
Design and Implementation of a Java-based Distributed Debugger
Supporting PVM and MPI

Xingfu Wu 2,1 Qingping Chen
3

 Xian-He Sun
1

1 Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803
2 National Research Center for Intelligent Computing Systems, Chinese Academy of Sciences

3 Department of Computer Science, University of Science and Technology of China

Abstract This paper presents a client-server debugging
model, describes the design and implementation of a
portable, scalable, practical distributed debugger based on
this model, and compares it with the related work. The
distributed debugger based on the sequential debugger
gdb or dbx can efficiently support debugging various
PVM and MPI programs, and its interfaces are
implemented by Java. Therefore, it meets High
Performance Debugging Standard’s three general goals
concerning parallel and distributed debuggers. In addition,
it is portable, easy to learn and easy to use.

Keywords: Distributed debugger, message passing,
PVM, MPI, Java.

1 Introduction

Several message passing-based software systems which
support parallel and distributed computing, such as the
popular PVM [1] and MPI [2], have been developed in
recent years. These systems are mainly based on
standardized Unix systems, use standard sequential
language C or Fortran to construct the portable
communication primitive library based on standard
communication protocols (TCP/IP) with high efficiency
for expressing parallel algorithms wisely and validly.
However, these systems require the users explicitly assign
special data to some processes, thus the deadlock,
communication mismatch orders, idle waiting, access
conflict, and resource contest may exist in users’ parallel
programs. A portable, scalable distributed debugger is in
demand.

Although some sequential debuggers such as gdb [3]
and dbx [4] are supported on multiple platforms, there are
no published standards of semantics for debuggers, hence
their implementations may vary widely. In the serial
programming community, this situation has not been so
bad. Serial programmers may continue working on a
system for extended periods of time, and can get used to a
favorite debugger and not have to worry about changing
tools frequently. Within the parallel programming
community, a lack of standards has resulted in the quite
different scenario because of rapidly changing hardware

and software environments. Few debuggers are supported
across more than one platform and debuggers are
generally criticized for poor usability. The HPD (High
Performance Debugging) standard [5] is expected to make
a major contribution in solving these problems. The HPD
Forum [5] sponsored by the Parallel Tools Consortium
established three general goals concerning parallel and
distributed debuggers:
• Parallel and distributed debuggers should satisfy

basic debugging requirements of high performance
computing application developers;

• Parallel and distributed debuggers should be usable –
in the sense of easy to learn and easy to use – by
these application developers;

• Parallel and distributed debuggers should be
consistent across any platforms, so that users of one
standard-conforming debugger can switch to another
with little or no effort.
To meet the three goals, this paper presents the

design and implementation of a portable, scalable,
practical distributed debugger DCDB (Dawning Cluster
DeBugger) supporting PVM and MPI programs in detail.
Section 2 describes the design model, method and Java-
based framework of the distributed debugger DCDB from
the three aspects: portability, scalability and practicability.
Section 3 discusses how the DCDB supports PVM and
MPI programs, and shows several views of the debugger.
Section 4 compares our work with the related researches.
Section 5 concludes this paper.

2 Design Framework of the Distributed
Debugger DCDB

 In general, debugging parallel programs is divided into
two parts: correct debugging and performance debugging.
Parallel programs are much more difficult to develop,
debug, maintain, and understand than their sequential
counterparts. One reason is the difficulty in establishing
correctness - which must take into account temporal
conditions: liveness, deadlock-freeness, process
synchronization and communication, this is often called
correctness debugging. Another reason is the diversity of
parallel architectures and the need to produce a highly

efficient program fine-tuned to the specific target
architectures. The impact of task granularity on a parallel
algorithm, the properties of the memory hierarchy, and
the intricacies involved in the exploitation of multilevel
parallelism, should all be carefully analyzed and used to
devise a transformation strategy for the program. The
adaptation of an initially inefficient algorithm to a specific
hardware is often called performance debugging [6], a
term that suggests that the correctness criteria for a
parallel algorithm should include requirements for its
performance on a given architecture. Therefore,
correctness debugging is an essential part of the
development process for parallel programs, and most of
research efforts naturally focused more heavily on correct
debugging. Here, the distributed debugger is a correct
debugging tool.
 At present, there are often two main methods to
develop distributed debuggers:
• Use and extend the functions of sequential debuggers

to develop distributed debugger
• Develop general-function distributed debuggers

without using any sequential debuggers.
 The first method is more popular. For example,

P2D2 [7], Mantis [8], and Xmdb [9] are the typical
examples using the first method. It is more difficult to use
the second method to develop a distributed debugger, and
such a distributed debugger is dependable to special
platforms, and is not portable, such as CM-5’s data
parallel debugger Node Prism [10], Dolphinics’s
TotalView [11], and Intel’s interactive parallel debugger
IPD [12].

 Cluster systems have good scalability, and each node
is a complete computer system. Users often are familiar
with sequential debuggers of such a complete computer,
such as dbx, gdb, which is used in Unix systems, such as
IBM’s AIX, SUN’s SUNOS, Solaris, HP’s HPUX, Digital
Unix, SCO Unix, FreeBSD, LINUX, and so forth.
Therefore, It is indeed worthy of developing a portable,
scalable, and user-friendly distributed debugger based on
the general sequential debuggers on cluster systems.

 The distributed debugger DCDB is to support any
Unix network computing environments, such as Networks
of Workstations, Networks of Computers, etc. On the
Dawning 2000 cluster system [13], we developed the
distributed debugger DCDB based on sequential
debuggers, and used Java to implement other debugging
functions and interfaces. Therefore, the distributed
debugger DCDB can be executed on any Unix platforms
with Java.

The distributed debugger DCDB provides a portable
graphical user interface which is easy to learn and use,
and supports debugging (C, Fortran) PVM and MPI
parallel programs. It can implement the distributed

debugging by extending the functions of the sequential
debuggers. Its advantages are:
1) It uses many sequential debugging commands which

users know, and the users can use it without spending
much time to learn and use it.

2) It not only efficiently uses current existing debugging
techniques, but also simplifies the design and
implementation of the distributed debugger.
The distributed debugger DCDB is divided into four

levels from top to bottom, its design framework is shown
in Figure 1.

L 1. User graphical interface level
L 2. Network communication level
L 3. Sequential debugger level
L 4. Parallel program level

Figure 1 Framework of DCDB

Figure 2 Main dataflow graph of DCDB

Generally, the users only see the GUI (Graphical
User Interface) of the debugger. The debugging command
which the user inputs can be sent to the sequential
debugger through Socket Channel. Master Sever is the
Socket’s sever, Slave Server is the Socket’s client. The
results, which the sequential debugger executes a
debugging command, are returned through Socket
Channel, and are displayed in the GUI. The main dataflow
graph of the DCDB is shown in Figure 2.
The DCDB has the following main features:
1) Portability

The DCDB was implemented by Java, and could
support debugging various PVM and MPI programs.
Because Java language is independent to any
platforms, and PVM and MPI have good portability,
therefore, the distributed debugger DCDB is portable,
and can support debugging parallel programs in
heterogeneous network computing environments.

2) Scalability
Group management function of the DCDB is very
strong. It can send a debugging command to many
nodes in a group simultaneously. It is very
convenient for the users to use the function to debug
their programs. The DCDB may efficiently support
debugging PVM and MPI programs with various
sizes, especially, using the group management
function. When the debugged parallel program
creates many parallel sub-processes, the DCDB can
display their source codes in the debugging windows
in parallel, and any debugging windows may be open
or closed according to the users’ requirements.

3) Practicability
The DCDB has a user-friendly graphical user
interface, such as simple operation graphical
interfaces, simple window contents, simple and
understandable command windows, short and clear
hints, etc. The users can choose to use their favorite
sequential debugger such as dbx or gdb. The DCDB
can greatly reduce the effect of the execution
behavior of PVM or MPI programs using the
debugger to debug them.

3 Implementation of Distributed Debugger
DCDB

The DCDB is a distributed debugger based on the
sequential debugger dbx or gdb in cluster systems. It
supports debugging not only SPMD or MPMD (C or
Fortran) PVM programs, but also C or Fortran MPI
programs. Because Java language has good portability,
and can support multiprocess control, multithread control,
socket communication, Input/Output redirection, etc., we
use it to implement overall graphical interfaces and low-
level debugging interfaces of the DCDB, so that the

DCDB has good portability. In the following subsections,
we shall discuss the implementation of DCDB in detail.

3.1 Debugging process of the DCDB

The DCDB often executes a monitoring program Master
Sever in the local machine, and the program is in charge
of receiving the connection requests from other programs.
When receiving a connection request, the Master Sever
shall create a new thread Master Server Thread, and
makes the true client/server connection with that program
which sent the request (shown in Figure 1).

The debugging process of the DCDB mainly
includes environment parameter configuration, creation of
process group, starting the debugging, finishing the
debugging, and exiting the DCDB.

1) Parameter configuration

The users’ system environments are often very
different, such as their home directories, the sequential
debuggers which they would like to use, and so on.
Therefore, before the users use the DCDB, they need
configure various parameters according to their habit.
These parameters are:
(1) The number of processes (the maximum number of

debugging processes in DCDB is not limited, but the
number should not be less than that of parallel
processes.)

(2) The directory path of PVM or MPI source codes
(3) The whole directory of a sequential debugger, such as

/usr/bin/dbx or /usr/bin/gdb
(4) The setup of debugging commands of a sequential

debugger
When the first configuration is finished, it will be

used as a default configuration. When the distributed
debugger is executed again, these parameters need not be
configured again unless reconfiguration is needed.

2) Creation of a process group

The DCDB provides the function of process group
management. If some processes are set as a group, then it
is valid for all processes of the group to send debugging
commands to the node group. Therefore, using a
debugging command can control all processes of the same
group. The DCDB can use the global condition control to
efficiently monitor the real-time process of a program
execution.

3) Starting the debugging

The DCDB can support debugging C or Fortran PVM
and MPI programs. It provides a user-friendly interface to
choose the types of debugging programs (such as PVM,
MPI) and the types of programming languages (such as C,
Fortran). It also provides the debugging window of each

process, and sends some processes a debugging command
to let them do it, and displays the execution results of
these processes on the debugging windows. The DCDB
provides a replay function to treat the indetermination of
parallel execution process based on event traces.

4) Finishing the debugging

The process of debugging a program is a process of
continually finding the errors of the program and
modifying them. When the debugging is finished, the
DCDB can automatically terminate all debugging
processes (local and remote processes), and clear various
debugging “garbage”, so that none can affect the next
debugging. If this debugging fails, the DCDB provides a
function to automatically clear various debugging
“garbage”. For example, the “Clear” button shown in
Figure 3 is for this function.

5) Exiting the DCDB

This means exiting the whole DCDB debugging
environment.

3.2 The support for debugging PVM programs

In this subsection, we depict how the distributed debugger
DCDB supports debugging PVM programs.

1) Modifying the default debugger of PVM

In PVM system, the default sequential debugger is
assigned in the shell file “debugger” of the directory
$PVM_ROOT/lib. In the DCDB, we modified the shell
file so that when creating a new process, in fact, it
executes the Slave Server program. This program is in
charge of communication between the local process and
remote process(es), and is the client of the communication
channel. The Slave Server program can get the sequential
debugger chosen by the users, and starts a new process
under the control of the sequential debugger.

2) Modifying PVM source codes

In PVM programs, the users only specify
PvmTaskDebug in pvm_spawn(), do not need other
modification of the source code. If PvmTaskDebug is
specified in pvm_spawn(), PVM runs $PVM_ROOT/lib
/debugger, which opens a debugging window in which it
runs the task in a sequential debugger.

3) Compiling PVM source codes

In order to support source-level program debugging,
when PVM programs are compiled, only –g option is used
and the PVM standard subroutine libraries are linked. No
other special library is needed.

4) Debugging

When users start to use the DCDB to debug a PVM
program, they need to input the debugging program name
in the main interface of DCDB, the DCDB can execute a
Slave Server program in the local machine, and the
debugging program name is regarded as a parameter of
the program. Then, the Slave Server program requests to
make a connection with the local monitoring program
Master Server. The monitoring program can create a new
thread Master Server Thread to make the true client/server
connection. After the connection is made, the Slave
Server runs the executable in a sequential debugger. From
the connection channel, the local Master Server Thread
can get the debugging program name on a node and the
node’s IP address, regards them as the titles of the
respective debugging windows, and displays the
respective source codes in their debugging windows. It
can also get the source code of an executable from the
node which the program are being executed on, then
returns it to the local node and displays it in its debugging
window.

At this time, the user may use the DCDB’s user
interface to input some debugging commands, such as
setting breakpoints, running step by step, etc. These
commands are sent to the sequential debugger through the
connection channel between the local Master Server
Thread and Slave Server. After the sequential debugger
executes the user’s requests, the output results are
returned through the connection channel and are displayed
in the debugging information columns.

When the PVM program runs the subroutine
pvm_spawn(), PVM may run a Slave Server program on
any node of the cluster system. Similarly, these Slave
Server programs can also request to make connections
with their local monitoring programs, and each local
monitoring program shall create a new thread Master
Server Thread to make the true client/server connection. If
the users want to control many processes at the same time,
they need to set and choose the suitable process group. If
so, the debugging commands can be sent to many
sequential debuggers through many connection channels.

3.3 The support for debugging MPI programs

In this subsection, we describe how the distributed
debugger DCDB supports debugging MPI programs.

1) Modifying MPI source codes

Do not need any modification of the MPI source
code.

2) Compiling MPI source codes

In order to support source-level program debugging,
when MPI programs are compiled, only –g option is used
and the MPICH standard subroutine libraries are linked.
No other special library is needed.

3) Debugging

When users start to use the DCDB to debug a MPI
program, they need to input the debugging program name
in the main interface of DCDB, the DCDB can execute a
Slave Server program in the local machine, and the
debugging program name is regarded as a parameter of
the program. Then the Slave Server program requests to
make a connection with the local monitoring program
Master Server. The monitoring program can create a new
thread Master Server Thread to make the true client/server
connection. After the connection is made, the Slave
Server runs the following command:

mpirun –debugger –np procnum program –p4norem,
(Where “debugger” is a sequential debugger the users
chose, such as dbx or gdb; “procnum” is the number of
processes; “program” is the executable; The point of this
option “–p4norem “ is to enable the user to start the
remote processes under his favorite debugger.) and sends
its output results to the Master Server Thread. The thread
shall start a Slave Server on the specified node. The Slave
Server requests to make a connection with its local
monitoring program, and runs the executable in a
sequential debugger. From the connection channel, the
local Master Server Thread can get the debugging
program name on a node and the node’s IP address,
regards them as the titles of the respective debugging
windows, and displays the respective source codes in their
debugging windows. It can also get the source code of the
executable from the node which the program are being
executed on, then returns it to the local node and displays
it in its debugging window.

At this time, the user may use the DCDB’s user
interface to input some debugging commands, such as
setting breakpoints, running step by step, etc. These
commands are sent to the sequential debugger through the
connection channel between the local Master Server
Thread and Slave Server. After the sequential debugger
executes the user’s requests, the output results are
returned through the connection channel and are displayed
in the debugging information columns.

If the users want to control many processes at the
same time, they need to set and choose the suitable
process group. If so, the debugging commands can be sent
to many sequential debuggers through many connection
channels.

3.4 Several main views of the DCDB

The distributed debugger DCDB can support the source-
level multiprocess debugging. Its debugging window is
divided into four parts from top to bottom: source code
path, debugging command input, source code browser,
and debugging information output (shown in Figure 3).
The user can input or modify the path of his source code,

and types a debugging command or clicks a debugging
command button. We shall show some views of the
DCDB for debugging a PVM program and a MPI
program as follows.

1) Debugging PVM programs

This example shown in Figure 3 is a Master-Slave
Fortran PVM program. Its master program is master1.f,
and the executable is fmaster1. Its slave program is
slave1.f, and the executable is fslave1. The fmaster1 is
executed on the master node 10.10.10.101, and the
fslave1 is executed on the slave nodes: print, compass,
and paper, respectively. In Figure 3, these buttons of the
DCDB’s main interface stand for the debugging windows,
where P0 is the debugging window Debug_Window0, P1
is the Debug_Window1, P2 is the Debug_Window2, and
P3 is the Debug_Window3. The number of these buttons
should not be less than that of real processes. The button
P4 and P5 are not used, thus they are marked by red color,
and are not clickable. The master process P0 is marked by
green color. The slave processes P1, P2, P3 are marked by
yellow color.

2) Debugging MPI programs

This example shown in Figure 4 is a C MPI program.
The source code is systest.c, its executable is systest. The
systest program is loaded to the nodes: compass, paper,
print, respectively. Thus, the three buttons P0, P1 and P2
are clickable, the rest are not clickable. In Fiugre 4, only
the button P1 and P2 are clicked, therefore, only the
debugging windows Debug_window1 and Debug_
window2 are shown.

Figure 3 The DCDB views for debugging PVM programs

Figure 4 The DCDB views for debugging MPI programs

4 Comparison with related work

There are two research works: P2D2 [7] and Mantis [8]
close to our work. They are both based on the sequential
debugger gdb, and are implemented by Motif. Mantis
only supports debugging Split-C programs. P2D2 is only
used on IBM SPs, SGI workstations and Origins, and
Linux systems. Its prototype design claims that it can
support debugging PVM and MPI programs. Xmdb is a
simulated parallel debugger supporting PVM programs on
a single processor. It requires that a PVM program must
be compiled by linking its special library before the
program is debugged, so that the PVM program can be
instrumented. Thus, it affects the execution behavior of
the PVM program to some degree. The DCDB can greatly
reduce the effect of the execution behavior of PVM or
MPI programs using the debugger to debug them in the
run-time PVM or MPI environment.

TotalView [11] is based on X window systems. It
can support debugging PVM and MPI programs on IBM
AIX, Compaq Digital UNIX, SGI IRIX, SUN SUNOS
and SOLORIS systems, and is only available on
homogenous computer systems. It does not support
heterogeneous computer systems. Our DCDB can
efficiently support heterogeneous computer systems. Data
parallel debugger Prism [10] is develop for CM-5
machine. It is neither portable nor general-purpose. Our
DCDB is implemented by Java, and can be executed on
any Unix platforms with PVM or MPI systems.
Therefore, it is portable and general-purpose.

5 Conclusions

This paper describes the design and implementation of a
Java-based distributed debugger DCDB, which supports

debugging PVM and MPI programs. We develop the
distributed debugger by extending the functions of current
existing sequential debuggers, and use Java to implement
the overall interfaces of the DCDB so that our distributed
debugger can meet High Performance Debugging
Standard’s three general goals concerning parallel and
distributed debuggers, and is portable, easy to learn and
easy to use. Anyway, it is the first attempt for us to use
Java to implement the distributed debugger. Many works
will be further done, such as communication optimization,
the support for Microsoft NT cluster system.

References

[1] A. Geist, et al., PVM: Parallel Virtual Machine - A
Users’s Guide and Tutorial for Networked Parallel
Computing, the MIT Press, 1994.

[2] W.Groupp and E.Lusk, User’s Guide for MPICH, a
Portable Implementation of MPI, Argonne National
Laboratory, USA, 1994.

[3] R. Stallman and C. Support, Debugging with GDB,
Cygnus Solutions, Inc., 1994.

[4] Sunsoft, Inc., Solaris Application Developer’s Guide,
1997.

[5] Parallel Tools Consortium, HPD (High Performance
Debugging) Version 1 Standard: Command Interface
for Parallel Debuggers, http:/www.ptools.org/hpdf/
draft/, Sep. 1998.

[6] Xingfu Wu, Performance Evaluation, Prediction and
Visualization of Parallel Systems, Kluwer Academic
Publishers, ISBN 0-7923-8462-8, Boston, 1999.

[7] D.Cheng and R.Hood, A Portable Debugger for
Parallel and Distributed Programs, Proc. of
Supercomputing’94, Nov.1994. See also http://
science.nas.nasa.gov/Groups/Tools/ Projects/P2D2/.

[8] S.S.Lumetta, Mantis: A Debugger for the Split-C
Language, University of California at Berkley, Tech.
Report #CSD-95-865, 1995.

[9] Damodaran-Kamal, Xmdb Version 1.0 User Manual
1.2, Los Alamos National Laboratory, 1995.

[10] Think Machines Corporation, Prism 2.0 Release
Notes, May 1994.

[11] Dolphin Interconnect Solutions, Inc., TotalView
Multiprocess Debugger, Release 3.7, http://www.
dolphinics.com/.

[12] Intel Corporation, iPSC/2 and iPSC/860 Interactive
Parallel Debugger Manual, April 1991.

[13] Xingfu Wu, Qingping Chen, Xiao Hu, Yonggang
Hu, Ming Zhu, and Jiesheng Wu, Design and
Implementation of Cluster System-oriented Parallel
Programming Environments, Technical Report,
National Research Center for Intelligent Computing
Systems, Chinese Academy of Sciences, 1998.

