ously. And there are very good reasons why some software functions are
so incompatible that they can’t or shouldn’t be combined into a common
task. Part of task definition is to analyze the various software functions
and determine which, if any, functions should be combined.

So, how does a designer decide which functions are compatible and
which are not? The simplest method is to start combining similar func-
tions into tasks, and then determine if the combination is compatible.
To do this, start by writing the name of each function on a piece of
tape. Drafting tape works best because it is designed to be stuck down
and taken up repeatedly without much trouble. Next, take a large piece
of paper and draw 10–15 large circles on it, each about 5–8 inches in
diameter. The placement of the circles is not critical; just distribute
them evenly on the paper. Then take the strips of tape with the func-
tion names, and place them within the circle on the sheet of paper. Try
to group like functions together, and try to limit the number of circles
used. Don’t worry at this point if some circles have more names inside
than others do. We are just trying to generate a preliminary distribution
of the functions.

Once all the functions have been distributed into the circles on the
paper, take a pencil (not a pen) and name the circles that have pieces of
tape in them. Use a name that is generally descriptive of the collection
of functions within the circle. For example, if a circle contains several
functions associated with interpreting and executing user commands,
then COMMAND would be a good label. Try not to be too specific, as
the exact mix of functions will most likely change over the course of the
analysis for compatibility. And don’t be concerned if all the functions
are moved out of a specific circle. The names are just for convenience at
this point. The final naming and grouping of functions will be decided
at the end of the process.

Now that a preliminary grouping is complete, we can begin evaluating
the compatibility of the various software functions within each circle.

160 Chapter 3

The first step in the process is to place the strips of tape equidistant
around the circumference of the circle. If there is not enough room
for the tape to lay along the circle, place it on the circle, extending out
radially like a star. Next, draw a line from each function to all of the
other functions, and then repeat the process for any functions that are
not connected to all the other functions. This web of lines defines all
the possible relationships between all the functions in the circle, one
line for each relationship.

Now that we know all the different combinations to examine, we
need a set of basic criteria on which to base our decisions. The criteria
will be based on timing, priorities, and functionality. However, the
designer should remember that the criteria are just guidelines, not hard
and fast rules. The final choice will come down to a judgement call on
the part of the designers as to which functions should be combined.
For some functions there will be one criterion that states that two func-
tions should be combined, and another that states they should not.
This should not come as a surprise; no single set of rules will apply to
100% of all designs. When this happens, the designer should review the
reasons given for compatibility and incompatibility and decide which
is more important. For example, two functions could have completely
different timing and priorities, which would demand that they couldn’t
be combined. However, if they are also mutually exclusive in execution
(they never execute at the same time), then they could be combined into
a common task without conflict. The task will simply have to adjust its
timing and priority level based on which function is currently active. It
would then be up to the designer to decide whether the combination is
worth the trouble, or if one or both of the functions should be shifted
to another task.

Note: If two functions are combined against the recommendation of one
or more criteria, the designer should note the reason in the design notes
and make sure that the verbiage is included in the header comments
for the resulting task. This will save any later engineer the trouble of
determining why one of the compatibility criteria was disregarded.

System-Level Design 161

 If the designer finds a function that is incompatible with most or all
of the other functions in a circle, it should be moved to another circle
with similar functions, and evaluated there. The new circle should be
an existing named task, but if it cannot be placed in an existing circle,
it can be placed in a new empty circle as a last resort. Remember, we
are trying to minimize the total number of tasks, but if the function is
completely incompatible, it needs to have its own task.

There will also be cases in which a function should be separated into
its own task for priority reasons, specifically if the task is intermittent in
operation. In the next chapter, we will examine a priority handler that
can make use of this lone function characteristic to reduce the processing
load on the system. Against that possibility, the intermittent task should
be labeled and set within its own circle for later evaluation.

Criteria for Compatible Software Functions

The criteria in this section should be used to determine if a pair of
software functions should or must be combined into a single task. Any
criterion that states two functions should be combined is making a rec-
ommendation. Any criterion that states two functions must be combined
is stating that the combination should be required and only overruled
in the event of a serious incompatibility. Note that this list should be
considered a good starting point for developing a designer’s own personal
list; it is by no means all-inclusive. Over a designer’s career, a personal
list of criteria should be compiled and fine-tuned as the complexity
of their designs increase. Like a good library of custom functions, the
design methodology of a designer should grow and improve with time.
Therefore designers should feel free to add or modify these criteria to
fit their level of experience and programming style.

Software functions that execute sequentially
This one is pretty obvious: if two software functions always
execute one after the other, then it makes sense to put them in a
common task. The state machine that implements the task will
just execute the states required for the first function, and then
continue on, executing the states of the second function. The
only restriction to this criterion is that software functions that

162 Chapter 3

have to execute simultaneously may need to be separated into
different tasks. For more, see the next criterion.

Software functions that execute synchronously
This criterion has a number of restrictions on it. The functions
must always execute at the same time, never separately. The func-
tions must also be linear. This means no branches, computed
GOTOs, loops, or conditional statements—just a straight linear
sequence for both functions. This type of task can also be difficult
to implement because the two functions must be interleaved
together into a single set of states. As a result, it is only recom-
mended for functions that meet the restrictions exactly. If not,
then they must be combined.

Software functions that control a common peripheral
This criterion has to do with managing control over a peripheral.
If two tasks exercise control over a common peripheral, then
there is the possibility that they may come into contention.
This happens when one task is using the peripheral with a spe-
cific configuration, and then the other task inadvertently takes
control and changes that configuration without the first task’s
knowledge. If both functions are placed in a common task, it
removes the question of control arbitration entirely because the
state machine can typically only execute one function at a time.
However, if the two functions are incompatible for other reasons,
a good alternative is to generate a third task specifically designed
to handle the arbitration between the original functions. This
kind of task takes on the role of gatekeeper for the peripheral,
granting control to one task and holding the other until the first
task completes its operation. The second task is then granted
control until its operation is complete. Because the separate
peripheral task is the only software in direct control of the pe-
ripheral, and all data transfers must go through the peripheral
task, contention is avoided and both controlling tasks eventually
obtain undisturbed use of the peripheral.

System-Level Design 163

Software functions that arbitrate control of common data
This criterion is very similar to the last criterion concerning
peripheral control, with the exception that it deals with control
over a commonly controlled data variable. Just as two functions
may come into contention over the control of a peripheral, two
functions may also come into contention over control of a vari-
able. So, this criterion is designed to simplify the arbitration
of control, by recommending the combination of the software
functions into a common task. However, as with the peripheral
criterion, if the two functions are incompatible for other reasons,
then a third arbitrating function may need to be created to handle
the actual updates to the variable.

Software functions that are mutually exclusive in operation
Often in a design it may be necessary to force two functions to
be mutually exclusive in their operations. The two functions
may have opposite functions, such as heating and cooling, or
they may control a common resource. In any event, mutually
exclusive functions are defined as functions that never execute
at the same time, or with any degree of overlap. So, functions
that meet this requirement must be combined into a single task.
This criterion may sound unimportant; after all, the reduction in
overhead from combining functions is not so great that it would
warrant the arbitrary combination of functions. However, what
combining the functions into a single task will do is guarantee
their mutually exclusive operation. This is because the state ma-
chine can typically only execute a single function at one time.
By combining the two functions into a single task, the two func-
tions are accessed by the same state variable, and it will require a
specific transition event to move from one function to the other,
guaranteeing the mutually exclusive nature of the functions.

Software functions that are extensions of other functions
This criterion is fairly obvious: if two or more functions are
related in function, then they should reside in a common task.
A good example of this relationship is the display function in

164 Chapter 3

our alarm clock example. The functions for scanning the LED
display and flashing the display in the case of an alarm are related,
and the flashing function is really an extension of the scanning
function. Both functions deal with the LED display, and the
flashing function is really just a timed blanking of the displays,
so combining them together into a single function makes sense.
They affect a common resource, their operation is related, and
their control of the common display peripheral may require
arbitration between the functions. So, combining the functions
is a must, it will reduce overhead, simplify the arbitration, and
places both display related functions into a single object.

Software functions with common functionality
This criterion has to do with functions that share common
aspects with one another—for example, two functions that
require a common multistep math sequence, such as a run-
ning average. If the functions are placed in a common task,
then the math functions can be coded into a common set
of states within the task. If the functions are not combined,
then the steps for the math function may have to be repeated
in both tasks, at the cost of additional program memory.
Combining the functions into a common task does save pro-
gram memory by eliminating the repeated states, but there
is a restriction. By placing the two functions into a common
task, the two functions are forced to be mutually exclusive in
operation. So, if the two functions do not operate in a mutu-
ally exclusive fashion, then this criterion does not apply. See the
incompatibility criterion following concerning subfunctions.

Criteria for Incompatible Software Functions

The criteria in this section should be used to determine if a pair of
software functions should not or must not be combined into a single
task. Any criterion that states two functions shouldn’t be combined is
making a recommendation. Any criterion that states two functions must
not be combined is stating the combination should never be attempted.

System-Level Design 165

Note, as previously, that this list should be considered a good starting
point for developing a designer’s own personal list and is by no means
all-inclusive.

Software functions that have asynchronous timing
This criterion is pretty obvious. If two functions can execute
at any time and with any degree of overlap in execution, then
they must not be combined into a single task. Separating the
functions gives them the freedom to execute at any time ap-
propriate to their operation without any interference from the
other function. And, this is, after all, the reason for designing a
multitasking system, so different functions can execute inde-
pendent of each other’s timing.

Software functions that execute at different rates
This criterion is another obvious restriction, in that it excludes
functions that have to operate at different rates. As an example,
consider a software serial port operating at 1200 baud and a sound
generator operating at 3 kHz. Due to its timing, the software
serial port will be required to execute 1200 times a second, and
the tone generator function will be required to execute at 6000
a second. While a common state machine could be created to
handle the two different functions, the overhead and timing
problems make separate tasks a simpler solution. So, separating
the two functions is a more efficient solution. However, if the
two functions are mutually exclusive, then the complexity in
the timing functions is alleviated, and the two functions could
be combined. The timing for the task would then depend upon
which function is currently operating, with the task itself switch-
ing the timing as needed for the two functions.

Software functions with different priorities
Just as with the previous criterion concerning timing, functions
with different priorities should also be separated into different
tasks. If two functions with differing priorities were to be com-
bined into a single task, the decision of whether to execute the
task or not would have to take into account the current function

166 Chapter 3

being performed by the task state machine. It would also require
that some of the state transitions within the state machine might
have to include additional input from the priority handler. This
would unnecessarily complicate both the priority handler and the
state machine, and any savings in program memory due to the
combined overhead could be consumed in the more complicated
coding of state machine and the priority handler. So, while it is
recommended that the functions should reside in separate tasks,
it is up to the designer to weigh any potential savings against the
increased complexity.

Software functions that operate as subfunctions to other tasks
Just as common routines in a linear program can be written as
a single subroutine and called from two or more places in the
program, a subroutine task can be used in a similar fashion by
other tasks. While the optimal solution for minimal program
memory would have been to combine the subfunction and both
calling functions into a common task, incompatibilities between
the calling functions may not allow that option. Breaking the
subroutine function out into a separate task, which can then be
called by the calling tasks, may be preferable to duplicating the
function in both controlling tasks, even with the added overhead
of a separate task. Separating the subfunction into a separate task
will also alleviate any problems with arbitrating control of the
subfunction.

Software functions that operate intermittently
One of the priority management systems, described later in this
book, makes use of the fact that some tasks only need to be ac-
tive intermittently. If a function is not needed full time, then
from the standpoint of efficient use of processing time, it makes
sense to only call the function when it is needed. So part-time
functions are good candidates for this type of priority control,
provided the function is separated into its own task. Note, this
does not preclude the combination of two or more intermittent
functions into a common task, provided the functions are either
synchronous or mutually exclusive in operation.

System-Level Design 167

One or more additional tasks may also be required to handle error
conditions within the system. These tasks typically monitor the error
condition of the various other tasks in the system and coordinate the
recovery from all errors. For example, if a serial input task detects an
error in an incoming packet, an error-handler task may have to perform
several different functions to clear the error:

1. Reset the serial input task to clear the error.

2. Notify the sender of the current packet of data that an error has
occurred.

3. Reset any tasks that might be in the process of operating on the
serial data.

4. Reset any data buffer between the tasks.

In addition, the order of the sequence used to clear the error may
be critical as well, so building this functionality into a separate error-
handling task gives the system the flexibility to handle the error outside
the normal operation of the other tasks, especially if the response to the
error requires the cooperation of more than one task. Complex systems
may even require multiple error-handling tasks if the potential exists
for more than one type of error to occur asynchronously. The designer
should review the list of potential errors and list all the required recov-
ery mechanisms. Then group them like the software functions in the
previous section and apply the criteria for compatible and incompatible
functions. Don’t be surprised if the list of tasks grows by two or more
tasks by the time the evaluation is complete.

Once all the software functions and error recovery functions have
been placed in a circle of compatible functions, a final descriptive name
for each task/circle can be decided, and a Task list can be compiled. The
list should include the name and descriptions of the individual functions
in each task, plus any special reasons for including the functions in the
task, or excluding it from another task.

Once the list is complete, it should be included in the design notes
for the project. Again, be complete in documenting the task list, and be

168 Chapter 3

verbose. When the documentation is complete, it should look something
like the following:

TASK LIST FOR THE ALARM CLOCK PROJECT
Task1 Display

a) Function to scan LED displays
b) 12 hour display function for time
c) 24 hour display function for time
d) 12 hour display function for alarm
e) 24 hour display function for alarm
f) PM indicator display function
g) Alarm on indicator display function
h) Display flashing function for the alarm
i) Display blanking function for operation from

internal clock time base

Task2 TimeBase
a) Time increment function based on 60Hz power

line time base
b) Time increment function based on internal

clock time base
c) 60-Hz monitoring function
d) 60-Hz Fail/Recovery monitoring function

Task3 Buttons
a) Control input monitoring function
b) Debounce function
c) Auto repeat function
d) Command Decode function (combined SetAlarm

and SetTime functions)
e) Routine to increment alarm by 1 min
f) Routine to increment alarm by 20 min
g) Routine to increment Time by 1 min
h) Routine to increment Time by 20 min
i) Toggle 12/24 hour mode
j) Alarm on/off toggling function
k) Activate Snooze

Task4 AlarmControl
a) An alarm control function
b) Snooze function

Task5 AlarmTone
a) Generate alarm tone function

Task6 Error Task

List 3.5

System-Level Design 169

The decisions that lead to this combination of functions and tasks
are listed below:

TASK1 DISPLAY

1. The function which scans the LED displays seems to be the
primary function of this task.

2. All of the displays functions use a common peripheral with the
LED display scanning function.

3. The 12/24 hour display functions for the alarm and current
time drive a common aspect of a peripheral, the numeric LED
display.

4. The 12/24 hour display functions for the alarm and current time
are mutually exclusive in operation.

TASK2 TIMEBASE

1. The 60-Hz monitoring function seems to be the driving function
of this task.

2. Both time base increment functions and the failure/recover
monitoring function are extensions of the 60-Hz monitoring
function.

3. The 60-Hz time increment function executes sequentially fol-
lowing the 60-Hz monitoring function.

4. The internal clock increment function is mutually exclusive in
operation to the 60-Hz increment function, and the control of
both functions is via the failure/recover monitoring function.

5. The failure/recover monitoring function is executed sequentially
after the 60-Hz monitoring function.

6. Both the 60-Hz time increment function and the internal time
base increment function control a common variable, the current
time.

List 3.6

170 Chapter 3

TASK3 BUTTONS

1. The control input monitoring function is seen as the overall
function of this task.

2. The debounce function is executed under the control of the
control input monitoring function.

3. The auto-repeat function is an extension of the debounce
function.

4. The command decode function, a combination of the set alarm
and set timer functions, is executed sequentially after the de-
bounce and auto-repeat functions.

5. The four alarm and time increment function perform nearly
identical functions on the alarm and current time variables,
denoting common functionality.

6. The four alarm and time increment functions mutually exclusive
in operation.

7. The four alarm and time increment functions, plus the 12/24
hour toggle function, and the alarm on/off function are executed
sequentially following the command decode function.

Note: In this example, it proved to be more efficient not only to com-
bine the alarm and time set functions in a common task, but to also
combine the SetTime, and SetAlarm functions into a common function
within the task.

TASK4 ALARM CONTROL

1. Both the alarm control and snooze functions control two com-
mon peripheral functions, the display and the tone generator
function.

2. Both the alarm control and snooze functions have common
functionality in the form of the alarm / current time comparison
function.

List 3.6
(continued)

System-Level Design 171

TASK5 ALARMTONE

1. Looking toward the priority control section of the design, the
tone generation function is isolated into a separate task due to
its intermittent operation.

2. Two functions within the alarm control task control this func-
tion, so a separate task will allow arbitration, if needed.

TASK6 ERROR

This task is separate for control of other tasks.

So we have five separate tasks, with one additional task for error
handling. All the tasks were generated using the same criteria listed previ-
ously, for compatible and incompatible functions. With the compilation
of the final task list, this completes the task definition at the system-level
design. The final task list, with the rationale behind the decisions, should
be copied into the system design notes, and any changes or addendum
to the requirements list should be made at this time.

Communications

The next step in the system level of the design is to map out the com-
munications between the various tasks and peripherals in the system.
This accomplishes a couple of things for the design: one, it helps provide
the designer with a rough estimate on the amount of data memory that
the system will require and, two, it defines all of the variables in the sys-
tem, which is not specific to a task so they can be defined in a common
header file. And, three, it provides a quick check for a very troublesome
systemic communications problem called state lock.

The method employed to generate the communications plan is
graphical, just like the method used in the task definition phase of the
system-level design. The type of diagram used to map out the communi-
cations pathways is called a data flow diagram. It consists of a collection
of circles 1–2 inch circles, each circle representing a peripheral or task
within the system. The circles will be the sources and destinations for
information moving around the system. Between the circle are arrows
that represent the data pathways along which the information will flow.

List 3.6
(continued)

172 Chapter 3

The direction of the arrow indicates the direction of the data flow. The
resulting diagram should show graphically all the communications
between the various tasks within the system. Any significant data stor-
age associated with the various tasks are also noted on the diagram. A
variable list and dictionary is then compiled, based on the information
in the data flow diagram. The resulting documentation will then form
the basis of all system-level variable definitions in the next chapters. So,
designers are encouraged to be as accurate as possible in both the diagram
and the resulting variable documentation. Note: The usefulness of the
data flow diagram does not end once the variable list and dictionary
is completed. It also a graphical representation of all system-level data
storage that is a convenient reference diagram during the component
and implementation phases of the design.

To start the diagram, take large piece of paper and draw a 2–3 inch
circle for each of the tasks and peripherals in the system. Try to evenly
space the circles on the entire sheet, with as much space between the
circles as possible. Note: Don’t try to optimize the placement of the circle
at this point in the design, as the diagram will be revised at least once
during the course of this exercise. Just make sure that there is a circle
for each source and destination for data in the system. Then, label each
circle with the name of its associated task or peripheral.

For systems that link two or more subsystems by communications
pathways, place circles in the diagram for the tasks in both systems. Sepa-
rate them on the diagram, with a boundary line to show the separation
of the two systems, and label the tasks charged with communications
between the systems. A short heavy line is used to indicate the system-
to-system communications pathway.

Once all the circles have been placed on the diagram, use the com-
munications information from requirements document dissection and
the function listing in the task list, to draw arrows between the circles to
represent information passed between the various tasks and peripherals.
The arrows denote the various task-to-task and task-to-peripheral com-
munication pathways. Start the arrow at the circle representing the task,
which contains the sending function, and place the head of the arrow on

System-Level Design 173

the circle representing the task, which contains the receiving function.
Each of the arrows should then be labeled with a name descriptive of
the information being passed along the pathway. See Figure 3.3 for an
example of a data flow diagram for our alarm clock project.

Note: The direction of the arrow should indicate the direction of the
information flow. Some data pathways may have handshaking flags,
which will pass in both directions as part of their communication.
However, the direction of the arrow in this diagram is to indicate the
direction of the actual communications, so even though handshaking
may return, the direction of interest is the direction in which informa-
tion is actually moving.

For pathways that transfer information from one sending task to
multiple receiving tasks, start each pathway arrow at the same point on
the sending task’s circle to indicate that the same information is being
sent to multiple destinations. Then, place the head of each arrow on
the circle of each receiving task. Figure 3.3a shows this form of data
pathway. It is also acceptable to branch an arrow off from an existing
arrow, partway down its length. In fact, a very handy method of show-
ing the distribution of data from one task to multiple other tasks is to
create pseudo distribution bus in the diagram, originating at the sending
task, with arrows branching off to the receiving tasks as it passes near.
Our only purpose here is to clearly indicate that multiple receivers are
listening to a common sending task. There are no hard and fast rules to
the diagram, and the designer is encouraged to generate whatever form
of short hand is convenient.

In the very likely event that the diagram starts to become cluttered
and confusing, try overwriting the pathways with different color pens
to distinguish one pathway from another in the diagram. Be careful not
to overwrite two crossing pathways with the same color as this will only
add to the confusion. Also, make sure that pathway arrows only cross
at right angles, to further reduce confusion.

174 Chapter 3

If the diagram becomes too cluttered or confusing, it is perfectly ac-
ceptable to redraw it on a larger piece of paper and relocate the circles
that are causing the problem. Remember, I did say that we would be
redrawing this diagram at least once, and probably more than once. Plus,
after making a few of the pathway connections, the designer will have a

Figure 3.3 Alarm Clock Data Flow Diagram.

Figure 3.3a One Source, Multiple Destinations. Figure 3.3b Storage Loop.

System-Level Design 175

better feel for where the task and peripheral circles should be located to
simplify the connections. Just remember to follow same procedure and
verify that no pathways are inadvertently left off the diagram.

The next step is to label each data pathway with a name and a gen-
eral description of the data moving along the pathway. If the diagram
is sufficiently large, this information can be noted along the length
of the data pathway arrow. If, on the other hand, the diagram is too
convoluted or cramped, it is also acceptable to legend the arrow with a
number and then build a list with the information. Particularly for larger
systems, this method is typically easier to manage, and it also lends itself
to electronic documentation better than trying to place the text along
the arrow in the diagram.

Once all the data pathways between tasks are documented, it is time
to add the information related to significant data storage. This infor-
mation was gathered at the end of the communications section of the
requirements document dissection. To show the storage required by the
individual tasks, draw an arrow from the task associated with the stor-
age, wrap it around 180 degrees, and place the head on the same task.
Then label the loop with a name indicating the nature of the storage.
Use the same form of notation used in the last section when describing
task-to-task pathways.

In the event that the information is also passed to another task, start
the tail of the arrow at the same point on the circle as the arrow leading
to the other task, and then loop the arrow around just like the other
storage arrows. Label both the loop and the arrow with the same name
to show that the information is local storage and a data pathway. Figure
3.3b demonstrates an example of a storage loop.

When the diagram is complete, the designer should go back through
the information from the requirements document dissection to verify
that all task inputs and outputs have connections to other tasks. The
designer should also review the function and task lists to verify that new
connections have also been made. Often in the process of task defini-
tion, new communications pathways may be created, but through an
oversight, the information was not back-annotated to the requirements

176 Chapter 3

document. Checking the function and task lists should catch these
missed pathways. Note: The designer is strongly discouraged from skip-
ping over this step as it is a valuable check on the design of the tasks as
well as the communications layout of the system.

Unconnected pathways can indicate any one of a number of system
design problems:

The inadvertent generation of redundant data.

Missing data that must be generated.

An omission in the task list documentation.

Or, even a failure in the designer’s understanding of the operation
of the system.

In any event, the problem should be identified and corrected before
continuing on with the design and the affected documentation should
also be revised to include the corrections. And yes, the function and task
lists, as well as the requirements document should be updated.

Once all questions have been resolved and the documentation up-
dated, the diagram should be redrawn one last time in a single color
of ink with related peripherals and tasks grouped together so that the
pathway arrows are reasonably straight and easy to follow. The diagram
should also leave plenty of room for the addition of new pathways. And
there will be additional data pathways generated as the design evolves.
No design methodology, regardless of how methodical, can accurately
predict every possible need in advance. A good methodology though,
should be sufficiently adaptable to handle new requirements as the
project progresses.

Next, make a list of all the data pathways, prioritizing the list by
name of the pathway and the name of the sending task. For pathways
with multiple destinations or sources, make a single entry in the list,
but list all sources and destinations for the pathway. For each pathway,
note the type of data to be transferred, whether the storage is static
or dynamic, plus the estimated width and storage requirements. This
information should have come from the dissection of the requirements

System-Level Design 177

document earlier in this chapter. The designers should take their time
in the generation of this list, making it as comprehensive as possible, as
the list will be the basis for the final variable dictionary and the header
file that will declare the variables used for communications. For dynamic
variables, make a note of any estimates made concerning input and
output data rates as well.

Once the preliminary list is complete, it is time to assign an appro-
priate data transfer protocol to each pathway. The protocol used, either
broadcast, semaphore, or buffer, will depend on the needs of the pathway
and the speeds of the sending and receiving tasks. If in doubt about the
operation of the protocols, the designer is encouraged to review the
protocol definitions in Chapter 2 before continuing with the design.

How do we determine which protocol is the right one for a given
data path? Each protocol has specific advantages and limitations. The
buffer protocol has the ability to cache data between fast and slow senders
and receivers, but has difficulty with more than one receiving task. The
semaphore protocol transfers not only information but also event timing
information. However, it can introduce state lock problems if a circular
link of pathways in generated. And the broadcast protocol is useful for
sending data from one or more senders, to one or more receivers, but it
does not transfer event timing. The secret is to match the needs of the
pathway to the correct protocol.

The best place to start is with the pathways that were identified
as needing dynamic. Because this type of storage is variable, it is best
implemented with a buffer type of protocol. The buffer handles variable-
length storage well, and the circular storage format allows the sending
task to start a second message, prior to the receiving task completing the
first message. The only exception to this recommendation is for those
pathways that use dynamic for the transmission of a single variable, such
as a command flag. Leave these pathways unassigned for now.

Once the pathways using dynamic storage are identified, overwrite
them with a green pencil or marker to identify them as buffer protocol
pathways.

178 Chapter 3

The next group of pathways to identify are those that need to in-
clude event-timing information as part of their data transmission. These
pathways will typically fall into a couple of categories:

Commands: data that initiate an activity by the system; this is
typically a user-initiated command or request from external to
the system.

Events: an event within the system requiring a response or action
be taken in response to the event. This could be a flag indicating
that a critical temperature or time has been reached.

Changes: a notification to the system that some important param-
eter has changed and the system must respond in some fashion.
For example, a notification from one task to another that it has
completed a its task and a common resource is now available for
use.

The semaphore protocol is typically used for these pathways due to
its ability to transmit both data and event timing information. The very
nature of handshaking requires that both the sending and receiving tasks
must temporarily synchronize their operation to complete the transfer.
So, it makes the protocol invaluable for not only making sure the re-
ceiving task has current information, but also for making the receiving
task aware that the current data has changed. Data pathways using the
semaphore protocol should be overwritten using a red pencil or marker
in the data flow diagram to identify them as semaphore protocols.

The remaining data pathways can be assigned the broadcast protocol.
These pathways should be static, and should not require event timing
information as part of the transfer. Pathways with multiple destinations
should also use the broadcast protocol, due to the complexity involved
in handshaking between multiple a sender and multiple receiving tasks.
These will typically be system or task-specific status information within
the system. For example, the current time in our alarm clock design
should use a broadcast protocol. This is because the various tasks within
the system will either not need to know each and every change in the
current time. Or the receiving tasks can poll the current time with

System-Level Design 179

sufficient speed to see any changes with out the need for an event timing
information. Finally, overwrite all the broadcast protocol pathways in
the data flow diagram with a blue pencil or marker to identify them.

Once protocols have been assigned and identified by color on the
data flow diagram, the diagram should be examined to determine if a
potential state lock condition is possible. To find this systemic problem,
follow each Semaphore pathway, head to tail, from task to task, to de-
termine whether any combination of pathways will produce a complete
loop. If they do, then the system is potentially susceptible to a state lock
condition. Be sure to check not only pathways within the design, but
also pathways that may travel over a communications link into another
system. This is the reason that the data flow diagram of multiple linked
systems must be drawn on a common diagram.

In a state lock condition, two cross-coupled tasks have both initi-
ated a semaphore data transfer to the other before recognizing the each
other’s transfer request. This can be between two adjacent tasks, or it can
happen between two tasks that have several intermediate tasks between
them. The only requirement is that all pathways that form the circle
must be semaphore, as it is the handshaking nature of the semaphore
that causes the problem.

Because both tasks in a state lock condition have sent data and are
now waiting for the other to acknowledge the transfer, they have become
locked, perpetually waiting for the other to respond. But, because they
themselves are waiting, the condition cannot be resolved. Once in the
state lock condition, the only remedy is to break the protocol for one
of the transfers.

There are several methods to recover from state lock; however, the
best solution is simply to avoid the condition in the first place. The first
step is to recognize the possibility. Graphically representing the commu-
nications in the system makes this very easy; any complete loop formed
exclusively by semaphore communications has the potential to exhibit
state lock. The next step is to simply break the circle by replacing one
of the semaphore pathways with either a broadcast or a buffer protocol.
Even a buffer protocol with only a two-variable storage capability is

180 Chapter 3

sufficient to break the cycle. All that has to happen is that one of the
two tasks must have the ability to initiate a transfer and then continue
on executing within the task. Eventually, the task will notice the other
transfer and complete it, breaking the lock.

If all of the pathways in a circular link must be semaphore due to the
nature of the software functions in the tasks, then the designer should
back up one step and determine if the specific combination of functions
is actually necessary. Often, by simply moving a function from one task
to another, one or more of the semaphore pathways will shift to a differ-
ent task and the circle will be broken. Designers should remember that
a design need not be fixed at the end of each step; sometimes a decision
early in the design leads to a configuration that simply won’t work. When
this happens, take the design back a step or two in the methodology and
try something different. Because the design notes for the design detail
every decision in the process, it is a simple process to back up and take
the design in a different direction to avoid a problem.

If the problem can’t be avoided, the designer need not despair, there
are other solutions for avoiding, recognizing, and recovering from state
lock conditions. Unfortunately, they are not as simple as just changing a
protocol, and they will require some additional overhead in the design,
so the discussion on their operation will be tabled until the component
phase of the design. For now, the designer should note the problem
on the data flow diagram, so it can be addressed in a later phase of the
design.

Once all of the potential state lock conditions have been addressed,
the variable list should be updated with the selection of communica-
tions protocol. Any pathways that still have the potential for state lock
should be identified and highlighted with a note concerning corrective
action later in the design. The variable list for our alarm clock example is
included following, with its associated data flow diagram (Figure 3.4).

System-Level Design 181

PRELIMINARY COMMUNICATONS VARIABLE LIST

Variable Source Destination Number & Size Type Protocol
• Current_Time TimeBase Display 6 BCD nibbles static Broadcast
 Buttons Alarm
• Alarm_time Alarm Display 4 BCD nibbles static Broadcast
 Buttons

• Blank TimeBase Display flag static Broadcast
• Alarm_enabled Buttons Alarm flag static Broadcast
 Display

• Alarm_active Alarm Display flag static Broadcast
 Alarm_tone

• Snooze Button Alarm flag static Semaphore
• AMPM_mode Button Display flag static Broadcast
• Display_alarm Button Display flag static Broadcast
• Segments Display LEDs 7 bit word static Broadcast
• Digits Display LEDs 6 bit word static Broadcast
• Indicators Display LEDs 2 flags static Broadcast
• Command buttons Switches Button 6 flags static Broadcast
• Time_error Timebase Error flag static Broadcast
• Alarm_error Alarm Error flag static Broadcast
• Display_error Display Error flag static Broadcast
• Button_error Button Error flag static Broadcast
• Reset_time Error Timebase flag static Semaphore
• Reset_alarm Error Alarm flag static Semaphore
• Reset_button Error button flag static Semaphore
• Reset_display Error display flag static Semaphore

Figure 3.4 Alarm Clock Data Flow Diagram.

Table 3.3

182 Chapter 3

There are several interesting things to note about the variable list
compiled for our alarm clock example. One, all of the variables are static,
even though several dynamic variables were identified in the require-
ments document dissection. This is because the dynamic storage was
needed for communications between functions that were later combined
into a single task. As a result, the sending and receiving functions are
now operating at the same speed and no longer need dynamic storage
to communicate. Two, there are no pathways using a buffer protocol in
the list; this is because the only multibyte data transfers in the system
are the time and alarm time values and they are a parallel transfer. And
three, there are only five pathways that use a semaphore protocol. This
is because the designer chose to put most of the user’s commands in the
same task with the button test, debounce and command decoder. As a
result, the only communications requiring event-timing information are
the snooze command and the error reset flags from the error task.

Timing Analysis

One of the key points in this design methodology is that it must generate
real-time programming. So, it follows that the analysis of the system’s
timing requirements should be part of the systems design. In this sec-
tion, we will examine the timing requirements of each of the software
functions in the various tasks, and from this information, determine a
timing system that will meet the systems needs.

The first step is to list all the timing specifications from the re-
quirements document. Note, if the functions grouped into a task have
different requirements, then the specifications for each function should
be included separately. Now is also a good time to review the reasons
for combining the function to verify that they should really be in a
common task.

In the example shown following, the timing requirements for our
alarm clock design example are listed. Entries for both the event-to-
event timing and response timing are included in the time domain. If
the timing requirement is listed in the form of a frequency, it should be
converted to the time domain at this time for easier comparison with
the other timing requirements.

System-Level Design 183

Task1 Display
360Hz +20/-0 2.635 - 2.777mS
Alarm flash 0-50mS following time update (1Hz)

 50% duty cycle +/-10%
Blank 909.9mS to 1111.1mS +/-0 overall
Sync to Time update
Response to Blank 8mS maximum

Task2 TimeBase
1sec +/-0 overall relative to internal or 60Hz
timebase switchover must occur within 8mS of pres-
ence or absence of 5th pulse

Task3 Buttons
Button bounce is 100mS
Debounce is 50mS
Response to decoded command 34mS maximum
Auto Repeat 909.9mS to 1111.1mS +/-0 overall
Sync to time update 0-50mS following time update

Task4 AlarmControl
Alarm response to time increment, 100mS maximum
including tone startup
Snooze response time 50mS including tone shutoff

Task5 AlarmTone
Alarm Tone .454mS min, .5mS typ, .555mS max
Modulation 454mS min, 500mS typ, 555mS max

event to event
 492mS min, 500mS typ, 510mS max

overall
Task6 Error Task

no timing specified.

From this information an overall timing chart for the individual
tasks of the system can be compiled. This should list all optimum,
minimum, and maximum timing values for both event-to-event and
response timing requirements. Any notes concerning exceptions to the
timing requirement should also be included.

List 3.7

184 Chapter 3

 Minimum Optimum Maximum
Task1

scan 2.635 2.777 2.777
flash response 0.000 25.000 50.000
flash offtime 450.000 500.000 550.000
blank 909.900 1000.000 1111.100
blank response 0.000 4.000 8.000

Task2
timebase 1000.000 1000.000 1000.000
switch response 0.000 4.000 8.000

Task3
bounce 100.000 100.000 100.000
debounce 0.000 25.000 50.000
command 0.000 17.000 34.000
autorepeat 909.900 1000.000 1111.100
aoutr response 0.000 25.000 50.000

Task4
time response 0.000 50.000 100.000
snooze response 0.000 25.000 50.000

Task5
tone 0.454 0.500 0.555
var modulation 454.000 500.000 555.000
modulation 492.000 500.000 510.000

Note: all values in milliseconds

All the information needed to determine the system tick is now pres-
ent. The system tick is the maximum common time increment, which fits
the timing requirements of all the tasks in the system. The tick chosen
must be the largest increment of time that will be divided into all of
the timing requirements an integer number of times. While this sounds
simple, it seldom is in practice. Timing requirements are seldom integer
multiples of each other, so the only solution is to choose a tick that fits
most of the requirements, and fits within the tolerance of all the rest.
When a suitable tick is found, it should be noted in large letters at the
bottom of the chart. This number is the heartbeat of the system and will
be at the very center of all timing decisions from this point on.

The best tick for our alarm clock is 250 microseconds.

Table 3.4

System-Level Design 185

Sometimes even the tolerances on the timing specifications will not
allow a reasonable size tick that will fit every requirement. When this
happens, the designer is left with a limited number of options:

1. The designer can review the timing requirements for the system,
looking for values that can be changed without changing the op-
eration of the system. Timing requirements for display scanning,
keyboard scanning, tone generation, and others maybe a matter of
esthetics rather than an externally imposed requirement. The only
real requirement may only be that they have consistent timing.
If the timing for one of these functions is the hard to fit value,
experiment with the timing requirements for these functions.
Often this will suggest other tick increments that may fit within
the requirements of all the functions. For example, the timing for
the scanning routine in our example is 2.635 ms to 2.777 ms.
However, if it were reduced to 2.5 ms for the minimum, then
the system Tick could be increased from 250 μS to 500 μS. This
still scans the displays at a greater than 60-Hz rate, so no flicker
would be introduced.

2. The second option is to consider moving some of the more
difficult to accommodate tasks to a timer-based interrupt. The
interrupt can be configured to operate at a faster rate that ac-
commodates the difficult tasks, and frees up the balance of the
tasks to operate at a different rate. Note: if a task is moved to
an interrupt, communications to and from the task will require
either a semaphore or buffer protocol. This is because the task will
be completely asynchronous to the other tasks, much as the tasks
in a preemptive operating system. So, additional handshaking is
required to prevent the transmission of partially updated com-
munications variables, in the event that the timer interrupt falls
in the middle of a task’s update. More information concerning
the use of interrupts is available in Chapter 5.

3. The third option is to consider using a tick that is smaller than
the smallest task timing increment. Sometimes, using a tick that
is 1/2 or 1/3 of the smallest task timing increment will create

186 Chapter 3

integer multiples for hard to accommodate tasks. Note, this op-
tion will decrease the time available in each pass of the system
and increase the scheduling job for the priority handler, so it is
not generally recommended. If fact, the original tick value of
250 μS was obtained using this option. However, shifting the
display timing would eliminate the need for a smaller tick, so it
was chosen instead.

At this point there should also be a quick mention of the system
clock. Once the system tick has been determined, a hardware mechanism
within the microcontroller will be needed to measure it accurately. Typi-
cally, this job falls to one of the system’s hardware timers. The timers
in small microcontrollers usually have the option to either run from a
dedicated crystal oscillator or from the main microcontroller oscillator.
If a dedicated oscillator is available, then the oscillator frequency must
be set at a 256 multiple of the desired system tick frequency. In our
example, that would be 512 kHz, or 256 times 1/.5 ms. If the system
clock is employed, a pre- or postscaler will be needed to allow the system
clock to operate in the megahertz range. Assuming a prescaler based on
powers of two, that means a 1.024 MHz, 2.048 MHz, 4.096 MHz,
8.192 MHz, or 16.384 MHz oscillator. If none of these options are
available, then an interrupt routine can be built around the timer, for
the purposes of preloading the timer with a countdown value. This value
is chosen so that the timer will overflow at the same rate as the desired
tick. Note that an interrupt routine is needed for this job because there
will very probably be task combinations that will periodically overrun
the system tick. An interrupt routine is the only way to guarantee a
consistent time delay between the roll-over and the preload of the timer.
For our example, we will use a 4.096-MHz main system clock and a
divide-by-8 prescaler to generate the appropriate timer roll-over rate for
our system tick, and avoid the interrupt option.

Once a suitable timing tick is chosen, the skip rates for all of the
system tasks can be calculated. This value will be used by software tim-
ers which will hold off execution of the state machine associated with
the task, for X number of cycles. This slows the execution of the state

System-Level Design 187

machine, so its operation is within its desired timing. Using the timing
information from our alarm clock design, and assuming the modified
Task1 scan timing, the following table is constructed.

Optimum Skip Rate
Task1

scan 2.500 5
flash response 25.000 50 (100)
flash offtime 500.000 1000 (1100)
blank 1000.000 2000 (2222)
blank response 4.000 8 (16)

Task2
timebase 1000.000 2000
switch response 4.000 8 (16)

Task3
bounce 100.000 200
debounce 25.000 50 (100)
command 17.000 34 (68)
autorepeat 1000.000 2000 (2222)
aoutr response 25.000 50 (100)

Task4
time response 50.000 100 (200)
snooze response 25.000 50 (100)

Task5
tone 0.500 1
var modulation 500.000 1000 (1110)
modulation 500.000 1000 (1020)

Note the values in parentheses following the skip rates. These are the
skip rates for the maximum times. Assuming that the optimum time is
not the maximum, then these values constitute the amount of leeway
that is still available in the task’s timing. We noted this information for its
potential use later in the design, when we define the priority handlers.

Up to this point in the design, we have assumed that the system would
use a rigid timing system that regulates the timing of the software loop
holding the task state machines. However, there is another option for
systems that are not required to comply with specific timing require-
ments. The option is to run the system without a timing control. By
far, the first option using a rigid timing control is the most common.

Table 3.5

188 Chapter 3

However, in rare instances, when the timing tolerances are very broad
or nonexistent, the second option can be implemented. Now as a de-
signer, you may ask, “What is the advantage to a completely unregulated
system and what possible design could possibly operate without some
regulation?” The truth is, no system can operate completely without
timing regulation, but some systems can operate by only regulating the
functions that actually require specific timing. The other tasks in the
system are run at the maximum speed of the main system loop.

For example, consider a simple user interface terminal with a display
and keyboard. Button presses on the keyboard result in ASCII data being
sent to the host system, and data received from the host is scanned onto
the display. The only functions in the system that require specific timing
are the serial transmit and receive functions interfacing with the host
system. The display and keyboard scanning rates only have to comply
with a reasonable minimum scanning rate. In this example, the serial
input and output tasks are typically regulated by the baud rate of the serial
interface. The control, display scanning, and keyboard scanning tasks
could then be run at the fastest rate possible given the microcontroller
clock frequency. The rate at which these three tasks operate would be
variable, based on the execution time of each task on each pass through
the system loop. However, as long as the minimum scanning rates are
achieved, the system should operate properly.

The advantage to this type of system is that it operates more efficiently
and more quickly than regulated systems. There is no dead time at the
end of each cycle as the system waits for the next tick; the system just
jumps back to the top of the loop and starts into the next task. This saves
program memory, complexity, and it means that every available system
instruction cycle is used to perform a system function. As a result, the
system is very efficient, and will outperform a more rigidly regulated
system. The only down side is that the tasks within the loop cannot use
the loop timing to regulate their operation. Instead, they must rely on
hardware-based timer systems for accurate timing.

System-Level Design 189

The major downside to this system is that it requires a hardware timer
for every software-timed function, and only works well for systems with
few, if any, routines with strict timing requirements.

Priority Handler

So far in this chapter, we have gathered together the various priority
requirements and used them to define the system’s modes. This covers
the majority of the work at this level of the design. The only additional
work is to update the table with the information from the task defini-
tion performed earlier in the chapter. Basically, we need to rewrite the
priority list and the criteria for mode change list using the task names.
We also need to note any functions that should be disabled by a specific
system mode.

So, to review the information from the requirements document dis-
section, we have defined the following list of system modes:

Timekeeping mode: Current time display, alarm is disabled, no
commands are in progress, and normal power.

Time set mode: Current time display, alarm is disabled, normal
power, and time set commands are in operation.

Alarm pending mode: Current time display, alarm is enabled, nor-
mal power, no commands in progress, and alarm is not active.

Alarm set mode: Alarm time display, normal power, alarm set
commands are in operation, and alarm is not active.

Alarm active mode: Flashing display of current time, alarmed is
enabled, alarm is active, no commands in progress, and normal
power.

Snooze mode: Current display time, alarm is enabled, snooze is
in progress, and normal power.

Power fail mode: Display is blank, internal time base in operation,
alarm is inhibited, and battery supplied power.

190 Chapter 3

Replacing the individual functions with the tasks that now incorpo-
rate the functions, we have the following priority list:

System Mode High Priority Med Priority Low Priority
Timekeeping mode Time Base Task Display Task Button Task

 Error Task

Time set mode Button Task Display Task Time Base Task
 Error Task

Alarm pending mode Time Base Task Display Task Button Task
Alarm Control Task Error Task

Alarm set mode Button Task Display Task Error Task
Time Base Task

Alarm active mode Time Base Task Display Task Button Task
Alarm Tone Task Error Task
Alarm Control Task

Snooze mode Time Base Task Display Task Button Task
Alarm Control Task Error Task

Power fail mode Time Base Task Display Task Error Task

Error mode Error Task Display Task Button Task
Time Base Task

There are several interesting things to note about the new priority
list. Many of the newly defined tasks include both low- and high-prior-
ity functions. This means that some tasks can be classified as either low,
mid, or high priority. When compiling the table, always list the task only
once, and at its highest priority. When we get to the implementation of
the priority handler, we can adjust the task priority based on the value
in the state variable, if needed.

Also, note that some of the functions do not change in priority. For
example, the display task is always a medium priority. Other tasks do
shift in priority based on the system mode; they may appear and disap-
pear, like the alarm tone and alarm control tasks, or they may just move
up or down as the button and time base tasks do.

Table 3.6

System-Level Design 191

Once the priority list has been updated to reflect the task defini-
tion information, we also have to perform a quick sanity check on the
criteria for changing the system modes. To be able to change mode, it
make sense that the task charged with providing the information that
triggers the change must be active before the change can occur. What
we want to do at this point is review each criterion, checking that the
task providing the trigger for the change is in fact active in the original
mode. If not, then the priority list needs to be updated to include the
task, typically at a mid or low level of priority. For example, using our
alarm clock design example:

Table 3.7

Original mode Next mode Trigger event
Powered down Error Initial power up
Error Time set Press of the TIME SET button
Error Alarm set Press of the ALARM SET button
Timekeeping Time set Press of the TIME SET button
Timekeeping Alarm set Press of the ALARM SET button
Time set Timekeeping Release of the TIME SET button
Alarm set Timekeeping Release of the ALARM SET button
Timekeeping Alarm Pending Alarm Control Switch to enabled
Alarm Pending Timekeeping Alarm Control Switch to disabled
Alarm Active Timekeeping Alarm Control Switch to disabled
Alarm Pending Alarm Active Alarm time = Current time
Alarm Active Snooze Snooze Command
Snooze Alarm Active Alarm time + snooze time = Current time
{all modes} Power Fail 5th consecutive missing 60-Hz pulse
Power Fail Timekeeping 5th consecutive 60-Hz pulse
{all modes} Error Error condition

In each of the original modes, the task responsible for providing the
trigger, whether it is a button press or missing time base pulses, must be
active at some priority level to provide the necessary triggering event.
If the task is not active, then the system will hang in the mode with no
means to exit. Note that there may be instances in which the response time
requirement for a system mode change requires a higher priority for the
task providing the mode change trigger. If so, then both system priority
and timing requirements may have to shift in order to accommodate a
faster response. Make sure to note the reason for the change in priority
and timing in the design notes and adjust the priority list accordingly.

192 Chapter 3

Once all the priority information has been cataloged and the neces-
sary task trigger event information verified, copy both the priority list
and the list of criteria for making a system mode change into the design
notes for the system. Include any information relating the changes made
to the design and list any options that were discarded and why they were
discarded. Be clear and be verbose; any question you can answer in the
text will save you time explaining the choices later when the support
group takes over the design.

Error Recovery

So far in our design of the system, we have touched on a few error detec-
tion and recovery systems. These include error and default states for the
task state machines, a system error task to handle errors that affect more
than one task, and a definition of the severity of several system-level
failures. In fact, one of the primary software functions in the design of
the alarm clock is the automatic switch over to an internal time base if
the 60-Hz time base stops; this is also an example of an error detection
and recovery system.

What we have to do now is define how these faults will be handled
and what tasks will be affected by the recovery systems. In our dissection
of the requirements documents, we define soft, recoverable, and hard
errors for the system:

Soft Fault

Fault: Button pressed is not valid for current mode or command.

Press of SLOWSET without FASTSET, ALARMSET, or
TIMESET held.

Press of SNOOZE when not in alarm active mode.

Press of any key in power fail mode.

Test: Comparison of decoded button command with legal
commands, by mode.

Response: Ignore button press.

List 3.8

System-Level Design 193

Soft Fault

Fault: Button combination is invalid.

Press of SNOOZE with FASTSET, SLOWSET, ALARM-
SET, TIMESET.

Press of ALARMSET with TIMESET.

Test: Checked against acceptable combinations in command
function.

Response: Ignore button press.

Recoverable Fault

Fault: Alarm time is out of range (Alarm time > 23:59).

Test: Alarm control function test of value before current time
comparison.

Response: If alarm is enabled, sound alarm until ALARMSET
button press.

If in any other mode, ignore (fault will be identified when
alarm is enabled).

Recoverable Fault

Fault: Power failure.

Test: 5th missing 60-Hz time base pulse.

Response: Goto power fail mode until 5th detected 60-Hz pulse.

Hard Fault

Fault: Watchdog timer timeout, brownout reset.

Test: Hardware supervisor circuits.

Response: System is reset. If BOR, then system held in reset until
power is restored.

System will power up in error mode.

List 3.8
(continued)

194 Chapter 3

We now need to add any new faults that have come to light during
the course of the design. These include error conditions within the state
machines, or any communications errors between the tasks. We also
need to decide on recovery mechanisms, the scope of their control, and
whether the recovery system resides in the state machine, or the error
task state machine.

Let’s start with a few examples. Consider a state variable range fault
in the display task state machine. The detection mechanism is a simple
range check on the state variables, and the recovery mechanism is to reset
the state variable. Because the display task is a control end point, meaning
it only accepts control and does not direct action in another task, the
scope of control for the recovery mechanism is limited to the task state
machine. As a result, it makes sense that the recovery mechanism can
be included within the state machine and will not require coordination
with recovery mechanisms in other tasks.

A fault in the time base task, however, could have ramifications that
extend beyond the task state machine. For example, if the state machine
performs a routine check on the current time and determines that the
value is out of range, then the recovery mechanism will have to coordi-
nate with other tasks to recover from the fault. If the alarm control task
is active, it may need to suspend any currently active alarm condition
until after the current time value is reset by the user. The display task
will have to display the fact that the current time value is invalid and
the user needs to reset the current time. The time base task will have
to reset the current time to a default value. And, the system mode will
have to change to Error until the user sets a new current time value.
All of this activity will require coordination by a central entity in the
system, typically a separate error task acting as a watchdog. In fact, the
specific value present in the error task state variable can be used as an
indicator as to the presence and type of error currently being handled
by the system.

System-Level Design 195

To document all this information, we will use the same format as
before, classifying the fault as to severity, soft, recoverable, or hard. Name
the fault with a label descriptive of the problem and the task generating
the fault condition. List the method or methods for detecting the fault,
and detail the recovery mechanism used by the system. Remember that
each task will have a state machine, and each state machine will have at
least one potential error condition, specifically the corruption of its state
variable. In addition, there will likely be other potential error conditions,
both in the operation of the task and its communications with external
and internal data pathways.

Another potential source of errors is from the communications sys-
tem. Semaphore protocol pathways have the potential to create potential
state lock conditions. If the problem cannot be averted by changing one
or more of the pathway protocols, then the state lock condition will be an
error condition that must be detected and recovered from by the system.
Buffers also have the potential to create error conditions, should they fill
their buffer space. While these errors are typically considered soft errors
because they don’t require user intervention, the error-handling system
may need to be aware of the problem. Once all the potential system
errors have been identified, the severity of the error condition must be
determined, a test developed to detect the condition, and a recovery
mechanism devised to handle the problem.

This can be particularly problematic for communications errors,
specifically potential state lock conditions. This is because both commu-
nications in a state lock condition are legitimate data transfers. However,
due to the nature of the lock, one of the two pathways will likely have
to drop their data, to allow the other communications to continue.
So, basically, the error recovery system will have to decide which data
pathway to flush and which to allow to continue.

196 Chapter 3

Using our clock design as an example, the following additional error
should be added to the system-level design:

Soft Error

Fault: Display task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Recoverable Error

Fault: Button task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Cancel any current command semaphores.

Reset all debounce and autorepeat counter variables.

Recoverable Error

Fault: Time base task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Range check time base timer variables.

If out of range, then reset and notify error task to clear
potential alarm fault.

Recoverable Error

Fault: Alarm control task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

If alarm is active, disable then retest for alarm time.

If alarm enabled or active, range check alarm time.

If alarm time out of range, then notify error task of fault
condition.

List 3.9

System-Level Design 197

Soft Error

Fault: Alarm tone task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Recoverable Error

Fault: Error task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Check status on other system state machines.

If error condition, then set error system mode, set current
time to default.

Wait for user control input.

Recoverable Error

Fault: Alarm disabled but also active.

Test: Routine check by error task.

Response: Reset alarm control task state variable.

Recoverable Error

Fault: Snooze active when alarm is disabled.

Test: Routine check by error task.

Response: Reset alarm control task state variable.

Hard Error

Fault: Program memory fails a CRC test.

Test: CRC check on power-up.

Response: System locks, with a blank display.

These additional fault conditions and recovery mechanisms are then
added to the design notes. The description of the fault condition should
include an appropriate, verbose description of the type of error condition,
the error condition itself, the method for detection of the error, and the
recovery systems. Include notes on the placement of the new software

List 3.9
(continued)

198 Chapter 3

functions to detect and correct the error condition, plus any options in
the design that were discarded and the reasons why.

Notes concerning any additional software functions required to
handle the error detection and recovery should also be added to the ap-
propriate task descriptions so they can be included in the state machine
design. This includes both errors from the corruption of data variables
and the corruption of the state variable for the task state machine.

All notes concerning an Error task or tasks should also be added to
the design notes. This includes updates to the task list, the system data
flow diagram and variable dictionary, timing calculations, and priority
handling information. Remember to review any additions to the com-
munications plan, for potential state lock conditions.

System-Level Design Documentation

At this point, the design should include all of the system-level design
information for the design. It may not be final, but it should be as
complete as possible. Remember, the next level of the design will use
this information as the basis for design, so the information from this
level must be as complete as possible.

To recap, the information generated so far includes the following:

The requirements document: Should be updated with all the
current system information, including functions required for
operation, communications and storage requirements, timing
information, and priority information. It should also include
detailed information concerning the user interface and finally, all
information available on potential system errors, methods used
to identify the error conditions, and methods for recovering from
the errors.

Information retrieved from the requirements document: Should
include information concerning the following:

– Task Information: This includes a list of all the functions
the design will be required to perform, any information
concerning algorithms used by the functions, and a descrip-
tive write-up detailing the general flow of the functions.

System-Level Design 199

– Communication Information: This includes all information
about the size and type of data, for internal communications
between functions, external communications with off-system
resources, and any significant temporary storage. Also any
information about event timing that is tied to the variables
used, as well as the classification of the data storage as either
static or dynamic, plus all rate information for dynamic
variables. Both peak and average should also be included.

– Timing Information: This includes not only the timing
requirements for the individual tasks, but also the overall sys-
tem timing, including both event-to-event and response-time
timing. Should also include all timing tolerance information,
as well as any exceptions to the timing requirements based
on specific system modes.

– Priority Information: This includes a detailed description
of all system modes and the trigger events that change the
system mode. Should also include the overall priorities for
the system, changes in function priorities due to changes in
the system mode, and the priorities within each task based
on current activities.

Documentation on the task definition phase of the system-level
design: This should include descriptive names for the various new
tasks in the system, what software functions have been grouped
into the functions, and the reasons for combining or excluding
the various software functions. In the event that conflicting cri-
teria recommend both combining and excluding a function, the
reasoning behind the designer’s decision should also be included.
The final documentation should also include the preliminary
task list, plus any updates due to changes in subsequent areas of
the system-level design.

Documentation on the communications plan for the design: This
should include all revisions of the system data-flow diagram, the
preliminary variable list and all related documentation concern-
ing protocol assignments, memory requirements, and timing

200 Chapter 3

information. Special note should be made of any combination
of pathways that can result in a state lock condition, and the
reasons for not alleviating the problem through the assignment
of a different protocol for one of the problem pathways.

Documentation on the timing analysis for the system: This should
include all calculations generated to determine the system tick,
including both optimum and worst-case timing requirements.
Reasons for the choice of system tick should be included, and
any functions that are to be handled through an interrupt-based
timing system. For systems with unregulated timing, the reasons
for the decision to use an unregulated system should be included,
along with the plan for any timing critical functions. Finally, the
tick itself should be documented along with the skip timer values
for all tasks in the system.

Documentation on the systems priorities: Include the updated
priority list, using the task name generated in the task definition
phase of the design. Note any tasks that combine lower priority
and higher priority functions, and the new priority assigned to
the task. Note all events that trigger a change in system mode
and all information generated in the validation of the trigger
event information.

Documentation on the error detection and recovery system in
the design: Particularly any new error conditions resulting from
the task state machines, potential communications problems,
and general data corruption possibilities.

One final note on documentation of the system-level design: in all the
design decisions made at this level, some will require back annotation to
earlier design notes and even the requirements document for the system.
As a designer, please do not leave this to the last moment; there will
always be something missed in the rush to release the documentation
to the next level of the design. As a general rule, keep a text editor
open on the computer desktop to make notes concerning the design. A
second instantiation holding the requirements document is also handy.
Bookmarks for tagging the main points of the design, such as task

System-Level Design 201

definition, communications, priorities, and timing make accessing the
documents quick and help to organize the notes. If the notes are made
as the information is found, then the information is fresh in the mind
of the designer, and the notes will be more complete.

I know this sounds like a broken record, but remember the points
made in Chapter 1. Good documentation allows support designers to
more readily take up the design with only minimal explanation for the
designer. Good documentation also aids designers if they ever have to
pick up the design in the future and rework all or part of the design. And,
good documentation will help the technical writers in the development
of the manuals and troubleshooting guides for the system. So, there are
a wealth of reasons for being accurate and verbose in the documenta-
tion of the design, both for the designers themselves and for any other
engineers that may have to pick up the design in the future.

At this point in the design, it is also a good idea to go back through
the design notes and organize the information into four main areas: task,
communications, timing, and priorities. The information in the design
notes will be the basis for all of the design work in the next chapter, so
spending a few hours at this point to clean it up and organize the data
will be time well spent. Note—do save the original document under a
different name in case information is lost in the translation and clean-
up.

We have now completed the system level of the design. In the next
chapter, we will take the information gathered and generated at this
level and push the design down to the component level. The next level
will not involve actual writing of code for the design, but it will specify
the actual layout of the program, and the generation of any algorithms
not currently designed. Once the design is complete at the component
level, then Chapter 5 will move into the actual implementation of the
design.

202 Chapter 3

One final note: Throughout the design methodology presented in
this book, we will be using either the C programming language or a
pseudo C-like language for defining the algorithms to be used. While
the methodology is equally applicable to both assembly and higher-level
languages, we will be using C or pseudo-C, as it represents the design at
a higher, less complex level. This helps us see the forest for the trees, as
it were—basically allowing the reader to concentrate on the big picture
of the design without obscuring the message with the more complex
description in assembly.

In this chapter, we continue the design process, translating the
system-level design from the last chapter into the individual software
components that will make up the final system. While we will not begin
the actual implementation of the software until the next chapter, we will
be designing the state machines, timing controls, and priority handler,
as well as defining the variables used for communications. When we
are finished, we will have a collection of module specifications, one for
each block in the system.

Task State Machines

Once again we start with the tasks. Our job at the component level of
design is to determine the type of state machine, what states will be
needed, what the various conditions are that will change the state, and
what communications that state machine will need to operate in the
final system.

From Chapter 2, we know that there are three types of state machine:
data indexed, execution indexed, and hybrid. While the execution indexed
will typically be the most common, we will start with the data indexed
for simplicity. Once we are comfortable with it, we will move on to the
execution indexed and the hybrid.

Data-indexed state machines execute the same block of code each
time they are called, and it is the data operated on by the block of code
that changes from call to call. This means that our state variable in a
data-indexed state machine is responsible for indexing the data to be
operated on. This typically implies that our data will be held in an array

4
Component-Level Design

204 Chapter 4

data structure. In fact, if the processing of the data requires constants
that must also be indexed, then it follows that the constants must be
held in an array as well. Because variable and constant arrays use a lin-
ear addressing system, our states must be a linear collection of values
as well. Typically, this means two to N states, starting at zero, and our
state variable will be an unsigned CHAR, integer or long depending on
the number of states required.

One of the simple things about a data-indexed state machine is that
the number of states is relatively simple to determine. If a system will be
operating on 15 values, then there will be 15 states. If the system operates
on 200 values, then we will need 200 states. So, typically, the number
of data values to be handled automatically determines the number of
states and the size of the state variable. Defining the states is then just
a simple matter of labeling the state and building any constant arrays
that may be required.

So, what kinds of tasks lend themselves to a data-indexed state
machine format? Tasks that handle more than one piece of data, tasks
that continuously repeat the same task, and tasks that complete their
function every time they are executed. Typically these types of tasks
tend to be scanning functions, such as Display routines that scan data
onto a multiplexed display such as LEDs or a CRT. Or they could be
functions that poll inputs, such as a keyboard routine or an analog-to-
digital converter routine that monitors multiple signals, or even some
math routines, such as a DSP filter that multiplies a group of samples
by a group of coefficients to obtain a new result for each new sample.
All of these tasks perform the same function each time they are called,
whether it is output a digit on a display, poll a push button, or calcu-
late a value. They operate continuously, keeping up the refresh on the
display, scanning for new key presses, or supplying a continuous stream
of new output values. And they all operate on changing data, such as
different digits, different push buttons, or different samples, each time
the function is called.

Component-Level Design 205

One example is the LED display-scanning Task in our alarm clock
example. Either the current time or alarm time is displayed on the six
digits of numeric displays. There are six digits to be scanned for both
of the current time display modes, and four digits to be scanned in the
alarm time display modes. Because the four-digit display is a subset of
the six-digit display, we can define the 6 states and only use the first four
for the alarm time. The preliminary list of states would be as follows:

STATE DIGIT FUNCTION
0 Display tens of hours
1 Display ones of hours
2 Display tens of minutes
3 Display ones of minutes
4 Display tens of seconds
5 Display ones of seconds

When displaying the current time, the state machine will cycle
through all six states; when displaying the alarm time, the state machine
need only cycle through the first four states.

OK, we have determined what states we need, so what next? Well,
as we noted previously, for some modes of the display, it will scan four
displays, and for others, it will display all six. And wasn’t there a flash
and a blank function as well? That would indicate that we may need ad-
ditional states for some modes and fewer states for other modes. However,
to maintain the same perceived intensity, the percentage of time that a
digit is lit will have to remain the same. So, we will have to scan through
the same number of states for each of the different modes.

Let’s start with the current time display. Our current list has six states
for six digits. If we can set up the other modes so they also step through
six states, then the time each digit is lit will remain the same and the
intensity won’t change. If we add two blank states that don’t light a digit
but just take up a cycle in the state machine, then the four-digit mode
for alarm time will have the same digit on time as the six-digit display of
the current time. So, let’s add two blank states in 6 and 7, and define the
state transitions based on the flag Alarm_Enable. To completely blank
the display, we can then jump to the blank states and stay there until
battery-powered operation ends. The result is the following state list:

Table 4.1

206 Chapter 4

STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds always 1
6 Blank display always 7
7 Blank display blank 6 1

If the display is showing alarm time, then the sequence is 0, 1, 2,
3, 6, 7, 0. If the display is showing time, then the sequence is 0, 1, 2,
3, 4, 5, 0. If a blank condition exists, then both sequences go to 6/7
and stay there until the condition clears. Both time and alarm display
sequences have six states, and alarm time display leaves the tens and
ones of seconds blank.

At this point, someone is probably asking, why go to all this trouble?
Just disable the displays during states 4 and 5 if the display is showing
alarm time. And if the display is blanked during battery operation, just
blank all the digits and save the two extra states. Well, yes, that will work.
It means adding in a conditional statement that tests for states greater
than 3, and blanks the display if alarm time is active. It also means the
conditional statement will have to blank the display if the blank signal
is true. In fact, the resulting conditional statement would probably be
smaller than the additional code to implement the state transitions.

However, it also means that any other state machine, or the priority
handler, will also have to use a copy of that conditional to determine if
the display is doing something that is high priority, or just wasting time
in a blank. Creating the two new blank states allows every other task in
the system to know exactly what the priority of the current activity in

Algorithm 4.1

Component-Level Design 207

the display task is, just by looking at its state variable. So, yes, the other
method is smaller in the display task, but it also makes determining what
the display task is doing more complex. It is also makes the code more
cryptic, while a blank state is pretty obvious. In addition, using two
identical conditional statements in two different places in the software
is an accident waiting to happen. If someone in the future modifies the
conditional in the display task, there is no guarantee that they will know
to change the conditional other places in the project. Now other tasks
and the priority handler are making erroneous priority decisions about
what the display task is doing. Using a simple blank state predigests the
conditional statement and publishes a clear flag of the result to any other
entity in the system that is watching the display task’s operation.

OK, we have states and state transitions, so what else do we need?
Any algorithms used by the state machine should be documented, as
well as any assumptions made in the design. For instance, the algorithm
for converting 24-hour time to 12-hour AM/PM time, and whether the
current time and alarm time will be held in a 12- or 24-hour format.
All inputs and outputs to the state machine should also be documented
at this time. At the end of this phase of the design, the design notes
for the project should contain the following notes on the Display state
machine task:

208 Chapter 4

 DISPLAY STATE MACHINE TYPE: DATA INDEXED

STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds blank 7 1
6 Blank display always 7
7 Blank display blank 6 1

ALGORITHM FOR CONVERTING 24-HOUR TO AM PM
 K is a temporary variable
 digit0 is the tens of hours digit
 digit1 is the ones of hours digit

 K = (digit0 * 10) + digit1 // convert digits to 0-23 value

 // test for time of 13:00 – 23:59
 // in AMPM mode, displaying hours

 If (state = 0) and (AMPM_mode = true) and (K >= 13)
 {
 digit0 = (K – 12) / 10 // subtract 12 and take tens digit
 digit1 = (K – 12) – 10 // subtract 12 and take ones digit
 }

STATE MACHINE INPUTS:
 Three flags: alarm_enable, blank, AMPM_mode
 All three flags are positive true logic

 Two arrays: Time_data[6]* and Alarm_data[6]*
 *Note, data is in 24:00 hour format for

STATE MACHINE OUTPUTS:
 One state variable: Display_state

 Two I/O ports: Segments(7) and Digit_drivers(6)

 Two LED indicators: PM and ALARM_ON
 Indicators are positive true logic

Algorithm 4.2

Component-Level Design 209

Note: One of the interesting characteristics of the C programming
language is that, using dynamic variable allocation and data pointers, it
is possible to create a linked list of data that does not require an index
value to access the data. Using these constructs it is certainly possible to
create a data-indexed state machine in which there are no defined states
or a specific state variable. The system just links sequentially through
the list using pointers. While the ability to dynamically allocate data is
very powerful, most small microcontrollers do not have the resources to
maintain a variable heap, and the design would be quite cryptic without
extensive documentation, so this technique may be of only limited value
in most applications. However, in larger systems this can be a powerful
method for reducing the amount of data memory required for the system,
particularly if the system is processing large quantities of data.

OK, data-indexed state machines work well for scanned and polled
functions, but what about functions that execute different code in every
state? To build a state machine that can handle this kind of function, we
need to turn to the next form of state machine, the execution-indexed
state machine.

In an execution-indexed state machine, the overall sequence of in-
structions that make up a task are broken into individual smaller blocks.
These blocks become the states of the state machine. A state variable is
then used to specify which block is executed each time the state machine
is called. Conditional statements, added to each block, manipulate the
state variable so that the original flow of the overall sequence of in-
structions is recreated when the state machine is called repeatedly. The
challenge in designing an execution-indexed state machine is breaking
up the overall sequence of instruction that make up the functionality
of the task.

So, before we can start the design of the execution-indexed state
machine, we must understand how the task operates. We need to un-
derstand how the functions themselves operate, and how they operate
together to form the whole task.

210 Chapter 4

Information on the operation of the software functions making up the
task was gathered in our dissection of the requirements document in the
last chapter. Information on how the functions operate together should
have come from the description of the overall system operation, which
should also be present in the requirements document. Together, they
should give the designer a big-picture view of the task’s operation.

To illustrate the process, consider the Buttons task from our alarm
clock example:

Task3 Buttons
 a) Control input monitoring function
 b) Debounce function
 c) Auto repeat function
 d) Command Decode function (combined SetAlarm

and SetTime functions)
 e) Routine to increment alarm by 1 min
 f) Routine to increment alarm by 20 min
 g) Routine to increment Time by 1 min
 h) Routine to increment Time by 20 min
 i) Toggle 12/24 hour mode
 j) Alarm on/off toggling function
 k) Initiate Snooze

From our understanding of how the user interface works, and our
understanding of each of the software functions in the task, we know:

1. The control and input monitoring function first detects the but-
ton press.

2. The debounce function determines when the button has stopped
bouncing. This prevents the system from trying to execute a
command on every contact bounce.

3. The command decode function determines which command to
execute based on the button pressed, or even if the button press
is a valid command,

4. The appropriate command routine is executed.

5. If the command supports auto-repeat, the command is executed
again at the repeat interval until the button is released.

Rewriting the previous description using a pseudocode format, we
have the following algorithm, which outlines the task’s execution.

List 4.1

Component-Level Design 211

Algorithm 4.3

Start
 Wait for a button press
 Wait for the button to stop bouncing
Repeat
 Decode the function of the button
 If button press is invalid then goto Start, Else decode the button
 If (increment alarm by 1) then alarm = alarm + 1
 If (increment alarm by 10) then alarm = alarm + 10
 If (increment time by 1) then time = time + 1
 If (increment time by 10) then time = time + 10
 If (toggle 12/24) then toggle AMPM_mode flag, goto

Release
 If (alarm on) then alarm_enable = true, goto

Start
 If (alarm off) then alarm_enable = false, goto

Start
 If (snooze) then toggle snooze, goto Release
 Delay
 If (button is still held down) then goto Repeat

Else goto Start
Release
 Wait for button release
 Goto Start

Two notes of explanation about the algorithm are needed. One, if
a command is not followed by a GOTO, it is assumed that it will fall
through the command decoder, to the Delay and then the IF statement
that checks to see if “button is still held down.” Two, commands that do
not have auto-repeat capability either go to the start of the algorithm or
go to Release, where the state machine holds until the button is released.
The wait for the release of the button prevents the inadvertent repeat
of command.

We can now use the algorithm as a basis for the development of the
task’s state machine. Note that the algorithm that is generated at this
point and the next few steps in the design process will largely fix how
the state machine will implement the operation of the functions, so the
designer is encouraged to take the time needed and do a thoughtful de-
sign. It is also possible that the grouping of software functions within the
task cannot be worked into a reasonable algorithm, even if the functions

212 Chapter 4

did agree with all the task definition criteria from the last chapter. If this
happens, revisit the decisions in the task-definition phase of the design
and see if another grouping might be more efficient. There is no law
that says that the group of functions within a task is fixed once the task
definition is complete. In fact, part of the reason for doing a top-down
design is to find these kinds of problems before the design progresses
to thousands of lines of code.

The next design challenge is to break up the flow of the algorithm
into logical blocks, for the states of the state machine. This tells us how
many states we need and how the execution will flow through the states
to perform the operation of the state machine. With time, a designer
will cultivate the ability to look at an algorithm and see where to break
up a task. Until then, the following list of general rules provides a good
guideline for determining how to break up the task:

1. Any place in the task where execution stops pending an exter-
nal event, such as the reception of a command or a signal from
another task, should be a state change. This allows the system
to poll for the condition until true, then move on by moving to
the next state.

2. Any place in the function where execution stops waiting for a
time delay, such as the delay between bits in a software serial
output function, should be a state change. This allows the use
of a delay state in the state machine to handle timing. When the
timer times out, it just moves on to the next state.

3. Any place that the function will return to when executing a loop
or a jump should mark the start of a state. This is necessary for
the state machine to start execution at the loop-back point in
the task.

4. Any time a function reaches a point where the execution path
splits to two or more directions should be the start of a new state
for each alternative path.

5. Anywhere a linear segment of code is too large to execute within
the system timing tick can be broken into two or more states.

Component-Level Design 213

6. In rules 1 and 2, it was stated that a wait or delay should be
immediately followed by a change of state. If the next action
following the wait or delay is a change of state either always,
or on a condition, the state change may follow the command
changing state.

Continuing with our example of the button task, the task can be
broken into the following states, based on the previous guidelines:

 (rule 3)
Start
 Wait for a button press
 (rule 1)
 Wait for the button to stop bouncing
 (rule 1 & 3)
Repeat
 Decode the function of the button
 If button press is invalid then goto Start, Else decode the button
 (rule 4)
 If (increment alarm by 1) then alarm = alarm + 1
 (rule 4)
 If (increment alarm by 10) then alarm = alarm + 10
 (rule 4)
 If (increment time by 1) then time = time + 1
 (rule 4)
 If (increment time by 10) then time = time + 10
 (rule 4)
 If (toggle 12/24) then toggle AMPM_mode flag, goto Release
 (rule 4)
 If (alarm on) then alarm_enable = true, goto Start
 (rule 4)
 If (alarm off) then alarm_enable = false, goto Start
 (rule 4)
 If (snooze) then initiate snooze, goto Release
 (rule 4)
 Delay
 {no state change, per rule 6}
 If (button is still held down) then goto Repeat
 Else goto Start
 (rule 4)
Release
 Wait for button release
 {no state change, per rule 6}
 Goto Start
 (rule 3)

Algorithm 4.4

214 Chapter 4

A quick count shows 13 states generated by splits in the execution
path, waiting for external events, time delays, and looping. The next step
is to give each state a name that is descriptive of the actions performed
in the state.

Again, using the Button task example, the following list of preliminary
state names was generated:

Preliminary state names for Button task
1. Wait_4button Idle state, waiting for a button press
2. Wait_4bounce Wait state, waiting for the contacts to stop

bouncing
3. Decode The button is combined with other buttons and

decoded
4. Alarm_plus1 Command: Increment alarm time by 1 minute
5. Alarm_plus10 Command: Increment alarm time by 10 minutes
6. Time_plus1 Command: Increment current time by 1 minute
7. Time_plus10 Command: Increment current time by 10 minutes
8. Toggle_AMPM Command: Toggle AM/PM versus military time
9. Alarm_on Command: Disable alarm
10. Alarm_off Command: Enable alarm
11. Initiate_snooze Command: Snooze alarm
12. Repeat_delay Wait state for autorepeat of increment commands
13. Button_release End state for button release

In addition to the listed states, a minimum of two additional states
should included: default and error. The purpose of the default state is
to catch the error condition in which the state variable for the state
machine has been corrupted. The cause could be static, EMI, or a low
battery; whatever the cause, including a default state provides the state
machine with a safeguard mechanism to handle the error and creates a
place to put code for resetting the state variable. The related error state
provides a place to put additional error-handling functions. The state
may only contain an instruction to reset the state variable, or it may
be a group of states that coordinate the reset of several state machines
and the clearing of several variables. Regardless of the complexity of the
system, an error state provides the state machine with a place to put
error-handling functions defined in the requirements document.

Algorithm 4.5

Component-Level Design 215

Note: Error conditions within the Buttons task are limited to either a
corrupted state variable or illegal button press combinations. Corruption
of the state variable can be handled by simply resetting the state variable
in the default state. Illegal button press combinations are just ignored,
as defined in the user interface section of the requirements document,
so no action is presently required in the error state. However, rather
than delete the state, it should be retained for the sake of completeness.
At some time in the future, different responses to illegal button press
combinations may be required, and the error state will be needed. Hav-
ing the state present and decoded gives designers making that future
change a place to put the new code. And having the state now doesn’t
cost that much in program memory.

Now that the blocks have had states assigned to them and the states
have been named, the next step is to define the state transitions and the
conditions that cause them. The transitions are implemented by modi-
fying the contents of the state variable, so that the next time the state
machine is called, a new state will be selected and executed. Using this
method, all of the traditional conditional and looping constructs can
be implemented. For more on this subject, refer to the state machine
section of Chapter 2.

216 Chapter 4

Adding the state transition information to our list of states, we have
the following:

Algorithm 4.6

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100-msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled & Initiate_snooze Button_Release

Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode Wait_4button

Button is held
Button_Release Button is released Wait_4button Button_Release
Error Reset from Error task Wait_4button Error
Default always Error

The final step is to assign actions to the states and document the
inputs and outputs of the state machine. The actions come from our
original algorithm for the task and can be documented in text or in the
form of an algorithm. The inputs and outputs will be a list of the data
pathways into and out of the task. Using our button example, the fol-
lowing is an example of the actions and input/output documentation:

Component-Level Design 217

State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10 increment alarm time by 10 Alarm_time Alarm_time
Time_plus1 increment time Alarm_time Alarm_time
Time_plus10 increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine

Default set statevariable to Error none none

The list of states and the table of state transitions comprises the
documentation required for an execution-indexed state machine. From
this information, we will produce the state machine in the next chapter
that implements the button task. There is a strong temptation to just
skip ahead to the actual implementation of the state machine at this
time. The designer is strongly cautioned against this; as the other state
machines in the system are designed, there will be trade-offs made that
will affect this design. Functions may move from one task to another,
and the communications pathways may change as well. It is much more
efficient to wait and have a complete definition for the system, rather
than jump ahead now and have to rewrite the task later when the design
of another task necessitates changes.

The final form of state machine is the hybrid design. It combines the
data-indexing capabilities of our first state machine with the variable
execution of the second. It should not come as a surprise to find that the
design of a hybrid state machine is a combination of the design methods
for both the execution and data-indexed state machines.

Typically, a hybrid design grows out of an execution-indexed design
as part of an effort to make the original design more efficient. So, it
makes sense to start the design exactly as we did for the solely execu-
tion-indexed state machine.

Table 4.2

218 Chapter 4

We start by gaining an understanding of how the functions within
the state machine and the overall task operate. From this, we build an
algorithm for the state machine. To illustrate the design, let’s take a
software serial port transmit task as an example. In this task, the state
machine will have to:

1. Wait in an idle state, pending detection of a
character to transmit.

2. Retrieve the character to be transmitted.
3. Start the transmission by sending a Start bit.
4. Send each bit of the character in turn.
5. Send a Parity bit.
6. Send a Stop bit, and return to its idle state.

The algorithm for this task is also relatively simple:

Idle
Wait for a Character to send
Retrieve the character
Send a zero as a start bit
Wait 1 bit time
Send bit 0 of the character
Wait 1 bit time
Send bit 1 of the character
Wait 1 bit time
Send bit 2 of the character
Wait 1 bit time
Send bit 3 of the character
Wait 1 bit time
Send bit 4 of the character
Wait 1 bit time
Send bit 5 of the character
Wait 1 bit time
Send bit 6 of the character
Wait 1 bit time
Send bit 7 of the character
Wait 1 bit time
Send a parity bit based on the character value
Wait 1 bit time
Send a one as a stop bit
Wait 1 bit time
Goto Idle

Algorithm 4.7

Algorithm 4.8

Component-Level Design 219

In examining the algorithm, it is readily apparent that repeating the
“send bit x of the character,” followed by “Wait 1 bit time,” eight times
will be very inefficient, especially considering each bit would probably
be assigned its own state. So, at this point in the design, we should have
come to the obvious conclusion that we need a better way. Fortunately,
a hybrid design is the better way, and it will be a much more efficient
implementation for this task.

To design a hybrid state machine, we will continue as before with the
design of a standard execution-indexed state machine. The only excep-
tion is that the algorithm will be modified to use data indexing for the
transmission of the bits. The following shows the modified algorithm:

Idle
Wait for a Character to send
Retrieve the character
Set bitcounter = 8
Send a zero as a start bit
Wait 1 bit time

Loop
Send lsb of the character
Decrement bitcounter
Shift character left 1 bit
Wait 1 bit time
If (bitcounter>0) goto Loop

Send a parity bit based on the character value
Wait 1 bit time
Send a one as a stop bit
Wait 1 bit time
Goto Idle

The new algorithm has a number of changes in its design. First of
all, the eight data bits are now transmitted by the data-indexed section
of the design starting at Loop. Further, a new variable, bitcounter, is
used to keep track of which bit is being sent. This makes bitcounter the
state variable for the data-indexed portion of the design, even though
the variable does not directly index access to the data. Once bitcounter
reaches zero, the state machine returns to execution-indexed operation,
and the parity and stop bits are sent.

Algorithm 4.9

220 Chapter 4

If we take this algorithm and apply the same rules for segmenting
the task into states that we used in purely execution-indexed designs,
we end up with the following:

 (rule 3)
Idle
 Wait for a Character to send
 (rule 1)
 Retrieve the character
 Set bitcounter = 8
 Send a zero as a start bit
 Wait 1 bit time
 (rule 2)
Loop
 Send lsb of the character
 Decrement bitcounter
 Shift character left 1 bit
 Wait 1 bit time
 If (bitcounter>0) goto Loop
 (rule 6)

 Send a parity bit based on the character value
 Wait 1 bit time
 (rule 2)
 Send a one as a stop bit
 Wait 1 bit time
 Goto Idle
 (rule 6)

This gives us six states, as opposed to the 12 or more states that
would have been required in the original algorithm. Assigning names,
and including a default and error state, we get the following list of states
for the hybrid design:

Preliminary state names for Button task
 1. Idle (wait for a character)
 2. Start (send start bit)
 3. Data_bit (data indexed section)
 4. Parity (send parity bit)
 5. Stop (send stop bit)
 6. Error
 7. Default

Algorithm 4.10

List 4.2

Component-Level Design 221

Adding the state transition information to our list of states, we have
the following:

Algorithm 4.11

Current State Condition Next State (if true) Next state (if false)
Idle Data ready to be sent START Idle
Start always Data_bit
Data_bit bitcounter = 0 Parity Data_bit
Parity always Stop
Stop always Idle
Error Reset from error task Idle Error

Default always Error

Performing the same design functions for the data-indexed portion
of the design, we obtain the following states for data-indexed state
variable:

STATE DIGIT FUNCTION
1. Transmit bit 0
2. Transmit bit 1
3. Transmit bit 2
4. Transmit bit 3
5. Transmit bit 4
6. Transmit bit 5
7. Transmit bit 6
8. Transmit bit 7

and the list of state transitions for the data-indexed state variable:

STATE FUNCTION Condition If true
1. Send bit 0 always 2.
2. Send bit 1 always 3.
3. Send bit 2 always 4.
4. Send bit 3 always 5.
5. Send bit 4 always 6.
6. Send bit 5 always 7.
7. Send bit 6 always 8.
8. Send bit 7

The final step is to assign actions to the states, both data- and
execution-indexed, and document the inputs and outputs of the state
machine. As with the execution-indexed example, the actions come
from our original algorithm for the task and can be documented in
text or in the form of an algorithm. The inputs and outputs will be a
list of the data pathways into and out of the task. Using our serial port

List 4.3

Algorithm 4.12

222 Chapter 4

example, the following is an example of the actions and input/output
documentation:

Algorithm 4.13

State Action Input Output
Idle Test for new character Ready_flag none
Start Send start bit none TX_PIN
Data_bit(1) Send bit 0 Char_in TX_PIN
Data_bit(2) Send bit 1 Char_in TX_PIN
Data_bit(3) Send bit 2 Char_in TX_PIN
Data_bit(4) Send bit 3 Char_in TX_PIN
Data_bit(5) Send bit 4 Char_in TX_PIN
Data_bit(6) Send bit 5 Char_in TX_PIN
Data_bit(7) Send bit 6 Char_in TX_PIN
Data_bit(8) Send bit 7 Char_in TX_PIN
Parity Calculate and send parity Char_in TX_PIN
Stop Send Stop bit none TX_PIN
Error Notify error task & Reset PORT_error

Reset state machine
Default set statevariable to Error none none

The documentation for all three types of state machine should be
included in the design notes for the design, and should include the
same information:

1. A list of states, including a default and any necessary error
states.

2. A list of all state transitions and the conditions that cause
them.

3. A list of all actions performed in each state.

4. A list of all input and output pathways.

One final note on state machine design: just as no two artists are likely
to paint a scene in exactly the same way, no two designers will design a
state machine in exactly the same way. The design will be influenced by
the designer’s experience and coding style. And, as I mentioned previ-
ously, the criteria for making the state breaks in the design will become
individual to the designer doing the work. As long as the design works
and performs the functions included within the task, then the design is
good. However, this should not be taken as a license to build obfuscated

Component-Level Design 223

code. Remember, our purpose here is to design a project that can be
easily understood by others, so it can be supported by individuals other
than the original designer.

Communications

In the last chapter, we defined all of the data pathways within the system
and any significant data storage associated with the individual tasks.
Our purpose in this chapter is to define the individual variables of the
various pathways and make any final decisions concerning the operation
of the protocols used for each pathway.

Let’s start with some general guidelines concerning the naming of
variables. Variable names must be descriptive. Naming a generic timer
variable B232 may have been convenient when the code was written,
but when trying to support the design, it is less than useless because it
might lead the support engineer to the mistaken belief that it is actually
a data variable for the B channel of an RS-232 serial interface. Using
the name B_Timer is more descriptive, less confusing, and only takes
three more characters. So, be descriptive, be verbose, and don’t scrimp
on the characters. Disc space is cheaper than a support engineer’s time
to reverse-engineer a unhelpful variable name.

Next, when generating variables that work together, consider giv-
ing all the variables a common prefix. For example, consider a circular
buffer with an input and output pointer variable. Naming the buffer
space Serial_in_buff is descriptive of both the function and the task
that uses the buffer. Naming the input and output pointers Serial_
in_input and Serial_in_output is also descriptive of the function
and task using the variable, but also indicates that they are associated
with the Serial_in_buff variable and are likely part of the pathway’s
communications protocol.

A descriptive postfix is also a good habit to cultivate. If all input and
output pointers for buffer protocols also use _input and _output, then
support engineers that follow will have a simple convention that tells
them a great deal about the function of the variable, just by looking at
the variable name. The flip side of this coin is that, once you establish a

224 Chapter 4

convention, stick with it. Changing the convention in the middle of a
design can be more confusing than having no convention at all.

Finally, make an entry in the system design notes, that clearly spells
out what your conventions are and how they were applied. This simple
piece of reference data will earn you the thanks and admiration of every
support engineer that ever has to touch your code. Note: you might want
to surround it with asterisks with a bold title, so it will be easier to find.
And, as always, be verbose. If you developed a handy convention, the
support engineers should recognize your ingenuity and continue the use
of your convention throughout the support of the project.

Another area that benefits from a good naming convention are con-
stant numeric and logical values. Most beginning programmers tend to
put the value in the equation or the assignment statement. However, if
the value is instead replaced with a descriptive label, it is easier to read
and understand. For example, the equation A=B*3 could refer to any
number of possible calculations, but with the equation A=B*PI there
is very little doubt concerning what the constant is and how it is being
used.

There is also another very good reason for replacing numeric con-
stants with labels—it makes changing the constants both easier and
less error-prone. If a constant is used multiple places in a design, then
changing that constant becomes a search-and-replace nightmare through
multiple files. However, if the value is assigned to a label, then only the
entry making the assignment need actually be changed. The compiler
or assembler will do the actual work, guaranteeing that the substitution
is made correctly in each and every instance the value is used.

Still another reason for replacing numeric constants with labels is to
extend the scope of their use. Often when performing complex com-
putations within a task, there may be a need to combine two or more
constants into a single value to simplify the math. If a numeric constant
is used, then the origins of the constant will be lost in the simplification.
However, using a label to represent the new constant, and defining the
new constant based on the original constants, not only documents the
origins of the new constant, it also guarantees any changes to the original

Component-Level Design 225

constants will be included in the calculation of the new constant as well.
For example, simplifying 2*3.14159 into 6.28318 will simplify any
math by pre-multiplying the two constant values. However, defining
TWOPI = 2 * PI, and using the label TWOPI in any subsequent equa-
tion, accomplishes the same goal, and allows any updates of PI to flow
down through all the equations that use the value.

As indicated previously, note all labels for constants in the design
notes file on the design. You may have noticed that I seem to be harping
on the notion of making notes in the design notes file for the design.
Well, I have been, and there are several good reasons for it:

1. More documentation can only help in the creation of the design.
The days when a designer could keep the complete picture of
the design in their head is long gone.

2. Documentation helps the designer get back up to speed on a
design, should there be a need to fix a bug or add a feature.

3. Documentation also helps the support engineer get up to speed
on the design quickly. This limits the number of interrupting
phone calls during the next design.

4. Documentation also facilitates the reuse of the code in the next
design. And, yes, reusing variable definitions and protocols saves
time, just as reusing a state machine or subroutine saves time.

5. Finally, and best of all, documentation in the design notes file is
a ready source of copy and paste comments for the header and
source files of the design, when it comes time to comment the
code.

So, we have naming conventions for our variable storage, and labels
for our constants. What else needs an alias? Well, one last place that a
good naming convention is handy is the naming of peripheral control
registers and input/output pins. For example, if the port pin used as
the transmit output of a software-based serial port is labeled with the
name SERIAL_TX instead of PORTD.5, then all that is needed to reuse
the serial port routine in a new project is to define SERIAL_TX with the
new port pin in the new design.

226 Chapter 4

This practice has the somewhat cryptic name of hardware abstrac-
tion. Basically, it involves giving any hardware-specific value a generic
name. This hides, or abstracts, the specifics of the hardware, and leaves
the designer with a generic and very portable routine that can be used
over and over. It also has the side benefit of making the code much
easier to read and understand because the function of the pin is now
defined clearly. For information on how to label specific bits within a
register or I/O port with names, consult the section on STRUCTUREs
in Chapter 2.

One final note on good practices and general operating procedures:
during the course of this design we will be creating separate tasks
designed to communicate and work together. This causes a problem:
while the code for each task, its constants, and even its internal variables
can be grouped together into a task-specific header and source file,
the communications variables have to cross the task boundaries and
tie the various tasks together. So, where do the variable definitions for
the communications variables go? We can’t scatter them through the
task files, and picking one task and lumping them into its files is not a
solution either.

The best solution is to create a single set of master source and header
files. The master source file will call all of the initialization routines for
each of the tasks and contain the main system look which calls all the
individual tasks. The master header file contains all the communica-
tions variable definitions, all the hardware abstraction definitions, and
the labels for any system-wide constants. This places all the global in-
formation in one central location and it keeps each individual task file
more generic, so it can be cleaned up for inclusion in the developer’s
code library.

At this point, create a master header file for the design. This will give
us a place to define our variable, a place to label our constants, and also
to define hardware abstraction labels.

Now that we have some standard operating procedures for the com-
munications system in place, it is time to determine what elements are
needed in each protocol and in each pathway, and determine the variables

Component-Level Design 227

we will need, the algorithms we will use, and the interface functions
that will be needed.

As broadcast is the simplest protocol, let’s start with it. A pathway using
a broadcast protocol is defined to be either a single variable, or a single
variable with a secondary flag, which is used to determine the validity
of the data in the variable. So, any pathway using the broadcast protocol
will need an appropriate variable and, potentially, a secondary flag.

In the master header file, a separate section should be generated for
each broadcast data pathway, and a header comment generated. The
header comment should include all the information from the variable
dictionary generated in Chapter 3, including:

1. The type of data, CHARs, INTs, FLOATs.

2. The size of the data.

3. A list of all source and destination tasks that send or receive data
through the pathway.

4. A range of acceptable values for the data.

5. Any information concerning the rate of new data.

A definition for the variable can then be generated using an appropri-
ate name, with any appropriate pre-and post-fixes to define its function.
If a secondary data valid flag is needed, it should also be defined with
the same prefix and an appropriate postfix to define its function. A
notation should also be made in the header comments section defining
which states denote valid and invalid data.

The next pathway protocol to tackle is the semaphore. A pathway
using a semaphore protocol is defined as either one or two flags used in
a handshaking system with an optional data variable. This means we will
need to define one or two flag variables, and a possible data variable.

The first step is to determine what form of handshaking system is
needed. For this we have two options: a two-way handshaking system or
a four-way system. Two-way systems are just simple set and acknowledge
systems where the sender sets a flag indicating an event, and the receiver
accepts the information and clears the flag to acknowledge the transfer.

228 Chapter 4

Four-way systems expand the basic two-way system to include a
secondary layer of send and acknowledge. The sender sets its flag sig-
naling an event and the receiver sets its flag to acknowledge the event.
The receiver then processes the event, and clears its flag to indicate it
has completed processing the information. The sender then clears its
flag to acknowledge the receiver has completed its work.

The form of handshaking required will depend on the use that the
receiver has for the data, and whether the sender needs to know that the
receiver has completed its operation. Typically, a two-way system is suffi-
cient for a transfer as the sender is usually only interested in sending data.
However, if the transfer of information is bidirectional—specifically, if
the sender expects to receive data back from the receiver—then a four-
way system is needed. The bidirectional transfer could be handled by
two semaphore protocol pathways, but remember that cross-linking two
tasks with semaphore protocols can result in a state lock condition if the
two state machines get out of synchronization. Using a four-way system
accomplishes the same thing as cross-linking two semaphore pathways,
but avoids the state lock condition, because the second semaphore is
tied to the first as part of the protocol and the second transfer can only
be initiated in response to the original request from the sender.

For example, if task B is charged with accepting raw commands
from task A, decoding the raw command, and then passing the decoded
information back to task A, it follows that two handshaking events are
required, one to transfer the raw data from A to B, and a second to
pass the decoded data back from B to A. However, with two separate
semaphores, this opens up the system to a state lock because a simple
two-way handshaking system releases task A, once task B has acknowl-
edged reception of the data. A four-way system does not release A until
after B has both accepted and returned the data, thus avoiding the state
lock condition.

Moreover, the use of two flags also provides a simple method for
determining a transfer fault condition. For example, after task B has
completed decoding the command, it attempts to return its decoded
data to A. But A has already ended the transfer by clearing its flag. Then

Component-Level Design 229

B knows that the transfer has been aborted by A and it can safely discard
the data without any further direction from A. It will not be stuck wait-
ing for an acknowledgment from A because it knows A has already gone
onto other business and lost interest in the returned data.

So, if four-way handshaking semaphore systems get around the
problem of state lock, why not just define all semaphores as four-way
systems? The reason is that four-way systems only work if the two trans-
fers are tied together in the same data pathway, making them essentially
a single transfer. If we tried to tie two unrelated transfers together, then
the only way the receiver could ever send data to the transmitter is when
the transmitter specifically asked for it. And, that eliminates all event
information from the data the receiver was trying to send. It would be
no different than using a broadcast protocol to transfer the data from
the receiver to the transmitter because the timing is still driven by the
transmitter and not the event. And, making the sender wait for the re-
ceiver when it is not interested in the receiver’s status wastes the sender’s
time, so four-way systems should only be used when needed.

After determining the type of handshaking, the definition of the
variables becomes very similar to the procedure used with the broadcast
protocol. A new section is added to the master header file for the sema-
phore protocol pathway, and the appropriate information is noted in the
section’s header comments. One or two flag variables are defined, with
appropriate names, prefixes, and postfixes. And the logic of the flag(s)
is noted in the section’s comments. If a data variable is included in the
pathway, it is also defined with an appropriate name, common prefix,
and descriptive postfix. And information concerning its data type, width,
and acceptable range of values is noted in the section’s comments.

For both the two-way and four-way systems, four functions should
also be defined for use with the variables. These functions will handle
the actual set, clear, and test of the two flags involved in the transfer.
Comments showing the prototypes and algorithms for these functions
should be included in the master header file, in the section associated
with the semaphore variables. When we get to the next chapter, these
functions will be generated and held in a source file associated with the

230 Chapter 4

master header file. The documentation is included here as an explanation
of how the variables will be used, and to note that the actual routines
reside in the associated source file.

For a two-way handshaking system, the sender needs only a set func-
tion to set the flag and a test function to determine if the flag has been
cleared by the receiver. The receiver has a corresponding clear function
and its test function checks for the initial set of the flag. Both the set
and clear functions should return an error in the event they are asked to
set an already-set flag, or clear an already-cleared flag. This is to flag the
sending and receiving tasks that a handshaking fault has occurred.

For a four-way handshaking system, things get a little more com-
plicated. Both tasks now have set/clear functions for their flags and
test functions for their partner’s flag. In addition, the sender’s set/clear
function is also subject to some special conditions.

The sender can only set the flag if the receiver’s flag is cleared, and
can clear the flag at any time, but must return an error if the receiver’s
flag is still set. The interlock on setting the flag prevents the sender
from over-running the receiver, and the error condition in clearing the
flag confirms to the sender that it did abort the transfer. The sender’s
test function returns both the current state of the receiver’s flag and the
sender’s flag, so the current state of the semaphore is completely defined.
This helps the sending task to determine what the receiver is doing, as
well as what the receiver thinks the sender is doing.

The receiver also has a set/clear function; the difference is that the
receiver can only set its flag if the sending flag is set, and clear the flag
only if the sending flag is clear. Any other action results in the return
of an error. This prevents the receiver from inadvertently creating a
transfer fault.

Both tasks also have test functions for monitoring the state of the
other task’s flags.

The first question is usually, “Why all this overhead for a simple set
of flags? Why can’t I just set, clear, and test the bits directly in the state
machine code?” There are two reasons. One: making them separate func-

Component-Level Design 231

tions means the code inside the routines can be defined by a single macro,
and that prevents copy and paste errors. It also means any problems will
only have to be fixed once in the source macro, not repeatedly in each
section of the code. Two: it provides a simple mechanism for connecting
test drivers to the state machine tasks for testing. By renaming one, or
at most two, source macros, all of the semaphore connections to a task’s
state machine can be redirected to testing software, without touching
the code in the state machine.

Now, some may question the value of point two. I would point out
that, when a supposedly tested and working subroutine suddenly stops
working, it is typically due to some minor change made when the test
hooks were removed from the code. Using a simple name substitution
to replace one working macro with another will either cause a blowup
at compile time due to a typing error, or it will work. The evils of copy
and paste should not be underestimated!

One final aspect of semaphores to discuss is how to deal with potential
state lock conditions. As we discussed in the last chapter, there will be
designs that simply can’t avoid conditions leading to state lock. And if
we can’t avoid a configuration that has the potential for state lock, then
we will have to have some system for dealing with it. There are two basic
methods: we can attempt to predict the condition and move to avoid
it, or we can detect its occurrence and recover from it. Both methods
have an upside and a downside.

Let’s start with trying to prevent state lock from occurring. In our
design system, we use state machines to implement the various tasks in
the system, and use the state variables associated with the state machines
to hold the task’s context while other tasks are running. So, it follows that
any task in the system can determine the current activity of any other
task in the system, by simply examining the other task’s state variable.

Therefore, to prevent state lock, all a sending task need do is examine
the value in the receiving task’s state variable to determine if that task is
currently involved in a semaphore transfer. If the receiving task is busy
with that transfer, the sending task must defer its transmission until
the receiving task is in a state conducive to receiving its information.

232 Chapter 4

For example, task A is preparing to send data to task B. Task A should
then test the state variable of task B to see if B is already trying to send
data to A. If it is, then task A will have to complete the transfer from B
before it can attempt to transfer data to B.

The upside to this system is that it prevents the occurrence of state
lock by deferring the second transfer until the first transfer is complete.
The downside is that the logic for handling the handshaking just became
significantly more complicated. Using this system, the routines in both
tasks will have to be expanded to:

1. Test for every wait state in the receiving task state machine as-
sociated with a semaphore transfer.

2. If it detects a wait state, the sending task will have to put its cur-
rent transfer on hold.

3. Save its current context.

4. Jump to a state capable of receiving the transfer.

5. Then, once the transfer is complete,

6. Retrieve the saved context.

7. Return to the sending state and test once again.

8. Once it completes its transfer, it will then have to retrieve the
received data.

9. Then respond appropriately.

As you can see, this method can become complicated and cumber-
some very quickly. Also, it still raises the question of which of the two
tasks involved has the higher priority, which determines which task
should defer to the other.

The second option is to detect the state lock condition and try to
recover from it. This method changes state lock from a condition that
we are trying to avoid, to an error condition requiring recovery. And, it
means that the recovery will, by design, disrupt the operation of both
state machines. Basically, we are designing our system to classify state lock
as an error condition and then handle it as either a hard or soft error.

Component-Level Design 233

There are two relatively simple methods for detecting a state lock
condition: one, a communications timeout timer; and two, a function in
our system that looks for fatal combinations of state variable values.

Of the options, the timeout timer is perhaps the easiest to implement.
It involves adding a timer function to the state decoding logic of both
tasks. Every time there is a state change, the timer is preset to its timeout
value. If the state does not change from one call to the next, the timer
is decremented. If the timer ever reaches zero, the current state variable
value is saved in a temporary variable and the state is redirected to the
error state associated with state lock. Then, the next call to the task will
execute the recovery routine and resolve the conflict.

This assumes that the designer knows the maximum possible timeout
for each pathway using a semaphore protocol. It also assumes that the
task can wait until the timeout is reached without causing unrecoverable
damage to other tasks in the system.

Determining the timeout period is relatively easy if the operations of
both tasks are well defined and their timing is constant. The designer
simply has to count the maximum number of calls to the receiving task
between states in which it tests for transfers from the sending task. The
value is then scaled by the ratio of the skip timer values associated with
the sending and receiving tasks. For example, task A has a skip timer
reload value of 10, task B has a skip timer reload value of 5. Task B has
a worst-case time of four calls between states in which it can monitor
transfer requests from task A. This means that the timeout timer for
task A must be 8, or 4 * (10 / 5). Task A is called twice as often as task
B, so a wait of 4 in task B results in a wait of 8 in task A.

Determining the timeout period is not so easy if the operations of
both tasks are not as predictable. The timeout may be dependent upon
other conditions that affect either or both of the tasks involved. Plus,
state lock conditions that pass through one or more secondary tasks
in a loop add the timing uncertainty of those tasks as well. While this
dependence can be predicted with sufficient time and paper, the simpler
solution is often to just test the tasks using inputs that simulate a worst-
case timing condition.

234 Chapter 4

Once the timeout has been determined, the next step in the process
is determining which transfer is more important, and which can be
sacrificed to recover from the problem. Typically this involves testing
the state variables of both tasks and making a determination as to which
task has the higher priority state. But be careful; the decision should
also factor in which transfer can be safely killed without causing other
conflicts in the system. Once a set of rules has been defined, the error
state can then either kill its own transfer by setting its state variable to
a state that can receive the other transfer, or kill the other task’s transfer
by setting its state variable to a receptive state, and just reloading its state
variable with the value in the temporary holding variable.

One important thing to note with this system; only one of the tasks
should have a timeout and error recovery function. If both tasks have
timeout systems, then there is the potential for the two tasks to try and
reset each other and cause yet another conflict. But what if a task has
more than one potential partner that can cause state lock? Or there are
more than two tasks with a potential state lock problem? In this case,
the simplest system is often to define an error task, whose job it is to
monitor the operation of all the other tasks in the system. The error task
with then be the sole judge and jury for any problems and hand down
one solution for all parties involved.

The second recovery option involves adding a monitoring routine to
check for potentially fatal combinations of state variable values for all
combinations of tasks that have the potential for state lock conditions.
To accomplish this task, the function will need to regularly access all of
the state variables associated with the at-risk tasks, and determine if a
state locked combination has been created. This means the monitoring
function will need access to all of the state variables, all of the skip timers,
and a database of problem combinations, referenced by task and state. If
it detects a combination that indicates state lock, the monitoring routine
would then determines which transfer is less important and load the
state variable of the appropriate task with a state value corresponding
to a receptive state for the task.

Component-Level Design 235

As this system has many of the same complications associated with
the first task, all of the same problems expressed previously are also pres-
ent here. How will the monitoring routine determine which transfer is
more important, what if more than two tasks are involved in the loop,
and what happens if routines for two different tasks conflict on the
resolution? In addition, this method will require an extensive database
to determine which combinations are a problem. This is complicated
by the fact that there may be intermediate tasks that may or may not
be contributing to the problem by their current states.

So, while adding a recovery mechanism may sound simple, the imple-
mentation of a detection and recovery mechanism is seldom simple.
That is why the original recommendation of changing one or more of
the pathway protocols was stressed so stridently. However, if there is no
possible way to avoid the configuration, select a method for detection
and error recovery and make the appropriate additions to the task list and
the communications plan. Also, add a very verbose entry to the design
notes concerning why the potential state lock configuration could not
be avoided, along with a clear description of how the detection method
will work, how the recovery system operates, and the criteria it will use
to determine which transfer can be safely killed.

The master and task header files can then be updated appropriately
with definitions for any variables, constants, and functions. Remember
to include all the associated information in the header comments for
the variables. And, once again, be verbose in your description of the
variables and their use.

That covers broadcast and semaphore, but what about buffers? Well,
like the semaphore, we have some decisions to make concerning how
we will implement the system.

Remember back in Chapter 2, when we were first introduced to
buffers, we discovered that there are three conditions for a buffer that
are important to us as designers. Those conditions were: when is the
buffer empty, when is it full, and when is it not empty. Determining
these conditions will depend on the convention we adopt for the input
and output pointers.

236 Chapter 4

The choice boils down to whether we want to increment the pointers
before we use them or after we use them, and whether we treat them
differently. The reason we examined all of those combinations was to
determine whether one was significantly faster than the other to deter-
mine, and, if a specific combination was faster, was it faster for the faster
task, or the slower task.

Reviewing the information in Chapter 2:

Pointer definitions Comparisons Meaning
Storage > last element stored IF (Storage == Retrieval) then buffer is empty
Retrieval > last element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage <> Retrieval) then data present

Storage > last element stored IF (Storage+1 == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage+1 <> Retrieval) then data present

Storage > next element stored IF (Storage == Retrieval+1) then buffer is empty
Retrieval > last element retrieved IF (Storage == Retrieval) then buffer is full

IF (Storage <> Retrieval+1) then data present

Storage > next element stored IF (Storage == Retrieval) then buffer is empty
Retrieval > next element retrieved IF (Storage+1 == Retrieval) then buffer is full

IF (Storage <> Retrieval) then data present

It is given that the sending task is only interested in whether the
buffer is full or not, and the receiving task is the one concerned with
whether there is data present in the buffer or not. Then a faster sending
task would prefer the second and third option because the buffer-full
condition can be determined by a simple compare, while a faster receiving
task would prefer the first or fourth option for the same reason. Choos-
ing a pointer convention is therefore a simple matter of reviewing the
input and output rates specified for the data pathway and selecting the
appropriate convention.

Once the pointer convention has been chosen, an estimate for the
size of the buffer is needed. This comes from the information garnered

Component-Level Design 237

from the dissection of the requirements. Remember that we compared
the peak and average rates and made an estimate of the buffer size re-
quired. Now don’t panic, we can only make an estimate at this point,
and nothing is carved in stone. We will discuss additional techniques
in Chapter 5 for testing that we have the optimum size buffer, but for
now, we just need an estimate.

Given this information, we can make the appropriate additions to
the master header file. A new section needs to be added with all the
appropriate background information on the data in the pathway, type,
size, name, and so on. To this we will add buffer size, pointer conventions,
and prototypes for routines for adding and retrieving data from the buffer,
as well as testing functions for determining if the buffer is full, empty,
or has data available. Remember to use a common prefix for all variable
names, and descriptive postfixes to denote the variable’s function.

Again, we are using prototypes for all the reasons put forth in the pre-
vious section. The only difference is that each instantiation of the buffer
routines will have a separate constant to denote the size of the buffer. In
fact, another advantage of the prototype and macro system for defining
buffers is that, once all four conventions have been developed, they can
be reused every time a buffer protocol is needed in a design. This alone
is worth the trouble of defining separate routines in that I only had to
fight through the design of the comparison routines once for each type,
and then I never had to suffer through the frustration again.

Once all the information has been added to the master header file,
and all of the variables, constants, and peripherals have been named
and defined, we have completed the definition of the communications
system at this level. The only thing remaining is to implement the actual
routines for accessing the variables. We will do that in the next level of
the design. In fact, it will be one of the first things we will do in the next
level of design, as the communications system is the hook that we will
use to drive the task state machines during their development.

At this point, we should also create a header file for each of the tasks
in the system. In these header files will go the definitions for the state
variable of the associated task, and any other variables specific to the

238 Chapter 4

task’s operation. Of particular interest at this point of the design are any
variables for the additional significant data storage that were specified
in the communications plan in the last chapter.

To define the variables to handle this storage, we need to know a few
things about how the variables will be used. Specifically, are the vari-
ables static or dynamic? Are the variables accessed by other tasks in the
system? What type and size are the variables? And, will pointer variables
be needed to access the data? Based on these answers, we can determine
the number, type, and width of the variables to be defined.

Static variables are relatively simple and should be defined in the task
header file first. Start by adding a new section to the task header file,
and then create the definitions for the variables. Strive to group related
variables together, and label them with an appropriate comment denot-
ing their shared function.

In the event that the variables are used together as part of a more
complex data structure or protocol, name the variables with a prefix that
identifies the task, a name descriptive of the common function, and a
postfix that is descriptive of the individual variables function within the
group. This makes it very easy to determine a variable’s function with
just a glance at the name, especially if a naming convention is used that
employs common postfixes for common functions.

In the event that the variable stands alone in the system, name it with
the same prefix as the other variables in the task, to identify the task as
its owner. Then give it a name that is descriptive of its function within
the task. If the variable is used as a generic holding variable, resist the
urge to name it hold1 or hold2. The name is descriptive of the variables
use, but it gives no information concerning what it might be holding
at any given moment. The better solution is to give it a name that de-
scribes the function, or functions, within the task that will be using it.
For example, a generic holding variable used by a function that converts
ASCII values to hex could be called CMDTASK_ASCII2HEX_INTVAL.
This identifies the task that owns the variable, identifies the function
that uses the variable, and describes its function as an intermediate value
variable. Remember, be descriptive and BE VERBOSE.

Component-Level Design 239

One final note, when defining the state variable for the task, include
constant defines that give names to the specific state values in the state
machine. This will make the SWITCH statement that will decode the
state variable, and any state transitions, much easier to understand when
the state machine is written. It will also make adding a new state to an
existing state machine much easier, as the only updates required will be
in the constant defines in the header file. Personally, I think this also
makes the code look much more professional, and it certainly helps in
getting back up to speed on a state machine, when I have to come back
to it after an extended period of time.

Dynamic variables present more of a challenge to define because
their storage requirements are not constant. So, just like the storage
requirements for a buffer protocol pathway, we will have to make a few
decisions about how the storage will be used before we can define it in
the task header file.

The first step is to define how the information will be accessed. Typi-
cally dynamic storage will use data pointers for access, so a description
of how the pointers work and their number will be needed. Next, we
will need an estimate for the amount of storage needed for the raw mass
of information. Both pieces of information should be readily available
from the design of the task that will manage the data storage. If not,
then a good estimate can be generated based on the peak and average
rates at which data enters and leaves the storage. For a more detailed
explanation of the estimating process, refer to the section in Chapter 3
that discusses the dissection of the requirements document for storage
requirements.

Once the pointers and the amount of memory required for the storage
has been determined, the variables can be defined in the header file for
the task. As with the static variables, a descriptive naming convention
should be used, and the variables associated with the storage block should
be defined with the definition, or block reservation, for the main stor-
age area. Remember to use common names, with descriptive suffixes to
define each variable’s function, and use a prefix that identifies the task
that has ownership of the variables.

240 Chapter 4

Because the variables are dynamic in nature, the comments for the
storage block should also include information on inflow and outflow
rates, the operation of the pointers, and any other information concern-
ing the access of the data. It is also a very good idea to use functions
to access the data within the data block. This gives the designer the
flexibility to place the information, either in general data storage or
nonvolatile storage, simply by calling a different macro in the function
definitions. Another good reason for this system is that the access and
test routines for the storage will probably look very much like the access
and test routines used for a buffer protocol, so the designer can save
some work by reusing the existing macros.

System Timing

In the previous chapter, we defined a system tick. This tick set the execu-
tion time for each pass through the system loop, and determined values
for the various task skip timers to be used by the system. What we will do
in this chapter is define how the timing system will ultimately operate.

To start, let’s examine the tick in light of the system clock to determine
how many execution cycles are available. To do this, we multiply the
tick (in seconds) by the MIPs of the system (in instructions per second).
The result will be the number of instructions that can be executed each
system tick.

For typical designs, this number should be greater than 100–200 for
projects in assembly language, and 300–500 for projects written in a
high-level language. Our alarm clock example assumes a system speed
of 1 MIP, and our calculated tick is 250 microseconds. So, we have 250
instructions per tick, generally a little short for a high-level language,
but typically more than adequate for an assembly language project. Note
that the ranges of 100–200 and 300–500 assume only a moderately
complex design. If the work performed in the tasks is more complex,
then the values may need to be increased.

If the values for a design are less than the recommended ranges, we
have a couple of options:

Component-Level Design 241

1. The processing speed of the microcontroller can be increased by
using a faster system clock. This is relatively simple, but there is
an upper limit to this approach due to the electrical limitations
of the microcontroller.

2. If the fast tick was driven by one or two fast tasks in the design, we
can drive the fast tasks from a timer-based interrupt, as outlined
in the previous chapter. We can then recalculate a newer, slower
tick based on the remaining, slower timing requirements.

3. And finally, we can allow select states within task state machines
to deliberately overrun the system tick. We are essentially allowing
these states two ticks to execute. However, this can be a dangerous
proposition, in that the long state must trigger a special operation
in the system timer to adjust the skip timers appropriately and the
priority handler must keep the second tick free of other tasks.

After we have settled on a final system tick and determined that we
have sufficient execution time, the next task is to set up a hardware
timer to measure off the tick. Depending on the specific hardware
of the microcontroller, the hardware timer used can be either 8- or
16-bit, with optional pre- and postscaler functions. For our purposes,
we will have to find a combination that can count the requisite number
of instruction cycles.

Now, the question at this point is typically “What if the number of
instruction cycles per tick is not a convenient power of 2? The timer
will not automatically roll over at the right time and our system tick
will be off.” Yes, this is true, but don’t worry, we have several options
to compensate.

1. We can adjust the system clock so that the tick is a power of two,
and the rollover is once again automatic.

2. We can use a timer that has an automatic reload function. This
automatically preloads the timer with a constant value each time
it rolls over, creating a divide-by-N counter.

3. We can build a timer interrupt service routine, driven by the
rollover interrupt, to preload the timer manually.

242 Chapter 4

Of the three options, 1 and 2 are the most accurate as they are handled
automatically in hardware. Option 3 is typically the most used, but it
can suffer from accuracy problems due to variations in the interrupt
response timing.

Once the method for timing the tick is determined, note the infor-
mation in the design notes files. And don’t forget to let the hardware
designer know about any changes you have made in the system clock
frequency requirements.

The next step is to determine the placement of the skip timer func-
tions for the various tasks in the system. The two choices are to either
put the skip timer functions together in a common timer function, or
put the skip timers into the individual state machines. Both options have
advantages and disadvantages in the final design of the system.

If the skip timers are gathered together into a single function, then
individual GO flags will be required to communicate between the timer
function and the actual state machine routines. These GO flags can be
convenient, because the priority handler can make use of them to defer
execution of a given task, by simply clearing the flag temporarily. The skip
timer for the task should have been automatically reloaded by the timer
function when it reached zero, so clearing the flag will not have a lasting
effect on the task timing—it will only defer the current execution.

A common timing routine also makes it much easier to coordinate
the timeout of the skip timers. One of the priority systems we will ex-
plore later in this chapter offsets the initial skip timer values so that the
timers will never time out together. This limits the execution load for
each pass through the system loop, and requires little or no additional
overhead to accomplish. However, if the timers are scattered throughout
the various task state machines, then coordinating the initial values for
such a system is more problematic.

Using a common timing function also makes the individual state
machine more generic, in that the timing is regulated externally. As a
result, reusing the state machine in the future only requires that the new
system generate a GO flag at the appropriate rate to guarantee proper

Component-Level Design 243

operation. If the skip timer had been buried in the state machine itself,
then reusing the task would require edits to the module to accommodate
a potentially different system tick.

One final advantage of a common timer function is the ability to
generate longer delay through the nesting of two or more skip timers
within a prescaler timer. This reduces the overhead in that both timers
can be smaller variables, and the additional decrement time for one of
the skip timers in eliminated. For example:

if (--timer_prescaler == 0)
 timer_prescaler = prescaler_value
 if (--cmd_skiptimer == 0)
 cmd_skiptimer = cmd_skip_value
 cmd_task_go = true
 if (--key_skiptimer == 0)
 key_skiptimer = key_skip_value
 key_task_go = true

 Using this system, the code to decrement and test the cmd_skip-
timer and key_skiptimer variables is only executed when the
timer_prescaler variable reaches zero. While this may not seem like
a dramatic savings, it does save one byte of data storage and eliminates
multiple instruction cycles from all but an occasional pass through the
system loop.

The downside to using a central timing system is that it requires the
additional communication pathways, with their attendant overhead and
the possibility of potential state lock problems, as the new GO variables
typically use a semaphore protocol.

Placing the timers within the various task state machines, instead of
within a common timer function, also has distinct advantages in that it
allows each task the option to evaluate its need to execute on every pass
through the system, essentially giving the tasks the option to disregard
the skip timer, or modify its skip rate to accommodate the needs of the
task.

This can be particularly valuable if the task is attempting to synchro-
nize its execution to an external trigger. On each pass through the system
loop, the task can test for the trigger event and, when it occurs, the task

Algorithm 4.14

244 Chapter 4

need only reload its skip timer with an appropriate value and execute the
appropriate state. If the timers were in a common timer function, this
activity would require the task to either reset the counter long distance,
or use a handshaking flag to trigger the action in the timer function.

Self control of its own skip timer also allows the task to use a vari-
able skip rate based on its current activities. Because the task itself is
responsible for reloading the timer, two or more different reload values
can be used. For instance, two values, such as 23 and 24, can be alter-
nated as reload value for the skip timer, to produce a net skip rate of
23.5. Or, the task can load the skip timer with a much smaller value to
speed up execution of a given collection of states, creating in essence a
turbo mode for certain states within the task. Or, the reload value can
be adjusted dynamically on each pass to maintain synchronization with
sequential external events.

Self control also has a downside in that each state machine will execute
at least some code on each pass through the system. This overhead will
tend to eat away at the execution cycles available in each pass, reduc-
ing the number of cycles available for actually accomplishing useful
work in the system. It also makes the job of the priority handler more
complicated in that it must now keep track of the timing for any task
in which it defers execution.

Of the two systems, a central timing function is typically the least
complicated and most efficient, for both timing and priority control.
And, most, if not all, of the desirable features of the self-control timing
system can be implemented in a central timing system with a little work
and a few broadcast protocol variables and flags.

For our clock design example, we determined that a system clock
rate of 1 MIP required that our time roll over at 250. However, if we
push the system clock rate to 1.024 MIP, then the roll over happens at
256, and we avoid the requirement for preloading the system. So, the

Component-Level Design 245

decision is made to run at the slightly higher rate, the hardware engineer
is notified, and a note is added to the design notes to remind us to set
up the 8-bit hardware without a pre- or postscaler. Because the tick is
still 250 microseconds, no additional modifications are needed for the
skip timer values.

With the system clock issue settled, we can now move on to design-
ing the system timer function. The first step is to review the skip timer
information generated at the system level of the design:

 Optimum Skip Rate
Task1 (LED)
 scan 2.500 5
 flash response 25.000 50 (100)
 flash offtime 500.000 1000 (1100)
 blank 1000.000 2000 (2222)
 blank response 4.000 8 (16)

Task2 (TIME)
 timebase 1000.000 2000
 switch response 4.000 8 (16)

Task3 (CMD)
 bounce 100.000 200
 debounce 25.000 50 (100)
 command 17.000 34 (68)
 autorepeat 1000.000 2000 (2222)
 aoutr response 25.000 50 (100)

Task4 (ALARM)
 time response 50.000 100 (200)
 snooze response 25.000 50 (100)

Task5 (TONE)
 tone 0.500 1
 var modulation 500.000 1000 (1110)
 modulation 500.000 1000 (1020)

Table 4.3

246 Chapter 4

Taking each task in turn, we can now begin the design of timer func-
tions for each task. We start with the basic timing information for the
task and a quick review of how the timing information is organized:

Notes
Task1 (LED)
 scan 5
 flash response 50 (100)
 flash offtime 1000 (1100)
 blank 2000 (2222)
 blank response 8 (16)

 LED Display task notes:

 Scan rate for the task is 360Hz +20/-0 (2.635 - 2.777mS)
 The scan rate if for one digit to the next digit update
 (not time between same digit updates)

 Alarm flash 0-50mS following time update
 Alarm flash is ½ second off, ½ second on +/-10%

 Blank time 909.9mS to 1111.1mS +/-0 overall
 (basically, if blank, then blank for full second)

 Blank response within 8mS after time update, maximum
 Blank is synchronized to time update

Next, we separate the event-to-event timing requirements from the
response time requirement. Continuing our example with the clock:

Notes
Task1 (LED)
Event-event
 scan 5
 flash offtime 1000 (1100)
 blank 2000 (2222)

Response
 flash response 50 (100) after time update
 blank response 8 (16) after time update

One important point to note about both response times is that the
minimum can be zero; only the maximum is specified. So, it will typi-
cally be more convenient for the design to just use the event to trigger
the start of the function, rather than create a skip timer for it.

Component-Level Design 247

The only caveat is that the task must recognize the event within
the specified response times. The way we check this is to compare the
response time skip timer values to the fastest task skip timer value. In
this example, the scan skip timer is fastest at 5, and the response values
are 8 and 50. So, as long as the LED task state machine can recognize a
blank event in every possible state (8/5), and a flash event within every 10
states (50/5), then the response times will be within the specification.

If the task state machine cannot recognize an event within the speci-
fied time, then there are a couple of options open to us:

1. The skip rate of the task state machine could be reduced to in-
crease the number of LED task calls within the response time. In
this example, reducing the LED scan task skip rate to 1 would
mean the task would have 8 ticks (8/1) in which to respond to
a blank event.

2. We can go back to the writers of the requirements document and
ask if the response time actually has to be that fast. It could be
that a slower response is acceptable, in which case the task state
machine would have more time to respond to the event.

3. The timer can use its access to the state variable to force the state
machine into a state that will recognize the event.

In this specific instance, the task is implemented using a data-indexed
state machine. Because data-indexed state machines execute the same
code each time they are called, we need only add a statement to test for
the events and blank the display if needed.

But, wait a minute. What if the blank condition occurs 3 to 4 cycles
prior to the task skip timer reaching zero? If the state machine requires
one state to recognize the event, and then blanks the display on the next
state, those 3–4 cycles, plus the 5 between calls to the task, could push
the blanking of the LEDs past the 8 millisecond response time. How do
we meet the response time, if the display scan rate is too slow?

Well, we either speed up the rate at which the state machine is called
and recalculate the skip timer value, or we modify our scan state machine
to use two skip timers and add logic to preset the next state to a blank

248 Chapter 4

state. Our original task skip timer will still regulate how often the state
machine executes a LED scanning state. And, the new skip timer will
regulate a small routine in front of the state decoder which handles
recognition of the events. For example:

Void LED_Scan_task()
{
 if (LED_Scan_task_test_go)
 {
 LED_Scan_task_go = false;
 If (LED_blank) LED_Scan_state_variable = 6

//blank_state
 }
 if (LED_Scan_go)
 {
 LED_Scan_go = false;

 {DATA INDEXED LED SCANNING STATE MACHINE}

 }
}

The new skip timer flag, LED_Scan_task_test_go will be driven
by a skip timer with a two-tick timeout, causing the task to check for
blank conditions on every other tick. If a blank event is detected, the
state variable is then preset to the blank state, and the next scheduled
output from the state machine turns off the displays. Because the dis-
play is now turned off in the next call to the state machine, rather than
in two calls to the state machine, the response time is now less than
the 5 tick time out of the task skip timer. The second skip timer flag,
LED_Scan_go operates normally, and triggers the execution of the next
state at the normal operating rate of the task. Using this system, the task
state machine can now respond to a blank event within five ticks which
meets the blank timing requirement of eight ticks.

Algorithm 4.15

Component-Level Design 249

Once we are satisfied that the system can meet the timing require-
ments, we can design a timer system algorithm. Using the LED scan
task example, we end up with something like the following:

Task1 (LED)
 If (--LED_scan_skiptimer == 0)
 LED_scan_skiptimer = 5
 LED_go = true

 If (--LED_test_skiptimer == 0)
 LED_test_skiptimer = 2
 LED_test = true

 If (time_update)
 If (ALARM_flash)
 LED_flashtimer = 1000
 If (TIMEBASE_blank)
 LED_blanktimer = 2000
 Time_update = false

 if (LED_flashtimer > 0)
 LED_flashtimer—
 TIMER_blank = true
 else
 TIMER_flash = false

 If (LED_blanktimer > 0)
 LED_blanktimer—
 LED_blank = true
 else
 TIMER_blank = false

 LED_blank = TIMER_flash or TIMER_blank

 Examining the routine, we see that the first IF statement handles
the normal five tick skip timer for scanning the display. The skip timer
is predecremented and tested for zero. If zero, then the task GO flag is
set and the skip timer is reloaded. The next IF statement is our new test
skip timer for the state machine; it times out every other pass through
the loop and it triggers the test function appended to the task state
machine. When it times out, the displays are not scanned, but a test for
a blank condition is evaluated and the next state is diverted to a blank
state if needed.

Algorithm 4.16

250 Chapter 4

The third IF statement is our test for the time_update signal. If
set, then we have to evaluate the state of both the blank and flash flags
from the timebase and alarm tasks. If either condition is true, then their
timeout timers are set.

The fourth and fifth IF statements are designed to blank the display
in the event that the timeout timers, for either a flash or blank condition,
are greater than zero, indicating that a timed blank of the display is in
progress. This allows the system to turn off the display for a fixed period
of time and then re-enable the display if the condition does not persist.
For a blank condition, the timeout is chosen to be 1 second, this forces
the display to remain blank until the next time_update. If the blank is
not set at the next time update, the timer will timeout and the display
will return. For the flash function, the timeout is set for ½ second. Even
though the flash condition may persist, the short timeout allows the
display to restart at the midpoint of each second. The result is a ½ on,
½ off flash at a 1 Hz rate.

The final statement is just the binary or-ing of the two flags together
into a single blank flag for the state machine. Note: while this system
will work correctly, we can save some overhead by making one small
change to the algorithm. We know when a blank condition becomes
valid, because we test for the condition in the timer, so do we really need
a second skip timer to force the state machine to a blank state. We could
just force the condition in the timer as shown below:

LED_blank = TIMER_flash or TIMER_blank
If (LED_blank) LED_Scan_state_variable = 6 //blank_state
LED_blank = false

While this option certainly seems simpler, it is a poor design practice
for several reasons:

1. Removing the blanking logic from the LED task hides the opera-
tion of the blanking logic in a non-standard location.

2. It complicates the debugging process because the LED scanning
task cannot be tested independent of the timing system.

3. The LED scanning task is no longer a reusable module.

Algorithm 4.17

Component-Level Design 251

4. And, any changes to the blanking design will now require the
modification of two modules, instead of one. And anyone making
the change must know about the split functionality to be able to
do the job.

Remember, our purpose here is to make modular, easy to develop,
easy to test, easy to support designs.

OK, so allowing the timer to preset the state variable is not a good
idea. Then how does a task state machine make changes in the skip rate
of a skip timer, if it is not allowed to reload the timer? And how do we
synchronize the execution of the task to an external event? The answer
is, we let the timer do the work.

If the reload value of a skip timer needs to change, then we pass a
simple flag to the timer function and it reloads the skip timer with the
appropriate value. For example:

If (--LED_scan_skiptimer == 0)
 LED_scan_skiptimer = LED_scan_value[rate_index]
 LED_go = true

Now each time the skip timer reaches zero, it will be reloaded from
the LED_scan_value array which holds all the potential skip timer
values that may be needed. The control variable rate_index is just a
value supplied by the task to specify which value it needs. The control
is simple, the coding is clean and descriptive of the function and, if
necessary, the array could be replaced with a holding variable, set by
the task, if the number of potential values becomes too large to manage
with an array.

Coding to allow a skip timer to synchronize to an external event is
also simple. The skip timer is set to a skip value that is always longer
than the worst-case time between events, and the event itself is used as
a replacement for the timeout of the timer. For example:

 If (--LED_scan_skiptimer == 0) or (external event)
 LED_scan_skiptimer = 100
 LED_go = true

The reason we leave the skip timer in the system is to guarantee that
the task will be called even if the external event fails to occur.

Algorithm 4.18

Algorithm 4.19

252 Chapter 4

In fact, a system like this will be used with the 60-Hz time base
function in our alarm clock to provide time_events, even if the 60-Hz
signal disappears. We simply set the skip timer to a period slightly longer
than the 60-Hz event, and if the skip timer times out, we know that one
60-Hz signal is missing. When the system has missed four more, it will
then reset the skip timer for an exact 60-Hz rate and use the skip timer
timeout to generate time_events in place of the external 60-Hz signal.

OK, what next? Simple—we repeat the same design process for each
of the other tasks in the system. When they are all complete, we gather up
the design information with the hardware timer configuration informa-
tion from the first part of this section, and put it into the design notes
for the system. We then gather up all the GO flags, temporary flags, and
skip timer variables we generated and define them in the master header
file for the system. The flags go in the master header file because they
are an extension of the communications pathways for the system. The
temporary flags and skip timers go in the master header file because the
timer function will be housed in the main system source file along with
the main system loop and priority manager.

Note: It is a good practice to also note the new GO flags on the data
flow diagram for the system and label them appropriately for future
reference. The naming convention for the GO flags should also follow
the same rules used for naming pathway variables.

Priority Handler

Now that the components of the timer system have been designed, we
can turn to the companion function of the timers, the priority handler.
The priority handler, as we discussed in Chapter 2, works with the timer
system to determine which tasks get execution time. However, while
the timer system determined when the task was called, the purpose of
the priority handler is to determine if the task should be called. This
may not sound like much of a distinction but, as we will see shortly, it
is definitely different in the implementation.

Component-Level Design 253

In the previous chapter, we gleaned information concerning sys-
tem modes and priorities from our requirements document. We then
organized it by task, so we know which tasks should have priority, given
a specific system condition or mode. The challenge at this phase of the
design is to find a priority handler, or combination of handlers, that can
shift execution time appropriately, all while minimizing its impact on the
system, in the form of lost execution time and program memory usage.

Let’s start by defining how a priority handler works in a real-time
system. In any system that has to respond and operate according to a
specific timing requirement, the software functions are typically de-
signed to operate at their fastest execution time. So, building a priority
handler that adds execution time to a function that is already operating
at its correct operating rate will cause timing problems with the func-
tion because it will be executing faster than it was originally designed.
Therefore, the purpose of a priority handler in a real-time system is
not to add execution time, but rather to make sure the function has
its allotted time, at the time it needs it. We do this by denying time to
other lower-priority functions that would conflict with the high-priority
routine when it needs to run.

Our purpose is to make sure that high-priority routines have execution
time, when they need the execution time. We can do this in a number of
ways. We can defer the lower-priority function’s execution until after the
higher-priority function has completed its task. Or, we can disable the
lower-priority task to ensure that it cannot conflict with the execution of
the higher-priority task. Or, we can arrange the timing of the two tasks,
so that they will never conflict for execution time. The priority handlers
that will be discussed fall into one of these three categories.

The first such system we shall examine falls into the third catego-
ry—specifically, systems that arrange the timing of tasks so that they
never conflict. The system is referred to as a passive priority handler. It
operates by manipulating the initial values in the skip timers used by
the various tasks in the system. The idea is to create a situation in which
none, or at least most, of the timers do not time out on the same pass
through the system loop.

254 Chapter 4

The advantage to the system is that it requires no system resources to
implement. The initial values loaded into the skip timers are offset from
the values used to reload the timers. After the initial timeout, the actual
reload values are used from that point on. The result is that the timers
are offset or, in a sense, out of phase with one another, and remain offset
throughout the continued execution of the system. Once offset, there
is no code required to maintain the offset, and no variables required to
track the tasks, save the skip timers themselves.

The downside of the system is that it is not adaptive to changes in
the system’s mode. It only maintains the time separation of the tasks; it
cannot defer the execution of a task to make room for another. While this
would seem to exclude this system from the job of a priority handler, it
should be pointed out that it does guarantee that the tasks will have clear
time to operate during the execution of the system. And, its simplicity
does make it very attractive as a priority-handling system.

OK, so how is this system designed? The first things required are the
skip timer values for all the tasks that will be managed by the priority
handler. These values are examined to find the largest common integer
value that will divide into each of the values. For example, the following
are the skip timer values for a selected group of tasks from our alarm
clock design:

 Task Skip timer value
Display Task 5
 Time Base Task 2000
 Alarm Control Task 100

 Largest common value 5

The value of 5 is the largest integer factor that divides into each of
the skip timer values. So, if the skip timer initial values are offset by 1
from each other, and the offset is never greater than 5, then the timers
will never time out together on the same pass through the system loop.
One possible configuration is shown below.

Task Initial Skip timer value Reload value
Display Task 5 5
Alarm Control Task 101 100
Time Base Task 2002 2000

List 4.4

List 4.5

Component-Level Design 255

In the fifth pass through the system loop, the Display task will time
out and be reloaded with the value 5. On pass 101, the Alarm control
task will time out, and be reloaded with the value of 100. On pass 100,
the Display task skip timer will have timed out, and will again on the
105th pass. But, because the Alarm Control task is offset, it will always
timeout on the pass immediately following a Display task timeout, never
on the same pass. In a similar manner, the Display task will timeout on
the 2000th pass through the system loop, the Alarm control task on the
2001st pass, and the Time Base task on pass 2002.

As you can see, this is a simple system that uses no resources beyond
those already committed to the skip timers, and it takes no additional
execution overhead to maintain. However, there are a few conditions
required for the system to work, one: the skip timers must have a mini-
mum common factor to make the offset work, and two: the skip timer
values for the tasks must be greater than 1.

There are also two other conditions that can cause problems, and
they must also be taken into account in the design. First of all, if a task
uses its skip timer to regulate the rate at which it executes states, then the
system operates normally. However, if the skip timer is used to regulate
only an initial state transition, then the passive system must be modi-
fied to account for the additional states that are executed following the
initial state transition. For example, if the Alarm Control task used its
skip timer as a gating function on the initial state transition of a three
state sequence, then the Alarm Control task would execute on the 2001st,
2002nd, and 2003rd pass through the system loop. The Alarm Control
task’s execution on the 2002nd pass would therefore cause a collision
with the Time Base task executing on the same pass.

However, as long as the initial offset of the Time Base Task skip
timer accounts for the additional passes of execution, then the system
would still be able to operate. When designing with tasks that use their
skip timer timeouts as a state transition gating function, rather than
a gate function for the entire state machine, it is important that the
offset be sufficient to accommodate the worst-case number of states in

256 Chapter 4

a sequence. Again, using the previous example, the design would look
like the following:

Algorithm 4.20

Task Initial Skip timer value Reload value
Display Task 5 5
Alarm Control Task (3 states) 101 (102, 103) 100
 Time Base Task 2004 2000

The sequence of tasks would be the display task on pass 2000, the
Alarm control task on pass 2001 through 2003, the Time Base task on
pass 2004 and, finally, the Display task once again on 2005.

The other condition that can cause problems with a passive priority
handler is the occasional execution of other tasks, which do not have
skip timer values that fall on even multiples of the largest integer fac-
tor. The execution of these other tasks will therefore routinely coincide
with the execution of some or all of the states in the tasks that use the
priority handler.

While juggling the offset values solved our previous problem, this
problem is going to require a little more design effort. To solve this prob-
lem, we will have to do a timing study on all of the tasks in the system,
building up a table of execution times for each state of each task. We
can then identify those combinations of states and tasks that will take
longer to execute than the available execution time in the system tick.
We can then take the states in the tasks that cause a problem and break
them into two or more states, reducing their execution time. The result
is a collection of states in the handler-control tasks and coinciding states
in the nonhandler-controlled tasks which can have coincident execution,
without overrunning the system tick.

For example, consider the previous example, combined with the
execution of the Command task, which has a skip timer reload value
of 34. 34 does not share the common integer factor of 5 with the other
skip timer values in the Display, Alarm Control, and Time Base tasks.
As a result, we can expect the Command task to execute coincident with
all three of the priority handler controlled tasks during the course of the
system’s execution. Looking at a hypothetical list of states and execution

Component-Level Design 257

times, shown below, and assuming 145 instruction cycles available per
system tick, we can expect to overrun the system timing tick whenever
the time required for a command state, added to a Display, Time Base,
or Alarm Control state, exceeds 145 total cycles.

 Task Cycles
 Display 85
 Time Base state 1 15
 state 2 40
 state 3 70
 Alarm Control state 1 20
 state 2 50
 state 3 75
 state 4 60
 state 5 95

 Command state 1 12
 state 2 60
 state 3 48
 state 4 65

In this example, an overrun occurs whenever the following combina-
tions of states occur:

Command state 2 60 Display, Alarm Control(state 5)
state 4 65 Display, Alarm Control(state 5)

To correct this problem, we have three possible solutions. One, state
2 and 4 in the command task can be broken into two or more smaller
states with execution times less than 50 instruction cycles. This will
guarantee that the execution times for these states cannot combine with
the other task state machines and overrun the system timing. Two, we
can use some of the timing leeway for the Command task, and change
its skip timer reload value to a multiple of 5, such as 35. This would
allow us to force the command task to always execute coincident with
the Time Base task, which did not have a timing conflict with the com-
mand task. This solves the problem, without requiring modifications to
the task state machine designs. And, three, we could allow the system to
overrun the timing tick. This will cause some variance in the timing of
inputs, and outputs, but the worst-case delay would be 15 instruction
cycles, approximately 10.4%. The choice of solutions would depend on

Table 4.4

Algorithm 4.21

258 Chapter 4

the timing requirements of the system and the difficulty in breaking the
appropriate task states into smaller states.

Even with the difficulties in designing the system, the passive priority
handler has several points in its favor: minimal design difficulty, no impact
on system resources, and no ongoing drain on the system performance.
The downside is that it cannot adjust to changing system requirements,
and tasks outside the system may cause additional design time.

Concerning documentation, the design notes should be updated with
information concerning the calculation of the largest common factor and
the initial skip timer values. Additional notes concerning the evaluation
of other tasks in the system and their impact on the processor workload
should be included, plus any information concerning modifications to
the tasks or the possibility of overrunning the system tick. All notes
should include a clear and verbose explanation of the decisions involved
with any design changes.

The next priority handler to be examined is the time-remaining
system. The time-remaining system is designed to get the most execu-
tion accomplished within a fixed time frame. In the case of our design
methodology, the idea is to get the greatest number of tasks executed
within a system’s timing tick. To accomplish this task, the priority
handler requires two pieces of information—the amount of time that a
task will require to execute its current state and the time remaining in
the system timing tick.

The time remaining is reasonably simple to obtain; it is just a matter
of reading the current value of the hardware timer, which controls the
system tick. Knowing the period of the timer and the current value, the
handler can then determine the number of instruction cycles left in the
tick. This represents the amount of time remaining, and therefore the
amount of time available for the execution of a task’s current state. The
next step is to find a task whose current state can execute within the
remaining time and call the task’s state machine.

Component-Level Design 259

The advantage to this system is that it tries to optimize the execution
throughput of the microcontroller, basically fitting together segments of
execution with the objective of keeping the microcontroller busy 100%
of the time. While 100% utilization of the microcontroller is not practi-
cal, it will give the designer the maximum processing power available,
given the microcontroller and its clock frequency.

The downside of this system is that it requires an extensive knowl-
edge of the execution times for every state in every task state machine.
Further, any future modifications to any of the state machines not
only requires that the information be renewed, it also means that the
resulting system will change the way and order in which tasks will be
executed. After all, changing the number of cycles required to execute a
task will affect the amount of time remaining after the task, which will
subsequently change the number of potential states and tasks that will
fit in the time remaining.

So, the first step in the design process is to build an execution timing
database for all of the states, in all of the task state machines. Next, the
latency times for the timing system and the priority handler have to be
measured. Once this is complete, the execution database and system
offset times can be built.

In operation, the priority handler will first read the current value of
the system timer used to regulate the system tick. The next step is to
subtract the offset value, representing the latency times for the timer
and priority handler, from the time remaining. Then the resulting value
is compared against the execution times for any tasks requesting execu-
tion. The highest priority task with a state that will execute within the
remaining time is then executed, and its request for execution time is
reset. Once the task finishes executing its current state, the handler once
again checks the time remaining to determine if there is time remaining
for another task to execute.

260 Chapter 4

There are three aspects to this system that a designer should question:
one, how can a task maintain constant timing, if it cannot be guaranteed
execution time in a specific tick? Two, does the system give a preference
for the best fit in the time remaining, or on the basis of priority? And,
three, how does the system respond to changes in the system mode? One:
fixed timing can only be guaranteed by using a buffered input/output
system that is tied to the main system timer. Two: the tasks are tested
in the order they are encoded into the design of the priority handler, so
tasks that are tested earlier in the tick have higher priority than tasks that
are tested later in the list. As a result, order of testing translates directly
to priority, however, if a higher priority task will not fit into the time
remaining, it will be bypassed for a lower priority task that does fit in
the time remaining. And, three: like the passive priority handler, there
is no mechanism for changing the priorities of the system based on the
system mode. However, combining this system with one of the later
priority handlers does give the system that capability.

One other question that should come up: doesn’t the testing in the
priority handler also decrease the time remaining in the tick? The answer
is yes, it does, and, yes, it will affect the calculation of time remaining
for each subsequent task that is tested. However, after each test, the re-
maining time can either be retrieved again from the system timer, or be
offset by the test time through a simple subtraction from the test value.
This will compensate for the time required to perform the last test, and
keep the time-remaining value current for each new test.

While this system does get the optimum execution throughput out
of the system, in many applications, the additional design and test
overhead, plus the execution time required to determine which task
should execute is often such a drain on the throughput that a point of
diminishing returns is reached. When this happens, the priority handler
is consuming more execution time than it saves and the system has no
value. So, the designer is encouraged to carefully consider the time and
resources required using this method of priority handler before investing
large amounts of time in its design. Remember, a priority handler’s job

Component-Level Design 261

is getting the most from the available resources, not necessarily getting
every last instruction cycle of throughput out of the microcontroller.

As an example, consider a system including three tasks, A, B, and
C. Each of these tasks has between one and four states, with execution
times represented in instruction cycles. Further, assume the timing for
the system is regulated by a hardware countdown timer, Timer0. An
application algorithm of the time remaining system would look like
the following:

Algorithm 4.22

Database[3][4] = {execution times for states, by task}
While(1)
 Switch (index)
 case 0: if Timer0 > Database[0][task0_statevariable]
 task0()
 case 1: if Timer0 > Database[1][task1_statevariable]
 task1()
 case 2: if Timer0 > Database[2][task2_statevariable]
 task2()
 System_timer()

The database is indexed by both task number and state number, and
contains the time to execute every state in every task. The SWITCH
statement then searches through the three different tasks, looking for a
state execution time that is less than the time remaining in the system
tick. If it finds one, it calls the appropriate state machine and the state
is executed and the next task is tested for the time remaining after the
called task. If not, then the case statement falls through without execut-
ing the state machine and tests the next task in the list. When the time
remaining is so small that no task will fit, the SWITCH statement will
fall through to the end and the loop will wait out the end of the time
in the timer function and then start the loop over again.

One method for simplifying the system is to combine the passive
system with the time-remaining system. In this hybrid, the passive system
manages the execution of the high-priority tasks in the system, and the
time-remaining system attempts to fit in lower-priority tasks in the time
left over. This eliminates the impact of shifting execution patterns from

262 Chapter 4

the high-priority tasks, as well as guaranteeing them execution at specific
times. And, it still attempts to get the maximum throughput out of the
system by filling in the extra blocks of time with lower priority functions.
The following algorithm shows how this would be accomplished:

Algorithm 4.23

Database[3][4] = {execution times for states, by task}
While(1)
 Hi_prioritytask_A()
 Hi_prioritytask_B()
 Switch (index)
 case 0: if Timer0 > Database[0][task0_statevariable]
 lo_priority_task0()
 case 1: if Timer0 > Database[1][task1_statevariable]
 lo_priority_task1()
 case 2: if Timer0 > Database[2][task2_statevariable]
 lo_priority_task2()
 System_timer()

A variation on this system is to use some other form of priority handler
on the high and middle priority tasks, and use the time-remaining system
to fit in so-called housekeeping functions. A housekeeping function is a
task or software function with no definitive timing requirements—for
example, a function to periodically check the battery voltage could
be considered a housekeeping function, in that it has no specific time
that it must be performed. As a result, the time-remaining system can
fit it into the tick whenever there is sufficient excess execution time
to accommodate it. The execution time is not guaranteed, but a good
probability exists that it will be executed at some time when the right
combination of higher-priority tasks leaves a window of execution time.
The following is one example of an algorithm that would implement
this type of system:

While(1)
 Hi_prioritytask_A()
 Hi_prioritytask_B()
 Hi_prioritytask_C()
 if Timer0 > Min_housekeeping
 housekeeping()
 System_timer()

Algorithm 4.24

Component-Level Design 263

Of course, the probability can be based on an analysis of the execu-
tion times for the various states in the various tasks and the skip timer
values for each of the tasks, though typically the easier solution is just to
implement the system and then build in a software counter to count the
number of calls to the housekeeping function while the system is tested.
If the function is not called sufficiently often, the initial values used to
load the skip timers for the other task can be juggled in an attempt to
create more frequent open slots for the housekeeping task to execute.

For most of the priority handlers discussed in this section, a numerical
spreadsheet, with the ability to graph its results, is often very helpful in
trying different combinations of tasks, and in the search for patterns of
dead time for the execution of infrequent tasks.

A priority handler that does respond to changes in the system mode,
is the variable-order system. In the variable-order system, the number
and order of task state machines called is dependent upon a variable
driven by the system mode. When the mode changes, this system uses
the variable to select a different calling order to change the priorities
and availability of task state machines. This allows the system to create a
custom calling list for each of the system modes and eliminate any tasks
that are either not used or mutually exclusive to tasks that are needed
in the current system mode.

The advantage to this system is that the tasks that are active in a
given mode are only those tasks actually needed for operation. Other
tasks are essentially removed from the system and do not constitute a
drain on the systems resources. In addition, combining this system with
another system, such as time remaining, allows the system to change
the order of the tasks tested in time remaining, which in turn changes
the priorities of the tasks.

The only information required to implement this type of system is
the system modes and the tasks that are required for each mode. The
rearrangement of the system is then handled through a SWITCH state-
ment driven by the mode variable. The only difficult part of the system
is generating a function that quantifies the system mode into a simple

264 Chapter 4

integer value. The following is an example of how this system could be
applied to our alarm clock design example:

While(1)
 switch (mode)
 case Timekeeping: TimeBase_task()
 Display_task()
 Button_task()
 Error_Task()
 break

 case TimeSet: Button_task()
 Display_task()
 TimeBase_task()
 Error_Task()
 break

 case AlarmPending, SnoozeMode: TimeBase_task()
 AlarmControl_task()
 Display_task()
 Button_task()
 Error_Task()
 break

 case AlarmSet: Button_task()
 TimeBase_task()
 Display_task()
 Error_Task()
 break

 case AlarmActive: TimeBase_task()
 AlarmTone_task()
 AlarmControl_task()
 Display_task()
 Button_task()
 Error_Task()
 break

 case PowerFail: TimeBase_task()
 Display_task()
 Error_Task()
 break

 case ErrorMode: Error_Task()
 Display_task()
 Button_task()
 Break

Algorithm 4.25

Component-Level Design 265

Note that the list of tasks follows exactly the priority list generated in
the last chapter. The only addition is the SWITCH statement and the
use of a switch variable mode. While this may look long and complex,
it is actually very simple and surprisingly compact when compiled. The
only additional code needed is the logic to load the mode variable with
the appropriate value corresponding to the system mode.

One cautionary note on the generation of the value in the mode
variable: if the value is generated either wholly, or in part, by the tasks
themselves, then the designer must make sure that the tasks are present
in the calling list for each system mode. If not, then it is possible to get
the system into a mode, but not back out again, because the logic for
determining the mode change has been disabled by the priority handler.
So, now is a good time to evaluate which tasks contribute information
concerning each to the mode changes, and the triggers that generate
the change. While different tasks may contribute to a mode change,
there must be at least one task active that can cause the system to exit
any given mode.

Two related priority-handling systems are the excuse-me and excuse-you
systems. Both systems use knowledge of the system mode and the state
of other tasks in the system to decide whether to defer execution if the
demands on the system are heavy. The difference is whether the task mak-
ing the decision decides to defer its own execution, the excuse-me version,
or force the deferment of another task, the excuse-you version.

 While the systems evaluated so far work on a system-wide scope,
these two systems are tailored more toward a task-by-task priority con-
trol. They typically handle priority management on a more one-on-one
format, releasing the resources of a specific task in favor of another task.
As a result, the tasks in the system are typically related to each other in
function. For example, Task A handles serial transmission of data over
a serial port, Task B handles serial reception of data. In an excuse-me
scenario, Task A would check on the status of Task B before initiating a
serial transmission. If Task B is busy receiving data, then A excuses itself
out of the system until B has completed its task. This is predicated on the
premise that the priority of A is low until it begins transmission, and then

266 Chapter 4

its priority increases. So, if it defers the initiation of a transmission, it is
holding itself at a lower priority until system resources are freed up.

An excuse-you scenario would involve the receiving task B forcing
the transmitting task A to hold in its low-priority state until B has
completed its job. Then task A would be released by B and allowed to
continue with its transmission.

While these two systems sound very similar, there are some important
differences. In the excuse-me system, only the task deferring its own
execution is held off. In the excuse-you system, more than one task
could be held in a low-priority state. Also, the excuse-me system bases
its decision to defer on its knowledge of what it is about to do, and what
the other task is doing. The excuse-you system makes the assumption
that the deferred task might make a state change that will affect its status,
and the deciding task is preventing the other task from changing priority.
So, you might consider the excuse-me system as the polite, politically
correct system, and the excuse-you as the rude, domineering system.

Both systems have their place in a design; it will just depend on
which tasks have their priority driven by external events, and which
have the option to defer their shift in priority. The information to base
these decisions on was retrieved from the requirements document,
and decided at the system level of the design—specifically, when state
changes within the task state machine caused a change in the task’s
priority within the system and the relative priority of tasks based on
the mode of the system.

To implement either system, excuse me or excuse you, the task making
the decision will need to consider the general mode of the system. This
implies that a variable, or collection of variables, is available with which
to determine the system mode. The status of the other task involved
also needs to be known; typically this is determined by interpreting the
value in the state variable for the other task. Based on these two pieces of
information, a decision is made to defer execution, and the appropriate
task is forced to defer a change in its state.

As an example, consider the serial input and output tasks discussed
earlier. The following examples show how the transmit task can be forced

Component-Level Design 267

to defer a state change using first the excuse-me system, and then the
excuse-you system.

EXCUSE ME
Transmit()
{
 Switch(trans_statvar)
 {
 Case IDLE: If (receive_statevar == idle) & (data_available)
 trans_statvar = send
 break

EXCUSE YOU
Receive()
{
 Switch(recvr_statvar)
 {
 Case IDLE: if (rcvr_inbuff_full)
 Tx_defer = true
 Data_in = rcvr_inbuff

Transmit()
{
 Switch(trans_statvar)
 {
 Case IDLE: if (Tx_defer == false) & (data_available)
 trans_statvar = send
 break

The excuse-me system just requires a change to the state machine
that is making the decision to defer its own state change. No modifica-
tion is required in the state machine that is benefiting from the decision
to defer. The excuse-you system requires modifications to both state
machines. The state machine that makes the decision to force the other
state machine to defer needs the additional logic to make the decision,
and the state machine being forced to defer needs logic to prevent it
from making the state change.

One thing to remember—when forcing the state machine to defer a
change in state, the logic to make the change must occur within the state
change logic in the state machine. Using global access to another state

Algorithm 4.26

268 Chapter 4

machine’s state variable, for the purpose of forcing it to defer a change,
is a bad idea and poor programming practice for several reasons. One,
if a task forces another state machine to change, or not change, its state,
then the logic is hidden within the design of a seemingly unrelated task.
It makes the design harder to debug, it is harder to document, it limits
the portability of the code, and it will be that much harder to support.
Adding the conditional statement in the state machine document which
is deferring the change in state shows the connection between the state
machines, and it shows the reason for deferring the change.

As always, all of the decisions and design information should be
noted in the design notes for the design. And once again, be clear and
verbose; every comment and note you add to the design notes file will
save you phone calls later from the support group.

The last priority handler system we will examine is the parent/child
system. In this system, one or more parent tasks are assigned the respon-
sibility for the management of a child task. The parents determine when
and why the child task is executed and what priority the child task will
have in the system. When the functionality of the child task is required,
then the parent of the child enables the task and supplies it with any
pertinent information it requires. The child then executes its function
and notifies the parent when it has completed its work. The parent can
then either provide the child with additional work or disable the child,
removing its overhead from the system.

Part of the value of the parent/child system is that the parent is as-
sumed to release its execution time requirements during the course of the
child’s operation. In this way, the parent releases its priority in the system
to the child, without requiring additional execution time resources for
another task. Basically, the parent loans the child its execution time
while the child is performing a task for the parent.

The usual question, is why not just add the child’s code to the parent
and forget about the additional overhead? The reason has to do with
decisions we made in the task definition section of the last chapter. Re-
member that there are certain functions, such as control of a common
peripheral, that require some form of arbitration to prevent contention

Component-Level Design 269

between two control tasks. A child task is a very simple method for
providing that arbitration. If a control task is currently using the re-
sources of the child task, it will have to enable the child task to manage
the control. If a second control task wants to use the resources, it will
be alerted that the resource is already in use because the child task is
enabled. When the child completes the work given to it by the parent,
it will be disabled. This will notify the second control task that the re-
sources are now available, and it can lock up the child task by enabling
it, until such time as the child task has completed its work.

So, by wrapping the common peripheral with a simple child task, we
can arbitrate control of the peripheral by simply enabling and disabling
the child task. It does require the parent task to check the status of the
child task’s enable, but this is a lot simpler than trying to determine
whether another task is currently involved in a peripheral control op-
eration or not. The ability to arbitrate is not solely reserved for control
of peripherals; the same system can also be used to regulate access and
control of data variables, preventing different parent tasks from corrupt-
ing a variable by attempting to write to the variable at the same time.

The implementation of a child task is fairly simple. The child task
state machine is modified to include a conditional statement which either
decodes the task’s state variable or not, depending on the state of an en-
able bit. The parent task then need only enable the bit and the child task
state machine will start decoding and executing states. When either the
parent or the child clears the enable bit, then the next call to the state
machine will result in a return, with decoding or executing a state.

As an example, consider the Alarm_control and Alarm_tone tasks in
our alarm clock design example. The Alarm_tone is only needed when
the current time has reached the alarm time, assuming that the alarm
function is enabled at the time. Then, and only then, the alarm_tone
task is enabled to operate. During the operation of the alarm tone,
the execution time requirements of the Alarm_control task are almost
nonexistent, as its only job is to monitor for an alarm off or snooze
command. The following algorithms show how the Alarm_control task
could exert its control over the alarm_tone task.

270 Chapter 4

Alarm_tone()
{
 if (alarm_tone_enable == true)
 if (tone_modulation == true) alarm_tone_

state = ! alarm_tone_state
 else alarm_tone_state = false
 speaker_pin = alarm_tone_state
 else
 speaker_pin = 0
}

The control of the Alarm_tone state machine is implemented with a
simple conditional statement at the top of the data-indexed state machine.
If the enable bit is set, then the state variable toggles between one and
zero, assuming the modulation time bit is set. The state is then output
to the speaker to generate the tone. If the bit is cleared, then the speaker
output is driven low and the state machine takes no further action.

Another method is to tie the enable bit into the skip timers. If the
enable bit is cleared, then the skip timer is not decremented, the timer
never times out, and the task is never called. When the bit is set, the skip
timer behaves normally, and the task is called with the proper timing. This
has a downside that the child task cannot be included in a passive priority
handler system because the timing for the task is not predictable.

One of the good things about a parent/child priority handler is that
the child task need not have an idle task. If the child task automatically
disables itself when it completes its work, then an idle state is not needed,
and the additional state decoding can be avoided. This requires either
the parent task to preset the state variable before it enables the child, or
the child will have to leave the correct starting value in the state variable,
when it disables itself.

Concerning the documentation of a parent/child system, adequate
notes concerning the relationship between the two tasks should be in-
cluded in the design notes for the system. The enable bit should also be
included in the communications documentation for the system because
it is specific to neither the parent nor the child, falling instead into the
realm of intertask communications. And, finally, any notes concerning
the default state of the child task state variable should also be included
in the system.

Algorithm 4.27

Component-Level Design 271

This concludes the examination of the individual priority handler
systems. However, a typical system will not employ just one system; often
two or more of the systems are combined to create a custom priority
handler for the final design. Combination of the time-remaining system
and the variable-order system are particularly useful in that the order of
tasks in a time-remaining system dictates the priority of the tasks being
controlled. Using variable order with time remaining allows the system
to reorder the tasks based on the system mode. Other combinations of
excuse me and you, with parent/child, can allow the system to create a
priority handler that does not rely on a centralized priority handler, but
rather disperses the load out to the individual tasks in the system.

There is no statement, expressed or implied, that these systems are the
only system appropriate for embedded control designs. In fact, designers
are encouraged to develop their own priority-handling systems, either
based on these examples or taken from their own imagination. System
requirements for specific markets and based on individual coding styles
will tend to promote certain types of priority handling over others.
Designers should be creative and develop systems that work for their
markets and products. These examples are just that—examples designed
to show what is possible, what controls are available, and ways in which
the controls can be used to manage shifting priorities in a design.

Error Recovery System

At this level of the design, we now need to define the recovery mecha-
nisms for the system. Specifically, what is done when the error is
detected, and what actions, if any, the user will have to take to correct
the problem.

In the last chapter, we separated the various failures into three classi-
fications: soft errors, recoverable errors, and hard errors. Soft errors were
handled within the normal operation of the software; they typically deal
with the user interface, syntax errors, input sequence errors, or out-of-
range values. Recoverable errors are more serious, usually involving some
kind of transient failure in the hardware or software. Once the condition
causing the failure is cleared, the system can recover and continue to
operate. Recoverable errors may also require intervention by the user

272 Chapter 4

to clear the problem. Hard errors are the most serious; they typically
involve a more permanent failure in the system, and no intervention by
an error recovery system or the user can clear the problem. These errors
are usually permanent, barring repair of the system.

Our task in this phase of the design is to define the systems that will
detect the errors, classify the severity of the error, and design recovery
or management systems for handling the errors. Because the variety
of possible errors, and the wide variety of possible recovery systems, is
dependent upon the type of system being designed, it is probably best
to demonstrate the process through an example. We will work through
the error detection and recovery system needed for our alarm clock
example. To begin the work, we need to revisit the errors that were de-
fined for the system in the last chapter. Starting with the soft failures,
we have the following:

Soft Error

Fault: Button pressed is not valid for current mode or
command.

Button combination is invalid.

Test: Comparison of decoded button command with legal
commands, by mode.

Response: Ignore button press.

Soft Error

Fault: Display task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

Soft Error

Fault: Alarm tone task state variable corruption.

Test: Range check on the state variable.

Response: Reset the state variable.

List 4.6

Component-Level Design 273

In the first error, the test is already performed in the button task, and
the response is to simply ignore the button, so no special test or recovery
mechanism is required. However, it is a good idea to review the design
for the button task, just to make sure that illegal button combinations
were not taken into account in the state machine design.

The second and third soft errors deal with corruption of a state vari-
able. As far as task state machines are considered, the display and alarm
tone state machines are the least important. They generate no control
or status signals used by the other tasks in the system, and their only
purpose is as a user display function. So, if their state variables were
to become corrupted, we can just reset either state variable, safe in the
knowledge that the variable’s temporary corruption has not disrupted
any of the other tasks in the system.

To create a detection and recovery system for this fault, we need
only assign the default value to the variable, if the state machine ever
calls the default state of the state machine. If the default state is called,
it is because the value in the state variable does not correspond to a
valid state value. The recovery code in the default state then just resets
the state variable to one of the blank states for the display task, just in
case the display was being blanked, or the zero state for the alarm tone
state machine. Once the state variable is reset, the error condition is
resolved. As far as our actions in this phase of the design, we need only
add appropriate notes to the design notes for the display and alarm tone
tasks. Because none of the actions required to clear the errors require
user intervention, none of the errors will force an error mode for the
system. The error conditions will just be cleared and the system will be
allowed to continue.

Moving on to recoverable errors, we get into a little more complex
problem. Now the errors become more severe, and there is the potential
that the user will be involved in the process of clearing the error. The list
of recoverable errors from the last chapter appears following.

274 Chapter 4

1. Recoverable Error
Fault: Alarm time is out of range (Alarm time > 23:59).
Test: Alarm control runction test of value before current

time comparison.
 Response: If alarm is enabled, sound alarm until ALARMSET

button press.
 If in any other mode, ignore (fault will be identified

when alarm is enabled).
2. Recoverable Error

Fault: Alarm disabled but also active.
Test: Routine check by error task.

 Response: Reset alarm control task state variable.
3. Recoverable Error

Fault: Snooze active when alarm is disabled.
Test: Routine check by error task.

 Response: Reset alarm control task state variable.
4. Recoverable Error

Fault: Alarm control task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
 If alarm is active, disable then retest for alarm time.
 If alarm enabled or active, range check alarm time.
 If alarm time out of range, then notify error task of

fault condition.
5. Recoverable Error

Fault: Button task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
 Cancel any current command semaphores.
 Reset all debounce and autorepeat counter variables.

List 4.7

Component-Level Design 275

6. Recoverable Error
Fault: Time-base task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
 Range check time base timer variables.
 If out of range, then reset and notify error task to

clear potential alarm fault.
7. Recoverable Error

Fault: Error task state variable corruption.
Test: Range check on the state variable.

 Response: Reset the state variable.
 Check status on other system state machines.
 If error condition, then set error system mode, set

current time to default.
 Wait for user control input.
8. Recoverable Error

Fault: Power failure.
Test: Fifth missing 60-Hz time base pulse.

 Response: Goto power fail mode until fifth detected 60-Hz
pulse.

The various errors can be broken into three main areas. Areas 1–3
deal with corrupted data/control variables in the alarm task, 4–7 deal
with corrupted state variables, and 8 deals with a system power failure.
Of the different errors, number 8 is the easiest to deal with because the
system is already designed to handle it. In fact, it is the main reason for
a separate time-base task in the system, so we can ignore it and move
on to the other eight errors.

Errors 1–3 handle errors in variables used by the alarm task. Error
1 indicates corruption of the alarm time, which will require user in-
tervention to reset the value; 2 indicates that the alarm state machine
has failed to notice a change in system mode—specifically, the task is
active when the control input from the button task indicates it should
be inactive; and 3 indicates that the snooze mode is active when the
alarm is disabled.

List 4.7
(continued)

276 Chapter 4

Let’s start with errors 2 and 3. Both are detected during a normal
check by the error task, and both require a reset of the alarm control state
variable as a corrective action. To build in the necessary mechanism to
detect and correct the error, we need to add two states to the error task
state machine. One that tests for both conditions, alarm or snooze active,
while the alarm is disabled, and the second to reset the state variable for
the alarm control task. If the first state detects either condition, it will
then jump to the second state to reset the state variable. Note that this
also means that the first state must be in a loop within the state machine,
so it can routinely make tests for the conditions.

One side note on the error task: so far we have not made much men-
tion of the error task, or how it operates. That is because, until now, we
have not had much in the way of information about its intended purpose.
However, in this section on error recovery, we will be defining the error
task’s operation, as it will be one of the primary systems handling general
error detection and recovery for our design. At the end of this chapter,
after we have defined all the error detection and recovery systems for the
design, we will have all the necessary information to perform a general
state machine design on the error task. At that point we will perform
the component-level design of the error task, using the same methods
employed in the design of all the other tasks in the system.

Error 1 is a little more serious, in that it requires intervention by the
user to clear the problem. It is a corruption of the alarm time, detected
by the alarm-control task as part of its alarm mode operation. The
system’s response to the error is to continuously sound the alarm while
the alarm is enabled. If the user disables the alarm, or presses the alarm
set button to set the alarm, then the alarm will quiet for as long as the
button is held or the alarm is disabled. If the button is released, or the
alarm re-enabled with a corrupted value in the alarm-time variable, the
alarm tone will start again.

To detect the condition, the state in the alarm task that checks for
alarm time = current time, must be modified to include code to check
the range of the values in the alarm-time variable. If the variable is out of
range, then the alarm is activated just as if the current time had reached
the alarm time.

Component-Level Design 277

Recovering from error 1 is also somewhat more complicated. There
needs to be a pathway established between the button task and the alarm-
control task to carry the current state of the alarm set button. This is so
the alarm tone can be disabled when the alarm set button is pressed. The
fast and slow alarm set commands also have to be modified; they have
to first verify the alarm time is within a valid range and, if not, reset the
alarm time to a default value prior to incrementing the variable.

All the changes to the alarm-control and buttons tasks should be
noted in the design notes for the system and in the individual sections
relating to each task. The additional data pathway should also be added
to the communications plan, the data flow diagram, and the header
files generated earlier in this chapter. A write-up of the error recovery
system should also be added to the design notes in the sections dealing
with the button task, the alarm-control task, communications, and er-
ror detection/recovery.

The next group of errors, errors 4 through 8, deals with the corruption
of the various state variables used by the task state machines. Detection
is typically accomplished through the default state of the various state
machine state decoders. If the state is invalid, then the state decoder will
jump to the default state, and code in the default state is responsible for
effecting the error recovery. The only problem is that the corruption
of some of the state machines may affect other state machines in the
system, so the errors move from the classification of soft errors to the
classification of recoverable errors. As recoverable errors, their recovery
mechanism requires coordination through the error task.

While the error is detected in the default state of the state machine,
the actual recovery mechanism resides in the error task state machine.
The reason to put the recovery into the error task is because the error
task state machine is independent of the problem. It can reset any com-
bination of task state variables, in any order, something that a recovery
routine in a default state cannot accomplish because resetting its state
machine stops the recovery.

To pass the notification of the failure, we will need data pathways
for each of the task default states, to the error task state machine. The

278 Chapter 4

error task also needs to know the current state of all the state machines,
so additional pathways will be required to carry this information. And,
finally, the error task will need a mechanism for resetting the state vari-
ables of each of the other tasks in the system.

All of the monitoring can be accomplished through additional path-
way links between the tasks and the error task. Because the function
of the pathways is to allow the error task to monitor the other task’s
real-time operation, the best protocol for the pathways is broadcast. It
will not require the monitored task to handshake and the error task can
choose to ignore the data if no error is currently being handled.

The control is a somewhat more complex problem. The tasks being
reset by the error task may be in either a valid state, or in the default
state when the error task attempts to reset. As a result, tasks being reset
may not be able to respond to a reset command through the logic in
the individual task states, so the control will have to be added through
the command decoder logic for the state machines. Basically, we will be
adding a semaphore pathway into each of the tasks. This semaphore is
read by the state decoding logic each time the state machine is called,
and if set, it resets the state variable. The state decoder then resets the
semaphore to acknowledge the reset has occurred.

With both monitoring and control capability, the error task is then
set up to monitor the error flags from each of the tasks. The monitoring
function is implemented as a loop and when a specific error is detected,
the loop then branches out to the specific sequence of states that will
reset the appropriate state machines, in the appropriate order.

The last recovery mechanism to define is for recovering from a cor-
ruption of the error task state variable. Here, no monitoring system is
needed, as the error task will know that its own state variable is cor-
rupted when the state decoder decodes the default state. The error task
will then have to do a quick sanity check on the various tasks in the
system to determine whether any of the other tasks needs to be reset.
Since the sanity check is the normal operation of the error task, all that
really needs to happen is that the state variable for the error task be reset
so the task can return to polling for errors. Additional sanity checks can

Component-Level Design 279

be included in the sequence, prior to the reset of the state variable, such
as a CRC check on program memory, a range check on any important
variables, and/or verification of specific output controls.

With the last part of the design, the error task is finally defined. A
state machine design for the error task can now be completed using the
design techniques shown at the beginning of the chapter. As with the
other system designs, the various states will be defined, and the triggering
events that cause a state change. Individual actions are then defined for
each of the states and the input and output pathways are cataloged.

Appropriate changes and additions are then made to the communica-
tions plan, to accommodate the new monitoring and control functions
added to the task’s list of responsibilities. The timing chosen for the er-
ror task should also be reviewed in light of the new responsibilities the
task will have. Finally, the priority list should be reviewed to determine
whether or not the error task will be active at all times to handle any
errors the system might encounter.

Once the design is complete, the appropriate notes are added to the
design notes for the system, the error task, the system communications
plan, and the documentation on the priority-handling systems.

The last class of errors to be handled are hard errors. These errors are
so severe that the system must be either reset through a power down or by
repair of the system. In either event, the configuration of the system will
be lost, and the user will be required to completely restart and reconfigure
the software. For our design example, we have three hard errors:

Hard Error
Fault: Watchdog timer timeout.
Test: Hardware supervisor circuits.
Response: System is reset.

System will power up in error mode.
Hard Error
Fault: Brownout reset.
Test: Hardware supervisor circuits.
Response: System is reset, and held in reset until power is restored.

System will power up in error mode.

List 4.8

280 Chapter 4

Hard Error
Fault: Program memory fails a CRC test.
Test: CRC check on power up.
Response: System locks, with a blank display.

The first two errors are driven by hardware supervisory circuits in-
ternal to the design of the microcontroller, or attached externally to the
reset line of the microcontroller. Both generate either a system reset or an
interrupt. The system software then has to detect the reset or interrupt
from these sources and leave the system in the error mode on power up.
Detection of an internal watchdog or brownout is usually done through
the testing of specific status bits in the microcontroller. For information
on which bits and how the source is determined, the designer should
refer to the documentation on the device, and any applicable applica-
tions notes generated by the manufacturer.

For external sources, some kind of hardware method will be needed
that allows the microcontroller to determine the source of the reset.

There is also one reset that is missing from the list, that is the initial
power-on reset. This is the first reset for the system following power-up,
and like a watchdog or brownout reset, it should also bring the system
up in the error mode. This is because on the first power-up, the system
will not know what the current time is and, without that knowledge,
both the time display and alarm functions are useless. So, putting the
system into the error mode is a reasonable solution as well.

This means that all potential sources of reset have the same response,
so we can lump them all together and just put the system into the error
mode in the event of a system reset. What this means for the design is that
all we will have to do to respond to a reset is to preset the mode variable
in the Init_var() routine to the code corresponding to the error mode.

In the current design, the response to a watchdog timeout is that
the system is reset. This is based on an assumption in the requirements
document that a watchdog timer timeout is the direct result of a corrup-
tion of the program counter, and any corruption of the program counter
introduces the possibility of corrupted data. So, resetting the system to
a default condition that forces the user to reconfigure the clock is the

List 4.8
(continued)

Component-Level Design 281

only safe course. A reasonable assumption for the alarm clock design,
but what about an automated control system for elevators, or an engine
controller? A forced restart from zero could actually damage the engine
if the controller resets while it is still running.

Another possible response to a watchdog timeout might be to run
a routine that shuts the engine down safely. This solves the problem of
how to restart the system, but the optimum choice would be to recover
and continue to manage the engine. While this scenario may seem
unlikely, there are aspects of a state machine-based multitasking system
that could make it possible.

Let’s assume for now that the system maintains redundant copies
of the data, and that the data can be validated with a CRC. With two
copies of the data, the design should be able to find one copy of clean
data. If it can’t, then the system can always shut down using the previous
option. However, if the system has clean data, then the only problem is
restarting the state machines.

If the state variables were stored with the rest of the data, then they
should be valid. Examining the skip timers can tell the system which
task was running during the last tick. So, the system should be able to
restart, just where it left off. All the reset routine need do is copy the
good data into the corrupted data space, CRC the results, set the goflag
for any task that has a skip timer equal to its reload value, and jump to
the top of the loop. For most systems this should restart the system at
the start of the last tick prior to the failure, and the system will never
know the difference.

For even greater reliability, additional steps can be taken to help
ensure the correct restart of the system:

1. Set the watchdog timer timeout to a period slightly longer than
the system tick. This will limit the amount of damage a corrupted
program counter can do prior to the time out.

2. There should be only ONE clear watchdog command, and it
should be at the top of the main system loop. Never put the clear
watchdog instruction in the interrupt service routine.

282 Chapter 4

3. Keep one, or preferably two redundant copies of the data, and
only copy the new data into the old data at the end of the tick.
This should give one copy a decent chance of surviving the cor-
rupted program counter.

4. Fill all unused program memory locations with a GOTO that
will direct the microcontroller to the reset routine.

5. If possible, put a write-protect circuit on the data memory that
holds the redundant copy of the system variables. The write pro-
tect should use an unlock sequence, and it should automatically
relock after a fixed number of instruction cycles.

That pretty much cover the error-detection and recovery mecha-
nisms for the system. The component level of the design should now
be complete.

Before moving on to implementation, let’s take a few moments and
review the documentation that should have been generated in this phase
of the design.

From the state machine portion of the design, there should be a
complete design package for each of the task state machines.

For a data-indexed design, there should be a list of states. Naming the
states is optional, as the primary use of the state variable is to index the
array of data acted upon by the state machine. There should be a list of
the state transitions and the events that trigger the change in state. Any
important algorithms should be noted and commented with sufficient
detail to explain their operation. And, all the state machines’ inputs and
outputs should be noted, as well as any additions to the design for han-
dling error detection and recovery should have been added. The following
is the updated documentation for the data-indexed display task.

Component-Level Design 283

DISPLAY STATE MACHINE TYPE: DATA INDEXED

STATE DIGIT FUNCTION Condition If true If false
 0 Display tens of hours always 1
 1 Display ones of hours always 2
 2 Display tens of minutes always 3
 3 Display ones of minutes alarm mode 6 4
 4 Display tens of seconds always 5
 5 Display ones of seconds blank 7 1
 6 Blank display always 7
 7 Blank display blank 6 1

ALGORITHM FOR CONVERTING 24HOUR TO AMPM
 K is a temporary variable
 digit0 is the tens of hours digit
 digit1 is the ones of hours digit

 K = (digit0 * 10) + digit1 // convert digits to 0-23 value

 // test for time of 13:00 – 23:59
 // in AMPM mode, displaying hours

 If (state = 0) and (AMPM_mode = true) and (K >= 13)
 {
 digit0 = (K – 12) / 10 // subtract 12 and take tens digit
 digit1 = (K – 12) – 10 // subtract 12 and take ones digit
 }

STATE MACHINE INPUTS:
 Three flags: alarm_enable, blank, AMPM_mode
 All three flags are positive true logic

 Two arrays: Time_data[6]* and Alarm_data[6]*
 *Note, data is in 24:00 hour format for

STATE MACHINE OUTPUTS:
 One state variable: Display_state

 Two I/O ports: Segments(7) and Digit_drivers(6)

 Two LED indicators: PM and ALARM_ON
 Indicators are positive true logic

ERROR DETECTION AND RECOVERY:
 If the statevariable is greater than 7, it should be reset to 6.

 No additional action required.

For execution-indexed state machines, the documentation should
include a list of states, with descriptive names for each state. It should
include a list of all the state transitions and the events or conditions that

Notes

284 Chapter 4

trigger the change in state. It should also include a complete list of all the
functions that are executed in each state with a clear description of any
important algorithms. And, finally, a list of the inputs and outputs for
the system should be compiled. If any updates were made to the design
as part of the priority or error sections, they should also be included.

Notes
LIST OF STATE NAMES FOR THE BUTTON TASK

1. Wait_4button Idle state, waiting for a button press
2. Wait_4bounce Wait state, waiting for the contacts to stop bouncing
3. Decode The button is combined with other buttons and decoded
4. Alarm_plus1 Command: Increment alarm time by 1 minute
5. Alarm_plus10 Command: Increment alarm time by 10 minutes
6. Time_plus1 Command: Increment current time by 1 minute
7. Time_plus10 Command: Increment current time by 10 minutes
8. Toggle_AMPM Command: Toggle AM/PM versus military time
9. Alarm_on Command: Disable alarm
10. Alarm_off Command: Enable alarm
11. Initiate_snooze Command: Snooze alarm
12. Repeat_delay Wait state for autorepeat of increment commands
13. Button_release End state for button release
14. Error Error recovery state
15. Default All other state variable values decode to here

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled & Initiate_snooze Button_Release
 Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode Wait_4button
 Button is held
Button_Release Button is released Wait_4button Button_Release
Error Reset from Error task Wait_4button Error
Default always Error

Component-Level Design 285

State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10 increment alarm time by 10 Alarm_time Alarm_time
Time_plus1 increment time Alarm_time Alarm_time
Time_plus10 increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine
Default set statevariable to Error none none

Hybrid state machines’ documentation will consist of a combination
of both the data and execution-indexed state machine documenta-
tion. There should be two state lists, one for the data-indexed half of
the design, and a second for the execution-indexed half. There should
also be an indication of which execution-indexed state holds the data-
indexed code. Both lists of state transitions should be included, with a
description of how the data-indexed state variable triggers a change in
the execution-indexed state variable. There should be one list of state
actions, and one list of inputs and outputs for the hybrid.

Documentation for the communications system should include a
main system header file, with variable declarations for all of the task-to-
task communication pathways. Constant definitions and labels for the
system peripherals should also be included in the header file.

The header file should also be linked to an include file that will even-
tually contain all the access and test routines for the various protocols
used with the pathways. For now, the file should contain descriptions
of the functions.

Any pathways that could potentially create a state lock condition
should be identified and flagged for additional error detection and recovery
code. Methods for detection and recovery should be described, and any

Notes
(continued)

286 Chapter 4

additions to the task state machine required to correct the problems should
be clearly described, and the appropriate documentation updated.

There should also be a clear and verbose description of a naming
convention for naming variables. It should identify the pathway with a
prefix and a postfix to identify the variable’s function. Including a varia-
tion on the naming convention for naming access and test routines is
not a bad idea either.

 The next piece of documentation concerns the timing system. It
should describe the general design of the timer, and the hardware system,
if any, that regulates it. The description should include any constant
values required for configuring the hardware and the description of the
algorithm used to determine the timer roll-over.

If a timer interrupt is to be used, either to reload the hardware timer
for shortened timeout, or as a high-speed timing driver, the interrupt
service routine should be described in reasonable detail, including any
additional configuration constants or interrupt enable flags that must
be configured. Due to the asynchronous nature of interrupts, any com-
munications variables should use either a semaphore or buffer protocol
and be defined in the system communications plan. All the variables and
protocols required for communications pathways must be defined and
added to the communications documentation listed previously.

Algorithms for all the skip timer routines should be defined in detail,
and all constants, variables, and new communications pathways defined
and documented both in the communications plan and the main system
header and include files.

A clear description of what happens when the skip timer times out
should also be defined, specifically if the time-out regulates the state-
by-state timing or if the time-out gates an initial state transition, which
is followed by execution on each following tick.

Any notes concerning the main system clock frequency should be
included in the design notes, along with calculations concerning the
number of instruction cycles per tick and any mechanisms for shorten-
ing the timer roll-over using interrupts.

Component-Level Design 287

All priority-handling routines should be defined clearly, noting which
tasks they affect/control and which tasks control, or share control of
another task’s priority. All timer calculations, decisions, and reasons for
those decisions should also be noted.

If a priority handler makes use of information from another task’s
state variable, then the communications plan must be updated to show
the transfer of information. Any new control variables should also be
included in the plan, and the appropriate variables generated and docu-
mented in the main system header and include files.

Note that the system can use more than one priority-handling system,
so the documentation should also contain any notes concerning the
expected interaction between the two or more priority handlers.

All error detection and recovery systems should be clearly defined
in the design notes for the project. This includes the operation of the
error task, which should have documentation comparable to the docu-
mentation of the task state machines. All communications and control
variables should be documented clearly in the main system header and
include files, as should the timing and skip timer reload values for the
error task timing. Any change or updates to the system task should also
be complete, with a description of why the change was made and how
the changes work with the error detection and recovery system.

Whew, that is a lot of information compiled in one place! And the
detail of the information is formidable. Designers should not be surprised
when the design notes file and the preliminary header and include files
are large. In point of fact, we want them to be large—the larger the better.
Remember that these files are the blueprint for every line of code that
will be written for the final system. If done right, the answer to every
question in the design should be present in the design notes.

This does not mean that any unanswered question is a failure in the
design. It just means that we have one more question to answer next
time. Like every other design, this is an experience-building exercise.
We learn something from every system we design. I personally look at
some of my early design work and wonder how it ever did what it was

288 Chapter 4

supposed to. Designers should not be discouraged if an answer is miss-
ing here and there.

While we are on the subject, designers should not consider this de-
sign methodology the “be all, end all” of design. As I mentioned earlier,
every designer sees a problem a little differently. We all have different
experiences that we draw from, so it should come as no surprise that
there is no single best way to design a system. There is only the method
that works best for the individual designer.

The readers of this book are encouraged to take what works for
them, incorporate it into their coding and design style, and leave the
rest. Don’t force your design style to comply with the system—it will
lead to frustration and problems. As I learned in writing this book, you
have to speak or design with your own voice; anything else is a waste
of time and energy.

With that said, it is now time to move on to the implementation
phase of the design. That’s right, after 288 pages, we will finally start
writing code! The difference is, we now know what to write.

In this chapter, we conclude the design process, translating the compo-
nent-level design from the last chapter into the actual software that will
make up the final system. This chapter will cover not only the writing
of the software but also individual module tests and integration testing
of the complete system. When we are finished, we will have a complete,
tested software solution for the design specified in the requirements
document.

Before diving into the generation of the code, we should stop and
take a minute to talk about the workspace that the software will be
developed in. This workspace should be organized in such a way as to
help in the development process. It should organize the work and allow
separate development areas for the creation of the system’s individual
components.

All too often in a design project, little if any thought is given to the
organization of the development workspace. This typically leads to
confusion over the progress of the project, and leads to mistakes that
result in lost time and wasted effort. A well-organized workspace helps
the designer track the progress of the project by organizing the work
along the same lines as the project’s design. It should compartmental-
ize the work in the same way the design has been broken down into
individual components. This allows the reuse of testing software on a
variety of objects, and separates the different elements of the design,
preventing interaction between the elements until it is time to integrate
the project.

5
Implementation and Testing

290 Chapter 5

So, what kind of project workspace works best for the design meth-
odology we have been discussing? The first step is to organize a series of
folders, each corresponding to the separate components designed in the
last chapter. Separate folders should be generated for each of the task
state machines, plus a separate folder for the timing control system, the
priority handlers, and the communications variables with their accessing
routines. Within each of these folders, another subfolder should also
be created to hold development archives for each component. This is
important to prevent clutter in the main folder over the course of the
component development.

Once the file structure has been generated, the current version of the
development tools should be loaded, using the installation instructions
that came with the tools package. Note any anomalies during the course
of the install, and work with the customer service group attached to
the tools supplier to insure that the package is installed correctly and is
operating properly before moving on to development.

In addition to the development software, some form of archiving
software should also be installed on the system. This can be a full back-
up system, generating automatic daily back-ups of the development
environment, or just a simple compression package for the manual
creation of an archive. The archives purpose is twofold: one, it provides
a path back from failed development dead ends, and two, it maintains
a recovery path in the event of a catastrophic system failure.

In light of the second reason given for the need of an archive, it is
also considered a very good idea to routinely copy archive files onto
a separate media for storage, possibly even offsite storage, for protec-
tion from everything from fire to accidental erasure. I know that many
programmers consider back-ups and archiving to be a waste of time. I
also admit that I have even succumbed to this faulty line of reasoning
on occasion. However, I can also admit that the practice has bitten me
on more than one occasion. Not having a development archive to fall
back on has cost me both time and money, recreating software that was
already done and working.

Implementation and Testing 291

The next step is to create software projects for each of the folders,
using the software development system that will be used to write the
system. The projects should include paths leading the development sys-
tem back to common include and header files for the communications
system, plus any common include files for peripherals ports. Templates
for the source files should also be generated. These template files should
include common include file commands, and stock header comments at
the top of the file identifying the development project and the function
of the software contained in each file. A start data and provisions for
listing a revision history are also a good idea.

Note: The current version of the development software should be frozen
for the duration of the project. If a significant problem is encountered
with the development tools during the course of the project, then the
new version can be installed. However, all testing performed prior to
the change must be repeated to guarantee that no new problems have
been generated by the change to the new version of software.

Copies of the design notes should also be linked into the project for
quick access using the development editor used with the project. The
design notes should not be copied into all of the folders, but rather
should reside in a single location, with each development folder access-
ing it through a path definition in the system. All too often, multiple
copies of a document will slowly grow apart, causing confusion of errors.
Using a single copy prevents this problem.

Once the directory structure and the development tools have been
configured, the next step is to create the source and header files for each
of the component modules in the design. The names for the files should
be descriptive and be readily recognizable as being linked to the specific
task that they contain. Most common operating systems support the
concept of long file names, so there should be no reason to limit the
length of the name, or resort to cryptic naming conventions to make
the name fit in an arbitrary length.

The development workspace is now set up and ready to start
development of the system. However, there is one last step that must

292 Chapter 5

be completed before we begin writing code for the system. That step is
to familiarize yourself with the development tools.

The best way to do this with any system is to perform an audit of the
development system. A typical Integrated Development Environment,
or IDE, is composed of three parts: the system editor, the assembler or
compiler, and a simulator or emulator interface. Each of these com-
ponents aids in the development of new software, and the ability to
use them to their fullest potential is important if the software is to be
developed with the minimum work required.

Starting with the editor for the system, the designer should become
familiar with the editing and search functions available in the system.
These will aid in the generation of the source files for the project. Of
particular usefulness will be the SEARCH functions that allow the user
to quickly scan through the listing for a specific section of the design.
Often a similar structure called a BOOKMARK is also useful in this task.
Whether SEARCH or a BOOKMARK is used, an understanding of how
to configure and use the commands is necessary to be able to quickly
search through a source file for an important scrap of information.

A good method for becoming familiar with the editor’s features
and functions is to use the editor during the course of the system and
component levels of the design for generating and editing the design
notes for the system. The effort to organize the design notes at the end
of the last chapter is also a valuable exercise for the designers to familiar-
ize themselves with the syntax of the editing and search commands of
the IDE editor. By the end of the familiarization process, the designer
should know most of the common commands by memory and have a
quick reference guide readily available. I personally like to make a copy
of the guide and tack it on the wall as a poster.

The next item to become familiar with is the simulator or emulator for
the system. Both the simulator and emulator are valuable tools for testing
and debugging the design during the course of the project. The simulator
allows a low-cost alternative by building a virtual microcontroller in the
development system computer, while the emulator performs a similar
function within the target hardware. Both typically include the ability

Implementation and Testing 293

to RESET, RUN, STOP, and STEP the development hardware for the
purpose of watching the flow of the program. Specialized viewing win-
dows are typically included in the system to allow the designer to watch
specific data memory locations and peripheral control registers.

Specialized testing and halt functions, referred to as break points,
allow the designer to stop execution at specific points in the code for
evaluation of the systems operation. When combined with a monitoring
system referred to as a trace buffer, the designer cannot only stop at any
location in the program, but can also view the flow of the execution prior
to the stop. Together, these functions form a minimal set of features and
functions for most simulation and emulation systems. A designer’s abil-
ity to make use of these features and functions quickly and effectively is
important if the designer is to build and test the system efficiently.

A simulator is similar to an emulator in that it has most of the same
commands and abilities, the main difference is the ability of an emulator
to test the software using the external circuitry of the final design. This
generally involves a plug-in system from the emulator, which samples the
incoming data from the circuit and drives the outputs generated by the
software. The simulator, on the other hand, will make up for its inability
to connect to real hardware by its ability to simulate external hardware
through a stimulus and monitoring system. This system creates virtual
peripherals to nonexistent external systems which can be programmable
through configuration menus or even a scripting language.

If the design work is to be done using an emulator, then the designer
needs to become familiar with any limitations inherent in the system,
such as a memory limitation on the trace buffer, and the maximum
number of break points available in the system. The designer must also
become fluent in the configuration and use of the emulator as part of
the test and debugging process. Often, programmers learn just the basic
commands of the emulator and then rely on conventional tricks of the
trade to debug. While this practice is quick and relies on well-known
techniques, designers owe it to themselves and the company that paid for
the development to get the most value possible from the tools. Anything
less is a waste of good hardware and valuable development time.

294 Chapter 5

For low-cost development, and even initial development in a system
that will use an emulator, the simulator is a valuable development tool.
Often the level of control possible using the virtual microcontroller
within the development computer is greater than even those abilities
in an emulator. The design sacrifices the ability to debug in the final
system hardware, and the simulation will typically not be at the same
speed as an emulator. However, the control and access of a simulator can
significantly reduce the testing and debugging time of software modules.
So, the designer is encouraged to learn the simulation system, even if an
emulator is to be used as the final system development tool.

Another value of the simulator is the ability to debug code that
might cause system damage, if it were to fail in the final hardware. For
example, a control system driving an H-bridge motor drive must never
turn on both transistors in the same leg of the driver. To do so would
effectively short out the power supply of the driver. Initially testing the
routine in the simulator allows the routine to fail without incurring
the damage possible in the actual circuit. So, there will be times in the
development cycle where the use of a simulator will have advantages
over even development with an emulator.

A valuable feature of some emulator/simulator systems is the ability to
link break points in the system to program labels within the software. This
allows the designer to make semipermanent break points in the design
that will retain their location in the listing even through multiple edits
and recompile/assembly of the source file have been made. This elimi-
nates the need for the designer to reset the break points after every edit
and recompile/assembly cycle in the development. There may also be the
ability to time break point functions to changes in data memory, allowing
the designer to determine which routines are attempting to set or access
a specific data memory location. This data memory break point system
can be VERY valuable when it comes time to start integration of the
modules into a complete whole, as the typical error found at integration
is the unintended corruption of one task’s variable by another task.

One final value of the use of a simulator for testing is the ability of
the simulator to use either macros or a scripting language to provide a
specific sequence of trigger inputs to the system as part of the testing

Implementation and Testing 295

process. Because the timing and sequence is generated in software, the
testing sequence can be repeated infinitely and varied by even the smallest
detail, making it a valuable automated testing system. Simulator systems
also typically have the ability to log output data from some peripherals
in the system. This provides a ready-made conduit for test data out of
the system. This test data can then be used to compare the operation of
the software system from run to run over the course of the development
process, allowing the designer to gauge and document the development
and debugging process.

A scaled-down version of the emulator, often referred to as a debug-
ger, may also be available. This development tool typically has many of
the same abilities as the emulator in regard to sampling and driving the
inputs and outputs of the target hardware. However, debuggers tend
to be limited in their ability to trace the execution of the software, or
support multiple break points. Some are even limited in their ability to
operate in real time, making some of the systems only marginally better
than full software base simulation. However, the budget for the system
may not be sufficient to cover the cost of an emulator, so the debugger
may be the only realistic alternative for in-circuit testing. If the debug-
ger is to be used, then the designer must be aware of the difference in
operation and the potential limitations to the development process.

The final piece of the IDE that designers need to familiarize them-
selves with is the compiler or assembler to be used in the system. An
assembler is reasonably simple, and only requires the designer to become
familiar with the variety of directives in the system and their syntax. Com-
pilers, on the other hand, are more complex and many have the ability
to perform optimization of the final object file generated by the system.
These tools will require the developer not only to learn the commands
and syntax for the tool, but also to learn how to write code so that the
compiler will generate the most efficient code possible at its output.

One of the many variables in embedded control design is driven
by differences in the architecture of the microcontroller. Some micro-
controllers have features that augment their ability to perform math
quickly, others have features suited to bit manipulation, and still others
have features better suited to digital signal processing. The choice of the

296 Chapter 5

microcontroller for the system must take into account these features and
the need for these abilities in the system design. The choice of micro-
controller will also affect how the compiler will attempt to implement
the various features of a level language, and the designer must be aware
of how their writing style will either help or hinder the process.

To gain this awareness of the compiler and microcontroller interac-
tion, multiple pieces of test software, written in a variety of programming
styles, must be compiled using the various optimization options within
the compiler. The various outputs from the test can then be compared to
determine which writing style will be most efficient. A typical collection
of C commands for use in auditing a compiler is displayed below.

For (index=0; index<100; index++);
For (index=100; index>0; index--);

Index++;
Index+=1;
Index=Index+1;

If ((A&B)==1);
C=A&B; If (C==1);

While(1);
For(;;);

Int A;
Float B,C;
C=3.14;
B=2160;
A=B*C

Int A,B,C;
C=314;
B=2160;
A=(B*C)/100;

While this list is not by any means exhaustive, it does give the
reader an idea of the type of writing style that might affect the output
of the compiler. The first pair of commands are intended to test for
the compiler’s ability to take advantage of any decrement and branch
if zero type commands in the microcontroller. The second set of com-
mands tests the compiler’s ability to optimize math operations and use
any increment instructions resident in the microcontroller. The third

Code Snippet 5.1

Code Snippet 5.2

Code Snippet 5.3

Code Snippet 5.4

Code Snippet 5.5

Code Snippet 5.6

Implementation and Testing 297

set tests for the compiler’s ability to recognize an infinite loop, and the
final set determines the default math format that the compiler selects for
every-day math operations. Given the wide variety of compilers available,
and the equally wide range of features and optimization capabilities, it is
suggested that designers develop a selection of coding examples for the
purpose of auditing any compiler they might be asked to use in develop-
ment. A good set of examples is very valuable to a designer, particularly
if the commands and data structures in the example are typical of the
commands used in their designs.

Another area to explore in a compiler is the set of nonstandard
compiler features. Most, if not all, compilers try to conform to one
of a couple different ANSI standards that specify the minimum set of
commands and data structures required to handle the C programming
language. However, there may also be features and functions that go be-
yond the ANSI specification, typically taking advantage of some feature
in the microcontroller. As a general rule, these features should only be
used after careful consideration. The reason for this caution is that any
modules developed that use these features may not be compatible with
other compilers, and that incompatibility may render the module useless
in other development environments. So, just because a compiler has an
interesting feature does not mean that it should be used indiscriminately
through a development project.

It does mean that the feature should be evaluated as to its usefulness
in the design. If the feature is valuable, then it may be worth the effort
to create a function, using ANSI compliant commands, that will emulate
the feature so it can be migrated to other platforms.

Finally, remember to try the examples with different levels of optimi-
zation. Particular attention should be paid to the size of the object code
and the execution speed. Generating a matrix showing the changes in
output based on coding style and optimization level allows the designer
to pick and choose their writing style, dependent upon the desired result,
either speed, size, or both.

Once the development system has been configured and the designer
is comfortable with its operation and command set, it is time to begin

298 Chapter 5

the implementation of the design built through the last two chapters.
The logical starting place is the main system loop that will eventually
hold all the tasks, timing functions, and priority handlers. While we will
not be tying all the functions together at once, the loop does provide
a good framework in which to do the development and testing of the
individual components of the design.

The loop follows a simple format in the primary source file of the
project, an initialization routine followed by an infinite loop which
will contain the task state machines, timing system, and the priority
handler(s). The following is an example in C:

Void Init_variables()
{

Init_display_task();
Init_button_task();
Init_alarmcontrol_task();
Init_alarmtone_task();
Init_timebase_task();
Init_error_task();
Init_timers()
Return;

}
Void Main()
{

Init_variables();
Init_peripherals();
While(1)
{

 Get_inputs();
 Priority_handler();
 Timer();
 Put_outputs();

}
}

This basic format contains all the systems for the design, and it
initializes all variables and peripherals. It then gets the input informa-
tion for the system to evaluate, calls the priority handler to determine
which tasks should be run on this specific pass through the loop, updates
all the skip timers and regulates the loop timing, and then drives the
outputs from the system before jumping back to the top and the loop
and starting over.

Code Snippet 5.7

Implementation and Testing 299

While this loop has calls for all of the functions in the loop, initially
the routines that are called will typically only contain a return statement.
These call/return routines, or stubs, in the system are just placeholders at
this point in the implementation. As we move further into the design, we
will replace these stubs with working routines to implement the system,
or with test routines for exercising other sections of the design. However,
for now they simply are there to remind us that a function is needed.

The first piece of the design to place in the main loop is the timing
control system. We start with the timing, because it is reasonably simple
to implement and easy to test. It is also repetitive, so we can easily mea-
sure the timing of the system, skip timers, and various timer timeouts
using an oscilloscope.

To provide the necessary outputs for measurement, combine the vari-
ous timeout flags and skip timer flags into 8-bit CHAR variables and
output them to one or more of the parallel input/output ports on the
microcontroller. The code to combine the flags and the actual output
to the port should be placed in a copy of the Put_outputs() routine
residing in the subdirectory reserved for development of the timing
control system. It will then be a simple change to redirect the include
file from the Put_outputs() routine in the main loop subdirectory, to
the routine in the timing control development directory. An example of
this type of Put_outputs() routine is shown below.

Void Put_outputs()
{

unsigned char GPIO_A, hold;
GPIO_A = 0;
GPIO_A |= skptmr_display_task *1;
GPIO_A |= skptmr_alarmcontrol_task *2;
GPIO_A |= skptmr_alarmtone_task *4;
GPIO_A |= skptmr_button_task *8;
GPIO_A |= skptmr_timebase_task *16;
GPIO_A |= skptmr_Error_task *32;
Hold = GPIO_A | 64;
PORTA = Hold;
PORTA = GPIO_A;
return;

}

Code Snippet 5.8

300 Chapter 5

The exercise and test version of the Put_outputs() routine com-
bines all of the flags from the current pass through the system into a
single 8-bit byte, and then outputs the value with the 7th bit set and
then cleared. This parallel output tells us the current status of all the
timer flags and provides a timing marker to indicate when the output
was last updated. Using this output system, we will be able to use an
oscilloscope to measure both the time period of the main system loop,
and the divided output of the skip timers.

Note: It is always a good idea to keep all files, currently under develop-
ment, or in use for the development, in an isolated subdirectory. During
the course of the development, we will be using custom replacements for
some of the modules in the main loop, for the purpose of exercising and
testing the tasks and function under development. By keeping the custom
modules, and the modules being developed, in a separate directory, we
limit the possibility of accidentally making modifications to the wrong
file. And, more importantly, we eliminate the potential for accidentally
replacing a completed file with a temporary exercise and test file.

Once the output function is written and tested using some simple
bit set and bit clear commands inside the timer routine, we can begin
the actual development of the system timer function.

The first step is to configure the hardware timer to be used for regu-
lating the system timer tick. The actual values required to configure the
operation of the timer will be specific to the microcontroller used for
the project, so we can’t show a generic example. However, the design of
a microcontroller timer is such that it can be configured to provide a
flag, and potentially an interrupt, when it rolls over from 0xFF to 00. If
this feature is available on the microcontroller selected for the project,
then this is the desired configuration. The preselector should also be
programmed to match the specifications in the component-level design
generated in the last chapter. Labels corresponding to the control registers
for the timer peripheral should have already been defined in the include
file supplied by the compiler, so configuration of the timer is simply a
matter of adding a few assignment statements to the Init_Timers()
function in the timer development directory.

Implementation and Testing 301

The code required to sense the roll over can then be added to the
Timer() routine. It should consist of a simple while statement that
holds up execution of the routine until the timer roll-over flag is set.
The routine can then clear the flag and return. This will fix the timing
of the main loop to the roll-over period of the timer, which can then be
verified by measuring the time between pulses on bit 6 of the parallel
input/output port.

Code Snippet 5.9
While (status.tmr_ovrflo!==1); // routine will wait until overflow is set
Status.tmr_ovrflo=0; // clear overflo bit once detected

If the hardware timer in the microcontroller is not capable of gen-
erating an interrupt, or does not have an independent flag to indicate
a roll-over, there are software methods for determining the 0xFF to 00
transition. The method simply monitors the most significant bit of the
timer and waits for it to change from 1 to 0. We could look for a value
of 00 in the timer, but if the number of instruction cycles per system
tick is less than 4–10 cycles, there is the possibility that the routine may
miss the 00 state of the timer. Monitoring the most significant bit is
safer and almost as simple a test.

While (timer.bit7==0); // hold while msb of timer is 0
While (timer.bit7==1); // hold while msb of timer is 1

The code operates by holding the timer routine while the msb of
the timer is zero, then holding while the msb of the timer is set. This
releases the hold condition on the high-to-low transition of the msb of
the timer. Even if the msb is set, indicating that over half the tick has
passed, this routine will hold until the msb clears once again indicating
the high-to-low transition of the bit. And, the high-to-low transition
only occurs when the timer rolls over from 0xFF to 00. Watching for
the transition will still detect the roll-over; even if the routine is too
slow to see the actual 00 value in the timer, it only has to detect the
msb roll-over to register the roll-over of the counter. It does introduce
a few instruction cycles of uncertainty to the detection, but no more
uncertainty that watching the roll-over interrupt flag.

Code Snippet 5.10

302 Chapter 5

There was also the possibility that we would not be able to select a
system clock that would allow the use of the 0xFF to 00 roll-over of the
timer. As a result, we will need to also set up an interrupt function that is
called on the roll-over of the timer. In this routine, the first action should
be to load the timer with a value, which will force the timer to roll over
prematurely. To calculate this value, use the following equation:

Timer_load_value = 256 – ((Tick / Instruction_time)/prescaler)

The equation calculates an offset for the timer, corresponding
to the difference between the normal roll-over of the timer, and the
shortened roll-over needed to generate the proper system tick. The
Timer_load_value may need to be further offset to account for the
interrupt response time of the microcontroller, so testing the tick using
a flag on an input/output port is recommended. The offset can then be
fine-tuned to produce the exact system tick required.

Once the interrupt routine is working, a simple semaphore flag can
be used to communicate the roll-over condition to the system timer
routine in the main loop. The timer routine in the main loop will then
use the flag as its regulating flag, in place of the normal roll-over flag.

One of the more difficult problems in building the timer system is
determining whether the system tick has been overrun. Basically, an
overrun condition occurs whenever the time required to execute the
code in the current pass through the loop is longer than the system tick.
Detecting an overrun tick is important in that it is one of the more im-
portant error conditions in the system. It is also a condition that should
be detected in the design and testing of the system, so having a test for
the condition is helpful in the integration-testing phase of the design.

One method for detecting an overrun condition is to test the timer
overflow interrupt flag immediately following the call to the timer func-
tion. If the flag is set, then the timer has probably overrun the system
tick. Loading the current value of the hardware timer should then give
an indication of the amount of overrun, provided the system has not
overrun the tick, twice over.

If the system has overrun the tick by a small amount, it may be
possible to just restart the loop and live with the small timing offset on

Equation 5.1

Implementation and Testing 303

that particular pass through the loop. If the overrun is larger, then an
error recovery system will have to evaluate all the current skip timers
to determine if a task missed its chance to execute. If not, skip timers
would have timed out, and then even a large overrun can be forgiven.
However, if a task was scheduled to run, and it was in the middle of
a timing-critical function, then the system may have to declare a hard
error. Then the system error recovery task can reset all of the software
functions that were dependent upon the timing of the missed task and
restart the system from a known good condition.

If there is the possibility that the system could overrun the system
tick, twice over, then additional code may be needed in an interrupt
routine. This additional code would be responsible for keeping track of
the number of times the interrupt occurs without handshaking from the
main system timer routine. The overrun counter operates by increment-
ing a counter every time the timer rolls over. When the timer routine
in the main system loop detects the roll-over condition, it queries the
counter to determine if it holds the value 01. If it does, the system did
not overrun the tick, and the timer function can clear the counter and
restart the loop. If the counter value is greater than 01, then the system
has overrun the tick multiple times, and the error recovery task for the
system will probably have to reset the system and restart from a known
good condition.

Once the basic timing function is complete, then the skip timer sys-
tems can be added to generate the execution flags for the various tasks
in the system. The general form for a skip timer is the following:

If (--display_task_skptmr == 0)
{

display_task_skptmr = display_task_reloadvalue;
display_task_goflag = true;

}

The skip timer is decremented and, if zero, reloaded with the skip value
for the task, and a trigger flag is set to indicate to the task that it is time
for it to run. The display_tsk_goflag will then be cleared by the task
state machine, indicating to itself on the next pass that it has received the
indication on the last pass and already executed a state in response.

Code Snippet 5.11

304 Chapter 5

Other variations of skip timer may also require an external event in
conjunction with the skip timer timeout, or in place of the skip timer
timeout. One such skip timer is the timebase task in our alarm clock
example. In this case, a trigger from the external 60-Hz timebase is
supposed to trigger an increment of the current time. However, if five
consecutive pulses from the 60-Hz timebase are missed, then the system
will switch over to an internal timebase. To implement this type of sys-
tem, a more complex function is required. The following is an example
of how this system could be implemented:

Code Snippet 5.12

if (60Hz_pulse == true)
{

if (system_mode!=Power_fail_mode) //normal operating modes for the system
{ //use a short timeout = to 60Hz period + 1

 timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;
 if (--60Hz_postscaler == 0)
 { //the postscaler sets the goflags every 60
 60Hz_postscaler = 60;
 timebase_task_goflag = true;
 time_increment = true;
 }

}
else //60Hz pulses have resumed after power fail
{

 if (--missed_60Hzpulse_counter == 0) system_mode = determine_sys_mode();
 timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;

}
}
If (--timebase_task_skptmr == 0) //skiptimer timeout, missed pulse, powerfail
{

if (system_mode == Power_fail_mode) //power fail, do goflags & set 1sec timeout
{

 timebase_task_skptmr = timebase_task_reloadvalue;
 timebase_task_goflag = true;
 time_increment = true;
}
else //missing pulse, count & reload skiptimer
{
 timebase_task_skptmr = (timebase_task_reloadvalue/60)+1;
 if (++missed_60Hzpulse_counter > 4)
 { //5th missing pulse, change mode & timeout
 missed_60Hzpulse_counter = 5;
 system_mode = Power_fail_mode;
 timebase_task_skptmr = timebase_task_reloadvalue;
 }

}

}

Implementation and Testing 305

The resulting timer function operates two skip timer constructs
simultaneously. The first is for the internal timebase and is driven by
a conventional software skip timer timerbase_task_skptmr. The
second construct is for the external timebase and is triggered by the
60Hz_pulse flag. Both halves of the timer operate differently based
on the state of the system, specifically if the system is in power-down
mode or not.

Let’s start with the system in a nonpower-down mode where 60-Hz
pulses are received regularly and the skip timer for the timebase task is
reloaded to a period slightly longer than the period of the 60-Hz pulses.
The result is that the skip timer never times out. Every 60 pulses from
the 60-Hz input, the 60Hz_postscaler counter reaches zero, and the
1Hz time_increment flag for the display task and the goflag for the
timebase task are set.

If a 60-Hz pulse is not received before the skip timer times out, the
skip timer is reloaded with the short period time-out value, and the miss-
ing pulse is counted in the missed_60Hzpulse_counter variable. If
five 60-Hz pulses are not received, then the missed_60Hzpulse_coun-
ter variable reaches a value of 5, the system mode is changed to power
fail, and the skip timer is reloaded with a value which will generate a
1-Hz timeout.

While the system is in the power fail mode, the skip timer will
continue to generate a goflag for the timebase task, generate a time_
increment flag for the display routine, and reload the skip timer for a
1-second time-out.

When 60-Hz pulses resume, the skip timer for the timer is reloaded
with the short time-out period, the missed_60Hzpulse_counter vari-
able is decremented, and no goflags or time_increment flags are
generated. If five successive 60-Hz pulses are received, then the system
mode is reset to the appropriate operating state, and the 60-Hz half of
the timer system takes over operation.

While the system may seem complicated, it does handles the neces-
sary power loss detection and switch-over required for the time base of
the clock as defined in the requirement document. If the description is

306 Chapter 5

not adequate for understanding the operation of the skip timer, refer to
the flowchart in Figure 5.1 for clarification.

Figure 5.1 Flow Chart of Power Fail Detect

The algorithm in the previous example does have one problem with
its operation—it loses the first five pulses, upon resumption of the 60-
Hz input. However, this inaccuracy is reasonably small, and will not be
noticeable until 12 power fail/resume conditions have passed. At that
point, the current time will have lost 1 second. This translates to an er-
ror of less than 5%, which is approximately the accuracy of an internal
oscillator used in a typical microcontroller. So, even with the lost pulses,
the error will be less than the typical error in the microcontroller internal
oscillator over the course of 1–2 seconds. Assuming that clock operates
for the majority of its life using the 60-Hz time-base, this would produce
only a very small error in timekeeping compared to the inaccuracy of the

Implementation and Testing 307

internal timebase. So, the potential error in timekeeping is within the
tolerance of the internal timebase, and complies with the specification
in the requirements document.

Once the skip timer systems have been added to the timer function
and tested for accuracy, the timer function is essentially complete and
can be fully commented. Remember that much of the text required
for commenting the code is already written and stored in the design
notes for the design. Simply copy the applicable text from the design
notes file into the top of the timer source file and add the appropriate
punctuation to designate it as a comment. Then the individual section
of the timer source code can be commented using whatever reasonable
comment style is appropriate.

Note: Having a good header comments section in the source listing is
not a license to fail to comment the individual lines of code. The com-
ments on the code should be descriptive of what the code is doing and
not just an English translation of the command. All labels in the code
should be descriptive and follow the naming convention developed in
the last chapter. Any temporary variables should also have descriptive
names and use the prefix designated for the timer system. If the way
in which a routine is coded obscures the algorithm, then an additional
header style comment may be called for just prior to the section of code
in question. Remember that we are trying to answer any question now,
rather than put up with an endless string of questioning phone calls
later. Be accurate, be verbose, and supply any information that will be
helpful in understanding the operation of the system later on.

Building a Testing Driver Routine

Because this design methodology produces software components, which
are then combined together in the integration phase, much of the inter-
connectivity of the modules will not be available when the individual
modules are being written and tested. So, we will need a test driver routine
to simulate the signals from the other modules in order to adequately
test the individual modules in the design.

308 Chapter 5

A test driver routine is, at its simplest, a table-based arbitrary data
generator. It is driven by the timer routine, and generates preprogrammed
sequences of data on the task-to-task data pathways for the purpose of
simulating the activity of another task in the system. To accomplish this
function, it will need a skip timer in the timer to regulate its timing,
and it will need access to the communications variables used to com-
municate with the tasks. You may remember that the reason given for
using interface macros and subroutines was the ability of a test system
to easily interface with the tasks without modifying their operation.

It is important to note that one of the reasons that we use a table-
based test driver is that the test system is then automatic, and requires
no action from the designer to operate. It is in fact perfectly reasonable
to design a test driver that could repeatedly test a task over and over,
with only a minor change in timing between the tests. This is a valu-
able tool in that it allows very thorough automated testing sequences
to be generated, certainly more thorough than could be accomplished
by testing the software function manually.

Also, if the test driver is designed to link the tables into the driver
through an include file, multiple different tables, performing multiple
different test sequences, can be generated. This collection of different test
sequences is a ready-made test library that can be modified to generate
new test sequences, or reused as is to look for new problems that may
have cropped up during the integration phase of the design. In short,
using a test driver simplifies the testing process, automates the testing
process, and can more thoroughly test than testing manually.

While the test driver is typically only an output to system, it can be
modified to do some data capture as part of its operation. The captured
data can then either be stored in memory on board the microcontroller,
or sent serially to a collection computer with more storage. Also there is
no reason that the test driver could not include both a time stamp and
an indicator of what drive data was used to produce the captured data.
Using this system, the designer can set up a test before going home for
the evening, then retrieve and review the data the next morning. This
is definitely better than pulling an all-nighter on the bench-testing

Implementation and Testing 309

software, and the results are more likely to be accurate. The results could
even be loaded into a spreadsheet for graphing and analysis.

How do we build a test driver? Well, as was stated previously, the driver
is table driven, so it can be assumed that there will be a data table involved
and the table will have constant data in it. If we borrow a concept from
the port output test routine used to test the timer, we can even compress
the data storage by packing multiple bits of data together to save space.
Using this concept, the following initial design is a good place to start:

Code Snippet 5.13
(created in an included test file)

char testdate[180] = { test data}

(modifications to the main loop file)

#include <testdriver.inc>

void Get_inputs()
{

 test_driver();
 return;

}

void Priority_handler()
{

 display_task();
 return;

}

(created in a separate test driver file)

#include <testfile.inc>
#include <pathways.h>

int index = 0;

void test_driver()
{

 static int skiptimer = 0;
 if (--skiptimer == 0)
 {
 currenttime = testdata[index++]*65536;
 currenttime += testdata[index++]*256;
 currenttime += testdata[index++];
 blank = testdata[index] & 0x01;
 flash = testdata[index++] & 0x02;
 skiptimer = (testdata[index++]*256)+testdate[index++]
 if (index > 180) index=0;

)
return;

)

310 Chapter 5

The resulting routine test_driver(), is capable of driving all the in-
put variables and functions of the display task. It accesses the display
data through the currenttime variable, and controls flash and blanking
through their communications variables. It even controls its own timing
by reloading the skip timer from the table data.

The driver operates based on values stored in the two variables skip
timer and index. Skip timer operates in the regular manner of all skip
timers—it counts down each pass through the main system loop, and
when it reaches zero, the driver generates new data for the task state
machine. The variable “index” is the pointer into the test data and is
used to retrieve the different values for driving the display task. Because
skip timer is defined as static and index is defined outside the function,
they will retain their data from one call of the test driver to the next.
So, the system will step through the test data, placing the information
into the communication pathway variables based on timing driven by
the skip timer.

There are two important features of the driver that should be noted:
one, this skip timer is not reloaded with a fixed value, so it can shift its
timing relative to the execution of the display task; and two, the pointer
“index” wraps around from the top of the data array to the bottom, so
the test can be set up to run continuously. This is particularly handy
when trying to debug a problem using an oscilloscope, or when perform-
ing stress tests on the electronics driving the displays. All the designer
needs to do is set up the test data and let the system run. The displays
will cycle through the test sequence, exercising the display, drivers, and
software. In fact, this particular setup would be a good piece of test code
to pass on to the support group for debugging display-related problems
in units returned for repair.

Implementation and Testing 311

One of the potential features mentioned previously is the ability to
capture data and log it to some kind of in-system, or external storage.
This allows the test system to not only exercise the hardware and task
software, but also gather information about the performance of the sys-
tem. The exact method for storage will depend on the resources available
in the microcontroller, so we will discuss three different options here.

The first option is to store the information in an internal nonvolatile
storage. The data can then typically be retrieved using a programmer for
the microcontroller. However, due to the small size of typical on-chip
storage, this method is of somewhat limited value as it can only store
small amounts of data. The next option is to connect an external serial
EEPROM to the microcontroller. These memories can hold upwards
of 1–2 megabits of data, so the storage limitation is not as much of a
problem. This system does have the drawback that a serial routine and
programming commands will have to be created in the microcontroller.
The third option is to serially link the microcontroller to a second
system with non-volatile storage. This option has the capability for
the largest storage, and the serial interface needs not be as complex as
option two.

In the first option, due to the limited storage capability, the best
method for storing data is to store only event information. This can be in
the form of error counters, time-stamped events, or data capture triggered
by specific events. The first step is to build the memory write routines
for the internal storage. Typically there will be example routines in the
datasheet for the microcontroller, the storage control routines need only
pass an address and data, and the supplied write routine will store the
value. The next step is to build a system that can trigger a write based
on a specific trigger. This routine can monitor data—either system data
or data in a peripheral control register—and when a match is detected,
the routine passes the appropriate data to the write routine and the data
is logged. The following is an example of such a routine:

312 Chapter 5

(modifications to the main loop file)
#include <testdriver.inc>
void Put_outputs()
{

 data_logger();
 return;

}

(created in a separate test driver file)

#include <pathways.h>
int time_stamp = 0;

void write_ee(char data_in, address_in)
{ // code taken from the microcontroller data sheet

 return;
}

void data_logger()
{

 static int skiptimer = 0;
 unsigned char temp_cntr_data;
 if (--skiptimer == 0)
 {
 skiptimer = reload_value;
 If (time_error)
 {
 temp_cntr_data = read_ee(time_error_addr) + 1;
 write_ee(temp_cntr_data, time_error_addr);
 write_ee((time_stamp & 255), (time_error_addr+1));
 write_ee((time_stamp / 256), (time_error_addr+2));
 }
 If (display_error)
 {
 temp_cntr_data = read_ee(display_error_addr) + 1;
 write_ee(temp_cntr_data, display_error_addr);
 write_ee((time_stamp & 255), (display_error_addr+1));
 write_ee((time_stamp / 256), (display_error_addr+2));
 }
 time_stamp++;

)
return;

)

Code Snippet 5.14

Implementation and Testing 313

The data-logging routine is designed to count the total number of
timer and display errors in the system, as well as logging the time stamp
of the last error. Because the system is only counting errors, and not log-
ging every occurrence, it only requires six memory locations for storage
of the data. While logging the time stamp for every occurrence would
be more helpful, the last time stamp does tell the designer where to look
in the trace buffer memory of an emulator for the last event.

If the internal storage is insufficient, or not available, then external
memory can be used to store data. Serial EEPROM memory typically
uses one of two basic synchronous serial interface systems. Some micro-
controllers even have an on-chip synchronous serial interface peripheral
designed to generate the physical layer of the various communications
formats. However, the variety of memory sizes and interface protocols
is too complex to go into here, so the reader is directed to the applicable
application notes for the microcontroller to be used in the design. Most,
if not all, manufacturers provide application information on how to
interface external EEPROM memory to their microcontrollers.

If the microcontroller has an on-chip interface peripheral, the rou-
tines for communicating with the external memory are relatively simple.
If the microcontroller does not have an on-chip interface peripheral,
then the interface will have to be generated in software. And, even if an
interface peripheral does exist, there is an advantage to generating the
interface in software—the resulting software will be far more portable.
This is because all microcontrollers have parallel I/O, but not all mi-
crocontrollers have a synchronous serial interface peripheral. So, if the
system can afford the additional execution time, it is generally preferable
to create the interface in software.

Because an external EEPROM memory can have so much more
storage capability, the method of data logging can also be modified.
Now instead of just counting the error, the routine can actually log each
individual error with a time stamp. The following is an example of what
this version of the data-logging routine might look like:

314 Chapter 5

(modifications to the main loop file)
#include <testdriver.inc>
void Put_outputs()
{

 data_logger();
 return;

}

(created in a separate test driver file)

#include <pathways.h>
int time_stamp = 0;
int index = 0;

void send_ee(char data_in)
{ // code taken from the microcontroller data sheet

 return;
}
void start_ee(int addr_in)
{ // code to start an eeprom data write

 return;
}
void stop_ee()
{ // code to end the eeprom write command

 return;
}

void data_logger()
{

 static int skiptimer = 0;
 if (--skiptimer == 0)
 {
 skiptimer = reload_value;
 If (time_error)
 {
 start_ee(index);
 send_ee(time_error_code);
 send_ee(time_stamp & 255);
 send_ee(time_stamp / 256);
 send_ee(‘,’);
 stop_ee();
 index +=4;
 }
 If (display_error)
 {
 start_ee(index);
 send_ee(display_error_code);
 send_ee(time_stamp & 255);
 send_ee(time_stamp / 256);
 send_ee(‘,’);
 stop_ee();
 index +=4;
 }
 time_stamp++;
)
 return;

)

Code Snippet 5.15

Implementation and Testing 315

In this routine, if a time or display error condition is detected, the
appropriate error code is stored along with the 16-bit time stamp. A
comma is also inserted as a delimiter and to pad out the data to 4 bytes.
The reason for padding the data is because EEPROM memories with
a serial interface typically perform their write operations within a fixed
block size in memory. The blocks can be between 16 and 128 bytes in
length, and the boundaries are on regular increments of a power of two.
What this means for the user is if a routine tries to write a multiple byte
group of data that would cross one of these boundaries, then the logic
in the memory will wrap the overlapping data back to the start of the
memory block. This results in data being stored out of sequence, and
valuable data at the start of the block would be over written. By padding
the group of bytes to be written out to an even 4 bytes, the routine is
guaranteed to never overlap a boundary in the external memory.

 Another feature of external serial interface memory, is the ability
to load a group of bytes and then initiate the write of the entire group
by ending the command. This routine takes advantage of this feature
by creating three separate interface functions, one to start the write
command and load the starting address, one to send a single data byte,
and one to terminate the command, initiating the write process. While
each byte could be written individually, it would require that the write
command and address be sent prior to each byte, and the time required
for the memory to complete its write function would be multiplied by
4, one interval for each byte written.

The final version of the data-logging function is one in which the
data is sent to a secondary system for storage. Typically, the secondary
system is a PC or other type of workstation, and the serial interface is
RS-232. The data is then sent serially over the interface, and a terminal
program running on the second machine simply captures the data and
stores it in a file on its disk. Because modern PC and workstations have
such large hard drive storage capacity, the storage space for this type
of data logger is essentially infinite. In addition, the available range of
software tools available for PCs and workstations means that analyzing
the data will be significantly simplified.

316 Chapter 5

The only problem with this type of data-logging system is the time
required to transmit the data from the microcontroller to the second
system. Serial interfaces on PCs and workstations are limited to 56K
bits per second or slower. Even the slew rate capability of the RS-232
transmitters and receivers will limit the upper speed of transmission and
the distance between the microcontroller and the second system. So,
while this system does have essentially an unlimited storage capacity, it
does have a limited data bandwidth.

Using this type of data logging will require a combination of the
previous two systems. We will no longer be able to store every occur-
rence of every error. Instead, we will have to pick and choose which
events are important enough to log every event, and only keep totals on
error data that is not so important. We also may have to create a serial
transmit function in software, if the microcontroller does not have an
on-chip asynchronous serial interface peripheral. Fortunately, this type
of serial interface is not difficult to generate. However, it does require
specific timing to operate properly. This means that the general timing
of the system could be affected.

There are two options for dealing with this problem: one, a serial
interface peripheral can be connected to the microcontroller using a
faster synchronous serial interface; or two, the serial interface routine
can provide an external signal indicating when it is active. In the first
option, an asynchronous interface peripheral with a synchronous serial
control interface can be connected to the microcontroller. There are a
couple of devices available commercially to perform this function, or
a separate microcontroller with the capability to receive asynchronous
serial communication can be programmed to provide the translation
function. In fact, building up just such a test fixture for a designer’s
toolbox is good idea.

While this method is not an economically attractive idea for the
final design, using a simple translator for testing only costs the use of
two to three input/output pins for the duration of the testing. And, by
off-loading the overhead of generating the slower data stream to the
external peripheral, the timing for the main microcontroller should

Implementation and Testing 317

not be affected to any greater degree than interfacing to an external
EEPROM memory.

The second option is probably easier to implement, but it does
complicate timing measurements that need to be made as part of the
software testing. Basically, a parallel input/output pin is programmed to
operate as a busy indicator. When the output is high, the software serial
peripheral engages in transmitting data to the second system. When the
output is low, then the system is executing the normal system software.
If the output is connected to the gate function of a counter time, then
the total time spent in the serial interface routines can be measured and
then subtracted from other measurements of the system’s performance.
It will double up equipment requirements for measuring timing in the
system, but it does eliminate any timing offset due to the data-logging
test function of the system.

As far as software to support the interfaces, the routines developed
for the external serial interfaces are equally applicable to option 1. Us-
ing the routines designed for data logging to internal memory are also
equally applicable to option 2, with the provision that the busy output
be set at the top of the routine and cleared at the bottom.

So far, we have examined ways in which we can generate arbitrary
sequences of data for driving software systems under development, and
methods for logging data generated by the systems being developed.
There is a third method for debugging system timing that should be
examined. In previous sections of this chapter, we discussed a trouble-
shooting routine for development of the system timer. In that system, the
individual goflags, driven by the skiptimers, were output on a collection
of the microcontroller’s parallel input/output pins. This allowed us to
measure the timing of the timer system directly with an oscilloscope.

We can design a similar system to aid in the debugging of a state
machine. In a state machine, the state variable indicates the current state
of the task by the value present in the variable. If we brought that value
out and observed it in relation to other system stimuli, then we can see
how the state machine is reacting to events in the system.

318 Chapter 5

A simple way to do this is to just copy the appropriate bits of the
state variable to any open input/output pins available on the microcon-
troller. In fact, the pins only need to be available for the duration of the
testing, so pins that have a use later in the development can be pressed
into temporary service while the test is being carried out. Below is an
example of a routine that could be used for this type of testing:

Code Snippet 5.16

(created in a separate test driver file)

#include <display.h>

// this function is called from the Put_output() routine in the main loop
void data_logger()
{

 unsigned char data_logger_temp;
 data_logger_temp = GPIO_PORT & 0xC3;
 GPIO_port = ((display_state_variable & 0x0F) * 4) | data_logger_temp;
 Return;

}

The routine makes a copy of the current port data and masks off
the bits that will be used to output the task state. It then copies the ap-
plicable bits from the task’s state variable, masks off any extra bits, and
then shifts the bits to an open group of bits in the parallel input/output
port. Both results are then or-ed together and output on the parallel
port. For this example, it is assumed that bits 2–6 were available, so a
multiplication of 4 is required, and bits 2–6 had to be masked off of
the original port data.

Now, using a logic analyzer, the state of the task state machine can
be monitored and compared to other inputs to the system. Other data
within the system can even be compared with the state variable, provided
the additional data is output using a similar routine.

Of the different troubleshooting techniques presented, this last
technique is probably the most useful in that it uses test equipment that
is typically already on the developer’s desk, and it can be reconfigured
simply by changing the Put_output() routines. It also points out another
simple technique that a designer may choose to exploit—specifically, the
tendency of microcontroller manufacturers to create chips in families.

Implementation and Testing 319

What this means for the designer is that the microcontroller chosen
for the project may not be the largest chip made by the manufacturer.
Other chips in the family may have larger program/data memory,
and/or more pins and peripherals. Using larger chips in the family may
provide additional resources during the development process. And, be-
cause both larger chips and the chip selected for the design are grouped
into a family, the addresses chosen for the peripherals that are used by
the system will typically not change when moving from one device to
another. However, if the peripherals do move, all the designer need do
is abstract the address and pin locations using #define statements and
labels. The assembly/compiler will then do the translation, rendering
the differences between the microcontrollers invisible to the code.

For now, this completes the section on development aids and tools.
One thing that should be noted though is that all the time and effort
spent on designing these tools and aids need not be lost when the module
or the project is complete. In fact, the work invested in the develop-
ment of these tools is a valuable resource that should be used and reused
throughout the design and the designer’s career. The designer is encour-
aged to save each version of test code created during the development
of the project. The old routines can be modified into new routines for
the various modules that make up the design. The old routines can even
be checked into the designer’s library of functions for reuse on the next
project. The old routines are even valuable to the support engineers
that will be tasked with writing test programs for both production and
return/repair. So take the time to document any test code that is gen-
erated as part of the design process, save it in the archives along with
all the test data that is collected, and reuse it when possible to shorten
the design process. It also wouldn’t hurt to put a small write-up on the
test code in the design notes for the project, so the engineers that come
along behind you know that it exists, and that it was the method for
acquiring the test data included with the project files.

In the first two phases of the design, we defined the communications
system for the design. The various paths that the data would move over
were defined as data pathways. Further, a protocol was assigned to aid

320 Chapter 5

in the data transfer and to guarantee the proper transmission of the
data. Our next step in the design is to generate the macros and func-
tions needed to access and monitor the communications pathways of
the design. These are the blocks that the tasks and systems within the
design use to access the data in the communications pathways.

The define statements for the variables should have been completed
in the last chapter, so all that is needed are the code blocks that will be
used to send, receive, and test for data. We will step through the various
protocols, defining the necessary access functions needed to properly
send and retrieve the data.

As the simplest of the three protocols, we will start with broadcast.
In a broadcast protocol, the data to be sent is posted to a globally visible
variable. No handshaking is required to implement the protocol, but
a data valid flag may be included in the system to notify the receiver
whether or not the data currently in the variable is complete and valid.
So, for the simplest implementation, without the data valid flag, no
additional code is required. The receiving function can access the data
directly from the global variable, as the following example shows.

Display_data_hours = 5;

Or, If the data available flag is required, then a simple test function
or macro is convenient to abstract the active/inactive convention of the
variable.

Unsigned char CurrentTimeCheck()
{

if (currentTime_data!valid = false) return 1;
else return 0;

}

In this function using active true logic, a data not valid flag is inverted
to produce a 1 if the data is valid, and a zero if it is not. This type of
function is convenient for changing the logic of a variable if the conven-
tion of the variable is different between the various tasks that use it. In
fact, this type of conversion/access function is also convenient if the data
format is different between the various tasks. For example, if the most
convenient format for Current_time in the timebase task is a long int,

Code Snippet 5.17

Code Snippet 5.18

Implementation and Testing 321

and the most convenient format for the display task is multiple BCD
nibbles, then a conversion is required. If the conversion is performed in
the access routine, this simplifies both tasks and lets them communicate
in the format that is most efficient for their operation.

Code Snippet 5.19

Void get_current_display_time()
{

long cnvrt_var;
cnvrt_var = timebase_time;

display_data[5] = cnvrt_var / (60 * 60 * 10); // convert 10s of hours
cnvrt_var -= display_data[5] * 60 * 60 * 10;

display_data[4] = cnvrt_var / (60 * 60); // convert 1s of hours
cnvrt_var -= display_data[4] * 60 * 60;

display_data[3] = cnvrt_var / (60 * 10); // convert 10s of minutes
cnvrt_var -= display_data[3] * 60 * 10;

display_data[2] = cnvrt_var / 60); // convert 1s of minutes
cnvrt_var -= display_data[2] * 60;

display_data[1] = cnvrt_var / 10; // convert 10s of seconds
cnvrt_var -= display_data[1] * 10;

display_data[0] = cnvrt_var; // convert 1s of seconds
return;

}

Here, the data is sent by the timebase task and received by the display
task, so the conversion is from long in the timebase to array of nibbles
in the display. As long the native data formats for each task are specified
in their respective listings, there should be no confusion concerning the
transmission of the data. However, if the information in not included,
then the designer can expect a phone call from support asking what is
going on in the software. So, be clear and verbose in the commenting
of both tasks and in the header file that defines the communication
pathway variables.

There are a couple of options as to where the routines to access the
pathway variables might reside. They can be appended to the include
file that houses the task that they serve. This ties the operation of the

322 Chapter 5

routine to the task that uses it, but its connection to the pathway vari-
ables is not readily apparent. In addition, any changes to the format of
the pathway variable will necessitate searching through all the include
files for the system.

Alternately, the access routines could be placed in an include file tied
to the main system header file that defines the system communication
pathway variables. This ties it directly to the pathway variables them-
selves, but it leaves the connection to the task that utilized the routine
somewhat hazy. Of the two options, the second is the preferred location
for two very good reasons: one, if the design convention is to place access
routines into the header’s include file, there will be only one place to go
looking for these routines during the debugging process; and two, it gives
the designer the option to replace the main system header’s include file
with another file containing a test-driver system for automated testing
of the task during development.

So, we handle the problem of identifying the task that uses the func-
tion by good commenting and use the header’s include file for housing
all access routines and macros.

Continuing on, the next protocol is the semaphore. As we discov-
ered in the last chapter, there are two different implementations for this
protocol: the two-way handshake and the four-way handshake. Because
the possibility exists for a communications error condition to occur with
both the two- and four-way handshaking, not to mention state lock error
conditions, it is strongly recommended that interface functions be used
for testing and accessing semaphore communications data.

In the two-way system, we have one variable that is set by the sending
function and cleared by the receiving function. While this seems simple
enough, it is still a good design practice to build functions for the set,
clear, and test activities, as they provide the design with clear documenta-
tion of the protocol within the main system header file. Most compilers
will replace the function calls with an inline copy of the function during
optimization anyway, so we improve the readability of the code and it
won’t even cost the design any program memory space.

Implementation and Testing 323

char set_display_goflag()
{ // if flag is already set return an error

if (display_goflag == true) return 0xFF;
else
{

 display_goflag = true;
 return 0; // if flag was clear, set and return OK

}
}

char clear_display_goflag()
{ // if flag is already clear, return an error

if (display_goflag == false) return 0xFF;
else
{

 display_goflag = false;
 return 0; // if flag is set, clear and return OK

}
}

char test_display_goflag()
{

return display_goflag; // return the state of the flag

}

Note that the set and clear routines contain a test of the goflag, prior
to the set or clear. This is included for two reasons: one, it can be used
as a error test—if the bit is set and the sending routine tries to set it
again, then the sending routine has overrun the receivers ability to ac-
cept data and the error code returned by the routine of problem; and
two, having the test built into the set and clear routines can speed up
the communications. For example, if the sending routine sets the bit
and gets a zero back, then it knows the handshake has started. If it gets
a 0xFF back, then it knows the bit is set and it will have to resend the
event on its next pass. This saves the task the overhead of testing the bit
before it attempts to set it. The same two reasons are valid for the clear
function as well. So, the three routines can be reduced to just two, using
the return error code system.

A four-way handshaking system operates in much the same way,
with the exception that there is more error checking in the set, clear,
and test routines. To recap, a four-way handshake starts with the sending

Code Snippet 5.20

324 Chapter 5

task setting an alert flag. The receiver then sets its acknowledge flag to
demonstrate that it has seen the alert. The receiver then processes the
event and clears the acknowledge flag. This informs the sending task
that the receiver has received and processed the event. The sender then
clears the alert flag to end the handshaking.

In addition, there are two error conditions possible with the four-way
handshake. If the sender clears the alert flag before the receiver clears
the acknowledge flag, then the transfer is being aborted by the sender.
And, if the receiver sets the acknowledge flag without the alert flag set,
then a synchronization fault has occurred.

As with the two-way handshaking system, set, clear, and test rou-
tines will be needed to handle the interface to the flags. In fact, due to
the error check built into the transfer, the routines are not considered
optional, as they were with the two-way system. The possibilities for
missing an error condition more than justify the minor inconvenience
of accessing the flags through function calls. Also, as was noted in the
two-way discussion, most compilers will replace the function call with
an inline copy of the routine anyway.

char set_display_goflag()
{ // if flag is already set or ack is set return an error

unsigned char errorcode;
if ((display_goflag == true) | (display_goack == true)) errorcode = 0xFF;
else
{

 display_goflag = true;
 errorcode = 0; // if flag was clear, set and return OK

}
return errorcode;

}

char clear_display_goflag()
{ // assume no error

unsigned char errorcode = 0;
 // if flag is already clear, return an error

if (display_goflag == false) errorcode = 0xFF;
else
{ // if ack flag is still set, return an abort

 if (display_goack == true) errorcode = 0x7F;
 display_goflag = false;

Code Snippet 5.21

Implementation and Testing 325

}
return errorcode;

}

char set_display_goack()
{ // if ack is already set or flag is clear return an error

unsigned char errorcode;
if ((display_goflag == false) | (display_goack == true)) errorcode = 0xFF;
else
{

 display_goack = true;
 errorcode = 0; // if ack was clear and flag was set, set and return OK

}
return errorcode;

}

char clear_display_goack()
{ //assume no error

unsigned char errorcode = 0;
 // if goack is already clear, return an error

if (display_goack == false) errorcode = 0xFF;
else
{ // if goflag was clear, return an abort

 if (display_goflag == clear) errorcode = 0x7F;
 display_goack = false;

}
return errorcode;

}

char test_send_condition()
{ // return the state of the flag(bit0) and ack (bit1)

unsigned char test_var = 0;
test_var = (test_display_goflag * 1) + (test_display_goack * 2);
return test_var;

}

The six routines comprise the four actions and single test routines
required for a four-way handshake. The set and clear display_goflag
routines set and clear the display_goflag and test for error conditions.
The set and clear display_goack routines perform the same service for
the acknowledge bit in the handshaking system. The test_send_condi-
tion returns a value equal to the two flags, the goflag is encoded into
bit 0 of the return value, and the goack flag is encoded into bit1. In
addition, the two clear routines also test for and return error codes for
an abort condition.

Code Snippet 5.21
(continued)

326 Chapter 5

As you can see from the examples, using functions for this handshak-
ing system is well worth the effort. Trying to code the error and abort
check directly into a state machine would make the resulting code very
difficult to read, let alone modify, with any degree of confidence. In ad-
dition, making the set and clear functions into macros would allow the
designer to create as many copies as needed for any number of four-way
handshaking semaphore data pathways.

The final protocol requiring access and test routines is the buffer
protocol. From the last chapter, we know that there are four ways to
configure the two pointers in a buffer protocol implementation:

1. Input pointer points to the next location to receive a value in the
buffer. Output pointer points to the next location to retrieve a
value from the buffer.

2. Input pointer points to the next location to receive a value in
the buffer. Output pointer points at the last location a value was
retrieved from the buffer.

3. Input pointer points to the last value entered into the buffer.
Output pointer points to the next location to retrieve a value
from the buffer.

4. Input pointer points to the last value entered into the buffer.
Output pointer points at the last location a value was retrieved
from the buffer.

The difference between these four combinations is the comparison
required to determine if the buffer is full, empty, or it contains data
but is not full. Only two of these three conditions have relevance to
design—full, and not empty. So, we need a test routine that tests for
full, and not empty. We need access routines to save a value into the
buffer, and one to retrieve a value from the buffer. And, we need sup-
port routines to increment the pointers, with wraparound, so they can
increment circularly through the buffer space.

Let’s start with the pointer increment routines as they are used by all
of the other routines. To make an increment routine for a circular buffer,
we need to know the size of the buffer so we can wrap the pointer at the

Implementation and Testing 327

correct value. It would also be nice to have a routine that can increment
any pointer. The routine should accept the current value of the pointer
and the maximum size of the buffer, and return the pointer value that
corresponds with the next position in the buffer. For proper operation,
the maximum buffer must be greater than 0, and equal to the number of
locations in the buffer. A pointer value of zero should also point to the
first location in the buffer. To make the routine as portable as possible,
it should work for any 8-bit pointer and any buffer size up to 255.

Given these requirements, our increment routines will look like the
following:

Unsigned char inc_buff_pntr(unsigned char pntr, maxbuff)
{

if (++pntr >= maxbuff) pntr = 0;
return pntr;

}

This increment routine will increment any pointer value passed to
it, until the value is equal to the maximum buffer size, at which point
the value is reset to zero. If we have an array that was defined by the
statement char buffer[Maxbuff], we can increment a pointer into
this array using the function call pointer=inc_buff_pntr(pointer,
Maxbuff).

A faster, smaller variation on this increment routine relies on the buf-
fer size being a power of two. In the variant, the increment command
changes from a pre-increment command, embedded in a conditional, to
a straight math function using a logical “and” to limit the value range.
An example of this type of routine is shown below:

Code Snippet 5.22

Code Snippet 5.23

Unsigned char inc_buff_pntr(unsigned char pntr)
{

pntr = (++pntr & 0x0F); // variable range limited to 0-15
return pntr;

}

Using either of the increment functions, we can now create, store
and retrieve functions for the buffer. Assume that our store pointer is

328 Chapter 5

the global variable inbuff, the retrieval pointer is the global variable
outbuff, and the buffer storage is a global array called buffr[maxbuff].
Further assume that we will be incrementing the pointers after the data
has been stored or retrieved (combination 1 from the previous table).
Then, our routines should look like the following:

Void store(unsigned char datain)
{

buffr[inbuff] = datain;
inbuff = inc_buff_pntr(inbuff,maxbuff);
return;

}

unsigned char retrieve()
{

unsigned char get_buff_hold;
get_buff_hold = buffr[outbuff];
outbuff = inc_buff_pntr(outbuff,maxbuff);
return get_buff_hold;

}

The two test routines, test for buffer full and test for data in buffer,
will rely on comparing the two pointers to determine the status of the
buffer. From Chapter 2, we know the following about the pointers:

IF (Storage == Retrieval) then buffer is empty
IF (Storage+1 == Retrieval) then buffer is full
IF (Storage <> Retrieval) then data present

So, we need test routines which can determine if (Storage+1 ==
Retrieval) to detect a buffer-full condition, and (Storage <> Retrieval)
to detect if data is available in the buffer. In addition, they must detect
when (Storage+1 == Retrieval) is complicated by the wraparound nature
of the pointers. However, we do have a pointer increment function, so
the simplest test is just to increment the inbuff pointer and check for
equality. The resulting test routines are shown following:

Code Snippet 5.24

Table 5.1

Implementation and Testing 329

Unsigned char test_buffr_full()
{

if (inc_buff_pntr(inbuff,maxbuff) == outbuff) return 0xFF;
else return 0;

}

unsigned char test_data_available()
{

if (inbuff != outbuff) return 0xFF;
else return 0;

}

To create variations of these store-and-retrieve functions for the
other pointer conventions, just substitute the appropriate increment
and compare functions.

A note concerning the naming of access functions: just as the variables
defined in the last chapter required a naming convention, the access
functions written in this chapter should also have a naming conven-
tion that is consistent with the variable names. The name should have
a prefix that connects the function to the data pathway that it handles.
The name of the function should be descriptive of what the function
does, and, if needed, have a postfix that defines something specific
about the function. For example, a routine to store data into a buffer
could be named currenttime_store_postinc(), to indicate that it stores
data into a buffer in the currenttime data pathway, and it uses the post
increment format. The more descriptive the name for the routine, the
more readable the final task state machine code will be.

Once all of the access and test functions have been created for all of
the data pathways, it is a good idea to create a second include file that
consists of just the prototypes for the variable access and test functions.
This template file can then be used to substitute test driver and data
logging functions into the data pathways of the system for the purpose
of testing the tasks and software functions during development and test.
Having a template file simplifies the interface for the test driver, allowing
the driver to be added through a simple function call in the template.
It also guarantees that the format will be the same as the final pathway
variables in the final system. The templates also make a convenient

Code Snippet 5.25

330 Chapter 5

conduit for capturing support variables such as pointers and constants
like maxbuff, because the data is already present within the function.
Also, any modifications to the values, necessary to compress the data
for storage, will not affect the original variables.

One quick note on the testing of access and testing routines for buffer
protocols: make sure to test the functions with the pointers pointing at
all combinations of the second to last, last, first, and second positions in
the buffer. This should catch any error combinations of pointer conven-
tions. Remember, the buffer will always report it is full when there is
one location still open in the buffer. This extra empty location is needed
because, without it, the wraparound nature of the pointers causes a buf-
fer-full condition to look exactly like a buffer-empty condition.

Once all the functions for all of the protocols have been written and
thoroughly tested, they should be rigorously commented. This should
include a full header comment in the include file containing:

A list of tasks and software functions that use the function.

Variables that are used by or accessed using the function.

The range of values that the function is designed to handle.

Any applicable descriptions of algorithms that the functions em-
ploy. This would include the pre-or post-increment convention
for pointers used to access a buffer.

Once the access and test routines are complete and the template file
has been generated, it is time to move on to the implementation of the
task state machines. One of the first decisions is which task to build first.
When making this decision, I always consider which task will be the
most helpful in creating the other tasks in the system. Input functions
are useful for entering information into the system, but we already have
the test driver system. We could build the error task, or the timebase
task, but then we would have to rely on our debugging system to display
the results. So, the best task to start with is generally whatever variation
of display task is used by the system.

If we build the display task first, then we can use it to show us the re-
sults of the timebase task. Similarly, the button task, with its commands,

Implementation and Testing 331

can use the display for debugging. About the only task that can’t make
use of the display task directly is the error task, and, if we format the
flags of the error task as numbers, even the error task benefits from
having a working display.

So, we start with the display task. From the previous chapter, we
know that the display task is a data-indexed state machine. It scans the
six displays with two alternate states that produce blank digits in the
fifth and sixth digit position. Recalling this information from the last
chapter, we have:

DISPLAY STATE MACHINE TYPE: DATA INDEXED
STATE DIGIT FUNCTION Condition If true If false
0 Display tens of hours always 1
1 Display ones of hours always 2
2 Display tens of minutes always 3
3 Display ones of minutes alarm mode 6 4
4 Display tens of seconds always 5
5 Display ones of seconds blank 7 1
6 Blank display always 7
7 Blank display blank 6 1

ALGORITHM FOR CONVERTING 24HOUR TO AMPM
K is a temporary variable
digit0 is the tens of hours digit
digit1 is the ones of hours digit

K = (digit0 * 10) + digit1 // convert digits to 0-23 value

 // test for time of 13:00 – 24:59
 // in AMPM mode, displaying hours

If (state = 0) and (AMPM_mode = true) and (K >= 13)
{

 digit0 = (K – 12) / 10 // subtract 12 and take tens digit
 digit1 = (K – 12) – 10 // subtract 12 and take ones digit

}

STATE MACHINE INPUTS:
Three flags: alarm_enable, blank, AMPM_mode

All three flags are positive true logic

Two arrays: Time_data[6]* and Alarm_data[6]*
*Note, data is in 24:00 hour format for

STATE MACHINE OUTPUTS:
 One state variable: Display_state

 Two I/O ports: Segments(7) and Digit_drivers(6)

 Two LED indicators: PM and ALARM_ON
 Indicators are positive true logic

Notes

332 Chapter 5

From this, we know what variables the system will require, the algo-
rithm for the AM/PM versus military timer conversion, the format of the
hardware to be driven, and the individual states of the state machine.

Let’s start with the state decoding. The range of states is 0–7 inclu-
sive, so we can use an unsigned CHAR to hold the state of the state
machines. Remembering our naming convention, we name the state
variable Display_state. Based on the state transitions listed in the design
documentation from the last chapter, we can build a basic state decoder
with the appropriate state transitions. The following is one example of
how this section could be written:

switch (state)
{

case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
case 3: if (alarm_enable == true) Display_state = 6;

 else Display_state = 4;

case 5, 7: if (blank == true) Display_state = 7;

 else Display_state = 1;
}

The SWITCH statement is convenient for grouping together those
states that have a common transition, such as 0–4 and 6, and 5 and 7.
This section should then be placed in the function call for the display
task and tested using the test driver developed earlier. The result can
then be viewed using a Put_output() style of function and a logic ana-
lyzer. If the control bits are also output, then the state transitions can
be compared with the triggers that cause the transition.

Once the basic state logic is working, it is time to access the data
and display it on the LEDs. For now, we will skip handling the 12/24
hour switch-over, and just concentrate on getting data onto the LEDs.
We will, however, put in the logic to switch between the alarm time
and the current time information, as this is already built into our state
decoding.

Code Snippet 5.26

Implementation and Testing 333

Void Display_task()
{

if (state < 6)
 {
 if (display_alarm == true)
 {
 temp_data = Alarm_data[Display_state];
 }
 else
 {
 temp_data = Time_data[Display_state];

 }
 segment = segment_table[temp_data];
 digit = column_table[Display_state];
 Alarm_indicator = Alarm_enable;
 }
 else
 {
 digit = all_off;
 }
 switch (state)
 {
 case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
 case 3: if (alarm_enable == true) Display_state = 6;
 else Display_state = 4;
 case 5, 7: if (blank == true) Display_state = 7;
 else Display_state = 1;
 }
 return;

}

The first conditional statement separates the displaying states, 0–5,
and the blank states, 6 and 7. In the blank states, the digit drivers are
all turned off and the displays are blank.

If the state variable points to one of the active display states, the first
test is to determine whether it is the alarm time or current time displayed.
This determines which array the data is pulled from, Alarm_data or
Time_data.

The digit value is then determined using a table and the state vari-
able. The result is then output to the hardware digit driver. One final
action is to output the alarm-enabled indicator by setting the port pin
connected to the indicator driver equal to the alarm-enabled flag.

Code Snippet 5.27

334 Chapter 5

The final section is the state transition logic developed previously
in the example.

To test this section of the display task, we again set up our test driver
to load a variety of values into both arrays and to periodically change the
control variables alarm_enable and blank. A logic analyzer will once again
be useful to monitor the progression of the digit drives, and to verify
that the time an individual display is driven does not change between
time display and alarm display. It would also be a good idea to run the
system for an extended period of time displaying 88:88:88 to determine
the stress on the hardware digit and segment drivers.

Note: The data tables being used to direct the test driver routine should
be saved following each test, along with a short write-up of the test
results. Of particular interest is any anomalous behavior and the cause
of the problem. This information will be very valuable when we start
integrating the various task state machines into a complete whole.
Quite often, a problem that appears in module testing will reappear in
integration testing. Knowing what caused the problem in the module
test will typically provide the required insight to find the problem in
the integration test, so be clear in the description of the problem and
the cause, and be verbose.

Once this section of the design has been verified, it is time to add
the 12/24-hour conversion logic to the task. The difficulty with this
conversion is that the most efficient way to handle this problem is “on
the fly.” If we handle it prior to display, we will either have to have
two sets of data, or we will have to make the conversion every time
the current time or alarm time are incremented. As two sets of data is
redundant, and changing on the second is really no more complicated
that just converting as we display, we should just make the task capable
of handling both types and convert as needed for the display.

To do the conversion, we first need to determine if the digits about to
be displayed need to be converted. This is easy; states 0 and 1 handle the
tens and one of hours, so conversion is needed for states less than 2. The
next step is to load a temporary variable with a binary value equal to the

Implementation and Testing 335

hours. We can ten offset that value by subtracting a decimal 12 if needed.
We then convert the result back to BCD and display appropriately. The
following shows how this is added to our existing state machine:

Void Display_task()
{

if (state < 6)
 {
 if (display_alarm == true)
 {
 temp_data = Alarm_data[Display_state];
 if (state == 0) K = (Alarm_data[0] * 10) + Alarm_data[1];
 }
 else
 {
 temp_data = Time_data[Display_state];
 if (state == 0) K = (Time_data[0] * 10) + Time_data[1];

 }
 if (state < 2) & (AMPM_mode == true) & (K >= 13)

 then
 {
 AMPM_indicator = true;
 if (state == 0)
 {
 segment = segment_table[(K – 12) / 10];
 }
 if (state == 1)
 {
 segment = segment_table[(K – 12) – 10];
 }
 }
 else
 {
 AMPM_indicator = false;
 segment = segment_table[temp_data];
 }
 digit = column_table[Display_state];

 Alarm_indicator = Alarm_enable;
 }
 else
 {
 digit = all_off;
 }

switch (state)
{

 case 0, 1, 2, 4, 6: Display_state = Display_state + 1
 case 3: if (alarm_enable = true) Display_state = 6
 else Display_state = 4

Code Snippet 5.28

336 Chapter 5

 case 5, 7: if (blank = true) Display_state = 7
 else Display_state = 1

}
return;

}

The new temporary variable is K, and it holds the binary equivalent
of the hours. We test for AMPM and if the time is after 12:59. If the
conditions require it, we then subtract 12 and convert back to tens and
ones of hours. The second conditional separates the result back into
individual digits and outputs the segment data for the appropriate state,
and 12/24-hour convention. Finally, the AMPM indicator is set if the
time is after 12:59 and AMPM mode is set, otherwise it is cleared.

The only pieces left in the design are the additions for timing con-
trol, and error detection and correction. The timing control portion of
the design limits execution of the task to only specific passes through
the main loop based on the LED_goflag. And, we added a second flag
(LED_test) to drive a test for a blank condition. The test was needed so
we could blank the display within the required response time.

Regarding the error detection and correction, the only test required
was to check the range on the state variable and, if it was out of range,
we are to reset it to a blank state to restart the task.

Adding the timing controls as conditional statements, and adding
a range check on the state variables, produces the following additional
code:

Code Snippet 5.28
(continued)

Code Snippet 5.29

Void Display_task()
{

if (Display_state > 7) Display_state = 7;
if (LED_test)
{

 if (blank == true) Display_state = 7;
 LED_test = false;

}
if (LED_goflag)
{

Implementation and Testing 337

 LED_goflag = false;
 if (state < 6)
 {
 if (display_alarm == true)
 {
 temp_data = Alarm_data[Display_state];
 if (state == 0) K = (Alarm_data[0] * 10) + Alarm_data[1];
 }
 else
 {
 temp_data = Time_data[Display_state];
 if (state == 0) K = (Time_data[0] * 10) + Time_data[1];

 }
 if (state < 2) & (AMPM_mode == true) & (K >= 13)

 then
 {
 if (state == 0)
 {
 segment = segment_table[(K – 12) / 10];
 }
 if (state == 1)
 {
 segment = segment_table[(K – 12) – 10];
 }
 }
 else
 {
 segment = segment_table[temp_data];
 }
 digit = column_table[Display_state];

 }
 else
 {
 digit = all_off;
 }
 switch (state)
 {
 case 0, 1, 2, 4, 6: Display_state = Display_state + 1;
 case 3: if (alarm_enable == true) Display_state = 6;
 else Display_state = 4;
 case 5, 7: if (blank == true) Display_state = 7;
 else Display_state = 1;
 }
 return;

}

Code Snippet 5.29
(continued)

338 Chapter 5

The first conditional statement checks the range of the state variable
and resets it to a blank state if it is out of range. The next conditional
statement looks for a blank flag on every other pass through the loop,
and sets the state variable to a blank state if the flag is set. And, the third
conditional statement only executes the state machine on every fifth
pass through the loop, when the goflag is set. Note that both the second
and third conditional statements include code to clear the appropriate
flag. This closes the handshaking on the variables and prevents the task
from repeating every pass through the loop. So, if the task is running
too fast, look for this omission.

As before, test this final version of the code using the test driver
software and a logic analyzer if available. Be sure to check the response
timing to a blank flag, and adjust the relative timing between the
display and test driver to verify the response time is always within the
specification.

In this section, we have talked about testing the operation of the task
using the test driver software and a logic analyzer. Now, I know that
quite often, a project may not have the budget to afford a logic analyzer.
There are a couple of options. One: the testing of the timing can be ac-
complished using a virtual microcontroller in a software simulator. There
are a number of these available on the internet, and a little searching will
often turn up a good simulator, for not much cash. Two: an oscilloscope
can sometimes be substituted for a logic analyzer by encoding the digital
information using resistor arrays. This involves using a digital-to-analog
converter, or DAC, to convert multiple bits into a single voltage that
can be displayed on a single channel of the oscilloscope. The DAC can
also be implemented using an R2R ladder and an op-amp. The circuit
is also available on the internet and in many textbooks on mixed-signal
design.

Remember, not having the budget to get the perfect test equipment is
not be a barrier, it is an opportunity to show off our ingenuity. After
all, we are developing the display task first, because we want to use it as
a simple logic analyzer for all the other tasks.

Implementation and Testing 339

The next type of state machine we will tackle is an example of an
execution-indexed state machine. From the previous chapter, we have
the component-level design for the button task state machine. To review
the requirements, the notes appear below:

Notes

State names for Button task
0. Wait_4button Idle state, waiting for a button press
1. Wait_4bounce Wait state, waiting for the contacts to stop bouncing
2. Decode The button is combined with other buttons and decoded
3. Alarm_plus1 Command: Increment alarm time by 1 minute
4. Alarm_plus10 Command: Increment alarm time by 10 minutes
5. Time_plus1 Command: Increment current time by 1 minute
6. Time_plus10 Command: Increment current time by 10 minutes
7. Toggle_AMPM Command: Toggle AM/PM versus military time
8. Alarm_on Command: Disable alarm
9. Alarm_off Command: Enable alarm
10. Initiate_snooze Command: Snooze alarm
11. Repeat_delay Wait state for autorepeat of increment commands
12. Button_release End state for button release
13. Error Error conditions may use this state
14. Default Decode this state for all other values

Current State Condition Next State if true Next state if false
Wait_4button Button pressed Wait_4bounce Wait_4button
Wait_4bounce 100msec delay Decode Wait_4bounce
Decode Alarm_set & Slow_set Alarm_plus1
Decode Alarm_set & Fast_set Alarm_plus10
Decode Time_set & Fast_set Time_plus1
Decode Time_set & Slow_set Time_plus10
Decode Fast_set & Slow_set Toggle_AMPM
Decode Alarm_switch_on Alarm_on
Decode Alarm_switch_off Alarm_off
Decode Alarm_enabled & Initiate_snooze Button_Release

Alarm_active
Alarm_plus1 always Repeat_delay
Alarm_plus10 always Repeat_delay
Time_plus1 always Repeat_delay
Time_plus10 always Repeat_delay
Toggle_AMPM always Button_Release
Alarm_on always Wait_4bounce
Alarm_off always Wait_4bounce
Initiate_snooze always Button_Release
Repeat_delay 1 second delay & Decode Wait_4button

Button is held
Button_Release Button is released Wait_4button Button_Release
Error Reset from Error task Wait_4button Error
Default always Error

340 Chapter 5

State Action Input Output
Wait_4button Test for button press Button none
Wait_4bounce Delay and test Button none
Decode decode command from button none none
Alarm_plus1 increment alarm time Alarm_time Alarm_time
Alarm_plus10 increment alarm time by 10 Alarm_time Alarm_time
Time_plus1 increment time Alarm_time Alarm_time
Time_plus10 increment time by 10 Alarm_time Alarm_time
Toggle_AMPM Toggle AMPM_flag AMPM_flag AMPM_flag
Alarm_on Set Alarm_enable flag none Alarm_enable
Alarm_off Clear Alarm_enable flag none Alarm_enable
Initiate_snooze Test for conditions and Alarm_enable Snooze

Set snooze flag Alarm_active
Repeat_delay delay 1second & test button button none
Button_release test for button release button none
Error Notify error task & Reset Button_error

Reset state machine

Default set statevariable to Error none none

Notes

Implementation and Testing 341

Based on this information, we can start by defining a state variable and
building a state decoder for the system. Using the naming convention,
the state variable should be called Button_state. Using a SWITCH/CASE
statement to implement the decoder, we get the following:

Void Button_task()
{

switch(Button_state)
{

 case Wait_4button:
 break;
 case Wait_4bounce:
 break;
 case Decode:
 break;
 case Alarm_plus1:
 break;
 case Alarm_plus10:
 break;
 case Time_plus1:
 break;
 case Time_plus10:
 break;
 case Toggle_AMPM:
 break;
 case Alarm_on:
 break;
 case Alarm_off:
 break;
 case Initiate_snooze:
 break;
 case Repeat_delay:
 break;
 case Button_release:
 break;
 case Error:
 break;
 case Default:

}
return;

}

The basic framework is very simple, with a separate case of each state.
And, because the various state names have been declared using a #define,
we can use the name in place of an obscure number. If the system is to
be implemented in assembly language, then the framework may not be
quite this simple. Range checking will be required to decode the default
state, and a jump table will be needed to decode the other states in the

Code Snippet 5.30

342 Chapter 5

task. The microcontroller manufacturer’s web page will typically have
examples of how to build a jump table. And if they don’t, check the
internet for postings by other designers that have already developed a
solution.

As with the data-indexed state machine, the decoder should be tested
using the test driver and a variation of the Put_outputs() routine. Re-
member to test every possible value in the state variable; just because
it catches the values just above the error state does not mean it will not
mess up with higher values. As always, save your test file and results, as
human memory is fallible and harddrive space is cheap. Be clear and
be verbose in your write-up; it will save you phone calls from support
later on.

Once the decoder is working, the next step is to build in the state
transitions. These are just conditional statements that look for the trig-
ger events defined in the component level, and make assignments to
the state variable. Also review the various looping, subroutine, and goto
constructs described in Chapter 2, since this is where they will be used.
With the addition of the state transition, the routine should look like
the following:

Code Snippet 5.31

Void Button_task()
{

switch(Button_state)
{

 case Wait_4button: if (newbutton_press()) Button_state = Wait_4bounce;
 break;
 case Wait_4bounce: if (--button_dly_cntr == 0) Button_state = Decode;
 break;
 case Decode: switch (decode_bttn())
 {
 case Alrmset_Slow: button_state = Alarm_plus1;
 break;
 case Alrmset_Fast: button_state = Alarm_plus10;
 break;
 case Timeset_Slow: button_state = Time_plus1;
 break;
 case Timeset_Fast: button_state = Time_plus10;
 break;
 case Tggle12_24: button_state = Toggle_AMPM;
 break;
 case Alarm_On: button_state = Alarm_on;
 break;

Implementation and Testing 343

 case Alarm_Off: button_state = Alarm_off;
 break;
 case Snooze: if (Alarm_enabled & Alarm_active)
 { button_state = Alarm_plus1;
 }
 break;
 Default: break;
 }
 break;
 case Alarm_plus1: Button_state = Repeat_delay;
 break;
 case Alarm_plus10: Button_state = Repeat_delay;
 break;
 case Time_plus1: Button_state = Repeat_delay;
 break;
 case Time_plus10: Button_state = Repeat_delay;
 break;
 case Toggle_AMPM: Button_state = Repeat_delay;
 break;
 case Alarm_on: Button_state = Wait_4bounce;
 break;
 case Alarm_off: Button_state = Wait_4bounce;
 break;
 case Initiate_snooze: Button_state = Button_Release;
 break;
 case Repeat_delay: if ((--delay_cntr == 0) & button_held())
 {
 Button_state = Decode;
 }
 else Button_state = Wait_4button;
 break;
 case Button_release: if (button_held() == 0) Button_state = Wait_4button;

Code Snippet 5.31
(continued)

 break;
 case Error: if (Button_fault == 0) Button_state = Wait_4button;
 break;
 case Default: Button_state = Error;

}
return;

}

As you may have noticed, there are a couple of shortcuts in the code.
Some of the test conditions use procedures to return a binary deciding
bit, and some new counter variables were introduced. However, overall,
the code follows almost directly from the component definition gen-
erated in the last chapter. The documentation was such that the state
transitions almost wrote themselves. This is one of the advantages of
using a top-down design methodology—all the hard choices are made
long before the designer starts typing.

344 Chapter 5

Once the state transitions are complete, it is back to the test driver
for more testing. Remember to test both sides and all combinations of
variables in each conditional statement. Record the results, as they will
be helpful in debugging at the integration phase of the design.

The next step is to add in the functionality for each of the states. This
will include increment routines for the time and alarm time, toggling
of control bits, and writing the subroutines that were used in the last
step to simplify the listing. Because of the size of the resulting code, it is
becoming impractical to list the complete task code after every addition.
So from this point on, the listing will be abbreviated to only include
the relevant sections. In addition, sections that are substantially similar
to a presented section may be passed over for brevity, and left to the
reader as an exercise.

We’ll start with the newbutton_press() routine. This function
checks the current state of the command buttons and determines if
any have changed state; if so, then the routine returns a 1. To perform
this check, we will need a variable, which represents the previous and
current state of the inputs. From our design in Chapter 3, these flags
were grouped into the data pathway named Command buttons. For
convenience, we will assume that they are defined within a union, oc-
cupying bits 0–6 of an unsigned CHAR named Command_buttons.
port, and the individual bits use the extension Command_buttons.flags.
xxxx, with the xxxx representing the individual flag names. We will also
define a static variable Command_buttons_old.

Code Snippet 5.32

Static unsigned char Command_buttons_old = 0x3F; //define with all switches open

Unsigned char Scan_buttons()
{

if ((Command_buttons.port & 0x3F) != Command_buttons_old)
{

 command_buttons_old = Command_buttons.port;
 return 0xFF;

}
return 0;

}

Implementation and Testing 345

The result is a relatively simple function that compares the old state
against the current state—in fact, the routine is so simple that it seems
inefficient to build a procedure around so simple a function. However,
it should be remembered that one of the objectives is to create a software
library. By building this into a function, we accomplish two things: one,
it documents the function clearly, and two, if it ever becomes necessary
to change the function, the change only has to be made in one logical
location. And, the compiler optimize will probably remove the func-
tion call and include the code inline anyway, so why not go for better
readability and documentation?

Another function that was thrown into the design was the decode_
bttn() function. Its purpose is to test the various combinations of button
combinations and return an unsigned CHAR with a value corresponding
to a valid command, or an out of range value that the switch statement can
ignore. It will also return a value the switch statement will ignore, in the
event that only one button of a two-button command has been pressed.
Note, we will need the other half of the Command_buttons.flags.xxxx
definition to build this function. So, we will assume the following:

Code Snippet 5.33

Command_buttons.flags.Fast = Fast Set button press, active low
Command_buttons.flags.slow = Slow Set button press, active low
Command_buttons.flags.Time = Time Set button press, active low
Command_buttons.flags.Alarm = Alarm Set button press, active low
Command_buttons.flags.Snooze = Snooze button press, active low
Command_buttons.flags.Alrmon = Alarm enable switch, enabled = active low
Unsigned char decode_bttn()
{

unsigned char dcodbtn_tempvar;
dcodbtn_tempvar = Command_buttons.port & 0x1F; // remove the alarm switch
switch(Command_buttons.port)
{

 case B’00011001’: return Timeset_Slow;
 case B’00011010’: return Timeset_Fast;
 case B’00010101’: return Alrmset_Slow;
 case B’00010110’: return Alrmset_Fast;
 case B’00011100’: return Tggle12_24;
 case B’00001111’: return Snooze;
 default: if (Command_buttons.flags.alrmon) return Alarm_On;
 else return Alarm_Off;

}
}

346 Chapter 5

A little explanation is required for the operation of this routine. A
momentary press of a two-button combination drives all of the com-
mands, with the exception of the alarm on and alarm off commands.
So, the command cannot be executed until both buttons are pressed.
However, the alarm’s on and off commands have to be executed on any
change. To handle both cases, the system is designed to look for the
two-button combination, and if it fails to find a valid combination, it
sets either the alarm on or off depending on the state of the switch. This
will cause an alarm on or off command, in the event of a single button
press, an illegal button combination, or an actual change in the state of
the alarm on off switch. But, because the alarm on and off commands
just copies the state of the switch into the alarm_enabled flags, repeat-
edly executing an alarm on or off command does not harm the system,
and it allows the routine to be quite simple.

However, this information does need to be copied into the documen-
tation for the function. If it is not, then the support group may spend
days writing a fix for the routine, only to find out that the function
was designed to work this way. Good documentation not only docu-
ments how things work, but also how they work in ways you may not
suspect.

Once the various embedded functions are written and tested, the
other code in each of the states can be generated and tested. For this
routine, the code will mainly consist of increment by 1 and increment
by 10 functions. To implement these functions, it will be necessary to
create a BCD add function for the data in the alarm time and current
time variables.

Now some may ask, why not just store these variables as INTs or
LONGs? The math will be much simpler, and it will save space in the
data memory. That is true but, remember, how often is the math needed
and how often is the data displayed? By putting the math in the buttons
and timebase tasks, the addition routines are only executed once a second
at most. If we were to use INTs and LONGs for the data storage, that
would mean that the conversion from INTs or LONGs to display data,
would have to be executed every time the display task displayed the next

Implementation and Testing 347

digit. This would be a heavy drain on processing power; the more ef-
ficient use of processing time is to keep the data in the most convenient
format for the task that uses it most often. That is the display task, so
we keep the data in BCD digits. Besides, if the addition takes more than
once cycle to complete, it is not a serious problem. We would simply
design the task to take two states to perform the addition, as opposed to
just one state. The display task, on the other hand, has much less time
between skip timer time-outs to do its job.

Using our knowledge of how math routines work from Chapter 1,
and the order in which the data is stored in the array, a BCD addition
of 10 minutes to the current time would look like the following:

Code Snippet 5.34

unsigned char Add10_tempvar;

case Time_plus10: Button_state = Repeat_delay;
Time_data[2]++; // +10 minutes
If (Time_data[2] > 9) // carry?
{

Time_data[2] = Time_data[2] - 10;
Time_data[1]++; // +1 hours
If (Time_data[1] > 9) // carry?
{

 Time_data[1] = Time_data[1] - 10;
 Time_data[0]++; // +10 hours
 Add10_tempvar = Time_data[1] + (Time_data[0] * 10);
 If (Add10_tempvar >= 25) // roll over?
 {
 Time_data[1] = 0;
 Time_data[0] = 1;
 }

}
}

While the routine is a little cumbersome, it will only be executed once
or twice a second, and it is certainly simpler than performing a binary-
to-BCD conversion 360 times a second. The alarm set commands and
the time-plus-1-minute blocks of code are done the same way.

Once all of the action section in each of the tasks has been added and
the system is ready to test, we have two options: we can configure the test
driver to exercise the task, or we can link it together with the finished

348 Chapter 5

display task and test it manually. In reality, we should do both, using the
display task for simple initial testing and the test driver to exercise the
task fully. The display task is convenient in that we can press buttons
and observe the results. However, the test driver can more thoroughly
exercise all combinations of buttons and timing. Designers should not
let the ease of testing with the display task lure them into skipping the
test with the test driver. Problems that appear in the integration-testing
phase of the design have their roots in problems in the task design. A
more thorough test here and now will find these problems, and do it far
easier than testing at the integration phase. There are few suspects at the
task level, and the whole question of timing interaction is removed. So,
test now while it is easier, rather than wait and pay more later.

There is a small housekeeping step that needs to be taken care of, that
is to add in the logic that drives the display_alarm flag for the display
task. This bit is set whenever the Alarm set button is pressed, this causes
the display task to show the alarm time whenever the alarm time is being
set. It is also a good time to review the design notes for any other small
details that may have been dropped in the design process.

Once the details have been taken care of and the routine is complete
and tested, it is time to add in the code to handle the timer goflag, and
the code for handling error detection and recovery. Just like the display
task, there is a skip timer for the button task. And, just like the display
task, it will gate the execution of the state machine, so we need to add the
same type of conditional statement to the top of the state machine:

Void Button_task()
{

if (Button_goflag)
{

 switch(Button_state)
 {

The error detection and recovery mechanisms designed in the previ-
ous chapter require that the button task report any recoverable or hard
errors to the error task state machine. So, other than syntax errors in
the user interface, the only error regularly checked in the button task, is
the corruption of the state variable. The error is detected in the default

Code Snippet 5.35

Implementation and Testing 349

state, and handled in the error state. The code necessary to handle these
conditions appears below:

Code Snippet 5.36

 case Error: if (Test_Buttonfault() == 0) Button_state = Wait_4button;
 break;
 case Default: Set_Buttonfault();
 Button_state = Error;

}

}

The Button_fault variable is a semaphore flag between the button
task and the error task. The Set_Buttonfault() routine sets the variable
notifying the error task of the problem, and the error task allows the
button task to reset by clearing the variable.

The series of states in the error task associated with a button task error,
poll the Button_fault flag, and when it is set, they take the appropriate
action. For our design here, these actions include:

1. Clearing the alarm_display flag.

2. Verifying that the alarm_enable flag is set correctly.

3. Verifying that the alarm_active flag is cleared if the alarm_enable
flag is cleared.

4. Disabling the Alarm tone task if the alarm_enable flag is
cleared.

5. And resetting the Alarm control task if it is in the wrong state.

All this is done to insure that other tasks are not left in an inappropri-
ate state when the button task state variable is reset, although the test
for the alarm_enable flag and the alarm_active flag are already handled
separately by the error task, so they can be eliminated from the list if
program memory becomes limited. They are included here for complete-
ness, but they are not absolutely necessary.

With the error detection and recovery systems in place, the button
task is complete, and so is the design example for an execution-indexed
state machine. The last type of state machine to be covered is the
hybrid type. Fortunately, the hybrid is just what the name implies: a

350 Chapter 5

combination of the data and execution-indexed types. So, the design
format is very similar to those that have already been covered.

To begin the implementation, start with the data-indexed portion
of the design, as this section is typically a sub-function to the execu-
tion-indexed section of the design. Build the data-indexed block of the
hybrid state machine, in the same way as the data-indexed state machine.
Define a state variable with an appropriately descriptive name and the
arrays of data and constants. Next, build the state transitions section
of the code. When these are complete, test them thoroughly using the
test driver software.

Next, build in the algorithm for the state machine. For a sampling
system, this would typically involve recovering data from the analog-to-
digital converter, testing it against supplied limits and saving the results.
For a software serial peripheral, it would mean shifting the data through
the carry bit, and copying the carry to the output pin. Once the activity
has been coded, it should then, once again, be tested.

The final steps of designing in the timing and error handling are
skipped as they will be coded into the execution-indexed portion of the
system that is wrapped around the hybrid. Instead, the next step is to
build the state decoder for the execution-indexed section of the design.
This is accomplished in the same manner as the design in the previous
section. Once coded, it is thoroughly tested with the test code and the
test data, as always, archived with the project.

The next step is to build in the state transitions for the execution sec-
tion. Remember that the data-indexed section of the design will reside
in one of the execution-indexed states, so there must be a condition that
switches the design from data indexing, back to execution indexing.
Typically, this is a condition based on the data-indexed state variable.

One note on state variables in hybrid state machine designs. The
designer is often tempted to combine the data-indexing and execution-
indexing variables into a single variable. While this is possible, and it does
save one more byte of data memory, in practice it can be complicated
to implement. A group of states must be decoded to the same block of

Implementation and Testing 351

code, and when using the variable as an index into an array, there must
be an offset subtracted. If the number of states in the execution-indexed
section of the design changes, then there is the very real possibility that
the offset will have to change, for the data-indexed section to work
correctly. So, while it is possible, there are other places in the design
that are better sources of data memory savings. Using a combined state
variable is complicated to implement, difficult to document, and the
code is difficult to understand with its unexplained offsets and grouped
states. The better choice is to use separate variables.

When the state decoder and state transitions have been tested, the next
step is to add the actions in each state. This includes the data-indexed
block that started this design. Making a header comment in front of the
data-index section is a good idea, but it can also break up the flow of the
execution-indexed state machine construct. A more readable alternative
is to call the data-indexed block as a subroutine. The subroutine name
should identify the block as the data-indexed portion of the design, and
the state variable declaration will have to be external to the routine so its
scope will include both the data and execution-indexed sections of the
design. Using this format, a proper header comment can be placed over
the data-indexed subroutine, and the flow of the execution-indexed part
of the design is undisturbed. With the proper optimization setting in
the compiler, the system should even delete the function call overhead
and include the code inline within the execution-indexed routine.

As always, each step of the design should be thoroughly tested, with
the test code archived and the test results included in the design notes
for the design. And, while we are on the subject of documentation, the
header comments for the various tasks should include the design notes
generated in Chapters 2 and 3. Remember that part of the reason for
documenting all the design details and notes was to have a source of
comments for each of the system blocks. Using the notes from the design
notes file automatically provides a clear description of the design. But,
more than that, it also documents why the design was done the way it
was. Understanding how something works is useful for understanding
a new design when a support engineer receives it. Understanding why

352 Chapter 5

it was designed a specific way tells the support engineer how it can be
modified for bug fixes and upgrades, without introducing new problems
that the designer has already encountered and designed around.

When all of the task state machines, including the error task, are
complete and tested, it is time to start on the priority-handling system.
In the last chapter we examined several different systems, both to man-
age a complete design and for handling smaller portions of the design.
In this chapter, we need to implement and test the designs.

The first impulse is usually to start building the priority handlers
around the complete task state machines. While this may seem like a
good short-cut in the development, it suffers from one major drawback.
When an error occurs, there is always the question, is it an integration
problem, or is it a bug in the priority handler code? So, it is recom-
mended that, where possible, the design of the priority handler should
be separated from the individual tasks.

For the passive system, this is done by once again routing the goflags
out a parallel port. If the passive system is operating correctly, then no
two bits on the ports should be set at the same time. A simple test with
a logic analyzer should confirm the operation.

For a more exhaustive test, the goflags can be used to trigger a data
logging function. In this logging function, 16 flags are set up, one for
each combination of goflags. Each time a goflag is set, the flag corre-
sponding to the current combination of flags is set. If the passive priority
handler is working, then only the 1, 2, 4, and 8 flags should be set. If
another flag is set, then the combination of goflags associated with that
flag were active at the same time. To aid in troubleshooting, a 16-bit
variable can be associated with each flag. When the flag is set, a time
stamp is loaded into the 16-bit variable to show the most recent time
the specific combination of flags was set. The following example code
shows how this is accomplished.

Implementation and Testing 353

Union skip_flags
{

struct
{

 unsigned char display_goflag:1;
 unsigned char button_goflag:1;
 unsigned char alrm_cntrl_goflag:1;
 unsigned char timebase_goflag:1;
 unsigned char unused:4;

} flags;
unsigned char bytewide = 0;

}

Static unsigned char hit_flags[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Void data_logger()
{

if (skip_flags.bytewide > 0)
{

 hit_flags[skip_flags.bytewide] = 1;
}
skip_flags.bytewide = 0
return;

}

The declaration for the skip timer goflags combines all of the skip
timers together into a single byte. The byte is then used to determine
when a new flag is set; if the normal state of all flags is zero, then a value
greater than zero indicates a new flag is set. The combination of the flags
is then used to index into the array, setting the location corresponding
to the combination of flags. Finally, the flags are cleared for the next
pass through the system loop. The result will be an array of chars which
should all be zero, expect for the locations 1, 2, 4, and 8. Note, if loca-
tions 1, 2, 4, and 8 are not all set, then this is also an indication of a
problem as the missing set location was never called by its skip timer.
The problem should be investigated and the problem corrected before
running the test again.

Tuning the passive system requires that the designer adjust the ini-
tial values of the skip timers for all the tasks using the priority handler.
While the optimal system is to calculate the initial values, there will be
times when the overall execution time of some tasks may shift due to

Code Snippet 5.37

354 Chapter 5

modifications that are made to the system. When this happens, the op-
timal system is still calculation. However, if the original documentation
is not available, there is still the option to adjust the timing manually.
But it will require that the support engineer adjust the values, and then
test to validate the timing. This back and forth adjust and test format
is slow, as the testing will require time to run, but eventually a new set
of initial values can be determined using the system.

In a time-remaining priority handler, the basis of the system is know-
ing how much time is left in the system tick. To do this, it is necessary
to access the hardware timer that drives the system timing. The value
is then compared to a database of execution times, indexed by task and
state. Reading the timer simply involves reading a 16-bit value from the
hardware and accessing the database table; performing the comparison
is simple. The challenge is compiling the information for the execu-
tion time database. The following shows how the code for the priority
handler works:

Code Snippet 5.38

Static unsigned int database[4][16]; // array [task][state]

Void Time_remaining()
{

unsigned int time_diff;
if (timebase_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[3][timebase_statevar] < time_diff) timebase_task();

}
if (button_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[1][button_statevar] < time_diff) button_task();

}
if (display_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[0][display_statevar] < time_diff) display_task();

}
if (alarmcntrl_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[2][alarmcntrl_statevar] < time_diff) alarmcntrl_task();

}
}

Implementation and Testing 355

The four sections of the routine are identical, but they act upon differ-
ent tasks, based on a different index into the database and different state
variables. In fact, this routine could be rewritten using a FOR/NEXT
loop and a SWITCH statement, but the current implementation will not
be significantly larger. Plus, it is easier to modify the order of the tasks in
the current implementation, and the order places higher priority on the
first task in the list, and a lower priority on the later tasks in the list.

To build the database, it is necessary to build a special data-logging
system. This data-logger captures the start and return time each time a
task is called. The start time is subtracted from the return time and the
resulting value is the execution time for that task executing that state.
The results are stored in a large data memory array that is indexed by
task number and state number for the task. However, rather than just
store the data, it is first compared to the data already in the array and
only stored if it is greater than the original value. This builds up an ar-
ray of worst-case execution times for the various tasks and states. The
following is an example of how this can be done:

Code Snippet 5.39
Static unsigned int database[4][16]; // array [task][state]
Static unsigned int start_time; // this value supplied by timer
Static unsigned char task_nmbr; // this value supplied by timer

Void time_logger()
{

unsigned int stop_time;
unsigned char gen_state;
unsigned int time_diff;

stop_time = sys_timer – K; // K is number of cycles between call & now
switch (task_nmbr & 0x03)
{

 case 0: gen_state = display_statevar;
 break;
 case 1: gen_state = button_statevar;
 break;
 case 2: gen_state = alarmcntrl_statevar;
 break;
 case 3: gen_state = timebase_statevar;
 break;

}
time_diff = stop_time – start_time; // assumes an incrementing system counter
if (time_diff > database[task_nmbr][gen_state])
{ // if new time is larger replace old time

 database[task_nmbr][gen_state] = start_time – stop_time;
}
return;

}

356 Chapter 5

The timer function of the main loop is modified to supply two values,
a number indicating the task that is running on this pass through the
loop and the value of the timer just prior to the task state machine being
called. The task number is used to access the correct state variable and
to index into the timing database. If the new time is longer than the old
time in the database, the new value replaces the old value.

The tasks are then set up in the system using the same offset skip
timer system as the passive priority system. While the passive system
will not get the optimal usage of execution time that a time-remaining
system will, it does exercise the task sufficiently to perform the execu-
tion timing test.

Once the passive priority system is running with the tasks, data-log-
ger, and the test driver, the system is left to run through the test routine.
Note that the various tasks should not be linked together, but should
be completely driven by the test driver to minimize the potential for
interaction problems. The test routine should also exercise all modes
and combinations of task inputs, both the expected and unexpected.
Remember that the purpose is to determine the worst-case timing, so
try all combinations of inputs, even if the combination is not normal
to the system.

The alternative time-remaining system is just a variation on the
original. The only difference is that it calls an initial set of tasks using
another system, such as the passive system, and then calls housekeep-
ing functions if time permits. This system uses the same routines as
the previous implementation. The designer still needs to measure the
execution timing of the housekeeping function so the system can know
if there is sufficient time remaining for their execution. So, the only real
difference in implementation is the initial group of tasks called before
the priority handler.

The variable-order system is designed to call a different list of tasks,
based on the system mode. This involves two design needs, a list of the
tasks required in each mode, and a method for determining the system
mode. For our clock example, we have the list of tasks by mode, and a
common mode variable that multiple sources within the design update

Implementation and Testing 357

as changes are needed. The only thing left is to build the SWITCH
statement for the implementation. From the previous chapter, we have
the following design notes on the system priorities:

Void variable_order(unsigned char mode)
{

switch (mode)
{

 case Timekeeping: TimeBase_task();
 Display_task();
 Button_task();
 Error_Task();
 break;
 case TimeSet: Button_task();
 Display_task();
 TimeBase_task();
 Error_Task();
 Break;
 case AlarmPending, SnoozeMode: TimeBase_task();
 AlarmControl_task();
 Display_task();
 Button_task();
 Error_Task();
 Break;
 case AlarmSet: Button_task();
 TimeBase_task();
 Display_task();
 Error_Task();
 Break;
 case AlarmActive: TimeBase_task();
 AlarmTone_task();
 AlarmControl_task();
 Display_task();
 Button_task();
 Error_Task();
 Break;
 case PowerFail: TimeBase_task();
 Display_task();
 Error_Task();
 Break;
 case ErrorMode: Error_Task();
 Display_task();
 Button_task();
 Break;
 Default: mode = ErrorMode;

}

}

The system is quite simple to implement, as it just needs the vari-
ous lists of tasks for each system mode. It is even simple to combine
this priority handler with some of the other priority-handling systems

Code Snippet 5.40

358 Chapter 5

previously discussed. For example, using passive with this system just
requires the designer to add the initial presets to the system, and add
a simple mode change routine to re-offset the skip timers of tasks that
have been disabled during the previous mode. This type of system is
a good idea anyway, as a disabled task has probably timed out while it
was disabled and re-enabling the task will mean the task will run on the
first pass after a mode change.

Another system that can be combined with the variable-order system
is the time-remaining system. Using this combination, the state machine
of the variable order is modified with the basic block of the time-remain-
ing system. Specifically, each call to a task in the variable-order system
is replaced with the similar block from the time-remaining routine. The
following demonstrates the required change:

case PowerFail: TimeBase_task();
Display_task();
Error_Task();
Break;

is replaced with:

Code Snippet 5.41

Code Snippet 5.42

Case PowerFail:
if (timebase_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[3][timebase_statevar] < time_diff) timebase_task();

}
if (display_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[0][display_statevar] < time_diff) display_task();

}
if (error_goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[5][error_statevar] < time_diff) error_task();

}
break;

The result is a system that changes the list and priority of the tasks
that are called, based on the system mode. Further, if a task has a low
priority and the majority of the task has already been used, then the

Implementation and Testing 359

task will be deferred to the next pass through the loop. This system
optimizes the processor throughput and adjusts the task priorities based
on the requirements of the system. To minimize the program memory
impact, the basic building block of the time-remaining system could
be boiled down into a single function, with the necessary information
pass in. For example:

Code Snippet 5.43

Unsigned char time_test(char goflag, task_nmbr, state_var)
{

if (goflag)
{

 time_diff = 0xFFFF – sys_timer;
 if database[task_nmbr][state_var] < time_diff) return 0xFF;

}
return 0;

}

The main priority handler can now use this routine to determine
whether to call a task or not, as the following code example shows.

Case PowerFail:
if (time_test(timebase_goflag, 3, timebase_statevar)) timebase_task();
if (time_test(display_goflag, 0, display_statevar)) display_task();
if (time_test(error_goflag, 5, error_statevar)) error_task();

break;

The result is smaller and much more readable in the final version
of the routine.

The excuse-me, excuse-you system involves one task deferring its
execution or state change based on the status of another task in the sys-
tem. The difference between the two systems is whether the task making
the decision to defer is the task that will defer, or is the task that forces
another task to defer.

Let’s start with the excuse-me version of the system. When a task is
ready to change from a low-priority state to a high-priority state, the
excuse-me system gates that decision with the status of a related task in
the system. As an example, consider the alarm control and alarm tone
tasks in our design. The alarm tone task operates much faster than the

Code Snippet 5.44

360 Chapter 5

alarm control, so it has a high probability of executing on the same tick
as the alarm control task. If the total execution time of the two tasks is
sufficiently long to interfere with other tasks in the system, then some
method is needed to prevent the two from stacking up and overrunning
the system tick.

We use the excuse-me system to handle this. When the alarm control
task determines that the alarm tone task should be run, it will defer
any transition that will move the task into a high priority, specifically
a high priority that will require longer execution times. It does this by
monitoring the alarm tone task, to determine when the alarm tone task
is busy generating a tone and when it is idle as part of the quiet section
of the modulated alarm tone.

By limiting its execution of high-priority, long execution states to
only those times when the alarm tone is idle, it interleaves the execution
of the two tasks so that both tasks never execute long states in the same
tick. If the alarm tone task is not running, then the excuse-me system
is idle and the alarm control task makes any transition required for its
operation.

The implementation is fairly simple. The alarm control task includes
a set of conditional statements at the top of its state machine that will
only allow a transition if the alarm tone is not active, and, if the alarm
tone task is not in a long execution state, or if the alarm control state
transition is to a state with a short execution time. The following dem-
onstrates how this is coded.

Void alarm_control_task()
{

if ((alarm_tone_active==0)|
 (alarm_tone_statevar!=tonegen)|
 (executiontime[alarmcntrl_statevar] < tone_time))

{
 switch (alarmcntrl_statevar);

{

 case

The code gates the change in state by delaying the execution of the
next state until such time that the alarm tone task is not active, not in
its tone generation state, or the next alarm control state is short enough

Code Snippet 5.45

Implementation and Testing 361

to not interfere. While this is fairly simple, it does assume that there is
only one long execution state in the alarm tone task. In more complex
systems, the conditional may have to rely on a second execution time
database that holds the execution times of several states.

Of course, the test routines generated in the Time Remaining prior-
ity handler would work equally well here to build both execution time
databases.

The excuse-you priority handler is a little more complex, in that it
touches several tasks. The controlling task contains code to determine
when one of its state changes will shift the priority of the task. When
it detects such a transition, the task then broadcasts a flag indicating
that all low-priority tasks must defer execution until such time as the
controlling task transitions out of its high-priority mode. This means
additional code for both the controlling tasks and the low-priority tasks
that must defer their execution.

For example, when the error task in our alarm clock example deter-
mines that a server-error condition has occurred, the error task will then
transition to a series of states that will reset the appropriate task state
machines. Because the display and alarm tone tasks are not affected by
this task reset, they are considered low priority and are deferred until
the error task has completed its reset. The following shows how this
would be coded.

362 Chapter 5

{additions to the display task}
Void Display_task()
{

if (defer_task != true)
{

 if (state < 6)
 then
 {
 if (display_alarm == true)
 then

{additions to the alarm tone task}
void alarmtone_task()
{

if (defer_task != true)
{

{additions to the error task}
case poll_timebase: if (timebase_error == true)

 {
 error_statevar = master_reset;

 defer_task = true;
 }
 break;
 |
 |
 |

case end_masterst: error_statevar = poll_alarm_cntrl;

 defer_task = false;

The additions to the error task set and clear the defer flag used by
the display and alarm tone flags. If the flags are set, the display and
alarm tone tasks are essentially disabled until the error task completes its
reset of the other system task state machines. While this is fairly drastic
for the system, the error task will need to complete the reset quickly
or else it may affect the accuracy of the time base. Less drastic systems
could be employed, which only prevent a state transition to a higher
priority state in the lower-priority tasks. In either case, the function of
the priority handler is to free up execution time in the system tick for
higher-priority tasks.

Code Snippet 5.46

Implementation and Testing 363

The last priority handler to examine is the parent/child system. In
this priority handler, a parent controls the execution of a child. It is
accomplished by including a conditional statement in the child state
machine that only allows the child to decode its current state if the en-
abling flag is set. The parent then allows the child to operate by setting
the enabling flag. Once the child has completed its task, it can then
clear the enabling flag, putting itself back to sleep until it is needed once
more. The parent may also force the child task to sleep, if it determines
that the function performed by the task is no longer needed.

This form of priority handler is especially useful for arbitrating con-
trol between two parent tasks, over the control of a common child task.
Whichever parent task takes control of the child task first, need only
enabled to the task. The secondary parent is then prevented from taking
control until the first parent releases the child by clearing its enabling
bit, or until the child completes its task and clears the bit itself.

A good example of a task pair that would benefit from a parent/child
priority handler is the alarm control and alarm tone task. The alarm tone
is only used when the alarm control task determines that the alarm time
is equal to the current time, and the alarm function is enabled. So, the
alarm control task is already in control of the alarm tone’s operation. Us-
ing the parent/child system just simplifies the control of the alarm tone
task. The following is an example of how this control would be coded.

364 Chapter 5

{additions to the alarm tone task}
void alarmtone_task()
{

if (child_alarmtone_enable == true)
{

{additions to the alarm control task}
case check_time: if (alarm_time_check() == 1)

 {
 alarmcontrol_statevar = generate_alarm;

 child_alarmtone_enable = true
 }
 break;
 |
 |
 |

case generate_alarm: if (alarm_enabled != true)
 {
 alarmcntrl_statevar = inactive;

 child_alarmtone_enable = false;

 }

The variable child_alarmtone_enable is the gating flag that the parent,
alarm control, uses to control the execution of the child, alarm tone.
When the variable is set, the child executes, and when it is cleared, the
child does not. As before, getting the entire execution of the child is
pretty drastic; however, the variable can also be used as part of a condition
statement, which handles a state change as well. The only advantage to
gating the execution of the entire task is that the child task is saved the
overhead of implementing an IDLE state in which to wait for the next
enable flag. This is an important point to note should a designer need
to save a few program memory words here and there in the design.

The final block to implement is the error detection and recovery
system. Fortunately, most, if not all, of the system has already been
implemented in our creation of the system task. The only pieces left
in the design are the initialization and configuration of any hard fault
hardware-based supervisory system, and the error task itself.

Code Snippet 5.47

Implementation and Testing 365

The initialization and configuration of the hardware supervisory sys-
tems will be specific to the microcontroller hardware used, so discussing
them here is not possible. The only recommendations that should be
made are:

1. Label the individual control and configuration bits so they have
descriptive names.

2. Clearly note in the design notes how the systems are configured
and any algorithms specific to their use.

3. Build the functions into descriptively named routines.

4. Add all new communications pathways to the communications
plan and documentation.

The error task state machine should also be completed at this time. It
will typically be an execution-indexed state machine, although a hybrid
may also have advantages. The specifics of its design will be unique to
each design. The system for our example alarm clock design is designed
using the requirements that have been accumulated during the course
of the design and implementation exercise. Those requirements are
documented here for reference, although the actual design of the state
machine is left up to the reader, as an execution-indexed state machine
design has already been presented.

List 5.1
State names for Error task
0. Initial power up state for the state machine
1. Poll_alarm check alarm control task for statevariable corruption
2. Poll_timebase check timebase task for statevariable corruption
3. Poll_buttons check button task for statevariable corruption
4. Sanity state to check alarm enabled, alarm active, and snooze
5. Restore_Sanity state to reset alarm enabled, alarm active, and snooze
6. Master_reset reset controlling task in the event of sv corruption
7. End_masterst release system from reset
8. Error error condition in error task
9. Default all undefined states decode here

366 Chapter 5

Current State Condition Next State if true Next state if false
Initial Timeset command Poll_alarm Initial
Poll_alarm alarm task error Master_reset Poll_timebase
Poll_timebase timebase task error Master_reset Poll_buttons
Poll_buttons button task error Master_reset Sanity
Sanity Missmatched variables Restore Sanity Poll_alarm
Restore_Sanity always Poll_alarm
Master_reset always End_masterst
End_masterst ack of all resets Poll_alarm
Error always Master_reset
Default always Error

State Action Input Output
Initial Flash display & force 12:00 time Timeset Current_time

Flash
Mode

Poll_alarm Check alarm error flag & set mode Alarm_error Mode
Poll_timebase Check timebase error flag Timebase_error none
Poll_buttons Check buttons error flag Buttons_error none
Sanity Check alarm variables Alarm_enabled none

Alarm_active
Snooze

Restore_Sanity Reset alarm variables Alarm_on Alarm_enabled
Alarm_active
Snooze

Master_reset Clear control task none Reset_alarm
Reset_timebase
Reset_buttons

End_masterst Wait for acknowledge Reset_alarm none
Reset_timebase
Reset_buttons

Error Reset state machine none none
Default set statevariable to Error none none

Note that the error state machine should be built just like any other
state machine in the system. Start with the state decoder, then the state
transitions, the state actions, then the timing, and error detection/recov-
ery. The state machine should also have the same level of documentation,
if not better documentation due to its interaction with all of the other
tasks in the system. As with all the other tasks, after a section is written,
it should be tested thoroughly using the test driver and whatever data-
logging routines are deemed necessary. Once each step of the testing is
complete, then the test code should be archived and the results noted
in the design notes for the system.

List 5.1
(continued)

Implementation and Testing 367

Once all of the tasks, timers, communications pathways, priority han-
dling, and error detection/ recovery systems have been built and tested,
it is time to start integration and testing of the complete system. While
this may seem like a simple enough task, it is typically one of the most
frustrating to accomplish. Why should this be? All of the components are
complete and working, so it should just be a simple matter of stringing
all the components together to create a whole. Well, yes, the individual
components are complete and tested, but they have not been tested with
one another. It is less a matter of whether the components work, and
more a matter of whether they work and play well with others.

The process of integration is also littered with numerous land mines
waiting to catch the unwary designer. One of the worst is impatience. If
a designer gets impatient and just throws the tasks together and hopes
for the best, then the designer, with very rare exceptions, can expect to
be severely disappointed. In all my designs, I have never had a group
of tasks just drop together and work. There have always been at least
two or more problems to be sorted out and the individual component
testing did not find the problem.

So, how can the components be combined with the least trouble? We
start by picking two tasks that have interleaved functions—for example,
the button task and the display task. Or, alternatively, we could have
chosen the time base and display tasks. The idea is to choose two tasks
that interact with each other regularly. Personally, I would choose the
display and button tasks, because they can be initially tested manually,
without writing a test driver routine.

The next step is to link the two tasks with a common skip timer value
and an offset that puts one task in the tick immediately following the
first. This allows putting one breakpoint at the start of the first task, and
stepping all the way through the end of the second task. Once the tasks
are linked, step through their execution one tick at a time, watching the
communications variables between the tasks. If the operation of both tasks
is correct, then offset the two tasks by one state and step through again.
Repeat this process until each state in the first task has been executed with
every other state in the second task. This process should identify most,
if not all, of the interaction problems between the two tasks.

368 Chapter 5

Once the tasks are working well together, add the normal skip timer
reload values to the timer and allow the system to operate at its normal
rate. To supply data from other related tasks that are not currently in-
cluded in the system, it may be necessary to add the test driver to the
system. A test routine can then be used to generate the missing control
and data that will normally be supplied by the missing tasks.

The test driver can also act as an exerciser for the system by overrid-
ing selected input variables to simulate input from the user. This will
allow the designer to automate much of the integration testing for the
system, performing a much more thorough test than could be accom-
plished manually.

The two main interactions that cannot be tested at the component
level are inadvertent variable corruption and timing issues. Let’s start
with variable corruption, as that is the simpler problem to tackle.

Even if a task tested out perfectly, and showed no outward signs of
problems, there still exists the possibility that the task may inadvertently
corrupt adjacent variable storage. There are a number of ways this can
happen:

1. A pointer may not have been initialized the first time it was used
to store a value.

2. A pointer may have been incremented beyond the last data value
and then used for a read or write.

3. An index variable into an array may have been set beyond the
last location in array and then used for a read or write.

4. If a pointer is used in a loop, the last pass through the loop may
have left it in an undefined location. Then the next time the loop
is used, the pointer points to an invalid location.

5. A hand-coded math routine may be used on the wrong data
type.

Whatever the reason, a memory location was read or written to
that does not belong to the routine doing the work. When the task
was stand-alone, the problem would not have appeared, but now that

Implementation and Testing 369

other routines have their data storage around the problem task’s data,
it is becoming corrupted.

There are a couple of different ways to identify the problem and
the likely suspect. The first is to limit the number of suspects by only
adding one task to the design at a time. If a new task is added to the
system and a problem appears, remove the task and see if the problem
disappears. This one simple rule of thumb can save designers hours of
debugging time, so go slow, add one at a time, and test thoroughly. Too
many designers have pulled their hair out searching for a needle-sized
problem in a proverbial haystack of suspects.

The second way to identify the problem is to review the test data
from the component-level implementation. Remember that we tested
both the normal and abnormal conditions through each step of the
component implementation. This is why, if we know the symptom,
by reviewing the test results we should be able to identify the suspect
variable by searching for a similar symptom in the test results. It is then
just a simple matter of reviewing the data memory map to find out
which tasks have variables in close proximity, and now we have a list of
suspects to examine.

The third method involves using an emulator for the microcontroller.
Most emulator systems have an option to specify a group of variables
for surveillance. When the emulator reaches a breakpoint, the values in
these variables are then retrieved from the emulator and displayed. The
user interface will also typically identify any variables that have changed
from the last time the emulator was halted.

By placing a breakpoint at the start of the timer routine, and placing
the variables used by a suspect task in the surveillance window, a designer
will know in which system tick the corruption is occurring. It is then
simply a matter of running the design from breakpoint to breakpoint,
until one of the variables is changed, even though the task using the
variable was not called. A quick check of the skip timers should then
pinpoint the suspect task.

Once the suspect task has been identified, the state variable can be
used to narrow down the search to a specific state. Note that the value

370 Chapter 5

of the state variable is the next state to be executed, so it may take a
little detective work to backtrack to the guilty section. If the problem is
still elusive, put the breakpoint at the top of the suspect task and then
repeatedly run the task until the variable is corrupted. This should narrow
the search down to a specific command. Remember, the task works, it
just has an unforeseen consequence to its operation. Designers should
take their time and step through the problem logically.

The second group of suspects in problems that develop at integration
are timing related. Often, the coding of a task state machine is designed
around the mistaken assumption that the only place data will change
is at the state in which the data is tested. This means that a change in
the value of a variable partway through a sequence of states may have
consequences that the designer did not consider.

Another common pitfall is using actual input port registers as a source
of data in a state. If the timing of the port bit change is asynchronous
to the system-timing tick, then it is certainly possible that the state of a
port may change during the execution of a task state, and can also change
between states when the system is performing other tasks.

Both problems have a simple solution: if a variable is used over the
course of several states, or the variable is an external port, then the value
should be captured and stored in a shadow variable. The capture can
occur either at the start of the sequence of states, or at the start of the
current system tick. And the shadow copy of the data should be the
variable used during the course of the task’s work. Because the designer
controls when the data is copied from the source into the shadow vari-
able, the designer also establishes the variable’s lifetime.

While this solves the problem, it does not identify the suspect. To find
the variable causing the problem, take the task back to the automated
testing system using the test driver. Adjust the timing of the test driver
so that the data present in the suspect group of variables is modified
at a specific time relative to the operation of the task. Then repeat the
test, slowly incrementing the timing offset between the test driver and
the task, until the problem appears.

Implementation and Testing 371

Once the timing is known, move one variable at a time, back to the
original timing, leaving the others with the timing of the failure. Retest
between each variable timing change; when the error disappears, the
last variable moved will be the suspect.

A shadow variable can then be defined for the suspect variable, and
the system can be retested with all of the variables changing at the time
that exhibited the problem. If the problem does not reappear, then the
problem has probably been corrected. To assure the problem is gone,
repeat the time shift and test routine through all of the combinations
of states and variables. If no new problems appear, the designer can be
reasonably sure the problem is corrected.

Note that the code to change the variables on a sliding time scale is
valuable and should be archived both in the design and in the designer’s
personal library of valuable functions. This may have been the first time
that the function was needed, but it won’t be the last.

Integration should then continue, adding functions one at a time,
with thorough testing between each addition. Note that the error task
should be saved for last, as its purpose will be to correct errors in the
system. This means that, in order to test the task, it will be necessary to
introduce errors to test this module. Adding the error task last prevents
the error task from responding to errors that are in the process of being
debugged, and it is probably best to only introduce new bugs once all
of the design bugs have been removed.

To test the error task, the test driver should be included in the system,
with a test program that can override specific variables in the system.
These variables should include all the state variables for the various
tasks, including the error task, and system status variables that the error
task is charged with monitoring, such as alarm_enabled, alarm_active,
and snooze. The test driver should also force the system into all of the
different system modes, so the mechanisms for switching between modes
can be thoroughly tested. This also allows the designer to test the system’s
response to various system modes.

Once all of the tasks have been added and the complete system
thoroughly tested, the design work for the system is complete. However,

372 Chapter 5

that is not to say that the designer’s job is done. There is still the task
of harvesting useful routines for the designer’s library, and additional
documentation that should be added to complete the system.

Let’s start with the documentation for the system, as it will be the
more tedious task. First of all, the design notes should be reviewed for
any additions or edits that may be needed. The file should have been
kept current during the design process, but even I don’t always keep up
with the edits like I should. So, now, before we forget, the design notes
files should be cleaned up.

Once the notes file is current, the next step is to review and update
the requirements document. During the course of the design, numerous
changes will have been made, and the requirements document should
reflect the final product. Any notes concerning features that did or did
not work should be added in the appendix, so future documents can
avoid problems that have already been identified. When reviewing and
updating the requirements document, remember that the product will
be marketed based on what this document says, not on what the product
actually does, so it is critically important that the document accurately
represent the features, functions and capabilities of the final system.

Next, any updates or additions to the main system file, its header file,
and any main system include files should be made. This is also the point
at which the files should have a revision history added to the header
comments. This history will live with the design from this point forward,
and the first version of code that is submitted to product testing should
be labeled A0 or the equivalent for reference. Any changes from now on
can be tracked, as well as the appropriate updates and changes made to
the support documentation—specifically, the requirements document
and the design notes.

Any updates and edits required for the individual task include files
and header files should also be made at this point. Depending on the
size of the project, individual revision histories may also be added at this
point. Note that any change in the task files revision history should also
be reflected in the main system revision history.

Implementation and Testing 373

An archive of all the test data, test procedures, and test functions
should be compiled with a directory indicating the capabilities of each
piece of test code, and the various test procedures that can be imple-
mented using the test code. Task, function being tested, and revision
(if any) should categorize the test data. This will help the support staff
understand how the test code can be used and how they can modify it
for test and diagnostic functions, both in repair and for test code on
the assembly line.

Finally, a short report with any information that the designer thinks
may be relevant to the design should be compiled. This report need not
have a specific format; it can even be a list of things to note about the de-
sign. The purpose is just to capture any and all information relevant to the
design, before new design challenges and time purge the information.

At this point, the design work on the project is complete and all of
the information can be archived. If the archive software has the ability
to include file structure, placing the entire work environment into the
archive is also a good idea. If there is ever a problem and the designer
has to recreate the development system, this archive will be valuable in
that it can recreate the look and feel of the environment, and that will
make getting back into the design easier.

While the design is complete, there is still some work for the designer
to accomplish. When we started out on this design methodology, one
of the stated purposes was code reuse. Code reuse shortens design cycles
by providing the designer with prefabricated building blocks to start
the system. So, our last task as designers on this project is to mine the
design for usable blocks for our library.

First of all, I strongly recommend that the files from which we mine
the routines must be in a completely unrelated directory structure.
There is nothing more annoying than completing a design and then
inadvertently damaging one or more files while trying to carve out
useful functions. So, make a different set of directories and copy the
system design documentation off to a back-up before starting the min-
ing process.

374 Chapter 5

A good place to start mining for library routines is the timing function
for the main loop. The configuration and initialization constants for the
hardware timer will be useful for any future design with this particular
microcontroller. Also, most microcontroller families share one or more
of the system peripherals, so there is a chance that the information may
be applicable to more than one microcontroller.

To extract the function, simply copy the block of code into a text
editor. If the block is a complete function, then retain the function
definition and the header comment. Next, go to the test code archive
and copy out any test functions used to verify the timer’s operation.
Include it in the same file, but separate the code with comments and
a description of what the test code verified. Also, go to the design
document and gather together any specific information concerning the
design decisions and calculations that went into the generation of the
configuration and initialization constants and routines, or its test code.
This information should be included in the text file above the header
comment for the function.

Once the file is complete, give it a descriptive name and save it into
the directory structure that holds the library. Add a couple of notes on
the organization of the library, for convenience. Build a structure with
folders for each different type of routine, timers, priority handlers, data
functions, error detection/recovery, and state machines. This makes it
easier to find a block because they are subdivided by type, and it reduces
the number of candidates to review.

The skip timer section of the system timer is also a good source
of library material. Even though the functions are relatively simple, a
standard working template is always useful as both an example and a
starting point for more complex functions. And, in our design example,
the skip timer system for both the display and the time-base tasks were
not all that simple.

The documentation generated for the skip timer and system timing
design should also be copied and pasted out of the design notes. Any
notes on decisions made concerning the operation of a timer interrupt
and the main system clock should also be included. Configuration and

Implementation and Testing 375

initialization of the interrupt structure and the interrupt service routine
are also valuable.

Once all the code has been pulled together, any test routines and
data should be appended to the file as well, before it is archived in the
library.

Another good area to mine is the main system header file. We went
to a considerable effort to create the various access and test functions
for all the communications pathways, so it would be inconvenient if we
couldn’t reuse that code. Copy all the related functions into a common
file, include the variable definitions from the main system header file,
and add all applicable header comments from both the functions and the
definitions. Include any test functions and data from the test archive, as
we did with the timer system. Separate the code with comments and, as
always, your comments should be clear, complete, and verbose. Finally,
go to the design notes and copy in all the design information for the
individual pathway, include timing calculations, size estimates, and any
design decisions that affected the design of the pathway protocol, func-
tions, and variable definitions.

The system tasks are some of the most valuable code for a library,
but it can also be the most difficult to extract due to the combination
of several software functions into a common task. So, extracting the
code, start by copying over the complete task state machine, without
modifications. That way, if there is ever any question about the design,
we will know how the original was designed. Extract the test driver and
test routines from the test archive and include them in the file as well.
Be sure to separate the two blocks of code with comments, and add in all
entries from the design notes that concern the operation of the block.

Only after the complete task has been copied in should modifica-
tions be made to try and strip out the unwanted sections of the design.
Do this by copying the source into another file and then strip down the
function. When the extraneous pieces have been removed, the task should
be tested using the original test driver, with modified test functions that
account for the stripped down nature of the state machine. After the
new, stripped state machine has been tested and debugged, it can then

376 Chapter 5

be copied into the original library source file for archiving. As with other
pieces that we have mined from the design, the new test functions and
test data should be included in the file with the state machine.

One final piece of information concerning the task should be
included—the section of the requirements document that drove the
original development. The reason to include this is for documenting
future design requirements documents. During the course of this design,
the requirements document was updated to reflect changes in the design
goals. Putting a copy of the final version of the requirement in the library
saves time in the next design by retaining well-worded descriptions of
the task, which can be pasted into the next design’s requirements docu-
ment as part of its upgrade during the design.

Another good source for the library are the system priority handlers.
These blocks controlled the order in which the functions within the
design are called. As they are relatively simple, there will not be a great
deal of code to copy. In fact, the scattered nature of the implementation
will make some snippets obscure without the inclusion of some of the
surrounding code. So, cut generously when you carve out the priority
functions; the fat can always be trimmed in the next design. Also, the
time and effort spent on the system and component level of the design
is valuable in that it can save design time in the next system. Be sure to
copy anything related to the priority information, and include all test
functions and code as well.

The final section to mine is the error detection and recovery systems.
This includes both the error task state machine and any embedded
functions within the individual task state machines. As with the priority
handlers, cut generously when the embedded functions are carved out
of the state machines. Include all the design notes information related
to the error functions, and include the appropriate sections from the
requirements document as well.

Once all the various blocks have been removed, copy the new library
files into their respective folders. It would also be helpful to include a
text file in each folder that lists the name of the library files, and a short
description of the functions that they contain. Some designers may want

Implementation and Testing 377

to go so far as to distill the various files down further, into a standard
library of basic functions. Whatever the level of effort expended, keep
the file current and, with each new design, weed out older blocks that
can be replaced by newer, more efficient examples.

Also keep a separate back-up of the library folders in the event of a
system crash. Over time, most designers become somewhat dependent
upon their libraries, and often looe time and energy recreating functions
that have been lost in a disk crash.

This completes the design methodology for creating multitasking
code with state machines. I hope that you have found something in
the process that will help you in your future designs. I have taught this
system for several years now, and I am always amazed at the number of
engineers that use this system or something very much like it.

On several occasions, I have talked with engineers after the presen-
tations that have stated, “I do almost exactly what you talked about
except….” Initially, I apologized for what I thought was a waste of their
time, but almost all have stated that it was not a waste because they felt
validation that someone else was using a similar system to what they
had developed.

So, I leave it to you as designers, to take from this system what works
for you and incorporate it into your personal coding style. You should
not feel obligated to take everything I have presented—just use what
works for you and discard the rest. As I have stated several times in this
book, design is influenced by the talents and outlook of the designer, so
it should come as no surprise that we all create systems that are slightly
different in the details, even if they agree in the main points.

The next chapter will examine whether or not this book has met
its objectives. It is not a required part of the methodology, but it does
clearly outline what the methodology should achieve. Read it or not as
you see fit, and thank you for reading my words on a subject that I have
come to feel strongly about.

This Page Intentionally Left Blank

In Chapter 1, we established that it was in a designer’s own best inter-
est to design code that could accomplish several important goals. The
code should be quick to write, efficiently use development time, and
be simple to debug. It should help minimize material cost, generate
clean documentation, and be modular in design. Further, it should be
extensible and be able to multitask. The question is, does the design
methodology presented here meet these lofty goals?

Let’s start with quick development and efficient use of development
time. With many designs, rewrites and modifications can significantly
lengthen the development time, so any system that clarifies what the
customer wants at the beginning should both shorten the development,
which by definition makes a more efficient use of development time.

The design methodology presented here started out with a dissection
of the designs requirements document. This dissection carved up the
document, looking for every possible nuance of the design, from timing
information to the functions and features of the design. When informa-
tion was found to be missing, the design was held until the questions
and ambiguities were resolved. Only when a completely clear picture
of the design was generated, did the methodology more on to even the
highest level of the design.

So, yes, I would judge that the methodology did make an efficient
use of the development time in that it reduced the rework associated
with missed communications between the group that defined the system
and the designers that actually generated it.

6
Does It Do the Job?

380 Chapter 6

Further, the top-down nature of the design methodology supported the
efficient use of design time, because it forces designers to consider every
aspect of the final product before they generate a single line of code.

The next point was the requirement that the system create code that
is simple to debug. While the methodology does not prevent designers
from making syntax errors, it does prevent unintended interactions by
its modular nature, and the use of state machines to implement the indi-
vidual tasks. Typically problems are generated, not by the specific code,
but by how different blocks of code interact in real time. Because this
methodology forces the various blocks to execute at specific times, and
with some degree of synchronization, the possibility of problems through
interaction is reduced. Further, the build-and-test, build-and-test, se-
quence of the design limits the development of large bugs by eliminating
the small bugs early, before they can evolve into the larger ones.

The top-down system design also forces the designer to consider how
the various blocks in the system will interact, before the actual blocks
are generated. In this way, the interactions are planned and accounted
for in the design of the blocks, before they have a chance to create un-
intended interactions.

Concerning material cost, the free nature of the design methodology
provides an initial reduction in the system cost by not introducing a usage
fee. Further, the modular system nature of the design lends itself to the
use of software-based peripherals in place of more expensive hardware.
And that same modular nature facilitates the later introduction of hard-
ware replacement, when components of the system suffer end of life.

Concerning other production costs, the modular nature of the design
methodology also lends itself to the creation of test and evaluation soft-
ware that uses many of the regular components of the software design.
This shortens the test and qualification process for components, and
reduces the support overhead required to maintain and upgrade the
system over its product life. Its self-documenting nature also decreases
the time required for support engineers or new designers to become
fluent in the system’s operation.

 We mentioned documentation, and that is one of the key re-
quirements for the design methodology. That is, generating clear and

Does It Do the Job? 381

accurate documentation, so that support and collateral information
can be generated quickly and accurately with only minimal support
from the design team. This methodology generates design notes as part
of the requirements document dissection, the system-level design, the
component-level design, and the implementation/testing phase of the
design. In short, the methodology generates documentation at every
step of the design, noting not only how the system works, but also why
the system works the way it does. “How” is important to the support
engineers because it allows them to understand the system’s operation.
The “why” is what allows them to go beyond support, to upgrade and
modifications for bug fixes and product life extension.

Two related requirements are modularity and extensibility. Modu-
larity requires that each function or task within the system be its own
standalone block, and that it be testable as a unit, and reusable with
only a minimal understanding of its interface to the system. Extensibil-
ity takes the requirements of modularity and extends them to the full
system. The interface between the modules, and the modules interface
to the system, should be clearly defined so new modules can be added
using the existing module interfaces as a prototype.

The modular nature of the task state machines, the system of com-
munications pathways, the timing system, and the priority handlers all
combine to define a simple yet flexible system interface that will allow
the addition of future modules with a predictable effect on the system.
Further, due to the top-down nature of the design, the effect on the
system can be predicted before the design of the new module is started.
It need only have a system and component level of definition to be evalu-
ated for its compatibility with the existing design. So, by our definition
of modularity and extensibility, the design methodology complies with
these requirements as well.

The last two design requirements are reuse and multitasking. The
modular nature of the various tasks and systems in the design make the
reuse of software blocks within the system both simple and easy. This
is because the top down design approach clearly defines the interface
to every major code block in the design. With a knowledge of how the
block works and how it is designed to connect to external systems, reuse

382 Chapter 6

is just a matter of mining the blocks from the final design and building
a series of folders to hold the blocks.

Multitasking is a requirement that is central to the design method-
ology. In fact, we spent a considerable amount of time in Chapter 2
evaluating multitasking operating systems to determine what the specific
needs are for multitasking. What we determined was that multitasking
required, one, a method for switching between multiple tasks without
losing context information; two, that a method for communication was
needed to handle the transfer of information and event timing between
the various tasks; three, that a system of regulating the execution timing
of the individual tasks was necessary for real-time control and monitor-
ing; and four, that a method for shifting priorities in the system was
needed to respond to changes in the system mode.

The design methodology presented creates systems to handle each
of these requirements. State machines provide a means of breaking up
tasks and provide a means whereby individual blocks of the task can be
executed, in order, with only the state variable to maintain the current
status of the task. A communications system composed of variables
and access/test functions provides for the communications needs of
the system. Specific protocols handle different communications needs,
including different rates of transmission and reception, and the transfer
of event timing. The timing system and the definition of a system tick
provide for the regular timing of the system. Further, the flexible nature
of the timing system provides a means for each task to change its timing
as needed for changing requirements. Finally, simple priority-handling
systems allow the system, and even small subsets of the tasks, to ship
execution time from low priority tasks to higher priority tasks based on
the needs of the system or the task.

So, overall, the methodology meets its requirements as set out in
Chapter 1. It is modular, extensible, real-time, multitasking, self-docu-
menting, simpler to design, and promotes the reuse of software blocks.
The result is a simple, low-cost method for designing better multitasking
software systems without the use of packed software operating systems
or specialized hardware. The final design is scalable, simple to support,
and easy to modify with a predictable outcome.

Figures
8-bit, 19-20, 29-32, 37-38, 47, 49, 66, 98, 132, 243-245,

299-300, 326-327

8 x 8 multiply, 20

8 x 16 multiply, 20

16-bit, 19, 29-30, 44-45, 49-51, 66-68, 315, 351-354

16-by-16 multiply, 19

16 x 16 multiply, 20

A
acknowledgment, 53-55, 228-229

addressable, 48

American Standard Code for Information Interchange,

29-30

ARRAY, 37-38, 40-41, 48-50, 75-76, 89-93, 96-97, 127-

130, 203-204, 251, 282, 310, 321, 327-328, 333,

345-347, 349-351, 353-355, 368

ASCII, 29-32, 37, 110, 132-135, 187-188, 237-238

BS (back space), 31

CR (carriage return), 31

EBIDIC, 30-31

ESC (escape), 31

keyboard encoder chips, 31

LCD, 31

LF (line feed), 31

serial communications, 31

serial ports, 31

thermal printers, 31

video controller chips, 31

B
base-ten number system, 20

powers of ten, 20-22

Index

base ten, 20, 22-23, 25-27, 29-30, 42, 61, 63

base two, 22, 27-28

BCD, 29-31, 132-137, 181, 320-321, 334-335, 345-347

big endian, 39, 50

bill of material (BOM), 7-8

binary, 19, 22-30, 32, 35, 37-38, 40, 42, 61-68, 132-137,

250, 334, 336, 343

binary addition, 29-30, 61-63

binary addition and subtraction, vii, 61, 63

binary addition, 29-30, 61-63

 carry, 35, 61-64, 275-278, 347, 349-350

 decimal, 62

binary subtraction, 24-25, 62

 borrow, 62

 carry, 62

binary-coded decimal, 29

binary complement, 24-25

binary division, 66-67

algorithm, 67-69

borrow, 69

divide, 67

dividend, 66-69

divisor, 66-69

LSB, 67, 69

MSB, 67-69

OR, 69

remainder, 66

result, 67

binary integers, 132-137

binary multiplication, 63-65

algorithm, 65

binary multiply, 65

 adding, 65-66

 loop, 65-69

384 Index

 shifting, 65-66

carry, 63-64

digits, 63-64

long multiplication, 64

multiplicand, 19-20, 63-66

multiplier, 63-66

multiply, 63-64

multiply algorithm, 65

binary multiply, 65-68

binary numbering, 19, 61

digit position system, 61

binary subtraction, 24-25, 62

BIT, 19-20, 22-49, 62, 64-69, 71, 96-98, 132-143, 181,

210-212, 217-222, 226, 228-230, 241, 268-270, 280,

295, 300-301, 309, 315-318, 323, 325, 332, 338,

343-344, 337-352, 362-365, 368-370

bit manipulation, 46-47, 295

AND-ing, 31

OR-ing, 31, 250

boolean, 22, 32-33, 35-37, 48-49, 73, 90-91

boolean logic, 22, 35

broadcast data transfer, 51-53

broadcast protocol, 53, 176-179, 227-229, 243-244, 318-320

buffer protocol, 57-60, 176-179, 182, 185, 237-240, 286,

325-326

buffer empty, 57-60, 228-235

buffer full, 58-60, 236, 327-328

data retrieval, 60

data storage, 60

frequency, 60

pointers, 58-59

retrieval pointer, 57-58, 327-328

size, 60

storage pointer, 57-58

wraparound, 57-59, 326-330

byte-wide, 33-34, 37, 48

C
check sum, 32-33, 153-154

circular buffer, 57-58, 223, 326

retrieval pointer, 57-58, 327-328

storage pointer, 57-58

 laps, 57-58

wraparound, 57-58

code reuse, 7-10, 373

collateral material, 6, 16-17

communication protocols, 51

simple data broadcast, 51

communications, 102

algorithms, 228-229

broadcast, 227-235

broadcast data pathway, 227

broadcast protocol, 227-229

buffer, 223, 228-237

buffer protocol, 223, 238-240

communications plan, 228-235

communications system, 237

communications timeout timer, 19-20, 85-88, 171,

228-233, 255, 289-290, 310, 321-323, 345

communications variables, 226

complex data structure, 237-238

constant, 224

constant numeric, 223-224

data pathways, 222-223, 236

data storage, 171-172, 222-223

design notes, 223-224

dynamic, 237-239

dynamic storage, 238-239

error condition, 228-232

 hard error, 228-232

 soft error, 228-232

error recovery function, 228-235

handshaking protocols, 102, 227

 four-way handshaking system, 227-230, 323

 two-way handshaking system, 227-230, 321-324

hardware abstraction, 226

header, 226

header comment, 227

 CHAR, 227

 FLOAT, 227

 INT, 227

 tasks, 227

header files, 226, 237

input and output pointers, 223, 228-235

intertask communications, 102, 270

logical values, 22

macro, 228-231, 237-240

master, 228-235

master header file, 226

master source, 226

multitasking, 102

nonvolatile, 238-240

numeric constants, 224

Index 385

pathway, 222-223, 226-227

pathway using a broadcast protocol, 227

pathway’s communications protocol, 223

pathway protocol, 227, 373-375

priority state, 234

protocol, 222-223, 226, 228-235, 237-238

prototypes, 228-229, 237

recovery mechanism, 228-235

recovery routine, 228-233

semaphore, 228-231

 definition, 227

 pathway, 228-229

 protocol, 228-233

 transfer, 228-231

source, 226

states, 228-235

state lock, 228-235

state machine, 228-231, 237-239, 250-251

state transitions, 238-239

state variable, 228-234, 237-239, 284

static, 127-130, 132-136, 176, 199, 237-239

storage requirements, 238-239

STRUCTURE, 226

SWITCH, 238-239

task, 102, 222-223, 226, 228-235, 236, 238-239

task header file, 228-235, 237-239

task list, 228-235

timeout, 228-234

timeout period, 228-233

timeout timer, 228-233

unrecoverable, 228-233

variable’s function, 237-239, 286

communications manager, 105-106

communications pathways, 158, 171-175, 217, 251-252,

286, 318-320, 364-367, 373-375, 380-381

communications variable, 289-290

comparison routines, 24, 36, 237

compilers, 16, 23, 25-26, 35-40, 46, 48, 295-297, 321-324

complex data types, 34, 42-43, 48

ADC, 44-45, 49, 89-91

ARRAY, 37-38, 40-44, 48-50, 75-76, 89-93, 96-97,

127-130, 203-204, 208, 251, 282-283, 310,

321, 327-328, 331, 333-334, 338, 345-347,

349-351, 353-355, 368

 addressable, 48

 first index variable, 50

 index value, 48-50, 209

 second index variable, 50

 two-dimensional array, 49, 89-90

data block, 48

memory dump, 50

 data memory, 50

multidimensional array, 48

peripheral, 45

POINTERS, 44

STRUCT, 44-45, 47, 353

STRUCTURE, 42-48, 80-82, 88-89, 96-99, 111,

119-128, 132, 203-204, 237-238, 289-292,

373-375

UNION, 36-37, 42-43, 46-48, 344, 353

UNSIGNED INT, 38, 45-46, 354-355

component-level design, 203, 275-276, 289, 300, 339,

380-381

component level, 200-201

algorithms, 32-33, 65, 113-114, 116-117, 125-126,

198, 200-202, 204-207, 226-229, 268-269,

282-284, 286, 330, 364-365

conditional statements, 19, 37, 71-72, 75-84, 162, 204-

207, 209, 336, 338, 341-342, 359-360

AND, 19, 73, 89, 105, 277-279, 318-319, 389

CASE, 77-78, 340-341

Code block, 35, 77-78, 92-93, 380-381

Default, 77-78

DO/WHILE, 71-72, 77-80, 92-94

ELSE portion of the statement, 72-75

ELSE IF, 73-75

FOR/NEXT, 71-72, 77-80, 92, 94-95, 355

IF, 72-77

IF/THEN/ELSE, 71-72, 75, 92-95

 decision tree, 72, 75-77

 branches, 75

 root, 75

Nested IF, 72-74, 77

NOT, 1-17, 19-28, 31-33, 35-40, 42-44, 46-49,

51-58, 61, 63, 65-66, 69-70, 73-75, 77-88,

91, 96-102, 104-113, 116, 118-121, 123-125,

127-143, 147-148, 151-160, 162-166, 170-180,

184-187, 189-194, 197-201, 203, 209-211,

217, 219, 222, 224, 226, 228-236, 238-239,

241-244, 246, 249-254, 256-263, 265, 267-273,

275-280, 286-291, 293-298, 301-303, 305-308,

310-311, 313, 315-330, 333-334, 338, 341-342,

345-349, 353-356, 359-361, 364-374, 376-377,

380-381, 389-390

386 Index

SWITCH/CASE, 71-72, 77, 83-84, 89, 340-341

SWITCH, 77-78

THEN, 72-73

window comparison, 73-75

context switching, 98-101, 111

context, 98-102

context switcher, 102

multitasking, 98-102

operating system, 102

program counter, 98-101

RETURN, 98-101

stack pointer, 98-101

status register, 98-101

task, 98-102

working registers, 98-101

control systems, 83

cooperative operating system, 103, 106-107

cost of sales, 1-3

CRC, 32-33, 155, 197, 277-281

sanity check, 32-33, 190-191, 277-278, 366

cyclic redundancy check or CRC, 32

D
data logger, 132-137, 312, 314-315, 318, 353

data memory, 16, 19-20, 26-27, 31-33, 37-39, 41-42,

46-51, 56-58, 60, 80-83, 98, 102, 105-106, 110, 127-

129, 132-137, 153-156, 171, 209, 281-282, 291-294,

318-319, 345-346, 349-351, 355, 368-369

data retrieval, 60

data storage, 19, 29-30, 33-34, 38, 41-44, 56-57, 60-61,

89-90, 127-129, 132-137, 171-175, 199, 222-223,

237-240, 243, 309, 345-346, 368-369

data structure, 33-38, 42-44, 47-48, 80-82, 96-97, 203-

204, 237-238

debug, 11, 267-268, 293-294, 310, 379-380

debugging documentation, 11-12

decimal, 20-22, 25-30, 62-65, 67, 334-335

decimal point, 20-22, 25-28

design collateral, 11

design costs, 7-10

design methodology, 7-10, 16-18, 110, 158-159, 161,

176, 182, 202, 258, 287-290, 307, 343, 373, 376-

377, 379-382

design phase, 6-9, 11-12

design process, 6-9, 11-14, 111-114, 203, 210-211, 251-

252, 258-259, 289, 318-319, 347-348, 368-372

algorithms, 114

command structure, 119

communications, 111, 119, 200-201

communications plan, 111

design notes, 112-113, 146, 157, 225, 267-268, 286-

287, 305-307, 349-351

priorities, 111

priority manager, 111

pseudocode, 118

requirements document, 111-112

 communications, 113

 flow of a function, 114, 116-118, 198

 flow charts, 118

 function list, 114-117, 124-129, 143, 145, 170

 functions, 116

 priorities, 113

 snooze, 114-124, 126-128, 138-139, 144-148,

150-151, 156, 168, 170, 181-184, 187,

189-193, 197, 210-211, 213-214, 216-

217, 245, 268-269, 274-276, 284-285,

339-343, 345, 365-366, 368-371

 tasks, 111, 113, 116, 166-167

 context switching, 111

 timing, 113

system level, 111

system requirements document, 111

timing, 103, 111, 119, 158-160, 200-201

timing control system, 111

top-down, 111

user interface, 29-30, 119

verbose, 119

designer, 1, 7-10, 18-20, 23, 33-36, 38, 41-47, 56, 58-60,

77, 80-83, 105, 107-108, 110-113, 115-122, 125-

129, 139-143, 146, 155, 157-161, 164-167, 171,

173-180, 182, 184-185, 187-188, 199-201, 209-212,

217, 222-223, 225-226, 228-233, 238-242, 258-260,

265, 280, 287-289, 291-297, 307-308, 310, 313,

315-316, 318-319, 321-322, 325-326, 343, 349-353,

355-358, 364, 366-373, 376-377, 379-380

digit-position-based, 21

digit position system, 61

down design, 11-15, 380-381

duty cycle, 23-24, 118-119, 144-146, 182-183

E
EBIDIC, 30-31

EMI, 32-33, 107, 110, 214

end of life, 5, 7-8, 380

Index 387

embedded design, 19, 33, 132-136

execution speed, 19, 75, 295-297

memory size, 19

multitasking code, 19, 376-377

error recovery system, 193-195, 270-272, 275-277, 302-303

algorithms, 282-284

broadcast, 277-278

brownout, 280

buffer protocol, 286

communications, 275-277

communication pathways, 285

communications plan, 275-279, 286-287

component-level design, 275-276, 281-282, 376

constant definitions and labels, 285

CRC check, 277-279

CRC, 280-281

data flow diagram, 275-277

data-indexed design, 282

data, 285

 state list, 285

data pathway, 275-277

default state, 275-277

design notes, 192, 251-252, 270, 272-273, 275-279,

287, 291-292, 366

detection and recovery system, 192, 200, 270-273,

286-287, 364

error detection and recovery, 192, 197-198, 200,

270-272, 275-277, 281-283, 285-287, 347-349,

364, 366-367, 373-374, 376

error mode, 280

error task, 193-194, 275-279, 347-348, 362, 364-

365, 376

execution-indexed state machine, 283, 285

 state lists, 285

functions, 283-284

GOTO, 281-282

handshake, 277-278

hard errors, 154, 192, 270-272, 277-279, 347-348

header file, 275-277, 285

hybrid state machines, 285

interrupt, 286

 asynchronous nature of interrupts, 286

interrupt service routine, 281

labels, 285

list of states, 282

list of the state transitions, 282

list of all the state transitions, 283

main system header file, 285-287

multitasking, 280-281

naming convention, 286

pathway, 277-279, 285

preliminary header and include files, 286-287

priority-handling, 286-287

priority handler, 286-287

protocol, 277-278

recoverable errors, 270-273, 277

recovery mechanism, 270-271, 277-278, 281-282

semaphore, 185, 277-278, 286

skip timer, 251-252, 286, 305

 algorithm, 286

soft errors, 270-271, 277

state, 275-277

state decoder, 277-278

state lock, 285

state machine, 272-273, 275-277, 279, 280-282,

285-286

state machine-based, 110, 280-281

state transition, 285

state variable, 83-84, 272-273, 275-279, 280-281, 285

syntax errors, 270-271, 347-348, 380

system clock frequency, 286

system communications plan, 277-279, 286

task, 102, 265, 272-273, 275-278, 285-287

task’s list, 277-279

task’s state variable, 286-287

tick, 280-281

timing system, 286

user interface, 270-271

variable declaration, 285

watchdog, 280-281

event-driven multielement transfer, 56

event-driven single transfer, 53-54

acknowledgment, 53-55, 228-229

execution speed, 19, 75, 295-297

exponent, 27-28, 42

F

first index variable, 50

fixed decimal, 21, 26-27

fixed-point, 25-27

fixed-point binary numbers, 25-26

fixed production costs, 2

floating-point, 26-28, 42

floating-point binary numbers, 26-27

388 Index

flow control statements, 80-81

CALL, 80-82, 96

GOTO, 80-81

INLINE, 83

interrupt functions, 80-82

macro, 83

RETURN, 80-81

STACK, 16, 57-58, 80-83, 98-101, 103-104, 106

subroutine, 83

G
G&A (general and accounting), 2-3

globally accessible variable, 51-52

H
H-bridge, 23-24, 293-294

handshaking, 51-59, 102, 107-108, 158, 173, 178-179,

185, 227-232, 243-244, 302-303, 318-326, 338

heap, 44, 209

hexadecimal, 28-31, 39

I
IEEE 754, 28, 42

implementation, 200-201, 295-298

implementation and testing, 289

algorithm, 305-306

ANSI, 295-297

archiving software, 289-290

assembler, 295

audit, 292, 295-296

BOOKMARK, 291-292

break points, 293

common include, 289-291

communications variable, 289-290

compiler, 295-297

component, 291-292

data pathway, 327-329

debugger, 294-295

design notes, 291

development tools, 289-292, 294-295

directives, 295

editor, 291-292

emulator, 291-295

error recovery system, 193-195, 302-303

error recovery task, 302-303

execution, 302-303

flow of the program, 293

hardware timer, 300-301

header files, 289-291

IDE, 291-292, 295

infinite loop, 295-297

integrated development environment, 291-292

interrupt, 301-302

labels, 300

macros, 294

main loop, 301-302

main system loop, 298, 300, 302-303

MSB, 301

priority handler, 298

recovery path, 289-290

requirements document, 6, 305-307

RESET, 291-293

routines, 298-299

RUN, 291-293

SEARCH, 291-292

simulator, 291-295

skip timer, 300, 302-307

software projects, 289-291

state machines, 298

STEP, 291-293

STOP, 291-293

stub, 298-299

syntax, 295

system and component levels, 291-292

system timer function, 243-245, 300

task, 302-303, 305, 318-320

task state machines, 289-290

templates, 289-291

tick, 300, 302-303

timer, 301-302

timer function, 304-307

timer system, 305

timing control, 289-290, 299

timing system, 258-259, 298, 380-381

trace buffer, 293

workspace, 289, 291

index value, 48-50, 209

initial production, 5-7, 11-12

INT, 37-42, 45-46, 50, 66-68, 295-296, 309, 312, 314,

320, 354-355

integer, 19, 26-27, 38, 40, 49, 184-186, 204, 253-254,

256, 263-264

Index 389

K
kernel, 16

keyboard encoder chips, 31

L
LED, 29, 114, 116, 118, 125-127, 132-134, 145, 149-151,

163-164, 168-169, 204-205, 208, 245-251, 283, 331,

336-337

linear piece of code, 83

little endian, 39, 41-42

logic blocks, 29-30

LONG, 16-18, 38-42, 53-55, 64, 66, 83, 85-88, 132-137,

140-143, 187-188, 204, 222, 225, 241, 243-244,

246-247, 255, 265, 275-276, 291, 320-321, 343,

359-361

loop, 65-69, 77-81, 94-95, 107-109, 162, 173-175, 178-

179, 187-188, 210-212, 219-220, 228-235, 240-243,

249, 251-255, 258-261, 275-278, 280-281, 295-303,

309-310, 312, 314, 318, 336, 338, 353, 355-356,

358-359, 368, 373-374

DO, 2-8, 11-13, 16-17, 22-25, 31-39, 41, 50, 61, 69,

71-72, 77-80, 85-88, 90-96, 98-100, 103, 106,

109, 112-113, 115-116, 127-131, 140-142, 153,

158-159, 162-164, 176-179, 190-192, 200-201,

204-207, 209-211, 224, 226, 228-231, 237,

240, 246-247, 250-251, 253, 256, 263, 265-

266, 268, 277-278, 280-281, 291-294, 298,

304, 307-310, 315-319, 327-328, 334, 345-348,

353-354, 375-377, 379, 389

DO/WHILE, 71-72, 77-80, 92-94

FOR, 80-81

FOR/NEXT, 71-72, 77-80, 92, 94-95, 355

GOTO, 77-82, 92-95, 157, 193, 210-211, 213, 217-

220, 275, 281-282, 341-342

IF, 77-79

iteration of the loop, 81

REPEAT, 77-78

REPEAT/UNTIL, 77-78, 80

WHILE, 1, 7-10, 15-16, 18-20, 23, 26-30, 32-34,

38-41, 44-46, 48, 51-54, 60, 71-72, 77-83,

91-95, 98-100, 102-105, 111-113, 115-116,

118-121, 123-124, 127-130, 132-133, 138-142,

146, 155-157, 165-166, 184, 193-195, 202-207,

209, 226, 228-236, 243, 250, 252-254, 256,

258-266, 268, 275-277, 280-281, 287-288,

291-293, 295-296, 298-299, 301, 305, 307-308,

313, 315-318, 321-322, 347-353, 355-358,

360-362, 366-370, 373, 380

WHILE/DO, 77-80, 92, 94-95

LSB, 22-23, 39, 65-69, 219-220

M
mainframe computers, 29-30

mantissa, 27-28, 42

marketing group, 5, 7

math, 7-10, 23-25, 27-30, 33, 36-43, 61-63, 65, 67, 71,

116-117, 132-135, 164, 204, 224-225, 295-297, 327,

345-347, 368

mathematics, 19, 23-25, 27-28, 60-61

memory dump, 50

memory size, 19

microcontrollers, 24, 29-30, 36, 42-44, 46, 69, 80-82,

155, 186, 209, 295, 313, 318-319

minus sign, 21, 23

modular design, 7-16, 250-251, 379-382

modularity, 11-15, 380-381

module specifications, 157-158, 203

motor speed control, 23-24

H-bridge, 23-24, 293-294

duty cycle, 23-24, 118-119, 144-146, 182-183

MSB, 19-20, 22, 24-25, 27-28, 38-39, 42, 65, 67-69, 301

multibit errors, 32-33

multiply, 19-20, 26-27, 41, 49, 63-68, 240

8-bit, 19-20, 29-32, 37-38, 47, 49, 66, 98, 132, 243-

245, 299-300, 326-327

8 x 8 multiply, 20

8 x 16 multiply, 20

16-bit, 19, 29-30, 44-45, 49-51, 66-68, 315, 351-354

16-by-16 multiply, 19

16 x 16 multiply, 20

MSB, 19-20, 22, 24-25, 27-28, 38-39, 42, 65, 67-69,

301

multiply algorithm, 65

multitasking, 15-17, 19, 51, 83-88, 98-103, 105-111, 165,

280-281, 376-377, 379-382

four basic requirements of multitasking, 98-101

 communications, 98-101

 context switching, 98-101

 managing priorities, 98-101

 timing control, 98-101

multiple tasks, 98-99

real-time, 98-101

390 Index

scenario, 98-100

seemingly simultaneous, 98-99

tasks, 98-99

 execution time, 98-100

 slice, 98-100

multitasking code, 19, 376-377

multitasking operating system, 98-101

multitasking system, 51, 85-88, 98-102, 106, 110, 165,

280-281

N
nonrecurring production costs, 1-2

nonvolatile memory, 132-137

numeric comparison, 69

borrow flag, 69-70

flags, 70

result, 69-70

status flags, 69

status register, 69, 98-101

subtraction, 69

zero flag, 69-70

O
octal, 28-29

operating system, 98-108, 185

context switcher, 103

 asynchronous, 105

cooperative, 103, 106-108

 communications handler, 106

 execution time, 106

 stack, 103

 subroutine, 103, 106

 tasks, 106, 127-129, 265

 timing, 107, 241-244, 302-303, 373-374

 watchdog function, 107

preemptive, 103-108, 185

 corrupted task, 104-105

 interrupt, 103-105

 interrupt service routine (ISR), 103-104

 program counter, 104

 slice, 104

 stack, 103-104

 task, 104

 timing control, 105-106

P
packaging, 2, 6, 11-12

parity bit, 32, 96-98, 217-220

even or odd, 32

pointers, 42-44, 57-60, 132-133, 209, 223, 228-236, 238-

240, 325-330

position-based system, 20-22, 25

potentiometer, 125

powers of ten, 20-22

preemptive operating system, 103-107, 185

printers, 30-31

priority handler, 148, 160-161, 165-166, 185-187, 189-

190, 203-207, 241-244, 252-254, 256, 258-263, 265,

267-268, 270-271, 286-287, 289-290, 298, 309,

351-357, 359-363, 373-374, 376, 380-381

algorithm, 258-262

buffered, 258-260

calling list, 263

data-indexed state machine, 270

design notes, 192, 251-252, 258, 267-268, 270, 275-

279, 291-292, 366

excuse-me, 265-267, 359-360

excuse-you, 265-267, 359-361

frequency, 258-259

general mode, 266

housekeeping function, 258-263

housekeeping task, 263

hybrid, 258-261

intertask communications, 102, 270

list of tasks, 265

parent/child system, 268, 362-363

 child task, 268-269

 default state, 270, 272-273, 275-277

 parent task, 268-269

passive priority handler, 253, 256, 258-260, 270,

351-352

passive system, 255, 261

priorities, 253

priority control, 265

priority list, 265

real-time system, 253

requirements document, 253

skip timer, 253-256, 270

skip timer values, 253-255, 258

state, 255-261

state machine, 255, 257-261, 263, 267-268

state transition, 255

Index 391

state variable, 266-268, 270

SWITCH, 258-261, 263, 265

system level, 157, 171, 200-201, 243-245, 266

system mode, 151-153, 157-158, 253, 258-260, 263,

265

system timer, 258-259

task, 165, 173-176, 193-194, 197-198, 228-232,

246-252, 254-262, 265-266, 268-271, 275-277,

285-286, 303, 310, 318, 327-329, 339, 347-

348, 355-356, 364-365, 368-370, 373-376

tick, 256-260

time-remaining system, 258-263, 271

timer function, 258-261

timing requirements, 257-258

timing system, 258-259, 298, 380-382

variable-order system, 263, 270-271, 355-358

priority management, 110, 166, 265

priority manager, 102-103, 111, 251-252

arbitrator, 102

context switcher, 102

managing priorities, 98-102

mode of operation, 102

product definition, 4-5, 7-8, 11-12, 140-141

design, 3-19, 22, 32-33, 36, 38-41, 46, 58-59, 83-84,

91-92, 98-101, 103, 107-116, 125-130, 132-

143, 146, 148, 151-153, 155-161, 163, 166-

167, 171-180, 182, 186-207, 209-212, 217-226,

228-235, 237-246, 248-256, 258-260, 263-264,

266-273, 275-300, 302, 305-309, 313, 315-322,

325-326, 332, 334, 336, 338-339, 343-352,

355-357, 359, 364-366, 368-377, 379-382

design phase, 6-9, 11-12

 collateral material, 6, 16-17

 debugging documentation, 11-12

 design collateral, 11

 design methodology, 7-17, 16-18, 110, 158-

159, 161, 176, 182, 202, 258, 287-290,

307, 343, 373, 376-377, 379-382

 down design, 11-15

 modular, 7-16, 250-251, 379-382

 modularity, 11-15, 380-381

 multitasking, 15-17, 19, 51, 83-88, 98-103,

105-111, 165, 280-281, 376-377, 380-382

 packaging, 2, 6, 11-12

 RTOS, 15-17

 compilers, 16, 23, 25-26, 35-40, 46, 48,

295-297, 321-324

 kernel, 16

 nonrecurring fee, 16

 recurring fee, 16

profitable product, 3-4

 software test jig, 11

 spin-off, 11-14

 support group, 6-7, 11-14, 192, 267-268, 310,

345-346

 test software, 11-13, 295-296

 top-down design, 11-14, 111, 210-212, 343,

380-381

 troubleshooting guides, 11-13, 200-201

end of life, 5, 7-8, 380

end-of-life buys, 11-15

end-of-life support, 11-15

end-of-life, 7-8, 11-15

 support group, 6-7, 11-14, 192, 267-268, 310,

345-346

initial production, 5-7, 11-13

 support group, 6-7, 11-14, 192, 267-268, 310,

345-346

life cycle, 3-5, 7-9, 11-13

product definition, 4-5, 7-8, 11-12, 140-141

 requirements document, 6, 111-114, 118, 124-

129, 132-141, 143, 146-147, 153-155,

157-158, 171-176, 182, 189, 198, 200,

209-210, 214-215, 238-239, 246-247,

253, 266, 280, 289, 305-307, 368-372,

376, 379-381

 costs affecting product definition phase, 8

 design, 7-8

 end of life, 7-8

 life cycle, 3-5, 7-9, 11-13

 sustained production, 5, 7-8, 11-13

RTOS, 15-17

 compilers, 16, 23, 25-26, 35-40, 46, 48, 295-

297, 321-324

 kernel, 16

 nonrecurring fee, 16

 recurring fee, 16

sustained production, 5, 7-8, 11-13

 support group, 6-7, 11-14, 192, 267-268, 310,

345-346

 marketing group, 5, 7

production costs, 1-2, 380

bill of material (BOM), 7-8

code reuse, 7-10, 373

392 Index

design costs, 7-10

 modular design methodology, 7-10

hardware/software tradeoff, 7-9

modular design methodology, 7-10

nonrecurring production costs, 1-2

 cost of sales, 1-3

 fixed production costs, 2

 G&A (general and accounting), 2-3

 support cost, 2-3

recurring production cost, 2

software-based peripherals, 7-9, 380

software test jig, 11

test code, 7-10, 310, 318-319, 349-351, 366, 368-374

protocol, 51

prototype, 7-10, 237, 380-381

PWM, 23-24

R
real-time clock, 115-116, 118-119, 126-127, 132-137, 144

receiving tasks, 51-55, 57-58, 173, 176-178, 228-233

recurring production cost, 2

requirements document, 6, 111-114, 118, 124-129, 132-

141, 143, 146-147, 153-155, 157-158, 171-176, 182,

189, 198, 200, 209-210, 214-215, 238-239, 246-247,

253, 266, 280, 289, 305-307, 368-372, 376, 379-381

dissecting the requirements document, 112-113

 communications, 113

 BCD, 132-137

 binary integers, 132-137

 buffer, 132-133

 CHAR buffer, 132-134, 327

 communications protocol, 127-129

 communications system, 127-129

 data logger, 132-137, 312, 314-315, 318,

353

 dynamic, 127-130

 average rate, 131

 maximum rate, 131

 packet, 131-133

 peak rate, 132

 storage, 127-129

 nonvolatile memory, 132-137

 RTC, 132-137

 real-time clock, 115-116, 118-119, 126-

127, 132-137, 144

 scratchpad memory, 132-136

 shadow variables, 132-137

 static storage, 127-129

 task, 127-129, 132

 error handling, 153-154

 BOR, 155, 157, 193

 brown out reset, 155

 checksum, 153-156

 CRC, 32-33, 155, 197, 277-281

 hard errors, 154, 192, 270-272, 277-279,

347-348

 nonrecoverable, 154

 hard fault, 155, 157, 193, 364

 recoverable fault, 155-157, 193

 soft errors, 154, 193-195, 270-273, 277

 recoverable, 153-157, 192-197, 270-

275, 277, 347-348

 soft fault, 155-156, 192-193

 syntax error, 153-154

 watchdog timer, 155

 WDT, 155

 function list, 114-117, 124-129, 143, 145, 170

 algorithms, 114

 flow charts, 118

 flow of the function, 114, 116-118, 198

 functions, 116

 snooze, 114-124, 126-128, 138-139, 144-

148, 150-151, 156, 168, 170, 181-

184, 187, 189-193, 197, 210-211,

213-214, 216-217, 245, 268-269,

274-276, 284-285, 339-343, 345,

365-366, 368-371

 priorities, 113

 active modes, 146-147

 configuration mode, 146-147

 fault mode, 146-147

 housekeeping functions, 153, 258-262,

355-356

 list of system modes, 147-148, 151-152,

189

 priority requirements, 146

 shut-down mode, 146-147

 tasks, 113

 timing, 113

 accumulated error, 140-143

 context switching, 111

 design notes, 146

 event-event timing, 140-142

 event-to-event timing tolerance, 140-142

Index 393

 exceptions to the timing requirements,

143, 199

 overall timing tolerance, 140-142

 product definition phase, 5, 7-8, 140-141

 rate of execution, 139-140, 145-146

 response time, 138-141, 145-146, 182-

183, 191, 241-242, 246-248, 302,

336, 338

 tasks, 111, 116, 166-167

 timing requirements, 107-108, 113, 131,

138-141, 143-146, 182-185, 187-

189, 191, 199-200, 240-241, 246,

248-249, 257-262

 tolerance requirements, 140-141

 tolerances on execution rate, 142

 total variation, 140-142

 user interface, 26-27, 29-30, 33, 119-121, 123-

127, 187-188, 198, 210, 215, 270-271,

347-348, 368-369

 command diagram, 119-121

 command flow, 119-120

 command structure, 119-120

 command, 119-123

 delete, 123-124

 edit, 123-124

 file, 123-124

 new, 123-124

 flow chart, 119-120

 menu, 119-123

 menu-based, 119-123

 menu structure, 119-124

 frequency, 119-122

 requirements document, 124

 storyboard, 119-122

 subdiagram, 119-122

 subdirectory, 123-124

 substitution box, 119-122

 Grey code, 125

 rotary encoder device, 125

 potentiometer, 125

 nonvolatile, 125, 132-137, 238-240,

310-311

 system modes, 113, 119-121, 147-148,

151-153, 157-158, 189-191, 199,

253, 263, 368-371

 IDLE, 56, 119-121, 127-131, 146,

214, 217-222, 266-267, 270,

284, 339, 359-360, 364

retrieval pointer, 57-58, 327-328

RFI, 32-33

rotary encoder, 125

round-off errors, 29-30

RTC, 132-137

RTOS, 15-17

S
sanity check, 32-33, 190-191, 277-278, 366

scientific notation, 21-22, 26-27, 42

decimal point, 20-22, 25-28

scratchpad memory, 132-136

second index variable, 50

semaphore protocol, 55-57, 176-178, 182, 193-195, 227-

233, 243

sending task, 51-52, 102, 173, 176-177, 228-233, 236,

323-324

sequence, 41-42, 51, 77-78, 83-94, 119-123, 162, 164,

166-167, 204-206, 209, 255-256, 270-271, 277-279,

281-282, 294-295, 310, 315, 368-370, 380

sequential events, 83

serial communications, 31-32, 51-52, 111-112, 127-130

serial ports, 31-32

shadow variables, 132-137

sign and magnitude, 23-25

sign bit, 23

SIGNED, 23, 25, 27-28, 36-38, 40, 42

SIGNED CHAR, 36-37

signed floating-point, 27-28

simple data broadcast, 51

globally accessible variable, 51-52

handshaking protocol, 51-52

receiving tasks, 51-55, 57-58, 173, 176-178, 228-233

sending task, 51-52, 102, 173, 176-177, 228-233,

236, 323-324

simple data types, 34

BIT, 22-25, 29, 31-38, 45-47, 64-69, 71, 96-98, 132-

143, 181, 217-222, 241, 268-270, 295, 300-

301, 323, 325, 343, 347-350, 362-363, 368-370

boolean, 22, 32-33, 35-37, 73, 90-91

CHAR, 36-39, 41, 47-48, 66-68, 85-86, 90-91, 132-

134, 204, 222, 299, 309, 312, 314, 318, 320,

323-325, 327-329, 332, 344-345, 347, 353,

355, 357, 359

DOUBLE, 42, 315-317

double precision floating-point, 42

FLOAT, 41-42, 295-296

394 Index

floating-point, 27, 42

INT, 37-42, 45-46, 50, 66-68, 295-296, 309, 312,

314, 320, 354-355

integer, 19, 26-27, 38, 40, 49, 184-186, 204, 253-

254, 256, 263-264

LONG, 16-18, 38-42, 53-55, 64, 66, 83, 85-88, 132-

137, 140-143, 187-188, 204, 222, 225, 241,

243-244, 246-247, 255, 265, 275-276, 291,

320-321, 343, 345-346, 359-361

pointers, 42-44, 57-60, 132-133, 209, 223, 228-236,

238-240, 325-330

 address, 42

 dynamically allocate variable, 42-43

 syntax, 42-43

SIGNED CHAR, 36-37

STRING, 37, 56-57, 73-74, 132-137, 140-142, 158,

307

STRUCTURE, 33-38, 42-48, 80-82, 88-89, 96-99,

111, 119-128, 132, 203-204, 237-238, 289-292,

373-375

UNION, 36-37, 46-48, 344, 353

UNSIGNED CHAR, 37, 47-48, 204, 299, 312, 318,

320, 324-325, 327-329, 332, 344-345, 347,

353, 355, 357, 359

single-bit errors, 32

software-based peripherals, 7-9, 380

software test jig, 11

spin-off, 11-14

state machine, 19, 77-78, 83, 85-92, 94-97, 107-108, 110,

187, 192-194, 197, 200, 203, 209, 214, 217, 228-

232, 237, 241-243, 246-247, 257-259, 263, 267-268,

272-273, 275-278, 280-283, 285-287, 289-290, 298,

330, 332, 334, 351-352, 360-362, 373-374, 376-377,

380-382

array-based, 89

CALL/RETURN, 94-96

calling states, 96-97

CASE, 85-86, 88-89, 91-93

combination lock, 83-84

configuration data, 90-91

data-indexed state machine, 85-92, 96-98, 203-204,

208-209, 219-220, 246-248, 270, 282-283,

330-331, 341-342, 349-351

delays, 94-96

DO/WHILE, 92-94

ELSE, 92-94

execution-indexed state machine, 88-89, 91-92,

94-98, 203, 209, 217, 219, 285, 339, 349-351,

364-365

FOR, 94-95

FOR/NEXT, 92, 94-95

GOSUB/RETURN, 92

GOTO, 92-94

hybrid state machine, 85-89, 96-98, 203, 217, 219-

220, 258-261, 285, 349-350, 364-365

IF, 92-94

IF/THEN/ELSE statement, 94

iterative statement, 94

linear piece of code, 83

multiple data blocks, 96-97

parity bit, 96-97

return state value, 96-97

sequence of events, 83-84

start bit, 96-97

state, 83-86, 92-93, 96-97

state-to-state transitions, 85

state variable, 83-84, 91-92, 96-97, 110

stop bits, 96-97

subroutine, 85-87, 94-96

SWITCH/CASE, 77, 83-84, 89, 340-341

THEN, 92-94

WHILE, 77-80, 94-95

WHILE/DO, 92, 94-95

state machine-based multitasking system, 110, 280-281

state machine multitasking, 107-109

cooperative, 107-108

handshaking protocols, 107-108

infinite loop, 80-81, 107-108, 295-298

kernel, 110

preemptive, 107-108

protocols, 107-108

scalable, 110

slices, 110

state variable, 110

subroutines, 108

tasks, 107-108

third-party software, 110

watchdog timer, 110

state variable, 83-98, 109-110, 163, 190, 193-198, 203-

209, 214-215, 219, 221, 228-234, 237-239, 246-248,

250-251, 266-270, 272-279, 282-287, 315-318, 331-

333, 336, 338, 340-342, 347-351, 355-356, 368-370,

380-382

Index 395

storage pointer, 57-58

STRING, 37, 56-57, 73-74, 132-137, 140-142, 158, 307

STRUCTURE, 33-38, 42-48, 80-82, 88-89, 96-99, 111,

119-128, 132, 203-204, 237-238, 289-292, 373-375

support cost, 2-3

support group, 6-7, 11-14, 192, 267-268, 310, 345-346

sustained production, 5, 7-8, 11-13

synchronization, 53-54, 56-57, 158, 228, 243-244, 323-

324, 380

syntax, 35-37, 42-43, 46, 77-80, 153-154, 270-271, 291-

292, 295, 347-348, 380

system-level design, 157-158, 171, 197-200, 203, 380-381

system-level design, 103, 111, 157, 171, 193-199

communications, 16, 19, 31-32, 50-52, 98-102, 105-

108, 110-113, 119, 127-130, 132-138, 157-158,

171-180, 182, 185, 193-195, 197-201, 203,

217, 222-223, 226, 228-235, 237-238, 251-252,

270, 275-279, 285-287, 289-291, 307-308,

310, 313, 318-323, 364-367, 373-375, 379-382

 broadcast protocol, 176-179

 buffer protocol, 176-179

 circular link, 178-180

 communications variable list, 181

 data flow, 171-174, 178-181, 197-198, 252,

275-277

 data flow diagram, 171-174, 178-181, 197-198,

252, 275-277

 source, 171-172

 destination, 171-172

 task, 171-172

 data pathway, 173-175

 data storage, 173-175

 design notes, 178-180

 distribution bus, 173

 dynamic, 176-177, 182

 function, 173-176

 function listing, 171-172

 handshaking, 178-179

 handshaking flags, 173

 multiple destinations, 173-174, 176, 178

 pathway, 171-177

 protocol, 176-179

 receiving function, 171-173

 requirements document, 173-175

 semaphore, 178-179

 semaphore communications, 178-179, 321-322

 semaphore pathway, 178-179, 277-278

 semaphore protocol, 176-178

 state lock, 171, 176-180, 193-195, 197-200,

228-235, 243, 285, 321-322

 static, 178, 182

 storage loop, 173-175

 task-to-task pathways, 173-175

 task definition, 157-159, 171, 173-175, 189-

191, 199-200, 210-212, 268

 task lists, 173-176

 variable list, 178-180, 182

compatible software functions, 160-161

 arbitrate control, 163, 268-269

 common functionality, 164, 170

 control, 162

 execute sequentially, 161

 execute synchronously, 162

 extensions, 163

 mutually exclusive, 158-160, 163-166, 169-

170, 263

error recovery, 77-78, 166-167, 192-195, 228-235,

270-272, 275-277, 284, 302-303

 buffers, 195

 communications, 197-199

 communications errors, 193-195

 data pathways, 193-195

 default value, 193-194

 design notes, 197-198

 error conditions, 119-121, 148, 166-167, 193-

195, 197-198, 200, 215, 272-273, 302,

321-325, 339

 error detection and recovery systems, 192, 275-

276, 286-287, 349, 376

 error recovery system, 193-195

 error task, 193-194, 197-198

 error task state machine, 193-194, 275-277,

347-348, 364-365, 376

 faults, 193-194

 hard, 193-195

 recoverable, 193-195

 soft, 193-195

 fault conditions, 197

 hard errors, 192

 pathway, 193-195

 pathway protocols, 193-195

 priority handling, 197-198

 recoverable, 192

 recovery mechanism, 193-195, 197

396 Index

 recovery systems, 192-194, 197

 requirements document, 192

 semaphore protocol, 195

 soft errors, 192

 states, 192

 state lock, 178-180, 193-195, 197-198, 228-234

 state machines, or any, 193-194

 state variable, 193-194

 system data flow diagram, 197-198

 system-level design, 196

 system mode, 193-194

 task, 193-194

 task list, 197-198

 task state machines, 192

 timing, 197-198

 variable dictionary, 176-177, 197-198, 227

 watchdog, 193-194

incompatible software functions, 164

 asynchronous timing, 165

 design notes, 166-167

 different priorities, 165

 different rates, 165

 error, 166-168

 error recovery functions, 166-167

 operate intermittently, 166

 subfunctions, 164, 166

priority handler, 148, 160-161, 165-166, 185-186,

189-190, 203-207, 241-244, 252-254, 256,

258-263, 265, 267-268, 270-271, 286-287,

298, 309, 351-357, 359-363

 design notes, 191

 priority, 191

 priority list, 189-191

 state variable, 190

 system mode, 189-191

 system priority, 191

 task definition, 190-191

 task priority, 190

 timing, 191

 timing requirements, 191

requirements document, 157

system-level design documentation, 197-198

 algorithms, 198

 communications, 198, 200-201

 communications plan, 199

 design notes, 200-201

 dynamic, 199

 error detection, 192, 197-198, 200, 270-272,

275-276, 282-283, 285-287, 347-349,

364, 376

 event-to-event, 182-183, 199

 exceptions, 143, 199

 flow of the functions, 114, 116-117, 198

 good documentation, 200-201

 interrupt-based timing system, 200

 memory requirements, 199

 methods for recovering, 198

 pathways, 199-200

 priorities, 200-201

 priority information, 198-199

 priority list, 200

 protocol, 199-200

 recovery system, 200

 requirements document, 124, 157, 176, 198, 200

 response-time, 199

 software functions, 199

 state lock, 199-200

 static, 199

 storage requirements, 198

 system-level design, 157-158, 171, 197-200,

203, 380-381

 system data-flow diagram, 199

 system modes, 199

 systems priorities, 200

 task, 199-201

 task definition, 200

 task information, 198

 task list, 199

 temporary storage, 199

 tick, 200

 timing, 198-201

 tolerance, 199

 unregulated timing, 200

 user interface, 198

 variable list, 199

tasks, 157-158

 task definition, 158

timing analysis, 140-143, 157-158, 182, 200

 event-to-event timing, 139-142, 182, 246

 handshaking, 185, 318-320

 interrupt, 185

 interrupt routine, 186

 overall timing chart, 182-183

 priority handler, 185-186

Index 397

 real-time, 182

 requirements document, 182

 response timing, 182

 skip rates, 186-187

 state machine, 186, 228-232

 system tick, 184-186, 200, 240-243, 256-261,

280-281, 301-303, 353-354, 359-360,

362, 368-370, 380-382

 system tick frequency, 186

 tasks, 182-183

 tick, 184

 timer-based interrupt, 185, 240-241

 timing requirements, 107-108, 113, 131, 138-

141, 143-146, 182-185, 187-189, 191,

199-200, 240-241, 246, 248-249, 257-262

 exceptions, 143, 199

 timing specifications, 140-141, 182, 184-185

system requirements document, 111

system timing, 102-103, 111, 113, 139-140, 145, 157-

158, 184-185, 199, 210-212, 238-240, 256-258,

315-317, 353-354, 373-374

algorithm, 248-249

array, 251

broadcast protocol, 243-244

data-indexed state machine, 203, 246-247

event-to-event timing, 246

frequency, 241-242

GO, 241-242

handshaking, 243-244

hardware timer, 241

IF, 249-250

interrupt, 241-242

interrupt service routine, 241

main system source file, 251-252

master header file, 226-230, 237, 251-252

MIP, 240

priority control, 243-244

priority handler, 241-244

priority manager, 102-103, 111, 251-252

priority systems, 241-242

requirements document, 238-239, 246-247

response time, 191, 246-247

semaphore protocol, 243

skip rate, 246-247, 250-251

skip timer, 228-233, 241-248, 250-252

 synchronize, 251

state lock, 176-177, 243

state machine, 246-250

state variable, 250-251

system level, 157, 171, 200-201, 243-245, 266

task, 102, 104, 116-117, 166-167, 184, 187-188,

199-200, 228-234, 237-238, 241-244, 251-253,

256, 258-261, 265, 270-273, 275-278, 302-303,

330, 359-360, 366

tick, 240-245, 248-250

timer function, 245-246, 250-251

timer system algorithm, 248-249

timing, 110, 143, 243-244

timing requirements, 248-249

T
task state machines, 110, 187, 192, 200, 203, 237, 241-

243, 257-259, 263, 272-273, 275-277, 281-282,

286-287, 289-290, 298, 330, 334, 351-352, 360-362,

376, 380-381

algorithm, 210-212, 216-221

 GOTO, 210-211

 IF, 210-211

 state machine, 210-211

algorithm, 116-117, 204-208, 283, 331

communications, 217

data-indexed, 219, 221, 349-351

data-indexed state machine, 209, 217

data-indexed state variable, 221, 285

dynamic, 209

error conditions, 215

error-handling functions, 214

error state, 215

execution-indexed designs, 219-220

execution-indexed operation, 219

execution-indexed state machine, 209, 217, 219

heap, 209

hybrid, 217

hybrid state machine, 219

list of all actions, 222

list of all input and output pathways, 222

list of states, 215-217, 221-222

 default, 222

 error, 222

 hybrid design, 219-220

 preliminary list of states, 204-205

list of state transitions, 215

list of data pathways, 216, 221

398 Index

parity, 219

preliminary state, 214

priority handler, 204-207

requirements document, 209-210

states, 203, 216

 default, 214

 error, 214

state list, 204-205

state machine, 204-207, 209, 216-217, 222

state transition, 215-216, 221

state variable, 204-207, 209, 215

stop bits, 219

table of state transitions, 217

task, 209-212, 217-220

task definition, 210-212

user interface, 215

temporary storage, 41, 56-57, 113, 132-136, 199

terminals, 30-31, 127-129

test code, 7-10, 310, 318-319, 349-351, 366, 368-374

testing driver routine, 307

algorithm, 217-218, 332, 349-350

array, 349-351

assembly/compiler, 318-319

asynchronous, 368-370

BCD, 181, 320-321, 334-335, 345-347

breakpoint, 367-370

broadcast protocol, 318-320

buffer protocol, 325-330

buffer storage, 326-329

 full, 326

 empty, 326

CHAR, 344

code archive, 373-374

code reuse, 373

communications pathway, 310, 318-322, 366-367,

380-381

communications variables, 367

compiler, 345

component level of the design, 281-282, 376

configuration, 373-374

data capture, 310-311

data-indexed state machine, 219, 221, 330-331, 341-

342, 349-351

data-logging, 313, 315-317, 355

data logging, 316

data logging function, 351-352

data pathway, 307-308, 318-319, 327-329

debugging, 315-317, 343-344, 375

design methodology, 343, 376-377

design notes, 143, 166-167, 192, 204-207, 251-252,

258, 270, 275-279, 286-287, 291-292, 318-319,

348-351, 355-357, 366, 268-376

design’s requirements, 376

designer’s library, 372

EEPROM, 313, 315-317

emulator, 368-369

error detection and correction, 336

error detection and recovery system, 347-349, 364,

366, 373-374, 376

error handling, 349-350

error task, 330-331, 349, 351-352, 362, 364-365,

368-371

excuse-me, excuse-you system, 359

execution-indexed state machine, 339, 349-351,

364-365

FOR/NEXT, 355

four-way handshaking system, 228-230, 321-323,

325

four-way handshaking semaphore, 228-229, 325-326

goflags, 351-353

handshaking, 185, 318-320, 325-326, 338

hardware supervisory systems, 364-365

hardware timer, 353-354, 373-374

header file, 368-372

housekeeping, 347-348, 355-356

hybrid, 349-350, 364-365

include file, 327-329

initialization, 373-374

INT, 345-346

integration, 366-367

interrupt service routine, 375

jump table, 341-342

library, 373-377

library material, 373-374

library routines, 373-374

library source file, 375-376

LONG, 345-346

looping, 341-342

macros, 318-322, 326

main loop, 355-356, 373-374

main system header file, 321-322, 373-375

main system header include file, 321-322, 368-372

multitasking, 376-377

naming convention, 327-329, 340-341

Index 399

nonvolatile, 310-311

parent/child system, 268, 362-363

passive, 357-358

passive priority, 355-356

passive system, 351-352, 355-356

pathway, 321-322

pathway protocol, 373-375

priority handler, 351-356, 362-363, 374

priority-handling, 253-254, 286-287, 351-352

priority handling, 366-367

protocol, 318-322, 325-326

prototypes, 327-329

requirements document, 368-372, 376

response time, 338

semaphore, 322

semaphore flag, 349

serial interface, 313, 315-316

simulator, 338

skip timer, 286-287, 307-308, 310, 345-348, 353,

355-358, 367-368, 373-374

software library, 345

states, 191, 344, 368-371

state decoder, 341, 349-351

state decoding, 332

state machines, 193-194, 204-207, 310, 315-317,

325-329, 332, 335, 338-339, 347-349, 351-352,

362, 364-365, 373-374, 376-377

state transitions, 333-334, 343-344, 349-351

state variable, 123-124, 193-194, 295-297, 315-317,

333, 336, 338, 340-342, 349-351, 368-370

structure, 373-374

subroutine, 341-342, 349-351

SWITCH, 332, 355-357

synchronization, 323-324

system and component level of the design, 376

system mode, 355-356

system priority handlers, 376

system timing, 373-374

task, 19-20, 85-88, 171, 228-233, 255, 289-290, 310,

321-323, 330-331, 345-347, 355, 366-370, 375

task state machines, 110, 187, 192, 200, 203, 237,

241-243, 257-259, 263, 272-273, 275-277,

281-282, 286-287, 289-290, 298, 330, 334,

351-352, 360-362, 376, 380-381

task state variable, 318, 349

template, 327-329, 373-374

test archive, 373-375

test driver, 307-309, 334, 338, 344, 347-350, 355-

356, 367-371, 375

test function, 373-375

tick, 370

time-remaining, 353-358

time stamp, 315

time-stamped events, 310-311

timer, 366-367, 374

timer function, 355-356

timer interrupt, 373-374

timer routine, 307-308, 369

timing, 349-350

timing function, 373-374

top-down design methodology, 343

troubleshooting, 318

two-way handshaking system, 227-230, 321-324

unsigned CHAR, 345

variable corruption, 368

variable-order system, 355-356, 358

wraparound, 326

test software, 11-13, 295-296

thermal printers, 31

timing control, 98-103, 105-106, 110-111, 187, 203, 289-

290, 299, 336

asynchronous tasks, 103

priority manager, 103

timing system, 107-108, 182, 187, 200, 240, 243-244,

250, 258-259, 286, 298, 380-382

top-down design, 11-14, 111, 210-212, 343, 380-381

troubleshooting guides, 11-13, 200-201

truncated data, 39-40

two-dimensional array, 49, 89-90

two-way handshaking, 53-55, 227-230, 323-324

two’s complement, 23-25, 27

U
UNION, 36-37, 46-48, 344, 353

UNSIGNED, 23-25, 37-38, 40, 45-48, 203-204, 299, 312,

318, 320, 324-325, 327-329, 332, 344-345, 347,

353-355, 357, 359

unsigned binary numbers, 23

UNSIGNED CHAR, 37, 47-48, 204, 299, 312, 318, 320,

324-325, 327-329, 332, 344-345, 347, 353, 355,

357, 359

UNSIGNED LONG, 40

user interface, 26-27, 29-30, 33, 119-121, 123-127, 187-

188, 198, 210, 215, 270-271, 347-348, 368-369

400 Index

command diagram, 119-121

command flow, 119-120

command structure, 119-120

 command, 119-123

 delete, 123-124

 edit, 123-124

 file, 123-124

 new, 123-124

 flow chart, 119-120

 frequency, 119-122

 menu, 119-123

 menu-based, 119-123

 menu structure, 119-124

 requirements document, 124

 storyboard, 119-122

 subdiagram, 119-122

 subdirectory, 123-124

 substitution box, 119-122

Grey code, 125

rotary encoder device, 125

 potentiometer, 125

 nonvolatile, 125, 132-137, 238-240, 310-311

system modes, 113, 119-121, 147-148, 151-153,

157-158, 189-191, 199, 253, 263, 368-371

 IDLE, 56, 119-121, 127-131, 146, 214, 217-

222, 266-267, 270, 284, 339, 359-360,

364

V

vector-based, 23-24

video controller chips, 31

W

wraparound, 57-59, 326-330

ELSEVIER SCIENCE CD-ROM LICENSE AGREEMENT

PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING THIS CD-ROM PRODUCT. THIS CD-ROM
PRODUCT IS LICENSED UNDER THE TERMS CONTAINED IN THIS CD-ROM LICENSE AGREEMENT (“Agreement”).
BY USING THIS CD-ROM PRODUCT, YOU, AN INDIVIDUAL OR ENTITY INCLUDING EMPLOYEES, AGENTS AND
REPRESENTATIVES (“You” or “Your”), ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, THAT YOU UN-
DERSTAND IT, AND THAT YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT.
ELSEVIER SCIENCE INC. (“Elsevier Science”) EXPRESSLY DOES NOT AGREE TO LICENSE THIS CD-ROM PRODUCT TO
YOU UNLESS YOU ASSENT TO THIS AGREEMENT. IF YOU DO NOT AGREE WITH ANY OF THE FOLLOWING TERMS,
YOU MAY, WITHIN THIRTY (30) DAYS AFTER YOUR RECEIPT OF THIS CD-ROM PRODUCT RETURN THE UNUSED
CD-ROM PRODUCT AND ALL ACCOMPANYING DOCUMENTATION TO ELSEVIER SCIENCE FOR A FULL REFUND.

DEFINITIONS

As used in this Agreement, these terms shall have the following meanings:

“Proprietary Material” means the valuable and proprietary information content of this CD-ROM Product including all indexes
and graphic materials and software used to access, index, search and retrieve the information content from this CD-ROM Product
developed or licensed by Elsevier Science and/or its affiliates, suppliers and licensors.

“CD-ROM Product” means the copy of the Proprietary Material and any other material delivered on CD-ROM and any other hu-
man-readable or machine-readable materials enclosed with this Agreement, including without limitation documentation relating
to the same.

OWNERSHIP

This CD-ROM Product has been supplied by and is proprietary to Elsevier Science and/or its affiliates, suppliers and licensors.
The copyright in the CD-ROM Product belongs to Elsevier Science and/or its affiliates, suppliers and licensors and is protected by
the national and state copyright, trademark, trade secret and other intellectual property laws of the United States and international
treaty provisions, including without limitation the Universal Copyright Convention and the Berne Copyright Convention. You have
no ownership rights in this CD-ROM Product. Except as expressly set forth herein, no part of this CD-ROM Product, including
without limitation the Proprietary Material, may be modified, copied or distributed in hardcopy or machine-readable form without
prior written consent from Elsevier Science. All rights not expressly granted to You herein are expressly reserved. Any other use of
this CD-ROM Product by any person or entity is strictly prohibited and a violation of this Agreement.

SCOPE OF RIGHTS LICENSED (PERMITTED USES)

Elsevier Science is granting to You a limited, non-exclusive, non-transferable license to use this CD-ROM Product in accordance
with the terms of this Agreement. You may use or provide access to this CD-ROM Product on a single computer or terminal physi-
cally located at Your premises and in a secure network or move this CD-ROM Product to and use it on another single computer or
terminal at the same location for personal use only, but under no circumstances may You use or provide access to any part or parts
of this CD-ROM Product on more than one computer or terminal simultaneously.

You shall not (a) copy, download, or otherwise reproduce the CD-ROM Product in any medium, including, without limitation, online
transmissions, local area networks, wide area networks, intranets, extranets and the Internet, or in any way, in whole or in part,
except that You may print or download limited portions of the Proprietary Material that are the results of discrete searches; (b) alter,
modify, or adapt the CD-ROM Product, including but not limited to decompiling, disassembling, reverse engineering, or creating
derivative works, without the prior written approval of Elsevier Science; (c) sell, license or otherwise distribute to third parties the
CD-ROM Product or any part or parts thereof; or (d) alter, remove, obscure or obstruct the display of any copyright, trademark or
other proprietary notice on or in the CD-ROM Product or on any printout or download of portions of the Proprietary Materials.

RESTRICTIONS ON TRANSFER

This License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this CD-ROM Product, including
without limitation the Proprietary Material, may be sold, assigned, transferred or sub-licensed to any other person, including without
limitation by operation of law, without the prior written consent of Elsevier Science. Any purported sale, assignment, transfer or
sublicense without the prior written consent of Elsevier Science will be void and will automatically terminate the License granted
hereunder.

TERM

This Agreement will remain in effect until terminated pursuant to the terms of this Agreement. You may terminate this Agree-
ment at any time by removing from Your system and destroying the CD-ROM Product. Unauthorized copying of the CD-ROM
Product, including without limitation, the Proprietary Material and documentation, or otherwise failing to comply with the terms
and conditions of this Agreement shall result in automatic termination of this license and will make available to Elsevier Science
legal remedies. Upon termination of this Agreement, the license granted herein will terminate and You must immediately destroy
the CD-ROM Product and accompanying documentation. All provisions relating to proprietary rights shall survive termination of
this Agreement.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE INFORMATION CON-
TAINED IN THE PROPRIETARY MATERIALS IS COMPLETE OR FREE FROM ERROR, AND NEITHER ASSUMES, AND
BOTH EXPRESSLY DISCLAIM, ANY LIABILITY TO ANY PERSON FOR ANY LOSS OR DAMAGE CAUSED BY ERRORS
OR OMISSIONS IN THE PROPRIETARY MATERIAL, WHETHER SUCH ERRORS OR OMISSIONS RESULT FROM NEG-
LIGENCE, ACCIDENT, OR ANY OTHER CAUSE. IN ADDITION, NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS
MAKE ANY REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE PERFORMANCE
OF YOUR NETWORK OR COMPUTER SYSTEM WHEN USED IN CONJUNCTION WITH THE CD-ROM PRODUCT.

If this CD-ROM Product is defective, Elsevier Science will replace it at no charge if the defective CD-ROM Product is returned to
Elsevier Science within sixty (60) days (or the greatest period allowable by applicable law) from the date of shipment.

Elsevier Science warrants that the software embodied in this CD-ROM Product will perform in substantial compliance with the
documentation supplied in this CD-ROM Product. If You report significant defect in performance in writing to Elsevier Science, and
Elsevier Science is not able to correct same within sixty (60) days after its receipt of Your notification, You may return this CD-ROM
Product, including all copies and documentation, to Elsevier Science and Elsevier Science will refund Your money.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE, ELSEVIER SCIENCE,
ITS AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, WITH
RESPECT TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE PROPRIETARY MATERIAL, AN
SPECIFICALLY DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

If the information provided on this CD-ROM contains medical or health sciences information, it is intended for professional use
within the medical field. Information about medical treatment or drug dosages is intended strictly for professional use, and because
of rapid advances in the medical sciences, independent verification of diagnosis and drug dosages should be made.

IN NO EVENT WILL ELSEVIER SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE TO
YOU FOR ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY TO USE THE CD-ROM
PRODUCT REGARDLESS OF WHETHER SUCH DAMAGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE
DEEMED TO RESULT FROM THE FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR OTHER REMEDY.

U.S. GOVERNMENT RESTRICTED RIGHTS

The CD-ROM Product and documentation are provided with restricted rights. Use, duplication or disclosure by the U.S. Govern-
ment is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted Rights clause at
FAR 52.22719 or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.2277013,
or at 252.2117015, as applicable. Contractor/Manufacturer is Elsevier Science Inc., 655 Avenue of the Americas, New York, NY
10010-5107 USA.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New York, USA. In any dispute arising out of this Agreement, you
and Elsevier Science each consent to the exclusive personal jurisdiction and venue in the state and federal courts within New York
County, New York, USA.

	Embedded Multitasking
	Copyright Page
	Contents
	About the Author
	What’s on the CD-ROM?
	Chapter 1. What’s In This Book, and Why Should I Read It?
	Engineering and Profits

	Chapter 2. Basic Embedded Programming Concepts
	Numbering Systems
	Data Structures
	Communications Protocols
	Mathematics
	Numeric Comparison
	State Machines
	Multitasking

	Chapter 3. System-Level Design
	Dissecting the Requirements Document
	System-Level Design

	Chapter 4. Component-Level Design
	Task State Machines
	Communications
	System Timing
	Priority Handler
	Error Recovery System

	Chapter 5. Implementation and Testing
	Building a Testing Driver Routine

	Chapter 6. Does It Do the Job?
	Index
	Elsevier Science CD-ROM License Agreement

