

Fernando Sáenz Pérez 1/39

Universidad Complutense de Madrid

Datalog Educational System

Datalog Educational
System V1.1

User’s Manual

Technical Report SIP 139-04

Fernando Sáenz Pérez

Departamento de Sistemas Informáticos y Programación

Universidad Complutense de Madrid

 4/3/2004

Fernando Sáenz Pérez 2/39

Universidad Complutense de Madrid

Datalog Educational System

Copyright (C) 2004 Fernando Sáenz

Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and fitness for
any purpose.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation1, 59 Template Place – Suite 330, Boston, MA
02111, USA.

1 http://www.fsf.org/

Fernando Sáenz Pérez 3/39

Universidad Complutense de Madrid

Datalog Educational System

Contents

1. Introduction...5

1.1 Deductive Databases... 5
1.2 Referring to DES... 5
1.3 Release Notes... 6

2. Installation ...7
2.1 Downloading DES... 7

2.1.1 Source Distribution... 7
2.1.2 Executable Distribution.. 7

2.1.2.1 Windows... 7
2.1.2.2 Unix.. 8

2.2 Installing DES... 8
2.2.1 MS Windows.. 8

2.2.1.1 Executable Distribution.. 8
2.2.1.2 Source Distribution... 8

2.2.2 Unix/Linux... 9
2.2.2.1 Executable Distribution.. 9
2.2.2.2 Source Distribution... 9

3. Using DES...9
3.1 Starting DES... 10
3.2 Writing and Running Datalog Programs.. 10

3.2.1 Syntax .. 13
3.2.2 DES Queries .. 13
3.2.3 DES Rules.. 14

3.3 Getting Help .. 14
3.4 Examples.. 14

3.4.1 Relational Operations (file relop.dl).. 14
3.4.2 Paths in a Graph (file paths.dl).. 15
3.4.3 Family Tree (file family.dl).. 16
3.4.4 Basic Recursion Problem (file recursion.dl).................................. 17
3.4.5 Transitive Closure (file tranclosure.dl).. 17
3.4.6 Mutual Recursion (file mutrecursion.dl)....................................... 18
3.4.7 Stratified Negation (file negation.dl) ... 18
3.4.8 Paradoxes (file russell.dl)... 18
3.4.9 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl) 20

4. Commands ..23
4.1 Rule Database Commands ... 24
4.2 Extension Table Commands... 25
4.3 File System Commands.. 25
4.4 Help Commands.. 25
4.5 Miscellanea.. 25

5. Operators ..26
6. Notes about the Implementation of DES..27

6.1 Tabling ... 27
6.2 Finding Stable Models.. 28
6.3 Porting to Unsupported Systems... 29
6.4 Differences among Platforms... 29

7. Related Work..29
8. Future Enhancements ...30

Fernando Sáenz Pérez 4/39

Universidad Complutense de Madrid

Datalog Educational System

9. Acknowledgements...30
Appendix A. GNU General Public License..32
Bibliography...38

Fernando Sáenz Pérez 5/39

Universidad Complutense de Madrid

Datalog Educational System

1. Introduction
The Datalog Educational System (DES) is a free Prolog-based

implementation of a basic deductive database with stratified negation which uses
Datalog as a query language. The system is implemented on top of Prolog and you
can use it from a Prolog interpreter running both on Windows and Unix/Linux.
Moreover, both Windows and Unix executables are also provided.

We have developed it aiming to have a simple, interactive, multiplatform,
and affordable system (not necessarily efficient) for students, so that they can get
the fundamental concepts behind a deductive database with Datalog as a query
language. In addition, since it is implemented on top of Prolog and students are
assumed to know Prolog programming, they can study its implementation. Other
known systems are not fully suited due to the absence of some characteristics DES
does offer for our educational purposes (See section 7).

DES 1.1 is the current implementation, which enjoys full recursive
evaluation with memoization techniques and stratified negation. It does not deal
with compound terms, although they may come in future versions.

1.1 Deductive Databases

The intersection of databases, logic, and artificial intelligence delivered
deductive databases. Deductive database systems are database management
systems built around a logical model of data, and their query languages allows to
express logical queries. The relational language SQL is a limited form of logical
expression, and deductive database systems are advanced forms of relational
systems.

A deductive database is a system which includes procedures for defining
deductive rules which can infer information in addition to the facts loaded in the
database. The logic model for deductive databases is closely related to the
relational model and, in particular, with the domain relational calculus. Their
query languages are related with the Prolog language and, mainly, with Datalog, a
Prolog subset without complex terms (in order to avoid infinite structures).

The relational algebra has been shown to be inefficient for expressing
database queries. A main defect is the lack of recursion, which does not allow to
express recursive definitions as the transitive closure of a graph.

Origins of deductive databases can be found in automatic theorem proving
and, later, in logic programming. Minker [Mink87] suggests that Green and
Raphael [GR68] were the pioneers in discovering the relation between theorem
proving and deduction in databases. They developed several question–answer
systems using a version of the Robinson resolution principle [Robi65], showing that
deduction can be systematically performed in a database environment. Other
pioneer systems were MRPPS [MN82], DEDUCE–2 [Chan78] and DADM [KT81].

1.2 Referring to DES

Please use the following BiBTeX entry for referring to this system:
@techreport{des-user-manual-tr,
 author = {F. S\'aenz-P\'erez},

Fernando Sáenz Pérez 6/39

Universidad Complutense de Madrid

Datalog Educational System

 title = {Datalog Educational System V1.1. User's Manual},
 institution = {Faculty of Computer Science, UCM},
 year = 2004,
 number = {139-04},
 note = {Available from http://www.fdi.ucm.es/profesor/fernan/DES/}
 }
}

1.3 Release Notes

Version 1.1 of DES adds to previous version (1.0):

• Full recursion

• Memoization techniques

• Gathering of undefined facts under non stratified programs (incomplete
algorithm)

• Several new commands:

o /listing name/arity. Lists Datalog rules matching the pattern

o /retractall head. Deletes all Datalog rules matching head

o /list_et. Lists contents of the extension table

o /list_et name/arity. Lists contents of the extension table matching the
pattern

o /clear_et. Clears the extension table

o /builtins. lists builtin operators

o /cd path. Sets the current directory

o /cd. Sets the current directory to the directory where DES was started
from

o /pwd. Displays the current directory

o /ls. Displays the contents of the current directory

o /ls path. Displays the contents of the given absolute or relative directory

o [filenames]. Consults a list of Datalog files abolishing previous rules

o [+filenames]. Consults a list of Datalog files keeping previous rules

o /shell command. Submits a command to the operating system shell

• Cosmetic changes:

o Commands start with a slash

o Command arguments are no longer enclosed in brackets

o Both commands and queries may end with a dot

• Fixed bugs:

o Primitives fail adequately when they should do it, instead of exiting
from the interpreter

Fernando Sáenz Pérez 7/39

Universidad Complutense de Madrid

Datalog Educational System

2. Installation

2.1 Downloading DES

You can download the system from the DES web page via the URL:
http://www.fdi.ucm.es/profesor/fernan/DES/

There, you can find a source distribution for several Prolog interpreters and
operating systems, and executable distributions for Windows and Unix.

2.1.1 Source Distribution

Under the source distribution, there are several versions depending on the
Prolog interpreter you select to run DES: Ciao Prolog [BCC97], GNU Prolog [Diaz],
Sicstus Prolog [Sicstus], and SWI Prolog [Wiele]. However, with minor changes to a
small selected piece of code (found in the file des1.pl), it is likely to run on any
other Prolog system and operating system it is installed, since the core (found in
the file des.pl) was implemented following standard Prolog (See section 6.3 for
porting to unsupported systems). We have tested DES under several Prolog
systems (Ciao Prolog 1.8#2, GNU Prolog 1.2.16, Sicstus Prolog 3.11.0, and SWI–
Prolog 5.2.10), and several operating systems (MS Windows 98 and later, Solaris,
and Linux).

The source distribution comes in a single archive file containing the
following:

• des.pl. Contains the core of DES

• des1.pl. Contains particular code for the selected Prolog system

• systems/{ciao,gnu,sicstus,swi}. Contains the same two previous files for all
of the supported Prolog systems (these directories can be erased if desired, they
are included only for reference)

• doc/manual.pdf. This manual

• examples/*.dl Example files which will be discussed in section 3.4

• license/license A verbatim copy of the GNU Public License for this
distribution

2.1.2 Executable Distribution

2.1.2.1 Windows

From the same above URL you can download a Windows executable
distribution in a single archive file containing the following:

• des.exe . Console executable file

• deswin.exe . Windows executable file

• des.pl. Contains the core of DES

• des1.pl. Contains Sicstus dependent code

• systems/{ciao,gnu,sicstus,swi}. Contains the same two previous files for all
of the supported Prolog systems (these directories can be erased if desired, they
are included only for reference)

Fernando Sáenz Pérez 8/39

Universidad Complutense de Madrid

Datalog Educational System

• main.sav. Saved state of DES

• *.dll. DLL libraries for the runtime system

• doc/manual.pdf. This manual

• examples/*.dl Example files which will be discussed in section 3.4

• license/license A verbatim copy of the GNU Public License for this
distribution

• sp311/*.dl Directory containing Prolog libraries

2.1.2.2 Unix

From the same above URL you can download a Unix executable distribution
in a single archive file containing the following:

• des. Console executable file. It may require to set the execution permission

• des.pl. Contains the core of DES

• des1.pl. Contains Sicstus dependent code

• systems/{ciao,gnu,sicstus,swi}. Contains the same two previous files for all
of the supported Prolog systems (these directories can be erased if desired, they
are included only for reference)

• des.sav. Saved state of DES

• doc/manual.pdf. This manual

• examples/*.dl Example files which will be discussed in section 3.4

• license/license A verbatim copy of the GNU Public License for this
distribution

2.2 Installing DES

Unpack the distribution archive file into the directory you want to install
DES, which will be referred to as the distribution directory from now on. This
allows you to run the system, whether you have a Prolog interpreter or not (in this
latter case, you have to run the system either on MS Windows or SunOS).

Although there is no need for further setup and you can go directly to
section 3.1, you also can configure the way the system starts for commodity. In this
way, you can follow two routes depending on the operating system.

2.2.1 MS Windows

2.2.1.1 Executable Distribution

Simply create a shortcut in the desktop for executing the executable of your
choice: des.exe or deswin.exe. The former is a console-based executable, whereas
the latter is a windows-based executable. Both have been generated under Sicstus
Prolog, so that all Sicstus notes in the rest of this document also apply to these
executables.

2.2.1.2 Source Distribution

Perform the following steps:

Fernando Sáenz Pérez 9/39

Universidad Complutense de Madrid

Datalog Educational System

1. Create a shortcut in the desktop for running the Prolog interpreter.

2. Modify the start directory in the Properties dialog box of the shortcut to the
installation directory for DES. This allows the system to consult the needed
files at startup.

3. Append the following options to the Prolog executable path, depending on the
Prolog interpreter you use:

(a) Ciao Prolog: -l ciaorc

(b) GNU Prolog: --entry-goal ['des.pl']

(c) Sicstus Prolog: -l des.pl

(d) SWI Prolog: -g "[des]"

Another alternative is to write a batch file similar to the script file described
in the next section.

2.2.2 Unix/Linux

2.2.2.1 Executable Distribution

You can create a script or an alias for executing the file des at the
distribution root. This executable has been generated under Sicstus Prolog, so that
all Sicstus notes in the rest of this document also apply to these executables.

2.2.2.2 Source Distribution

You can write a script for starting DES according to the selected Prolog
interpreter, as follows:

(a) Ciao Prolog:
$CIAO –l ciaorc

Provided that $CIAO is the variable which holds the absolute filename of the
Ciao Prolog executable.

(b) GNU Prolog:
$GNU --entry-goal ['des.pl']

Provided that $GNU is the variable which holds the absolute filename of the
GNU Prolog executable.

(c) Sicstus Prolog:
$SICSTUS –l des.pl

Provided that $SICSTUS is the variable which holds the absolute filename of
the Sicstus Prolog executable.

(d) SWI Prolog:
$SWI -g "[des]"

Provided that $SWI is the variable which holds the absolute filename of the
SWI Prolog executable.

3. Using DES
Since DES has been written with Prolog, we have adopted almost all the

Prolog syntax conventions for writing Datalog programs (the reader is assumed to

Fernando Sáenz Pérez 10/39

Universidad Complutense de Madrid

Datalog Educational System

have basic knowledge about Prolog). Commands are somewhat different for Prolog
programmers as they are accustomed to (See section 4). Also, exceptions are noted
when necessary.

3.1 Starting DES

Besides the methods described in the previous section, you can start DES
from a Prolog interpreter, firstly changing to the distribution directory, and then
with:
?- [des].

Followed by:
?- start.

Whichever method you use to start DES (a script, batch file, or shortcut),
you get the following:

* *
* DES: Datalog Educational System v.1.1 *
* *
* - Stratified Negation *
* - Full recursion *
* - Noncompound terms *
* *
* Type "/help" for commands *
* Type "des." if you get out of DES *
* *
* Fernando Sáenz (c) 2004 *
* SIP UCM *
* Please send comments, questions, etc. to: *
* fernan@sip.ucm.es *
* Visit the Web site at: *
* http://www.fdi.ucm.es/profesor/fernan/DES/ *

DES>

This last line (DES>) is the DES prompt, which allows you to write
commands or Datalog queries. If an error leads to an exit from DES and you have
started from a Prolog interpreter, then you can write des. at the Prolog prompt to
continue.

3.2 Writing and Running Datalog Programs

The common way of using the system is to write Datalog program files (with
default extension .dl) and consulting them before submitting queries. Another
alternative is to assert program rules from the command prompt. Following the
first alternative, you write the program in a text file, and then you use the
following command in order to consult the Datalog program2:

DES> /consult Filename

2 See section 4 for more details about commands.

Fernando Sáenz Pérez 11/39

Universidad Complutense de Madrid

Datalog Educational System

Where FileName is the name of the file, as family.dl (the default
extension la extensión .dl can be omitted). If the file is located in the system
directory, you can consult the file with:

DES> /consult family.dl

or simply:

DES> /consult family

Otherwise, when the file is located at another path, you can firstly change to
the new path using the command /cd Path, where Path is the new directory
(relative or absolute). Assuming that we are in the system directory and we have
installed the distribution at c:\des1.1, we can do the following:

DES> /cd examples

Current directory is:
 c:/des1.1/examples/

Alternatively, you can directly consult the file with relative or absolute
paths:

DES> /consult examples/family.dl
DES> /consult C:/des1.1/examples/family.dl

Assume now that we have the program file a.dl with the following contents
(also found in the examples directory):

a(a1).
a(a2).
a(a3).

From the Datalog prompt, the following commands and queries may be
submitted:

DES> /consult a

Consulting a...
a(a1)
a(a2)
a(a3)

DES> /listing

a(a1)
a(a2)
a(a3)

yes

DES> /assert a(a4)

yes

Fernando Sáenz Pérez 12/39

Universidad Complutense de Madrid

Datalog Educational System

DES> /listing

a(a1)
a(a2)
a(a3)
a(a4)

yes

DES> a(a3)

{
 a(a3)
}
yes

DES> a(a5).

{
}
no

DES> a(X).

{
 a(a1),
 a(a2),
 a(a3),
 a(a4)
}
yes

DES> /prolog a(X)

a(a1)

? (type ; for more solutions, <Intro> to continue) ;

a(a2)

? (type ; for more solutions, <Intro> to continue) ;

a(a3)

? (type ; for more solutions, <Intro> to continue) ;

a(a4)

? (type ; for more solutions, <Intro> to continue) ;

no

This last command allows to note the basic difference between Datalog and
Prolog execution. The former gives the whole meaning of the relation a with the

Fernando Sáenz Pérez 13/39

Universidad Complutense de Madrid

Datalog Educational System

query a(X), whereas the latter search for solutions that satisfy the goal a(X). A
meaning of a relation is the set of facts inferred both extensionally and
intensionally from the program.

3.2.1 Syntax

DES syntax comes mainly from Prolog:

• Numbers. Integers and decimal numbers are allowed. A number is decimal
whenever the number contains a dot (.) between two digits. No provision is
made for floating-point numbers up to now. The range depends on the Prolog
platform being used. Negative numbers are identified by a preceding minus (-),
as usual.

Examples of numbers are 1, 1.1, and -1.0.

Note that -1., +1, and .1 are not valid numbers.

• Atoms. Atoms are identifiers used to build the Herbrand universe. An atom is a
sequence of characters written in any of the following forms:

o Any sequence of alphanumeric characters (including _), starting with a
lowercase letter

o Any sequence of alphanumeric characters delimited by single quotes.

Examples of atoms are foo, foo_foo, and 'X'.

• Constants. A constant is either a number (integer or decimal) or an atom.

• Variables. Variables are written with alphanumeric characters, and
alternatively start with uppercase or with an underscore (_).

Examples of variables are: X, _X, _variable.

• Terms. Terms can be:

o Noncompound. Variables or constants.

o Compound. As in Prolog, they are composed of a functor followed by a
comma-separated list of arguments enclosed between brackets. A functor
obeys the same syntax rules as atoms. An argument can be a
noncompound term.

Some built-in operators are written infix, as relational operators, equality and
disequality (See section 5).

Examples of compound terms are: r(p) , p(X,Y), and X > Y.

• Goals. Goals obey the same syntax rules as compound terms. In addition, a goal
can take the form not(Term), where Term is a compound term. Goals can
appear in rule bodies and queries.

3.2.2 DES Queries

A query is the name of a relation with as many arguments as the arity of
the relation, following the same syntax as compound terms. These arguments can
be variables or atoms. Complex data structures are not allowed. Note that you
cannot write conjunctive queries, as a(X), b(X). This does not imply loss of
generality because you can write a rule r(X) :- a(X), b(X) and submit the

Fernando Sáenz Pérez 14/39

Universidad Complutense de Madrid

Datalog Educational System

query r(X). Built-in operators (listed in section 5) can be used in queries whenever
their arguments are ground, i.e., they are constants.

You can type in queries (as well as the commands described in section 4) at
the DES system prompt. The answer to a query is the set of facts matching the
query. A query with variables for all the arguments of the queried relation gives
the whole set of facts defining the relations, as the query a(X) in the previous
example. If a query contains an atom in an argument position, it means that the
query processing will select the facts from the meaning of the relation such that the
argument position matches with the atom (i.e., analogous to a select relational
operation). This is the case of the query a(a3) in the example at the beginning of
section 3.2.

3.2.3 DES Rules

DES rules are similar to Prolog rules with the same restrictions found in
queries. DES rules have the form head :- body, or simply head. Both end with a
dot. A DES head follows the same syntax as a compound term. A DES body
contains a comma-separated sequence of goals which may contain predefined
operators as listed in section 5. Goals can be positive or negative. A negated goal is
expressed as not(goal).

3.3 Getting Help

You can get useful information with the following commands:

• /help. Shows the list of available commands, which are explained in section 4.

• /builtins. Shows the list of predefined operators, which are explained in
section 5.

Also, visit the URL for last information:
http://www.fdi.ucm.es/profesor/fernan/DES/

3.4 Examples

The DES distribution contains the directory examples which shows several
features of the system.

3.4.1 Relational Operations (file relop.dl)

This (classic) program is intended to show how to mimic the basic relational
operations with Datalog rules. It contains three relations (a, b, and c), which are
used as arguments of relational operations.

% Relations
a(a1).
a(a2).
a(a3).

b(b1).
b(b2).
b(a1).

Fernando Sáenz Pérez 15/39

Universidad Complutense de Madrid

Datalog Educational System

c(a1,b2).
c(a1,a1).
c(a2,b2).

% Relational Operations

% pi(X)(c(X,Y))
projection(X) :- c(X,Y).

%sigma(X=a2)(a)
selection(X) :- a(X), X=a2.

% a X b
cartesian(X,Y) :- a(X), b(Y).

% a |x| b
join(X) :- a(X), b(X).

% a U b
union(X) :- a(X).
union(X) :- b(X).

% a - b
difference(X) :- a(X), not(b(X)).

Once the program is consulted, you can query it by, for example:

DES> projection(X)

{
 projection(a1),
 projection(a2)
}
yes

The result of a query is the meaning of the view, i.e., the fact set for the
query derived from the program whether intensionally or extensionally. In the
above example, projection(X) corresponds to the projection of the first
argument of relation c.

3.4.2 Paths in a Graph (file paths.dl)

This program3 introduces the use of recursion in DES by defining the graph
in Figure 1 and the set of tuples <origin, destination> such that there is a path
from origin to destination.

3 Adapted from [TS86].

Fernando Sáenz Pérez 16/39

Universidad Complutense de Madrid

Datalog Educational System

 b

c

a d

Figure 1. Paths in a Graph

% Paths in a Graph

edge(a,b).
edge(a,c).
edge(b,a).
edge(b,d).

path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

The query path(X,Y) yields the following answer:
{
 path(a,a),
 path(a,b),
 path(a,c),
 path(a,d),
 path(b,a),
 path(b,b),
 path(b,c),
 path(b,d)
}

3.4.3 Family Tree (file family.dl)

This (yet another classic) program defines the family tree shown in Figure 2,
the set of tuples <parent, child> such that parent is a parent of child (the relation
parent), the set of tuples <ancestor, descendant> such that ancestor is an ancestor
of descendant (the relation ancestor), the set of tuples <father,child> such father is
the father of child, and the set of tuples <mother,child> such mother is the mother
of child.

amy

tom grace

fred

jack

carolIII

carolII

tony carolI

Figure 2. Family Tree

Fernando Sáenz Pérez 17/39

Universidad Complutense de Madrid

Datalog Educational System

father(tom,amy).
father(jack,fred).
father(tony,carolII).
father(fred,carolIII).
mother(graceI,amy).
mother(amy,fred).
mother(carolI,carolII).
mother(carolII,carolIII).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

The query ancestor(tom,X) yields the following answer (that is, it
computes the set of descendants of tom):
{
 ancestor(tom,amy),
 ancestor(tom,carolIII),
 ancestor(tom,fred)
}

3.4.4 Basic Recursion Problem (file recursion.dl)

This example is intended to show that queries involving recursive predicates
do terminate thanks to DES fixpoint semantics, by contrast with Prolog’s usual
SLD resolution.

p(0).
p(X) :- p(X).
p(1).

The query p(X) returns the inferred facts from the program irrespective of
the apparent infinite recursion in the second rule. (Note that the Prolog goal p(1)
does not terminate. You can check it out with /prolog p(1)).

3.4.5 Transitive Closure (file tranclosure.dl)

With this example, we show a possible use of mutual recursion by means of
a program that defines the transitive closure of the relations p and q.

p(a,b).
p(c,d).
q(b,c).
q(d,e).
pqs(X,Y) :- p(X,Y).
pqs(X,Y) :- q(X,Y).
pqs(X,Y) :- pqs(X,Z),p(Z,Y).
pqs(X,Y) :- pqs(X,Z),q(Z,Y).

The query pqs(X,Y) returns the whole set of inferred facts that model the
transitive closure.

Fernando Sáenz Pérez 18/39

Universidad Complutense de Madrid

Datalog Educational System

3.4.6 Mutual Recursion (file mutrecursion.dl)

The following program shows a basic example about mutual recursion:
p(a).
p(b).
q(c).
q(d).
p(X) :- q(X).
q(X) :- p(X).

Submitting the goal p(X), we get:
{
 p(a),
 p(b),
 p(c),
 p(d)
}

which is the same set of values for arguments for the query q(X). The file
mrtc.dl is a combination of this example and that of the previous section.

3.4.7 Stratified Negation (file negation.dl)

DES ensures that negative information can be gathered from a program
with negated goals provided that a restricted form of negation is used: stratified
negation. This broadly means that negation is not involved in a recursive
computation path, although it can use recursive rules. The following program4
illustrates this point:

a :- not(b).
b :- c,d.
c :- b.
c.

The query a succeeds with the meaning {a}. Observe also that not(a) does
not succeed, i.e., its meaning is the empty set.

3.4.8 Paradoxes (file russell.dl)

When negation is used, we can find paradoxes, such as the Russell’s
paradox (the barber in a town shaves every person who does not shave
himself) shown in the next example (please note that this example is not
stratified and, in general, we cannot ensure completeness for non stratified
negated programs):

shaves(barber,M) :- man(M), not(shaves(M,M)).
man(barber).
man(mayor).

4 Adapted from [RSSWF97].

Fernando Sáenz Pérez 19/39

Universidad Complutense de Madrid

Datalog Educational System

If we submit the query shaves(X,Y), we get the positive facts as well as a
set of undefined inferred information (in our example, whether the barber shaves
himself), as follows:

DES> shaves(X,Y).
{
 shaves(barber,mayor)
}
yes

Undefined:
{
 shaves(barber,barber)
}

If we look at the extension table contents by submitting the et command,
we get:

man(barber).
man(mayor).
not(shaves(mayor,mayor)).
shaves(barber,mayor).

We can see that, in particular, we have proved additional negative
information (the mayor does not shaves himself) and that no information is given
for the undefined facts. The current implementation uses an incomplete algorithm
for finding such undefined facts. We can see this incompleteness by adding the
following rule:

shaved(M) :- shaves(barber,M).

The query shaved(M) returns:
{
 shaved(barber),
 shaved(mayor)
}
yes

Undefined:
{
 shaves(barber,barber)
}

That is, the system is unable to prove that shaved(barber) is undefined
(it proves that the fact is positive but it is unable to prove that the fact is also
negative). Future versions may overcome this limitation by allowing more flexible
forms of stratification.

The basic paradox p:-not(p) can be found in the file paradox.dl, whose
model is undefined as you can test with the query p.

Fernando Sáenz Pérez 20/39

Universidad Complutense de Madrid

Datalog Educational System

3.4.9 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl)

This example5 shows the classic Farmer–Wolf–Goat–Cabbage puzzle (also
Missionaries and Cannibals as another rewritten form). The farmer, wolf, goat, and
cabbage are all on the north shore of a river and the problem is to transfer them to
the south shore. The farmer has a boat which he can row taking at most one
passenger at a time. The goat cannot be left with the wolf unless the farmer is
present. The cabbage, which counts as a passenger, cannot be left with the goat
unless the farmer is present. The following program models the solution to this
puzzle. The relation state/4 defines the valid states under the specification (i.e.,
those situations in which there is no danger for any of the characters in our story; a
state in which the goat is left alone with the cabbage may result in an eaten
cabbage) and imposes that there is a previous valid state from which we depart
from. The arguments of this relation are intended to represent (from left to right)
the position (north –n– or south –s– shore) of the farmer, wolf, goat, and cabbage.
We use the relation safe/4 to verify that a given configuration of positions is
valid. The relation opp/2 simply states that north is the opposite shore of south
and viceversa.

% Initial state
state(n,n,n,n).
% Farmer takes Wolf
state(X,X,U,V) :-
 safe(X,X,U,V),
 opp(X,X1),
 state(X1,X1,U,V).
% Farmer takes Goat
state(X,Y,X,V) :-
 safe(X,Y,X,V),
 opp(X,X1),
 state(X1,Y,X1,V).
% Farmer takes Cabbage
state(X,Y,U,X) :-
 safe(X,Y,U,X),
 opp(X,X1),
 state(X1,Y,U,X1).
% Farmer goes by himself
state(X,Y,U,V) :-
 safe(X,Y,U,V),
 opp(X,X1),
 state(X1,Y,U,V).

% Opposite shores (n/s)
opp(n,s).
opp(s,n).

% Farmer is with Goat
safe(X,Y,X,V).
% Farmer is not with Goat
safe(X,X,X1,X) :- opp(X,X1).

5 Adapted from [Wagner87].

Fernando Sáenz Pérez 21/39

Universidad Complutense de Madrid

Datalog Educational System

If we submit the query state(s,s,s,s), we get the expected result:
{
 state(s,s,s,s)
}
yes

That is, the system has proved that there is a serial of transfers between
shores which finally end with the asked configuration (this problem is not modeled
to show this serial, although it could be). If we ask for the extension table contents
regarding the relation state/4 (with the command /list_et state/4), we get:
{
 state(n,n,n,n),
 state(n,n,n,s),
 state(n,n,s,n),
 state(n,s,n,n),
 state(n,s,n,s),
 state(s,n,s,n),
 state(s,n,s,s),
 state(s,s,n,s),
 state(s,s,s,n),
 state(s,s,s,s)
}

This is the complete set of valid states which includes all of the valid paths
from state(n,n,n,n) to state(s,s,s,s). However, the order of states to reach
the latter is not given, but we can find it by observing this relation, i.e.:
state(n,n,n,n) → Farmer takes Goat to south shore →
state(s,n,s,n) → Farmer returns to north shore →
state(n,n,s,n) → Farmer takes Wolf to south shore →
state(s,s,s,n) → Farmer takes Goat to north shore →
state(n,s,n,n) → Farmer takes Cabbage to south shore →
state(s,s,n,s) → Farmer returns to north shore →
state(n,s,n,s) → Farmer takes Goat to south shore →
state(s,s,s,s) Final safe state

Observe that there is two states in the relation state/4 which do not form
part of the previous path:
state(s,n,s,s)
state(n,n,n,s)

These states come from another possible path6:
state(n,n,n,n) → Farmer takes Goat to south shore →
state(s,n,s,n) → Farmer returns to north shore →
state(n,n,s,n) → Farmer takes Cabbage to south shore →
state(s,n,s,s) → Farmer takes Goat to north shore →
state(n,n,n,s) → Farmer takes Wolf to south shore →
state(s,s,s,n) → Farmer takes Goat to north shore →
state(s,s,n,s) → Farmer returns to north shore →
state(n,s,n,s) → Farmer takes Goat to south shore →
state(s,s,s,s) Final safe state

6 Remember that the system returns all of the possible solutions.

Fernando Sáenz Pérez 22/39

Universidad Complutense de Madrid

Datalog Educational System

Now, let’s turn our attention to the query state(X,Y,U,V). If we empty
the extension table with /clear_et or we submit this query from an empty
extension table (as when we consult a program), we may expect to get all the
possible states as before, but we only get:
{
 state(n,n,n,n)
}
yes

However, this is a reasonable answer given the above program. Note that,
by contrast with previous examples, we have a non ground fact:

% Farmer is with Goat
safe(X,Y,X,V).

What is the meaning of this rule? The relation safe/4 is true whenever the
first and third arguments are the same, whatever the arguments are. This means
that we can find an infinite ground set representing the meaning of safe/4. The
answer set for this relation is represented with ground and non ground facts, as
follows:
{
 safe(_8432,_8431,_8432,_8433),
 safe(n,n,s,n),
 safe(s,s,n,s)
}

The meaning of this relation is not completely defined with ground facts,
which are needed to also complete the meaning of state/4. If we want to get a
finite meaning for relations we are ought to write programs with only ground facts.
Therefore, it turns out to be reasonable for this example to restrict the relation
safe/4 to only the possible values its arguments can take; in other words, to
define finite domains (types) for them. So, we rewrite this relation as:

% Farmer is with Goat
safe(X,Y,X,V) :- shore(X), shore(Y), shore(V).
% Farmer is not with Goat
safe(X,X,X1,X) :- opp(X,X1).

Where the new relation shore/1 is intended to represent the two possible
values for an argument of type shore.

% Possible shores (n/s)
shore(n).
shore(s).

In order to derive the complete intended meaning for a query, we have to
rewrite the entire program such that all of the relation arguments have finite
domains. In our example, each rule for state in the program have to be rewritten.
For instance:

% Farmer takes Wolf
state(X,X,U,V) :-
 shore(U),shore(V),
 safe(X,X,U,V),
 opp(X,X1),

Fernando Sáenz Pérez 23/39

Universidad Complutense de Madrid

Datalog Educational System

 state(X1,X1,U,V).

We have added domain information to the two arguments we do not know
their domains. The first two arguments have known domains because the goal
opp(X,X1). (A systematic straightforward approach is to define domains for all of
the relation arguments, though less efficient.)

Back to the meaning of safe/4, now we get, as expected:
{
 safe(n,n,n,n),
 safe(n,n,n,s),
 safe(n,n,s,n),
 safe(n,s,n,n),
 safe(n,s,n,s),
 safe(s,n,s,n),
 safe(s,n,s,s),
 safe(s,s,n,s),
 safe(s,s,s,n),
 safe(s,s,s,s)
}

That is, we get the intended intensional meaning in the former answer set
as extensional information.

The file typedpuzzle.dl contains the rewritten program which yields the
intended complete meaning to the query state(X,Y,U,V).

4. Commands
The input at the prompt (i.e., commands or queries) must be written in a

line (i.e., without carriage returns, although it can be broken by the DES console
due to space limitations) and can end with an optional dot.

Commands are issued by preceding the command with a slash (/) at the
DES command prompt. An argument for a command is not enclosed between
brackets, it simply appears separated by one or more blanks. Ending dots are
considered as part of the argument wherever it can expected. For instance, /cd ..
behaves as /cd ... (this command changes the working directory to the parent
directory). In this last case, the final dot is not considered as part of the argument.
The command /ls . shows the contents of the working directory, whereas /ls ..
shows the contents of the parent directory (which behaves as /ls ...). Filenames
and directories can be specified with relative or absolute names. There is no need of
enclosing such names between separators. For instance, file or directory names can
contain blanks (for Windows users) and you do not need to use double quotes.

When consulting Datalog files, filename resolution works as follows:

• If the given filename ends with .dl, DES tries to load the file with this
(absolute or relative) filename.

• If the given filename does not end with .dl, DES firstly tries to load a file with
.dl appended to the end of the filename. If such a file is not found, it tries to
load the file with the given filename.

Fernando Sáenz Pérez 24/39

Universidad Complutense de Madrid

Datalog Educational System

In command arguments, when applicable, you can use relative or absolute
pathnames. In general, you can use a slash (/) as a directory delimiter, but
sometimes (depending on the platform) you can also use the backslash (\).

See section 0 for information about DES queries.

4.1 Rule Database Commands
• /consult FileName

Loads the Datalog program found in the file Filename, discarding rules
already loaded. The extension table is emptied. The default extension .dl for
Datalog programs can be omitted.
Examples:
Assuming we are on the distribution directory, we can write:
DES> /consult examples/mutrecursion
which behaves the same as the following:
DES> /consult examples/mutrecursion.dl
DES> /consult ./examples/mutrecursion
DES> /consult c:/des1.1/examples/mutrecursion.dl
This last command assumes that the distribution directory is c:/des1.1.
Synonyms : /c.

• /[FileNames]
Loads the Datalog programs found in the list [Filenames], discarding rules
already loaded. The extension table is emptied. Arguments in the list are
comma–separated.
Examples:
Assuming we are on the examples distribution directory, we can write:
DES> /[mutrecursion,family]
See also /consult Filename.

• /reconsult FileName
Loads a Datalog program found in the file Filename, keeping rules already
loaded. The extension table is emptied.
See also /consult Filename.
Synonyms : /r.

• /[+FileNames]
Loads the Datalog programs found in the comma–sepparated list
[Filenames], keeping rules already loaded. The extension table is emptied.
See also /[Filenames].

• /assert Head:-Body
Adds a Datalog rule. Rule order is irrelevant for Datalog computation. The
extension table is emptied.

• /retract Head:-Body
Deletes a Datalog rule. The extension table is emptied.

• /retractall Head
Deletes all Datalog rules whose head unifies with Head. The extension table is
emptied.

• /abolish
Deletes all the loaded rules. The extension table is emptied.

• /listing
Lists loaded rules.

• /listing Name/Arity

Fernando Sáenz Pérez 25/39

Universidad Complutense de Madrid

Datalog Educational System

Lists loaded rules matching the pattern Name/Arity.
See also /listing.

4.2 Extension Table Commands
• /list_et

Lists the contents of the extension table in alphabetical order. First, answers
are displayed, then calls.

• /list_et Name/Arity
Lists the contents of the extension table matching the pattern Name/Arity.
See also /list_et.

• /clear_et
Deletes the contents of the extension table.

4.3 File System Commands
• /cd Path

Sets the current directory to Path
• /cd

Sets the current directory to the directory where DES was started from
• /pwd

Displays the absolute filename for the current directory.
• /ls

Displays the contents of the current directory in alphabetical order. First, files
are displayed, then directories.

• /ls Path
Displays the contents of the given path in alphabetical order. It behaves as /ls.

4.4 Help Commands
• /help

Shows the help.
Synonyms : /h.

• /builtins
Lists predefined operators.

4.5 Miscellanea
• /prolog Goal

Triggers Prolog’s SLD resolution for the goal Goal.
• /halt

Quits the system.
Synonyms : /q, /quit, /e, /exit.

• /shell Command
Submits Command to the operating system shell.
Notes for platform specific issues:
• Windows users:

command.exe is the shell for Windows 98, whereas cmd.exe is for Windows
NT/2000/2003.

• Ciao users:
The environment variable SHELL must be set to the required shell.

• Sicstus users:

Fernando Sáenz Pérez 26/39

Universidad Complutense de Madrid

Datalog Educational System

Under Windows, if the environment variable SHELL is defined, it is expected
to name a Unix like shell, which will be invoked with the option -c
Command. If SHELL is not defined, the shell named by COMSPEC will be
invoked with the option /C Command.

• Windows and Unix executable users:
The same note for Sicstus is applied.

Synonyms : /s.

5. Operators
All operators are infix but negation. Also, they are not cached with the

memoization technique but negation.

Some infix operators need ground arguments since they are not constraints,
but test predicates. This means that the declarative reading of rules is not full. For
instance, given the following rule:

less(X,Y) :- X<Y, c(X,Y).

the program file relop.dl, and the query less(X,Y), we get no solutions,
whereas if we rewrite the above rule as:

less(X,Y) :- c(X,Y), X<Y.

and submit the same query, we get:
{
 less(a1, b2),
 less(a2, b2)
}

Therefore, we do not ensure sound answers for programs containing
primitives with nonground arguments, since, as seen in such cases, goal ordering
affects semantics. However, a constraint solver could be used to overcome this
limitation.

Next, we list the available operators.
• =

Tests syntactic equality between noncompound terms (variables, atoms, or
numbers). It also performs unification when variables are involved.

• \=
Tests syntactic disequality between noncompound terms (variables, atoms, or
numbers). Its declarative reading is sound whenever its arguments are ground;
otherwise, problems as stated at the beginning of this section may arise. It
always fails if at least one of its arguments is a variable.

• >
Tests whether its left argument is greater than its right argument. Its
declarative reading is sound whenever its arguments are ground; otherwise,
problems as stated at the beginning of this section may arise. It always fails if
at least one of its arguments is a variable. Numbers are compared in terms of
their arithmetical value; other terms are compared in standard order.

• >=
Tests whether its left argument is greater or equal than its right argument. Its
declarative reading is sound whenever its arguments are ground; otherwise,

Fernando Sáenz Pérez 27/39

Universidad Complutense de Madrid

Datalog Educational System

problems as stated at the beginning of this section may arise. It always fails if
at least one of its arguments is a variable. Numbers are compared in terms of
their arithmetical value; other terms are compared in standard order.

• <
Tests whether its left argument is less than its right argument. Its declarative
reading is sound whenever its arguments are ground; otherwise, problems as
stated at the beginning of this section may arise. It always fails if at least one of
its arguments is a variable. Numbers are compared in terms of their
arithmetical value; other terms are compared in standard order.

• =<
Tests whether its left argument is less or equal than its right argument. Its
declarative reading is sound whenever its arguments are ground; otherwise,
problems as stated at the beginning of this section may arise. It always fails if
at least one of its arguments is a variable. Numbers are compared in terms of
their arithmetical value; other terms are compared in standard order.

• not(Relation)
Stratified negation. It stands for the complement of the relation Relation
under the meaning of the program.

6. Notes about the Implementation of DES
DES is implemented with the seminar ideas found in [Wagner87, TS86],

that deal with termination issues of Prolog programs. These ideas have been used
in the deductive database community. Our implementation uses extension tables
for achieving a top–down driven bottom–up approach. In its current form, it can be
seen as an extension of the work in [Wagner87] in the sense that we deal with
negation and undefined (although incomplete) information. In addition, the
implementation follows a different approach: instead of translating rules, we
interpret them (this may prove useful for a straightforward implementation of
debugging).

DES does not pretend to be an efficient system but a system capable of
showing the nice aspects of the more powerful form of logic we can find in Datalog
systems wrt. relational database systems.

6.1 Tabling7

DES uses an extension table which stores answers to goals previously
computed, as well as their calls. For the ease of the introduction, we assume an
answer table and a call table to store answers and calls, respectively. Answers may
be positive or negative, that is, if a call to positive goal p succeeds, then the fact p is
added as an answer to the answer table; if a negated goal not(p) succeeds, then
the fact not(p) is added. Calls are also added to the call table whenever they are
performed. This allows us to detect that a call has been previously performed and
we can use the results in the extension table (if any). The algorithm which
implements this idea can be sketched as follows:

7 For a complementary understanding of this section, the reader is advised to read

[Wagner87].

Fernando Sáenz Pérez 28/39

Universidad Complutense de Madrid

Datalog Educational System

First, test whether there is a previous call that subsumes8 the current call.
There are two possibilities: 1) there is such a previous call: then, use the result in
the answer table if any. It is possible that there is no such a result (for instance,
when computing the goal p in the program p :- p) and we cannot derive any
information. 2) otherwise, process the new call knowing that there is no call or
answer to this call in the extension table. So, firstly store the current call and then,
solve the goal with the program rules (recursively applying this algorithm). Once
the goal has been solved (if succeeded), store the computed answer if there is no
any previous answer subsuming the current one (note that, through recursion, we
can deliver new answers for the same call). This so–called memoization process is
implemented with the predicate memo/1 in the des.pl file of the distribution, and
will also be referred to as a memo function in the rest of this manual.

Negative facts are produced when a negative goal is proved by means of
negation as failure (closed world assumption). In this situation, a goal as not(p)
which succeeds produces the fact not(p) which is added to the answer table, just
the same as proving a positive goal.

Primitive operators are not tabled for efficiency reasons without any
limitation for the system.

6.2 Finding Stable Models

The tabling mechanism is insufficient in itself for computing all of the
possible answers to a query. The rationale behind this comes from the fact that the
computed information is not complete when solving a given goal, because it can use
incomplete information from the goals in its defining rules (these goals can be
mutually recursive). Therefore, we have to ensure that we produce all the possible
information by finding a fixpoint of the memo function. First, the call table is
emptied in order to allow the system to try to obtain new answers for a given call,
preserving the previous computed answers. Then, the memo function is applied,
possibly providing new answers. If the answer table remains the same as before
after this last memo function application, we are done. Otherwise, the memo
function is reapplied as many times as needed until we find a stable answer table
(with no changes in the answer table). The answer table contains the stable model
of the query (plus perhaps other stable models for the relations used in the
computation of the given query).

The fixpoint is found in finite time because the memo function is monotonic
in the sense that we only add new entries each time it is called while keeping the
old ones. Repeatedly applying the memo function to the answer table produce a
finite answer table since the number of new facts that can be derived from a
Datalog program is finite (recall that there are no complex terms such as sk(z)).
On the one hand, the number of positive facts which can be inferred are finite
because there is a finite number of ground facts which can be used in a given proof,
and proofs have finite depth provided that tabling prevents recomputations of older
nodes in the proof tree. On the other hand, the number of negative facts which can
be inferred is also finite because they are proved using negation as failure.

8 A term T1 subsumes a term T2 if T1 is “more general” than T2 and both terms are

unifiable. Eg: p(X,Y) subsumes p(a,Z), p(X,Y) subsumes p(U,V), p(X,Y) subsumes
p(U,U), but p(U,U) neither subsumes p(a,b), nor p(X,Y).

Fernando Sáenz Pérez 29/39

Universidad Complutense de Madrid

Datalog Educational System

(Failures are always finite because they are proved trying to get a success.) Finally,
there are facts that cannot be proved to be true or false because of recursion. These
cases are detected by the tabling mechanism which prevent infinite recursion such
as in p :- p.

It is also possible that both a positive and a negative fact have been inferred
for a given call. Then, an undefined fact replaces the contradictory information.
The implementation simply removes the contradictory facts and informs about the
undefinedness.

6.3 Porting to Unsupported Systems

DES is implemented with two Prolog files: des.pl, and des1.pl. The former
contains the common predicates for all of the platforms (both Prolog interpreters
and operating systems), and the latter contains Prolog system specific code, which
vary from a system to another. Adapting the predicates found there should not pose
problems, provided the Prolog interpreter and operating system features some
basic characteristics (mainly about the file system commands). If you plan to port
DES to other systems not described here, you will have to modify the system
specific Prolog file to suit your system. If so, and if you want to figure as one of the
system contributors, please send an e–mail message with the code and reference
information to: fernan@sip.ucm.es, accepting that your contribution will be
under the GNU General Public License (See appendix for details.)

6.4 Differences among Platforms

Ciao, SWI, and Sicstus Prolog implementations use a sort which eliminates
duplicates whereas GNU Prolog implementation does not.

In its current version, the Ciao system forces to use some directives for
using several basic Prolog primitives. This can only be done by writing them in the
core file (des.pl) of the system, making it not compatible with other platforms. This
is why the core file for Ciao has some preliminary directives not found in the core
file shared by the rest of the platforms. Future Ciao versions may overcome this
problem.

7. Related Work
There has been a high amount of work around deductive databases [RU95]

(its interest delivered many workshops and conferences for this subject) which
dealt to several systems. However, to the best of our knowledge, there is no system
oriented to introducing deductive databases to students, but we can comment some
representative deductive database systems.

The LOLA [ZF97] deductive database system is based on a declarative
clause language supporting recursion, complex terms, negation, aggregation, built–
in predicates. The deductive engine is based on the paradigm of bottom–up
evaluation with relational operations. It is available via a web browser interface.

The LDL project at MCC that lead to the LDL++ prototype [ZAO93], a
deductive database system with features as stratified and nonstratified negation,
set terms, and aggregates. It can be currently used through Internet using a Java–
enabled client.

Fernando Sáenz Pérez 30/39

Universidad Complutense de Madrid

Datalog Educational System

XSB [RSSWF97] (http://xsb.sourceforge.net/) is an extended Prolog
system that can be used for deductive database applications. It enjoys a well–
founded semantics for rules with negative literals in rule bodies and implements
tabling mechanisms. It runs both on Unix/Linux and Windows operating systems.

Coral [RSSS93] is a deductive system with a declarative query language
that supports general Horn clauses augmented with complex terms, set–grouping,
aggregation, negation, and relations with tuples that contain (universally
quantified) variables. It only runs under Unix platforms. There is also a version
which allows object–oriented features, called Coral++ [SRSS93].

The NAIL! project delivered a prototype with stratified negation, well–
founded negation, and modularity stratified negation. Later, it added the language
Glue, which is essentially single logical rules, with SQL statements wrapped in an
imperative conventional language [PDR91, DMP93]. The approach of combining
two languages is similar to the aforementioned Coral, which uses C++. It does not
run on Windows platforms.

Another deductive database following this combination of declarative and
imperative languages is Rock&Roll [BPFWD94].

The only commercial oriented deductive database system has been the
Smart Data System (SDS) and its declarative query language Declarative
Reasoning (DECLARE) [KSSD94], with support for stratified negation and sets.

ADITI 2 [VRK+91] is the current version of a deductive database system
which uses the logic/functional programming language Mercury. It does not (and
probably will never) run on Windows platforms.

8. Future Enhancements
The following list suggests some points to address in order to enhance DES:

• Aggregated functions (count, sum, avg, ...).

• Complete algorithm for finding undefined information.

• Constraint solver for sound computation of primitives.

• Database integration (relational, object–oriented). We propose a system which
can use both SQL and Datalog as query languages of current high–widely used
relational systems as Microsoft Access, Oracle, and MySQL. We think that the
simple ideas found in the relational model makes it quite adequate for current
business applications, but relational systems can be enhanced by allowing SQL
to be complemented with the more powerful Datalog database language.

• Debugger.

• Integrated development environment under Windows. We are interested in this
platform due to most of our students do feel more comfortable with Windows
systems.

9. Acknowledgements
The author whishes to thank the Clip group for providing their free Ciao

system, and in particular to F. Bueno for his help in porting DES to the Ciao

Fernando Sáenz Pérez 31/39

Universidad Complutense de Madrid

Datalog Educational System

system. Also thanks to J. Wielemaker and D. Diaz for providing their free Prolog
systems.

Fernando Sáenz Pérez 32/39

Universidad Complutense de Madrid

Datalog Educational System

Appendix A. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to most of the
Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have

Fernando Sáenz Pérez 33/39

Universidad Complutense de Madrid

Datalog Educational System

made it clear that any patent must be licensed for everyone's free use or not
licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do

Fernando Sáenz Pérez 34/39

Universidad Complutense de Madrid

Datalog Educational System

not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under section 2)
in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not accept this

Fernando Sáenz Pérez 35/39

Universidad Complutense de Madrid

Datalog Educational System

License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the Program does not

Fernando Sáenz Pérez 36/39

Universidad Complutense de Madrid

Datalog Educational System

specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

one line to give the program's name and an idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

Fernando Sáenz Pérez 37/39

Universidad Complutense de Madrid

Datalog Educational System

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c'

for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be mouse-clicks
or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ̀ Gnomovision'

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Lesser General Public License instead of this
License.

Fernando Sáenz Pérez 38/39

Universidad Complutense de Madrid

Datalog Educational System

Bibliography

[BCC97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López–García,
and G. Puebla. “The Ciao Prolog system. Reference manual”, School
of Computer Science, Technical University of Madrid (UPM), 1997.
http://www.clip.dia.fi.upm.es.

[BPFWD94] M.L. Barja, N.W. Paton, A. Fernandes, M.H. Williams, A. Dinn, “An
Effective Deductive Object–Oriented Database Through Language
Integration”, In Proc. of the 20th VLDB Conference, 1994.

[Chan78] C.L. Chang, “Deduce 2: Further Investigations of Deduction in
Relational Databases”, H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, 1978.

[Diaz] D. Diaz, http://www.gnu.org/software/prolog.

[DMP93] M. Derr, S. Morishita, and G. Phipps, “Design and Implementation
of the Glue–NAIL Database System”, In Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 147–167,
1993.

[GR68] C.C. Green and B. Raphael, “The Use of Theorem–Proving
Techniques in Question–Answering Systems”, Proceedings of the
23rd ACM National Conference, Washington D.C., 1968.

[KSSD94] W. Kiessling, H. Schmidt, W. Strauss, and G. Dünzinger,
“DECLARE and SDS: Early Efforts to Commercialize Deductive
Database Technology”, VLDB Journal, 3, pp. 211–243, 1994.

[KT81] C. Kellogg and L. Travis, “Reasoning with Data in a Deductively
Augmented Data Management System”, H. Gallaire, J. Minker, and
J. Nicolas (eds.), Advances in Data Base Theory, Volume 1, Plenum
Press, 1981.

[Mink87] J. Minker, “Perspectives in Deductive Databases”, Technical Report
CS–TR–1799, University of Maryland at College Park, March 1987.

[MN82] J. Minker and J.–M. Nicolas, “On Recursive Axioms in Deductive
Databases, Information Systems”, 16(4):670–702, 1991.

[PDR91] G. Phipps, M. A. Derr, and K.A. Ross, “Glue–NAIL!: A Deductive
Database System”. In Proc. of the ACM SIGMOD Conference on
Management of Data, pp. 308–317, 1991.

[Robi65] J.A. Robinson, “A Machine–Oriented Logic Based on the Resolution
Principle”, Journal of the ACM, 12:23–41, 1965.

[RSSS93] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri,
“Implementation of the Coral Database System”, In Proc. of the
ACM SIGMOD Conference on Management of Data, 1993.

[RSSWF97] P. Rao, Konstantinos F. Sagonas, Terrance Swift, David Scott
Warren, and Juliana Freire, “XSB: A System for Efficiently
Computing WFS", Logic Programming and Non–monotonic
Reasoning, 1997.

Fernando Sáenz Pérez 39/39

Universidad Complutense de Madrid

Datalog Educational System

[RU95] R. Ramakrishnan and J.D Ullman, “A Survey of Research on
Deductive Database Systems”, Journal of Logic Programming,
23(2): 125–149, 1995.

[Sicstus] SICS, http://www.sics.se/sicstus.

[SRSS93] D. Srivastava, R. Ramakrishnan, S. Sudarshan, and P. Seshadri,
“Coral++: Adding Object–Orientation to a Logic Database
Language”, Proceedings of the International Conference on Very
Large Databases, 1993.

[TS86] H. Tamaki and T. Sato, “OLD Resolution with Tabulation”,
Proceedings of ICLP’86, Lecture Notes on Computer Science 225,
Springer–Verlag, 1986.

[VRK+91] J. Vaghani, K. Ramamohanarao, D.B. Kemp, Z. Somogyi, and P.J.
Stuckey, “Design Overview of the Aditi Deductive Database
System”, In Proc. of the 7th Intl. Conf. on Data Engineering, pp.
240–247, 1991.

[Wagner87] S. Wagner, “Extension Tables: Memo Relations in Logic
Programming”, IV IEEE Symposium on Logic Programming, 1987.

[Wiele] J. Wielemaker, http://www.swi-prolog.org.

[ZAO93] C. Zaniolo, N. Arni, and K. Ong, “Negation and Aggregates in
Recursive Rules: the LDL++ Approach”, In Proc. Intl. Conf. on
Deductive and Object Oriented Databases, 1993.

[ZF97] U. Zukowski and B. Freitag, “The Deductive Database System
LOLA”, In: J. Dix and U. Furbach and A. Nerode (Eds.). Logic
Programming and Nonmonotonic Reasoning. LNAI 1265, pp. 375–
386. Springer, 1997.

