
EmoRush CODE Tutorial for the
programmer

Daniel Ehrens
daniel_egp@hotmail.com

2242233387

mailto:daniel_egp@hotmail.com

Before we start…

Before we start I suggest you go through the
EmoRush app Tutorial presentation and
through the Emotiv UserManual (when
reading the User Manual don’t focus a lot on
the Code).

Once you’ve done that and fully understood

how to use the EmoRush App then comeback
to this tutorial.

So you’re back...

The sole objective of this presentation is to:

1. To do everything in my power to help you

understand the code behind the EmoRush
application through a power point
presentation.

Before getting into the code

There are somethings you should know about the
headset.

You have 14 channels, 7 on each side.
However you have 16 contacts on the headset

because one on each side is the GROUND.
The headset has an analog bandwidth of 0.16Hz to

85 Hz and then some serious digital notch filters
at 50 Hz and at 60 Hz.

The EEG has a sampling rate of 128 Hz, so if you
think about it you can’t even see anything above
64 Hz.

***Link to emotiv…

Montage on the headset

AF3 AF4

F3 F4

FC5 FC6

F7 F8

T7 T8

P7 P8

O1 O2

GND GND

The order of data acquisition

 AF3 AF4

F3 F4

FC5 FC6

F7 F8

T7 T8

P7 P8

O1 O2

GND GND

The order of acquisition
for the different channels
is the following:

1 14

General characteristics of the CODE

• The code was built on Visual Studio 2010,
Professional edition.

• It is written in C#.
• It is a Windows Forms program.
• It is 2600+ lines of code long.

Everything was done from the beginning having in

mind that someone else was gonna continue the
project.

Helpful links
For me C# was a new language when I started this project.

Here are some helpful links to help you with any doubt you
might have on some of the functions:

***http://www.dotnetperls.com/

***http://msdn.microsoft.com/en-us/library/aa288436(v=vs.71).aspx

Also if you struggle with any of the Emotiv functions you can

post a thread in the Emotiv SDK forum at
emotiv.com/forum (I posted a few). There are also some
great examples there.

***http://www.emotiv.com/forum/forum15/

The program…

To open the program go to:
EmoRush appCODE folderEmoRush_WFA
That is the folder for all the files that have to do with the

programing. To open the code open the file:
EmoRush_WFA.csproj
Visual Studio will launch.

(If the code doesn’t open instantly)
On your left side you have your solution Explorer, double click on the EmoRush.cs and

the Designer form will appear double click on it ant the code will appear.

I do not know how familiarized you are with this
type of programming but basically you add
items to the “Design” and then add actions to
it by implement the code.

Windows Forms Applications
***http://msdn.microsoft.com/en-us/library/360kwx3z(v=vs.90).aspx

It is quite easy and there are a lot of examples

out there so you don’t have to worry.

Layout of the code
The Code is fairly organized into “regions” and there are

comments on what is happening everywhere along the
code. The regions start right after the method called
“IsOdd”.

We are going to go through each region I will show you a

few flow diagrams to show you what was the general
idea of that region or part of code.

You don’t need to be a skilled programmer to do this, you

basically need to know “if”s and “for”s that is what
programming is all about, at least that is what I say.

My recommendation is that you open the code
and start going through the regions and
sections as they are mentioned in this tutorial.

Beginning of the Code…
The first thing there you find are all the libraries that you

use.
For example:
Using Emotiv;
This is the Emotiv library that uses the edk.dll,

edk_utils.dll and the DotNetEmotivSDK.dll.

After this in the public partial class EmoRush:Form

You have the declaration of all the global variables that

will be used throughout the code.

The following section of the code is the
public EmoRush() section

Here the handlers for events are created so that

when an event happens (i.e.
TrainingStarted…When training of an action
starts the code goes to that handler.)

Here you will also find the
InitializeComponent();

this is very important and basically launches the
whole application.

The static void Main()
Only launches the code with the

Application.Run(new EmoRush());
Nothing else really in the Main…

Then comes the
private void EmoRush_Load(object sender,

EventArgs e)

This is quite important because whatever happens

here is done at the very beginning when the
program is launched.

private void EmoRush_Load(object
sender, EventArgs e)

In this section the timer is started and its interval is set to 100 ms.
Timer1.Interval = 100;
Timer1.Start();
 If you change te interval of the timer you will affect the EEG data

acquisition polling.

The next important thing in this section is the declaration of the
PosY_Ch =***
Here we give a DC value to each channel according to the montage so

that they fit nicely in the chart. This valuess are for the
Circumferential Montage.

The most important thing that is done here are the FIR filters.

FIR filters
This is our first region.
Here we create the filters for the SODA bandwidth.
In this region we create the FIR (Finite Impulse Response)

filters.
For the following bandwidths:
• 1-8Hz
• 1-10Hz
• 1-12Hz
• 1-14Hz
• 1-16Hz
• 1-35Hz

FIR filters

The formula to calculate the cut-off frequency is:
Wx= ((Fcutoff*2)/fs)*π
Where fs is the sampling frequency and in this case it is fixed

to 128 Hz.
This routine was basically inspired in the book:
Biosignal and Biomedical Image Processing: Matlab based

applications- John L. Semmlow
Pg. 105 .
If you don’t know anything about digital filtering (like I did

when I started this) I recommend you read it from this book
it is a very quick reading and they explain it very well

This ebook is in the Additional material folder of the
EmoRush app folder

IsOdd(int) method
The next thing is the IsOdd method.
This small method tells you if an int is Odd.
Example:
int x = 5;
if (IsOdd(x) == true)
{
 // x is Odd
}
 else
 {
 //x is even
 }

**This method is used several times throughout the code.

Region: Read cognitiv and send to
EmoCube

This is the basic flow
diagram for the
region.

Read Cognitiv

To get the current state you have to create an
object object to access the class EmoState.

The current Action comes as a string you can see
that in the switch case. The Action Power
comes in a scale from 0 to 1 so that is why it is
multiplied by 100.

Communicating with RushCube
application

The RushCube application receives the data through and UDP
network connection socket.

This is declared above with all the variables:
UdpClient EmoCube = new UdpClient (“127.0.0.1”, 5204)
Where 5204 is the Port being used and the 127.0.0.1 the

hostname.
*the hostname means its this computer, and the port was picked

An action is communicated as two comma-separated, ASCII

formatted values.
Example:
You send “2,80” for PUSH with Power 80%
That is in:
EmoCube.Send(Encoding.ASCII.GetBytes(Cube_data),Cube_data.Length));

Region: Winks

Very similar to the last region in the sense that
you create an object and ask which type of
wink is happening and then just put it in a
label.

Region: User Handler

This region is fairly simple it basically asks for
the userId which depends on how many
headsets are turned on and connected, in this
case most of the times the userId is 0.

It enables the EEG data acquisition for that user,
only possible if you have the Research Edition
SDK.

Sets the EEG data buffer to 1 sec of data so 128
data values.

Region: User Removed

I think the only time this comes up is when you

disconnect the receiver from the computer.
But it’s here just in case something happens.

Region: Outputfile Header
This part creates the file where the EEG data will be

written.
Opens a stream to write on the file and writes the first

line on the file.
Read the CAUTION comment on this.
The order of the header that is written is important, since

it is used later on to verify that when you select a file
to open it is an EEG file created by the object.

The EEG acquisition is always in this order, no matter if
you change the montage it doesnt affect the order the
channels data is retrieved from the headset.

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4
This is also shown in slide #6.

Region: Raw EEG acquisition and file
output writing.

I think this is one of the most complex regions and I
think the longest. So after this everything is
pretty much down hill.

This region is in charge of acquiring the EEG data
packets, graphing the EEG in the chart, calling the
SODA and displaying the timer for EEG
acquisition.

This method is called from the Master Timer region
if the acquire is set to true, which is toggled by
the EEG acquisition ON/OFF button.

EEG acq Flow diagram

*There is a flow diagram for the EEG graphing section

EEG acquisition

The count_eegPacket is just a basic counter of the
packets that have been acquired, this helps to
know if it is the first EEG recording.

This EEG acquisition method is suppossed to be
called every 100 miliseconds or so, however each
packet has a buffer size of approximately 20
values. The more processing you do the buffer
size will increase. If you get to 128 then you are
already losing data, plus the display will have a lot
of delay.

Remember the buffer size was set to 1 sec.

EEG acquisition
The graph will display 10 sec which is the convention for

reviewing EEG. That is why a 10 second buffer is
created to store EEG data.

The EEG signal from the headset comes with a DC offset.

To solve that issue we get the mean value for each
channel of the first second of acquisition and substract
it to each channel and add a value for it to be displayed
nicely.

Since the EEG acquisition was enabled since the user was

added the data buffer is already full with one second of
data so the first data packet has already one sec of
data.

EEG graphing Flow diagram

EEG graphing

The program was designed to graph and at the same time
record in a *.csv file the data.

First it fills the 10 sec display and then it does a shifting of
the 10 second array, the length of the shift is
determined by the buffer size.

*The functions that are being used for graphing were not

developed for high resolution real time signal display.
So they are not effective and can produce a lot of
delay. That is why in the shifting graphing section only
the Odd points are being graphed.

If there is a Sz Event

If there is a seizure event then it will be marked in
the EEG file with a “1000”.

Also a stream is started and writes the 40 seconds
before the event onset that was detected and
sets to true the EEG_Szevent flag which wil
enable the program to write the following 40
seconds to the event file.

This event files are the ones that are reviewable
through the menu:

ApplicationLoadEEG data

The time display
The time display is based on the number of

values that are acquired. That number is
converted to seconds and then to minutes and
so forth.

Then there is a section that makes sure that the
SODA is called every second. Even if SODA is
deactivated it should be called here since in
that method the 40 second buffer is also built.

Region: EEG filtering and Seizure
detection algorithm

The first part of this region is a lot like the EEG
graphing part where a buffer of 40 seconds is
filled and once it is filled there is a shifting of one
second to keep it updated.

After this there is comes the section to keep writing
in a file every second for 40 seconds in case a
seizure event is detected.

So basically if a seizure event is detected what
happens is that a file is created in which the 40
second buffer is written and then for next 40
seconds data is written to that file.

SODA
The SODA is pretty simple using simple math…
The signal processing is the following:
1. Convolution of the FIR and the raw EEG.
2. Derivative of the filtered EEG.
3. Make all values positive.
4. Calculate the area under the curve for the 1st derivative

of the EEG, this is done for a window of 20 sec.
5. Compares the mean value of the AUC of the 1st derivative

of the selected channels of the first 10 seconds against
the last 10 seconds of this 20 seconds window.

Basically SODA does a comparison every second between
shiftin 10 seconds window of the AUC of the 1st derivative
for the filtered EEG.

The AUC of the 1st derivative of the filtered EEG tells us the
amount of change in the slope(dynamic change) of the
frequencies of interest.

Region: Chart preparation

This region is pretty simple. Clears the chart and
creates the series and states the specifics
about the axes and the position of the chart.

Region: Master Timer Flow diagram

Region: Master Timer

This is suppossed to happen every 100ms.
The first thing that happens is that it calls
Engine.ProcessEvents();
This will check if there are any pending events like if

the EmoState has been updated, if it has goes to
that handler and then sends the new action to
the cube.

After that it if a second has passed then:
Checks if neutral state is being trained or if the

beeping alarm is on.

The neutral state has to be trained here because its
function doesn’t have a intrinsicate timer of 8
seconds like the other training actions. Therefore
we do the 10 second counting of the training
here.

The beeping alarm flags are modified when you

move the block in the read cognitiv region. Either
increasing the frequency or decreasing it.

Region: Master Timer

Region: Connect Button
This region has the handler of the click event and then

calls the method Connect();
This method just asks if there is a user connected. If the

userID is -1 there is no one connected.

engine.Connect();
is used to connect with the headset directly.

engine.RemoteConnect(“127.0.0.1”, 1726(or 3008));
is used to connect with the control panel or with the

emocomposer, 1726 is the port for the emocomposer.

Region: Alarm Button

This region toggles the beeping alarm on or off.
The starting frequency for this is 1 beep every
second, this can be easily changed with the
beep_counter = x;

EEG acquisition ON/OFF Flow diagram

EEG acquisition ON/OFF

This region toggles the acquisition of the EEG.
If it is off, it asks if it is the first time it will be turned

on or not. Then prepares everything and activates
the acquisition with the flag acquire.

If it is turning off the acquisition then it will ask for
the Seizure event files. If there are any then it will
graph them and take a snapshot and save it as a
*.bmp file in that folder, this files are used in to
make the ImageView that is used in the Listview.

Region: Make Thumbnails of files
generated

This region is within the EEG acquisition
ON/OFF.

It is very similar to the prepare chart region with
the exception that 80 seconds are being
graphed into the chart.

Then it reads all the Event files, graphs them and
saves them as a *.bmp snapshot.

chart1.SaveImage(); is used to save them.

Region: Toggle montage

This region has a counter that increases
according to the times the button is clicked.

It basically reorders the labels for the channel
names and gives an offset to the channels for
them to appear in the montage selected.

This offset was determined empirically by trial
an error. The offset is added once the DC is
removed from the channel.

Region: Enable Cube

One of the simplest regions in the code.
This pretty much just toggles the flag

enable_cube

Which will enable the cube in the ReadCognitiv

region.

Region: Load previous file EEG file
Listview

This region is in charge of responding to the ..
ApplicationLoadEEG data
It asks you for the folder where the event files are.
Then in that folder it looks for the *.bmp files,

creates an ImageList with these files.
Adds these Images to the ListView with the number

of the EEG recording and then the event number.
So 1.3 means EEG 1 event 3.

*This format is important later on when the event is
graphed.

***http://www.dotnetperls.com/listview
***http://www.dotnetperls.com/imagelist

Region: Graph Event

This chunk of code is in charge of graphing the
event when one of the thumbnails is double-
clicked upon in the ListView. So first is..

ApplicationLoadEEG data
Once it loads the thumbnails then selected one, it

goes into here.
It basically looks for that file and then graphs the

file, very much like in the make the Thumbnails or
EEG acq. This time the chart has a 10 sec
reference since it is for EEG analysis.

Region: Add Profile

With this section, the Load and Save Profile, I struggled a
little so there is a thorough explanation in the
Community Forum, Emotiv SDK. “Erasing cognitiv
training, How to handle training in C#”

*** emotiv.com/forum/forum15/topic2528/
Since you depend on what the emotiv function does it

can mess up other things.
So basically what this section does is that it saves the

current profile or if there is none it creates one with a
new name. Like mentioned before you have to save the
profile created for it to stay like that.

Region: Load Profile
When the file is selected. It gets the name of the file for

display.
Then creates a FileStream and reads the file and loads the

data in a Byte[] buffer array.
Then that array is assigned as a profile through:
EdkDll.EE_SetUserProfile((uint)userID, buffer, file_length);

*There is a function from the API edk that loads a profile

but it may give you problems that is why I did it
through streams, which is what the function should do
anyway. However that function never gave me any
problems. There is a section commented in the code
with that section.

Region: Save Profile

This region basically saves the profile that is being
used, to the path where it was created.

The API EDK function gave me a lot of problems, as
said and explained on the forum.

Therefore this section uses Stream of Byte Arrays.
It first Gets the Bytes from the current user:
Profile tmp = engine.GetUserProfile((uint)userID);
Then sends the Bytes to the “ByteArrayToFile”

method.

“ByteArrayToFile” method

This method gets the file Bytes.
Writes them to the File selected.
However the important thing about this method is

the:

System.IO.FileStream _FileStream = new System.IO.FileStream(_FileName+”.emu”,System.IO.FileMode.Create,System.IO.FileAccess.Write);

That Create part is the one in charge of Creating the file again. So
erases everything on it and creates it again. This is helpful when
saving several times. That was the problem with the EDK function, it
would overwrite on the file and corrupt it.

Region: Training Menu

Divided into four sections:
1. Check trained states

2. Sz training button

3. Training other actions

1. Erase training

Check trained states

This was a little tricky. When you ask for the
actions.

engine.CognitivGetTrainedSignatureActions(userID);
This comes back in an int type variable

“Trained_states” that has the sum of the trained
actions.

Remember how PUSH was sent to the cube as a 2,
and PULL as a 4. (kinf of in a binary scale, 1 =
neutral, 10 = Push, 100 = Pull, 1000 = Lift … etc).

Example: If the trained actions are: Neutral, Pull,
Lift and Push. Trained_states = 15, 1+2+4+8.

Check trained states flow diagram

CAUTION!

This chunk of code was made to recognize actions trained
by the EmoRush Application. If you use a profile that
has actions trained in the Control Panel different from:

• Push
• Pull
• Lift
• Drop
• Rotate_Reverse

Then it will not recognize the actions properly

Sz Train Button

This section is called when the SZ train button is
clicked. It will start the training for the SZ
(COG_ROTATE_REVERSE), the action for the SZ
can be trained here.

The training is done twice so that it records 16
sec of the seizure.

Training Actions

This does the same thing as the SZ button but
through the Training Menu, and trains all the
other actions. Only once so 8 seconds.

It also makes sure that you dont have more than

2 actions trained besides the SZ.
You can have up to 4 actions trained and active

at the same time but it is really hard to control
them.

Erasing actions

Very simple, and similar to the training action
section.

It can individually erase an action or erase all
actions which is handled in the training event
handlers.

Region: Training Event Handlers

In this part you will see the handlers for:
• Training Succeeded
• Training Started
• Training Completed
• Training Reset when erasing one action
• Training Erase for erasing all actions

The flow diagram of how the training works is in the

User Manual pg 59

Region: About SW

This region is purely in charge of displaying a
message box with my contact information.

If you make significant changes to the code you
might want to include your contact
information too.

You reach this section through:
ApplicationAboutSoftware

Region: ON/OFF SODA

This region toggles the SODA.
A label on the right side of the SODA Bandwidth

should say “On” or “Off” telling you if it is
activated.

It is reached through:

ApplicationSODAON/OFF SODA

Region: Toggle Bandwidth for SODA

This region works similar to the EEG montage
region.

With the exception that it toggles the FIR filter
that will be used for the SODA.

It is also shown in the label on the right side of
the button.

	EmoRush CODE Tutorial for the programmer
	Before we start…
	So you’re back...
	Before getting into the code
	Montage on the headset
	The order of data acquisition
	General characteristics of the CODE
	Helpful links
	The program…
	Slide Number 10
	Layout of the code
	Slide Number 12
	Beginning of the Code…
	Slide Number 14
	Slide Number 15
	private void EmoRush_Load(object sender, EventArgs e)�
	FIR filters
	FIR filters
	IsOdd(int) method
	Region: Read cognitiv and send to EmoCube
	Read Cognitiv
	Communicating with RushCube application	
	Region: Winks
	Region: User Handler
	Region: User Removed
	Region: Outputfile Header
	Region: Raw EEG acquisition and file output writing.
	EEG acq Flow diagram
	EEG acquisition
	EEG acquisition
	EEG graphing Flow diagram
	EEG graphing
	If there is a Sz Event
	The time display
	Region: EEG filtering and Seizure detection algorithm
	SODA
	Region: Chart preparation
	Region: Master Timer Flow diagram
	Region: Master Timer
	Region: Master Timer
	Region: Connect Button
	Region: Alarm Button
	EEG acquisition ON/OFF Flow diagram
	EEG acquisition ON/OFF
	Region: Make Thumbnails of files generated
	Region: Toggle montage
	Region: Enable Cube
	Region: Load previous file EEG file Listview
	Region: Graph Event
	Region: Add Profile
	Region: Load Profile
	Region: Save Profile
	“ByteArrayToFile” method
	Region: Training Menu
	Check trained states
	Check trained states flow diagram
	CAUTION!	
	Sz Train Button
	Training Actions
	Erasing actions
	Region: Training Event Handlers
	Region: About SW
	Region: ON/OFF SODA
	Region: Toggle Bandwidth for SODA
	Slide Number 65

