
Chapter 1. Extending Ptolemy —
Introduction

Authors: Christopher. Hylands
Edward. A. Lee
Thomas. M. Parks
José Luis Pino

1.1 Introduction
Ptolemy is extensible in the following ways:

 • New galaxies can be defined. We do not view this as a programming task, so it is
explained in theUser’s Manual rather than in thisProgrammer’s Manual.

 • Customized simulation builders and controllers can be created using theptcl inter-
preted command language. This language is also covered in theUser’s Manual.

 • New functional blocks (stars) can be added to any of the Ptolemy domains. These
blocks can be dynamically linked with eitherptcl or pigi .

 • New code generation blocks can be added to existing synthesis domains.

 • Stars with customized user interfaces and displays can be created using Tcl/Tk.

 • New simulation and design-flow managers (called targets) can be created.

 • New domains with new models of computation can be created.

This volume explains how to accomplish most of the above. TheKernel Manual, volume 3 of
The Almagest, supplements this volume with a detailed listing of all of the classes in the
Ptolemy kernel and in the code generation kernel. The sophisticated user, however, who is
extending the system in nontrivial ways, will wish to refer to the source code as the ultimate,
most complete documentation.

In this volume, we assume familiarity with the terminology and use of Ptolemy. Refer
to theUser’s Manual, and particularly to the glossary contained therein for assistance. We
also assume you are familiar with the overall organization of the Ptolemy software, as
described inUser’s Manual.

1.2 File Organization
Ptolemy is distributed with source code. The complete distribution even includes the

compiler we use (g++, from the Free Software Foundation), Tcl/Tk, andvem, programs that
were developed quite independently, but upon which Ptolemy relies. The distribution also
includes a large number of demonstrations. Perusing the demonstrations can be an excellent
way to get familiar with the system. Perusing the source code is by far the best way to under-
stand the system. At a minimum, anyone wishing to write new stars should read the source

1-2 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

code for a few of the built-in stars.

1.2.1 Ptolemy environment variables

The root of the Ptolemy tree is often installed in the home directory of a fictitious user
calledptolemy . If the installation follows this model at your site, you can find the Ptolemy
code with the following command:

cd ~ptolemy

If your installation does not have a user namedptolemy , then you must find out where your
system administrator has installed the system, and set an environment variable called
PTOLEMY to point to this directory. For instance, if your system administrator installed
Ptolemy in/users/ptolemy , then you should issue the following command:

setenv PTOLEMY /users/ptolemy

$PTARCH is an environment variable representing the architecture on which you are
running, and has one (or more) of the following values:sun4 , sol2 , or hppa , for Sun (under
Sun O/S), Sun (under Solaris 2.X), and HP machines respectively. There are a few other pos-
sible values for thePTARCH variable as well. There might be variations likesol2.cfront or
hppa.cfront to store an object tree created by the Cfront C++ compiler or some other non-
g++ compiler.The script$PTOLEMY/bin/ptarch will return the architecture of the machine
on which it is run. For example, if you were on a machine running SunOS4.1.3, you would
type:

setenv PTARCH sun4

You can use the following fragment in your.cshrc file to set $PTOLEMY and
$PTARCH. The $PTOLEMY/.cshrc file contains the fragment below and many other csh
setup commands you may find useful.

setenv PTOLEMY /users/ptolemy
if (! $?$PTARCH) setenv $PTARCH ` $PTOLEMY/bin/ptarch`
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

Note that if you are using a prebuilt Gnu compiler that you obtained from the Ptolemy
project, you must either place the Ptolemy distribution at/users/ptolemy , or you must set
certain environment variables so that the Gnu compiler can find the necessary pieces of itself.
Appendix A, Installation and Troubleshooting of the PtolemyUser’s Manual discusses these
variables in detail. The variables change with different releases of the compilers, so we do not
document them here. The User’s Manual also documents other useful environment variables,
such asLD_LIBRARY_PATH.

For every directory under thesrc tree (see figure 1-2) that contains source code that is
compiled, there is a corresponding directory under theobj.$PTARCH tree. Many developers
find it convenient to set the following aliases:

alias srcdir ‘cd `pwd | sed “s?/obj.$PTARCH/?/src/?”`’
alias objdir ‘cd `pwd | sed “s?/src/?/obj.$PTARCH/?”`’

For your convenience, these can be found in the file$PTOLEMY/.alias . They make it easy
to move between the source directory and the corresponding object directory. For example, if
you are running on a Sun machine running Solaris 2.4,

The Almagest 1-3

Ptolemy Last updated: 10/17/97

% cd $PTOLEMY/src/kernel
% pwd
/users/ptolemy/src/kernel
% objdir
% pwd
/users/ptolemy/obj.sol2/kernel
% srcdir
% pwd
/users/ptolemy/src/kernel
%

1.2.2 Directory Structure

The documentation (usually) refers to the root of the Ptolemy directory tree as
$PTOLEMY, but occasional slips will refer to~ptolemy . Below this root, you can find the
directories indicated in figure 1-1.

The src directory is key to much of what this volume deals with. Its structure is
shown in figure 1-2. Within thesrc directory, thekernel directory is most important. It con-
tains all the classes that define what Ptolemy is. Second most important is thedomains direc-
tory. Its structure is shown in figure 1-3. This directory contains one subdirectory that defines
each of the domains distributed with Ptolemy. Each domain directory contains at least the sub-
directories shown in figure 1-4. If you are going to write stars for the SDF domain, for exam-
ple, then you would be well advised to look at a few examples contained in the directory
$PTOLEMY/src/domains/sdf/stars .

The directory$PTOLEMY/mk contains master makefiles that are included by other
makefiles (The makefileinclude directive does this for us).$PTOLEMY/mk/config-
$PTARCH.mk refers to the makefile for the architecture$PTARCH. For instance,$PTOLEMY/
mk/config-sun4.mk is the makefile that contains the sun4 specific details.

$PTOLEMY

src

demo

mk

bin.$PTARCH

root of the source tree (includes all demos and icons)

top-level demo directory, with pointers to demos in src

shared portions of makefiles

platform-dependent executables

documentation (including this manual) in PostScriptdoc

FIGURE 1-1: Structure of the home directory of the Ptolemy installation ($PTOLEMY).

bin platform-independent executables

lib.$PTARCH platform-dependent libraries used for linking

lib platform-independent run-time libraries

octtools a subset of the Berkeley octtools, used by pigi

obj.$PTARCH object files (this appears when Ptolemy is recompiled)

tcltk the installation of Tcl and Tk, used by pigi

tycho the Ptolemy syntax manager

1-4 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

When you cd to$PTOLEMY and typemake, $PTOLEMY/makefile contains a rule that
checks to see if the directory$PTOLEMY/obj.$PTARCH exists. If this directory does not
exist, then make runs the commandcsh -f MAKEARCH , whereMAKEARCH is a C shell script
at $PTOLEMY/MAKEARCH. MAKEARCH will create the necessary subdirectories under
$PTOLEMY/obj.$PTARCH for $PTARCH if they do not exist.

We split up the sources and the object files into separate directories in part to make it easier to
support multiple architectures from one source tree. The directory$PTOLEMY/obj.$PTARCH
contains the platform-dependent object files for a particular architecture. The platform-depen-
dent binaries are installed into$PTOLEMY/bin.$PTARCH , and the libraries go into
$PTOLEMY/lib.$PTARCH . Octtools, Tcl/Tk, and Gnu tools have their own set of architec-
ture-dependent directories.

The makefiles are all designed to be run from theobj.$PTARCH tree so that object
files from different platforms are kept separate (when you runmake in the $PTOLEMY top
level, the appropriateobj.$PTARCH tree is selected for you automatically).

We are able to have separate object and source directories by using themake pro-
gram’sVPATH facility. Briefly, VPATH is a way of tellingmake to look in another directory for
a file if that file is not present in the current directory. For more information, see the Gnu
make documentation, in Gnu Info format files in$PTOLEMY/gnu/common/info/make-* .

FIGURE 1-2: The structure of the $PTOLEMY/src directory

$PTOLEMY/src

ptcl

filters

pigiExample

domains

source for ptcl

outside filter design programs

example showing how to make a custom pigi

the code for each of the domains

source for Gnu tools (optional)gnu

compat header files for non-standard configurations

octtools source for our subset of the Berkeley oct tools

kernel the Ptolemy kernel

pigilib source for most of pigi

pigiRpc source for pigiRpc program

ptklib some Tcl/Tk code used in various places

tycho

pxgraph

source for the tysh Tycho/Ptolemy binary

source code for the pxgraph program

ptlang source for the preprocessor for star writing

thread code used by the PN domain

tcltk source for Tcl and Tk (optional)

utils external software package interface libraries

xv image viewer sources (optional)

The Almagest 1-5

Ptolemy Last updated: 10/17/97

There are three primary Ptolemy binaries:

pigiRpc The graphical version that usesvem as a front end.pigiRpc
contains an interface to Octtools, the package that is used to
store facets. When you runpigi , you actually run a script
called$PTOLEMY/bin/pigiEnv.csh which callsvem which,
in turn, starts uppigiRpc .

ptcl A prompt version that contains most of the functionality in
pigiRpc not including the Tk stars.ptcl does not contain an
interface to Octtools

tysh The Tycho shell version, which is similar topigiRpc , except
that tysh does not contain an interface to Octtools. Note that
Tycho can be run from a basicitkwish binary that contains no
Ptolemy functionality.

FIGURE 1-3: The structure of the $PTOLEMY/src/domains directory.

FIGURE 1-4: The structure of a typical domain directory within $PTOLEMY/src/domains.

$PTOLEMY/

sdf

cg

fsm

bdf

synchronous dataflow (statically scheduled)

the base class domain for all code generation

finite state machine domain

code generation for the Texas Instruments C50

Boolean-controlled dataflow domain

code generation for the Motorola DSP56000cg56

de the discrete-event domain

cgc code generation in C

pn the process network domain

hof higher-order function domain

synchronous reactive domain

vhdl code generation for behavioral modeling in VHDL

src/domains

ddf dynamically scheduled dataflow

demo demonstrations of the domain

stars stars distributed with the domain

kernel the core code defining the domain

icons the oct facets defining the icons used by pigi

targets (optional) additional targets used by the domain

$PTOLEMY/
src/domains/xxx

vhdlb

xxx

code generation for behavioral modeling in VHDL

demonstration of how to define a new domain

sr

c50

1-6 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

Each of the three binaries above has three different versions that contain different
functionality. Below we only list the different version ofpigiRpc , butptcl andtysh have
similar versions.

pigiRpc This binary contains all of the domains, so it is the largest
binary.

pigiRpc.ptrim This binary contains SDF, DE, BDF, DDF and CGC domains
only.

pigiRpc.ptiny This binary contains SDF (no image stars) and DE domains
only.

Each of the above versions can also be built as a.debug version that contains debug-
ging information. The file$PTOLEMY/mk/ptbin.mk contains rules to build the above bina-
ries in combination with debugging and other features. The file$PTOLEMY/mk/stars.mk
contains rules that indicate dependencies between domains and other features.

1.3 Creating Custom Versions of pigiRpc
Ptolemy is an extensible system. Extensions can take the form of universes and galax-

ies, which are viewed by Ptolemy as applications, but they can also take the form of additional
code linked to the Ptolemy kernel. New stars can be dynamically linked (see “Writing Stars
for Simulation” on page 2-1). Other additional code has to be linked in statically. If you add
many of your own stars to the system, you will want these stars to be statically linked as well,
so that you do not have to wait for the dynamic linking to complete every time you execute
your applications.

The Ptolemy kernel andvem (the schematic editor) run in separate Unix processes.
The Ptolemy kernel process is called “pigiRpc ”, while thevem process is called “vem”. You
can create your own version ofpigiRpc that contains your stars and other extensions perma-
nently linked in.

There are at least three ways to build your ownpigiRpc , depending on the kind of
extensions you are making. The first way usessrc/pigiExample , and it is intended for
users who just need to add new stars. The second and third ways use themkPtolemyTree
script and csh aliases and are for users that are creating new domains or making other more
extensive changes.

If you want to extend Ptolemy by modifying or adding a new scheduler, target, or even
an entire domain, it is recommended that you create a duplicate directory hierarchy. This
allows you to experiment with and fully test any changes separately, rather than incorporating
them into the “official” version of Ptolemy. This way, your experimentation will not interfere
with other Ptolemy users at your site, and your changes will not be overwritten by future
installations of Ptolemy releases. It also means that all of the existing makefiles will work
without modification because all of the paths specified are relative to the root of the hierarchy.

The most direct way to do this is to copy the entire Ptolemy hierarchy. This could be
done with a command such as:

cp -r $PTOLEMY ~/ptolemy

which would create a copy of the hierarchy in your home directory. Because this method

The Almagest 1-7

Ptolemy Last updated: 10/17/97

requires excessive disk space and makes cooperative development difficult, many developers
prefer to use symbolic links when creating a duplicate hierarchy.mkPtolemyTree and the
csh aliases can help you setup these symbolic links.

1.3.1 Creating a pigiRpc that includes your own stars

For those who just want to statically link in their own stars with minimal hacking with
makefiles, an example showing how to do this is provided in$PTOLEMY/src/pigiExam-
ple.

In the example below, we assume that$PTOLEMY and$PTARCH are set and that you
have write permission to the Ptolemy source tree. If you don’t have write permission, you can
set up a parallel tree with the Unixln -s command. If, for example, the Ptolemy tree was at
/users/ptolemy , but you wanted to build under~/pt , you could do the following to create
the directory and create symbolic links for the dot files, like.cshrc , and create symbolic
links for the other files and directories in the distribution:

mkdir ~/pt
cd ~/pt
ln -s /users/ptolemy/* .
ln -s /users/ptolemy/.??* .
setenv PTOLEMY ~/pt
setenv PTARCH ‘$PTOLEMY/bin/ptarch‘
rm obj.$PTARCH src bin.$PTARCH
mkdir -p src src/pigiExample bin.$PTARCH
cd bin.$PTARCH; ln -s /users/ptolemy/bin.$PTARCH
cd ../src; ln -s /users/ptolemy/src/* .
cd pigiExample; cp /users/ptolemy/src/pigiExample/* .

You also need to be sure that you have your environment set up properly for the com-
piler that you are using.

Continuing with our example of how to build apigiRpc that includes your own stars:

1. Build a basicpigiRpc . PigiRpc depends on.o files under $PTOLEMY/
obj.$PTARCH , so you must do a basic build. To build all the.o files, type:

cd $PTOLEMY; make install

The complete build process can take upwards of three hours. If you use anover-
ride.mk file, you can reduce the build time by building only the functionality you
need. See “Using mkPtolemyTree to create a custom Ptolemy trees” on page 1-9
for more information.

2. Edit $PTOLEMY/src/pigiExample/make.template . Add your stars to
LOCAL_OBJS andPL_SRCS.

3. cd to $PTOLEMY/obj.$PTARCH/pigiExample and type:

make depend

to update themakefile from themake.template . You will see messages some-
thing like:

1-8 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

makefile remade -- you must rerun make.
exit 1
make: *** [makefile] Error 1

This is normal and you may safely ignore the error message.

4. While still in$PTOLEMY/obj.$PTARCH/pigiExample , type

make

This will create a version of thepigiRpc executable with your own stars statically
linked in. If later you add a new star, you should modify the symbolsOBJS and
PLSRCS in make.template to include it, and repeat the above procedure.

5. If you built yourpigiRpc with SDFMyStar.o , you can test yourpigiRpc by
starting up with:

pigi -rpc $PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc $PTOLEMY/
src/pigiExample/init.pal

and then run the ‘wave’ universe. If you want to have the binary you just built be
the default binary for yourself, you can set yourPIGIRPC environment variable to
the name of the binary you just built:

setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc

Next time you startpigi , your new executable will be used instead of the standard
one. To revert to using the installedpigiRpc , just type

unsetenv PIGIRPC

6. If you want yourpigiRpc to be the defaultpigiRpc , you can install it in
$PTOLEMY/bin.$PTARCH , but this will wipe out whateverpigiRpc is in that
directory

With the same makefile, you can make a version of thepigiRpc program that has
debug symbols. Just type:

make pigiRpc.debug

To use this, assuming the Gnu debuggergdb is in your path, specify the executable as fol-
lows:

setenv PIGIRPC \
$PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc.debug

assuming your executable is in$PTOLEMY/obj.$PTARCH/pigiExample/ . Then startpigi
as follows:

pigi -debug

To revert to using the installedpigiRpc , just type

unsetenv PIGIRPC

1.3.2 Creating a pigiRpc with more extensive customizations

If you are extending Ptolemy in nontrivial ways, such as writing a new domain, we

The Almagest 1-9

Ptolemy Last updated: 10/17/97

suggest that you create your own copy of the Ptolemy directory tree. You may use symbolic
links to the “official” directories if you do not need to modify or work on them. Your new
code should be placed in the parallel directory with the other similar Ptolemy subdirectories,
using the same directory structure. This way you can reuse the makefiles of similar Ptolemy
directories with minimal modifications. After you create your own Ptolemy tree and add your
new directories and files, certain Ptolemy makefiles, typically$PTOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk , need to be modified to include your own code. Building your
ownpigiRpc , ptcl or tysh this way requires extensive knowledge of the Ptolemy directory
tree structure and makefiles, but if you are doing serious development in Ptolemy, you will
need to know this anyway.

Warning: If you have write permission in the directory where Ptolemy is installed, make sure
to modify the place where “make install” puts the completed executable, or it will attempt to
overwrite thepigiRpc in the Ptolemy installation, and other users may be upset with you if
you succeed in doing that. (If you are using the makefile from$PTOLEMY/src/pigiExam-
ple , you do not need to worry about this because “make install” has been removed from that
makefile.) The simplest thing to do is to replace the line in themakefile :

install: makefile $(DESTBIN)

with:

install: makefile pigiRpc

This will leave thepigiRpc in whatever directory you make it even if you type:

make install

1.4 Using mkPtolemyTree to create a custom Ptolemy trees
In Ptolemy 0.6 and later, there are two methods of building custom Ptolemy trees that

have a user selected set of domains: csh aliases and themkPtolemyTree script. This section
discusses themkPtolemyTree script, see “Using csh aliases to create a Parallel Software
Development Tree” on page 1-12 for an alternative method of creating a parallel tree.

In Ptolemy 0.6 and later, themkPtolemyTree script and a user suppliedover-
ride.mk file to create an entire custom object tree. The tree will have copies of all Ptolemy
directories on which the customized installation depends. The script will also set up the
override.mk files needed to build custompigiRpc , tysh andptcl binaries. SincemkP-
tolemyTree runs very fast, you may avoid having to recompile the entire Ptolemy tree,
which can take 3 hours on a fast workstation.

1.4.1 mkPtolemyTree example

ThemkPtolemytree command usage is:

mkPtolemyTree override.mk_file r oot_pathname_of_new_tree

For example, say that you wanted to build a tree that only has the VHDL domain in
~/mypt .

1. One would create a file called~/override.mk that contains:

VHDL=1
DEFAULT_DOMAIN=VHDL

1-10 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

VERSION_DESC="VHDL only"

The file $PTOLEMY/mk/ptbin.mk contains a list of the makefile variables that
can be set to bring in the various domains.

2. Set$PTOLEMY to point to the Ptolemy distribution, in this example, the Ptolemy
distribution is at /users/ptolemy:

setenv PTOLEMY /users/ptolemy

3. Set$PTARCH to the appropriate value:

setenv PTARCH ‘$PTOLEMY/bin/ptarch‘

4. Set the path properly:

set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

5. Execute themkPtolemyTree command so that theoverride.mk file is used to
create a custom tree in the~/mypt directory.

mkPtolemyTree ~/override.mk ~/mypt

In general, you will want to define the variablesTK andHOF. SettingTK indicates that
you want to include Tcl/Tk extensions to the domains. SettingHOF means that you want to
include the higher-order functions domain. The higher-order functions domain is used in
many demonstrations to configure stars with multiple portholes and to specify scalable sys-
tems. So, adding these make variables in the sameoverride.mk file would make it look like
the following:

HOF=1
TK=1
VHDL=1
DEFAULT_DOMAIN=VHDL
VERSION_DESC="VHDL only"

1.4.2 How mkPtolemyTree works

To accumulate a list of the directories necessary to build a custom tree,$PTOLEMY/
src/stars.mk contains a makefile variable namedCUSTOM_DIRS. In stars.mk , each fea-
ture, such asVHDL adds directories toCUSTOM_DIRS. Also a feature can require sub-features,
and the sub-features can add directories toCUSTOM_DIRS. For example,VHDL requiresCG,
andCG adds more directories toCUSTOM_DIRS.

When you run$PTOLEMY/bin/mkPtolemyTree , the following events occur:

1. From theoverride.mk file that the user specifies, the script builds a tree with the
directories as specified the value of theCUSTOM_DIRS makefile variable.

2. Next, the files in the$PTOLEMY tree are copied over if the directory exists using
tar (to save modification times).

3. For each directory specified byCUSTOM_DIRS, we create symbolic links to all the
directories that we have not expanded from the$PTOLEMY tree themake.tem-
plate andmakefile symbolic links in the obj directories are set correctly.

The Almagest 1-11

Ptolemy Last updated: 10/17/97

4. The override.mk file is copied into the new tree asNEW_ROOT/mk/over-
ride.mk , whereNEW_ROOT is the root path name of the tree we are constructing.

5. override.mk files are constructed that referenceNEW_ROOT/mk/override.mk
specific totysh , ptcl andpigiRpc .

6. make install is run inNEW_ROOT/obj.$PTARCH/ which creates the hard link
for the libraries inNEW_ROOT/lib.$PTARCH and builds the customtysh , ptcl ,
andpigiRpc .

This new tree has all the symbolic links and directories necessary to act as a full-
fledged Ptolemy tree. You should be able to set yourPTOLEMY environment variable to this
new tree andpigi will run your custompigiRpc binary.

Currently the Tcl libraries and Tycho are not expanded but are accessible via symbolic
links. To have the utility expand the$PTOLEMY/lib/tcl directory, add the following line to
your override.mk file:

CUSTOM_DIRS += $(CROOT)/lib/tcl

To expand Tycho, consult the Tycho documentation and use thetylndir script.

There is no documentation of the variables to pull in each domain yet. In general, it is
the standard abbreviation for the domain in capital letter. For example, the Synchronous Data-
flow (SDF) domain isSDF, the Discrete-Event (DE) domain is DE, and so forth. Some of the
domains are split up, the entire domain can be brought in by definingFOOFULL (e.g.,SDF-
FULL or CGCFULL). When defined, they include all of the SDF and CGC functionality,
respectively, whereas SDF and CGC include only the basic functionality. The basic version of
the SDF domain does not include the image, matrix, Matlab, DSP, and Tcl/Tk stars. If you are
attempting to build a pigi that includes the Process Network (PN) domain, then you should
add the following to youroverride.mk file.

INCLUDE_PN_DOMAIN = yes

For a listing of the possible make variables, refer to the$PTOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk files.

1.4.3 Combining mkPtolemyTree and pigiExample

It is possible to use theoverride.mk file used bymkPtolemyTree in thepigiEx-
ample directory to create a custompigiRpc with user added stars. One reason for doing this
would be to that on some platforms, stars that have been incrementally linked are not visible
from the debugger. Creating a custompigiRpc with the star as a built in star can aid debug-
ging.

After running mkPtolemyTree , edit $PTOLEMY/src/pigiExample/make.tem-
plate and add your stars as described in “Creating a pigiRpc that includes your own stars” on
page 1-7.

1.4.4 Known Bugs in mkPtolemyTree

 • To build a customized pigiRpc, you set makefile variables likeSDF or CG56 to 1 in
your override.mk . If you happen to have an environment variable calledSDF or
CG56, this procedure fails because the rule instars.mk just checks whether the vari-
able is defined or not, not what value it has. So, ensure that you have no environment

1-12 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

variables that clash with the variables used inoverride.mk .

Suggested fix: Instars.mk , not only check whether a variable likeSDF is defined,
but also check its value.

Hopefully, the value is different from the other definition and the code is more robust.

 • If mkPtolemyTree gives you the following message:

Making a customized Ptolemy development tree using the version of
Ptolemy installed in the directory /users/ptolemy
The new customized Ptolemy tree will go in /users/cxh/mypt
mkdir: illegal option -- n
mkdir: usage: mkdir [-m mode] [-p] dirname ...

The try setting your path so that/usr/ucb is before/usr/bin . The problem here is
that in Ptolemy 0.7, themkPtolemyTree script uses the-n option withecho , which
is not portable.

 • mkPtolemyTree cannot add new directories to an already existing tree, it can only be
used to create a brand new parallel tree.

 • MAKEARCH may fail when used with a tree that was created withmkPtolemyTree ,
sinceMAKEARCH may follow symbolic links into the master tree, where the user does
not have write permission.

 • mkPtolemyTree requires that the master Ptolemy tree have a fully expanded
obj.$PTARCH directory. Otherwise you will get an error about ‘no sources rule
found’.

1.5 Using csh aliases to create a Parallel Software Development
Tree

Below is a set of C shell aliases that can be used to create a parallel software develop-
ment tree.

1.5.1 Aliases for Managing Symbolic Links

Below are severalcsh aliases that can be helpful when managing a duplicate hierar-
chy that is implemented with symbolic links:

alias pt ’echo $cwd | sed s:${HOME}/Ptolemy:${PTOLEMY}:’
alias ptl ’ln -s `pt`/* .’
alias sw ’mv \!^ swap$$; mv .\!^ \!^; mv swap$$.\!^’
alias exp ’mkdir .\!^; sw \!^; cd \!^; ptl’
alias rml ’\rm -f `\ls -F \!* | sed -n s/@\$//p`’
alias mkl ’rml make*; ln -s `vpath`/make* .’

These are documented below in detail. For convenience, these aliases can be found in the file
$PTOLEMY/.alias .

The pt Alias

The pt alias returns the name of the “official” Ptolemy directory that corresponds to

The Almagest 1-13

Ptolemy Last updated: 10/17/97

the current directory, which is presumably in your personal hierarchy. This assumes that you
have the environment variable$PTOLEMY set to the root directory of the “official” version of
Ptolemy, and that your private version is in~/Ptolemy . If this is not the case, then you
should make suitable modifications to definition of thept alias. This alias is useful when you
want to make a symbolic link to or otherwise access the “official” version of a file, as in

% cd ~/Ptolemy/src/domains/sdf/kernel
% ln -s `pt`/SCCS .

This will create a symbolic link in your directory~/Ptolemy/src/domains/sdf/kernel
to the directory$PTOLEMY/src/domains/sdf/kernel/SCCS . (For information on source
code control, see below).

The ptl Alias

Theptl alias uses thept alias to create, in the current directory, symbolic links to all
the files in the corresponding “official” directory. This is useful for quickly filling in the
branches of a new directory in your private hierarchy.

% pwd
/users/me/Ptolemy/src/domains/ddf
% mkdir stars
% cd stars
% ptl
% ls -F
DDFCase.cc@ DDFLastOfN.cc@ DDFThresh.cc@
DDFCase.h@ DDFLastOfN.h@ DDFThresh.h@
DDFCase.pl@ DDFLastOfN.pl@ DDFThresh.pl@
DDFDownCounter.cc@ DDFRepeater.cc@ SCCS@
DDFDownCounter.h@ DDFRepeater.h@ TAGS@
DDFDownCounter.pl@ DDFRepeater.pl@ ddfstars.c@
DDFEndCase.cc@ DDFSelf.cc@ ddfstars.mk@
DDFEndCase.h@ DDFSelf.h@ make.template@
DDFEndCase.pl@ DDFSelf.pl@ makefile@
%

This creates a directory namedstars and fills it with symbolic links to the contents of the
corresponding directory in the “official” Ptolemy tree. Using the-F option of thels com-
mand, makes it easy to see which files in a directory are symbolic links (they are marked with
a trailing “@” sign).

The sw Alias

When experimenting with Ptolemy, you may want to switch back and forth between
using the official version of some directory and your own version. You can keep two versions
of the same directory (or a file). Thesw alias swaps a file or directoryfilename with another
file or directory.filename . The period at the beginning of the second file name makes it
invisible unless you use the-a option of thels command. For example, suppose you wish to
experiment with making a change to just one file,DDFRepeater.pl , in the directory above,
to fix a bug (and then send the bug fix back to the Ptolemy group):

1-14 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl
mv: cannot access .DDFRepeater.pl
% ls -a
./ DDFEndCase.h@ DDFThresh.cc@
../ DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template@
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Notice thatDDFRepeater.pl was moved to.DDFRepeater.pl . You can now create your
own version ofDDFRepeater.pl . To later reinstate the official version (e.g., you discovered
that what you thought was a bug was in fact a feature),

% sw DDFRepeater.pl

The exp Alias

When starting your experimentation, the job of creating the parallel tree can be rather
tedious. Theexp aliases combines the functions of theptl andsw aliases into one, making
the common task of expanding a branch in the directory hierarchy easy. Suppose you type:

% exp stars

This is equivalent to the following sequence of commands:

% mkdir .stars
% sw stars
% cd stars
% ptl

Note that the command leaves you in the new directory ready to issue anotherexp command.
For example, to create a duplicate of the directory$PTOLEMY/src/domains/ddf/stars ,
creating all subdirectories as you go, and linking to all the appropriate files in the Ptolemy
tree,

% cd ~/Ptolemy
% exp src
% exp domains
% exp ddf
% exp stars

The Almagest 1-15

Ptolemy Last updated: 10/17/97

The rml Alias

Therml alias removes symbolic links in the current directory. Without an argument, it
removes all the visible symbolic links. Any arguments are passed on to thels command. So,
to removeall symbolic links, including those that are invisible, use the-a option:

% rml -a

You can also give file names as arguments to remove just some of the symbolic links:

% rml *.o

The mkl alias

Suppose you wish to compile your change to theDDFRepeater.pl file, as above.
You will need to make an object tree. Assume you are on a Sun Solaris 2.x platform. You
have created a parallel tree already in~/Ptolemy/src (i.e. ~Ptolemy/src/domains/
ddf/stars exists). Create the corresponding object tree:

% cd ~Ptolemy
% exp obj.sol2
% exp domains
% exp ddf
% exp stars
% pwd
/users/me/Ptolemy/obj.sol2/domains/ddf/stars

The directory in which you are now located contains symbolic links to the.o files and make-
files in the official Ptolemy tree. If you runmake here, your replacementDDFRepeater.pl
star will be compiled in place of the official one. If you run “make install ”, then a library
will be created and installed in the directory~/Ptolemy/lib.sol2 , assuming this directory
exists.

Runningmake as above uses the makefiles in the official Ptolemy tree, because you
have symbolic links to them. Suppose you wish to modify themake.template file in
~/Ptolemy/src/domains/ddf/stars . In this case, you should run themkl alias to
replace themakefile symbolic links. If you have followed the above steps, try this:

% pwd
/users/me/Ptolemy/obj.sol2/domains/ddf/stars
% ls -F
DDFCase.o@ DDFRepeater.o@ libddfstars.a@
DDFDownCounter.o@ DDFSelf.o@ make.template@
DDFEndCase.o@ DDFThresh.o@ makefile@
DDFLastOfN.o@ ddfstars.o@

(This assumes that the “official” Ptolemy has been rebuilt after being installed, otherwise the
.o and .a files will be missing). Expand the makefile symbolic links:

% ls -l make*

1-16 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

lrwxrwxrwx 1 eal 56 Jul 14 11:30 make.template -> /users/
ptolemy/obj.sol2/domains/ddf/stars/make.template
lrwxrwxrwx 1 eal 51 Jul 14 11:30 makefile -> /users/
ptolemy/obj.sol2/domains/ddf/stars/makefile

Note that they point to the “official” makefiles. To make them point to the versions in your
own tree,

% mkl
% ls -l make*
lrwxrwxrwx 1 eal 47 Jul 14 11:31 make.template -> ../../
../../src/domains/ddf/stars/make.template
lrwxrwxrwx 1 eal 42 Jul 14 11:31 makefile -> ../../../../
src/domains/ddf/stars/makefile

Now you can modify themake.template file in your own tree as you need.

Warning

Note that modifying Ptolemy files is risky. You will have essentially created your own
version of Ptolemy. You will not be able to install future releases of Ptolemy without aban-
doning your version. However, if you have modifications that you believe are valuable, please
communicate them to the Ptolemy group atptolemy@eecs.berkeley.edu . The Ptolemy
group welcomes suggestions for changes.

1.5.2 Creating a Duplicate Hierarchy

Let’s look at a complete example to see how these aliases can be used. Suppose you
want to modify an existing file that is part of the kernel for the SDF domain. You will need a
private copy of the file that is writable. This allows you to make your changes without affect-
ing the “official” version of Ptolemy. In order to test your change, you will have to build a pri-
vate version of the interpreterptcl or the graphical interfacepigiRpc .

First, create the root directory for your duplicate hierarchy.

% mkdir ~/Ptolemy

Then go into that directory and create symbolic links to all files in the corresponding “offi-
cial” Ptolemy directory.

% cd ~/Ptolemy
% ptl

You will want to have a private version of thelib.$PTARCH directory so that you won’t
modify the “official” version of any library or object files.

% cd ~/Ptolemy
% exp lib.$PTARCH

(This assumes your$PTARCH environment variable is set). You will also want a private

The Almagest 1-17

Ptolemy Last updated: 10/17/97

obj.$PTARCH directory for the same reason. In this example, the tree is expanded down to
thesdf directory:

% cd ~/Ptolemy
% exp obj.$PTARCH
% exp domains
% exp sdf

If you are modifying code in thesdf/kernel directory, then you will want to expand it as
well. Once expanded, you will want remove themake.template and makefile links
(which point to the “official” Ptolemy files) and replace them with links that use relative paths
to refer to your private versions of these files (in case you make changes to them):

% exp kernel
% mkl

If you make changes in thesdf/kernel directory, then there is a good chance that object
files insdf/dsp and other directories will also have to be recompiled. Thus, you will want to
expand these directories (and any subdirectories below them) as well. Remember to replace
themake.template andmakefile links as in thesdf/kernel directory.

% exp dsp
% mkl
% exp stars
% mkl

Because of the way symbolic links work, it is important to remove the links for the.o and.a
files in the directories you have just created. You can do this by issuing amake realclean
command in theobj.$PTARCH/domains/sdf directory. This will recursively clean out all
the subdirectories. You could also do this manually by issuing arml *.o *.a command in
each directory.

You will also need a private version of thesrc directory.

% cd ~/Ptolemy
% exp src
% exp domains
% exp sdf
% exp kernel

At any point after this, it is possible to switch back and forth between private and “official”
versions of these directories with thesw alias. In fact, you just used it (as part of theexp alias)
to switch to the private versions of theobj.$PTARCH , lib.$PTARCH , andsrc directories.

To compile your version of the sdf kernel directory,

% cd ~/Ptolemy/obj.$PTARCH/domains/sdf/kernel
% make install

To make a version pigiRpc (or better yet, ptinyRpc) with your changes,

1-18 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

% cd ~/Ptolemy/obj.$PTARCH
% exp pigiRpc
% mkl
% make ptinyRpc

1.5.3 Source Code Control

At the present time, at Berkeley, the Ptolemy group uses SCCS for source code con-
trol. This means that each directory with source code in it contains a subdirectory called
SCCS. That subdirectory is not distributed with Ptolemy, but if you are starting your own
development expanding on Ptolemy, you may wish to use a similar mechanism. We assume
here that you are familiar with SCCS, which is a standard Unix facility.

Recall the command above:

% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl
mv: cannot access .DDFRepeater.pl
% ls -a
./ DDFEndCase.h@ DDFThresh.cc@
../ DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template@
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Note the symbolic link to the “official” SCCS directory. This will not be present if you are
using the distributed Ptolemy and have not created it. Assume, however, that you have put this
directory under SCCS control (or someone else has). Then you can create an editable version
of theDDFRepeater.pl star with the command:

% sccs edit DDFRepeater.pl
1.24
new delta 1.25
76 lines

The sccs utility tells you the latest version number (1.24) and assigns you a new version num-
ber (1.25). You can now edit the file safely (nobody else will be allowed by sccs to edit it).
When you are done and have fully tested your changes (and obtained clearance from the
Ptolemy group if necessary), you can check the file back in:

% sccs delget DDFRepeater.pl
comments?

You should enter an explanation of your changes. If you wish to nullify your changes, restor-

The Almagest 1-19

Ptolemy Last updated: 10/17/97

ing the official version,

% sccs unedit DDFRepeater.pl

and if you wish to create a new file and put it under SCCS control,

% sccs create -fi NewFileName

1.6 Building standalone programs that use Ptolemy libraries.
Sometimes it is necessary to create small standalone programs that use part of the

Ptolemy libraries.

Examples of this are the desire to use Ptolemy kernel classes such asStringList or
the need to isolate an obscure bug or memory leak. The$PTOLEMY/mk/standalone.mk file
provides the make definitions to make this possible. This file provides make rule definitions to
build various binaries some using the Pure Sofware Inc.1 utilities.

The usage for this makefile is:

make -f $PTOLEMY/mk/standalone.mk stars.mk_variable_defs file-
name. suffix

Where stars.mk_variable_defs is zero or more makefile variables used in
$PTOLEMY/mk/stars.mk , such asSDF=1. filename is the base name of the file to be com-
piled, and the basename of the output file. andsuffix is one of the forms listed in table 1-1.

TABLE 1-1: Table of filename suffixes and binary types.

It is possible to use these makefiles to create binaries that do not have any Ptolemy
code. A reason why you might want to do this is to take advantage of the Pure Software make
definitions instandalone.mk . To specify no Ptolemy libraries, use the make argument
NOPTOLEMY=1.

1.6.1 Standalone example using StringList

For example, say you want to use theStringList class in a standalone program

1. Rational (http://www.rational.com) sells tools such as:
Purify, which can be used to find memory leaks and out of bounds memory accesses.
Quantify, which can be used to profile performance.
Purecov, which can be used to provide code coverage information.

Suffix Binary Type

.bin Standard binary

.debug Binary with debug symbols

.purify Binary with Purify and debug
symbols

.quantify Binary with Quantify linked in

.purecov Binary with Pure Coverage linked
in

1-20 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

namedbar.cc :
#include
#include "StringList.h"
main() {

StringList testing = "This is a test\n";
cout << testing;

}

To build it you would type:

make -f $PTOLEMY/mk/standalone.mk bar.bin

If you wanted to make a new standalone program that also uses part of the CG domain,
just define the domain make variables (as used in stars.mk) on the make command line:

make -f $PTOLEMY/mk/standalone.mk CG=1 bar.bin

If you are going to do this often, it may be useful to create a new directory in which to
test this program. In this directory, execute the commands:

ln -s $PTOLEMY/mk/standalone.mk makefile
ln -s $PTOLEMY/mk/standalone.mk make.template

By having these symbolic links, you will not have to supply the make argument
-f $PTOLEMY/mk/standalone.mk as before.

1.6.2 Standalone example that tests a Scheduler

Here is an example of a minimal file that can be used to call the setup in a Scheduler
for instance. If the filetestAcyLoopSched.cc contains:

#include <iostream.h>
#include "Galaxy.h"
#include "SDFStar.h"
#include "AcyCluster.h"
#include "AcyLoopScheduler.h"
#include "SDFPortHole.h"

main() {
// First create a simple galaxy and some stars.
SDFStar star[3];
Galaxy topGalaxy;
topGalaxy.setDomain("SDF");
topGalaxy.setName("topGalaxy");
topGalaxy.addBlock(star[0],"star0");
topGalaxy.addBlock(star[1],"star1");
topGalaxy.addBlock(star[2],"star2");

// Add ports to stars.
OutSDFPort p0,p1;
InSDFPort p2,p3;

// initialize the ports
p0.setPort("output1",&star[0],FLOAT,2);
star[0].addPort(p0);
p1.setPort("output2",&star[0],FLOAT,3);
star[0].addPort(p1);
p2.setPort("input",&star[1],FLOAT,3);

The Almagest 1-21

Ptolemy Last updated: 10/17/97

p3.setPort("input",&star[2],FLOAT,2);
star[1].addPort(p2);
star[2].addPort(p3);

// Connect ‘em up. The graph is
// star[1] (3) <--- (2) star[0] (3) ---> (2) star[2]
p0.connect(p2,0);
p1.connect(p3,0);

// Scheduling
AcyLoopScheduler sched;
sched.setGalaxy(topGalaxy);
cout << "No problem till now. Calling sched.setup()...\n";
sched.setup();
int i;
for (i = 0 ; i < 3 ; i++) {

cout << star[i].fullName() << "\n";
cout << "Repetitions = " << star[i].reps() << "\n";

}
StringList sch = sched.displaySchedule();
cout << sch;

}

The command to compile this and produce a standalone binary would be:
make -f $PTOLEMY/mk/standalone.mk OPTIMIZER= SDF=1 \

USE_SHARED_LIBS=yes testAcyLoopSched.debug

1.7 Debugging Ptolemy and Extensions Within Pigi
The extensibility of Ptolemy can introduce problems. Code that you add may be defec-

tive (few people write perfect code every time), or may interact with Ptolemy in unexpected
ways. These problems most frequently manifest themselves as a Ptolemy crash, where the
Ptolemy kernel aborts, creating a core file.

The fact thatpigiRpc andvem are separate Unix processes has the advantage that
whenpigiRpc aborts with a fatal error,vem keeps running. Yourvem schematic is unharmed
and can be safely saved. Vem gives a cryptic error message something like:

RPC Error: server: application exited without calling
RPCExit
Closing Application /home/ohm1/users/messer/ptolemy/lib/
pigiRpcShell on host foucault.berkeley.edu
Elapsed time is 1538 seconds

The message
segmentation fault (core dumped)

may appear in the window from which you startedpigi . The first line in the above message
might alternatively read

RPC Error: fread of long failed

Vem is trying to tell you that it is unable to get data from the link to the Ptolemy kernel. In
either case, it will create a large file in your home directory calledcore . Thecore 1 file is

1-22 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

useful for finding the problem.

1.7.1 A quick scan of the stack

Assuming you are using Gnu tools, and assuming thepigiRpc executable that you
are using is in your path, go to your home directory and type:

gdb pigiRpc

The Gnu symbolic debugger (gdb) will show the state of the stack at the point where the pro-
gram failed. Note thatgdb is not distributed with Ptolemy, but is available free over the Inter-
net in many places, includingftp://prep.ai.mit.edu/pub/gnu . The most recently
called function might give you a clue about the cause of the problem. Here is a typical session:

cxh@watson 197% gdb pigiRpc ~/core
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.
GDB 4.15.1 (sparc-sun-solaris2.4),
Copyright 1995 Free Software Foundation, Inc...
(no debugging symbols found)...

Tell gdb to read in the core file.
(gdb) core core
Core was generated by `/users/ptolemy/bin.sol2/pigiRpc :0.0 wat-
son.eecs.berkeley.edu 32870 inet 1 2 3’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from

/users/ptolemy/lib.sol2/libcg56dspstars.so...done.
Reading symbols from

/users/ptolemy/lib.sol2/libcg56stars.so...done.

Since this version of Ptolemy uses shared libraries, we see lots of messages about shared
libraries, which we’ve deleted here for brevity.

(gdb) where
#0 0xee7a1c20 in _kill ()
#1 0x52b04 in pthread_clear_sighandler ()
#2 0x52cb4 in pthread_clear_sighandler ()
#3 0x53130 in pthread_clear_sighandler ()
#4 0x53320 in pthread_handle_one_process_signal ()
#5 0x55658 in pthread_signal_sched ()
#6 0x554d8 in called_from_sighandler ()
#7 0x535e4 in pthread_handle_pending_signals ()
#8 0x10100c in SimControl::getPollFlag ()
#9 0x101604 in Star::run ()
#10 0xd394c in DataFlowStar::run ()
#11 0xeeca5fb8 in SDFAtomCluster::run (this=0x2bd0b0)
at ../../../../src/domains/sdf/kernel/SDFCluster.cc:1032
#12 0xeeca0f20 in SDFScheduler::runOnce (this=0x2bd050)
at ../../../../src/domains/sdf/kernel/SDFScheduler.cc:121
#13 0xeeca0eac in SDFScheduler::run (this=0x2bd050)
at ../../../../src/domains/sdf/kernel/SDFScheduler.cc:98

1. Note that core files can be large in size, so your system administrator may have setup the csh “limit”
command to disable the creation of core files. For further information, see the csh man page.

The Almagest 1-23

Ptolemy Last updated: 10/17/97

#14 0x108358 in Target::run ()
#15 0x109e04 in Runnable::run ()
#16 0xe62ec in InterpUniverse::run ()
#17 0xee9e7f04 in PTcl::run (this=0x20af80, argc=2949528,
argv=0x109fa4)
at ../../src/ptcl/PTcl.cc:521
#18 0xee9e99a4 in PTcl::dispatcher (which=0x27, interp=0x1d4830,
argc=2,

The “where” command shows that state of the stack at the time of the crash. The actual stack
trace was 72 frames long, the last two frames being:

#71 0xeec06d5c in ptkMainLoop ()
 at ../../src/pigilib/ptkTkSetup.c:192

#72 0x4982c in main ()

Scanning this list we can recognize that the crash occurred during the execution of a
star. Unfortunately, unless you are running a version ofpigiRpc with the debug symbols
loaded, it will be difficult to tell much more from this.

1.7.2 More extensive debugging

To do more extensive debugging, you need to create or find a version ofpigiRpc
with debug symbols, calledpigiRpc.debug .

The first step is to build apigiRpc that contains the domains you are interested in
debugging. There are several ways to build apigiRpc :

a. There may be prebuilt debug binaries on the Ptolemy Web site, check the directory
that contains the latest release.

b. Rebuild the entire tree from scratch. This takes about 3 hours. Appendix A in the
Ptolemy User’s Manual has instructions about this.

c. UsemkPtolemyTree to rebuild a subset of the Ptolemy tree. See “Using mkP-
tolemyTree to create a custom Ptolemy trees” on page 1-9 for more information.

d. Use the csh aliases to rebuild a subset of the Ptolemy tree. See “Using csh aliases
to create a Parallel Software Development Tree” on page 1-12 for more informa-
tion.

The next step is to build thepigiRpc.debug binary:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make pigiRpc.debug

Then set thePIGIRPC environment variable to point to the binary:

setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug 1

Then run pigi as follows:

pigi -debug

An extra window runninggdb appears. (If this fails, thengdb is probably not installed at your

1. Note that the pigi script will attempt to find pigiRpc.debug binary if the PIGIRPC environment vari-
able is not set. An alternative is that one can avoid setting PIGIRPC and use the pigi -rpc option to
specify a binary.The command would be:
pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug

1-24 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

site or is not in your path.) Typecont to continue past the initial breakpoint.

Now, if you can replicate the situation that created the crash, you will be able to get
more information about what happened. Here is a sample of interaction with the debugger
through thegdb window:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.
GDB 4.15.1 (sparc-sun-solaris2.4),
Copyright 1995 Free Software Foundation, Inc...
Breakpoint 1 at 0x39ab4: file ../../src/pigiExample/pigiMain.cc, line
58.
Breakpoint 1, main (argc=-282850408, argv=0x399c0)
at ../../src/pigiExample/pigiMain.cc:58
58 pigiFilename = argv[0];
(gdb) cont
Continuing.

At this point, you are running Ptolemy. Use it in the usual way to replicate your problem.
When you succeed, you will get a message something like:

Program received signal SIGSEGV, Segmentation fault.
0xeee81394 in mxRealMax ()
(gdb)

At this point you can again examine the stack. This time, however, there will be more infor-
mation. Here, we examine the top 5 frames of the stack

(gdb) where 5
#0 0xeee81394 in mxRealMax ()
#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-
trol.cc:271
#2 0xe3e5c in Star::run (this=0x28c908) at ../../src/kernel/
Star.cc:73
#3 0xbacb8 in DataFlowStar::run (this=0x28c908)
at ../../src/kernel/DataFlowStar.cc:94
#4 0xef485fb8 in SDFAtomCluster::run (this=0x278570)
at ../../../../src/domains/sdf/kernel/SDFCluster.cc:1032
(More stack frames follow...)
(gdb)

This particular stack trace is a little strange at the “bottom” (gdb calls the lower num-
bers the bottom even though they are at the top of the list) because it was generated by invok-
ing a dynamically linked star, and the symbol information is not complete. However, you can
still find out quite a bit. Notice that you are now told where the files are that define the meth-
ods being called. The file names are all relative to the directory in which the corresponding
object file normally resides. The Ptolemy files can all be found in some subdirectory of
$PTOLEMY/src .

You can get help fromgdb by typing “help”. Suppose you wish to find out first which
star is being run when the crash occurs. The following sequence moves up in the stack until
the “run” call of a star:

(gdb) up
#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-
trol.cc:271

The Almagest 1-25

Ptolemy Last updated: 10/17/97

271 ptBlockSig(SIGALRM);
(gdb) up
#2 0xe3e5c in Star::run (this=0x28c908) at ../../src/kernel/
Star.cc:73
73 go();
(gdb)

At this point, you can see that line 73 of the file$PTOLEMY/src/kernel/Star.cc reads

go();

Odds are pretty good that the problem is in thego() method of the star. You can find out to
which star this method belongs as follows:

(gdb) p *this
$1 = {<Block> = {<NamedObj> = {nm = 0x28ad58 "BadStar1",

prnt = 0x28c878,
myDescriptor = 0x28b658 "Causes a core dump deliberately",
_vptr. = 0xeee91738}, flags = {nElements = 0, val = 0x0},
pTarget = 0x28aa60, scp = 0x0,

ports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen = 0}, }, }, states = {<NamedObjList> =
{<SequentialList> = { lastNode = 0x0, dimen = 0}, }, },

multiports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen = 0}, }, }},
indexValue = -1, inStateFlag = 1}

(gdb)

This tells you that a star with name (nm) BadStar1 and descriptor “Causes a core
dump deliberately.” is being invoked. This particular star has the following erroneous go
method:

go {
char* p = 0;
*p = ’c’;

}

More elaborate debugging requires that the symbols for the star be included. The easiest way
to do this is to build a version ofpigiRpc.debug that includes your star already linked into
the system. Then repeat the above procedure. The bottom of the stack frame will have much
more complete information about what is occurring.

1.7.3 Debugging hints

Below are some hints for debugging.

 • “Using emacs, gdb and pigi” on page 1-26

 • “Gdb and the environment” on page 1-26

 • “Optimization” on page 1-26

 • “Debugging StringLists in gdb” on page 1-26

 • “How to use ptcl to speed up the compile/test cycle.” on page 1-27

1-26 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

 • “Miscellaneous debugging hints for gdb” on page 1-28

See also Appendix A of the Ptolemy User’s manual.

Using emacs, gdb and pigi

By default,gdb is started in an X terminal window with its default command line
interface. Many people prefer to interface withgdb throughemacs, which provides much
more sophisticated interaction between the source code and the debugger. To get anemacs
interface togdb (assumingemacs is installed on your system), set the following environment
variable:

setenv PT_DEBUG ptgdb

To find out more about usinggdb from within emacs, start upemacs and type:
M-x info
Then type:
m emacs

Then go down to:

Running Debuggers Under Emacs

* Starting GUD:: How to start a debugger subprocess.
* Debugger Operation:: Connection between the \
debugger and source buffers.
* Commands of GUD:: Key bindings for common commands.
* GUD Customization:: Defining your own commands for GUD.

Gdb and the environment

Note that the documentation forgdb says the following:
Warning: GDB runs your program using the shell indicated by your
`SHELL’ environment variable if it exists (or `/bin/sh’ if not). If
your `SHELL’ variable names a shell that runs an initialization file-
-such as `.cshrc’ for C-shell, or `.bashrc’ for BASH--any variables
you set in that file affect your program. You may wish to move setting
of environment variables to files that are only run when you sign on,
such as `.login’ or `.profile’.

Optimization

By default, Ptolemy is compiled with the optimizer turn up to a very high level. This
can result in strange behavior inside the debugger, as the compiler may evaluate instructions
in a different order than they appear in the source file. You may find it easier to debug a file by
recompiling it with the optimization turned off by removing the corresponding.o file and
doing:

make OPTIMIZER= install

Debugging StringLists in gdb

Ptolemy usesStringList object to manipulate strings. However, usinggdb to view

The Almagest 1-27

Ptolemy Last updated: 10/17/97

a StringList object can be non-intuitive. To print the contents of aStringlist
myStringList as one item per line from withingdb , use:

p displayStringListItems(myStringList)

To print out theStringList as a contiguous string, use:

p displayStringList(myStringList)

How to use ptcl to speed up the compile/test cycle.

If you are spending a lot of time debugging a problem, you may want to useptcl
instead ofpigiRpc , asptcl is smaller and starts up faster. Also, you can keep your break-
points between invocations ofptcl , as debuggingptcl does not start up a separateemacs
each time. However,ptcl cannot handle demos that use Tk.

Here’s how to useptcl to debug.

1. RunpigiRpc on the universe, and use compile-facet to generate a
~/pigiLog.pt file. Note the number of iterations for the universe, and then exit
pigiRpc .

2. Copy~/pigiLog.pt to somewhere. A short file name, like/tmp/tst.tcl will
save time in typing since you may be typing it often. Don’t use something inside
your home directory as you can’t easily use~ insideptcl .

3. Edit the file and add arun XXX line and awrapup line at the end. If the demo
should run for 100 iterations, then add:

run 100
wrapup

to the end of the file.

4. Build aptcl.debug that has just exactly the functionality you need by using an
override.mk file. Alternatively, you could use eitherptcl.ptrim.debug or
ptcl.ptiny.debug . If your demo is SDF, then try building and using
ptcl.ptiny.debug .

5. If you useemacs, then you can start upgdb on your binary with:

M-x gdb

6. Then type in the name of the binary. You may have to use the full pathname.

7. Insideemacs, you can then set breakpoints in thegdb window, either by typing a
break command, or by viewing the file and typingControl-X space at the loca-
tion you would like a break point.

8. Typer to start the process, and then source your demo with:

source /tmp/tst.tcl

If you want to recompile your demo outside ofgdb and then reload it into your
gdb session, use thefile command insidegdb :

1-28 Extending Ptolemy — Introduction

U. C. Berkeley Department of EECS

file /users/cxh/pt/obj.sol2/ptcl/ptcl.ptiny.debug

Your breakpoints will be saved, which is a big time saver.

Miscellaneous debugging hints for gdb

If you are having problems debugging withgdb , here’s what to check.

1. Verify that your$PTOLEMY is set to what you intended. If you are building bina-
ries in your private tree, be sure that$PTOLEMY is set to your private tree and not
~ptdesign or /users/ptolemy .

2. Verify that your $LD_LIBRARY_PATH does not include libraries in another
Ptolemy tree. You could type:

 unsetenv $LD_LIBRARY_PATH

3. gdb sources your.cshrc , so your$PTOLEMY and$LD_LIBRARY_PATH could be
different. Insidegdb , use

 show env PTOLEMY

to see what it is set to. This problem is especially common if you are runninggdb
insideemacs via ptgdb .

4. Verify that you are running the right binary by looking at the creation times. You
may find it useful to use the-rpc option:

pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.mine ~ptdesign/
init.pal

5. Recompile the problem files with optimization turned off and relink your
pigiRpc . You can do this with

rm myfile.o; make OPTIMIZER= install

Then rebuild yourpigiRpc

6. Look for weird coding styles that could confuse the line count in emacs and gdb,
such as declaring variables in the middle of a block and brackets that open a func-
tion body on the same line as the function declaration:

int foo(int bar){

vs.

int foo(int bar)
 {

7. Usestepi to step by instructions, rather thanstep .

