
The Kestrel Interface to the NEOS Server∗

Elizabeth D. Dolan†

Todd S. Munson‡

July 16, 2001

Abstract

The NEOS Server provides access to optimization solvers through the
Internet with a suite of interfaces. In particular, the Kestrel interface
enables the remote solution of optimization problems within the AMPL
and GAMS modeling languages. Problem generation, including the run-
time detection of syntax errors, occurs on the local machine using any
available modeling language facilities. Solution takes place on a remote
machine, with the result returned in the native modeling language format
for further processing. No significant differences exist between local and
remote solutions. A byproduct of the Kestrel interface is the ability to
solve in parallel multiple problems generated by a modeling language.

1 Introduction

The NEOS Server [2, 3] is a convenient gateway to optimization software and
services on the Internet. Interested parties can evaluate many different pack-
ages for solving their particular optimization problems without installing the
software on their local machine. Instead, the user communicates a problem to
the NEOS Server through e-mail, the Web, or a socket-based graphical user
interface. When using these interfaces, the local machine is responsible for sub-
mitting a representation of the problem, for example, source code or a model
written in modeling language syntax, to the NEOS Server and waiting for the
result. Problem validation and solution happen on remote resources.

An alternative for individuals with local access to the AMPL [5] or GAMS
[1] modeling languages is to use the Kestrel interface to the NEOS Server. In

∗This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38; and by the National Science Foundation (Challenges
in Computational Science) grant CDA-9726385 and (Information Technology Research) grant
CCR-0082807.

†Electrical and Computer Engineering Department, Northwestern University, and Math-
ematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439;
e-mail: dolan@mcs.anl.gov

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439; e-mail: tmunson@mcs.anl.gov

1



this case, a problem is generated using any of the available modeling language
facilities on the local machine, and the NEOS Server is used only for remote so-
lution. Because the problem is generated on the local machine, users can access
the file-system and other utilities when specifying their model; and all syn-
tax errors are detected when the internal model representation is generated by
AMPL or GAMS. Furthermore, the results returned through the NEOS Server
are available in the native modeling language format for further processing.

No significant differences exist between local and remote solutions when us-
ing the Kestrel interface. Whenever a solve command is initiated in either
AMPL or GAMS, the modeling software generates an internal representation
of the current problem and calls a corresponding local solver. When using the
Kestrel interface, the local solver executed is a Kestrel client, which contacts
the NEOS Server, submits the generated model representation within tags un-
derstood by NEOS, and waits for the results. When the Kestrel client exits, the
results are read by the modeling language as if the solve were performed locally.
A byproduct of the Kestrel interface is the ability to easily solve multiple models
in parallel [4].

The concepts employed when using the Kestrel client are the same for both
the AMPL and GAMS interfaces, but the mechanics of the implementations
differ because of the nature of the modeling languages. Documentation for each
interface follows, along with a discussion of the technical details.

2 AMPL Interface

Two methods exist for using the Kestrel interface in AMPL. The first method
simply replaces the normal solver used during a solve command with the Kestrel
“solver,” which submits the current problem to the NEOS Server and retrieves
the results. The second method uses separate submit and retrieve facilities,
which can be used to submit multiple problems to the NEOS Server before
retrieving any of the results. In both cases, the user specifies a remote solver as
one of the options to the Kestrel client.

Users can download the Kestrel client for many different architectures from
the NEOS Server Web site. To install the executable, users should unzip the
archive in a directory within their path, which enables the AMPL interpreter to
locate the client during the solve command. Also contained in the archive are
three command scripts used for the submission, retrieval, and kill capabilities
discussed in the sequel.

Once the software is installed, the Kestrel interface can be used to solve an
optimization problem remotely. For example, consider the original code using
LOQO [8] to solve an optimization problem on the local machine.

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver loqo;
ampl: option loqo_options ’outlev=2’;
ampl: solve;

2



The corresponding code to solve the same problem remotely through the NEOS
server follows.

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’solver=loqo’;
ampl: option loqo_options ’outlev=2’;
ampl: solve;

The two differences are that the solver is changed to kestrel, which is the client
responsible for submission and retrieval; and the remove solver to be used is
identified with the kestrel options solver options, which set the solver to
loqo in this instance. Any remote solver options are set with the appropriate
solver options, which in this case would be loqo options.

After the problem has been submitted to the NEOS Server by the Kestrel
client, information is written to the console indicating the job number and
password assigned by the NEOS Server for the particular solve. The output
also indicates a Web site that can be used to monitor the progress of the solve,
for example,

Job has been submitted to Kestrel

Kestrel/NEOS Job number : 1234

Kestrel/NEOS Job password : abcd

Check the following URL for progress report :

http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi

The use of network communication increases the likelihood that a particular
solve will terminate abnormally, for example, if the connection to the network
is lost. If this happens, the job number and password reported can be used
to access the job when the system comes back on-line. For example, we can
communicate the above job and password to the Kestrel client with the job and
password solver options.

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’job=1234 password=abcd’;
ampl: solve;

If the job and password solver options are set, the solve command waits for
and reports the results of the corresponding NEOS job.

The job number and password information also enable a user to submit a
job and at some later time retrieve the results. Currently, the NEOS Server
keeps these jobs for three days after their completion before removing them
from the system. To continue other modeling language processing, the user can
interrupt the Kestrel solve manually and retrieve results later by setting the job
and password options appropriately. A better alternative, however, is to use
the commands scripts for separate submission and retrieval.

3



The submission and retrieval scripts are invoked in AMPL by using the
commands facility. By default, AMPL accesses only those scripts that are
in the directory in which the AMPL interpreter was invoked. Therefore, to
use the provided commands, the user first must copy the scripts to the current
working directory. Separate submission is achieved by replacing a solve with
the kestrelsub and kestrelret pair of commands:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’solver=loqo’;
ampl: commands kestrelsub;
ampl: commands kestrelret;

The kestrelsub command prepares the current problem for submission and
sends it to the NEOS Server. The NEOS job number and password are then
reported. The kestrelret command retrieves the results. Any models submitted
with kestrelsub should be retrieved with kestrelret.

The separate submission and retrieval capability allows a user to perform
simple parallel processing within AMPL. Kestrel submissions and local solves
can be performed before retrieving the results from a kestrelsub command.
For simplicity, the retrieves are performed in the order in which the jobs were
submitted. The form of this approach is as follows:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: option solver kestrel;
ampl: option kestrel_options ’solver=loqo’;
ampl: commands kestrelsub;
ampl: let steelscalar := 5.0;
ampl: commands kestrelsub;
ampl: commands kestrelret;
ampl: commands kestrelret;

More sophisticated sequences are possible. For example, the user could solve
some of the models locally or use the problem statement to submit different
models.

Finally, the user has the ability to kill submitted jobs from within AMPL.
When a Kestrel solve is manually interrupted, the job normally continues run-
ning on the remote solution machine assigned by the NEOS Server. These
resources can be freed by sending a kill request for the remote job. Depend-
ing on the solver and remote system, terminating the job through the NEOS
Server may not be possible, but attempting to do so is simple. The user sets
the job number and password in the kestrel options and calls the kestrelkill
command as in the following.

ampl: option kestrel_options ’job=1234 password=abcd’;
ampl: commands kestrelkill;

4



Attempts to obtain results from a killed job would likely lead to a solution file
unintelligible to AMPL.

3 GAMS Interface

The Kestrel interface to the NEOS Server for GAMS is similar to the one written
for AMPL. The installation process involves placing the Kestrel archive for a
particular architecture into the GAMS system directory and using the gamsinst
program to unzip and install the Kestrel-related “solvers.”

After successful installation of the Kestrel package, the kestrel solver can
be used to solve a GAMS model remotely. For example, consider the trnsport
model from GAMSLIB [1]. It can be solved locally in GAMS through the
following statements,

model trnsport /all/;
solve trnsport using lp minimizing z;

which specify the trnsport model and solve it with the default linear program-
ming solver. We can add an option statement to the code to explicitly specify
the solver. For example, if we change the linear programming solver to MINOS
[6], the code becomes

model trnsport /all/;
option lp = minos;
solve trnsport using lp minimizing z;

To solve the same problem remotely through the NEOS Server, we simply change
the linear programming solver to kestrel.

model trnsport /all/;
trnsport.optfile = 1;
option lp = kestrel;
solve trnsport using lp minimizing z;

The statement trnsport.optfile = 1 specifies that an options file, called
kestrel.opt, will be used. The options file contains the remote solver name as
well as any options for the remote solver. In particular, to use MINOS as the
remote solver, we would write the following kestrel.opt file:

kestrel_solver minos

A subsequent run of the code through the GAMS interpreter results in the
trnsport model being solved through the NEOS Server with the MINOS solver.

As with the AMPL interface, once the job is submitted to the NEOS Server,
a job number, password, and Web address are displayed to the screen, which
provide information on accessing the job and viewing the intermediate output,
for example,

5



Job has been submitted to Kestrel

Kestrel/NEOS Job number : 1234

Kestrel/NEOS Job password : abcd

Check the following URL for progress report :

http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi

If the NEOS Server or the network becomes unavailable after the submis-
sion, a particular job can be retrieved by setting both the kestrel job and
kestrel password in the options file.

kestrel_solver minos
kestrel_job 1234
kestrel_password abcd

Re-issuing the command gams trnsport with this options file will retrieve the
results for the specified job number.

Separate submission and retrieval can also be issued by using the kestrelsub
and kestrelret solvers, respectively. The GAMS convention is to name the
options file solver.opt, where solver is the name of the solver used. With
the submit and retrieve commands, we break with this convention and use
kestrel.opt for the options file, instead of the expected kestrelsub.opt and
kestrelret.opt. Therefore, to solve the trnsport model with the separate
submission and retrieval facilities, we would write the following code:

model trnsport /all/;
trnsport.optfile = 1;

option lp = kestrelsub;
solve trnsport using lp minimizing z;

option lp = kestrelret;
solve trnsport using lp minimizing z;

with the kestrel.opt file containing the relevant kestrel solver option.
The submit and retrieve facilities enable simple parallel processing capabil-

ities within GAMS. Any number of submission and solves (including remote
solves) can be performed before retrieving any results. For simplicity, we as-
sume a work queue model in which the jobs are retrieved in the order submitted.
Furthermore, the submit and retrieve ignore any job and password information
in the options file.

Finally, GAMS also has a kill facility implemented by using the kestrelkill
solver. In order to use this facility, a model must be present so that the solver
can be invoked.

model trnsport /all/;
trnsport.optfile = 1;
option lp = kestrelkill;
solve trnsport using lp minimizing z;

6



The kestrel.opt file in this case should contain the job number and password
of the job to kill. Subsequent attempts to obtain the results from a killed job
should be avoided if possible because results will likely be mangled.

4 Technical Details

The Kestrel clients for AMPL and GAMS are written in C++ with all of the
communication between client and server performed by using the CORBA spec-
ification [7]. This interface to the NEOS Server is possible because of the be-
havior of the AMPL and GAMS modeling languages when a “solve” command
is encountered. Three steps are taken.

1. An internal representation of the current problem is written to disk.

2. The desired solver is located and executed with appropriate command line
options, and the solver writes a solution file.

3. Finally, the solution file produced by the solver executable is read by the
interpreter, which resumes processing.

The Kestrel client is a replacement for the local solver that relays the appropriate
intermediate files to the NEOS Server in NEOS token-delimited submission
format and obtains the results, which are then written to the correct solution
file. When results are requested from the Kestrel client, we simply wait for the
appropriate results to become available and write the solution file.

Special processing of the GAMS control file, gamscntr.scr, is performed
by the Kestrel client code. The control file contains all the information for
the problem and is located in the scratch directory. This file is parsed by
the Kestrel client to replace the absolute file paths with relative file paths,
and all information about the client GAMS installation, including the license
information, is removed before sending the job to the NEOS Server. The NEOS
license for GAMS is patched into the control file on the server side.

The separate submission and retrieval commands maintain a work queue.
For both AMPL and GAMS, the work queue is a file containing a listing of
the submitted job numbers, passwords, and remote solver names for jobs that
have not been retrieved. The job number, password, and solver information is
appended to the work queue file for each kestrelsub, and the first entry is re-
moved from the work queue during each kestrelret. The kestrelret command
removes the work queue file when it becomes empty.

The AMPL interface writes the work queue to a file created based on the
process identification and the TMPDIR variable. For example, if the process
identification is “1234” and the TMPDIR is “/tmp/”, then the work queue file
will be located in a file called “/tmp/at1234.jobs”. The location and name of
the file are similar to those used by AMPL for temporary NL and SOL files.
This location can be affected by changing the TMPDIR variable. Furthermore,
since the submission and retrieval are performed by using commands, as op-
posed to a solve, the submission script manually writes the current problem’s

7



description to a kestrel.nl file contained in the current directory, and the re-
trieve writes the solution to a kestrel.sol file. Unfortunately, the kestrel.nl
and kestrel.sol are not removed when the AMPL session ends, and the user
should remove them manually.

For completeness the kestrelsub command does the following:

option ampl_id (_pid);
write bkestrel;
shell ’kestrel submit kestrel’;

where the first command saves the process identification into a variable accessi-
ble by the kestrel client, the second manually writes the current model to disk,
and the last submits the problem to the NEOS Server. The kestrelret script
is similar:

option ampl_id (_pid);
shell ’kestrel retrieve kestrel’;
solution kestrel.sol;

where the shell command retrieves the solution file, and the solution command
forces the AMPL interpreter to read the solution file. The kestrelkill is
implemented with the single command,

shell ’kestrel kill kestrel’;

The GAMS interface writes the work queue to a kestrel.scr file contained
in the scratch directory of the current GAMS process. The scratch directory is
automatically removed when the GAMS process exits, unless explicitly kept by
the user with the gamskeep routine.

5 Conclusion

The Kestrel interface augments those interfaces currently available by NEOS
and offers many advantages. The main advantage is that all models are created
on the local machine, enabling users to debug their models locally and use any
of the modeling language mechanisms when specifying their model. Another
benefit is that the results are made available within the modeling language,
which means that the users do not have to parse a results text file to use the
answers generated. Moreover, the interface allows users to implement simple
parallel programs.

Acknowledgments

We thank Bob Fourer for his assistance in testing the code in the early stages
of development.

8



References

[1] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The
Scientific Press, South San Francisco, 1988.

[2] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The NEOS server. IEEE Journal
on Computational Science and Engineering, 5:68–75, 1998.

[3] M. C. Ferris, M. P. Mesnier, and J. Moré. NEOS and Condor: Solving
nonlinear optimization problems over the Internet. ACM Transactions on
Mathematical Software, 26:1–18, 2000.

[4] M. C. Ferris and T. S. Munson. Modeling languages and Condor: Metacom-
puting for optimization. Mathematical Programming, 88:487–506, 2000.

[5] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press, 1993.

[6] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user’s guide. Technical
Report SOL 83.20, Stanford University, Stanford, California, 1983.

[7] J. Siegel. CORBA - Fundamentals and Programming. John Wiley & Sons,
New York, 1996.

[8] R. J. Vanderbei. LOQO user’s manual – Version 3.10. Optimization Methods
and Software, 12:485–514, 1999.

9


