
Ada User Guide for LEGO MINDSTORMS NXT

Peter J. Bradley, Juan A. de la Puente, Juan Zamorano.
Universidad Politécnica de Madrid, Madrid, Spain.

http://polaris.dit.upm.es/str

Abstract

The purpose of this guide is to introduce the robotics kit
LEGO MINDSTORMS NXT to the Ada community. All
the steps required to complete a working Ada application
running under the LEGO MINDSTORMS NXT are
covered.

Keywords:

LEGO, MINDSTORMS, Ada, Ravenscar, Real-Time,
Embedded, Robotics.

1 Introduction

The LEGO MINDSTORMS NXT (from now on NXT)
is a simple and flexible robotics kit that allows Ada pro-
grammers to develop applications that interact with the
“outside world” by means of sensors, actuators, etc. The
dynamic features associated to this interaction with the
physical environment require that the actions of the con-
trol software are executed at a specified time rate. There-
fore, real-time constraints must be generally met. Ada’s
concurrency and real-time integrated features together
with the use of the Ravenscar profile [1] makes it the
ideal language for the NXT.

This guide is organised as follows. The first section is
this introduction. Then, the second section shows some
fundamental aspects of the NXT hardware that should be
kept in mind for NXT Ada development. Section three
briefly introduces Ada programming for the NXT tak-
ing into consideration the Ravenscar compliant NXT run-
time system and the NXT Ada drivers library. The fourth
section gives an overview of the development environment
with a description of the tools required to work with the
NXT. As an example, the development of a prototype
vehicle, is presented in section five. Finally, section six
describes how the internal JTAG interface of the NXT is
accessed and used to debug Ada programs.

Throughout this guide the AdaCore GNAT GPL for
LEGO MINDSTORMS NXT 2011 hosted in GNU/Linux
for x86 (available from http://polaris.dit.upm.es/

str/projects/mindstorms) will be used but note that
the Windows version is also available (http://libre.
adacore.com/libre/tools/mindstorms).

2 MINDSTORMS NXT

2.1 Architecture overview

The NXT kit comes with a programmable controller, also
called Intelligent Brick. This Brick (see figure 1 for its
block diagram) features a 32-bit ARM main processor
(AT91SAM7S256) with 64 KB of RAM and 256 KB of
Flash memory that runs at 48 MHz. To assist the main
processor an 8-bit AVR co-processor (ATmega48) is also
included. Main processor and co-processor periodically
communicate through an I2C bus.

����������
����	�
������

�����
�	����

����������

����
�	����

���������

�������

��
��
�	
�
	
��
�

!�
��
�	
�
	
��
�

"�!���� #�������

!$�����

#"�

�������

��%�

������

"���&

LEGO Group ©

Figure 1: NXT block diagram.

It also has three output ports, which are bidirectional,
to connect and control actuators such as electrical motors
or linear actuators and four input ports that support both
digital and analog sensors.

Communications with the Brick are possible using ei-
ther USB, via a full-speed USB 2.0 port, or Bluetooth,
available through a CSR BlueCore 4 chip that is con-
nected to the ARM’s USART. The USB 2.0 port is usu-
ally used to connect to a PC and Bluetooth to commu-
nicate with other NXT Bricks or any other Bluetooth-
enabled devices such as smartphones, tablets, etc.

On the top of the Brick there is a 100 x 64 pixel LCD
display connected to the main processor via a SPI bus
(serial peripheral interface bus), and four rubber buttons,
controlled by the co-processor, for interacting with the
Brick.

The NXT Brick also comes with an audio amplifier,

connected to the ARM PWM (pulse-width modulation)
controller, and a 16 Ω speaker with a bandwidth of 2 - 16
KHz.

For schematics and further information refer to LEGO
MINDSTORMS NXT Hardware Developer Kit [2].

2.2 Processor and co-processor

The AVR co-processor handles the following low-level
tasks for the main processor:

• Power management. Turns the NXT Brick off
and wakes it up when the center orange button is
pressed. It also monitors the battery status sending
information to the ARM processor.

• PWM generation. Generates pulses for the three
output ports at a frequency of 8 KHz with the duty
cycle specified by the ARM processor.

• A/D conversion. Performs a 10 bit digital conver-
sion of the analog signals at the input ports every 3
ms.

• Button decoding. Decodes the buttons so that
the main processor is able to tell which buttons
are pressed and which are not. Note that the co-
processor does not carry out any button debouncing.
If it is not handled at driver level the programmer
should take care of it.

To handle all of the above it is necessary for main pro-
cessor and co-processor to periodically exchange infor-
mation. The communication between the two microcon-
trollers is set up as two memory allocations that, on the
original LEGO firmware, are updated on both microcon-
trollers every 2 ms. The communication interface op-
erates at 380 Kbit/s using the I2C hardware interface
in both microcontrollers with the ARM main processor
functioning as master.

2.3 Output ports

1

2

3

4

5

6

M0

M1

GND

POWER

TACHO0

TACHO1

Figure 2: Output port generic schematic.

All of the three output ports work in the same man-
ner, see figure 2. They have a ground (GND) and a 4.3
V supply output (POWER). Two output signals (M0 &
M1)that come from an internal H-bridge motor driver
that controls the motor standby, forward, reverse or brake
modes. This motor driver is governed by the PWM pulses
generated by the co-processor. It also has two input sig-
nals (TACHO0 & TACHO1) that are connected to the

main processor’s parallel input/output controller (PIO)
using a Schmitt trigger for noise suppression. Within the
Ada drivers these two last signals are used for the motor
encoder. The encoder has a resolution of 360 counts per
revolution. When the motor rotates the ARM proces-
sor receives an interrupt in order to update the encoder
counter through the parallel I/O controller. Notice that
clockwise and counterclockwise operation is detected by
the counter’s increments or decrements.

2.4 Input ports

Depending on the type of sensor connected to the NXT
Brick the input ports behave differently. The input ports
allow both digital and analog interfaces, see figure 3.

1

2

3

4

5

6

ANA

GND

GND

POWER

DIG0

DIG1

10 K

Vcc 5 V

Figure 3: Input NXT generic schematic.

LEGO considers three types of sensors:

• Active sensors. These kind of sensors belong to
the previous version of LEGO MINDSTORMS, the
RCX. They require an NXT adapter cable. NXT
firmware provides the same functionality available
in the RCX Bricks by using an extra current source.
This current source delivers power (approximately
18 mA) to the active sensors. It supplies power to
the sensor through the analog pin (ANA) during 3
ms and then measures the analog value during the
following 0.1 ms. The AVR sends the 10 bit digital
conversion of the analog value to the main processor
using the scheme presented in section 2.2.

When using these kind of sensors (e.g. RCX
light sensor, RCX rotation sensor) be sure to set
the appropriate input power settings by calling
Set Input Power(sensor id ,RCX 9V) from NXT.AVR
driver package where sensor id is the input port

used for the active sensor.

• Passive sensors. These kind are analog sensors
that do not need the special power/measurement
timing of the active sensors. The power needs of
these sensors are not covered via the analog pin
(ANA) but via a specific pin (POWER). Note that
the sampling of all the AVR A/D converters occurs
simultaneously so active and passive sensors must be
sampled at the same rate, 333 Hz.

All of the sensors packed with the LEGO MIND-
STORMS NXT are passive with the exception of the
ultrasonic sensor.

• Digital sensors. These sensors contain all the nec-
essary logic and processing resources to work inde-
pendently. Thus, they perform their function au-
tonomously and send or receive information to/from
the ARM via an I2C channel (DIGI0 & DIGI1) run-
ning at 9600 bit/s where the ARM functions as mas-
ter. These sensors are mapped as external mem-
ory areas from/to which the programmer can read
or write to control the behaviour of the sensor and
harvest data. For a memory arrangement that opti-
mizes read and write access refer to LEGO MIND-
STORMS NXT Hardware Developer Kit [2].

The ultrasonic sensor is the only digital sensor
packed in the NXT kit.

If a higher sampling rate is required by an analog in-
put the hardware allows configuring DIGI1 as an analog
input.

Port 4 can also function as a high-speed communication
port. It has a RS485 IC that allows for high-speed-bi-
directional multipoint communications.

2.5 Bluetooth features

The NXT Brick can be connected using Bluetooth to any
other Bluetooth device that implements the Serial Port
Profile (SPP), a serial cable emulation profile. The ef-
fective working Bluetooth range for the NXT Brick is
approximately 10 m (Bluetooth Class II device).

The NXT Brick provides a master/slave communica-
tion scheme with four channels. Channel 0 is used when
working as slave and the other three when working as
master. The NXT Brick can either work as master or
slave. This means that when the NXT Brick works as
master it can communicate with three more devices.

The CSR BlueCore 4 firmware is implemented as a vir-
tual machine with an integrated command interpreter.
Thus, communication between the main ARM processor
and the Bluetooth chip is handled by a set of defined
commands and data streams that are exchanged through
the USART channel. Refer to LEGO MINDSTORMS
NXT ARM7 Bluetooth Developer Kit [3] for a full speci-
fication.

3 Ada programming for NXT

3.1 NXT run-time system

The AdaCore GNAT GPL for LEGO MINDSTORMS
NXT 2011 cross-compiler toolchain relies on a Raven-
scar small footprint run-time system (Ravenscar SFP).
It is really a superset of the zero footprint profile. It
adds the specification of a secondary stack mechanism
for unconstrained objects and the Ravenscar tasking fea-
tures to the zero footprint profile. This means that Ada
applications for the NXT should comply with the Raven-
scar profile for tasking purposes. Also, as it is targeted

for use with embedded systems, it uses a sequential Ada
subset where not all language features are available. For
example, attributes ’ Image and ’Value are not included.
Moreover, there is no exception propagation. Unhandled
exceptions jump to a “last chance handler” that can be
reprogrammed as desired as long as the application then
terminates (it must not return to the caller). Note that
you must explicitly include the package NXT.Last Chance,
using a with-clause, for it to be part of your application.
If you do not, a default handler is included that only
displays an address for the exception on the NXT LCD
screen. For a full description of the Ravenscar SFP pro-
file refer to GNAT User’s Guide “Supplement for High-
Integrity Edition Platforms” [4].

The purpose of the Ravenscar profile is to restrict the
use of many tasking facilities so that the outcome of the
program is predictable. For this purpose, the profile is
restricted to a fixed priority and pre-emptive scheduling.
With fixed priority pre-emptive scheduling, the scheduler
ensures that at any given time, the processor executes the
highest priority task of all those tasks that are currently
ready to be executed. Also, the Immediate Ceiling Prior-
ity Protocol (ICPP) is enforced by the Ravenscar profile.
This means that when a task locks the resource, its pri-
ority is temporarily raised to the priority ceiling of the
resource, thus no task that may lock the resource is able
to get scheduled. This allows execution of a low prior-
ity task deferring execution of higher-priority tasks, thus
minimizing priority inversion. More information can be
found in Annex D: Real-Time Systems of the Ada 2005
Reference Manual [5].

When writing an Ada application for NXT you should
bear in mind that only the Ada subset defined by the
Ravenscar profile can be used for tasking. These are some
of the restrictions:

• requeue statement.

• abort statements.

• Task entries.

• Dynamic priorities.

• Relative delays.

• Protected types with more than one entry.

• Protected entries with barriers other than a single
boolean variable declared within the same protected
type.

• Entry calls to a protected entry with a call already
queued.

• select statements.

• Task termination.

For a full and detailed list refer to Guide for the use of
the Ada Ravenscar Profile in high integrity systems [1].

3.2 NXT Ada drivers

The NXT drivers developed by AdaCore are completely
coded in Ada. These drivers are based on those of the
LeJOS Project. The LeJOS Project is a tiny Java vir-
tual machine ported to the NXT Brick in 2006 (http:
//lejos.sourceforge.net).

These drivers have undergone major updates in the last
two versions of GNAT GPL for MINDSTORMS (2010 &
2011) so 2010 programs might not compile with the 2011
compiler. Unfortunately, AdaCore does not supply API
documentation with the drivers. It is convenient to revise
the drivers’ code to understand how they work. A full
description of the drivers is out of the scope of this guide.

For every Ada NXT program the NXT.AVR package
must always be imported even if its functions are not
required. The body of this package contains a periodic
task called Pump, with the highest priority, executed ev-
ery 20 ms, that handles the co-processor communications
(explained in subsection 2.2) using a circular buffer. By
adding a with-clause to the main program and importing
NXT.AVR the execution of this task within the program
is guaranteed. It is also advisable to import NXT.Display
and NXT.Last Chance for exception handling.

High-level access to motors and sensors is available
through a series of object oriented interfaces that provide
a tagged type, a constructor function and some opera-
tions. NXT.Motors and NXT.I2C Sensors packages pro-
vide abstract types and primitive operations. This ob-
ject oriented structure eases extending the code with new
drivers for third-party sensors. For AVR connected pe-
ripherals (analog sensors, motors, buttons, etc.) the low-
level package NXT.AVR can also be used.

Note that these drivers provide user-transparent but-
ton debouncing through the NXT.Filtering package.

Both AVR and Bluetooth interfaces perform checksum
analysis for all data exchanged with the main processor
to discard inconsistent data.

When using the concurrency features available with the
Ravenscar profile it must be considered that the display
and AVR drivers do not implement a thread-safe environ-
ment. LCD data and the circular buffer with the outgo-
ing messages to the AVR are defined as global variables
with no access control. For concurrent access to the dis-
play the NXT.Display.Concurrent package provided can be
used. For AVR concurrent access a thread-safe solution
must be provided by the user to avoid race conditions
when calling Power Down, Set Power and Set Input Power
procedures. Notice, that because of the periodic task that
handles ARM - AVR communications, every time a motor
is used or a power down to the NXT is set, race condition
issues are present. The 2010 GNU/Linux GNAT version
provided modified drivers that addressed this issue but
since the 2011 GNU/Linux version changed its interface
the solution has not yet been adapted.

4 Development Environment

4.1 Tools overview

A cross-compiler toolchain is a set of tools (essentially
a compiler, an assembler and a linker) that create exe-
cutable code for a platform, in this case the NXT main
processor (ARMv3 architecture), other than the one on
which the tools run, that is, GNU/Linux x86. Cross-
compiler toolchains are used to compile code for a plat-
form upon which it is not feasible to do the compiling.
AdaCore has ported the GNAT compiler toolchain to the
ARM architecture by porting part of the LEON-based
Open Ravenscar Real-Time Kernel (ORK+)1 developed
by a team of the Department of Telematics Engineering
from the Technical University of Madrid (DIT/UPM) [6].

4.2 Compiling a program

The NXT’s original firmware for the main processor is
completely removed (this invalidates the warranty) and
replaced by a binary image of the user’s Ada application
that is executed from RAM. Flash memory is not used.
This means that every time a program is executed it must
first by uploaded to RAM.

Instead of using the widespread ELF as executable file
format the EABI format is used by the GNAT cross-
toolchain. EABI has been created as a common binary
interface so that object code and libraries created with
one toolchain can be linked to a project created with a
different one.

To generate an executable NXT file from the user’s
Ada application the GNAT cross-toolchain needs first to
compile and then link to RAM all compiled code using
kernel_samba.ld linker script. The code that needs to
be compiled is the user’s Ada code, the run-time sys-
tem, the Ada NXT required drivers, nxt main() C func-
tion (main.c), a low-level routine to initialise the system
(init.s), a low-level interrupt handler routine (irq.s),
a vector table that is remapped to RAM (vectors.s) by
init.s and the elaboration code generated by the GNAT
binder.

A GNU make script (Makefile.inc) is in charge of
building the binary image that is uploaded. This script
compiles the run-time libraries every time since precom-
piled library units are not used.

4.3 Uploading a program

With no firmware, when the orange button of the NXT
Brick is pressed the ARM main processor executes the de-
fault Boot Program (SAM-BA Boot Assistant) located in
the first two sectors of the Flash memory. The SAM-BA
Boot Assistant supports serial communications through
the USB Device Port.

LibNXT is a utility library for communicating with the
NXT Brick from a POSIX-compliant host computer using
USB. When the ARM processor is in SAM-BA mode,

1ORK+ is an open source real-time kernel that implements the
Ravenscar profile for the GNAT compiler system on a bare LEON2
processor.

LibNXT is able upload the binary image file of the NXT
executable to RAM and then execute it. For Windows
host platforms the Atmel SAM-BA software is available.

5 Vehicle Prototype

This section describes the steps to have a working NXT
vehicle prototype using Ada 2.

5.1 Functionality

The vehicle has a front castor wheel, free to turn, and
two back wheels, each driven by an independent motor.
To control the vehicle a hardwired joystick made with a
touch sensor to start/stop drive and a motors encoder to
control operation is used. Depending on the angle of the
joystick encoder, different speed commands are sent to
the vehicle motors, thus controlling vehicle motion, see
figure 4.

Forward

Backwards

Sp
in
le
ft

360º 0º

motor

touch
sensor

315º

270º

225º

180º

135º

90º

45º

Spin
right

Tu
rn

lef
t

Turnright

Figure 4: Vehicle’s joystick.

5.2 Design and assembly

Next step is to assemble a prototype that achieves the
above mentioned functionality. The best way to do so,
especially if dealing with a complex design, is to model
it using a CAD tool. LEGO offers a freeware software to
develop NXT models, LEGO Digital Designer3 [8]. The
vehicle prototype for this guide was modelled with LDD,
see figure 5.

Although it can initially be somehow frustrating, using
these kind of tools decreases assembly time by allowing
the development of several prototypes. It lists the bricks
used and generates a step-by-step building guide for the

2Example modified from Bradley et al. [7].
3This software is available for Windows and Mac OS. LDraw

and LeoCAD are other CAD software alternatives.

Figure 5: LDD model for the vehicle prototype.

model. Figure 6 shows the vehicle prototype fully assem-
bled using the generated building guide from the LDD
model.

5.3 Software Architecture

The following are the tasks involved in the software ar-
chitecture of the vehicle prototype:

• Control Task: Periodic task that executes every 20
ms. It checks if the touch sensor is pressed (a 20
ms period to detect a man operated touch sensor is
considered sufficient). In case it is, it gets the value
of the joystick motor encoder to determine the speed
commands that are then stored in the circular buffer.
These speed commands are later sent to the AVR by
the Pump task. The task takes the position of the
joystick motor at the beginning of its execution as
reference point. It also checks if the orange button
is pressed to switch off the NXT Brick.

• Display Task: Periodic task that executes every 500
ms with a lower priority than Control Task. This task
shows the joystick’s position, the execution time and
the battery’s mV on the LCD screen.

• Background procedure: This is just a background
procedure that executes every time the ARM pro-
cessor is free.

Although the application performs as expected, the cir-
cular buffer global variable used for the ARM - AVR com-
munications is not thread-safe and a race condition exist.
This race condition may or may not happen, and if it
happens, it does not necessarily mean the performance of
the vehicle will be affected. Nevertheless, it is not a good
programming practice to rely on non controlled access to
a global variable.

There is a thread-safe vehicle version using the
2010 modified AVR drivers that can be downloaded
from http://polaris.dit.upm.es/str/projects/

mindstorms/2010.

Figure 6: Vehicle prototype fully assembled.

5.4 Software Implementation

Three compilation units are used for the Ada vehi-
cle application: The main procedure (vehicle.adb)
that calls Background procedure, a package declaration
(tasks.ads) and its body (tasks.adb). The Tasks pack-
age includes the two control tasks (Control Task and
Display Task), the empty procedure (Background) and
some auxiliary functions. Listing 1 shows a fragment of
tasks.adb containing the declaration of the two tasks
and the background procedure. When declaring a task,
besides using pragma Priority to establish the static pri-
ority, pragma Storage Size is used. Pragma Storage Size
specifies the amount of memory to be allocated for the
task stack. Notice that this pragma is required because
of the small amount of memory available, 64KB of RAM
memory. The stack size must not be exceeded. If it
does, a Storage Error will be raised. If this Storage Size
pragma is not used, a compiling error about RAM over-
flowing could be prompted.

It must be remembered that the clock resolution de-
fined by the run-time system is of 1 ms.

Listing 1: Specification of tasks.

−−−−−−−−−−−−−−−−−−−−−−−
−− Background task −−
−−−−−−−−−−−−−−−−−−−−−−−
procedure Background is
begin

loop
null ;

end loop;
end Background;

−−−−−−−−−−−−−
−− Tasks −−
−−−−−−−−−−−−−
task Control Task is

pragma Priority
(System. Priority ’ First + 2);

pragma Storage Size (4096);
end Control Task;

task Display Task is
pragma Priority

(System. Priority ’ First + 1);

pragma Storage Size (4096);
end Display Task;

6 Debugging Solution

A remote debugger is an extremely useful tool for an em-
bedded system developer. It can drastically decrease de-
velopment time. There is no open source Ada/C debug-
ging solution for the NXT. In this section we describe
a way to remotely debug Ada/C programs for the NXT
using the GNU debugger (GDB) and the ARM Embed-
dedICE (In-circuit Emulator) technology. The ARM Em-
beddedICE is a JTAG4-based debugging channel avail-
able on the ARM main processor. Debugging the NXT
from a host computer through the available JTAG inter-
face is therefore possible. RAM and Flash programming
is also available using this method.

This solution has been adapted to work on GNU/Linux
x86 hosts but it could be easily ported to a Windows
platform.

6.1 Overview

The JTAG-based debugging channel provides real-time
access to memory addresses and data dependent watch-
points, step-by-step execution, full control of the central
processing unit and other related debugging features. It
requires no use of memory unlike debugging monitor so-
lutions.

The ARM featured EmbeddedICE-compatible macro-
cell from the NXT includes an ARM7 core, a small
amount of control logic, a TAP5 (Test Access Port) con-
troller for the JTAG interface and an EmbeddedICE
macrocell, see figure 7. This EmbeddedICE macrocell has
two real-time watchpoint registers as well as control and
status registers. Each watchpoint register can be config-
ured as a watchpoint for data access or a breakpoint for
instruction fetch. If a match occurs between the values
programmed into the watchpoint registers and the val-
ues of the address bus and data busses or some specific
control signal, the ARM7 core ceases to read instructions
from the data bus and isolates itself from the memory
system entering debug state. Access to the processor’s
state and memory system is then possible through the
JTAG interface using the TAP controller.

GDB provides the remote serial protocol (RSP) for re-
mote debugging. RSP is a GDB protocol used to send
debugging commands through a serial or ethernet link.
Using a localhost TCP connection on the developer’s host
computer an OpenOCD daemon processes the commands
issued by GDB.

OpenOCD (The Open On-Chip Debugger) is an open
source tool initially developed by Dominic Rath as part

4JTAG, as defined by the IEEE Std.-1149.1 standard, is an in-
tegrated method for testing interconnects on printed circuit boards
(PCBs) that are implemented at the integrated circuit (IC) level.

5a TAP is the core of the JTAG standard. It is a finite state
machine that controls JTAG operations.

GDB

debugger

executable

OpenOCD

daemon

RSP protocol via

TCP connection

through localhost

FTDI-based

JTAG adapter

USB protocol

T
A

P
 c

o
n

tro
lle

r

EmbeddedICE

macrocell

Control

logic

ARM7 core

LEGO MINDSTORMS NXT

ARM7 FTDI macrocell

JTAG protocol

Host PC running with GNU/Linux

Figure 7: ICE debugging solution for NXT.

of his diploma thesis at the University of Applied Sci-
ences Augsburg [9]. This software provides debugging,
in-system programming and boundary-scan testing for
embedded targets such as the NXT. OpenOCD essen-
tially allows GDB to talk through a JTAG adapter to
the EmbeddedICE-compatible macrocell on the NXT.

A JTAG adapter is a piece of hardware that connects
the host computer with the JTAG interface of the remote
target. The JTAG adapter is in charge of adapting the
serial electric signalling received from OpenOCD, using,
in this case, an FTDI6 chip, to send the JTAG operations
to the TAP controller. Figure 7 shows the debugging
scheme.

6.2 Modifying the NXT Brick

To connect GDB in the host computer with the JTAG
interface of the NXT a JTAG adapter is required. Also,
The NXT Brick PCB has the provision for mounting a
JTAG connector but this has not been mounted to save
cost. The NXT Brick must be opened in order to ac-
cess the JTAG interface. Note that by performing this
modification warranty will be lost.

6.2.1 FTDI-based JTAG adapter

An FTDI-based JTAG adapter that is both compati-
ble with OpenOCD and the main processor of the NXT
(AT91SAM7S256) is required. For this guide the ARM-
USB-TINY-H adapter by Olimex (http://www.olimex.
com) was used. Open On-Chip Debugger: OpenOCD
User’s Guide [10] offers other vendor options.

6.2.2 Tools and materials

• Small Philips head screwdriver.

• Fine wire cutter.

6Hardware solution to interface with USB peripherals.

• Wire stripper.

• Soldering iron with a fine tip and solder.

• De-soldering pump.

• Magnifying glass.

• Drill with 4 mm diameter bit.

• Digital multimeter.

• 20 pin 2.54 pitch ribbon cable male connector (ARM
JTAG connector).

• 30 SWG single core polyurethane insulated cable.

6.2.3 NXT Brick disassembly

Take out the battery pack or batteries to gain access to
the four Philips head screws. Unscrew them and remove
the front cover. Remove the silicon rubber buttons’ as-
sembly.

Figure 8: NXT without front cover.

Find the two screws, that hold down the LCD display,
located on each side of it (the two small squares of figure
8). Loosen these screws and carefully lift the LCD display
to get access to the battery terminals that are soldered
to the main PCB. Note that the LCD display cannot be
removed from the PCB board on some models.

Once the two display screws have been removed the
two battery terminals must be de-soldered (the two small
circles of figure 8). To do this, remove the solder with
the soldering iron and the de-soldering pump. When the
terminals are free of solder separate the PCB from the
battery case and remove the input and output connector
supports. Note that there is a small silicone rubber push-
button between the battery case and the PCB.

6.2.4 JTAG connection

Since there was no short delivery 1.27 pitch connectors
at the time, The hard-wired option presented below was
used.

Cut 8 equal lengths, at least 100 mm, of the single core
cable and strip 3 mm of insulation on one side. Identify
both ends with an indelible marker. The JTAG interface
(J17 on the PCB) is located below the loudspeaker beside
the quartz crystal (the big square of figure 8). Pin 1 has

a square pad and the remaining pins have round pads.
Insert one by one the stripped ends of the 8 cables in
pins 1 - 8 and solder them to the board. This type of
wire is used because, unlike PVC insulation, it supports
high temperatures (155 oC) and makes soldering easy.
With the magnifying glass inspect each solder for bridges
between pins. See left picture from figure 9 for the final
result.

Figure 9: Soldered JTAG interface & front cover drilled
hole.

Drill a 4 mm hole on the front cover of the NXT Brick
directly above the J17 connection as shown in the right
picture of figure 9. As a strain relief bundle the eight
wires together and tie a knot with them 20 mm from
the PCB. Take them through the hole of the front cover
and cut them to length for the connection to the ribbon
cable connector according to figure 10. As the wire used
has a smaller gauge than the connector it is advisable to
solder the connections after inserting them. Therefore,
strip the wires, insert them and solder them. Try to use
as little solder as possible to allow inserting the header in
the connector.

2 1

4 3

6 5

8 7

10 9

12 11

14 13

16 15

18 17

20 19

VCC 3V
GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC 3V
PULL UP 10K

TDI
TMS

TCK

TCK
TDO

NRST

1

2

3

4

5

6

7

8

TCK
TMS

TDO

NRST

TDI
GND

PULL UP 10K

VCC 3V

J17

RA4B
10K

RA4A
10K

RA4C
10K

RA4D
10K

R90
10K

R89
10K

TP84

TP83

TP82
TP85

TP86

Small connector

single row, 1,27 pitch

20 pin ribbon cable connector

(ARM JTAG connector)

Figure 10: NXT JTAG hardware schematic.

Note that the GND connection is only connected to pin
6 because the JTAG adapter used has all the GND pins
internally connected.

6.2.5 Testing the connections

Locate on the NXT Brick PCB resistor R89, check for
continuity with the multimeter in Ω between the top of
R89 and pin 2 of the ribbon cable connector (VCC 3V).
Check that the other end of R89 is connected to pin 3
of the ribbon cable connector (PULL UP 10K). Next,
check the GND connection between pin 6 of the ribbon
cable connector and the negative battery terminal PCB
connection (J5). Locate test points TP82 - TP86 on the
solder side of the PCB and check with the multimeter for
continuity between them and the corresponding pins of
the ribbon cable connector. Also check for short-circuits
between connections.

Finally, once the connections have been checked, re-
assemble the NXT Brick.

For a more graphical guide on the modification of the
NXT Brick refer to Installing the JTAG connector [11].

6.3 A debugging session

In order to remotely debug programs under GNU/Linux
libusb-0.1, libusb-dev, libftdi1 and libftdi-dev

are required. The FTDI module with the JTAG adapter
information will probably have to be loaded also, once it
is plugged in:

$ sudo modprobe -v ftdi_sio

vendor=0x... product=0x...

When the NXT has no firmware the orange button must
be pressed. Then, when a clicking sound is heard,
the JTAG adapter must be plugged to the NXT. Next,
arm-eabi-openocd must be run with a specific configu-
ration script:

$ arm-eabi-openocd -f debug-ram.cfg

This configuration file is a setup for OpenOCD that es-
tablishes communications with the NXT EmbeddedICE
macrocell. The script usually contains the daemon config-
uration that establishes communications with GDB, the
configuration for the adapter, the board, the target and
some init commands. JTAG adapter vendors usually pro-
vide this OpenOCD script and in case they do not, the
share/openocd/scripts folder from the install directory
contains generic configuration files. For further informa-
tion refer to Open On-Chip Debugger: OpenOCD User’s
Guide [10].

When OpenOCD handshakes with the NXT success-
fully GDB must be run with the executable as parameter,
not with the binary image:

$ arm-eabi-gdb executable_name

Any breakpoints should be added at this point. After,
the gdbinit script, see listing 2, must be run:

gdb> source gdbinit

Cross-debugging is now possible.

Listing 2: GDB init script

Init command

target remote localhost:3333

OpenOCD command to halt the processor

and wait

monitor soft_reset_halt

OpenOCD command to select the core state

monitor arm core_state arm

set flash wait state (AT91C_MC_FMR)

monitor mww 0xffffff60 0x00320100

watchdog disable (AT91C_WDTC_WDMR)

monitor mww 0xfffffd44 0xa0008000

enable main oscillator (AT91C_PMC_MOR)

monitor mww 0xfffffc20 0xa0000601

wait 100 ms

monitor sleep 100

set PLL register (AT91C_PMC_PLLR)

monitor mww 0xfffffc2c 0x00480a0e

wait 200 ms

monitor sleep 200

set master clock to PLL (AT91C_PMC_MCKR)

monitor mww 0xfffffc30 0x7

wait 100 ms

monitor sleep 100

enable user reset AT91C_RSTC_RMR

monitor mww 0xfffffd08 0xa5000401

force a peripheral RESET AT91C_RSTC_RCR

monitor mww 0xfffffd00 0xa5000004

toggle the remap register to place RAM

at 0x00000000

monitor mww 0xffffff00 0x01

set the PC to 0x00000000

monitor reg pc 0x00000000

enable use of software breakpoints

monitor gdb_breakpoint_override soft

monitor arm7_9 dbgrq enable

upload the application

load

resume execution from reset vector

continue

This GDB script basically sets the ARM processor to ex-
ecute the application and set some debugging features.
The script used is a modified version of that presented in
Using Open Source Tools for AT91SAM7S Cross Devel-
opment by James P. Lynch [12].

7 Conclusions

This guide shows the basics for Ada development using
LEGO MINDSTORMS NXT. The Ravenscar profile run-
time system offers concurrency Ada programming while
making possible a schedulability analysis of the system.
Ada development on the NXT presents a whole perspec-
tive of an embedded system with real-time constraints.

At a reasonable price the NXT kit offers all kinds of
sensors and mechanisms to work with, even custom-made
sensors can be developed.

Development and sharing of Ada projects with the
NXT would be of great interest, in the same way as other
complex models like Rubik’s cube solvers, Segway robots,
scanners, etc. have been developed using other program-
ming languages and shared.

The Ada community is encouraged to use this develop-
ment platform that, besides the fun, can be an interesting
teaching asset.

It is important to note that all of the tools used,
except LDD, are open source and therefore there is no
dependance on software vendors. All of the source code
is available and can by modified.

Acknowledgements

The authors would like to thank AdaCore for their
work adapting the Ravenscar run-time system and de-
veloping the Ada drivers for the LEGO MINDSTORMS
NXT platform.

References

[1] Burns A, Dobbing B, Vardanega T. Guide for the
use of the Ada Ravenscar Profile in high integrity
systems. Ada Lett. 2004 June;XXIV:1–74. Avail-
able from: http://doi.acm.org/10.1145/997119.
997120.

[2] LEGO. LEGO MINDSTORMS NXT Hardware De-
veloper Kit;. Version 1.00. Available from: http:

//mindstorms.lego.com.

[3] LEGO. LEGO MINDSTORMS NXT ARM7 Blue-
tooth Developer Kit;. Version 1.00. Available from:
http://mindstorms.lego.com.

[4] AdaCore. GNAT Pro User’s Guide, Supplement for
High-Integrity Edition Platforms; 2011. The GNAT
Ada Compiler. GNAT GPL Edition, Version 2011
Document revision level 175263.

[5] Std. 8652:1995/Amd 1:2007 — Ada 2005 Refer-
ence Manual. Language and Standard Libraries;
2007. Published by Springer-Verlag, ISBN 978-3-
540-69335-2.

[6] de la Puente JA, Ruiz JF, Zamorano J. An Open
Ravenscar Real-Time Kernel for GNAT. In: Pro-
ceedings of the 5th Ada-Europe International Con-
ference on Reliable Software Technologies. Ada-
Europe ’00. London, UK: Springer-Verlag; 2000. p.
5–15. Available from: http://portal.acm.org/

citation.cfm?id=646579.697613.

[7] Bradley PJ, de la Puente JA, Zamorano J. Real-time
system development in Ada using LEGO MIND-
STORMS NXT. In: Proceedings of the ACM
SIGAda annual international conference on SIGAda.
SIGAda ’10. New York, NY, USA: ACM; 2010. p.
37–40. Available from: http://doi.acm.org/10.

1145/1879063.1879077.

[8] LEGO. LEGO Digital Designer 4.1 User Manual;
2011. Available from: http://ldd.lego.com.

[9] Rath D. Open On-Chip Debugger. Design and Im-
plementation of an On-Chip Debug Solution for Em-
bedded Target Systems based on the ARM7 and
ARM9 Family. University of Applied Sciences Augs-
burg; 2005.

[10] Brownell D. Open On-Chip Debugger: OpenOCD
User’s Guide; 2011. Available from: http://

openocd.berlios.de.

[11] IAR. Installing the JTAG connector. IAR Kick-
Start for LEGO MINDSTORMS NXT; 2009. Avail-
able from: http://www.iar.com/website1/1.0.1.
0/1483/1.

[12] Lynch JP. Using Open Source Tools for AT91SAM7S
Cross Development. Grand Island, New York, USA;
2007. Revision C.

