
DHIS2 Developer Manual

2.21

ii

© 2006-2015
DHIS2 Documentation Team

Revision 1696
Version 2.21 2015-11-27 11:23:04

Warranty: THIS DOCUMENT IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS MANUAL AND PRODUCTS MENTIONED HEREIN,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the source of this documentation, and is available here online: http://
www.gnu.org/licenses/fdl.html.

DHIS2 Developer Manual Contents

iii

1. Web API .. 1
1.1. Introduction .. 1
1.2. Authentication ... 1

1.2.1. Basic Authentication .. 1
1.2.2. OAuth2 ... 2

1.2.2.1. Adding a client using the web-api ... 2
1.2.2.2. Grant type password ... 2
1.2.2.3. Grant type refresh_token .. 3
1.2.2.4. Grant type authorized_code .. 3

1.3. Error and info messages ... 3
1.4. Date and period format .. 4
1.5. Browsing the Web API .. 5

1.5.1. Translation ... 5
1.6. Working with the metadata API ... 5

1.6.1. Content types ... 5
1.6.2. Query parameters .. 6
1.6.3. Available strategies for import .. 8
1.6.4. Examples ... 8

1.7. Metadata object filter ... 9
1.8. Metadata field filter ... 10

1.8.1. Field transformers ... 11
1.8.2. Field converters .. 11

1.9. Metadata create, read, update, delete, validate ... 11
1.9.1. Create / update parameters .. 12
1.9.2. Creating and updating objects .. 12
1.9.3. Deleting objects .. 13
1.9.4. Adding and removing objects to/from collections .. 13
1.9.5. Validating payloads ... 14
1.9.6. Partial updates .. 14

1.10. CSV metadata import ... 15
1.11. File resources .. 18

1.11.1. File resource constraints ... 19
1.12. Data values ... 19

1.12.1. Sending data values ... 19
1.12.2. Sending bulks of data values ... 21

1.12.2.1. Identifier schemes ... 23
1.12.3. CSV data value format ... 23
1.12.4. Generating data value set template .. 24
1.12.5. Sending, reading and deleting individual data values .. 24

1.12.5.1. Working with file data values .. 25
1.12.6. Reading data values ... 26

1.13. ADX formatted data ... 27
1.13.1. The adx root element ... 28
1.13.2. The group element ... 28
1.13.3. Data values ... 28
1.13.4. POSTing data ... 29

1.14. Events .. 29
1.14.1. Sending events .. 29
1.14.2. CSV Import / Export .. 32
1.14.3. Querying and reading events ... 33

1.14.3.1. Examples ... 34
1.15. Forms ... 35
1.16. Validation ... 35
1.17. Data integrity .. 36

1.17.1. Running data integrity .. 36
1.17.2. Fetching the result ... 36

1.18. Indicators .. 37

DHIS2 Developer Manual Contents

iv

1.18.1. Aggregate indicators .. 37
1.18.2. Program indicators ... 37
1.18.3. Expressions .. 38

1.19. Complete data set registrations ... 38
1.19.1. Completing and un-completing data sets .. 38
1.19.2. Reading complete data set registrations ... 39

1.20. Data approval .. 39
1.21. Messages .. 41

1.21.1. Writing and reading messages .. 41
1.21.2. Managing messages ... 43

1.22. Interpretations .. 44
1.22.1. Reading interpretations ... 45
1.22.2. Writing interpretations .. 46
1.22.3. Creating, updating and removing interpretation comments ... 46

1.23. Viewing analytical resource representations .. 46
1.24. Plugins ... 47

1.24.1. Embedding pivot tables with the Pivot Table plug-in .. 47
1.24.2. Embedding charts with the Visualizer chart plug-in ... 51
1.24.3. Embedding maps with the GIS map plug-in ... 55
1.24.4. Creating a chart carousel with the carousel plug-in .. 59

1.25. SQL views .. 60
1.25.1. Criteria .. 60
1.25.2. Variables .. 60

1.26. Dashboard ... 61
1.26.1. Browsing dashboards .. 61
1.26.2. Searching dashboards ... 62
1.26.3. Creating, updating and removing dashboards .. 63
1.26.4. Adding, moving and removing dashboard items and content .. 63

1.27. Analytics .. 64
1.27.1. Dimensions and items .. 64
1.27.2. Request query parameters ... 66
1.27.3. Response formats .. 68
1.27.4. Constraints ... 70
1.27.5. Debugging .. 70

1.28. Event analytics .. 70
1.28.1. Dimensions and items .. 70
1.28.2. Request query parameters ... 71
1.28.3. Event query analytics ... 72

1.28.3.1. Filtering ... 73
1.28.3.2. Response formats .. 74

1.28.4. Event aggregate analytics .. 76
1.28.4.1. Ranges / legend sets .. 76
1.28.4.2. Response formats .. 77

1.29. Geo features .. 78
1.29.1. GeoJSON ... 79

1.30. Generating resource and analytics tables .. 79
1.31. Maintenance .. 80
1.32. System resource ... 80

1.32.1. Generate identifiers .. 80
1.32.2. View system information .. 81
1.32.3. Check if username and password combination is correct ... 81
1.32.4. View asynchronous task status ... 82
1.32.5. Get appearance information ... 82

1.33. Users ... 82
1.33.1. User query .. 83
1.33.2. User account create and update .. 83
1.33.3. User account invitations .. 84

DHIS2 Developer Manual Contents

(2.21) v

1.33.4. User replication ... 85
1.34. Current user information and associations ... 85
1.35. System settings .. 86
1.36. User settings ... 87
1.37. Organisation units .. 87
1.38. Static content .. 88
1.39. Configuration .. 88
1.40. Internationalization ... 89
1.41. SVG conversion ... 90
1.42. Tracked entity management ... 90
1.43. Tracked entity instance management ... 90

1.43.1. Creating a new tracked entity instance ... 90
1.43.2. Updating a tracked entity instance .. 91
1.43.3. Deleting a tracked entity instance ... 91
1.43.4. Enrolling a tracked entity instance into a program ... 91
1.43.5. Update strategies ... 92

1.44. Enrollment instance query ... 92
1.44.1. Request syntax .. 92
1.44.2. Response format .. 93

1.45. Tracked entity instance query ... 94
1.45.1. Request syntax .. 94
1.45.2. Response format .. 96

1.46. Tracked entity instance grid query .. 98
1.46.1. Request syntax .. 99
1.46.2. Response format .. 102

1.47. Email ... 103
1.47.1. System notification ... 103
1.47.2. Test message ... 103

1.48. Sharing ... 103
1.49. Scheduling .. 104
1.50. Schema Resource ... 105
1.51. UI customization with Javascript and CSS files ... 105
1.52. Synchronization .. 105

1.52.1. Data push ... 105
1.52.2. Metadata pull .. 106

1.53. FRED API .. 106
1.54. Data store ... 106

1.54.1. Get keys and namespaces .. 106
1.54.2. Create and update values ... 107
1.54.3. Delete keys ... 108

1.55. Metadata repository .. 109
2. Apps .. 111

2.1. Purpose of packaged Apps ... 111
2.2. Creating Apps ... 111
2.3. Configuring DHIS 2 for Apps Installation .. 112
2.4. Installing Apps into DHIS 2 .. 112
2.5. Launching Apps ... 113
2.6. Web-API for Apps ... 113
2.7. Adding the DHIS 2 menu to your app ... 114

3. Infrastructure ... 117
3.1. Release process .. 117

DHIS 2 Technical Architecture ... 119
1. Overview .. 119
2. Technical Requirements ... 119
3. Project Structure ... 119
4. Project Dependencies .. 120
5. The Data Model ... 121

DHIS2 Developer Manual Contents

vi

6. The Persistence Layer ... 122
7. The Business Layer .. 123

7.1. The JDBC Service Project ... 123
7.2. The Data Mart Project .. 125
7.3. The Reporting Project ... 127

7.3.1. Report table .. 127
7.3.2. Chart ... 128
7.3.3. Data set completeness .. 128
7.3.4. Document ... 129
7.3.5. Pivot table .. 130
7.3.6. The External Project .. 130

7.4. The System Support Project ... 130
7.4.1. DeletionManager ... 130

8. The Presentation Layer .. 131
8.1. The Portal ... 131

8.1.1. Module Assembly .. 131
8.1.2. Portal Module Requirements .. 131
8.1.3. Common Look-And-Feel .. 131
8.1.4. Main Menu ... 132

9. Framework Stack .. 132
9.1. Application Frameworks .. 132
9.2. Development Frameworks ... 132

10. Definitions ... 132
A. R and DHIS 2 Integration ... 133

A.1. Introduction .. 133
A.2. Using ODBC to retrieve data from DHIS2 into R ... 133
A.3. Using R with MyDatamart .. 135
A.4. Mapping with R and PostgreSQL ... 137
A.5. Using R, DHIS2 and the Google Visualization API ... 140
A.6. Using PL/R with DHIS2 ... 142
A.7. Using this DHIS2 Web API with R .. 143

Web API Introduction

1

Chapter 1. Web API
The Web API is a component which makes it possible for external systems to access and manipulate data stored in an
instance of DHIS 2. More precisely, it provides a programmatic interface to a wide range of exposed data and service
methods for applications such as third-party software clients, web portals and internal DHIS 2 modules.

1.1. Introduction

The Web API adheres to many of the principles behind the REST architectural style. To mention some few and
important ones:

1. The fundamental building blocks are referred to as resources. A resource can be anything exposed to the Web,
from a document to a business process - anything a client might want to interact with. The information aspects of a
resource can be retrieved or exchanged through resource representations. A representation is a view of a resource's
state at any given time. For instance, the reportTable resource in DHIS represents a tabular report of aggregated
data for a certain set of parameters. This resource can be retrieved in a variety of representation formats including
HTML, PDF, and MS Excel.

2. All resources can be uniquely identified by a URI (also referred to as URL). All resources have a default
representation. You can indicate that you are interested in a specific representation by supplying an Accept HTTP
header, a file extension or a format query parameter. So in order to retrieve the PDF representation of a report table
you can supply a Accept: application/pdf header or append .pdf or ?format=pdf to your request URL.

3. Interactions with the API requires correct use of HTTP methods or verbs. This implies that for a resource you must
issue a GET request when you want to retrieve it, POST request when you want to create one, PUT when you want to
update it and DELETE when you want to remove it. So if you want to retrieve the default representation of a report
table you can send a GET request to e.g. /reportTable/iu8j/hYgF6t, where the last part is the report table identifier.

4. Resource representations are linkable, meaning that representations advertise other resources which are relevant to
the current one by embedding links into itself. This feature greatly improves the usability and robustness of the API
as we will see later. For instance, you can easily navigate to the indicators which are associated with a report table
from the reportTable resource through the embedded links using your preferred representation format.

While all of this might sound complicated, the Web API is actually very simple to use. We will proceed with a few
practical examples in a minute.

1.2. Authentication

The DHIS 2 Web API supports two protocols for authentication, Basic Authentication and OAuth 2. You can verify
and get information about the currently authenticated user by making a GET request to the following URL:

/api/me

1.2.1. Basic Authentication

The DHIS 2 Web API supports Basic authentication. Basic authentication is a technique for clients to send login
credentials over HTTP to a web server. Technically speaking, the username is appended with a colon and the password,
Base64-encoded, prefixed Basic and supplied as the value of the Authorization HTTP header. More formally that is
Authorization: Basic base64encode(username:password) Most network-aware development frameworks
provides support for authentication using Basic, such as Apache HttpClient, Spring RestTemplate and C# WebClient.
An important note is that this authentication scheme provides no security since the username and password is sent
in plain text and can be easily decoded. Using it is recommended only if the server is using SSL/TLS (HTTPS) to
encrypt communication between itself and the client. Consider it a hard requirement to provide secure interactions
with the Web API.

Web API OAuth2

2

1.2.2. OAuth2

DHIS 2 support the OAuth2 protocol, which is an open standard for authorization, it allows 3rd party clients to connect
on behalf of a DHIS 2 user, and get a re-usable bearer token for multiple requests to the web-api (without requiring
getting the users permission again). We do not support fine-grained OAuth2 roles, rather we gives the application
access based on the users DHIS 2 user role.

Each client for which you want to allow OAuth 2 authentication must be registered in DHIS 2. To add a new OAuth2
client, go to settings => OAuth2 Clients, click add new and at least the name of client, and the grant types you want
supported.

1.2.2.1. Adding a client using the web-api

An OAuth2 client can also be added through the Web API. As an example we can send a payload like this:

{
 "name" : "OAuth2 Demo Client",
 "cid" : "demo",
 "secret" : "1e6db50c-0fee-11e5-98d0-3c15c2c6caf6",
 "grantTypes" : [
 "password",
 "refresh_token",
 "authorization_code"
],
 "redirectUris" : [
 "http://www.example.org"
]
}

SERVER="https://play.dhis2.org/dev"
curl -X POST -H "Content-Type: application/json" -d @client.json -u admin:district
 $SERVER/api/oAuth2Clients

We will use this client as the basis for our next grant type examples.

1.2.2.2. Grant type password

The simplest of all grant types is the password grant type. This grant type is similar to basic authenticaion in the sense
that it requires the client to collect the users username and password. As an example we can use our demo server:

SERVER="https://play.dhis2.org/dev"
SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"

curl -X POST -H "Accept: application/json" -u demo:$SECRET $SERVER/uaa/oauth/token
-d grant_type=password -d username=admin -d password=district

This will give you a response similar to this:

{
 "expires_in" : 43175,
 "scope" : "ALL",
 "access_token" : "07fc551c-806c-41a4-9a8c-10658bd15435",
 "refresh_token" : "a4e4de45-4743-481d-9345-2cfe34732fcc",
 "token_type" : "bearer"
}

For now, we will concentrate on the access_token, which is what we will use as our authentication (bearer) token. As
an example we will get all data elements using our token:

SERVER="https://play.dhis2.org/dev"
curl -H "Authorization: Bearer 07fc551c-806c-41a4-9a8c-10658bd15435" $SERVER/api/
dataElements.json

Web API Error and info messages

3

1.2.2.3. Grant type refresh_token

In general the access tokens have limited validity. You can have a look at the expires_in property of the response in
the previous example to understand when a token expires. To get a fresh access_token you can make another roundtrip
to the server and use refresh_token which allows you to get an updated token without needing to ask for the user
credentials one more time.

SERVER="https://play.dhis2.org/dev"
SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"
REFRESH_TOKEN="a4e4de45-4743-481d-9345-2cfe34732fcc"

curl -X POST -H "Accept: application/json" -u demo:$SECRET $SERVER/uaa/oauth/token
-d grant_type=refresh_token -d refresh_token=$REFRESH_TOKEN

The response will be exactly the same as when you get an token to start with.

1.2.2.4. Grant type authorized_code

Authorized code grant type is the recommended approach if you don't want to store the user credentials externally. It
allows DHIS 2 to collect the username/password directly from the user instead of the client collecting them and then
authenticating on behalf of the user. Please be aware that this approach uses the redirect_uris part of the client payload.

Step 1 - Using a browser visit this URL (if you have more than one redirect URIs, you might want to add
&redirect_uri=http://www.example.org) :

SERVER="https://play.dhis2.org/dev"

$SERVER/uaa/oauth/authorize?client_id=demo&response_type=code

Step 2 - After the user have successfully logged in and accepted your client access, it will redirect back to your redirect
uri like this:

http://www.example.org/?code=XYZ

Step 3 - This step is similar to what we did in the password grant type, using the given code, we will now ask for
a access token:

SERVER="https://play.dhis2.org/dev"
SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"

curl -X POST -u demo:$SECRET -H "Accept: application/json" $SERVER/token -d
 grant_type=authorized_code -d code=XYZ

1.3. Error and info messages

The Web API uses a consistent format for all error/warning and informational messages:

{
 "httpStatus" : "Forbidden",
 "message" : "You don't have the proper permissions to read objects of this type.",
 "httpStatusCode" : 403,
 "status" : "ERROR"
}

Here we can see from the message that the user tried to access a resource I did not have access to. It uses the http status
code 403, the http status message forbidden and a descriptive message.

Table 1.1. WebMessage properties

Name Description

httpStatus HTTP Status message for this response, see RFC 2616 (Section 10) for more information.

Web API Date and period format

4

Name Description

httpStatusCode HTTP Status code for this response, see RFC 2616 (Section 10) for more information.

status DHIS 2 status, possible values are OK | WARNING | ERROR, where OK is means everything was
successful, ERROR means that operation did not complete and WARNING means operation was
partially successful, if there message contains a response property, please look there for more
information.

message A user friendly message telling whether the operation was a success or not.

devMessage A more techincal developer friendly message (not currently in use).

response Extension point for future extension to the WebMessage format. This will be documented when
it starts being used.

1.4. Date and period format

Throughout the Web API we refer to dates and periods. The date format is:

yyyy-MM-dd

For instance, if you want to express March 20, 2014 you must use 2014-03-20.

The period format is described in the following table.

Table 1.2. Period format

Interval Format Example Description

Day yyyyMMdd 20040315 March 15 2004

Week yyyyWn 2004W10 Week 10 2004

Month yyyyMM 200403 March 2004

Quarter yyyyQn 2004Q1 January-March 2004

Six-month yyyySn 2004S1 January-June 2004

Six-month
April

yyyyAprilSn 2004AprilS1 April-September 2004

Year yyyy 2004 2004

Financial
Year April

yyyyApril 2004April Apr 2004-Mar 2005

Financial
Year July

yyyyJuly 2004July July 2004-June 2005

Financial
Year Oct

yyyyOct 2004Oct Oct 2004-Sep 2005

In some parts of the API, like for the analytics resource, you can utilize relative periods in addition to fixed periods
(defined above). The relative periods are relative to the current date, and allows e.g. for creating dynamic reports. The
available relative period values are:

THIS_WEEK, LAST_WEEK, LAST_4_WEEKS, LAST_12_WEEKS, LAST_52_WEEKS,
THIS_MONTH, LAST_MONTH, THIS_BIMONTH, LAST_BIMONTH, THIS_QUARTER, LAST_QUARTER,
THIS_SIX_MONTH, LAST_SIX_MONTH, MONTHS_THIS_YEAR, QUARTERS_THIS_YEAR,
THIS_YEAR, MONTHS_LAST_YEAR, QUARTERS_LAST_YEAR, LAST_YEAR, LAST_5_YEARS,
 LAST_12_MONTHS,
LAST_3_MONTHS, LAST_6_BIMONTHS, LAST_4_QUARTERS, LAST_2_SIXMONTHS,
 THIS_FINANCIAL_YEAR,
LAST_FINANCIAL_YEAR, LAST_5_FINANCIAL_YEARS

Web API Browsing the Web API

5

1.5. Browsing the Web API

The entry point for browsing the Web API is /api/. This resource provide links to all available resources. Four resource
representation formats are consistently available for all resources: HTML, XML, JSON and JSONP. Some resources
will have other formats available, like MS Excel, PDF, CSV and PNG. To explore the API from a web browser,
navigate to the /api/ entry point and follow the links to your desired resource, for instance /api/dataElements. For all
resources which return a list of elements certain query parameters can be used to modify the response:

Table 1.3. Query parameters

Param Option values Default
option

Description

links true | false true Indicates whether to include links to relevant elements.

paging true | false true Indicates whether to return lists of elements in pages.

page number 1 Defines which page number to return.

pageSize number 50 Defines the number of elements to return for each page.

order propertyName:asc/
desc

Order the output using a specified order, only properties that
are both persisted and simple (no collections, idObjects etc)
are supported.

An example of how these parameters can be used to get a full list of data element groups in XML response format is:

/api/dataElementGroups.xml?links=false&paging=false

You can query for elements on the name property instead of returning full list of elements using the query query
variable. In this example we query for all data elements with the word "anaemia" in the name:

/api/dataElements?query=anaemia

You can find an object based on its ID across all object types through the identifiableObjects resource:

/api/identifiableObjects/<id>

1.5.1. Translation

Support for I18n translation in the web-api was added in 2.19 release. It is supported by two parameters:

Table 1.4. Translate options

Parameter Values Description

translate true/false Translate web-api output, display* properties will be used
(displayName, displayShortName, displayDescription)

locale Locale to use Translate web-api using a specified locale (implies translate=true)

1.6. Working with the metadata API

The metadata resource can be accessed at /api/metadata. This resource lets you read and write the full set of metadata.
This section will give a basic introduction to working with this API. For specific synchronization issues, please see
the integration chapter.

By default, interacting with /api/metadata using the GET HTTP method will give you all metadata rendered as XML.
You can also be more specific about the metadata elements you are interested in.

1.6.1. Content types

The Web API offers several content types for metadata.

Web API Query parameters

6

Table 1.5. Available Content-Types

Content-Type URL extension Description

application/xml .xml Returns the metadata in XML representation

application/json .json Returns the metadata in JSON representation

application/pdf .pdf Returns the metadata as a PDF document

application/csv .csv Returns the metadata as a CSV file

application/vnd.ms-
excel

.xls | .xlsx Returns the metadata as an Excel workbook

1.6.2. Query parameters

The following query parameters are available for customizing your request.

Table 1.6. Available Query Filters

Param Type Required Options (default
first)

Description

assumeTrue boolean false true | false Indicates whether to
get all resources
or no resources by
default.

viewClass enum false export | basic |
detailed

Alternative views
of the metadata.
Please note that only
metadata exported
with
viewClass=export
or detailed can be
used for import.

dryRun boolean false false | true If you set this
to true, the actual
import will not
happen. Instead the
system will generate
a summary of what
would have been
done.

{resources} boolean false true | false
(default depends on
assumeTrue)

See /api for
available resources.
Indicates which
resources to include
in the response.

lastUpdated date false Several formats are
available: yyyy,
yyyy-MM, yyyy-
MM-dd, yyyyMM,
yyyyMMdd

Filters the metadata
based on the
lastUpdated field.

preheatCache boolean false true | false Turn cache-map
preheating on/off.
This is on by default,
turning this off will
make initial load

Web API Query parameters

7

Param Type Required Options (default
first)

Description

time for importer
much shorter (but
will make the import
itself slower). This
is mostly used for
cases where you
have a small XML/
JSON file you
want to import,
and don't want to
wait for cache-map
preheating.

strategy enum false CREATE_AND_UPDATE
| CREATE |
UPDATE |
DELETE

Import strategy to
use, see below for
more information.

sharing boolean false false | true Should sharing be
supported or not.
The default is false,
which is the old
behavior. You can
set this to true to
allow updating user,
publicAccess and
userGroupAccesses
fields (if not they
are cleared out
on create, and not
touched on update).

mergeStrategy enum false REPLACE,
MERGE

Strategy for
merging of objects
when doing updates.
REPLACE will
just overwrite the
propery with the
new value provided,
MERGE will only
set the property if
its not null (only
if the property was
provided).

async boolean false false | true Indicates wether the
import should be
done async or not,
the default is false
which means the
client will wait until
the import is done,
this is probably what
you want for small
imports (as you
will get the import
summary directly

Web API Available strategies for import

8

Param Type Required Options (default
first)

Description

back to you). For
large imports, the
client might time
out, so async=true
is recommended,
and the client
connection will be
dropped when the
payload is uploaded.

1.6.3. Available strategies for import

When importing data using the metadata resource you can define various strategies for import.

Table 1.7. Available Strategies

Type Description

CREATE_AND_UPDATE Allows creation and updating of objects.

CREATE Allows creation of objects only.

UPDATE Allows update of objects only.

DELETE Allows deletes of objects only.

1.6.4. Examples

Example: Get a filtered set of metadata that was updated since August 1, 2014

As described in the last section, there is a number of options you can apply to /api/metadata to give you a filtered view.
The use-case we will be looking into here is where you want a nightly job that synchronizes organisation units. We
will be using cURL as the HTTP client.

curl -H "Accept: application/xml" -u admin:district
 "https://play.dhis2.org/demo/api/metadata?
assumeTrue=false&organisationUnits=true&lastUpdated=2014-08-01"

Example: Get metadata that was updated since February 2014

This example will just the default assumeTrue setting, along with getting the last updates from February 2014. This
means that every single type that has been updated will be retrieved.

curl -H "Accept: application/xml" -u admin:district "https://play.dhis2.org/demo/api/
metadata?lastUpdated=2014-02"

Example: Create metadata

The metadata resource can also be used to create or update metadata by using the POST HTTP method. The metadata
content can be both XML and JSON, using "application/xml" and "application/json" content type respectively. The
request payload content will be accepted in several formats, including plain text, zipped and gzipped. POSTing a
metadata payload can be done for example like this, where metadata.xml is a file in the same directory with the metadata
content:

curl -H "Content-Type: application/xml" -u admin:district -d @metadata.xml "https://
play.dhis2.org/demo/api/metadata" -X POST -v

The import will happen in a asyncronous process which implies that the response will return as soon as the process is
started. The response status code to be expected is 204 No Content.

Web API Metadata object filter

9

1.7. Metadata object filter

To filter the metadata there are several filter operations that can be applied to the returned list of metadata. The format
of the filter itself is straight-forward and follows the pattern property:operator:value, where property is the property
on the metadata you want to filter on, operator is the comparison operator you want to perform and value is the value to
check against (not all operators require value). Please see the schema section to discover which properties are available.
Recursive filtering, ie. filtering on associated objects or collection of objects, are supported as well.

Table 1.8. Available Operators

Operator Types Value required Description

eq string | boolean |
integer | float | enum
| collection (checks
for size) | date

true Equality

ne string | boolean |
integer | float |
collection (checks
for size) | date

true Inequality

like / ilike string true Case insensitive
string matching

nlike string true Case insensitive
string not matching

startsWith string true Case insensitive
string matching

endsWith string true Case insensitive
string matching

gt string | boolean |
integer | float |
collection (checks
for size) | date

true Greater than

ge string | boolean |
integer | float |
collection (checks
for size) | date

true Greater than or
equal

lt string | boolean |
integer | float |
collection (checks
for size) | date

true Less than

le string | boolean |
integer | float |
collection (checks
for size) | date

true Less than or equal

null all false Property is null

empty collection false Collection is empty

in string | boolean |
integer | float | date

true Find objects
matching 1 or more
values

Operators will be applied as logical and query, if you need a or query, you can have a look at our in filter. The filtering
mechanism allows for recursion. See below for some examples.

Get data elements with id property ID1 or ID2:

Web API Metadata field filter

10

/api/dataElements?filter=id:eq:ID1&filter=id:eq:ID2

Get all data elements which has the dataSet with id ID1:

/api/dataElements?filter=dataSets.id:eq:ID1

Get all data elements with aggregation operator "sum" and value type "int":

/api/dataElements.json?filter=aggregationOperator:eq:sum&filter=type:eq:int

You can do filtering within collections, e.g. to get data elements which are members of the "ANC" data element group
you can use the following query using the id property of the associated data element groups:

/api/dataElements.json?filter=dataElementGroups.id:eq:qfxEYY9xAl6

Since all operators are and by default, you can't find a data element matching more than one id, for that purpose you
can use the in operator.

/api/dataElements.json?filter=id:in:[fbfJHSPpUQD,cYeuwXTCPkU]

1.8. Metadata field filter

In certain situations the default views of the metadata can be too verbose. A client might only need a few fields from
each object and want to remove unnecessary fields from the response. To discover which fields are available for each
object please see the schema section.

The format for include/exclude is very simple and allows for infinite recursion. To filter at the "root" level you
can just use the name of the field, i.e. ?fields=id,name which would only display the id and name for every object.
For objects that are either collections or complex objects with properties on their own you can use the format ?
fields=id,name,dataSets[id,name] which would return id, name of the root, and the id and name of every data set on
that object. Negation can be done with the exclamation operator, and we have a set of presets of field select (see below).
Both XML and JSON are supported.

Example: Get id and name on the indicators resource:

/api/indicators?fields=id,name

Example: Get id and name from dataElements, and id and name from the dataSets on dataElements:

/api/dataElements?fields=id,name,dataSets[id,name]

To exclude a field from the output you can use the exclamation (!) operator. This is allowed anywhere in the query and
will simply not include that property (as it might have been inserted in some of the presets).

A few presets (selected fields groups) are available and can be applied using the ':' operator.

Table 1.9. Property operators

Operator Description

<field-name> Include property with name, if it exists.

<object>[<field-
name>, ...]

Includes a field within either a collection (will be applied to every object in that
collection), or just on a single object.

!<field-name>, <object>[!
<field-name>

Do not include this field name, also works inside objects/collections. Useful when you
use a preset to inlude fields.

, <object>[] Include all fields on a certain object, if applied to a collection, it will include all fields
on all objects on that collection.

:<preset> Alias to select multiple fields. Three presets are currently available, see table below
for descriptions.

Web API Field transformers

11

Table 1.10. Field presets

Preset Description

all All fields of the object

* Alias for all

identifiable Includes id, name, code, created and lastUpdated fields

nameable Includes id, name, shortName, code, description, created and lastUpdated fields

persisted Returns all persisted property on a object, does not take into consideration if the object
is the owner of the relation.

owner Returns all persisted property on a object where the object is the owner of all
properties, this payload can be used to update through the web-api.

Example: Include all fields from dataSets except organisationUnits:

/api/dataSets?fields=:all,!organisationUnits

Example: Include only id, name and the collection of organisation units from a data set, but exclude the id from
organisation units:

/api/dataSets/BfMAe6Itzgt?fields=id,name,organisationUnits[:all,!id]

Example: Include nameable properties from all indicators:

/api/indicators.json?fields=:nameable

1.8.1. Field transformers

In DHIS 2.17 we introduced field transformers, the idea is to allow further customization of the properties on the server
side. For 2.17 we only supports one transformer called rename, it can be used like this:

/api/dataElements/ID?fields=id|rename(i),name|rename(n)

This will rename the id property to i and name property to n. Please note that the format should be considered beta
in 2.17, and the format might be changed in 2.18.

1.8.2. Field converters

In DHIS 2.17 alongside transformers we also introduced field converters, while field transformers usually do minor
changes to the data stream (name changes etc), field converters can completely change the output of the data. For 2.17
we are including 3 field converters:

Table 1.11. Field converters

Name Description

size Gives sizes of strings (length) and collections, i.e. /api/dataElements?fields=dataSets::size

isEmpty Is string or collection empty, i.e. /api/dataElements?fields=dataSets::isEmpty

isNotEmpty Is string or collection not empty, i.e. /api/dataElements?fields=dataSets::isNotEmpty

1.9. Metadata create, read, update, delete, validate

While some of the web-api endpoints already contains support for CRUD (create, read, update, delete), from version
2.15 this is now supported on all endpoints. It should work as you expect, and the subsections will give more detailed
information about create, update, and delete (read is already covered elsewhere, and have been supported for a long
time).

Web API Create / update parameters

12

1.9.1. Create / update parameters

The following query parameters are available for customizing your request.

Table 1.12. Available Query Filters

Param Type Required Options (default
first)

Description

preheatCache boolean false true | false Turn cache-map
preheating on/off.
This is on by default,
turning this off will
make initial load
time for importer
much shorter (but
will make the import
itself slower). This
is mostly used for
cases where you
have a small XML/
JSON file you
want to import,
and don't want to
wait for cache-map
preheating.

strategy enum false CREATE_AND_UPDATE
| CREATE |
UPDATE |
DELETE

Import strategy to
use, see below for
more information.

mergeStrategy enum false REPLACE,
MERGE

Strategy for
merging of objects
when doing updates.
REPLACE will
just overwrite the
propery with the
new value provided,
MERGE will only
set the property if
its not null (only
if the property was
provided).

1.9.2. Creating and updating objects

For creating new objects you will need to know the endpoint, the type format, and make sure that you have the required
authorities. As an example , we will create and update an constant. To figure out the format, we can use the new schema
endpoint for getting format description. So we will start with getting that info:

http://<<server>>/api/schemas/constant.json

From the output, you can see that the required authorities for create are F_CONSTANT_ADD, and the important
properties are: name and value. From this we can create a JSON payload and save it as a file called constant.json:

{
 "name": "PI",
 "value": "3.14159265359"
}

Web API Deleting objects

13

The same content as an XML payload:

<constant name="PI" xmlns="http://dhis2.org/schema/dxf/2.0">
 <value>3.14159265359</value>
</constant>

We are now ready create the new constant by sending a POST request to the constants endpoint with the JSON payload
using curl:

curl -d @constant.json "http://server/api/constants" -X POST -H "Content-Type:
 application/json" -u user:password

A specific example of posting the constant to the demo server:

curl -d @constant.json "https://play.dhis2.org/api/constants" -X POST -H "Content-
Type: application/json" -u admin:district

If everything went well, you should see an output similar to:

{
 "status":"SUCCESS",
 "importCount":{"imported":1,"updated":0,"ignored":0,"deleted":0},
 "type":"Constant"
}

The process will be exactly the same for updating, you make your changes to the JSON/XML payload, find out the ID
of the constant, and then send a PUT request to the endpoint including ID:

curl -X PUT -d @pi.json -H "Content-Type: application/json" -u user:password http://
server/api/constants/ID

1.9.3. Deleting objects

Deleting objects are very straight forward, you will need to know the ID and the endpoint of the type you want delete,
let's continue our example from the last section and use a constant. Let's assume that the id is abc123, then all you
need to do is the send the DELETE request to the endpoint + id:

curl -X DELETE -u user:password
http://server/api/constants/ID

A successful delete should return HTTP status 204 (no content).

1.9.4. Adding and removing objects to/from collections

In order to add or remove objects to or from a collection of objects you can use the following pattern:

/api/{collection-object}/{collection-object-id}/{collection-name}/{object-id}

You should use the POST method to add, and the DELETE method to remove an object. The components of the pattern
are:

• collection object: The type of objects that owns the collection you want to modify.

• collection object id: The identifier of the object that owns the collection you want to modify.

• collection name: The name of the collection you want to modify.

• object id: The identifier of the object you want to add or remove from the collection.

As an example, in order to remove a data element with identifier IDB from a data element group with identifier IDA
you can do a DELETE request:

DELETE /api/dataElementGroups/IDA/dataElements/IDB

To add a category option with identifier IDB to a category with identifier IDA you can do a POST request:

Web API Validating payloads

14

POST /api/categories/IDA/categoryOptions/IDB

1.9.5. Validating payloads

System wide validation of metadata payloads are enabled from 2.19 release, this means that create/update operations on
the web-api endpoints will be checked for valid payload before allowed changes to be made, to find out what validations
are in place for a endpoint, please have a look at the /api/schemas endpoint, i.e. to figure out which constraints a data
element have, you would go to /api/schemas/dataElement.

You can also validate your payload manually by sending it to the proper schema endpoint. If you wanted to validate
the constant from the create section before, you would send it like this:

POST /api/schemas/constant
{ payload }

A simple (non-validating) example would be:

curl -X POST -d "{\"name\": \"some name\"}" -H "Content-Type: application/json" -u
 admin:district https://play.dhis2.org/dev/api/schemas/dataElement

Which would yield the result:

[
 {
 "message" : "Required property missing.",
 "property" : "type"
 },
 {
 "property" : "aggregationOperator",
 "message" : "Required property missing."
 },
 {
 "property" : "domainType",
 "message" : "Required property missing."
 },
 {
 "property" : "shortName",
 "message" : "Required property missing."
 }
]

1.9.6. Partial updates

For cases where you don't want or need to update all properties on a object (which means downloading a potentially
huge payload, change one property, then upload again) we now support partial update, both for single properties and
for multiple properties.

The format for updating a single property is the same as when you are updating a complete object, just with only 1
property in the JSON/XML file, i.e.:

curl -X PATCH -d "{\"name\": \"New Name\"}" -H "Content-Type: application/json" -u
 admin:district https://play.dhis2.org/dev/api/dataElements/fbfJHSPpUQD/name

Please note that we are including the property name two times, one time in the payload, and one time in the endpoint,
the generic endpoint for this is /api/type/id/property-name, and the Content-Type must also be included as usual (since
we support multiple formats).

The format for updating multiple properties are similar, just that we don't include the property names in the url, i.e.:

{ // file.json
 "name": "Updated Name",
 "zeroIsSignificant": true

Web API CSV metadata import

15

}

curl -X PATCH -d @file.json -H "Content-Type: application/json" -u admin:district
 https://play.dhis2.org/dev/api/dataElements/fbfJHSPpUQD

1.10. CSV metadata import

DHIS 2 supports import of metadata in the CSV format. Columns which are not required can be omitted in the CSV
file, but the order will be affected. If you would like to specify columns which appear late in the order but not specify
columns which appear early in the order you can include empty columns ("") for them. The following object types
are supported:

• Data elements

• Data element groups

• Category options

• Category option groups

• Organisation units

• Organisation unit groups

• Validation rules

• Option sets

The formats for the currently supported object types for CSV import are listed below.

Table 1.13. Data Element CSV Format

Column Required Value (default first) Description

Name Yes Name. Max 230 char. Unique.

UID No UID Stable identifier. Max 11 char. Will be generated by system
if not specified.

Code No Stable code. Max 50 char.

Short name No 50 first char of name Will fall back to first 50 characters of name if unspecified.
Max 50 char. Unique.

Description No Free text description.

Form name No Max 230 char.

Domain type No aggregate | tracker Domain type for data element, can be aggregate or tracker.
Max 16 char.

Value type No int | string | bool
| trueOnly | date |
unitInterval

Value type. Max 16 char.

Number type No int | posInt |
negInt | number |
zeroPositiveInt

Only relevant if type is int. Max 16 char.

Text type No text | longText Only relevant if type is string. Max 16 char.

Aggregation
operator

No sum | average | count |
stddev | variance

Operator indicating how to aggregate data in the time
dimension. Max 16 char.

Category
combination
UID

No UID UID of category combination. Will default to default
category combination if not specified.

Url No URL to data element resource. Max 255 char.

Zero is
significant

No false | true Indicates whether zero values will be stored for this data
element.

Web API CSV metadata import

16

Column Required Value (default first) Description

Option set No UID UID of option set to use for data.

Comment
option set

No UID UID of option set to use for comments.

Table 1.14. Organisation Unit CSV Format

Column Required Value (default first) Description

Name Yes Name. Max 230 characters. Unique.

UID No UID Stable identifier. Max 11 char. Will be generated by system
if not specified.

Code No Stable code. Max 50 char.

Parent UID No UID UID of parent organisation unit.

Short name No 50 first char of name Will fall back to first 50 characters of name if unspecified.
Max 50 characters. Unique.

Description No Free text description.

UUID No UUID. Max 36 char.

Opening date No 1970-01-01 Opening date of organisation unit in YYYY-MM-DD
format.

Closed date No Closed date of organisation unit in YYYY-MM-DD format,
skip if currently open.

Comment No Free text comment for organisation unit.

Feature type No Can be Point, Polygon, MultiPolygon. Max 50 char.

Coordinates No Coordinates used for geospatial analysis in Geo JSON
format.

URL No URL to organisation unit resource. Max 255 char.

Contact
person

No Contact person for organisation unit. Max 255 char.

Address No Address for organisation unit. Max 255 char.

Email No Email for organisation unit. Max 150 char.

Phone
number

No Phone number for organisation unit. Max 150 char.

Table 1.15. Validation Rule CSV Format

Column RequiredValue (default first) Description

Name Yes Name. Max 230 characters. Unique.

UID No UID Stable identifier. Max 11 char. Will be generated by
system if not specified.

Code No Stable code. Max 50

Description No Free text description.

Instruction No Free text instruction.

Importance No medium | high | low

Rule type No validation | surveillance

Operator No equal_to | not_equal_to |
greater_than |
greater_than_or_equal_to |

Web API CSV metadata import

17

Column RequiredValue (default first) Description

less_than |
less_than_or_equal_to |
compulsory_pair

Period type No Monthly | Daily | Weekly |
Quarterly | SixMontly | Yearly

Left side
expression

Yes Mathematical formula based on data element and
option combo UIDs.

Left side
expression
description

Yes Free text.

Left side null if
blank

No false | true Boolean.

Right side
expression

Yes Mathematical formula based on data element and
option combo UIDs.

Right side
expression
description

Yes Free text.

Right side null if
blank

No false | true Boolean.

Table 1.16. Option Set CSV Format

Column Required Value
(default first)

Description

OptionSetName Yes Name. Max 230 characters. Unique. Should be repeated for each
option.

OptionSetUID No UID Stable identifier. Max 11 char. Will be generated by system if not
specified. Should be repeated for each option.

OptionSetCode No Stable code. Max 50 char. Should be repeated for each option.

OptionName Yes Option name. Max 230 characters.

OptionUID No UID Stable identifier. Max 11 char. Will be generated by system if not
specified.

OptionCode Yes Stable code. Max 50 char.

Table 1.17. Data Element Group, Category Option, Category Option Group, Organisation Unit Group CSV
Format

Column Required Value
(default first)

Description

Name Yes Name. Max 230 characters. Unique.

UID No UID Stable identifier. Max 11 char. Will be generated by system if not
specified.

Code No Stable code. Max 50 char.

An example of a CSV file for data elements can be seen below. The first row will always be ignored. Note how you
can skip columns and rely on default values to be used by the system. You can also skip columns which you do not
use which appear to the right of the ones

name,uid,code,shortname,description,formname,domaintype,type,numbertype,texttype,aggregationoperator,categorycombo,url,zero
"Women participated in skill development training",,"D0001","Women participated
 development training"

Web API File resources

18

"Women participated in community organizations",,"D0002","Women participated community
 organizations"

A minimal example for importing organisation units with a parent unit looks like this:

name,uid,code,parent
"West province",,"WESTP","ImspTQPwCqd"
"East province",,"EASTP","ImspTQPwCqd"

The format for option sets is special. The three first values represent an option set. The three last values represent an
option. The first three values representing the option set should be repeated for each option.

optionsetname,optionsetuid,optionsetcode,optionname,optionuid,optioncode
"Color",,"COLOR","Blue",,"BLUE"
"Color",,"COLOR","Green",,"GREEN"
"Color",,"COLOR","Yellow",,"YELLOW"
"Sex",,,"Male",,"MALE"
"Sex",,,"Female",,"FEMALE"
"Sex",,,"Uknown",,"UNKNOWN"
"Result",,,"High",,"HIGH"
"Result",,,"Medium",,"MEDIUM"
"Result",,,"Low",,"LOW"
"Impact","cJ82jd8sd32","IMPACT","Great",,"GREAT"
"Impact","cJ82jd8sd32","IMPACT","Medium",,"MEDIUM"
"Impact","cJ82jd8sd32","IMPACT","Poor",,"POOR"

1.11. File resources

File resources are objects used to represent and store binary content. The FileResource object itself contains the file
meta-data (name, Content-Type, size, etc) as well as a key allowing retrieval of the contents from a database-external
file store. The FileResource object is stored in the database like any other but the content (file) is stored elsewhere and
is retrievable using the contained reference (storageKey).

The contents of a file resources is not directly accessible but is referenced from other objects (such as data values) to
store binary content of virtually unlimited size.

Creation of the file resource itself is done through the api/fileResources endpoint as a multipart upload POST-request:

curl -X POST -v -F "file=@/Path/to/file;filename=name-of-file.png" https://server/api/
fileResources

The only form parameter required is the file which is the file to upload. The filename and content-type should also be
included in the request (this is handled for you by any Web browser) but will be replaced by defaults when not supplied.

On successfully creating a file resource the returned data will contain a response field which in turn contains the
fileResource like this:

{
"httpStatus": "Accepted",
 "httpStatusCode": 202,
 "status": "OK",
 "response": {
 "responseType": "FileResource",
 "fileResource": {
 "name": "name-of-file.png",
 "created": "2015-10-16T16:34:20.654+0000",
 "lastUpdated": "2015-10-16T16:34:20.667+0000",
 "externalAccess": false,
 "publicAccess": "--------",
 "user": { ... },
 "displayName": "name-of-file.png",
 "contentType": "image/png",

Web API File resource constraints

19

 "contentLength": 512571,
 "contentMd5": "4e1fc1c3f999e5aa3228d531e4adde58",
 "storageStatus": "PENDING",
 "id": "xm4JwRwke0i"
 }
 }
}

Note that the response is a 202 Accepted, indicating that the returned resource has been submitted for background
processing (persisting to the external file store in this case). Also note the storageStatus field which indicates whether
the contents have been stored or not. At this point the persistance to the external store is not yet finished (it is likely
being uploaded to a cloud-based store somewhere) as seen by the PENDING status.

Even though the content has not been fully stored yet the file resource can now be used, for example as referenced
content in a data value (see Section 1.12.5.1, “Working with file data values”). If we need to check the updated
storageStatus or otherwise retrieve the meta-data of the file, the fileResources endpoint can be queried.

curl -v https://server/api/fileResources/xm4JwRwke0i -H "Accept: application/json"

This request will return the FileResource object as seen in the response of the above example.

1.11.1. File resource constraints

• File resources must be referenced (assigned) from another object in order to be persisted in the long term. A file
resource which is created but not referenced by another object such as a data value is considered to be in staging. Any
file resources which are in this state and are older than two hours will be marked for deletion and will eventually
be purged from the system.

• The ID returned by the initial creation of the file resource is not retrievable from any other location unless the file
resource has been referenced (in which the ID will be stored as the reference), so losing it will require the POST
request to be repeated and a new object to be created. The orphaned file resource will be cleaned up automatically.

• File resource objects are immutable, meaning modification is not allowed and requires creating a completely new
resource instead.

1.12. Data values

This section is about sending and reading data values.

1.12.1. Sending data values

A common use-case for system integration is the need to send a set of data values from a third-party system into DHIS.
In this example we will use the DHIS 2 demo on http://play.dhis2.org/demo as basis and we recommend that you follow
the provided links with a web browser while reading (log in with admin/district as username/password). We assume
that we have collected case-based data using a simple software client running on mobile phones for the Mortality <5
years data set in the community of Ngelehun CHC (in Badjia chiefdom, Bo district) for the month of January 2014.
We have now aggregated our data into a statistical report and want to send that data to the national DHIS 2 instance.

The resource which is most appropriate for our purpose of sending data values is the dataValueSets resource. A data
value set represents a set of data values which have a logical relationship, usually from being captured off the same
data entry form. We follow the link to the HTML representation which will take us to http://play.dhis2.org/demo/api/
dataValueSets. The format looks like this:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="dataSetID"
 completeDate="date" period="period" orgUnit="orgUnitID"
 attributeOptionCombo="aocID">
 <dataValue dataElement="dataElementID" categoryOptionCombo="cocID" value="1"
 comment="comment1"/>
 <dataValue dataElement="dataElementID" categoryOptionCombo="cocID" value="2"
 comment="comment2"/>

http://play.dhis2.org/demo
http://play.dhis2.org/demo/api/dataValueSets
http://play.dhis2.org/demo/api/dataValueSets

Web API Sending data values

20

 <dataValue dataElement="dataElementID" categoryOptionCombo="cocID" value="3"
 comment="comment3"/>
</dataValueSet>

JSON is supported in this format:

{
 "dataSet": "dataSetID",
 "completeDate": "date",
 "period": "period",
 "orgUnit": "orgUnitID",
 "attributeOptionCombo", "aocID",
 "dataValues": [
 { "dataElement": "dataElementID", "categoryOptionCombo": "cocID", "value": "1",
 "comment": "comment1" },
 { "dataElement": "dataElementID", "categoryOptionCombo": "cocID", "value": "2",
 "comment": "comment2" },
 { "dataElement": "dataElementID", "categoryOptionCombo": "cocID", "value": "3",
 "comment": "comment3" }
]
}

CSV is supported in this format:

"dataelement","period","orgunit","catoptcombo","attroptcombo","value","storedby","lastupd","comment"
"dataElementID","period","orgUnitID","cocID","aocID","1","username","2015-04-01","comment1"
"dataElementID","period","orgUnitID","cocID","aocID","2","username","2015-04-01","comment2"
"dataElementID","period","orgUnitID","cocID","aocID","3","username","2015-04-01","comment3"

Note: Please refer to the date and period section above for time formats.

From the example we can see that we need to identify the period, the data set, the org unit (facility) and the data
elements for which to report.

To obtain the identifier for the data set we return to the entry point at http://play.dhis2.org/demo/api and follow the
embedded link pointing at the dataSets resource located at http://play.dhis2.org/demo/api/dataSets. From there we
find and follow the link to the Mortality < 5 years data set which leads us to http://play.dhis2.org/demo/api/dataSets/
pBOMPrpg1QX. The resource representation for the Mortality < 5 years data set conveniently advertises links to the
data elements which are members of it. From here we can follow these links and obtain the identifiers of the data
elements. For brevity we will only report on three data elements: Measles with id f7n9E0hX8qk, Dysentery with id
Ix2HsbDMLea and Cholera with id eY5ehpbEsB7.

What remains is to get hold of the identifier of the facility (org unit). The dataSet representation conveniently provides
link to org units which report on it so we search for Ngelehun CHC and follow the link to the HTML representation
at http://play.dhis2.org/demo/api/organisationUnits/DiszpKrYNg8, which tells us that the identifier of this org unit is
DiszpKrYNg8.

From our case-based data we assume that we have 12 cases of measles, 14 cases of dysentery and 16 cases of cholera.
We have now gathered enough information to be able to put together the XML data value set message:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="pBOMPrpg1QX"
 completeDate="2014-02-03" period="201401" orgUnit="DiszpKrYNg8">
 <dataValue dataElement="f7n9E0hX8qk" value="12"/>
 <dataValue dataElement="Ix2HsbDMLea" value="14"/>
 <dataValue dataElement="eY5ehpbEsB7" value="16"/>
</dataValueSet>

In JSON format:

{
 "dataSet": "pBOMPrpg1QX",
 "completeData": "2014-02-03",
 "period": "201401",
 "orgUnit": "DiszpKrYNg8",

http://play.dhis2.org/demo/api
http://play.dhis2.org/demo/api/dataSets
http://play.dhis2.org/demo/api/dataSets/pBOMPrpg1QX
http://play.dhis2.org/demo/api/dataSets/pBOMPrpg1QX
http://play.dhis2.org/demo/api/organisationUnits/DiszpKrYNg8

Web API Sending bulks of data values

21

 "dataValues": [
 { "dataElement": "f7n9E0hX8qk", "value": "1" },
 { "dataElement": "Ix2HsbDMLea", "value": "2" },
 { "dataElement": "eY5ehpbEsB7", "value": "3" }
]
}

To perform functional testing we will use the cURL tool which provides an easy way of transferring data using HTTP.
First we save the data value set XML content in a file called datavalueset.xml . From the directory where this file
resides we invoke the following from the command line:

curl -d @datavalueset.xml "https://play.dhis2.org/demo/api/dataValueSets" -H "Content-
Type:application/xml" -u admin:district -v

For sending JSON content you must set the content-type header accordingly:

curl -d @datavalueset.json "https://play.dhis2.org/demo/api/dataValueSets" -H
 "Content-Type:application/json" -u admin:district -v

The command will dispatch a request to the demo Web API, set application/xml as the content-type and authenticate
using admin/district as username/password. If all goes well this will return a 200 OK HTTP status code. You can verify
that the data has been received by opening the data entry module in DHIS 2 and select the org unit, data set and period
used in this example.

The API follows normal semantics for error handling and HTTP status codes. If you supply an invalid username or
password, 401 Unauthorized is returned. If you supply a content-type other than application/xml, 415 Unsupported
Media Type is returned. If the XML content is invalid according to the DXF namespace, 400 Bad Request is returned.
If you provide an invalid identifier in the XML content, 409 Conflict is returned together with a descriptive message.

1.12.2. Sending bulks of data values

The previous example showed us how to send a set of related data values sharing the same period and organisation
unit. This example will show us how to send large bulks of data values which don't necessarily are logically related.

Again we will interact with the with http://play.dhis2.org/demo/api/dataValueSets resource. This time we will not
specify the dataSet and completeDate attributes. Also, we will specify the period and orgUnit attributes on the
individual data value elements instead of on the outer data value set element. This will enable us to send data values
for various periods and org units:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0">
 <dataValue dataElement="f7n9E0hX8qk" period="201401" orgUnit="DiszpKrYNg8"
 value="12"/>
 <dataValue dataElement="f7n9E0hX8qk" period="201401" orgUnit="FNnj3jKGS7i"
 value="14"/>
 <dataValue dataElement="f7n9E0hX8qk" period="201402" orgUnit="DiszpKrYNg8"
 value="16"/>
 <dataValue dataElement="f7n9E0hX8qk" period="201402" orgUnit="Jkhdsf8sdf4"
 value="18"/>
</dataValueSet>

In JSON format:

{
 "dataValues": [
 { "dataElement": "f7n9E0hX8qk", "period": "201401", "orgUnit": "DiszpKrYNg8",
 "value": "12" },
 { "dataElement": "f7n9E0hX8qk", "period": "201401", "orgUnit": "FNnj3jKGS7i",
 "value": "14" },
 { "dataElement": "f7n9E0hX8qk", "period": "201402", "orgUnit": "DiszpKrYNg8",
 "value": "16" },
 { "dataElement": "f7n9E0hX8qk", "period": "201402", "orgUnit": "Jkhdsf8sdf4",
 "value": "18" }

http://play.dhis2.org/demo/api/dataValueSets

Web API Sending bulks of data values

22

]
}

In CSV format:

"dataelement","period","orgunit","categoryoptioncombo","attributeoptioncombo","value"
"f7n9E0hX8qk","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","1"
"Ix2HsbDMLea","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","2"
"eY5ehpbEsB7","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","3"

We test by using cURL to send the data values in XML format:

curl -d @datavalueset.xml "https://play.dhis2.org/demo/api/dataValueSets" -H "Content-
Type:application/xml" -u admin:district -v

Note that when using CSV format you must use the binary data option to preserve the line-breaks in the CSV file:

curl --data-binary @datavalueset.csv "https://play.dhis2.org/demo/api/dataValueSets" -
H "Content-Type:application/csv" -u admin:district -v

The data value set resource provides an XML response which is useful when you want to verify the impact your request
had. The first time we send the data value set request above the server will respond with the following import summary:

<importSummary>
 <dataValueCount imported="2" updated="1" ignored="1"/>
 <dataSetComplete>false</dataSetComplete>
</importSummary>

This message tells us that 3 data values were imported, 1 data value was updated while zero data values were ignored.
The single update comes as a result of us sending that data value in the previous example. A data value will be ignored
if it references a non-existing data element, period, org unit or data set. In our case this single ignored value was caused
by the last data value having an invalid reference to org unit. The data set complete element will display the date of
which the data value set was completed, or false if no data element attribute was supplied.

The import process can be customized using a set of import parameters:

Table 1.18. Import parameters

Parameter Values (default first) Description

dataElementIdScheme id | name | code Property of the data element object
to use to map the data values.

orgUnitIdScheme id | name | code Property of the org unit object to use
to map the data values.

idScheme id | name | code Property of all objects including data
elements, org units and category
option combos, to use to map the
data values.

dryRun false | true Whether to save changes on the
server or just return the import
summary.

preheatCache false | true Whether to preheat data element
and organisation unit caches with all
objects.

importStrategy CREATE | UPDATE
| CREATE_AND_UPDATE
| DELETE

Save objects of all, new or update
import status on the server.

skipExistingCheck false | true Skip checks for existing data values.
Improves performance. Only use for

Web API CSV data value format

23

Parameter Values (default first) Description

empty databases or when the data
values to import do not exist already.

All parameters are optional and can be supplied as query parameters in the request URL like this:

https://play.dhis2.org/demo/api/dataValueSets?
dataElementIdScheme=code&orgUnitIdScheme=name&dryRun=true&importStrategy=new

They can also be supplied as XML attributes on the data value set element like below. XML attributes will override
query string parameters.

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataElementIdScheme="code"
 orgUnitIdScheme="name" dryRun="true" importStrategy="new">
 ..
</dataValueSet>

1.12.2.1. Identifier schemes

Regarding the id schemes, by default the identifiers used in the XML messages uses the DHIS 2 stable object identifiers
referred to as uid. In certain interoperability situations we might experience that external system decides the identifiers
of the objects. In that case we can use the code property of the organisation units and other objects to set fixed identifiers.
When importing data values we hence need to reference the code property instead of the identfier property of these
metadata objects. Identifier schemes can be specified in the XML message as well as in the request as query parameters.
To specify it in the XML payload you can do this:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataElementIdScheme="CODE"
 orgUnitIdScheme="UID" idScheme="CODE">
 ..
</dataValueSet>

The parameter table above explains how the id schemes can be specified as query parameters. The following rules
apply for what takes precedence:

• Id schemes defined in the XML or JSON payload take precedence over id schemes defined as URL query parameters.

• Specific id schemes including dataElementIdScheme and orgUnitIdScheme take precedence over the general
idScheme.

• The default id scheme is UID, which will be used if no explicit id scheme is defined.

1.12.3. CSV data value format

The following section describes the CSV format used in DHIS2. The first row is assumed to be a header row and will
be ignored during import.

Table 1.19. CSV format of DHIS 2

Column Required Description

Data element Yes Refers to ID by default, can also be
name and code based on selected id
scheme

Period Yes In ISO format

Org unit Yes Refers to ID by default, can also be
name and code based on selected id
scheme

Category option combo No Refers to ID

Attribute option combo No Refers to ID (from version 2.16)

Web API Generating data value set template

24

Value No Data value

Stored by No Refers to username of user who
entered the value

Last updated No Date in ISO format

Comment No Free text comment

Follow up No true or false

An example of a CSV file which can be imported into DHIS 2 is seen below.

"dataelement","period","orgunit","categoryoptioncombo","attroptioncombo","value","storedby","timestamp","comment","followup"
"DUSpd8Jq3M7","201202","gP6hn503KUX","Prlt0C1RF0s",,"7","bombali","2010-04-17",,"false"
"DUSpd8Jq3M7","201202","gP6hn503KUX","V6L425pT3A0",,"10","bombali","2010-04-17",,"false"
"DUSpd8Jq3M7","201202","OjTS752GbZE","V6L425pT3A0",,"9","bombali","2010-04-06",,"false"

1.12.4. Generating data value set template

To generate a data value set template for a certain data set you can use the /api/dataSets/<id>/dataValueSet resource.
XML and JSON response formats are supported. Example:

api/dataSets/BfMAe6Itzgt/dataValueSet.json

The parameters you can use to further adjust the output are described below:

Table 1.20. Data values query parameters

Query
parameter

Required Description

period No Period to use, will be included without any checks.

orgUnit No Organisation unit to use, supports multiple orgUnits, both id and code can
be used.

comment No Should comments be include, default: Yes.

orgUnitIdScheme No Organisation unit scheme to use, supports id | code.

dataElementIdSchemeNo Data-element scheme to use, supports id | code.

1.12.5. Sending, reading and deleting individual data values

This example will show how to send individual data values to be saved in a request. This can be achieved by sending
a POST request to the dataValues resource:

https://play.dhis2.org/demo/api/dataValues

The following query parameters are supported for this resource:

Table 1.21. Data values query parameters

Query
parameter

Required Description

de Yes Data element identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

co No Category option combo identifier, default will be used if omitted

cc No (must combine
with cp)

Attribute combo identifier

Web API Sending, reading and deleting individual data
values

25

Query
parameter

Required Description

cp No (must combine
with cc)

Attribute option identifiers, separated with ; for multiple values

value No Data value

comment No Data comment

followUp No Follow up on data value, will toggle the current boolean value

If any of the identifiers given are invalid, if the data value or comment are invalid or if the data is locked, the response
will contain the 409 Conflict status code and descriptive text message. If the operation lead to a saved or updated value,
200 OK will be returned. An example of a request looks like this:

curl "https://play.dhis2.org/demo/api/dataValues?
de=s46m5MS0hxu&pe=201301&ou=DiszpKrYNg8&co=Prlt0C1RF0s&value=12"
-X POST -u admin:district -v

This resource also allows a special syntax for associating the value to an attribute option combination. This can be done
by sending the identifier of the attribute combination, together with the identifier(s) of the attribute option(s) which
the value represents within the combination. An example looks like this:

curl "https://play.dhis2.org/demo/api/dataValues?
de=s46m5MS0hxu&ou=DiszpKrYNg8&pe=201308&cc=dzjKKQq0cSO&cp=wbrDrL2aYEc;btOyqprQ9e8&value=26"
-X POST -u admin:district -v

You can retrieve a data value with a request using the GET method. The value, comment and followUp params are
not applicable in this regard:

curl "https://play.dhis2.org/demo/api/dataValues?
de=s46m5MS0hxu&pe=201301&ou=DiszpKrYNg8&co=Prlt0C1RF0s"
-X GET -u admin:district -v

You can delete a data value with a request using the DELETE method.

1.12.5.1. Working with file data values

When dealing with data values which have a data element of type file there is some deviation from the method described
above. These data values are special in that the contents of the value is a UID reference to a FileResource object instead
of a self-contained constant. These data values will behave just like other data values which store text content, but
should be handled differently in order to produce meaningful input and output.

The process of storing one of these data values roughly goes like this:

1. Upload the file to the api/fileResources endpoint as described in Section 1.11, “File resources”.

2. Retrieve the 'id' property of the returned FileResource.

3. Store the retrieved id as the value to the data value using any of the methods described above.

Only one-to-one relationships between data values and file resources are allowed. This is enforced internally so that
saving a file resource id in several data values is not allowed and will return an error. Deleting the data value will delete
the referenced file resource. Direct deletion of file resources are not possible.

The data value can now be retrieved as any other but the returned data will be the UID of the file resource. In order
to retrieve the actual contents (meaning the file which is stored in the file resource mapped to the data value) a GET
request must be made to api/dataValues/files mirroring the query parameters as they would be for the data value itself.
The dataValues/files endpoint only supports GET requests.

It is worth noting that due to the underlying storage mechanism working asynchronously the file content might not be
immediately ready for download from the dataValues/files endpoint. This is especially true for large files which might
require time consuming uploads happening in the background to a an external file store (depending on the system
configuration). Retrieving the file resource meta-data from the api/fileResources/<id> endpoint allows checking the
storageStatus of the content before attempting to download it.

Web API Reading data values

26

1.12.6. Reading data values

This section explains how to retrieve data values from the Web API by interacting with the dataValueSets resource.
Data values can be retrieved in XML, JSON and CSV format. Since we want to read data we will use the GET HTTP
verb. We will also specify that we are interested in the XML resource representation by including an Accept HTTP
header with our request. The following query parameters are required:

Table 1.22. Data value set query parameters

Parameter Description

dataSet Data set identifier. Can be repeated any number of times.

period Period identifier in ISO format. Can be repeated any number of times.

startDate Start date for the time span of the values to export.

endDate End date for the time span of the values to export.

orgUnit Organisation unit identifier. Can be repeated any number of times.

children Whether to include the children in the hierarchy of the organisation units.

lastUpdated Include only data values which are updated after the given time stamp.

limit The max number of results in the response.

idScheme Property of meta data objects to use for data values in response.

dataElementIdScheme Property of the data element object to use for data values in response.

orgUnitIdScheme Property of the org unit object to use for data values in response.

categoryOptionComboIdSchemeProperty of the category option combo object to use for data values in response.

The following response formats are supported:

• xml (application/xml)

• json (application/json)

• csv (application/csv)

Assuming that we have posted data values to DHIS according to the previous section called "Sending data values" we
can now put together our request for a single data value set and request it using cURL:

curl "https://play.dhis2.org/demo/api/dataValueSets?
dataSet=pBOMPrpg1QX&period=201401&orgUnit=DiszpKrYNg8"
-H "Accept:application/xml" -u admin:district -v

We can also use the start and end dates query parameters to request a larger bulk of data values. I.e. you can also request
data values for multiple data sets and org units and a time span in order to export larger chunks of data. Note that the
period query parameter takes presedence over the start and end date parameters. An exampe looks like this:

curl "https://play.dhis2.org/demo/api/dataValueSets?
dataSet=pBOMPrpg1QX&dataSet=BfMAe6Itzgt&startDate=2013-01-01
&endDate=2013-01-31&orgUnit=YuQRtpLP10I&orgUnit=vWbkYPRmKyS&children=true" -H
 "Accept:application/xml" -u admin:district -v

The response will look like this:

<?xml version='1.0' encoding='UTF-8'?>
<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="pBOMPrpg1QX"
 completeDate="2014-01-02" period="201401" orgUnit="DiszpKrYNg8">
<dataValue dataElement="eY5ehpbEsB7" period="201401" orgUnit="DiszpKrYNg8"
 categoryOptionCombo="bRowv6yZOF2" value="10003"/>
<dataValue dataElement="Ix2HsbDMLea" period="201401" orgUnit="DiszpKrYNg8"
 categoryOptionCombo="bRowv6yZOF2" value="10002"/>
<dataValue dataElement="f7n9E0hX8qk" period="201401" orgUnit="DiszpKrYNg8"
 categoryOptionCombo="bRowv6yZOF2" value="10001"/>
</dataValueSet>

Web API ADX formatted data

27

You can request the data in JSON format like this:

https://play.dhis2.org/demo/api/dataValueSets.json?
dataSet=pBOMPrpg1QX&period=201401&orgUnit=DiszpKrYNg8

The response will look something like this:

{
 "dataSet": "pBOMPrpg1QX",
 "completeData": "2014-02-03",
 "period": "201401",
 "orgUnit": "DiszpKrYNg8",
 "dataValues": [
 { "dataElement": "eY5ehpbEsB7", "categoryOptionCombo": "bRowv6yZOF2", "period":
 "201401",
 "orgUnit": "DiszpKrYNg8", "value": "10003" },
 { "dataElement": "Ix2HsbDMLea", "categoryOptionCombo": "bRowv6yZOF2", "period":
 "201401",
 "orgUnit": "DiszpKrYNg8", "value": "10002" },
 { "dataElement": "f7n9E0hX8qk", "categoryOptionCombo": "bRowv6yZOF2", "period":
 "201401",
 "orgUnit": "DiszpKrYNg8", "value": "10001" }
]
}

You can also request data in CSV format like this:

https://play.dhis2.org/demo/api/dataValueSets.csv?
dataSet=pBOMPrpg1QX&period=201401&orgUnit=DiszpKrYNg8

The response will look like this:

dataelement,period,orgunit,categoryoptioncombo,attributeoptioncombo,value,storedby,lastupdated,comment,followup
f7n9E0hX8qk,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,12,system,2015-04-05T19:58:12.000,comment1,false
Ix2HsbDMLea,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,14,system,2015-04-05T19:58:12.000,comment2,false
eY5ehpbEsB7,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,16,system,2015-04-05T19:58:12.000,comment3,false
FTRrcoaog83,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,12,system,2014-03-02T21:45:05.519,comment4,false

The following constraints apply to the data value sets resource:

• At least one data set must be specified.

• Either at least one period or a start date and end date must be specified.

• At least one organisation unit must be specified.

• Organisation units must be within the hierarchy of the organisation units of the authenticated user.

• Limit cannot be less than zero.

1.13. ADX formatted data

From version 2.20 we have included support for an upcoming international standard for aggregate data exchange called
ADX. ADX is developed and maintained by the Quality Research and Public Health committee of the IHE (Integerating
the HealthCare Enterprise). The wiki page detailing QRPH activity can be found at wiki.ihe.net. ADX is still under
active development and is due to be published before the end of 2015. Nevertheless, the data format for aggregate
datavalues is currently fairly stable and is unlikely to change much from what is described here. Note that what is
implemented currently in DHIS 2 is the functionality to read adx formatted data, i.e. what is described as a Content
Consumer actor in the ADX profile.

The structure of an ADX data message is quite similar to what you might already be familiar with from DXF 2 data
described earlier. There are a few important differences. We will describe these differences with reference to a small
example:

<adx xmlns="urn:ihe:qrph:adx:2015" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

http://wiki.ihe.net/index.php?title=Quality,_Research_and_Public_Health#Current_Domain_Activities

Web API The adx root element

28

 xsi:schemaLocation="urn:ihe:qrph:adx:2015 ../schema/adx_loose.xsd"
 exported="2015-02-08T19:30:00Z">

 <group orgUnit="OU_559" period="2015-06-01/P1M" completeDate="2015-07-01"
 dataSet="(TB/HIV)VCCT">

 <dataValue dataElement="VCCT_0" GENDER="FMLE" HIV_AGE="AGE0-14" value="32"/>
 <dataValue dataElement="VCCT_1" GENDER="FMLE" HIV_AGE="AGE0-14" value="20"/>
 <dataValue dataElement="VCCT_2" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>
 <dataValue dataElement="PLHIV_TB_0" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>
 <dataValue dataElement="PLHIV_TB_1" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="MLE" HIV_AGE="AGE0-14" value="32"/>
 <dataValue dataElement="VCCT_1" GENDER="MLE" HIV_AGE="AGE0-14" value="20"/>
 <dataValue dataElement="VCCT_2" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>
 <dataValue dataElement="PLHIV_TB_0" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>
 <dataValue dataElement="PLHIV_TB_1" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="FMLE" HIV_AGE="AGE15-24" value="32"/>
 <dataValue dataElement="VCCT_1" GENDER="FMLE" HIV_AGE="AGE15-24" value="20"/>
 <dataValue dataElement="VCCT_2" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>
 <dataValue dataElement="PLHIV_TB_0" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>
 <dataValue dataElement="PLHIV_TB_1" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="MLE" HIV_AGE="AGE15-24" value="32"/>
 <dataValue dataElement="VCCT_1" GENDER="MLE" HIV_AGE="AGE15-24" value="20"/>
 <dataValue dataElement="VCCT_2" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>
 <dataValue dataElement="PLHIV_TB_0" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>
 <dataValue dataElement="PLHIV_TB_1" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>

 </group>
</adx>

1.13.1. The adx root element

The adx root element has only one manadatory attribute, which is the exported timestamp. In common with other adx
elements, the schema is extensible in that it does not restrict additional application specific attributes.

1.13.2. The group element

Unlike dxf2, adx requires that the datavalues are grouped according to orgUnit, period and dataSet. The example above
shows a data report for the "(TB/HIV) VCCT" dataset from the online demo database. This example is using codes as
identifiers instead of dhis2 uids (An adx message can also be coded using uids using the same idScheme mechanism
used with dxf2. More on this when we describe posting the data below).

The orgUnit, period and dataSet attributes are mandatory in adx. The group element may contain additional attributes.
In our DHIS2 implementation any additional attributes are simply passed through to the underlying importer. This
means that all attributes which currently have meaning in dxf2 (such as completeDate in the example above) can
continue be used in adx and they will be processed in the same way.

A significant difference between adx and dxf2 is in the way that periods are encoded. Adx makes strict use of ISO8601
and encodes the reporting period as (date|datetime)/(duration). So the period in the example above is a period of 1
month (P1M) starting on 2015-06-01. So it is the data for June 2015. The notation is a bit more verbose, but it is very
flexible and allows us to support all existing period types in DHIS2

1.13.3. Data values

The dataValue element in adx is very similar to its equivalent in DXF. The mandatory attributes are dataElement and
value. orgUnit and period attributes don't appear in the dataValue as they are required at the group level.

Web API POSTing data

29

The most significant difference is the way that disaggregation is represented. DXF uses the categoryOptionCombo to
indicate disaggregation of data. In adx the disaggregations (eg AGE_GROUP and SEX) are expressed explicitly as
attributes. One important constraint on using adx is that the categories used for dataElements in the dataSet MUST have
a code assigned to them, and further, that code must be of a form which is suitable for use as an XML attribute. The
exact constraint on an XML attribute name is described in the W3C XML standard - in practice this means no spaces,
no non-alphanumeric chracters other than '_' and it may not start with a letter. The example above shows examples of
'good' category codes ('GENDER' and 'HIV_AGE').

This restriction on the form of codes applies only to categories. Currently the convention is not enforced by DHIS2
when you are assigning codes, but you will get an informative error message if you try to import adx data and the
category codes are either not assigned or not suitable.

The main benefits of using explicit dimensions of disaggregated data are that

• The system producing the data does not have to be synched with the categoryOptionCombo within DHIS2.

• The producer and consumer can match their codes to a 3rd party authoritative source, such as a vterminology service.
Note that in the example above the Gender and AgeGroup codes are using code lists from the WHO Global Health
Observatory.

Note that this feature may be extremely useful, for example when producing disaggregated data from an EMR system,
but there may be cases where a categoryOptionCombo mapping is easier or more desirable. The DHIS2 implementation
of adx will check for the existence of a categoryOptionCombo attribute and, if it exists, it will use that it preference to
exploded dimension attributes. Similarly, an attributeOptionCombo attribute on the group element will be processed
in the legacy way. Otherwise the attributeOptionCombo can be treated as exploded categories just as on the dataValue.

In the simple example above, each of the dataElements in the dataSet have the same dimensionality (categorycombo)
so the data is neatly rectangular. This need not be the case. dataSets may contain dataElements with different
categoryCombos, resulting in a ragged-right adx data message.

1.13.4. POSTing data

DHIS2 exposes an endpoint for POST adx data at /ohie/dataValueSets. So, for example, the following curl command
can be used to POST the example data above to the DHIS2 demo server:

curl -u admin:district -X POST -H "Content-Type: application/xml"
 -d @data.xml "https://play.dhis2.org/demo/ohie/dataValueSets?
dataElementIdScheme=code&orgUnitIdScheme=code"

Note the query parameters are the same as are used with DXF data. The adx endpoint should interpret all the existing
DXF parameters with the same semantics as DXF.

1.14. Events

This section is about sending and reading events.

1.14.1. Sending events

DHIS 2 supports three kinds of events: single events with no registration (also referred to as anonymous events), single
event with registration and multiple events with registration. Registration implies that the data is linked to a tracked
entity instance which is identified using some sort of identifier.

To send events to DHIS 2 you must interact with the events resource. The approach to sending events is similar to
sending aggregate data values. You will need a program which can be looked up using the programs resource, an
orgUnit which can be looked up using the organisationUnits resource, and a list of valid data element identifiers
which can be looked up using the dataElements resource. For events with registration, a tracked entity instance
identifier is required, read about how to get this in the section about the trackedEntityInstances resource. For sending

http://apps.who.int/gho/data/node.resources.api
http://apps.who.int/gho/data/node.resources.api

Web API Sending events

30

events to programs with multiple stages, you will need to also include the programStage identifier, the identifiers for
programStages can be found in the programStages resource.

A simple single event with no registration example payload in XML format where we send events from the "Inpatient
morbidity and mortality" program for the "Ngelehun CHC" facility in the demo database can be seen below:

<?xml version="1.0" encoding="utf-8"?>
<event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8" eventDate="2013-05-17"
 status="COMPLETED" storedBy="admin">
 <coordinate latitude="59.8" longitude="10.9" />
 <dataValues>
 <dataValue dataElement="qrur9Dvnyt5" value="22" />
 <dataValue dataElement="oZg33kd9taw" value="Male" />
 <dataValue dataElement="msodh3rEMJa" value="2013-05-18" />
 </dataValues>
</event>

To perform some testing we can save the XML payload as a file called event.xml and send it as a POST request to the
events resource in the API using curl with the following command:

curl -d @event.xml "https://play.dhis2.org/demo/api/events" -H "Content-
Type:application/xml" -u admin:district -v

The same payload in JSON format looks like this:

{
 "program": "eBAyeGv0exc",
 "orgUnit": "DiszpKrYNg8",
 "eventDate": "2013-05-17",
 "status": "COMPLETED",
 "storedBy": "admin",
 "coordinate": {
 "latitude": "59.8",
 "longitude": "10.9"
 },
 "dataValues": [
 { "dataElement": "qrur9Dvnyt5", "value": "22" },
 { "dataElement": "oZg33kd9taw", "value": "Male" },
 { "dataElement": "msodh3rEMJa", "value": "2013-05-18" }
]
}

To send this you can save it to a file called event.json and use curl like this:

curl -d @event.json "localhost/api/events" -H "Content-Type:application/json" -u
 admin:district -v

We also support sending multiple events at the same time. A payload in XML format might look like this:

<?xml version="1.0" encoding="utf-8"?>
<events>
 <event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8" eventDate="2013-05-17"
 status="COMPLETED" storedBy="admin">
 <coordinate latitude="59.8" longitude="10.9" />
 <dataValues>
 <dataValue dataElement="qrur9Dvnyt5" value="22" />
 <dataValue dataElement="oZg33kd9taw" value="Male" />
 </dataValues>
 </event>
 <event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8" eventDate="2013-05-17"
 status="COMPLETED" storedBy="admin">
 <coordinate latitude="59.8" longitude="10.9" />
 <dataValues>
 <dataValue dataElement="qrur9Dvnyt5" value="26" />

Web API Sending events

31

 <dataValue dataElement="oZg33kd9taw" value="Female" />
 </dataValues>
 </event>
</events>

You will receive an import summary with the response which can be inspected in order to get information about the
outcome of the request, like how many values were imported successfully. The payload in JSON format looks like this:

{
 "events": [
 {
 "program": "eBAyeGv0exc",
 "orgUnit": "DiszpKrYNg8",
 "eventDate": "2013-05-17",
 "status": "COMPLETED",
 "storedBy": "admin",
 "coordinate": {
 "latitude": "59.8",
 "longitude": "10.9"
 },
 "dataValues": [
 { "dataElement": "qrur9Dvnyt5", "value": "22" },
 { "dataElement": "oZg33kd9taw", "value": "Male" }
] },
 {
 "program": "eBAyeGv0exc",
 "orgUnit": "DiszpKrYNg8",
 "eventDate": "2013-05-17",
 "status": "COMPLETED",
 "storedBy": "admin",
 "coordinate": {
 "latitude": "59.8",
 "longitude": "10.9"
 },
 "dataValues": [
 { "dataElement": "qrur9Dvnyt5", "value": "26" },
 { "dataElement": "oZg33kd9taw", "value": "Female" }
] }
]
}

(From 2.13) As part of the import summary you will also get the identifier reference to the event you just sent, together
with a href element which points to the server location of this event.

OrgUnit matching: By default the orgUnit parameter will match on the ID (of the orgUnit, but from 2.15 you can
also select the orgUnit id matching scheme by using the parameter orgUnitIdScheme=SCHEME, where the options
are: ID, UID, UUID, CODE, and NAME (ID and UID will both matchUIDs).

Update: To update an existing event, the format of the payload is the same, but the URL you are posting to must add
the identifier to the end of the URL string and the request must be PUT.

curl -X PUT -d @updated_event.xml "localhost/api/events/ID" -H "Content-
Type:application/xml" -u admin:district -v

curl -X PUT -d @updated_event.json "localhost/api/events/ID" -H "Content-
Type:application/json" -u admin:district -v

Delete: To delete an existing event, all you need is to send a DELETE request with a identifier reference to the server
you are using.

curl -X DELETE "localhost/api/events/ID" -u admin:district -v

Get: To get an existing event you can issue a GET request including the identifier like this:

Web API CSV Import / Export

32

curl "localhost/api/events/ID" -H "Content-Type:application/xml" -u admin:district -v

The table below describes the meaning of each element. Most elements should be fairly self-explanatory.

Table 1.23. Events resource format

Parameter Type Required Options (default first) Description

programId string true Identifier of the single event with no registration program

organisationUnitId string true Identifier of the organisation unit where the event took place

eventDate date true The date of when the event occured

status enum false ACTIVE | COMPLETED | VISITED | SCHEDULE | OVERDUE | SKIPPED Whether the event is complete or not

storedBy string false Defaults to current user Who stored this event (can be username, system-name etc)

coordinate double false Refers to wher the event took place geographically (latitude and longitude)

dataElementId string true Identifier of data element

value string true Data value or measure for this event

1.14.2. CSV Import / Export

In addition to XML and JSON for event import/export, in DHIS 2.17 we introduced support for the CSV format.
Support for this format builds on what was described in the last section, so here we will only write about what the
CSV specific parts are.

To use the CSV format you must either use the /api/events.csv endpoint, or add content-type: text/csv for import, and
accept: text/csv for export when using the /api/events endpoint.

The order of column in the CSV which are used for both export and import is as follows:

Table 1.24. CSV column

Index Key Type Description

1 event identifier Identifier of event

2 status enum Status of event,
can be ACTIVE |
COMPLETED | VISITED
| SCHEDULED |
OVERDUE | SKIPPED

3 program identifier Identifier of program

4 programStage identifier Identifier of program stage

5 enrollment identifier Identifier of enrollment
(program stage instance)

6 orgUnit identifier Identifier of organisation
unit

7 eventDate date Event date

8 dueDate date Due Date

9 latitude double Latitude where event
happened

10 longitude double Longitude where event
happened

11 dataElement identifier Identifier of data element

12 value string Value / measure of event

Web API Querying and reading events

33

Index Key Type Description

13 storedBy string Event was stored by
(defaults to current user)

14 providedElsewhere boolean Was this value collected
somewhere else

1.14.3. Querying and reading events

This section explains how to read out the events that have been stored in the DHIS2 instance. For more advanced uses
of the event data, please see the section on event analytics. The output format from the /api/events endpoint will match
the format that is used to send events to it (which the analytics event api does not support). Both XML and JSON are
supported, either through adding .json/.xml or by setting the appropriate Accept header. The query is paged by default
and the default page size is 50 events.

Table 1.25. Events resource query parameters

Key Type Required Description

program identifier true (if not programStage
is provided)

Identifier of program

programStage identifier false Identifier of program stage

programStatus enum false Status of event in
program, ca be ACTIVE
| COMPLETED |
CANCELLED

followUp boolean false Whether event is
considered for follow up
in program, can be true |
false or omitted.

trackedEntityInstance identifier false Identifier of tracked entity
instance

orgUnit identifier true Identifier of organisation
unit

ouMode enum false Org unit selection mode,
can be SELECTED
| CHILDREN |
DESCENDANTS

startDate date false Only events newer than
this date

endDate date false Only events older than this
date

status enum false Status of event,
can be ACTIVE |
COMPLETED | VISITED
| SCHEDULED |
OVERDUE | SKIPPED

lastUpdated date false Filter for events which
were updated after this
date.

skipMeta boolean false Exclude the meta data
part of response (improves
performance)

Web API Querying and reading events

34

Key Type Required Description

page integer false Page number

pageSize integer falase Number of items in each
page

totalPages boolean false Indicates whether to
include the total number
of pages in the paging
response.

skipPaging boolean false Indicates whether to skip
paging in the query and
return all events.

dataElementIdScheme string false Data element ID scheme
to use for export, valid
options are UID and
CODE

categoryOptionComboIdSchemestring false Category Option Combo
ID scheme to use for
export, valid options are
UID and CODE

orgUnitIdScheme string false Organisation Unit ID
scheme to use for export,
valid options are UID and
CODE

programIdScheme string false Program ID scheme to use
for export, valid options
are UID and CODE

programStageIdScheme string false Program Stage ID scheme
to use for export, valid
options are UID and
CODE

idScheme string false Allows to set id scheme
for data element, category
option combo, orgUnit,
program and program
stage at once.

1.14.3.1. Examples

Query for all events with children of a certain organisation unit:

api/events.json?orgUnit=YuQRtpLP10I&ouMode=CHILDREN

Query for all events with all descendants of a certain organisation unit, implying all organisation units in the sub-
hierarchy:

api/events.json?orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS

Query for all events with a certain program and organisation unit:

api/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

Query for all events with a certain program and organisation unit for a specific tracked entity instance:

api/events.json?orgUnit=DiszpKrYNg8&
program=eBAyeGv0exc&trackedEntityInstance=gfVxE3ALA9m

Web API Forms

35

Query for all events with a certain program and organisation unit older or equal to 2014-02-03:

api/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&endDate=2014-02-03

Query for all events with a certain program stage, organisation unit and tracked entity instance in the year 2014:

api/events.json?
orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&trackedEntityInstance=gfVxE3ALA9m&startDate=2014-01-01&endDate=2014-12-31

1.15. Forms

To retrieve information about a form (which corresponds to a data set and its sections) you can interact with the form
resource. The form response is accessible as XML and JSON and will provide information about each section (group)
in the form as well as each field in the sections, including label and identifiers. By supplying period and organisation
unit identifiers the form response will be populated with data values.

Table 1.26. Form query parameters

Parameter Option Description

pe ISO period Period for which to populate form data values.

ou UID Organisation unit for which to populate form data values.

metaData false | true Whether to include metadata about each data element of form sections.

To retrieve the form for a data set you can do a GET request like this:

api/dataSets/<dataset-id>/form.json

To retrieve the form for the data set with identifier "BfMAe6Itzgt" in XML:

api/dataSets/BfMAe6Itzgt/form

To retrieve the form including metadata in JSON:

api/dataSets/BfMAe6Itzgt/form.json?metaData=true

To retrieve the form filled with data values for a specific period and organisation unit in XML:

api/dataSets/BfMAe6Itzgt/form.xml?ou=DiszpKrYNg8&pe=201401

When it comes to custom data entry forms, this resource also allows for creating such forms directly for a data set.
This can be done through a POST or PUT request with content type text/html where the payload is the custom form
markup such as:

curl -d @form.html "localhost/api/dataSets/BfMAe6Itzgt/form" -H "Content-Type:text/
html" -u admin:district -X PUT -v

1.16. Validation

To generate a data validation summary you can interact with the validation resource. The dataSet resource is optimized
for data entry clients for validating a data set / form, and can be accessed like this:

api/validation/dataSet/QX4ZTUbOt3a.json?pe=201501&ou=DiszpKrYNg8

The first path variable is an identifier referring to the data set to validate. XML and JSON resource representations
are supported. The response contains violations to validation rules. This will be extended with more validation types
in coming versions.

To retrieve validation rules which are relevant for a specific data set, meaning validation rules with formulas where all
data elements are part of the specific data set, you can make a GET request to to validationRules resource like this:

Web API Data integrity

36

api/validationRules?dataSet=<dataset-id>

The validation rules have a left side and a right side, which is compared for validity according to an operator. The valid
operator values are found in the table below.

Table 1.27. Operators

Value Description

equal_to Equal to

not_equal_to Not equal to

greater_than Greater than

greater_than_or_equal_to Greater than or equal to

less_than Less than

less_than_or_equal_to Less than or equal to

The left side and right side expressions are mathematical expressions which can contain references to data elements
and category option combinations on the following format:

${<dataelement-id>.<catoptcombo-id>}

The left side and right side expressions have a missing value strategy. This refers to how the system should treat data
values which are missing for data elements / category option combination references in the formula in terms of whether
the validation rule should be checked for validity or skipped. The valid missing value strategies are found in the table
below.

Table 1.28. Missing value strategies

Value Description

SKIP_IF_ANY_VALUE_MISSINGSkip validation rule if any data value is missing

SKIP_IF_ALL_VALUES_MISSINGSkip validation rule if all data values are missing

NEVER_SKIP Never skip validation rule irrespective of missing data values

1.17. Data integrity

The data integrity capabilities of the data administration module are available through the web API. This section
describes how to run the data integrity process as well as retrieving the result. The details of the analysis performed
are described in the user manual.

1.17.1. Running data integrity

The operation of measuring data integrity is a fairly resource (and time) demanding task. It is therefore run as an
asynchronous process and only when explicitly requested. Starting the task is done by forming an empty POST request
to the dataIntegrity endpoint like so (demonstrated in curl syntax):

curl -X POST https://dhis.domain/api/dataIntegrity

If successful the request will return HTTP 202 immediately. The location header of the response points to the resource
used to check the status of the request. Forming a GET request to the given location yields an empty JSON response
if the task has not yet completed and a JSON taskSummary object when the task is done. Polling (conservatively) to
this resource can hence be used to wait for the task to finish.

1.17.2. Fetching the result

Once data integrity is finished running the result can be fetched from the system/taskSummaries resource like so:

Web API Indicators

37

curl -X GET https://dhis.domain/api/system/taskSummaries/DATAINTEGRITY

The returned object contains a summary for each point of analysis, listing the names of the relevant integrity violations.
As stated in the leading paragraph for this section the details of the analysis (and the resulting data) can be found in
the user manual chapter on Data Administration.

1.18. Indicators

This section describes indicators and indicator expressions.

1.18.1. Aggregate indicators

To retrieve indicators you can make a GET request to the indicators resource like this:

api/indicators

Indicators represent expressions which can be calculated and presented as a result. The indicator expressions are split
into a numerator and denominator. The numerators and denominators are mathematical expressions which can contain
references to data elements, constants and organisation unit groups. The variables will be substituted with data values
when used e.g. in reports. Variables which are allowed in expressions are described in the following table.

Table 1.29. Indicator variables

Variable Description

${<dataelement-
id>.<catoptcombo-id>}

Refers to a combination of a data element and a category option combination.

${<dataelement-id>} Refers to the total value of a data element across all category option
combinations.

C{<constant-id>} Refers to a constant.

OUG{<orgunitgroup-id>} Refers to the count of organisation units in an organisation unit group.

The syntax looks like this:

${<dataelement-id>.<catoptcombo-id>} + C{<constant-id>} + OUG{<orgunitgroup-id>}

A corresponding example looks like this:

#{P3jJH5Tu5VC.S34ULMcHMca} + C{Gfd3ppDfq8E} + OUG{CXw2yu5fodb}

Note that for data element variables the category option combo identifier can be omitted. The variable will then
represent the total for the data element, e.g. across all category option combos. Example:

#{P3jJH5Tu5VC} + 2

Expressions can be any kind of valid mathematical expression, as an example:

(2 * #{P3jJH5Tu5VC.S34ULMcHMca}) / (#{FQ2o8UBlcrS.S34ULMcHMca} - 200) * 25

1.18.2. Program indicators

To retrieve program indicators you can make a GET request to the program indicators resource like this:

api/programIndicators

Program indicators can contain information collected in a program. Indicators have an expression which can contain
references to data elements, attributes, constants and program variables. Variables which are allowed in expressions
are described in the following table.

Web API Expressions

38

Table 1.30. Program indicator variables

Variable Description

#{<programstage-
id>.<dataelement-id>}

Refers to a combination of program stage and data element id.

#{<attribute-id>} Refers to a tracked entity attribute.

V{<varible-id>} Refers to a program variable.

C{<constant-id>} Refers to a constant.

The syntax looks like this:

#{<programstage-id>.<dataelement-id>} + #{<attribute-id>} + V{<varible-id>} +
 C{<constant-id>}

A corresponding example looks like this:

#{A03MvHHogjR.a3kGcGDCuk6} + A{OvY4VVhSDeJ} + V{incident_date} + C{bCqvfPR02Im}

1.18.3. Expressions

Expressions are mathematical formulas which can contain references to data elements, constants and organisation unit
groups. To validate and get the textual description of an expression you can make a GET request to the expressions
resource:

api/expressions/description?expression=<expression-string>

The response follows the standard JSON web message format. The status property indicates the outcome of the
validation and will be "OK" if successful and "ERROR" if failed. The message property will be "Valid" if successful
and provide a textual description of the reason why the validation failed if not. The description provides a textual
description of the expression.

{
 "httpStatus": "OK",
 "httpStatusCode": 200,
 "status": "OK",
 "message": "Valid",
 "description": "Acute Flaccid Paralysis"
}

1.19. Complete data set registrations

This section is about complete data set registrations for data sets. A registration marks as a data set as completely
captured.

1.19.1. Completing and un-completing data sets

This section explains how you can register and un-register a data set as complete. To complete or un-complete a data
set you will interact with the completeDataSetRegistrations resource:

/api/completeDataSetRegistrations

This resource supports the methods POST for registration and DELETE for un-registration. The following query
parameters are supported:

Web API Reading complete data set registrations

39

Table 1.31. Complete data set registrations query parameters

Query
parameter

Required Description

ds Yes Data set identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

cc No (must combine
with cp)

Attribute combo identifier (for locking check)

cp No (must combine
with cp)

Attribute option identifiers, separated with ; for multiple values (for
locking check)

multiOu No (default false) Whether registration applies to sub units

1.19.2. Reading complete data set registrations

This section explains how to retrieve data set completeness registrations. We will be using the
completeDataSetRegistrations resource. The query parameters to use are these:

Table 1.32. Data value set query parameters

Parameter Description

dataSet Data set identifier, can be specified multiple times

period PeriodType

startDate Start date for the time span of the values to export

endDate End date for the time span of the values to export

orgUnit Organisation unit identifier, can be specified multiple times

children Whether to include the children in the hierarchy of the organisation units

The dataSet and orgUnit parameters can be repeated in order to include multiple data sets and organisation units. An
example request looks like this:

curl "https://play.dhis2.org/demo/api/completeDataSetRegistrations?
dataSet=pBOMPrpg1QX&dataSet=pBOMPrpg1QX&startDate=2014-01-01&endDate=2014-01-31
&orgUnit=YuQRtpLP10I&orgUnit=vWbkYPRmKyS&children=true" -H "Accept:application/xml" -u
 admin:district -v

You can get the response in xml and json format. You can indicate which response format you prefer through the Accept
HTTP header like in the example above. For xml you use application/xml; for json you use application/json.

1.20. Data approval

This section explains how to approve, unapprove and check approval status using the dataApprovals resource. Approval
is done per data set, period, organisation unit and attribute option combo.

To get approval information for a data set you can issue a GET request similar to this:

api/dataApprovals?ds=aLpVgfXiz0f&pe=2013&ou=DiszpKrYNg8

Table 1.33. Data approval query parameters

Query
parameter

Required Description

ds Yes Data set identifier

Web API Data approval

40

Query
parameter

Required Description

pe Yes Period identifier

ou Yes Organisation unit identifier

cog No Attribute category option group identifier

cp No Attribute category option identifier(s), repeat the parameter for multiple
values

This will give you a response something like this:

{
 "mayApprove": false,
 "mayUnapprove": false,
 "mayAccept":false,
 "mayUnaccept":false,
 "state":"UNAPPROVED_ELSEWHERE"
}

The returned parameters are:

Table 1.34. Data approval query parameters

Return Parameter Description

mayApprove Whether the current user may approve this data selection.

mayUnapprove Whether the current user may unapprove this data selection.

mayAccept Whether the current user may accept this data selection.

mayUnaccept Whether the current user may unaccept this data selection.

state One of the data approval states from the table below.

Table 1.35. Data approval states

State Description

UNAPPROVABLE Data approval does not apply to this selection. (Data is neither "approved"
nor "unapproved".)

UNAPPROVED_WAITING Data could be approved for this selection, but is waiting for some lower-
level approval before it is ready to be approved.

UNAPPROVED_ELSEWHERE Data is unapproved, and is waiting for approval somewhere else (not
approvable here.)

UNAPPROVED_READY Data is unapproved, and is ready to be approved for this selection.

APPROVED_HERE Data is approved, and was approved here (so could be unapproved here.)

APPROVED_ELSEWHERE Data is approved, but was not approved here (so cannot be unapproved here.)
This covers the following cases:

• Data is approved at a higher level.

• Data is approved for wider scope of category options.

• Data is approved for all sub-periods in selected period.

In the first two cases, there is a single data approval object that covers the
selection. In the third case there is not.

ACCEPTED_HERE Data is approved and accepted here (so could be unapproved here.)

ACCEPTED_ELSEWHERE Data is approved and accepted, but elsewhere.

Web API Messages

41

Note that when querying for the status of data approval, you may specify any combination of the query parameters.
The combination you specify does not need to describe the place where data is to be approved at one of the approval
levels. For example:

• The organisation unit might not be at an approval level. The approval status is determined by whether data is approved
at an approval level for an ancestor of the organisation unit.

• You may specify individual attribute category options. The approval status is determined by whether data is approved
for an attribute category option combination that includes one or more of these options.

• You may specify a time period that is longer than the period for the data set at which the data is entered and approvede.
The approval status is determined by whether the data is approved for all the data set periods within the period you
specify.

To approve data you can issue a POST request to the dataApprovals resource. To un-approve data you can issue a
DELETE request to the dataApprovals resource.

To accept data you can issue a POST request to the dataApprovals/acceptances resource. To un-accept data you can
issue a DELETE request to the dataApprovals/acceptances resource.

These requests contain the following parameters:

Table 1.36. Data approval action parameters

Action
parameter

Required Description

ds Yes Data set identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

cog No Attribute category option group identifier. Required if approving for an
approval level that contains a category option group set, otherwise must
not be present.

Note that, unlike querying the data approval status, you must specify parameters that correspond to a selection of data
that could be approved. In particular, all of the following must be true:

• The organisation unit's level must be specified by an approval level.

• The category option group (if specified) must be a member of an approval level's category option group set (if
specified) for an approval level with the same organisation unit level.

• The time period specified must match the period type of the data set.

• The data set must specify that data can be approved for this data set.

1.21. Messages

DHIS 2 features a mechanism for sending messages for purposes such as user feedback, notifications and general
information to users. Messages are delivered to the DHIS 2 message inbox but can also be sent to the user's email
addresses and mobile phones as SMS. In this example we will see how we can utilize the Web API to send, read and
manage messages. We will pretend to be the DHIS Administrator user and send a message to the Mobile user. We will
then pretend to be the mobile user and read our new message. Following this we will manage the admin user inbox
by marking and removing messages.

1.21.1. Writing and reading messages

The resource we need to interact with when sending and reading messages is the messageConversations resource. We
start by visiting the Web API entry point at http://play.dhis2.org/demo/api where we find and follow the link to the
messageConversations resource at http://play.dhis2.org/demo/api/messageConversations. The description tells us that
we can use a POST request to create a new message using the following XML format for sending to multiple users:

http://play.dhis2.org/demo/api
http://play.dhis2.org/demo/api/messageConversations

Web API Writing and reading messages

42

<message xmlns="http://dhis2.org/schema/dxf/2.0">
 <subject>This is the subject</subject>
 <text>This is the text</text>
 <users>
 <user id="user1ID" />
 <user id="user2ID" />
 <user id="user3ID" />
 </users>
</message>

For sending to all users contained in one or more user groups, we can use:

<message xmlns="http://dhis2.org/schema/dxf/2.0">
 <subject>This is the subject</subject>
 <text>This is the text</text>
 <userGroups>
 <userGroup id="userGroup1ID" />
 <userGroup id="userGroup2ID" />
 <userGroup id="userGroup3ID" />
 </userGroups>
</message>

For sending to all users connected to one or more organisation units, we can use:

<message xmlns="http://dhis2.org/schema/dxf/2.0">
 <subject>This is the subject</subject>
 <text>This is the text</text>
 <organisationUnits>
 <organisationUnit id="ou1ID" />
 <organisationUnit id="ou2ID" />
 <organisationUnit id="ou3ID" />
 </organisationUnits>
</message>

Since we want to send a message to our friend the mobile user we need to look up her identifier. We do so by going to
the Web API entry point and follow the link to the users resource at http://play.dhis2.org/demo/api/users. We continue
by following link to the mobile user at http://play.dhis2.org/demo/api/users/PhzytPW3g2J where we learn that her
identifier is PhzytPW3g2J. We are now ready to put our XML message together to form a message where we want to
ask the mobile user whether she has reported data for January 2014:

<message xmlns="http://dhis2.org/schema/dxf/2.0">
 <subject>Mortality data reporting</subject>
 <text>Have you reported data for the Mortality data set for January 2014?</text>
 <users>
 <user id="PhzytPW3g2J" />
 </users>
</message>

To test this we save the XML content into a file called message.xml. We use cURL to dispatch the message the the
DHIS 2 demo instance where we indicate that the content-type is XML and authenticate as the admin user:

curl -d @message.xml "https://play.dhis2.org/demo/api/messageConversations" -H
 "Content-Type:application/xml" -u admin:district -X POST -v

A corresponding payload in JSON and POST command look like this:

{
 "subject": "Hey",
 "text": "How are you?",
 "users": [
 {
 "id": "OYLGMiazHtW"
 },
 {

http://play.dhis2.org/demo/api/users
http://play.dhis2.org/demo/api/users/PhzytPW3g2J

Web API Managing messages

43

 "id": "N3PZBUlN8vq"
 }
],
 "userGroups": [
 {
 "id": "ZoHNWQajIoe"
 }
],
 "organisationUnits": [
 {
 "id": "DiszpKrYNg8"
 }
]
}

curl -d @message.json "https://play.dhis2.org/demo/api/messageConversations" -H
 "Content-Type:application/json" -u admin:district -X POST -v

If all is well we receive a 201 Created HTTP status code. Also note that we receive a Location HTTP header which
value informs us of the URL of the newly created message conversation resource - this can be used by a consumer
to perform further action.

We will now pretend to be the mobile user and read te message which was just sent by dispatching a GET request to
the messageConversations resource. We supply an Accept header with application/xml as the value to indicate that we
are interested in the XML resource representation and we authenticate as the mobile user:

curl "https://play.dhis2.org/demo/api/messageConversations" -H "Accept:application/
xml" -u mobile:district -X GET -v

In response we get the following XML:

<messageConversations xmlns="http://dhis2.org/schema/dxf/2.0"
 link="https://play.dhis2.org/demo/api/messageConversations">
 <messageConversation name="Mortality data reporting" id="ZjHHSjyyeJ2"
 link="https://play.dhis2.org/demo/api/messageConversations/ZjHHSjyyeJ2"/>
 <messageConversation name="DHIS version 2.7 is deployed" id="GDBqVfkmnp2"
 link="https://play.dhis2.org/demo/api/messageConversations/GDBqVfkmnp2"/>
</messageConversations>

From the response we are able to read the identifier of the newly sent message which is ZjHHSjyyeJ2. Note that the
link to the specific resource is embedded and can be followed in order to read the full message. From the description
at http://play.dhis2.org/demo/api/messageConversations we learned that we can reply directly to an existing message
conversation once we know the URL by including the message text as the request payload (body). We are now able
to construct a URL for sending our reply:

curl -d "Yes the Mortality data set has been reported" "https://play.dhis2.org/demo/
api/messageConversations/ZjHHSjyyeJ2" -H "Content-Type:text/plain" -u mobile:district
 -X POST -v

If all went according to plan you will receive a 200 OK status code.

1.21.2. Managing messages

Note: the Web-API calls discussed in this section were introduced in DHIS 2.17

As users receive and send messages, conversations will start to pile up in their inboxes, eventually becoming laborious
to track. We will now have a look at managing a users message inbox by removing and marking conversations through
the Web-API. We will do so by performing some maintenance in the inbox of the DHIS Administrator user.

First, let's have a look at removing a few messages from the inbox. Be sure to note that all removal operations described
here only remove the relation between a user and a message conversation. In practical terms this means that we are not

http://play.dhis2.org/demo/api/messageConversations

Web API Interpretations

44

deleting the messages themselves (or any content for that matter) but are simply removing the message thread from
the user such that it is not longer listed in the /api/messageConversations resource.

To remove a message conversation from a users inbox we need to issue a DELETE request to the resource identified
by the id of the message conversation and the participating user. For example, to remove the user with id xE7jOejl9FI
from the conversation with id jMe43trzrdi:

curl https://play.dhis2.org/demo/api/messageConversations/jMe43

If the request was successful the server will reply with a 200 OK. The response body contains an XML or JSON object
(according to the accept header of the request) containing the id of the removed user.

{ "removed" : ["xE7jOejl9FI"] }

On failure the returned object will contain a message payload which describes the error.

{ "message" : "No user with uid: dMV6G0tPAEa" }

The observant reader will already have noticed that the object returned on success in our example is actually a list of
ids (containing a single entry). This is due to the endpoint also supporting batch removals. The request is made to the
same messageConversations resource but follows slightly different semantics. For batch operations the conversation
ids are given as query string parameters. The following example removes two separate message conversations for the
current user:

curl "https://play.dhis2.org/demo/api/messageConversations?
mc=WzMRrCosqc0&mc=lxCjiigqrJm" -X DELETE -u admin:district -v

If you have sufficient permissions, conversations can be removed on behalf of another user by giving an optional user
id parameter.

curl "https://play.dhis2.org/demo/api/messageConversations?
mc=WzMRrCosqc0&mc=lxCjiigqrJm&user=PhzytPW3g2J" -X DELETE -u admin:district -v

As indicated, batch removals will return the same message format as for single operations. The list of removed objects
will reflect successful removals performed. Partially errorenous requests (i.e. non-existing id) will therefore not cancel
the entire batch operation.

Messages carry a boolean read property. This allows tracking whether a user has seen (opened) a message or not. In
a typical application scenario (e.g. the DHIS 2 web portal) a message will be marked read as soon as the user opens it
for the first time. However, users might want to manage the read or unread status of their messages in order to keep
track of certains conversations.

Marking messages read or unread follows similar semantics as batch removals, and also supports batch operations. To
mark messages as read we issue a POST to the messageConversations/read resource with a request body containing
one or more message ids. To mark messages as unread we issue an identical request to the messageConversations/
unread resource. As is the case for removals, an optional user request parameter can be given.

Let's mark a couple of messages as read by the current user:

curl "https://play.dhis2.org/dev/api/messageConversations/read" -d
 '["ZrKML5WiyFm","Gc03smoTm6q"]' -X POST -H "Content-Type: application/json" -u
 admin:district -v

The response is a 200 OK with the following JSON body:

{ "markedRead" : ["ZrKML5WiyFm", "Gc03smoTm6q"] }

1.22. Interpretations

For certain analysis-related resources in DHIS, like charts, maps and report tables, one can write and share a data
interpretation. An interpretation is simply a link to the the relevant resource together with a text expressing some insight
about the data. Interpretations access control follows the access given for the interpreted object.

Web API Reading interpretations

45

1.22.1. Reading interpretations

To read interpretations we will interact with the api/interpretations resource. The output in JSON response format
could look like below (use e.g. api/interpretations.json):

{
 "interpretations": [{
 "created": "2013-10-07T11:37:19.273+0000",
 "lastUpdated": "2013-10-07T12:08:58.028+0000",
 "type": "map",
 "href": "https://play.dhis2.org/demo/api/interpretations/d3BukolfFZI",
 "id": "d3BukolfFZI"
 }, {
 "created": "2013-05-30T10:24:06.181+0000",
 "lastUpdated": "2013-05-30T10:25:08.066+0000",
 "type": "reportTable",
 "href": "https://play.dhis2.org/demo/api/interpretations/XSHiFlHAhhh",
 "id": "XSHiFlHAhhh"
 }, {
 "created": "2013-05-29T14:47:13.081+0000",
 "lastUpdated": "2013-05-29T14:47:13.081+0000",
 "type": "chart",
 "href": "https://play.dhis2.org/demo/api/interpretations/kr4AnZmYL43",
 "id": "kr4AnZmYL43"
 }]
}

An interpretation contains properties for identifier, date of creation and date of last modification. The type property
refers to the kind of object is being interpreted, and is useful to show an appropriate visual clue in a client. Valid options
are "chart", "map", "reportTable" and "dataSetReport". By following the link given in the "href" property one can get
more information about a specific interpretation. In the case of the map interpretation, the response will look like this:

{
 "created": "2013-10-07T11:37:19.273+0000",
 "lastUpdated": "2014-10-07T12:08:58.028+0000",
 "map": {
 "name": "ANC: ANC 2 Coverage",
 "created": "2014-11-13T12:01:21.918+0000",
 "lastUpdated": "2014-11-13T12:01:21.918+0000",
 "href": "https://play.dhis2.org/demo/api/maps/bhmHJ4ZCdCd",
 "id": "bhmHJ4ZCdCd"
 },
 "text": "We can see that the ANC 2 coverage of Kasonko and Lei districts are under
 40 %. What could be the cause for this?",
 "comments": [{
 "created": "2014-10-07T12:08:58.026+0000",
 "lastUpdated": "2014-10-07T12:08:58.026+0000",
 "text": "Due to the rural environment, getting women to the facilities is a
 challenge. Outreach campaigns might be helpful.",
 "href": "https://play.dhis2.org/demo/api/null/iB4Etq8yTE6",
 "id": "iB4Etq8yTE6"
 }],
 "type": "map",
 "href": "https://play.dhis2.org/demo/api/interpretations/d3BukolfFZI",
 "id": "d3BukolfFZI"
}

The map interpretation contains identifier and type information in the "id" and "type" properties. The interpretation text
is available in the "text" property and references to any comments in the "comments" list. It also contains information
about the interpreted object, in this case the "map" property. Note that you can follow the link to the actual map through
the "href" property. For all analytical objects you can append /data to the URL to retrieve the data associated with the
resource, as apposed to the metadata. As an example, by following the map link and appending /data one can retrieve
a PNG (image) representation of the thematic map through the following URL:

Web API Writing interpretations

46

https://play.dhis2.org/demo/api/maps/bhmHJ4ZCdCd/data

1.22.2. Writing interpretations

We will start by writing an interpretation for the chart with identifier EbRN2VIbPdV. To write chart interpretations we
will interact with the http://play.dhis2.org/demo/api/interpretations/chart/{chartId} resource. The interpretation will be
the request body. Based on this we can put together the following request using cURL:

curl -d "This chart shows a significant ANC 1-3 dropout" "https://play.dhis2.org/demo/
api/interpretations/chart/EbRN2VIbPdV" \
-H "Content-Type:text/plain" -u admin:district -v

Second we will write a comment on the interpretation we just wrote. By looking at the interpretation response you will
see that a Location header is returned. This header tells us the URL of the newly created interpretation and from that
we can read its identifier. This identifier is randomly generated so you will have to replace the one in the command
below with your own. To write a comment we can interact with the http://play.dhis2.org/demo/api/interpretations/
{interpretationId}/comment like this:

curl -d "An intervention is needed" "https://play.dhis2.org/demo/api/interpretations/
j8sjHLkK8uY/comment"
-H "Content-Type:text/plain" -u admin:district -v

You can also write interpretations for report tables in a similar way by interacting with the http://app.dhis2.org/demo/
api/interpretations/reportTable/{reportTableId}. For report tables you can also provide an optional ou query parameter
to supply an organisation unit identifier in the case where the report table has an organisation unit report parameter:

curl -d "This table reveals poor data quality" "https://play.dhis2.org/demo/api/
interpretations/reportTable/xIWpSo5jjT1?ou=O6uvpzGd5pu"
-H "Content-Type:text/plain" -u admin:district -v

1.22.3. Creating, updating and removing interpretation comments

Creating comments to existing interpretations:

POST "plain-text comment" to /api/interpretations/ID/comments

Updating comments in existing interpretations:

PUT "plain-text comment" to /api/interpretations/ID/comments/ID

Removing comments in existing interpretations:

DELETE /api/interpretations/ID/comments/ID

1.23. Viewing analytical resource representations

DHIS 2 has several resources for data analysis. These resources include charts, maps, reportTables, reports and
documents. By visiting these resources you will retrieve information about the resource. For instance, by navigating
to api/charts/R0DVGvXDUNP the response will contain the name, last date of modication and so on for the chart. To
retrieve the analytical representation, for instance a PNG representation of the chart, you can append /data to all these
resources. For instance, by visiting api/charts/R0DVGvXDUNP/data the system will return a PNG image of the chart.

Table 1.37. Analytical resources

Resource Description Data URL Resource representations

charts Charts api/charts/<identifier>/data png

eventCharts Event charts api/eventCharts/<identifier>/data png

maps Maps api/maps/<identifier>/data png

http://play.dhis2.org/demo/api/interpretations/chart/{chartId}
http://play.dhis2.org/demo/api/interpretations/{interpretationId}/comment
http://play.dhis2.org/demo/api/interpretations/{interpretationId}/comment
http://app.dhis2.org/demo/api/interpretations/reportTable/{reportTableId}
http://app.dhis2.org/demo/api/interpretations/reportTable/{reportTableId}

Web API Plugins

47

Resource Description Data URL Resource representations

reportTables Pivot tables api/reportTables/<identifier>/data json | jsonp | html | xml | pdf | xls
| csv

reports Standard reports api/reports/<identifier>/data pdf | xls | html

documents Resources api/documents/<identifier>/data <follows document>

The data content of the analytical representations can be modified by providing a date query parameter. This requires
that the analytical resource is set up for relative periods for the period dimension.

Table 1.38. Data query parameters

Query parameter Value Description

date Date in yyyy-MM-dd format Basis for relative periods in report (requires relative
periods)

Table 1.39. Query parameters for png / image types (charts, maps)

Query parameter Description

width Width of image in pixels

height Height of image in pixels

Some examples of valid URLs for retrieving various analytical representations are listed below.

api/charts/R0DVGvXDUNP/data
api/charts/R0DVGvXDUNP/data?date=2013-06-01

api/reportTables/jIISuEWxmoI/data.html
api/reportTables/jIISuEWxmoI/data.html?date=2013-01-01
api/reportTables/FPmvWs7bn2P/data.xls
api/reportTables/FPmvWs7bn2P/data.pdf

api/maps/DHE98Gsynpr/data
api/maps/DHE98Gsynpr/data?date=2013-07-01

api/reports/OeJsA6K1Otx/data.pdf
api/reports/OeJsA6K1Otx/data.pdf?date=2014-01-01

1.24. Plugins

DHIS 2 comes with plugins which enables you to embed live data directly in your web portal or web site. Currently,
plugins exist for charts, maps and pivot tables.

1.24.1. Embedding pivot tables with the Pivot Table plug-in

In this example we will see how we can embed good-looking, light-weight html pivot tables with data served from
a DHIS back-end into a Web page. To accomplish this we will use the Pivot table plug-in. The plug-in is written in
Javascript and depends on the Ext JS library only. A complete working example can be found at http://play.dhis2.org/
portal/table.html. Open the page in a web browser and view the source to see how it is set up.

We start by having a look at what the complete html file could look like. This setup puts two tables in our web page.
The first one is referring to an existing table. The second is configured inline.

<!DOCTYPE html>
<html>
<head>

http://play.dhis2.org/portal/table.html
http://play.dhis2.org/portal/table.html

Web API Embedding pivot tables with the Pivot Table
plug-in

48

 <link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/
resources/css/ext-plugin-gray.css" />
 <script src="https://dhis2-cdn.org/v215/ext/ext-all.js"></script>
 <script src="https://dhis2-cdn.org/v215/plugin/table.js"></script>

 <script>
 var base = "https://play.dhis2.org/demo";

 // Login - if OK, call the setLinks function

 Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
 });

 function setLinks() {

 // Referring to an existing table through the id parameter, render to "table1"
 div

 DHIS.getTable({ url: base, el: "table1", id: "R0DVGvXDUNP" });

 // Full table configuration, render to "table2" div

 DHIS.getTable({
 url: base,
 el: "table2",
 columns: [
 {dimension: "de", items: [{id: "YtbsuPPo010"}, {id: "l6byfWFUGaP"}]}
],
 rows: [
 {dimension: "pe", items: [{id: "LAST_12_MONTHS"}]}
],
 filters: [
 {dimension: "ou", items: [{id: "USER_ORGUNIT"}]}
],
 // All following options are optional
 showTotals: false,
 showSubTotals: false,
 hideEmptyRows: true,
 showHierarchy: true,
 displayDensity: "comfortable",
 fontSize: "large",
 digitGroupSeparator: "comma",
 legendSet: {id: "BtxOoQuLyg1"}
 });
 }
 </script>
</head>

<body>
 <div id="table1"></div>
 <div id="table2"></div>
</body>
</html>

Three files are included in the header section of the HTML document. The first two files are the Ext JS javascript
library (we use the DHIS 2 content delivery network in this case) and its css stylesheet. The third file is the Pivot table
plug-in. Make sure the path is pointing to your DHIS server installation.

Web API Embedding pivot tables with the Pivot Table
plug-in

49

<link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/resources/
css/ext-plugin-gray.css" />
<script src="http://dhis2-cdn.org/v215/ext/ext-all.js"></script>
<script src="http://dhis2-cdn.org/v215/plugin/table.js"></script>

To authenticate with the DHIS server we use the same approach as in the previous section. In the header of the HTML
document we include the following Javascript inside a script element. The setLinks method will be implemented later.
Make sure the base variable is pointing to your DHIS installation.

var base = "https://play.dhis2.org/demo/";

Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
});

Now let us have a look at the various options for the Pivot table plug-in. Two properies are required: el and url (please
refer to the table below). Now, if you want to refer to pre-defined tables already made inside DHIS it is sufficient to
provide the additional id parameter. If you instead want to configure a pivot table dynamically you shoud omit the id
parameter and provide data dimensions inside a columns array, a rows array and optionally a filters array instead.

A data dimension is defined as an object with a text property called dimension. This property accepts the following
values: in (indicator), de (data element), ds (data set), dc (data element operand), pe (period), ou (organisation unit) or
the id of any organisation unit group set or data element group set (can be found in the web api). The data dimension
also has an array property called items which accepts objects with an id property.

To sum up, if you want to have e.g. "ANC 1 Coverage", "ANC 2 Coverage" and "ANC 3 Coverage" on the columns
in your table you can make the following columns config:

columns: [{
 dimension: "in", // "in", "de", "ds", "dc", "pe", "ou" or any dimension id
 items: [
 {id: "Uvn6LCg7dVU"}, // the id of ANC 1 Coverage
 {id: "OdiHJayrsKo"}, // the id of ANC 2 Coverage
 {id: "sB79w2hiLp8"} // the id of ANC 3 Coverage
]
}]

Table 1.40. Pivot table plug-in configuration

Param Type Required Options (default
first)

Description

el string Yes Identifier of the
HTML element to
render the table in
your web page

url string Yes Base URL of the
DHIS server

id string No Identifier of a
pre-defined table
(favorite) in DHIS

columns array Yes (if no id
provided)

Data dimensions to
include in table as
columns

Web API Embedding pivot tables with the Pivot Table
plug-in

50

Param Type Required Options (default
first)

Description

rows array Yes (if no id
provided)

Data dimensions to
include in table as
rows

filter array No Data dimensions to
include in table as
filters

showTotals boolean No true | false Whether to display
totals for columns
and rows

showSubTotals boolean No true | false Whether to display
sub-totals for
columns and rows

hideEmptyRows boolean No false | true Whether to hide
rows with no data

showHierarchy boolean No false | true Whether to extend
orgunit names with
the name of all
anchestors

displayDensity string No "normal" |
"comfortable" |
"compact"

The amount of space
inside table cells

fontSize string No "normal" | "large" |
"small"

Table font size

digitGroupSeparator string No "space" | "comma" |
"none"

How values are
formatted: 1 000 |
1,000 | 1000

legendSet object No Show a color
indicator next to
the values (currently
reusing legend sets
from GIS)

userOrgUnit string / array No Organisation unit
identifiers,
overrides
organisation units
associated with
curretn user, single
or array

We continue by adding one pre-defined and one dynamic pivot table to our HTML document. You can browse the list
of available pivot tables using the Web API here: http://play.dhis2.org/demo/api/reportTables.

function setLinks() {
 DHIS.getTable({ url: base, el: "table1", id: "R0DVGvXDUNP" });

 DHIS.getTable({
 url: base,
 el: "table2",
 columns: [
 {dimension: "de", items: [{id: "YtbsuPPo010"}, {id: "l6byfWFUGaP"}]}
],
 rows: [

http://play.dhis2.org/demo/api/reportTables

Web API Embedding charts with the Visualizer chart
plug-in

51

 {dimension: "pe", items: [{id: "LAST_12_MONTHS"}]}
],
 filters: [
 {dimension: "ou", items: [{id: "USER_ORGUNIT"}]}
],
 // All following options are optional
 showTotals: false,
 showSubTotals: false,
 hideEmptyRows: true,
 showHierarchy: true,
 displayDensity: "comfortable",
 fontSize: "large",
 digitGroupSeparator: "comma",
 legendSet: {id: "BtxOoQuLyg1"}
 });
}

Finally we include some div elements in the body section of the HTML document with the identifiers referred to in
the plug-in Javascript.

<div id="table1"></div>
<div id="table2"></div>

To see a complete working example please visit http://play.dhis2.org/portal/table.html.

1.24.2. Embedding charts with the Visualizer chart plug-in

In this example we will see how we can embed good-looking Ext JS charts (http://www.sencha.com/products/extjs)
with data served from a DHIS back-end into a Web page. To accomplish this we will use the DHIS Visualizer plug-in.
The plug-in is written in Javascript and depends on the Ext JS library only. A complete working example can be found
at http://play.dhis2.org/portal/chart.html. Open the page in a web browser and view the source to see how it is set up.

We start by having a look at what the complete html file could look like. This setup puts two charts in our web page.
The first one is referring to an existing chart. The second is configured inline.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/
resources/css/ext-plugin-gray.css" />
 <script src="http://dhis2-cdn.org/v215/ext/ext-all.js"></script>
 <script src="http://dhis2-cdn.org/v215/plugin/chart.js"></script>

 <script>
 var base = "https://play.dhis2.org/demo";

 // Login - if OK, call the setLinks function

 Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
 });

 function setLinks() {

 // Referring to an existing chart through the id parameter, render to "chart1"
 div

 DHIS.getChart({ url: base, el: "chart1", id: "R0DVGvXDUNP" });

http://play.dhis2.org/portal/table.html
http://www.sencha.com/products/extjs
http://play.dhis2.org/portal/chart.html

Web API Embedding charts with the Visualizer chart
plug-in

52

 // Full chart configuration, render to "chart2" div

 DHIS.getChart({
 url: base,
 el: "chart2",
 type: "stackedBar",
 columns: [// Chart series
 {dimension: "de", items: [{id: "YtbsuPPo010"}, {id: "l6byfWFUGaP"}]}
],
 rows: [// Chart categories
 {dimension: "pe", items: [{id: "LAST_12_MONTHS"}]}
],
 filters: [
 {dimension: "ou", items: [{id: "USER_ORGUNIT"}]}
],
 // All following options are optional
 showData: false,
 targetLineValue: 70,
 baseLineValue: 20,
 showTrendLine: true,
 hideLegend: true,
 title: "My chart title",
 domainAxisTitle: "Periods",
 rangeAxisTitle: "Percent"
 });
 }
 </script>
</head>

<body>
 <div id="chart1"></div>
 <div id="chart2"></div>
</body>
</html>

Three files are included in the header section of the HTML document. The first two files are the Ext JS javascript
library (we use the DHIS 2 content delivery network in this case) and its stylesheet. The third file is the Visualizer
plug-in. Make sure the path is pointing to your DHIS server installation.

<link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/resources/
css/ext-plugin-gray.css" />
<script src="http://dhis2-cdn.org/v215/ext/ext-all.js"></script>
<script src="http://dhis2-cdn.org/v215/plugin/chart.js"></script>

To authenticate with the DHIS server we use the same approach as in the previous section. In the header of the HTML
document we include the following Javascript inside a script element. The setLinks method will be implemented later.
Make sure the base variable is pointing to your DHIS installation.

var base = "https://play.dhis2.org/demo/";

Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
});

Now let us have a look at the various options for the Visualizer plug-in. Two properies are required: el and url (please
refer to the table below). Now, if you want to refer to pre-defined charts already made inside DHIS it is sufficient
to provide the additional id parameter. If you instead want to configure a chart dynamically you shoud omit the

Web API Embedding charts with the Visualizer chart
plug-in

53

id parameter and provide data dimensions inside a columns array (chart series), a rows array (chart categories) and
optionally a filters array instead.

A data dimension is defined as an object with a text property called dimension. This property accepts the following
values: in (indicator), de (data element), ds (data set), dc (data element operand), pe (period), ou (organisation unit) or
the id of any organisation unit group set or data element group set (can be found in the web api). The data dimension
also has an array property called items which accepts objects with an id property.

To sum up, if you want to have e.g. "ANC 1 Coverage", "ANC 2 Coverage" and "ANC 3 Coverage" as series in your
chart you can make the following columns config:

columns: [{
 dimension: "in", // could be "in", "de", "ds", "dc", "pe", "ou" or any dimension id
 items: [
 {id: "Uvn6LCg7dVU"}, // the id of ANC 1 Coverage
 {id: "OdiHJayrsKo"}, // the id of ANC 2 Coverage
 {id: "sB79w2hiLp8"} // the id of ANC 3 Coverage
]
}]

Table 1.41. Visualizer chart plug-in configuration

Param Type Required Options (default
first)

Description

el string Yes Identifier of the
HTML element to
render the chart in
your web page

url string Yes Base URL of the
DHIS server

id string No Identifier of a
pre-defined chart
(favorite) in DHIS

type string No column |
stackedcolumn | bar
| stackedbar | line |
area | pie

Chart type

columns array Yes (if no id
provided)

Data dimensions to
include in chart as
series

rows array Yes (if no id
provided)

Data dimensions to
include in chart as
category

filter array No Data dimensions to
include in chart as
filters

showData boolean No false | true Whether to display
data on the chart

showTrendLine boolean No false | true Whether to display
trend line(s) on the
chart

hideLegend boolean No false | true Whether to hide the
chart legend

hideTitle boolean No false | true Whether to hide the
chart title

Web API Embedding charts with the Visualizer chart
plug-in

54

Param Type Required Options (default
first)

Description

targetLineValue double No Value of target line
to display on the
chart

targetLineLabel string No Label for target line

baseLineValue double No Value of baseline to
display on the chart

baseLineLabel string No Label for baseline

domainAxisTitle string No Title for the domain
axis

rangeAxisTitle string No Title for the range
axis

width integer No Width of chart

height integer No Height of chart

userOrgUnit string / array No Organisation unit
identifiers,
overrides
organisation units
associated with
curretn user, single
or array

We continue by including two pre-defined charts and to dynamic charts to our HTML document. You can browse the
list of available charts using the Web API here: http://play.dhis2.org/demo/api/charts.

function setLinks() {
 DHIS.getChart({ url: base, el: "chart1", id: "R0DVGvXDUNP" });

 DHIS.getChart({
 url: base,
 el: "chart2",
 type: "stackedBar",
 columns: [// Chart series
 {dimension: "de", items: [{id: "YtbsuPPo010"}, {id: "l6byfWFUGaP"}]}
],
 rows: [// Chart categories
 {dimension: "pe", items: [{id: "LAST_12_MONTHS"}]}
],
 filters: [
 {dimension: "ou", items: [{id: "USER_ORGUNIT"}]}
],
 // All following options are optional
 showData: false,
 targetLineValue: 70,
 baseLineValue: 20,
 showTrendLine: true,
 hideLegend: true,
 title: "My chart title",
 domainAxisTitle: "Periods",
 rangeAxisTitle: "Percent"
 });
}

Finally we include some div elements in the body section of the HTML document with the identifiers referred to in
the plug-in Javascript.

http://play.dhis2.org/demo/api/charts

Web API Embedding maps with the GIS map plug-in

55

<div id="chart1"></div>
<div id="chart2"></div>

To see a complete working example please visit http://play.dhis2.org/portal/chart.html.

1.24.3. Embedding maps with the GIS map plug-in

In this example we will see how we can embed maps with data served from a DHIS back-end into a Web page. To
accomplish this we will use the GIS map plug-in. The plug-in is written in Javascript and depends on the Ext JS library
only. A complete working example can be found at http://play.dhis2.org/portal/map.html. Open the page in a web
browser and view the source to see how it is set up.

We start by having a look at what the complete html file could look like. This setup puts two maps in our web page.
The first one is referring to an existing map. The second is configured inline.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/
resources/css/ext-plugin-gray.css" />
 <script src="http://dhis2-cdn.org/v215/ext/ext-all.js"></script>
 <script src="https://maps.google.com/maps/api/js?sensor=false"></script>
 <script src="http://dhis2-cdn.org/v215/openlayers/OpenLayers.js"></script>
 <script src="http://dhis2-cdn.org/v215/plugin/map.js"></script>

 <script>
 var base = "https://play.dhis2.org/demo";

 // Login - if OK, call the setLinks function

 Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
 });

 function setLinks() {
 DHIS.getMap({ url: base, el: "map1", id: "ytkZY3ChM6J" });

 DHIS.getMap({
 url: base,
 el: "map2",
 mapViews: [{
 columns: [{dimension: "in", items: [{id: "Uvn6LCg7dVU"}]}], // data
 rows: [{dimension: "ou", items: [{id: "LEVEL-3"}, {id: "ImspTQPwCqd"}]}], //
 organisation units,
 filters: [{dimension: "pe", items: [{id: "LAST_3_MONTHS"}]}], // period
 // All following options are optional
 classes: 7,
 colorLow: "02079c",
 colorHigh: "e5ecff",
 opacity: 0.9,
 legendSet: {id: "fqs276KXCXi"}
 }]
 });
 }
 </script>
</head>

http://play.dhis2.org/portal/chart.html
http://play.dhis2.org/portal/map.html

Web API Embedding maps with the GIS map plug-in

56

<body>
 <div id="map1"></div>
 <div id="map2"></div>
</body>
</html>

Four files and Google Maps are included in the header section of the HTML document. The first two files are the Ext
JS javascript library (we use the DHIS 2 content delivery network in this case) and its stylesheet. The third file is the
OpenLayers javascript mapping framework (http://openlayers.org) and finally we include the GIS map plug-in. Make
sure the path is pointing to your DHIS server installation.

<link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v215/ext/resources/
css/ext-plugin-gray.css" />
<script src="http://dhis2-cdn.org/v215/ext/ext-all.js"></script>
<script src="https://maps.google.com/maps/api/js?sensor=false"></script>
<script src="http://dhis2-cdn.org/v215/openlayers/OpenLayers.js"></script>
<script src="http://dhis2-cdn.org/v215/plugin/map.js"></script>

To authenticate with the DHIS server we use the same approach as in the previous section. In the header of the HTML
document we include the following Javascript inside a script element. The setLinks method will be implemented later.
Make sure the base variable is pointing to your DHIS installation.

Ext.onReady(function() {
 Ext.Ajax.request({
 url: base + "dhis-web-commons-security/login.action",
 method: "POST",
 params: { j_username: "portal", j_password: "Portal123" },
 success: setLinks
 });
});

Now let us have a look at the various options for the GIS plug-in. Two properies are required: el and url (please refer
to the table below). Now, if you want to refer to pre-defined maps already made in the DHIS 2 GIS it is sufficient
to provide the additional id parameter. If you instead want to configure a map dynamically you shoud omit the id
parameter and provide mapViews (layers) instead. They should be configured with data dimensions inside a columns
array, a rows array and optionally a filters array instead.

A data dimension is defined as an object with a text property called dimension. This property accepts the following
values: in (indicator), de (data element), ds (data set), dc (data element operand), pe (period), ou (organisation unit) or
the id of any organisation unit group set or data element group set (can be found in the web api). The data dimension
also has an array property called items which accepts objects with an id property.

To sum up, if you want to have a layer with e.g. "ANC 1 Coverage" in your map you can make the following columns
config:

columns: [{
 dimension: "in", // could be "in", "de", "ds", "dc", "pe", "ou" or any dimension id
 items: [{id: "Uvn6LCg7dVU"}], // the id of ANC 1 Coverage
}]

Table 1.42. GIS map plug-in configuration

Param Type Required Options (default
first)

Description

el string Yes Identifier of the
HTML element to
render the map in
your web page

url string Yes Base URL of the
DHIS server

http://openlayers.org

Web API Embedding maps with the GIS map plug-in

57

Param Type Required Options (default
first)

Description

id string No Identifier of a
pre-defined map
(favorite) in DHIS

baseLayer string/boolean No 'gs', 'googlestreets' |
'gh', 'googlehybrid' |
'osm',
'openstreetmap' |
false, null, 'none',
'off'

Show background
map

hideLegend boolean No false | true Hide legend panel

mapViews array Yes (if no id
provided)

Array of layers

If no id is provided you must add map view objects with the following config options:

Table 1.43. Map plug-in configuration

layer string No "thematic1" |
"thematic2" |
"thematic3" |
"thematic4" |
"boundary" |
"facility" |

The layer to which
the map view
content should be
added

columns array Yes Indicator, data
element, data
operand or data set
(only one will be
used)

rows array Yes Organisation units
(multiple allowed)

filter array Yes Period (only one
will be used)

classes integer No 5 | 1-7 The number of
automatic legend
classes

method integer No 2 | 3 Legend calculation
method where 2 =
equal intervals and 3
= equal counts

colorLow string No "ff0000" (red) | Any
hex color

The color
representing the first
automatic legend
class

colorHigh string No "00ff00" (green) |
Any hex color

The color
representing the last
automatic legend
class

radiusLow integer No 5 | Any integer Only applies for
facilities (points) -

Web API Embedding maps with the GIS map plug-in

58

radius of the point
with lowest value

radiusHigh integer No 15 | Any integer Only applies for
facilities (points) -
radius of the point
with highest value

opacity double No 0.8 | 0 - 1 Opacity/
transparency of the
layer content

legendSet object No Pre-defined legend
set. Will override
the automatic
legend set.

labels boolean/object No false | true |
object properties:
fontSize (integer),
color (hex string),
strong (boolean),
italic (boolean)

Show labels on the
map

width integer No Width of map

height integer No Height of map

userOrgUnit string / array No Organisation unit
identifiers,
overrides
organisation units
associated with
curretn user, single
or array

We continue by adding one pre-defined and one dynamically configured map to our HTML document. You can browse
the list of available maps using the Web API here: http://play.dhis2.org/demo/api/maps.

function setLinks() {
 DHIS.getMap({ url: base, el: "map1", id: "ytkZY3ChM6J" });

 DHIS.getMap({
 url: base,
 el: "map2",
 mapViews: [
 columns: [// Chart series
 columns: [{dimension: "in", items: [{id: "Uvn6LCg7dVU"}]}], // data
],
 rows: [// Chart categories
 rows: [{dimension: "ou", items: [{id: "LEVEL-3"}, {id: "ImspTQPwCqd"}]}], //
 organisation units
],
 filters: [
 filters: [{dimension: "pe", items: [{id: "LAST_3_MONTHS"}]}], // period
],
 // All following options are optional
 classes: 7,
 colorLow: "02079c",
 colorHigh: "e5ecff",
 opacity: 0.9,
 legendSet: {id: "fqs276KXCXi"}
]
 });

http://play.dhis2.org/demo/api/maps

Web API Creating a chart carousel with the carousel
plug-in

59

}

Finally we include some div elements in the body section of the HTML document with the identifiers referred to in
the plug-in Javascript.

<div id="map1"></div>
<div id="map2"></div>

To see a complete working example please visit http://play.dhis2.org/portal/map.html.

1.24.4. Creating a chart carousel with the carousel plug-in

The chart plug-in also makes it possible to create a chart carousel which for instance can be used to create an attractive
front page on a Web portal. To use the carousel we need to import a few files in the head section of our HTML page:

<link rel="stylesheet" type="text/css" href="http://dhis2-cdn.org/v213/ext/resources/
css/ext-plugin-gray.css" />
<link rel="stylesheet" type="text/css" href="https://play.dhis2.org/demo/dhis-web-
commons/javascripts/ext-ux/carousel/css/carousel.css" />
<script type="text/javascript" src="https://extjs-public.googlecode.com/svn/tags/
extjs-4.0.7/release/ext-all.js"></script>
<script type="text/javascript" src="https://play.dhis2.org/demo/dhis-web-commons/
javascripts/ext-ux/carousel/Carousel.js"></script>
<script type="text/javascript" src="https://play.dhis2.org/demo/dhis-web-commons/
javascripts/plugin/plugin.js"></script>

The first file is the CSS stylesheet for the chart plug-in. The second file is the CSS stylesheet for the carousel widget.
The third file is the Ext JavaScript framework which this plug-in depends on. The fourth file is the carousel plug-in
JavaScript file. The fifth file is the chart plug-in JavaScript file. The paths in this example points at the DHIS 2 demo
site, make sure you update them to point to your own DHIS 2 installation.

Please refer to the section about the chart plug-in on how to do authentication.

To create a chart carousel we will first render the charts we want to include in the carousel using the method described
in the chart plug-in section. Then we create the chart carousel itself. The charts will be rendered into div elements
which all have a CSS class called chart. In the carousel configuration we can then define a selector expression which
refers to those div elements like this:

DHIS.getChart({ uid: 'R0DVGvXDUNP', el: 'chartA1', url: base });
DHIS.getChart({ uid: 'X0CPnV6uLjR', el: 'chartA2', url: base });
DHIS.getChart({ uid: 'j1gNXBgwKVm', el: 'chartA3', url: base });
DHIS.getChart({ uid: 'X7PqaXfevnL', el: 'chartA4', url: base });

new Ext.ux.carousel.Carousel('chartCarousel', {
 autoPlay: true,
 itemSelector: 'div.chart',
 interval: 5,
 showPlayButton: true
});

The first argument in the configuration is the id of the div element in which you want to render the carousel. The
autoPlay configuration option refers to whether we want the carousel to start when the user loads the Web page. The
interval option defines how many seconds each chart should be displayed. The showPlayButton defines whether we
want to render a button for the user to start and stop the carousel. Finally we need to insert the div elements in the
body of the HTML document:

<div id="chartCarousel">

<div id="chartA1"></div>
<div id="chartA2"></div>
<div id="chartA3"></div>
<div id="chartA4"></div>

http://play.dhis2.org/portal/map.html

Web API SQL views

60

To see a complete working example please visit http://play.dhis2.org/portal/carousel.html.

1.25. SQL views

SQL views are useful for creating data views which may be more easily constructed with SQL compared combining the
multiple objects of the Web API. As an example, lets assume we have been asked to provide a view of all organization
units with their names, parent names, organization unit level and name, and the coordinates listed in the database. The
view might look something like this:

SELECT ou.name as orgunit, par.name as parent, ou.coordinates, ous.level, oul.name
 from organisationunit ou
INNER JOIN _orgunitstructure ous ON ou.organisationunitid = ous.organisationunitid
INNER JOIN organisationunit par ON ou.parentid = par.organisationunitid
INNER JOIN orgunitlevel oul ON ous.level = oul.level
WHERE ou.coordinates is not null
ORDER BY oul.level, par.name, ou.name

We will use curl to first execute the view on the DHIS 2 server. This is essentially a materialization process, and
ensures that we have the most recent data available through the SQL view when it is retrieved from the server. You
can first look up the SQL view from the api/sqlViews resource, then POST using the following command:

curl "https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/execute" -X POST -u
 admin:district -v

The next step in the process is the retrieval of the data.The basic structure of the URL is as follows

http://{server}/api/sqlViews/{id}/data(.csv)

The {server} parameter should be replaced with your own server. The next part of the URL /api/sqlViews/
should be appended with the specific SQL view identifier. Append either data for XML data or data.csv for comma
delimited values. Support response formats are json, xml, csv, xls, html and html+css. As an example, the following
command would retrieve XML data for the SQL view defined above.

curl "https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/data.csv" -u admin:district
 -v

There are three types of SQL views:

• SQL view: Standard SQL views.

• Materialized SQL view: SQL views which are materialized, meaning written to disk. Needs to be updated to reflect
changes in underlying tables. Supports criteria to filter result set.

• SQL queries: Plain SQL queries. Support inline variables for customized queries.

1.25.1. Criteria

You can do simple filtering on the columns in the result set by appending criteria query parameters to the URL, using
the column names and filter values separated by columns as parameter values, on the following format:

/api/sqlViews/{id}/data?criteria=col1:value1&criteria=col2:value2

As an example, to filter the SQL view result set above to only return organisation units at level 4 you can use the
following URL:

https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/data.csv?criteria=level:4

1.25.2. Variables

SQL views support variable subsitution. Variable subsitition is only available for SQL view of type query, meaning
SQL views which are not created in the database but simply executed as regular SQL queries. Variables can be inserted
directly into the SQL query and must be on this format:

http://play.dhis2.org/portal/carousel.html

Web API Dashboard

61

${variable-key}

As an example, an SQL query that retrieves all data elements of a given value type where the value type is defined
through a variable can look like this:

select * from dataelement where valuetype = '${valueType}';

These variables can then be supplied as part of the URL when requested through the sqlViews Web API resource.
Variables can be supplied on the following format:

/api/sqlViews/{id}/data?var=key1:value1&var=key2:value2

An example query corresponding to the example above can look like this:

/api/sqlViews/dI68mLkP1wN/data.json?var=valueType:int

The valueType variable will be subsituted with the int value, and the query will return data elements with int value type.

The variable parameter must contain alphanumeric characters only. The variables must contain alphanumeric, dash,
underscore and whitespace characters only.

1.26. Dashboard

The dashboard is designed to give you an overview of multiple analytical items like maps, charts, pivot tables and
reports which together can provide a comprehensive overview of your data. Dashboards are available in the Web
API through the dashboards resource. A dashboard contains a list of dashboard items. An item can represent a single
resource, like a chart, map or report table, or represent a list of links to analytical resources, like reports, resources,
tabular reports and users. A dashboard item can contain up to eight links. Typically, a dashboard client could choose to
visualize the single-object items directly in a user interface, while rendering the multi-object items as clickable links.

1.26.1. Browsing dashboards

To get a list of your dashboards with basic information including identifier, name and link in JSON format you can
make a GET request to the following URL:

/api/dashboards.json

The dashboards resource will provide a list of dashboards. Remember that the dashboard object is shared so the list
will be affected by the currently authenticated user. You can retrieve more information about a specific dashboard by
following its link, similar to this:

api/dashboards/vQFhmLJU5sK.json

A dashboard contains information like name and creation date and an array of dashboard items. The response in JSON
format will look similar to this response (certain information has been removed for the sake of brevity).

{
"lastUpdated" : "2013-10-15T18:17:34.084+0000",
"id" : "vQFhmLJU5sK",
"created" : "2013-09-08T20:55:58.060+0000",
"name" : "Mother and Child Health",
"href" : "https://play.dhis2.org/demo/api/dashboards/vQFhmLJU5sK",
"publicAccess" : "--------",
"externalAccess" : false,
"itemCount" : 17,
"displayName" : "Mother and Child Health",
"access" : {
"update" : true,
"externalize" : true,
"delete" : true,
"write" : true,
"read" : true,

Web API Searching dashboards

62

"manage" : true
},
"user" : {
"id" : "xE7jOejl9FI",
"name" : "John Traore",
"created" : "2013-04-18T15:15:08.407+0000",
"lastUpdated" : "2014-12-05T03:50:04.148+0000",
"href" : "https://play.dhis2.org/demo/api/users/xE7jOejl9FI"
},
"dashboardItems" : [{
"id" : "bu1IAnPFa9H",
"created" : "2013-09-09T12:12:58.095+0000",
"lastUpdated" : "2013-09-09T12:12:58.095+0000"
}, {
"id" : "ppFEJmWWDa1",
"created" : "2013-09-10T13:57:02.480+0000",
"lastUpdated" : "2013-09-10T13:57:02.480+0000"
}
],
"userGroupAccesses" : []
}

A more tailored response can be obtained by specifying specific fields in the request. An example is provided below,
which would return more detailed information about each object on a users dashboard.

api/dashboards/vQFhmLJU5sK/?fields=:all,dashboardItems[:all]

1.26.2. Searching dashboards

When setting a dashboard it is convenient from a consumer point of view to be able to search for various analytical
resources using the /dashboards/q resource. This resource lets you search for matches on the name property of the
following objects: charts, maps, report tables, users, reports and resources. You can do a search by making a GET
request on the following resource URL pattern, where my-query should be replaced by the preferred search query:

api/dashboards/q/my-query.json

JSON and XML response formats are currently supported. The response in JSON format will contain references to
matching resources and counts of how many matches were found in total and for each type of resource. It will look
similar to this:

{
 "charts": [{
 "name": "ANC: 1-3 dropout rate Yearly",
 "id": "LW0O27b7TdD"
 }, {
 "name": "ANC: 1 and 3 coverage Yearly",
 "id": "UlfTKWZWV4u"
 }, {
 "name": "ANC: 1st and 3rd trends Monthly",
 "id": "gnROK20DfAA"
 }],
 "maps": [{
 "name": "ANC: 1st visit at facility (fixed) 2013",
 "id": "YOEGBvxjAY0"
 }, {
 "name": "ANC: 3rd visit coverage 2014 by district",
 "id": "ytkZY3ChM6J"
 }],
 "reportTables": [{
 "name": "ANC: ANC 1 Visits Cumulative Numbers",
 "id": "tWg9OiyV7mu"
 }],
 "reports": [{

Web API Creating, updating and removing dashboards

63

 "name": "ANC: 1st Visit Cumulative Chart",
 "id": "Kvg1AhYHM8Q"
 }, {
 "name": "ANC: Coverages This Year",
 "id": "qYVNH1wkZR0"
 }],
 "searchCount": 8,
 "chartCount": 3,
 "mapCount": 2,
 "reportTableCount": 1,
 "reportCount": 2,
 "userCount": 0,
 "patientTabularReportCount": 0,
 "resourceCount": 0
}

1.26.3. Creating, updating and removing dashboards

Creating, updating and deleting dashboards follow standard REST semantics. In order to create a new dashboard you
can make a POST request to the /api/dashboards resource. From a consumer perspective it might be convenient to first
create a dashboard and later add items to it. JSON and XML formats are supported for the request payload. To create
a dashboard with the name "My dashboard" you can use a payload in JSON like this:

{
 "name": "My dashboard"
}

To update, e.g. rename, a dashboard, you can make a PUT request with a similar request payload the same api/dasboards
resource.

To remove a dashboard, you can make a DELETE request to the specific dashboard resource similar to this:

api/dashboards/vQFhmLJU5sK

1.26.4. Adding, moving and removing dashboard items and content

In order to add dashboard items a consumer can use the /api/dashboards/<dashboard-id>/items/content resource,
where <dashboard-id> should be replaced by the relevant dashboard identifier. The request must use the POST method.
The URL syntax and parameters are described in detail in the following table.

Table 1.44. Items content parameters

Query parameter Description Options

type Type of the resource to be represented by the
dashboard item

chart | map | reportTable | users |
reports | reportTables | resources |
patientTabularReports

id Identifier of the resource to be represented by the
dashboard item

Resource identifier

A POST request URL for adding a chart to a specific dashboard could look like this, where the last id query parameter
value is the chart resource identifier:

/api/dashboards/vQFhmLJU5sK/items/content?type=chart&id=LW0O27b7TdD

When adding resource of type map, chart and report table, the API will create and add a new item to the dashboard.
When adding a resource of type users, reports, report tables and resources, the API will try to add the resource to an
existing dashboard item of the same type. If no item of same type or no item of same type with less than eight resources
associated with it exists, the API will create a new dashboard item and the resource to it.

In order to move a dashboard item to a new position within the list of items in a dashboard, a consumer can make
a POST request to the following resource URL, where <dashboard-id> should be replaced by the identifier of the

Web API Analytics

64

dashboard, <item-id> should be replaced by the identifier of the dashboard item and <index> should be replaced by
the new position of the item in the dashboard, where the index is zero-based:

/api/dashboards/<dashboard-id>/items/<item-id>/position/<index>

To remove a dashboard item completely from a specific dashboard a consumer can make a DELETE request to the
below resource URL, where <dashboard-id> should be replaced by the identifier of the dashboard and <item-id> should
be replaced by the identifier of the dashboard item. The dashboard item identifiers can be retrieved through a GET
request to the dashboard resource URL.

/api/dashboards/<dashboard-id>/items/<item-id>

To remove a specific content resource within a dashboard item a consumer can make a DELETE request to the below
resource URL, where <content-resource-id> should be replaced by the identifier of a resource associated with the
dasboard item; e.g. the identifier of a report or a user. For instance, this can be used to remove a single report from a
dashboard item of type reports, as opposed to removing the dashboard item completely:

/api/dashboards/<dashboard-id>/items/<item-id>/content/<content-resource-id>

1.27. Analytics

To access analytical, aggregated data in DHIS 2 you can work with the analytics resource. The analytics resource is
powerful as it lets you query and retrieve data aggregated along all available data dimensions. For instance, you can ask
the analytics resource to provide the aggregated data values for a set of data elements, periods and organisation units.
Also, you can retrieve the aggregated data for a combination of any number of dimensions based on data elements
and organisation unit group sets.

1.27.1. Dimensions and items

DHIS 2 features a multi-dimensional data model with several fixed and dynamic data dimensions. The fixed dimensions
are the data element, period (time) and organisation unit dimension. You can dynamically add dimensions through
categories, data element group sets and organisation unit group sets. The table below displays the available data
dimensions in DHIS 2. Each data dimension has a corresponding dimension identifier, and each dimension can have
a set of dimension items:

Table 1.45. Dimensions and dimension items

Dimension Dimension
id

Dimension items

Data elements, indicators, data set
reporting rates, data element operands,
program indicators, program data
elements, program attributes

dx Data element, indicator, data set, data element operand,
program indicator, program attribute identifiers,
keyword DE_GROUP-<group-id>, use <dataelement-
id>-<optioncombo-id> for operands

Periods (time) pe ISO periods and relative periods, see "date and period
format"

Organisation unit hierarchy ou Organisation unit identifiers, and keywords
USER_ORGUNIT, USER_ORGUNIT_CHILDREN,
USER_ORGUNIT_GRANDCHILDREN, LEVEL-
<level> and OU_GROUP-<group-id>

Category option combinations co Category option combo identifers (omit to get all items)

Attribute option combinations ao Category option combo identifers (omit to get all items)

Categories <category
id>

Category option identifiers (omit to get all items)

Data element group sets <group set
id>

Data element group identifiers (omit to get all items)

Web API Dimensions and items

65

Dimension Dimension
id

Dimension items

Organisation unit group sets <group set
id>

Organisation unit group identifiers (omit to get all
items)

Category option group sets <group set
id>

Category option group identifiers (omit to get all items)

It is not necessary to be aware of which objects are used for the various dynamic dimensions when designing analytics
queries. You can get a complete list of dynamic dimensions by visiting this URL in the Web API:

api/dimensions

The base URL to the analytics resource is api/analytics. To request specific dimensions and dimension items you can
use a query string on the following format, where dim-id and dim-item should be substituted with real values:

api/analytics?dimension=dim-id:dim-item;dim-item&dimension=dim-id:dim-item;dim-item

As illustrated above, the dimension identifier is followed by a colon while the dimension items are separated by semi-
colons. As an example, a query for two data elements, two periods and two organisation units can be done with the
following URL:

api/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU
&dimension=pe:2014Q1;2014Q2&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

To query for data broken down by category option combinations instead of data element totals you can include the
category dimension in the query string, for instance like this:

api/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU
&dimension=co&dimension=pe:201401&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

When selecting data elements you can also select all data elements in a group as items by using the DE_GROUP-
<id> syntax:

api/analytics?dimension=dx:DE_GROUP-h9cuJOkOwY2
&dimension=pe:201401&dimension=ou:O6uvpzGd5pu

To query for organisation unit group sets and data elements you can use the following URL - notice how the group set
identifier is used as dimension identifier and the groups as dimension items:

api/analytics?dimension=Bpx0589u8y0:oRVt7g429ZO;MAs88nJc9nL
&dimension=pe:2014&dimension=ou:ImspTQPwCqd

To query for data elements and categories you can use this URL - use the category identifier as dimension identifier
and the category options as dimension items:

api/analytics?dimension=dx:s46m5MS0hxu;fClA2Erf6IO&dimension=pe:2014
&dimension=YNZyaJHiHYq:btOyqprQ9e8;GEqzEKCHoGA&filter=ou:ImspTQPwCqd

To query using relative periods and organisation units associated with the current user you can use a URL like this:

api/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU
&dimension=pe:LAST_12_MONTHS&dimension=ou:USER_ORGUNIT

When selecting organisation units for a dimension you can select an entire level optionally constrained by any number
of boundary organisation units with the LEVEL-<level> syntax. Boundary refers to a top node in a sub-hierarchy,
meaning that all organisation units at the given level below the given boundary organisation unit in the hierarchy will
be included in the response, and is provided as regular organisation unit dimension items:

api/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2014&dimension=ou:LEVEL-3

api/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2014
&dimension=ou:LEVEL-3;LEVEL-4;O6uvpzGd5pu;lc3eMKXaEf

Web API Request query parameters

66

When selecting organisation units you can also select all organisation units in an organisation unit group to be
included as dimension items using the OU_GROUP-<id> syntax. The organisation units in the groups can optionally
be constrained by any number of boundary organisation units. Both the level and the group items can be repeated any
number of times:

api/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2014
&dimension=ou:OU_GROUP-w0gFTTmsUcF;O6uvpzGd5pu

api/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2014
&dimension=ou:OU_GROUP-w0gFTTmsUcF;OU_GROUP-EYbopBOJWsW;O6uvpzGd5pu;lc3eMKXaEf

A few things to be aware of when using the analytics resource are listed below.

• Data elements, indicator and data sets are part of a common data dimension, identified as "dx". This means that you
can use any of data elements, indicators and data set identifiers together with the "dx" dimension identifier in a query.

• For the category, data element group set and organisation unit group set dimensions, all dimension items will be
used in the query if no dimension items are specified.

• For the period dimension, the dimension items are ISO period identifiers and/or relative periods. Please refer to the
section above called "Date and period format" for the period format and available relative periods.

• For the organisation unit dimension you can specify the items to be the organisation unit or sub-units of the
organisation unit associated with the user currently authenticated for the request using they keys USER_ORGUNIT
or USER_ORGUNIT_CHILDREN as items, respectively. You can also specify organisation unit identifiers directly,
or a combination of both.

• For the organisation unit dimension you can specify the organisation hierarchy level and the boundary unit to use
for the request on the format LEVEL-<level>-<boundary-id>; as an example LEVEL-3-ImspTQPwCqd implies all
organisation units below the given boundary unit at level 3 in the hierarchy.

• For the organisation unit dimension the dimension items are the organisation units and their sub-hierarchy - data
will be aggregated for all organisation units below the given organisation unit in the hierarchy.

• You cannot specify dimension items for the category option combination dimension. Instead the response will
contain the items which are linked to the data values.

1.27.2. Request query parameters

The analytics resource lets you specify a range of query parameters:

Table 1.46. Query parameters

Query
parameter

Required Description Options

dimension Yes Dimensions to be retrieved, repeated for each. Any dimension

filter No Filters to apply to the query, repeated for each. Any dimension

aggregationType No Aggregation type to use in the aggregation process. SUM | AVERAGE_INT |
AVERAGE_INT_DISAGGREGATION
| AVERAGE_BOOL |
COUNT | STDDEV |
VARIANCE

measureCriteria No Filters for the data/measures. EQ | GT | GE | LT | LE

skipMeta No Exclude the meta data part of the response
(improves performance).

false | true

skipData No Exclude the data part of the response. false | true

skipRounding No Skip rounding of data values, i.e. provide full
precision.

false | true

hierarchyMeta No Include names of organisation unit ancestors
and hierarchy paths of organisation units in the
metadata.

false | true

Web API Request query parameters

67

Query
parameter

Required Description Options

ignoreLimit No Ignore limit on max 50 000 records in response -
use with care.

false | true

tableLayout No Use plain data source or table layout for response. false | true

hideEmptyRows No Hides empty rows in response, applicable when
table layout is true.

false | true

showHierarchy No Display full org unit hierarchy path together with
org unit name.

false | true

displayProperty No Property to display for metadata. NAME | SHORTNAME

outputIdScheme No Property to use for metadata items the query
response, can be identifier, code or name.

UID | CODE | NAME

approvalLevel No Include data which has been approved at least up
to the given approval level, refers to identfier of
approval level.

Identifier of approval level

relativePeriodDate No Date used as basis for relative periods. Date.

userOrgUnit No Explicitly define the user org units to utilize,
overrides organisation units associated with
current user, multiple identifiers can be separated
by semi-colon.

Organisation unit identifiers.

columns No Dimensions to use as columns for table layout. Any dimension (must be
query dimension)

rows No Dimensions to use as rows for table layout. Any dimension (must be
query dimension)

The dimension query parameter defines which dimensions should be included in the analytics query. Any number
of dimensions can be specified. The dimension parameter should be repeated for each dimension to include in the
query response. The query response can potentially contain aggregated values for all combinations of the specified
dimension items.

The filter parameter defines which dimensions should be used as filters for the data retrieved in the analytics query.
Any number of filters can be specified. The filter parameter should be repeated for each filter to use in the query. A
filter differs from a dimension in that the filter dimensions will not be part of the query response content, and that the
aggregated values in the response will be collapsed on the filter dimensions. In other words, the data in the response
will be aggregated on the filter dimensions, but the filters will not be included as dimensions in the actual response. As
an example, to query for certain data elements filtered by the periods and organisation units you can use the following
URL:

api/analytics?
dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&filter=pe:2014Q1;2014Q2&filter=ou:O6uvpzGd5pu;lc3eMKXaEfw

The aggregationType query parameter lets you define which aggregation operator should be used for the query. By
default the aggregation operator defined for data elements included in the query will be used. If your query does not
contain any data elements, but does include data element groups, the aggregation operator of the first data element in
the first group will be used. The order of groups and data elements is undefined. This query parameter allows you to
override the default and specify a specific aggregation operator. As an example you can set the aggregation operator
to "count" with the following URL:

api/analytics?
dimension=dx:fbfJHSPpUQD&dimension=pe:2014Q1&dimension=ou:O6uvpzGd5pu&aggregationType=COUNT

The measureCriteria query parameter lets you filter out ranges of data records to return. You can instruct the system
to return only records where the aggregated data value is equal, greater than, greater or equal, less than or less or equal
to certain values. You can specify any number of criteria on the following format, where critieria and value should
be substituted with real values:

Web API Response formats

68

api/analytics?measureCriteria=criteria:value;criteria:value

As an example, the following query will return only records where the data value is greater or equal to 6500 and less
than 33000:

api/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&dimension=pe:2014
&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw&measureCriteria=GE:6500;LT:33000

In order to have the analytics resource generate the data in the shape of a ready-made table, you can provide the
tableLayout parameter with true as value. Instead of generating a plain, normalized data source, the analytics resource
will now generate the data in table layout. You can use the columns and rows parameters with dimension identifiers
separated by semi-colons as values to indicate which ones to use as table columns and rows. The column and rows
dimensions must be present as a data dimension in the query (not a filter). Such a request can look like this:

api/analytics.html?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&dimension=pe:2014Q1;2014Q2
&dimension=ou:O6uvpzGd5pu&tableLayout=true&columns=dx;ou&rows=pe

1.27.3. Response formats

The analytics response containing aggregate data can be returned in various representation formats. As usual, you can
indicate interest in a specific format by appending a file extension to the URL, through the Accept HTTP header or
through the format query parameter. The default format is JSON. The available formats and content-types are listed
below.

• json (application/json)

• jsonp (application/javascript)

• xml (application/xml)

• csv (application/csv)

• html (text/html)

• html+css

• xls (application/vnd.ms-excel)

As an example, to request an analytics response in XML format you can use the following URL:

api/analytics.xml?dimension=dx:fbfJHSPpUQD
&dimension=pe:2014&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

The analytics responses must be retrieved using the HTTP GET method. This allows for direct linking to analytics
responses from Web pages as well as other HTTP-enabled clients. To do functional testing we can use the cURL
library. By executing this command against the demo database you will get an analytics response in JSON format:

curl "play.dhis2.org/demo/api/analytics.json?
dimension=dx:eTDtyyaSA7f;FbKK4ofIv5R&dimension=pe:2014Q1;2014Q2&filter=ou:ImspTQPwCqd"
 -u admin:district

The JSON response will look like this:

{
 "headers": [
 {
 "name": "dx",
 "column": "Data",
 "meta": true,
 "type": "java.lang.String"
 },
 {
 "name": "pe",
 "column": "Period",
 "meta": true,

Web API Response formats

69

 "type": "java.lang.String"
 },
 {
 "name": "value",
 "column": "Value",
 "meta": false,
 "type": "java.lang.Double"
 }
],
 "height": 4,
 "metaData": {
 "pe": [
 "2014Q1",
 "2014Q2"
],
 "ou": [
 "ImspTQPwCqd"
],
 "names": {
 "2014Q1": "Jan to Mar 2014",
 "2014Q2": "Apr to Jun 2014",
 "FbKK4ofIv5R": "Measles Coverage <1 y",
 "ImspTQPwCqd": "Sierra Leone",
 "eTDtyyaSA7f": "Fully Immunized Coverage"
 }
 },
 "rows": [
 [
 "eTDtyyaSA7f",
 "2014Q2",
 "81.1"
],
 [
 "eTDtyyaSA7f",
 "2014Q1",
 "74.7"
],
 [
 "FbKK4ofIv5R",
 "2014Q2",
 "88.9"
],
 [
 "FbKK4ofIv5R",
 "2014Q1",
 "84.0"
]
],
 "width": 3
}

The response represents a table of dimensional data. The headers array gives an overview of which columns are
included in the table and what the columns contain. The column property shows the column dimension identifier, or if
the column contains measures, the word "Value". The meta property is true if the column contains dimension items or
false if the column contains a measure (aggregated data values). The name property is similar to the column property,
except it displays "value" in case the column contains a measure. The type property indicates the Java class type of
the column values.

The height and width properties indicate how many data columns and rows are contained in the response, respectively.

The metaData periods property contains a unique, ordered array of the periods included in the response. The metaData
ou property contains an array of the identifiers of organisation units included in the response. The metaData names
property contains a mapping between the identifiers used in the data response and the names of the objects they

Web API Constraints

70

represent. It can be used by clients to substitute the identifiers within the data response with names in order to give
a more meaningful view of the data table.

The rows array contains the dimensional data table. It contains columns with dimension items (object or period
identifiers) and a column with aggregated data values. The example response above has a data/indicator column, a
period column and a value column. The first column contains indicator identifiers, the second contains ISO period
identifiers and the third contains aggregeted data values.

1.27.4. Constraints

There are several constraints on the input you can provide to the analytics resource.

• At least one dimension must be specified in a query.

• Dimensions cannot be specified as dimension and filter simultaneously.

• At least one period must be specified as dimension or filter.

• Indicators, data sets and categories cannot be specified as filters.

• Data element group sets cannot be specified together with data sets.

• Categories can only be specified together with data elements, not indicators or data sets.

• A dimension cannot be specified more than once.

• Fixed dimensions ("dx", "pe", "ou") must have at least one option if included in a query.

• A table cannot contain more than 50 000 cells by default, this can be configured under system settings.

When a query request violates any of these constraints the server will return a response with status code 409 and
content-type "text/plain" together with a textual description of the problem.

1.27.5. Debugging

When debugging analytics requests it can be useful to examine the data value source of the aggregated analytics
response. The analytics/debug/sql resource will provide an SQL statement that returns the relevant content of the
datavalue table. You can produce this SQL by doing a GET request with content type "text/html" or "text/plain" like
below. The dimension and filter syntax is identical to regular analytics queries:

api/analytics/debug/sql?
dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&filter=pe:2014Q1;2014Q2&filter=ou:O6uvpzGd5pu;lc3eMKXaEfw

1.28. Event analytics

The event analytics API lets you access aggregated event data and query events captured in DHIS 2. This resource
lets you retrieve events based on a program and optionally a program stage, and lets you retrieve and filter events on
any event dimensions.

1.28.1. Dimensions and items

Event dimensions include data elements, attributes, organisation units and periods. The aggregated event analytics
resource will return aggregated information such as counts or averages. The query analytics resource will simply return
events matching a set of criteria and does not perform any aggregation. You can specify dimension items in the form
of options from option sets and legends from legend sets for data elements and attributes which are associated with
such. The event dimensions are listed in the table below.

Table 1.47. Event dimensions

Dimension Dimension
id

Description

Data elements <id> Data element identifiers

Attributes <id> Attribute identifiers

Web API Request query parameters

71

Dimension Dimension
id

Description

Periods pe ISO periods and relative periods, see "date and period format"

Organisation units ou Organisation unit identifiers

Organisation unit group sets <id> Organisation unit group set identifiers

1.28.2. Request query parameters

The analytics event API let you specify a range of query parameters.

Table 1.48. Query parameters for both event query and aggregate analytics

Query parameter Required Description Options

program Yes Program identifier. Any program
identifier

stage No Program stage identifier. Any program stage
identifier

startDate Yes Start date for events. Date in yyyy-MM-
dd format

endDate Yes End date for events. Date in yyyy-MM-
dd format

dimension Yes Dimension identifier including data elements,
attributes, program indicators, periods, organisation
units and organisation unit group sets. Parameter
can be repeated any number of times. Item filters
can be applied to a dimension on the format
<item-id>:<operator>:<filter>. Filter values are case-
insensitive.

Operators can be
EQ | GT | GE | LT |
LE | NE | LIKE | IN

filter No Dimension identifier including data elements,
attributes, periods, organisation units and organisation
unit group sets. Parameter can be repeated any number
of times. Item filters can be applied to a dimension on
the format <item-id>:<operator>:<filter>. Filter values
are case-insensitive.

hierarchyMeta No Include names of organisation unit ancestors and
hierarchy paths of organisation units in the metadata

false | true

Table 1.49. Query parameters for event query analytics only

Query parameter Required Description Options

ouMode No The mode of selecting organisation units. Default
is DESCENDANTS, meaning all sub units in the
hierarchy. CHILDREN refers to immediate children
in the hierarchy; SELECTED refers to the selected
organisation units only.

DESCENDANTS,
CHILDREN,
SELECTED

asc No Dimensions to be sorted ascending, can reference event
date, org unit name and code and any item identifiers.

EVENTDATE |
OUNAME |
OUCODE | item
identifier

desc No Dimensions to be sorted descending, can reference
event date, org unit name and code and any item
identifiers.

EVENTDATE |
OUNAME |

Web API Event query analytics

72

Query parameter Required Description Options

OUCODE | item
identifier

coordinatesOnly No Whether to only return events which have coordinates false | true

page No The page number. Default page is 1. Numeric positive
value

pageSize No The page size. Default size is 50 items per page. Numeric zero or
positive value

Table 1.50. Query parameters for aggregate event analytics only

Query parameter Required Description Options

value No Value dimension identifier. Can be a data element or
an attribute which must be of numeric value type.

Data element or
attribute identifier.

aggregationType No Aggregation type for the value dimension. Default is
AVERAGE.

AVERAGE | SUM
| COUNT |
STDDEV |
VARIANCE | MIN
| MAX

showHierarchy No Display full org unit hierarchy path together with org
unit name.

false | true

displayProperty No Property to display for metadata. NAME |
SHORTNAME

sortOrder No Sort the records on the value column in ascending or
descending order.

ASC | DESC

limit No The maximum number of records to return. Cannot be
larger than 10 000.

Numeric positive
value

outputType No Specify output type for analytical data which can be
events, enrollments or tracked entity instances. The
two last options apply to programs with registration
only.

EVENT |
ENROLLMENT |
TRACKED_ENTITY_INSTANCE

collapseDataDimensionsNo Collapse all data dimensions (data elements and
attributes) into a single dimension in the response.

false | true

skipMeta No Exclude the meta data part of the response (improves
performance).

false | true

skipData No Exclude the data part of the response. false | true

skipRounding No Skip rounding of aggregate data values. false | true

aggregateData No Produce aggregate values for the data dimensions (as
opposed to dimension items).

false | true

1.28.3. Event query analytics

The events/query resource lets you query for captured events. This resource does not perform any aggregation, rather
it lets you query and filter for information about events. You can specify any number of dimensions and any number
of filters in a query. Dimension item identifiers can refer to any of data elements, person attributes, person identifiers,
fixed and relative periods and organisation units. Dimensions can optionally have a query operator and a filter. Event
queries should be on the format described below.

api/analytics/events/query/<program-id>?startDate=yyyy-MM-dd&endDate=yyyy-MM-dd
&dimension=ou:<ou-id>;<ou-id>&dimension=<item-id>&dimension=<item-
id>:<operator>:<filter>

Web API Event query analytics

73

For example, to retrieve events from the "Inpatient morbidity and mortality" program between January and October
2014, where the "Gender" and "Age" data elements are included and the "Age" dimension is filtered on "18", you can
use the following query:

api/analytics/events/query/eBAyeGv0exc?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:O6uvpzGd5pu;fdc6uOvgoji&dimension=oZg33kd9taw&dimension=qrur9Dvnyt5:EQ:18

To retrieve events for the "Birth" program stage of the "Child programme" program between March and December
2014, where the "Weight" data element, filtered for values larger than 2000:

api/analytics/events/query/IpHINAT79UW?
stage=A03MvHHogjR&startDate=2014-03-01&endDate=2014-12-31
&dimension=ou:O6uvpzGd5pu&dimension=UXz7xuGCEhU:GT:2000

Sorting can be applied to the query for the event date of the event and any dimensions. To sort descending on the event
date and ascending on the "Age" data element dimension you can use:

api/analytics/events/query/eBAyeGv0exc?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:O6uvpzGd5pu&dimension=qrur9Dvnyt5&desc=EVENTDATE&asc=qrur9Dvnyt5

Paging can be applied to the query by specifying the page number and the page size parameters. If page number is
specified but page size is not, a page size of 50 will be used. If page size is specified but page number is not, a page
number of 1 will be used. To get the third page of the response with a page size of 20 you can use a query like this:

api/analytics/events/query/eBAyeGv0exc?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:O6uvpzGd5pu&dimension=qrur9Dvnyt5&page=3&pageSize=20

1.28.3.1. Filtering

Filters can be applied to data elements, person attributes and person identifiers. The filtering is done through the query
parameter value on the following format:

&dimension=<item-id>:<operator>:<filter-value>

As an example, you can filter the "Weight" data element for values greater than 2000 and lower than 4000 like this:

&dimension=UXz7xuGCEhU:GT:2000&dimension=UXz7xuGCEhU:LT:4000

You can filter the "Age" data element for multiple, specific ages using the IN operator like this:

&dimension=qrur9Dvnyt5:IN:18;19;20

You can specify multiple filters for a given item by repeating the operator and filter components:

&dimension=qrur9Dvnyt5:GT:5;LT;15

The available operators are listed below.

Table 1.51. Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

Web API Event query analytics

74

1.28.3.2. Response formats

The default response representation format is JSON. The requests must be using the HTTP GET method. The following
response formats are supported.

• json (application/json)

• jsonp (application/javascript)

• xls (application/vnd.ms-excel)

As an example, to get a response in Excel format you can use a file extension in the request URL like this:

api/analytics/events/query/eBAyeGv0exc.xls?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:O6uvpzGd5pu&dimension=oZg33kd9taw&dimension=qrur9Dvnyt5

You can set the hierarchyMeta query parameter to true in order to include names of all ancestor organisation units in
the meta-section of the response:

api/analytics/events/query/eBAyeGv0exc?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:YuQRtpLP10I&dimension=qrur9Dvnyt5:EQ:50&hierarchyMeta=true

The default response JSON format will look similar to this:

{
 "headers": [
 {
 "name": "psi",
 "column": "Event",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "ps",
 "column": "Program stage",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "eventdate",
 "column": "Event date",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "coordinates",
 "column": "Coordinates",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "ouname",
 "column": "Organisation unit name",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "oucode",
 "column": "Organisation unit code",
 "type": "java.lang.String",

Web API Event query analytics

75

 "hidden": false,
 "meta": false
 },
 {
 "name": "ou",
 "column": "Organisation unit",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "oZg33kd9taw",
 "column": "Gender",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 },
 {
 "name": "qrur9Dvnyt5",
 "column": "Age",
 "type": "java.lang.String",
 "hidden": false,
 "meta": false
 }],
 "metaData": {
 "names": {
 "qrur9Dvnyt5": "Age",
 "eBAyeGv0exc": "Inpatient morbidity and mortality",
 "ImspTQPwCqd": "Sierra Leone",
 "O6uvpzGd5pu": "Bo",
 "YuQRtpLP10I": "Badjia",
 "oZg33kd9taw": "Gender"
 },
 "ouHierarchy": {
 "YuQRtpLP10I": "/ImspTQPwCqd/O6uvpzGd5pu"
 },
 },
 "width": 8,
 "height": 25,
 "rows": [
 ["yx9IDINf82o", "Zj7UnCAulEk", "2014-08-05", "[5.12, 1.23]", "Ngelehun CHC",
 "OU_559", "YuQRtpLP10I", "Female", "50"],
 ["IPNa7AsCyFt", "Zj7UnCAulEk", "2014-06-12", "[5.22, 1.43]", "Ngelehun CHC",
 "OU_559", "YuQRtpLP10I", "Female", "50"],
 ["ZY9JL9dkhD2", "Zj7UnCAulEk", "2014-06-15", "[5.42, 1.33]", "Ngelehun CHC",
 "OU_559", "YuQRtpLP10I", "Female", "50"],
 ["MYvh4WAUdWt", "Zj7UnCAulEk", "2014-06-16", "[5.32, 1.53]", "Ngelehun CHC",
 "OU_559", "YuQRtpLP10I", "Female", "50"]
]
}

The headers section of the response describes the content of the query result. The event unique identifier, the program
stage identifier, the event date, the organisation unit name, the organisation unit code and the organisation unit identifier
appear as the first six dimensions in the response and will always be present. Next comes the data elements, person
attributes and person identifiers which were specified as dimensions in the request, in this case the "Gender" and "Age"
data element dimensions. The header section contains the identifier of the dimension item in the "name" property and
a readable dimension description in the "column" property.

The metaData section, ou object contains the identifiers of all organisation units present in the response mapped to a
string representing the hierarchy. This hierarchy string lists the identifiers of the ancestors (parents) of the organistion
unit starting from the root. The names object contains the identifiers of all items in the response mapped to their names.

The rows section contains the events produced by the query. Each row represents exactly one event.

Web API Event aggregate analytics

76

1.28.4. Event aggregate analytics

In order to get aggregated numbers of events captured in DHIS 2 you can work with the analytics/events/aggregate
resource. This resource lets you retrieve aggregate data based on a program and optionally a program stage, and lets
you filter on any event dimension. In other words, it does not return the event information itself, rather the aggregate
numbers of events matching the request query. Event dimensions include data elements, person attributes, person
identifiers, periods and organisation units.

Aggregate event queries should be on the format described below.

api/analytics/events/aggregate/<program-id>?startDate=yyyy-MM-dd&endDate=yyyy-MM-dd
&dimension=ou:<ou-id>;<ou-id>&dimension=<item-id>&dimension=<item-
id>:<operator>:<filter>

For example, to retrieve aggregate numbers for events from the "Inpatient morbidity and mortality" program between
January and October 2014, where the "Gender" and "Age" data elements are included, the "Age" dimension item is
filtered on "18" and the "Gender" item is filtered on "Female", you can use the following query:

api/analytics/events/aggregate/eBAyeGv0exc?startDate=2014-01-01&endDate=2014-10-31
&dimension=ou:O6uvpzGd5pu&dimension=oZg33kd9taw:EQ:Female&dimension=qrur9Dvnyt5:GT:50

To retrieve data for fixed and relative periods instead of start and end date, in this case May 2014 and last 12 months,
and the organisation unit associated with the current user, you can use the following query:

api/analytics/events/aggregate/eBAyeGv0exc?dimension=pe:201405;LAST_12_MONTHS
&dimension=ou:USER_ORGUNIT;fdc6uOvgo7ji&dimension=oZg33kd9taw

In order to specify "Female" as a filter for "Gender" for the data response, meaning "Gender" will not be part of the
response but will filter the aggregate numbers in it, you can use the following syntax:

api/analytics/events/aggregate/eBAyeGv0exc?dimension=pe:2014;
&dimension=ou:O6uvpzGd5pu&filter=oZg33kd9taw:EQ:Female

To specify the "Bo" organisation unit and the period "2014" as filters, and the "Mode of discharge" and Gender" as
dimensions, where "Gender" is filtered on the "Male" item, you can use a query like this:

api/analytics/events/aggregate/eBAyeGv0exc?filter=pe:2014&filter=ou:O6uvpzGd5pu
&dimension=fWIAEtYVEGk&dimension=oZg33kd9taw:EQ:Male

To create a "Top 3 report" for "Mode of discharge" you can use the limit and sortOrder query parameters similar to this:

api/analytics/events/aggregate/eBAyeGv0exc?filter=pe:2014&filter=ou:O6uvpzGd5pu
&dimension=fWIAEtYVEGk&limit=3&sortOrder=DESC

To specify a value dimension with a corresponding aggregation type you can use the value and aggregationType query
parameters. Specifying a value dimension will make the analytics engine return aggregate values for the values of that
dimension in the response as opposed to counts of events.

api/analytics/events/aggregate/eBAyeGv0exc.json?
stage=Zj7UnCAulEk&dimension=ou:ImspTQPwCqd
&dimension=pe:LAST_12_MONTHS&dimension=fWIAEtYVEGk&value=qrur9Dvnyt5&aggregationType=AVERAGE

1.28.4.1. Ranges / legend sets

For aggregate queries you can specify a range / legend set for numeric data element and attribute dimensions. The
purpose is to group the numeric values into ranges. As an example, instead of generating data for an "Age" data element
for distinct years, you can group the information into age groups. To achieve this, the data element or attribute must
be associated with the legend set. The format is described below:

?dimension=<item-id>-<legend-set-id>

An example looks like this:

api/analytics/events/aggregate/eBAyeGv0exc.json?
stage=Zj7UnCAulEk&dimension=qrur9Dvnyt5-Yf6UHoPkdS6

Web API Event aggregate analytics

77

&dimension=ou:ImspTQPwCqd&dimension=pe:LAST_12_MONTHS

1.28.4.2. Response formats

The default response representation format is JSON. The requests must be using the HTTP GET method. The response
will look similar to this:

{
 "headers": [
 {
 "name": "oZg33kd9taw",
 "column": "Gender",
 "type": "java.lang.String",
 "meta": false
 },
 {
 "name": "qrur9Dvnyt5",
 "column": "Age",
 "type": "java.lang.String",
 "meta": false
 },
 {
 "name": "pe",
 "column": "Period",
 "type": "java.lang.String",
 "meta": false
 },
 {
 "name": "ou",
 "column": "Organisation unit",
 "type": "java.lang.String",
 "meta": false
 },
 {
 "name": "value",
 "column": "Value",
 "type": "java.lang.String",
 "meta": false
 }
],
 "metaData": {
 "names": {
 "eBAyeGv0exc": "Inpatient morbidity and mortality"
 }
 },
 "width": 5,
 "height": 39,
 "rows": [
 [
 "Female",
 "95",
 "201405",
 "O6uvpzGd5pu",
 "2"
],
 [
 "Female",
 "63",
 "201405",
 "O6uvpzGd5pu",
 "2"
],
 [

Web API Geo features

78

 "Female",
 "67",
 "201405",
 "O6uvpzGd5pu",
 "1"
],
 [
 "Female",
 "71",
 "201405",
 "O6uvpzGd5pu",
 "1"
],
 [
 "Female",
 "75",
 "201405",
 "O6uvpzGd5pu",
 "14"
],
 [
 "Female",
 "73",
 "201405",
 "O6uvpzGd5pu",
 "5"
],
]
}

Note that the max limit for rows to return in a single response is 10 000. If the query produces more than the max limit,
a 409 Conflict status code will be returned.

1.29. Geo features

The geoFeatures resource lets you retrieve geospatial information from DHIS 2. Geo features are stored together
with organisation units, and the syntax for retrieving features is identical to the syntax used for the organisation unit
dimension for the analytics resource. It is recommended to read up on the analytics api resource before continuing
reading this section. You must use the GET request type, and only JSON response format is supported.

As an example, to retrieve geo features for all organisation units at level 3 in the organisation unit hierarchy you can
use a GET request with the following URL:

api/geoFeatures.json?ou=ou:LEVEL-3

To retrieve geo features for organisation units at level within the boundary of an organisation unit (e.g. at level 2) you
can use this URL:

api/geoFeatures.json?ou=ou:LEVEL-4;O6uvpzGd5pu

The semantics of the response properties are described in the following table.

Table 1.52. Geo features response

Property Description

id Organisation unit / geo feature identifier

na Organisation unit / geo feature name

hcd Has coordinates down, indicating whether one or more children organisation units exist with
coordinates (below in the hierarchy)

Web API GeoJSON

79

Property Description

hcu Has coordinates up, indicating whether the parent organisation unit has coordinates (above in the
hierarchy)

le Level of this organisation unit / geo feature.

pg Parent graph, the graph of parent organisation unit identifiers up to the root in the hierarchy

pi Parent identifier, the identifier of the parent of this organisation unit

pn Parent name, the name of the parent of this organisation unit

ty Geo feature type, 1 = point and 2 = polygon or multi-polygon

co Coordinates of this geo feature

1.29.1. GeoJSON

Support for GeoJSON output was added in 2.17, to export GeoJSON, you can simple add .geosjon as an extension to
the endpoint /api/organisationUnits, or you can use the Accept header application/json+geojson.

Two parameters are supported level (defaults to 1) and parent (defaults to root organisation units), both can be added
multiple times, some examples follow.

Get all features at level 2 and 4:

api/organisationUnits.geojson?level=2&level=4

Get all features at level 3 with a boundary organisation unit:

api/organisationUnits.geojson?parent=fdc6uOvgoji&level=3

1.30. Generating resource and analytics tables

DHIS 2 features a set of generated database tables which are used as basis for various system functionality. These tables
can be executed immediately or scheduled to be executed at regular intervals through the user interface. They can also
be generated through the Web API as explained in this section. This task is typically one for a system administrator
and not consuming clients.

The resource tables are used internally by the DHIS 2 application for various analysis functions. These tables are also
valuable for users writing advanced SQL reports. They can be generated with a POST or PUT request to the following
URL:

api/resourceTables

The analytics tables are optimized for data aggregation and used currently in DHIS 2 for the pivot table module. The
analytics tables can be generated with a POST or PUT request to:

api/resourceTables/analytics

Table 1.53. Analytics tables optional query parameters

Query parameter Options Description

skipResourceTables false | true Skip generation of resource tables

skipAggregate false | true Skip generation of aggregate data and completeness data

skipEvents false | true Skip generation of event data

lastYears integer Number of last years of data to include

These requests will return immediately and initiate a server-side process.

Web API Maintenance

80

1.31. Maintenance

To perform maintenance you can interact with the maintenance resource. You should use POST or PUT as method
for requests. The following requests are available.

Period pruning will remove periods which are not linked to any data values:

/api/maintenance/periodPruning

Zero data value removal will delete zero data values linked to data elements where zero data is defined as not significant:

/api/maintenance/zeroDataValueRemoval

Drop SQL views will drop all SQL views in the database. Note that it will not delete the DHIS 2 SQL views.

/api/maintenance/dropSqlViews

Create SQL views will recreate all SQL views in the database.

/api/maintenance/createSqlViews

Category option combo update will remove obsolete and generate missing category option combos for all category
combinations:

/api/maintenance/categoryOptionComboUpdate

Cache clearing will clear the application Hibernate cache and the analytics partition caches:

/api/maintenance/cache

Re-generate organisation unit path property (can be useful if you imported org units with SQL):

/api/maintenance/ouPathUpdate

1.32. System resource

The system resource provides you with convenient information and functions. The system resource can be found at
/api/system.

1.32.1. Generate identifiers

To generate valid, random DHIS 2 identifiers you can do a GET request to this resource:

http://<server-url>/api/system/id?n=3

The n query parameter is optional and indicates how many identifiers you want to be returned with the response. The
default is to return one identifier. The response will contain a JSON object with a array named codes, similar to this:

{
 "codes": [
 "Y0moqFplrX4",
 "WI0VHXuWQuV",
 "BRJNBBpu4ki"
]
}

The DHIS 2 UID format has these requirements:

• 11 characters long.

• Alphanumeric characters only, ie. alphabetic or numeric characters (A-Za-z0-9).

Web API View system information

81

• Start with an alphabetic character (A-Za-z).

1.32.2. View system information

To get information about the current system you can do a GET request to this URL:

http://yourdomain.com/api/system/info

JSON and JSONP response formats are supported. The system info response currently includes the below properties.
Note that if the user who is requesting this resourec does not have full authority in the system then only the first seven
properties will be included, as this information is security sensitive.

{
 contextPath: "http://yourdomain.com",
 userAgent: "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/29.0.1547.62 Safari/537.36",
 version: "2.13-SNAPSHOT",
 revision: "11852",
 buildTime: "2013-09-01T21:36:21.000+0000",
 serverDate: "2013-09-02T12:35:54.311+0000",
 environmentVariable: "DHIS2_HOME",
 javaVersion: "1.7.0_06",
 javaVendor: "Oracle Corporation",
 javaIoTmpDir: "/tmp",
 javaOpts: "-Xms600m -Xmx1500m -XX:PermSize=400m -XX:MaxPermSize=500m",
 osName: "Linux",
 osArchitecture: "amd64",
 osVersion: "3.2.0-52-generic",
 externalDirectory: "/home/dhis/config/dhis2",
 databaseInfo: {
 type: "PostgreSQL",
 name: "dhis2",
 user: "dhis"
 },
 memoryInfo: "Mem Total in JVM: 848 Free in JVM: 581 Max Limit: 1333",
 cpuCores: 8
 }

To get information about the system context (contextPath and userAgent) only you can do a GET request to the below
URL. JSON and JSONP response formats are supported:

http://yourdomain.com/api/system/context

1.32.3. Check if username and password combination is correct

To check if some user credentials (a username and password combination) is correct you can make a GET request to
the following resource using basic authentication:

http://<server-url>/api/system/ping

You can detect the outcome of the authentication by inspecting the HTTP status code of the response header. The
meaning of the possible status codes are listed below. Note that this applies to Web API requests in general.

Table 1.54. HTTP Status codes

HTTP
Status code

Description Outcome

200 OK Authentication was successful

302 Found No credentials was supplied with the request - no authentication took place

401 Unauthorized The username and password combination was incorrect - authentication failed

Web API View asynchronous task status

82

1.32.4. View asynchronous task status

Several tasks which typically take a significant time to complete can be performed asynchronously. After initiating an
async task you can poll the status through the system/tasks resource by suppling the task category of interest.

When polling for the task status you need to authenticate as the same user which initiated the task. The following task
categories are supported.

Table 1.55. Task categories

Identifier Description

ANALYTICSTABLE_UPDATEGeneration of the analytics tables.

RESOURCETABLE_UPDATEGeneration of the resource tables.

MONITORING Processing of data surveillance/monitoring validation rules.

DATAVALUE_IMPORTImport of data values.

EVENT_IMPORT Import of events.

METADATA_IMPORT Import of metadata.

DATAINTEGRITY Processing of data integrity checks.

You can poll tasks through a GET request to the system tasks resource:

api/system/tasks/{task-category-id}

A request to poll for the status of a data value import task looks like this:

api/system/tasks/DATAVALUE_IMPORT

The response will provide information about the status, such as the notification level, category, time and status. The
completed property indicates whether the process is considered to be complete.

[
 {
 "uid": "hpiaeMy7wFX",
 "level": "INFO",
 "category": "DATAVALUE_IMPORT",
 "time": "2015-09-02T07:43:14.595+0000",
 "message": "Import done",
 "completed": true
 }
]

1.32.5. Get appearance information

You can retrieve the available flag icons in JSON format with a GET request:

api/system/flags

You can retrieve the available UI styles in JSON format with a GET request:

api/system/styles

1.33. Users

This section covers the user resource methods.

Web API User query

83

1.33.1. User query

The users resource offers additional query parameters beyond the standard parameters (e.g. paging). To query for users
at the users resource you can use the following parameters.

Table 1.56. User query parameters

Parameter Type Description

query Text Query value for first name, surname, username and email, case in-sensitive.

phoneNumber Text Query for phone number.

canManage false | true Filter on whether the current user can manage the returned users through the
managed user group relationships.

authSubset false | true Filter on whether the returned users have a subset of the authorities of the current
user.

lastLogin Date Filter on users who have logged in later than the given date.

inactiveMonthsNumber Filter on users who have not logged in for the given number of months.

inactiveSince Date Filter on users who have not logged in later than the given date.

selfRegistered false | true Filter on users who have self-registered their user account.

invitationStatusnone | all |
expired

Filter on user invitations, including all or expired invitations.

ou Identifier Filter on users who are associated with the organisation unit with the given identifier.

page Number The page number.

pageSize Number The page size.

A query for max 10 users with "konan" as first name or surname (case in-sensitive) who have a subset of authorities
compared to the current user:

/api/users?query=konan&authSubset=true&pageSize=10

1.33.2. User account create and update

Both creating and updating a user is supported through the web-api. The payload itself is similar to other payloads in
the web-api, so they support collection references etc. A simple example payload to create would be, the password
should be sent in plain text (remember to only use this on a SSL enabled server) and will be encrypted on the backend:

{
 "firstName": "John",
 "surname": "Doe",
 "email": "johndoe@mail.com",
 "userCredentials": {
 "username": "johndoe",
 "password: "your-password-123",
 "userRoles": [{
 "id": "Euq3XfEIEbx"
 }]
 },
 "organisationUnits": [{
 "id": "ImspTQPwCqd"
 }],
 "userGroups": [{
 "id": "vAvEltyXGbD"
 }]
}

curl -X POST -u user:pass -d @u.json -H "Content-Type: application/json" http://
server/api/users

Web API User account invitations

84

After the user is created, a Location header is sent back with the newly generated ID (you can also provide your own
using /api/system/id endpoint). The same payload can then be used to do updates, but remember to then use PUT
instead of POST and the endpoint is now /api/users/ID.

curl -X PUT -u user:pass -d @u.json -H "Content-Type: application/json" http://server/
api/users/ID

For more info about the full payload available, please see /api/schemas/user

1.33.3. User account invitations

The Web API supports inviting people to create user accounts through the invite resource. To create an invitation you
should POST a user in XML or JSON format to the invite resource. A specific username can be forced by defining
the username in the posted entity. By omitting the username, the person will be able to specify it herself. The system
will send out an invitation through email. This requires that email settings have been properly configured. The invite
resource is useful in order to securely allow people to create accounts without anyone else knowing the password or by
transferring the password in plain text. The payload to use for the invite is the same as for creating users. An example
payload in JSON looks like this:

{
 "firstName": "John",
 "surname": "Doe",
 "email": "johndoe@mail.com",
 "userCredentials": {
 "username": "johndoe",
 "userRoles": [{
 "id": "Euq3XfEIEbx"
 }]
 },
 "organisationUnits": [{
 "id": "ImspTQPwCqd"
 }],
 "userGroups": [{
 "id": "vAvEltyXGbD"
 }]
}

The user invite entity can be posted like this:

curl -d @invite.json "localhost/api/users/invite" -H "Content-Type:application/json" -
u admin:district -v

To send out invites for multiple users at the same time you must use a slightly different format. For JSON:

{
 "users": [{
 "firstName": "John",
 "surname": "Doe",
 "email": "johndoe@mail.com",
 "userCredentials": {
 "username": "johndoe",
 "userRoles": [{
 "id": "Euq3XfEIEbx"
 }]
 },
 "organisationUnits": [{
 "id": "ImspTQPwCqd"
 }]
 }, {
 "firstName": "Tom",
 "surname": "Johnson",
 "email": "tomj@mail.com",
 "userCredentials": {

Web API User replication

85

 "userRoles": [{
 "id": "Euq3XfEIEbx"
 }]
 },
 "organisationUnits": [{
 "id": "ImspTQPwCqd"
 }]
 }
]
}

To create multiple invites you can post the payload to the api/users/invites resource like this:

curl -d @invites.json "localhost/api/users/invites" -H "Content-Type:application/json"
 -u admin:district -v

There are certain requirements for user account invitations to be sent out:

• Email SMTP server must be configured properly on the server.

• The user to be invited must have specified a valid email.

• The user to be invited must not be granted user roles with critical authorities (see below).

• If username is specified it must not be already taken by another existing user.

If any of these requirements are not met the invite resource will return with a 409 Conflict status code together with
a descriptive message.

The critical authorities which cannot be granted with invites include:

• ALL

• Scheduling administration

• Set system settings

• Add, update, delete and list user roles

• Add, update, delete and view SQL views

1.33.4. User replication

To replicate a user you can use the replica resource. Replicating a user can be useful when debugging or reproducing
issues reported by a particular user. You need to provide a new username and password for the replicated user which
you will use to authenticate later. Note that you need the ALL authority to perform this action. To replicate a user you
can post a JSON payload looking like below:

{
 "username": "replica",
 "password": "Replica.1234"
}

This payload can be posted to the replica resource, where you provide the identifier of the user to replicate in the URL:

/api/users/<uid>/replica

An example of replicating a user using curl looks like this:

curl -d @replica.json "localhost/api/users/N3PZBUlN8vq/replica" -H "Content-
Type:application/json" -u admin:district -v

1.34. Current user information and associations

In order to get information about the currently authenticated user and its associations to other resources you can work
with the me resource (you can also refer to it by its old name currentUser). The current user related resources gives
your information which is useful when building clients for instance for data entry and user management. The following
describes these resources and their purpose.

Web API System settings

86

Provides basic information about the user that you are currently logged in as, including username, user credentials,
assigned organisation units:

/api/me

Gives information about currently unread messages and interpretations:

/api/me/dashboard

Lists all messages and interpretations in the inbox (including replies):

/api/me/inbox

Gives the full profile information for current user. This endpoint support both GET to retrieve profile and POST to
update profile (the exact same format is used):

/api/me/user-account

Returns the set of authorities granted to the current user:

/api/me/authorization

Returns true or false, indicating whether the current user has been granted the given <auth> authorization:

/api/me/authorization/<auth>

Lists all organisation units directly assigned to the user:

/api/me/organisationUnits

Gives all the datasets assigned to the users organisation units, and their direct children. This endpoint contains all
required information to build a form based on one of our datasets. If you want all descendants of your assigned
organisation units, you can use the query parameter includeDescendants=true :

/api/me/dataSets

Gives all the programs assigned to the users organisation units, and their direct children. This endpoint contains all
required information to build a form based on one of our datasets. If you want all descendants of your assigned
organisation units, you can use the query parameter includeDescendants=true :

/api/me/programs

Gives the data approval levels which are relenvant to the current user:

/api/me/dataApprovalLevels

1.35. System settings

You can manipulate system settings by interacting with the systemSettings resource. A system setting is a simple key-
value pair, where both the key and the value are plain text strings. To save or update a system setting you can make
a POST request to the following URL:

/api/systemSettings/my-key?value=my-val

Alternatively, you can submit the setting value as the request body, where content type is set to "text/plain". As an
example, you can use curl like this:

curl "play.dhis2.org/demo/api/systemSettings/my-key" -d "My long value" -H "Content-
Type: text/plain" -u admin:district -v

To set system settings in bulk you can send a JSON object with a property -value pair for each system setting key-
value pair using a POST request:

{
 "keyApplicationNotification": "Welcome",

Web API User settings

87

 "keyApplicationIntro": "DHIS 2",
 "keyApplicationFooter": "Read more at dhis2.org"
}

You should replace my-key with your real key and my-val with your real value. To retrieve the value for a given key
in plain text you can make a GET request to the following URL:

/api/systemSettings/my-key

Alternatively, you can specify the key as a query parameter:

/api/systemSettings?key=my-key

You can retrieve specific system settings as JSON by repeating the key query parameter:

curl "play.dhis2.org/demo/api/systemSettings?
key=keyApplicationNotification&key=keyApplicationIntro" -H "Content-Type: application/
json" -u admin:district -v

You can retrieve all system settings with a GET request:

/api/systemSettings

To delete a system setting, you can make a DELETE request to the URL similar to the one used above for retrieval.

1.36. User settings

You can manipulate user settings by interacting with the userSettings resource. A user setting is a simple key-value pair,
where both the key and the value are plain text strings. The user setting will be linked to the user who is authenticated
for the Web API request. To save or update a setting for the currently authenticated user you can make a POST request
to the following URL:

/api/userSettings/my-key?value=my-val

You can specify the user for which to save the setting explicitly with this syntax:

/api/userSettings/my-key?user=username&value=my-val

Alternatively, you can submit the setting value as the request body, where content type is set to "text/plain". As an
example, you can use curl like this:

curl "play.dhis2.org/demo/api/userSettings/my-key" -d "My long value" -H "Content-
Type: text/plain" -u admin:district -v

You should replace my-key with your real key and my-val with your real value. To retrieve the value for a given key
in plain text you can make a GET request to the following URL:

/api/userSettings/my-key

To delete a user setting, you can make a DELETE request to the URL similar to the one used above for retrieval.

1.37. Organisation units

The organisationUnits resource follows the standard conventions as other metadata resources in DHIS 2. This resource
supports some additional query parameters.

Table 1.57. Organisation units query parameters

Query parameter Description

userOnly Data capture organisation units associated with current user only.

userDataViewOnly Data view organisation units associated with current user only.

Web API Static content

88

Query parameter Description

userDataViewFallback Data view organisation units associated with current user only with fallback to data capture
organisation units.

level Organisation units at the given level in the hierarchy.

maxLevel Organisation units at the given max level or levels higher up in the hierarchy.

1.38. Static content

The staticContent resource allowes you to upload and retrieve custom logos used in DHIS2. The resource lets the user
upload a file with an associated key, which can later be retrieved using the key. Only PNG files are supported and can
only be uploaded to the "logo_banner" and "logo_front" keys.

To upload a file, send the file with a POST request to:

POST /api/staticContent/<key>

Example request to upload logo.png to the logo_front key:

curl -F "file=@logo.png;type=image/png" "aps.dhis2.org/demo/api/staticContent/
logo_front"
-X POST -H "Content-Type: multipart/form-data" -u admin:district -v

Uploading multiple files with the same key will overwrite the existing file. This way, retrieving a file for any given
key will only return the latest file uploaded.

To retrieve a logo, you can GET the following:

GET /api/staticContent/<key>

Example request to retrieve the file stored for logo_front:

curl "aps.dhis2.org/demo/api/staticContent/logo_front" -L -X GET -u admin:district -v

To use custom logos, you need to enable the corresponding system settings by setting it to true. If the corresponding
setting is false, the default logo will be served.

1.39. Configuration

To access configuration you can interact with the configuration resource. You can get XML and JSON responses
through the Accept header or by using the .json or .xml extensions. You can GET all properties of the configuration
from:

/api/configuration

You can send GET and POST requests to the following specific resources:

/api/configuration/systemId

/api/configuration/feedbackRecipients

GET /api/configuration/offlineOrganisationUnitLevel

GET /api/configuration/infrastructuralDataElements

GET /api/configuration/infrastructuralIndicators

GET /api/configuration/infrastructuralPeriodType

GET /api/configuration/selfRegistrationRole

GET /api/configuration/selfRegistrationOrgUnit

Web API Internationalization

89

GET /api/configuration/remoteServerUrl

GET /api/configuration/remoteServerUsername

For the CORS whitelist configuration you can make a POST request with an array of URLs to whitelist as payload
using "application/json" as content-type, for instance:

["www.google.com", "www.dhis2.org", "www.who.int"]

/api/configuration/corsWhitelist

For POST requests, the configuration value should be sent as the request payload as text. The following table shows
appropriate configuration values for each property.

Table 1.58. Configuration values

Configuration property Value

feedbackRecipients User group ID

offlineOrganisationUnitLevel Organisation unit level ID

infrastructuralDataElements Data element group ID

infrastructuralIndicators Indicator group ID

infrastructuralPeriodType Period type name (e.g. "Monthly")

selfRegistrationRole User role ID

selfRegistrationOrgUnit Organisation unit ID

smtpPassword SMTP email server password

remoteServerUrl URL to remote server

remoteServerUsername Username for remote server authentication

remoteServerPassword Password for remote server authentication

corsWhitelist JSON list of URLs

As an example, to set the feedback recipients user group you can invoke the following curl command:

curl "localhost/api/configuration/feedbackRecipients" -d "wl5cDMuUhmF" -H "Content-
Type:text/plain"-u admin:district -v

1.40. Internationalization

In order to retrieve key-value pairs for translated strings you can use the i18n resource. The endpoint is located at api/
i18n and the request format is a simple array of the key-value pairs:

[
 "access_denied",
 "uploading_data_notification"
]

The request must be of type POST and use application/json as content-type. An example using curl, assuming the
request data is saved as a file keys.json:

curl -d @keys.json "play.dhis2.org/demo/api/i18n" -X POST -H "Content-Type:
 application/json" -u admin:district -v

The result will look like this:

{
 "access_denied":"Access denied",
 "uploading_data_notification":"Uploading locally stored data to the server"
}

Web API SVG conversion

90

1.41. SVG conversion

The Web API provides a resource which can be used to convert SVG content into more widely used formats such
as PNG and PDF. Ideally this conversion should happen on the client side, but not all client side technologies are
capable of performing this task. Currently PNG and PDF output formats are supported. The SVG content itself should
passed with a svg query parameter, and an optional query parameter filename can be used to specify the filename of the
response attachment file. Note that the file extension should be omitted. For PNG you can send a POST request to the
following URL with Content-type application/x-www-form-urlencoded, identical to a regular HTML form submission.

api/svg.png

For PDF you can send a POST request to the following URL with Content-type application/x-www-form-urlencoded.

api/svg.pdf

Table 1.59. Query parameters

Query parameter Required Description

svg Yes The SVG content

filename No The file name for the returned attachment without file extension

1.42. Tracked entity management

Tracked entity have full CRUD (create, read, update, delete) support in the Web-API. A tracked entity only have two
required property, name and description.

{
 "name": "Name of tracked entity",
 "description": "Description of tracked entity"
}

This payload can be sent to the trackedEntities resource, both POST and PUT are supported. For deleting a tracked
entity you must use the DELETE method at the /api/trackedEntities/UID resource.

1.43. Tracked entity instance management

Tracked entity instances have full CRUD (create, read, update, delete) support in the Web-API. Together with the API
for enrollment most operations needed for working with tracked entity instances and programs are supported.

1.43.1. Creating a new tracked entity instance

For creating a new person in the system, you will be working with the trackedEntityInstances resource. A template
payload can be seen below:

{
 "trackedEntity": "tracked-entity-id",
 "orgUnit": "org-unit-id",
 "attributes": [{
 "attribute": "attribute-id",
 "value": "attribute-value"
 }]
}

For getting the IDs for relationship, attributes you can have a look at the respective resources relationshipTypes,,
trackedEntityAttributes. To create a tracked entity instance you must use the HTTP POST method. You can post the
payload the the following URL:

Web API Updating a tracked entity instance

91

/api/trackedEntityInstances

For example, let us create a new instance of a person tracked entity and specify its first name and last name attributes:

{
 "trackedEntity": "cyl5vuJ5ETQ",
 "orgUnit": "DiszpKrYNg8",
 "attributes": [
 {
 "attribute": "dv3nChNSIxy",
 "value": "Joe"
 },
 {
 "attribute": "hwlRTFIFSUq",
 "value": "Smith"
 }
]
}

To push this to the server you can use the cURL command like this:

curl -d @tei.json "play.dhis2.org/demo/api/trackedEntityInstances" -X POST -H
 "Content-Type: application/json" -u admin:district -v

1.43.2. Updating a tracked entity instance

For updating a tracked entity instance, the payload is the equal to the previous section. The difference is that you
must use the HTTP PUT method for the request when sending the payload. You will also need to append the person
identifier to the trackedEntityInstances resource in the URL like this, where <tracked-entity-instance-identifier> should
be replaced by the identifier of the tracked entity instance:

/api/trackedEntityInstances/<tracked-entity-instance-id>

1.43.3. Deleting a tracked entity instance

To delete a tracked entity instance you can make a request to the URL identifiying the tracked entity instance with the
HTTP DELETE method. The URL is equal to the one above used for update.

1.43.4. Enrolling a tracked entity instance into a program

For enrolling persons into a program, you will need to first get the identifier of the person from the
trackedEntityInstances resource. Then, you will need to get the program identifier from the programs resource. A
template payload can be seen below:

{
 "trackedEntityInstance": "ZRyCnJ1qUXS",
 "orgUnit": "ImspTQPwCqd",
 "program": "S8uo8AlvYMz",
 "dateOfEnrollment": "2013-09-17",
 "dateOfIncident": "2013-09-17"
}

This payload should be used in a POST request to the enrollments resource identified by the following URL:

/api/enrollments

For cancelling or completing an enrollment, you can make a PUT request to the enrollments resource, including the
identifier and the action you want to perform. For cancelling an enrollment for a tracked entity instance:

/api/enrollments/<enrollment-id>/cancelled

Web API Update strategies

92

For completing a enrollment for a tracked entity instance you can make a PUT request to the following URL:

/api/enrollments/<enrollment-id>/completed

For deleting a enrollment, you can make a DELETE request to the following URL:

/api/enrollments/<enrollment-id>

1.43.5. Update strategies

Two update strategies for tracked entity instance are supported: enrollment and event creation. This is useful when you
have generated an identifier on the client side and are not sure if it was created or not on the server.

Table 1.60. Available tracker strategies

Parameter Description

CREATE Create only, this is the default behavior.

CREATE_AND_UPDATE Try and match the ID, if it exist then update, if not create.

To change the parameter, please use the strategy parameter:

POST /api/trackedEntityInstances?strategy=CREATE_AND_UPDATE

1.44. Enrollment instance query

To query for tracked entity instances you can interact with the /api/enrollments resource.

1.44.1. Request syntax

Table 1.61. Tracked entity instances query parameters

Query
parameter

Description

ou Organisation unit idenfiers, separated by ";".

ouMode The mode of selecting organisation units, can be SELECTED | CHILDREN | DESCENDANTS
| ACCESSIBLE | ALL. Default is SELECTED, which refers to the selected organisation units
only. See table below for explanations.

program Program identifier. Restricts instances to being enrolled in the given program.

programStatus Status of the instance for the given program. Can be ACTIVE | COMPLETED | CANCELLED.

followUp Follow up status of the instance for the given program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the tracked entity instance.

programEndDate End date of enrollment in the given program for the tracked entity instance.

trackedEntity Tracked entity identifer. Restricts instances to the given tracked instance type.

trackedEntityInstsaneTracked entity instance identifier. Should not be used together with trackedEntity.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of pages in the paging response (implies higher
response time).

skipPaging Indicates whether paging should be ignored and all rows should be returned.

The available organisation unit selection modes are explained in the following table.

Web API Response format

93

Table 1.62. Organisation unit selection modes

Mode Description

SELECTED Organisation units defined in the request (default).

CHILDREN Immediate children, i.e. only the first level below, of the organisation units defined in the
request.

DESCENDANTS All children, i.e. at only levels below, e.g. including children of children, of the organisation
units defined in the request.

ACCESSIBLE All descendants of the data view organisation units associated with the current user. Will
fall back to data capture organisation units associated with the current user if the former
is not defined.

ALL All organisation units in the system. Requires authority.

You can specify queries with words separated by space - in that situation the system will query for each word
independently and return records where each word is contained in any attribute. A query item can be specified once
as an attribute and once as a filter if needed. The query is case insensitive. The following rules apply to the query
parameters.

• At least one organisation unit must be specified using the ou parameter (one or many), or ouMode=ALL must be
specified.

• Only one of the program and trackedEntity parameters can be specified (zero or one).

• If programStatus is specified then program must also be specified.

• If followUp is specified then program must also be specified.

• If programStartDate or programEndDate is specified then program must also be specified.

A query for all instances associated with a specific organisation unit can look like this:

api/enrollments.json?ou=DiszpKrYNg8

To constrain the response to instances which are part of a specific program you can include a program query parameter:

api/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

api/enrollments.json?
&ou=O6uvpzGd5pu&program=ur1Edk5Oe2n&programStartDate=2013-01-01&programEndDate=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity query parameter:

api/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

To constrain the response to instances of a specific tracked entity instance you can include a tracked entity instance
query parameter, in this case we are restricted it to available enrollments viewable for current user:

api/enrollments.json?ouMode=ACCESSIBLE&trackedEntityInstance=tphfdyIiVL6

By default the instances are returned in pages of size 50, to change this you can use the page and pageSize query
parameters:

api/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&page=2&pageSize=3

1.44.2. Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

• json (application/json)

• jsonp (application/javascript)

• xml (application/xml)

Web API Tracked entity instance query

94

The response in JSON/XML is in object format and can look like the following (please note that field filtering is
supported, so if you want a full view, you might want to add fields=*):

{
 "enrollments": [
 {
 "lastUpdated": "2014-03-28T05:27:48.512+0000",
 "trackedEntity": "cyl5vuJ5ETQ",
 "created": "2014-03-28T05:27:48.500+0000",
 "orgUnit": "DiszpKrYNg8",
 "program": "ur1Edk5Oe2n",
 "enrollment": "HLFOK0XThjr",
 "trackedEntityInstance": "qv0j4JBXQX0",
 "followup": false,
 "dateOfEnrollment": "2013-05-23T05:27:48.490+0000",
 "dateOfIncident": "2013-05-10T05:27:48.490+0000",
 "status": "ACTIVE"
 }
]
}

1.45. Tracked entity instance query

To query for tracked entity instances you can interact with the /api/trackedEntityInstances resource.

1.45.1. Request syntax

Table 1.63. Tracked entity instances query parameters

Query
parameter

Description

filter Attributes to use as a filter for the query. Param can be repeated any number of times. Filters can
be applied to a dimension on the format <attribute-id>:<operator>:<filter>[:<operator>:<filter>].
Filter values are case-insensitive and can be repeated together with operator any number of times.
Operators can be EQ | GT | GE | LT | LE | NE | LIKE | IN.

ou Organisation unit idenfiers, separated by ";".

ouMode The mode of selecting organisation units, can be SELECTED | CHILDREN | DESCENDANTS
| ACCESSIBLE | ALL. Default is SELECTED, which refers to the selected organisation units
only. See table below for explanations.

program Program identifier. Restricts instances to being enrolled in the given program.

programStatus Status of the instance for the given program. Can be ACTIVE | COMPLETED | CANCELLED.

followUp Follow up status of the instance for the given program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the tracked entity instance.

programEndDate End date of enrollment in the given program for the tracked entity instance.

trackedEntity Tracked entity identifer. Restricts instances to the given tracked instance type.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of pages in the paging response (implies higher
response time).

skipPaging Indicates whether paging should be ignored and all rows should be returned.

The available organisation unit selection modes are explained in the following table.

Web API Request syntax

95

Table 1.64. Organisation unit selection modes

Mode Description

SELECTED Organisation units defined in the request.

CHILDREN Immediate children, i.e. only the first level below, of the organisation units defined in the
request.

DESCENDANTS All children, i.e. at only levels below, e.g. including children of children, of the organisation
units defined in the request.

ACCESSIBLE All descendants of the data view organisation units associated with the current user. Will
fall back to data capture organisation units associated with the current user if the former
is not defined.

ALL All organisation units in the system. Requires authority.

The query is case insensitive. The following rules apply to the query parameters.

• At least one organisation unit must be specified using the ou parameter (one or many), or ouMode=ALL must be
specified.

• Only one of the program and trackedEntity parameters can be specified (zero or one).

• If programStatus is specified then program must also be specified.

• If followUp is specified then program must also be specified.

• If programStartDate or programEndDate is specified then program must also be specified.

• Filter items can only be specified once.

A query for all instances associated with a specific organisation unit can look like this:

api/trackedEntityInstances.json?ou=DiszpKrYNg8

To query for instances using one attribute with a filter and one attribute without a filter, with one organisation unit
using the descendants organisation unit query mode:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&filter=AMpUYgxuCaE&ou=DiszpKrYNg8;yMCshbaVExv

A query for instances where one attribute is included in the response and one attribute us used as a filter:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&filter=AMpUYgxuCaE:LIKE:Road&ou=DiszpKrYNg8

A query where multiple operand and filters are specified for a filter item:

api/trackedEntityInstances.json?
ou=DiszpKrYNg8&program=ur1Edk5Oe2n&filter=lw1SqmMlnfh:GT:150:LT:190

To query on an attribute using multiple values in an IN filter:

api/trackedEntityInstances.json?
ou=DiszpKrYNg8&filter=dv3nChNSIxy:IN:Scott;Jimmy;Santiago

To constrain the response to instances which are part of a specific program you can include a program query parameter:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&program=ur1Edk5Oe2n
&programStartDate=2013-01-01&programEndDate=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity query parameter:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

Web API Response format

96

By default the instances are returned in pages of size 50, to change this you can use the page and pageSize query
parameters:

api/trackedEntityInstances.json?
filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&page=2&pageSize=3

You can use a range of operators for the filtering:

Table 1.65. Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

1.45.2. Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

• json (application/json)

• jsonp (application/javascript)

• xml (application/xml)

The response in JSON/XML is in object format and can look like the following (please note that field filtering is
supported, so if you want a full view, you might want to add fields=*):

{
 "trackedEntityInstances": [
 {
 "lastUpdated": "2014-03-28 12:27:52.399",
 "trackedEntity": "cyl5vuJ5ETQ",
 "created": "2014-03-26 15:40:19.997",
 "orgUnit": "ueuQlqb8ccl",
 "trackedEntityInstance": "tphfdyIiVL6",
 "relationships": [],
 "attributes": [
 {
 "displayName": "Address",
 "attribute": "AMpUYgxuCaE",
 "type": "string",
 "value": "2033 Akasia St"
 },
 {
 "displayName": "TB number",
 "attribute": "ruQQnf6rswq",
 "type": "string",
 "value": "1Z 989 408 56 9356 521 9"
 },
 {
 "displayName": "Weight in kg",
 "attribute": "OvY4VVhSDeJ",
 "type": "number",
 "value": "68.1"
 },

Web API Response format

97

 {
 "displayName": "Email",
 "attribute": "NDXw0cluzSw",
 "type": "string",
 "value": "LiyaEfrem@armyspy.com"
 },
 {
 "displayName": "Gender",
 "attribute": "cejWyOfXge6",
 "type": "optionSet",
 "value": "Female"
 },
 {
 "displayName": "Phone number",
 "attribute": "P2cwLGskgxn",
 "type": "phoneNumber",
 "value": "085 813 9447"
 },
 {
 "displayName": "First name",
 "attribute": "dv3nChNSIxy",
 "type": "string",
 "value": "Liya"
 },
 {
 "displayName": "Last name",
 "attribute": "hwlRTFIFSUq",
 "type": "string",
 "value": "Efrem"
 },
 {
 "code": "Height in cm",
 "displayName": "Height in cm",
 "attribute": "lw1SqmMlnfh",
 "type": "number",
 "value": "164"
 },
 {
 "code": "City",
 "displayName": "City",
 "attribute": "VUvgVao8Y5z",
 "type": "string",
 "value": "Kranskop"
 },
 {
 "code": "State",
 "displayName": "State",
 "attribute": "GUOBQt5K2WI",
 "type": "number",
 "value": "KwaZulu-Natal"
 },
 {
 "code": "Zip code",
 "displayName": "Zip code",
 "attribute": "n9nUvfpTsxQ",
 "type": "number",
 "value": "3282"
 },
 {
 "code": "Mother maiden name",
 "displayName": "Mother maiden name",
 "attribute": "o9odfev2Ty5",
 "type": "string",

Web API Tracked entity instance grid query

98

 "value": "Gabriel"
 },
 {
 "code": "National identifier",
 "displayName": "National identifier",
 "attribute": "AuPLng5hLbE",
 "type": "string",
 "value": "465700042"
 },
 {
 "code": "Occupation",
 "displayName": "Occupation",
 "attribute": "A4xFHyieXys",
 "type": "string",
 "value": "Biophysicist"
 },
 {
 "code": "Company",
 "displayName": "Company",
 "attribute": "kyIzQsj96BD",
 "type": "string",
 "value": "Sav-A-Center"
 },
 {
 "code": "Vehicle",
 "displayName": "Vehicle",
 "attribute": "VHfUeXpawmE",
 "type": "string",
 "value": "2008 Citroen Picasso"
 },
 {
 "code": "Blood type",
 "displayName": "Blood type",
 "attribute": "H9IlTX2X6SL",
 "type": "string",
 "value": "B-"
 },
 {
 "code": "Latitude",
 "displayName": "Latitude",
 "attribute": "Qo571yj6Zcn",
 "type": "string",
 "value": "-30.659626"
 },
 {
 "code": "Longitude",
 "displayName": "Longitude",
 "attribute": "RG7uGl4w5Jq",
 "type": "string",
 "value": "26.916172"
 }
]
 }
]
}

1.46. Tracked entity instance grid query

To query for tracked entity instances you can interact with the /api/trackedEntityInstances/grid resource. There are two
types of queries: One where a query query parameter and optionally attribute parameters are defined, and one where

Web API Request syntax

99

attribute and filter parameters are defined. This endpoint uses a more compact "grid" format, and is an alternative to
the query in the previous section.

1.46.1. Request syntax

Table 1.66. Tracked entity instances query parameters

Query
parameter

Description

query Query string. Attribute query parameter can be used to define which attributes to include in the
response. If no attributes but a program is defined, the attributes from the program will be used.
If no program is defined, all attributes will be used. There are two formats. The first is a plan
query string. The second is on the format <operator>:<query>. Operators can be EQ | LIKE. EQ
implies exact matches on words, LIKE implies partial matches on words. The query will be split
on space, where each word will form a logical AND query.

attribute Attributes to be included in the response. Can also be used a filter for the query. Param
can be repeated any number of times. Filters can be applied to a dimension on the format
<attribute-id>:<operator>:<filter>[:<operator>:<filter>]. Filter values are case-insensitive and
can be repeated together with operator any number of times. Operators can be EQ | GT | GE |
LT | LE | NE | LIKE | IN. Filters can be omitted in order to simply include the attribute in the
response without any constraints.

filter Attributes to use as a filter for the query. Param can be repeated any number of times. Filters can
be applied to a dimension on the format <attribute-id>:<operator>:<filter>[:<operator>:<filter>].
Filter values are case-insensitive and can be repeated together with operator any number of times.
Operators can be EQ | GT | GE | LT | LE | NE | LIKE | IN.

ou Organisation unit idenfiers, separated by ";".

ouMode The mode of selecting organisation units, can be SELECTED | CHILDREN | DESCENDANTS
| ACCESSIBLE | ALL. Default is SELECTED, which refers to the selected organisation units
only. See table below for explanations.

program Program identifier. Restricts instances to being enrolled in the given program.

programStatus Status of the instance for the given program. Can be ACTIVE | COMPLETED | CANCELLED.

followUp Follow up status of the instance for the given program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the tracked entity instance.

programEndDate End date of enrollment in the given program for the tracked entity instance.

trackedEntity Tracked entity identifer. Restricts instances to the given tracked instance type.

eventStatus Status of any event associated with the given program and the tracked entity instance. Can be
ACTIVE | COMPLETED | VISITED | SCHEDULED | OVERDUE | SKIPPED.

eventStartDate Start date of event associated with the given program and event status.

eventEndDate End date of event associated with the given program and event status.

skipMeta Indicates whether meta data for the response should be included.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of pages in the paging response (implies higher
response time).

skipPaging Indicates whether paging should be ignored and all rows should be returned.

The available organisation unit selection modes are explained in the following table.

Web API Request syntax

100

Table 1.67. Organisation unit selection modes

Mode Description

SELECTED Organisation units defined in the request.

CHILDREN Immediate children, i.e. only the first level below, of the organisation units defined in the
request.

DESCENDANTS All children, i.e. at only levels below, e.g. including children of children, of the organisation
units defined in the request.

ACCESSIBLE All descendants of the data view organisation units associated with the current user. Will
fall back to data capture organisation units associated with the current user if the former
is not defined.

ALL All organisation units in the system. Requires authority.

Note that you can specify attributes with filters for constraining the instances to return, or attributes without filters in
order to include the attribute in the response without any constraints. Attributes will be included in the response, while
filters will only be used as criteria.

Certain rules apply to which attributes are defined when no attributes are specified in the request:

• If not specifying a program, the attributes defined to be displayed in lists with no program will be included in the
response.

• If specifying a program, the attributes linked to the program will be included in the response.

You can specify queries with words separated by space - in that situation the system will query for each word
independently and return records where each word is contained in any attribute. A query item can be specified once
as an attribute and once as a filter if needed. The query is case insensitive. The following rules apply to the query
parameters.

• At least one organisation unit must be specified using the ou parameter (one or many), or ouMode=ALL must be
specified.

• Only one of the program and trackedEntity parameters can be specified (zero or one).

• If programStatus is specified then program must also be specified.

• If followUp is specified then program must also be specified.

• If programStartDate or programEndDate is specified then program must also be specified.

• If eventStatus is specified then eventStartDate and eventEndDate must also be specified.

• A query cannot be specified together with filters.

• Attribute items can only be specified once.

• Filter items can only be specified once.

A query for all instances associated with a specific organisation unit can look like this:

api/trackedEntityInstances/grid.json?ou=DiszpKrYNg8

A query on all attributes for a specific value and organisation unit, using an exact word match:

api/trackedEntityInstances/grid.json?query=scott&ou=DiszpKrYNg8

A query on all attributes for a specific value, using a partial word match:

api/trackedEntityInstances/grid.json?query=LIKE:scott&ou=DiszpKrYNg8

You can query on multiple words separated by the the URL character for space which is %20, will use a logical AND
query for each word:

api/trackedEntityInstances/grid.json?query=isabel%20may&ou=DiszpKrYNg8

Web API Request syntax

101

A query where the attributes to include in the response are specified:

api/trackedEntityInstances/grid.json?
query=isabel&attribute=dv3nChNSIxy&attribute=AMpUYgxuCaE&ou=DiszpKrYNg8

To query for instances using one attribute with a filter and one attribute without a filter, with one organisation unit
using the descendants organisation unit query mode:

api/trackedEntityInstances/grid.json?
attribute=zHXD5Ve1Efw:EQ:A&attribute=AMpUYgxuCaE&ou=DiszpKrYNg8;yMCshbaVExv

A query for instances where one attribute is included in the response and one attribute us used as a filter:

api/trackedEntityInstances/grid.json?
attribute=zHXD5Ve1Efw:EQ:A&filter=AMpUYgxuCaE:LIKE:Road&ou=DiszpKrYNg8

A query where multiple operand and filters are specified for a filter item:

api/trackedEntityInstances/grid.json?
ou=DiszpKrYNg8&program=ur1Edk5Oe2n&filter=lw1SqmMlnfh:GT:150:LT:190

To query on an attribute using multiple values in an IN filter:

api/trackedEntityInstances/grid.json?
ou=DiszpKrYNg8&attribute=dv3nChNSIxy:IN:Scott;Jimmy;Santiago

To constrain the response to instances which are part of a specific program you can include a program query parameter:

api/trackedEntityInstances/grid.json?
filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

api/trackedEntityInstances/grid.json?filter=zHXD5Ve1Efw:EQ:A
&ou=O6uvpzGd5pu&program=ur1Edk5Oe2n
&programStartDate=2013-01-01&programEndDate=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity query parameter:

api/trackedEntityInstances/grid.json?attribute=zHXD5Ve1Efw:EQ:A
&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

By default the instances are returned in pages of size 50, to change this you can use the page and pageSize query
parameters:

api/trackedEntityInstances/grid.json?
attribute=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu&ouMode=DESCENDANTS&page=2&pageSize=3

To query for instances which have events of a given status within a given time span:

api/trackedEntityInstances/grid.json?ou=O6uvpzGd5pu
&program=ur1Edk5Oe2n&eventStatus=LATE_VISIT
&eventStartDate=2014-01-01&eventEndDate=2014-09-01

You can use a range of operators for the filtering:

Table 1.68. Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

Web API Response format

102

Operator Description

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

1.46.2. Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

• json (application/json)

• jsonp (application/javascript)

• xml (application/xml)

• csv (application/csv)

• xls (application/vnd.ms-excel)

The response in JSON comes is in a tabular format and can look like the following. The headers section describes the
content of each column. The instance, created, last updated, org unit and tracked entity columns are always present.
The following columns correspond to attributes specified in the query. The rows section contains one row per instance.

{
 "headers": [{
 "name": "instance",
 "column": "Instance",
 "type": "java.lang.String"
 }, {
 "name": "created",
 "column": "Created",
 "type": "java.lang.String"
 }, {
 "name": "lastupdated",
 "column": "Last updated",
 "type": "java.lang.String"
 }, {
 "name": "ou",
 "column": "Org unit",
 "type": "java.lang.String"
 }, {
 "name": "te",
 "column": "Tracked entity",
 "type": "java.lang.String"
 }, {
 "name": "zHXD5Ve1Efw",
 "column": "Date of birth type",
 "type": "java.lang.String"
 }, {
 "name": "AMpUYgxuCaE",
 "column": "Address",
 "type": "java.lang.String"
 }],
 "metaData": {
 "names": {
 "cyl5vuJ5ETQ": "Person"
 }
 },
 "width": 7,
 "height": 7,
 "rows": [

Web API Email

103

 ["yNCtJ6vhRJu", "2013-09-08 21:40:28.0", "2014-01-09 19:39:32.19",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "21 Kenyatta Road"],
 ["fSofnQR6lAU", "2013-09-08 21:40:28.0", "2014-01-09 19:40:19.62",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "56 Upper Road"],
 ["X5wZwS5lgm2", "2013-09-08 21:40:28.0", "2014-01-09 19:40:31.11",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "56 Main Road"],
 ["pCbogmlIXga", "2013-09-08 21:40:28.0", "2014-01-09 19:40:45.02",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "12 Lower Main Road"],
 ["WnUXrY4XBMM", "2013-09-08 21:40:28.0", "2014-01-09 19:41:06.97",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "13 Main Road"],
 ["xLNXbDs9uDF", "2013-09-08 21:40:28.0", "2014-01-09 19:42:25.66",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "14 Mombasa Road"],
 ["foc5zag6gbE", "2013-09-08 21:40:28.0", "2014-01-09 19:42:36.93",
 "DiszpKrYNg8", "cyl5vuJ5ETQ", "A", "15 Upper Hill"]
]
}

1.47. Email

The Web API features a resource for sending emails. For emails to be sent it is required that the SMTP configuration
has been properly set up and that a system notification email address for the DHIS 2 instance has been defined. You
can set SMTP settings from the email settings screen and system notification email address from the general settings
screen in DHIS 2.

1.47.1. System notification

The notification resource lets you send system email notifications with a given subject and text in JSON or XML. The
email will be sent to the notification email address as defined in the DHIS2 general system settings:

{
 "subject": "Integrity check summary",
 "text": "All checks ran successfully"
}

You can send a system email notification by posting to the notification resource like this:

curl -d @email.json "localhost/api/email/notification" -X POST -H "Content-
Type:application/json" -u admin:district -v

1.47.2. Test message

To test whether the SMTP setup is correct by sending a test email to yourself you can interact with the test resource.
To send test emails it is required that your DHIS 2 user account has a valid email address associated with it. You can
send a test email like this:

curl "localhost/api/email/test" -X POST -H "Content-Type:application/json" -u
 admin:district -v

1.48. Sharing

The sharing solution allows you to share most objects in the system with specific user groups and to define whether
objects should be public and private. To get and set sharing for objects you can interact with the sharing resource. To
request the sharing status for an object use a GET request to:

api/sharing?type=dataElement&id=fbfJHSPpUQD

You can define the sharing status for an object using the same URL with a POST request, where the payload in JSON
format looks like this:

Web API Scheduling

104

{
 "meta": {
 "allowPublicAccess": true,
 "allowExternalAccess": false
 },
 "object": {
 "id": "fbfJHSPpUQD",
 "name": "ANC 1st visit",
 "publicAccess": "rw------",
 "externalAccess": false,
 "user": {},
 "userGroupAccesses": [
 {
 "id": "hj0nnsVsPLU",
 "access": "rw------"
 },
 {
 "id": "qMjBflJMOfB",
 "access": "r-------"
 }
]
 }
}

In this example, the payload defines the object to have read-write public access, no external access (without login),
read-write access to one user group and read-only access to another user group. You can submit this to the sharing
resource using curl:

curl -d @sharing.json "localhost/api/sharing?type=dataElement&id=fbfJHSPpUQD" -H
 "Content-Type:application/json" -u admin:district -v

1.49. Scheduling

To schedule tasks to run at fixed intervals you can interact with the scheduling resource. To configure tasks you can
do a POST request to the following resource:

/api/scheduling

The payload in JSON format is described below.

{
 "resourceTableStrategy": "allDaily",
 "analyticsStrategy": "allDaily",
 "monitoringStrategy": "allDaily",
 "dataSynchStrategy": "enabled"
}

An example using curl:

curl "localhost/dhis/api/scheduling" -d @scheduling.json -X POST -u admin:district -H
 "Content-Type:application/json" -v

The table below lists available task strategies.

Table 1.69. Task strategies

Task Strategies

Resource table task allDaily | allEvery15Min

Analytics task allDaily | last3YearsDaily

Monitoring allDaily

Web API Schema Resource

105

Task Strategies

Data synch task enabled

1.50. Schema Resource

A new resource was included in DHIS 2.15 which can be used to introspect all available DXF2 classes, this resource
can be found on /api/schemas and for a specific resource, you can have a look at /api/schemas/TYPE.

Example 1: Get all available schemas in XML:

GET /api/schemas.xml

Example 2: Get all available schemas in JSON:

GET /api/schemas.json

Example 3: Get JSON schema for a specific class:

GET /api/schemas/dataElement.json

1.51. UI customization with Javascript and CSS files

To customize the UI of the DHIS 2 application you can insert custom Javascript and CSS styles through the files
resource. The Javascript and CSS content inserted through this resource will be loaded by the DHIS 2 web application.
This can be particularly useful in certain situations:

• Overriding the CSS styles of the DHIS 2 application, such as the login page or main page.

• Defining Javascript functions which are common to several custom data entry forms and HTML-based reports.

• Including CSS styles which are used in custom data entry forms and HTML-based reports.

To insert Javascript from a file called script.js you can interact with the files/script resource with a POST-request:

curl --data-binary @script.js "localhost/api/files/script" -H "Content-
Type:application/javascript" -u admin:district -v

Note that we use the --data-binary option to preserve formatting of the file content. You can fetch the Javascript content
with a GET-request:

localhost/api/files/script

To insert CSS from a file called style.css you can interact with the files/style resource with a POST-request:

curl --data-binary @style.css "localhost/api/files/style" -H "Content-Type:text/css" -
u admin:district -v

You can fetch the CSS content with a GET-request:

localhost/api/files/style

1.52. Synchronization

This section covers pull and push of data and metadata.

1.52.1. Data push

To initiate a data push to a remote server one must first configure the URL and credentials for the relevant server from
System settings > Synchronization, then make a POST request to the following resource:

Web API Metadata pull

106

api/synchronization/dataPush

1.52.2. Metadata pull

To initiate a metadata pull from a remote JSON document you can make a POST request with a url query parameter
to the following resource:

api/synchronization/metadataPull?url=<url-to-json-document>

1.53. FRED API

DHIS 2 from version 2.11 implements support for the current draft of the FRED API version 1.0. The project defines
itself as “open standard for sharing and updating health facility data”. The full specification, including representation
format and basic usage, can be found at http://facilityregistry.org/.

Since version 1.0 is not finalized there are parts of the current specification that has not been implemented as we found
it not to be in a stable enough state. Most notably we do not currently support sorting (we do however sort on name
by default) and filtering of facilities.

The entry point for the implementation can be found at http://<server-url>/api-fred and the current version is located
at http://<server-url>/api-fred/v1.

This section will give some simple examples of using the API.

Get all facilities:

curl -u username:password -X GET http://<server-url>/api-fred/v1/facilities.json

Get a specific facility based on either identifier or UUID:

curl -u username:password -X GET http://<server-url>/api-fred/v1/facilities/<id>.json
curl -u username:password -X GET http://<server-url>/api-fred/v1/facilities/
<uuid>.json

Create a new facility:

curl -u username:password -X POST -d @new_facility.json
 -H "Content-Type: application/json" http://<server-url>/api-fred/v1/facilities.json

Update a facility:

curl -u username:password -X POST -d @updated_facility.json
 -H "Content-Type: application/json" http://<server-url>/api-fred/v1/facilities/
<id>.json

curl -u username:password -X POST -d @updated_facility.json
 -H "Content-Type: application/json" http://<server-url>/api-fred/v1/facilities/
<uuid>.json

1.54. Data store

Using the dataStore resource, developers can store arbitrary data for their apps in a key-value structure. Access to a
datastore is limited to the user's access to the corresponding app. For example a user with access to the "sampleApp"
application will also be able to use the sampleApp namespace in the datastore.

1.54.1. Get keys and namespaces

For a list of all existing namespaces:

http://facilityregistry.org/

Web API Create and update values

107

GET /api/dataStore

Example curl request for listing:

curl "play.dhis2.org/demo/api/dataStore" -X GET -u admin:district -v

Example response:

[
 "foo",
 "bar"
]

For a list of all keys in a namespace:

GET /api/dataStore/<namespace>

Example curl request for listing:

curl "play.dhis2.org/demo/api/dataStore/foo" -X GET -u admin:district -v

Example response:

[
 "key_1",
 "key_2"
]

To retrieve a value for an existing key from a namespace:

GET /api/dataStore/<namespace>/<key>

Example curl request for retrieval:

curl "play.dhis2.org/demo/api/dataStore/foo/key_1" -X GET -u admin:district -v

Example response:

{
 "foo":"bar"
}

To retrieve meta-data for en existing key from a namespace:

GET /api/dataStore/

Example curl request for retrieval:

curl "play.dhis2.org/demo/api/dataStore/foo/key_1/metaData" -X GET -u admin:district -
v

Example response:

{
 "created": "...",
 "user": {...},
 "namespace": "foo",
 "key": "key_1"
}

1.54.2. Create and update values

To create a new key and value for a namespace:

POST /api/dataStore/<namespace>/<key>

Web API Delete keys

108

Example curl request for create, assuming a valid json payload:

curl "play.dhis2.org/demo/api/dataStore/foo/key_1" -X POST -d "{\"foo\":\"bar\"}" -u
 admin:district -v

Example response:

{
 "httpStatus": "OK",
 "httpStatusCode": 201,
 "status": "OK",
 "message": "Key 'key_1' created."
 }

To update a key that exists in a namespace:

PUT /api/dataStore/<namespace>/<key>

Example curl request for update, assuming valid JSON payload:

curl "play.dhis2.org/demo/api/dataStore/foo/key_1" -X PUT -d "[1, 2, 3]" -H "Content-
Type: application/json" -u admin:district -v

Example response:

{
 "httpStatus": "OK",
 "httpStatusCode": 200,
 "status": "OK",
 "message": "Key 'key_1' updated."
 }

1.54.3. Delete keys

To delete an existing key from a namespace:

DELETE /api/dataStore/<namespace>/<key>

Example curl request for delete:

curl "play.dhis2.org/demo/api/dataStore/foo/key_1" -X DELETE -u admin:district -v

Example response:

{
 "httpStatus": "OK",
 "httpStatusCode": 200,
 "status": "OK",
 "message": "Key 'key_1' deleted from namespace 'foo'."
 }

To delete all keys in a namespace:

DELETE /api/dataStore/<namespace>

Example curl request for delete:

curl "play.dhis2.org/demo/api/dataStore/foo" -X DELETE -u admin:district -v

Example response:

{
 "httpStatus": "OK",
 "httpStatusCode": 200,
 "status": "OK",

Web API Metadata repository

109

 "message": "Namespace 'foo' deleted."
 }

1.55. Metadata repository

DHIS 2 provides a metadata repository containing metadata packages with various content. A metadata package is a

To retrieve an index over available metadata packages you can issue a GET request to the metadataRepo resource:

GET /api/metadatRepo

A metadata package entry contains information about the package and a URL to the relevant package. A metadata
package is simply a DXF metadata file. An index could look like this:

{
 "packages": [{
 "id": "sierre-leone-demo",
 "name": "Sierra Leone demo",
 "description": "Sierra Leone demo database",
 "version": "0.1",
 "href": "https://raw.githubusercontent.com/dhis2/dhis2-metadata-repo/master/
repo/221/sierra-leone-demo/metadata.json"
 },
 {
 "id": "trainingland-org-units",
 "name": "Trainingland organisation units",
 "description": "Trainingland organisation units with four levels",
 "version": "0.1",
 "href": "https://raw.githubusercontent.com/dhis2/dhis2-metadata-repo/master/
repo/221/trainingland-org-units/metadata.json"
 }
]
}

A client can follow the URLs in a RESTful fashion and install a metadata package by supplying POST request as text/
plain with the metadata package URL as the payload to the metadataPull resource:

POST /api/metadataPull

An example curl command looks like this:

curl "localhost:8080/api/synchronization/metadataPull" -X POST
-d "https://raw.githubusercontent.com/dhis2/dhis2-metadata-repo/master/repo/221/
trainingland-org-units/metadata.json"
-H "Content-Type:text/plain" -u admin:district -v

Apps Purpose of packaged Apps

111

Chapter 2. Apps
A packaged app is an Open Web App that has all of its resources (HTML, CSS, JavaScript, app manifest, and so on)
contained in a zip file. It can be uploaded to a DHIS 2 installation directly through the user interface at runtime. A
packaged app is a ZIP file with an app manifest in its root directory. The manifest must be named manifest.webapp.
A throrough description of apps can be obtained here.

2.1. Purpose of packaged Apps

The purpose of packaged apps is to extend the web interface of DHIS 2, without the need to modify the source code of
DHIS 2 itself. A system deployment will often have custom and unique requirements. The apps provide a convenient
extension point to the user interface. Through apps, you can complement and customize the DHIS 2 core functionality
with custom solutions in a loosely coupled and clean manner.

Apps do not have permissions to interact directly with DHIS 2 Java API. Instead, apps are expected to use functionality
and interact with the DHIS 2 services and data by utilizing the DHIS 2 Web API.

2.2. Creating Apps

DHIS 2 apps are constructed with HTML, JavaScript and CSS files, similar to any other web application. Apps also
need a special file called manifest.webapp which describes the contents of the app. This file should be in the format
specified by the W3C Manifest for Web Applications. A basic example of the manifest.webapp is shown below:

{
 "version": "0.1",
 "name": "My App",
 "description": "My App is a Packaged App",
 "launch_path": "/index.html",
 "icons": {
 "16": "/img/icons/mortar-16.png",
 "48": "/img/icons/mortar-48.png",
 "128": "/img/icons/mortar-128.png"
 },
 "developer": {
 "name": "Me",
 "url": "http://me.com"
 },
 "default_locale": "en",
 "activities": {
 "dhis": {
 "href": "*"
 }
 }
}

The manifest.webapp file must be located at the root of the project. Among the properties, the icons#48 property is
used for the icon that is displayed on the list of apps that are installed on a DHIS 2 instance. The activities property is
an dhis-specific extension meant to differentiate between a standard Open Web App and an app that can be installed
in DHIS 2. The * value for href is converted to the appropriate URL when the app is uploaded and installed in DHIS
2. This value can then be used by the application's JavaScript and HTML files to make calls to the DHIS 2 Web API
and identify the correct location of DHIS 2 server on which the app has been installed. To clarify, the activities part
will look similar to this after the app has been installed:

"activities": {
 "dhis": {
 "href": "http://play.dhis2.org/demo"

https://developer.mozilla.org/en-US/docs/Open_Web_apps_and_Web_standards
http://www.w3.org/2008/webapps/manifest/
https://developer.mozilla.org/en-US/Apps/Quickstart
http://www.w3.org/2008/webapps/manifest/

Apps Configuring DHIS 2 for Apps Installation

112

 }
 }

To read the JSON structure into Javascript, you can use a regular AJAX request and parse the JSON into an object.
Most Javascript libraries provide some support, for instance with jQuery it can be done like this:

$.getJSON("manifest.webapp", function(json) {
 var apiBaseUrl = json.activities.dhis.href + "/api";
});

The app can contain HTML, Javascript, CSS, images and other files whic may be required to support it . The file
structure could look something like this:

/
/manifest.webapp #manifest file (mandatory)
/css/ #css stylesheets (optional)
/img/ #images (optional)
/js/ #javascripts (optional)

Note that it is only the manifest.webapp file which must be placed in the root. It is up the developer to organize
CSS, images and Javascript files inside the app as needed.

All the files in the project should be compressed into a standard zip archive. Note that the manifest.webapp file must
be located on the root of the zip archive (do not include a parent directory in the archive). The zip archive can then
be installed into DHIS 2 as you will see in the next section.

2.3. Configuring DHIS 2 for Apps Installation

The App Manager is found under Services # Apps. If your logged in user has permissions to view and edit settings
you will see the Settings link in the left menu.

The following settings can be configured:

1. App Installation Folder: The folder on the file system where apps are unpacked. By default this is under the expanded
DHIS folder suffixed by /apps. If you like to install your apps in another location, say www folder of Apache 2, you
can specify the absolute path to that directory on the server, making your apps to be unpacked at that location.

2. App Base URL: The URL through which the apps can be found on the Web. By default this is the same as your
DHIS 2 URL suffixed by /apps. If you are installing apps through a different web server you need to provide the
full URL for that web server.

2.4. Installing Apps into DHIS 2

Apps can be installed by uploading zip file into the App Manager. In, Services # Apps, click on the App Store menu item.

Apps Launching Apps

113

The app can be uploaded by pressing the Browse button and after selecting the zip package, the file is uploaded
automatically and installed in DHIS 2. You can also browse through apps in the DHIS 2 app store and download apps
from there. The DHIS 2 app store allows for app searching, reviewing, commenting, requesting features, rating on the
apps by the community.

2.5. Launching Apps

After installation, your apps will be integrated with the menu system and can be accessed under services and from
the module overview page. It can also be accessed from the home page of the apps module. Click on an app in the
list in order to launch it.

2.6. Web-API for Apps

From version 2.14 there is also additional support for apps through the web-api. The /api/apps endpoint can be used
for installing, deleting and listing apps. The app key is derived from the name of the ZIP archive, exluding the file
extension.

You can read the keys for apps by listing all apps from the apps resource and look for the key property. To list all
installed apps in JSON:

curl -X GET -u user:pass -H "Accept: application/json" http://server.com/api/apps

You can also simply point your web browser to the resource URL:

http://server.com/api/apps

To install an app, the following command can be issued:

curl -X POST -u user:pass -F file=@app.zip http://server.com/api/apps

To delete an app, you can issue the following command:

curl -X DELETE -u user:pass http://server.com/api/apps/<app-key>

To force a reload of currently installed apps, you can issue the following command. This is useful if you added a file
manually directly to the file system, instead of uploading through the DHIS 2 user interface.

https://www.dhis2.org/appstore

Apps Adding the DHIS 2 menu to your app

114

curl -X PUT -u user:pass http://server.com/api/apps

To let DHIS 2 serve apps from the Web API make sure to set the "App base URL" to point to the apps resource, i.e.:

http://server.com/api/apps

To set the apps configuration you can make a POST request to the config resourec with a JSON payload:

{
 "appFolderPath": "/home/dhis/config/apps",
 "appBaseUrl": "http://server.com/api/apps"
}

curl -X POST -u user:pass -d @config.json http://server.com/api/apps/config

To restore the default app settings you can make a DELETE request to the config resource:

curl -X DELETE -u user:pass http://server.com/api/apps/config

Note that by default apps will be served through the apps Web API resource, and the file system folder will be
DHIS2_HOME/apps. These systems should be fine for most situations.

2.7. Adding the DHIS 2 menu to your app

In order to maintain a uniform appearance within DHIS 2 it is possible to add your app's icon to the top menu. To
begin, we start with a screenshot of the top-menu of the DHIS 2 user interface, where your app's icon will be placed.

The first step is to adding the menu is including the style-sheets and scripts that are required. All JavaScript files are
found in /dhis-web-commons/javascripts/dhis2/ while the CSS files are found in /dhis-web-commons/
font-awesome/css/font-awesome.min.css and /dhis-web-commons/css/menu.css

The following list provides a description of each file:

Scripts:

• jquery.min.js / jqLite / angular.element : One of the mentioned libraries needs to be present. DHIS
2 employs a stripped-down version of jqLite that is present in Angular for the menu. This makes it compatible
with jqLite and jQuery.

Apps Adding the DHIS 2 menu to your app

115

• dhis2.translate.js : Translate script that translates menu text to your current dhis language setting

• dhis2.menu.js : Menu logic that deals with all the ordering, searching of menu items etc.

• dhis2/dhis2.menu.ui.js : Menu ui code that has all the menu user interface related code for scrolling, shortcuts,
HTML markup etc.

Stylesheets:

• font-awesome.min.css : Used for various icons in the menu.

• menu.css : The CSS used for the menu.

• dhis2.translate.js : Translate script that translates menu text to your current DHIS2 language setting

For a app that will run using the same URL structure as the normal DHIS2 apps, only the JavaScript files and style-
sheets are required. If your app is running using a different URL structure than the default one, you will need to specify
a base URL before including the menu scripts. Including the scripts and style-sheets would look something like the
following:

<!-- DHIS2 Settings initialization for a baseUrl that is used for the menu -->
<script>
 window.dhis2 = window.dhis2 || {};
 dhis2.settings = dhis2.settings || {};
 dhis2.settings.baseUrl = 'dhis';
</script>

<!-- Menu scripts -->
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.translate.js">
</script>
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.menu.js">
</script>
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.menu.ui.js"></script>

<!-- Stylesheets related to the menu -->
<link type="text/css" rel="stylesheet" href="./dhis-web-commons/font-awesome/css/font-
awesome.min.css"/>
<link type="text/css" rel="stylesheet" media="screen" href="./dhis-web-commons/css/
menu.css">

To clarify, the following part will initialize some variables. If you do not use any other DHIS2 libraries these will
not be set and therefore will have to be set by you first. After that the third line specifies a base URL of where your
DHIS 2 instance is running on your web server. For example: dhis in this case means the server is running at http://
localhost:8080/dhis/. Note that you will only have to specify the part after the web address. So if your instance is
running at http://www.example.com/myInstance/ you would only specify myInstance

<!-- Example setting for myInstance -->
<script>
window.dhis2 = window.dhis2 || {};
dhis2.settings = dhis2.settings || {};
dhis2.settings.baseUrl = 'myInstance';
</script>

The above will only include the necessary scripts to be able to show the menu. To actually make it show up we have
two possibilities. The first one is using a basic <div> element with an id attribute.

<div id="dhisDropDownMenu"></div>

An alternative is available when your application uses angular. We have included a directive to show the menu. This
would be used as follows:

<div d2-menu></div>

Apps Adding the DHIS 2 menu to your app

116

The element type in this case does not really matter. As long as you include the d2-menu directive. To be able to use
the menu directive you would also have to include the directive in your angular app. The angular module containing
the directive is called d2Menu.

'use strict';

var appMenu = angular.module('appMenu',
 ['ngRoute',
 'ngCookies',
 'd2Menu']);

The minimum amount of code to show the menu is shown below. You could use this as a starting reference.

<!DOCTYPE html>
<html ><!--ng-app="appMenu"> -->
 <head>
 <title>Dhis2 Menu</title>

 <!-- Stylesheets related to the menu -->
 <link type="text/css" rel="stylesheet" href="./dhis-web-commons/font-awesome/
css/font-awesome.min.css"/>
 <link type="text/css" rel="stylesheet" media="screen" href="./dhis-web-
commons/css/menu.css">
 </head>

 <body style="background-color: black;">

 <div id="dhisDropDownMenu"></div>

 <!-- DHIS2 Settings initialization for a baseUrl that is used for the menu -->
 <script>
 window.dhis2 = window.dhis2 || {};
 dhis2.settings = dhis2.settings || {};
 dhis2.settings.baseUrl = 'dhis';
 </script>

 <!-- Menu scripts -->
 <script type="text/javascript" src="./dhis-web-commons/javascripts/jQuery/
jquery.min.js"></script>
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.translate.js"></script>
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.menu.js"></script>
 <script type="text/javascript" src="./dhis-web-commons/javascripts/dhis2/
dhis2.menu.ui.js"></script>

 </body>
</html>

Infrastructure Release process

117

Chapter 3. Infrastructure

3.1. Release process

Checklist for release.

1. In order to tag the source source code with new release. First temporarily add a dependency to dhis-web in the
root pom.xml:

<module>dhis-web</module>

Use the mvn version plugin with:

mvn versions:set

This will prompt you to enter the version. Remove the dhis-web dependency. Update application cache manifests
in the various apps to new version. Commit the changes to trunk.

2. Push a release branch to Launchad, e.g. with:

bzr push lp:~dhis2-devs-core/dhis2/2.19

3. Tag source code with SNAPSHOT release.

4. Enable email notifications for release branch.

5. Create Jenkins for build for the release WAR file.

6. Create automatic copy job from Jenkins to dhis2.org.

7. Create automatic update of play.dhis2.org/demo and play.dhis2.org/dev systems.

8. Update the database and WAR file on play.dhis2.org/demo and play.dhis2.org/dev instances. Run reinit-dhis-
instance to make the changes take effect.

9. Create a new DHIS 2 Live package on dhis2.org and place it in download/live directory. Only the WAR file must
be updated. An uncompressed Live package is located on the demo server at:

/home/dhis/dhis-live-package

Replace the uncompressed WAR file with the new release. Make a compressed Live archive and move to /download/
live directory.

10.Create Javadoc with:

mvn javadoc:aggregate

The doc will be put in target folder. Zip it, upload to dhis2.org, unzip and place it in download directory.

11.Upload sample database to dhis2.org and place it in download/resources directory.

12.Update download page at www.dhis2.org/downloads with links to new Live package, WAR file, source code branch
page and sample data including version.

13.Write and send release email.

DHIS 2 Technical Architecture Overview

119

DHIS 2 Technical Architecture

1. Overview

This document outlines the technical architecture for the District Health Information Software 2 (DHIS 2). The DHIS
2 is a routine data based health information system which allows for data capture, aggregation, analysis, and reporting
of data.

DHIS 2 is written in Java and has a three-layer architecture. The presentation layer is web-based, and the system can
be used on-line as well as stand-alone.

Fig. Overall architecture

2. Technical Requirements

The DHIS 2 is intended to be installed and run on a variety of platforms. Hence the system is designed for industry
standards regarding database management systems and application servers. The system should be extensible and
modular in order to allow for third-party and peripheral development efforts. Hence a pluggable architecture is needed.
The technical requirements are:

• Ability to run on any major database management system

• Ability to run on any J2EE compatible servlet container

• Extensibility and modularity in order to address local functional requirements

• Ability to run on-line/on the web

• Flexible data model to allow for a variety of data capture requirements

3. Project Structure

DHIS 2 is made up of 42 Maven projects, out of which 18 are web modules. The root POM is located in /dhis-2
and contains project aggregation for all projects excluding the /dhis-2/dhis-web folder. The /dhis-2/dhis-web

DHIS 2 Technical Architecture Project Dependencies

120

folder has a web root POM which contains project aggregation for all projects within that folder. The contents of the
modules are described later on.

Fig. Project structure

4. Project Dependencies

Dependencies between the projects are structured in five layers. The support modules provide support functionality
for the core and service modules, related to Hibernate, testing, JDBC, and the file system. The core module provides
the core functionality in the system, like persistence and business logic for the central domain objects. The service
modules provide business logic for services related to reporting, import-export, mapping, and administration. The web
modules are self-contained web modules. The portal is a wrapper web module which assembles all the web modules.
Modules from each layer can only have dependencies to modules at the same layer or the layer right below.

DHIS 2 Technical Architecture The Data Model

121

The internal structure of the service layer is divided in five layers.

5. The Data Model

The data model is flexible in all dimensions in order to allow for capture of any item of data. The model is based on
the notion of a DataValue. A DataValue can be captured for any DataElement (which represents the captured item,
occurrence or phenomena), Period (which represents the time dimension), and Source (which represents the space
dimension, i.e. an organisational unit in a hierarchy).

Figure 1. Data value structure

DHIS 2 Technical Architecture The Persistence Layer

122

A central concept for data capture is the DataSet. The DataSet is a collection of DataElements for which there is entered
data presented as a list, a grid and a custom designed form. A DataSet is associated with a PeriodType, which represents
the frequency of data capture.

A central concept for data analysis and reporting is the Indicator. An Indicator is basically a mathematical formula
consisting of DataElements and numbers. An Indicator is associated with an IndicatorType, which indicates the factor
of which the output should be multiplied with. A typical IndicatorType is percentage, which means the output should
be multiplied by 100. The formula is split into a numerator and denominator.

Most objects have corresponding group objects, which are intended to improve and enhance data analysis. The data
model source code can be found in the API project and could be explored in entirety there. A selection of the most
important objects can be view in the diagram below.

Fig. Core diagram

6. The Persistence Layer

The persistence layer is based on Hibernate in order to achieve the ability to run on any major DBMS. Hibernate
abstracts the underlying DBMS away and let you define the database connection properties in a file called
hibernate.properties.

DHIS 2 uses Spring-Hibernate integration, and retrieves a SessionFactory through Spring’s LocalSessionFactoryBean.
This LocalSessionFactoryBean is injected with a custom HibernateConfigurationProvider instance which fetches
Hibernate mapping files from all modules currently on the classpath. All store implementations get injected with a
SessionFactory and use this to perform persistence operations.

Most important objects have their corresponding Hibernate store implementation. A store provides methods for
CRUD operations and queries for that object, e.g. HibernateDataElementStore which offers methods such as
addDataElement(DataElement), deleteDataElement(DataElement), getDataElementByName(String), etc.

DHIS 2 Technical Architecture The Business Layer

123

Fig. Persistence layer

7. The Business Layer

All major classes, like those responsible for persistence, business logic, and presentation, are mapped as Spring
managed beans. “Bean” is Spring terminology and simply refers to a class that is instantiated, assembled, and otherwise
managed by the Spring IoC container. Dependencies between beans are injected by the IoC container, which allows for
loose coupling, re-configuration and testability. For documentation on Spring, please refer to springframework.org.

The services found in the dhis-service-core project basically provide methods that delegate to a corresponding method
in the persistence layer, or contain simple and self-explanatory logic. Some services, like the ones found in the dhis-
service-datamart, dhis-service-import-export, dhis-service-jdbc, and dhis-service-reporting projects are more complex
and will be elaborated in the following sections.

7.1. The JDBC Service Project

The JDBC service project contains a set of components dealing with JDBC connections and SQL statements.

DHIS 2 Technical Architecture The JDBC Service Project

124

Fig. JDBC BatchHandler diagram

The BatchHandler interface provides methods for inserting, updating and verifying the existence of objects. The
purpose is to provide high-performance operations and is relevant for large amounts of data. The BatchHandler object
inserts objects using the multiple insert SQL syntax behind the scenes and can insert thousands of objects on each
database commit. A typical use-case is an import process where a class using the BatchHandler interface will call
the addObject(Object, bool) method for every import object. The BatchHandler will after an appropriate number of
added objects commit to the database transparently. A BatchHandler can be obtained from the BatchHandlerFactory
component. BatchHandler implementations exist for most objects in the API.

The JdbcConfiguration interface holds information about the current DBMS JDBC configuration, more specifically
dialect, driver class, connection URL, username and password. A JdbcConfiguration object is obtained from the
JdbcConfigurationProvider component, which currently uses the internal Hibernate configuration provider to derive
the information.

The StatementBuilder interface provides methods that represents SQL statements. A StatementBuilder object is
obtained from the StatementBuilderFactory, which is able to determine the current runtime DBMS and provide an
appropriate implementation. Currently implementations exist for PostgreSQL, MySQL, H2, and Derby.

The IdentifierExtractor interface provides methods for retrieving the last generated identifiers from the DBMS. An
IdentifierExtractor is obtained from the IdentifierExtractorFactory, which is able to determine the runtime DBMS and
provide an appropriate implementation.

DHIS 2 Technical Architecture The Data Mart Project

125

Fig. JDBC StatementManager diagram

The StatementHolder interface holds and provides JDBC connections and statements. A StatementHolder object can
be obtained from the StatementManager component. The StatementManager can be initialized using the initalise()
method closed using the destroy() method. When initialized, the StatementManager will open a database connection
and hold it in a ThreadLocal variable, implying that all subsequent requests for a StatementHolder will return the same
instance. This can be used to improve performance since a database connection or statement can be reused for multiple
operations. The StatementManager is typically used in the persistence layer for classes working directly with JDBC,
like the DataMartStore.

7.2. The Data Mart Project

The data mart component is responsible for producing aggregated data from the raw data in the time and space
dimension. The aggregated data is represented by the AggregatedDataValue and AggregatedIndicatorValue objects.
The DataSetCompletenessResult object is also included in the data mart and is discussed in the section covering the
reporting project. These objects and their corresponding database tables are referred to as the data mart.

The following section will list the rules for aggregation in DHIS 2.

• Data is a aggregated in the time and space dimension. The time dimension is represented by the Period object and
the space dimension by the OrganisationUnit object, organised in a parent-child hierarchy.

• Data registered for all periods which intersects with the aggregation start and end date is included in the aggregation
process. Data for periods which are not fully within the aggregation start and end date is weighed according to a
factor “number of days within aggregation period / total number of days in period”.

• Data registered for all children of the aggregation OrganisationUnit is included in the aggregation process.

• Data registered for a data element is aggregated based on the aggregation operator and data type of the data element.
The aggregation operator can be sum (values are summarized), average (values are averaged) and count (values
are counted). The data type can be string (text), int (number), and bool (true or false). Data of type string can not
be aggregated.

• Aggregated data of type sum – int is presented as the summarized value.

• Aggregated data of type sum – bool is presented as the number of true registrations.

• Aggregated data of type average – int is presented as the averaged value.

• Aggregated data of type average – bool is presented as a percentage value of true registrations in proportion to
the total number of registrations.

• An indicator represents a formula based on data elements. Only data elements with aggregation operator sum or
average and with data type int can be used in indicators. Firstly, data is aggregated for the data elements included
in the indicator. Finally, the indicator formula is calculated.

• A calculated data element represents a formula based on data elements. The difference from indicator is that the
formula is on the form “data element * factor”. The aggregation rules for indicator apply here as well.

DHIS 2 Technical Architecture The Data Mart Project

126

Fig. Data mart diagram

The AggregationCache component provides caching in ThreadLocal variables. This caching layer is introduced to get
optimal caching [9]. The most frequently used method calls in the data mart component is represented here.

The DataElementAggregator interface is responsible for retrieving data from the crosstabulated temporary storage and
aggregate data in the time and space dimension. This happens according to the combination of data element aggregation
operator and data type the class represents. One implementation exist for each of the four variants of valid combinations,
namely SumIntDataElementAggregator, SumBoolDataElementAggregator, AverageIntDataElementAggregator and
AverageBoolAggregtor.

The DataElementDataMart component utilizes a DataElementAggregator and is responsible for writing aggregated
data element data to the data mart for a given set of data elements, periods, and organisation units.

The IndicatorDataMart component utilizes a set of DataElementAggregators and is responsible for writing aggregated
indicator data to the data mart for a given set of indicators, periods, and organisation units.

The CalculatedDataElementDataMart component utilizes a set of DataElementAggregators and is responsible for
writing aggregated data element data to the data mart for a given set of calculated data elements, periods, and
organisation units.

The DataMartStore is responsible for retrieving aggregated data element and indicator data, and data from the
temporary crosstabulated storage.

The CrossTabStore is responsible for creating, modifying and dropping the temporary crosstabulated table. The
CrossTabService is responsible for populating the temporary crosstabulated table. This table is used in an intermediate
step in the aggregation process. The raw data is de-normalized on the data element dimension, in other words

DHIS 2 Technical Architecture The Reporting Project

127

the crosstabulated table gets one column for each data element. This step implies improved performance since the
aggregation process can be executed against a table with a reduced number of rows compared to the raw data table.

The DataMartService is the central component in the data mart project and controls the aggregation process. The order
of operations is:

• Existing aggregated data for the selected parameters is deleted.

• The temporary crosstabulated table is created and populated using the CrossTabService component.

• Data element data for the previously mentioned valid variants is exported to the data mart using the
DataElementDataMart component.

• Indicator data is exported to the data mart using the IndicatorDataMart component.

• Calculated data element data is exported to the data mart using the CalculatedDataElementDataMart component.

• The temporary crosstabulated table is removed.

The data element tables are called “aggregateddatavalue” and “aggregatedindicatorvalue” and are used both inside
DHIS 2 for e.g. report tables and by third-party reporting applications like MS Excel.

7.3. The Reporting Project

The reporting project contains components related to reporting, which will be described in the following sections.

7.3.1. Report table

The ReportTable object represents a crosstabulated database table. The table can be crosstabulated on any number
of its three dimensions, which are the descriptive dimension (which can hold data elements, indicators, or data set
completeness), period dimension, and organisation unit dimension. The purpose is to be able to customize tables for
later use either in third-party reporting tools like BIRT or directly in output formats like PDF or HTML inside the
system. Most of the logic related to crosstabulation is located in the ReportTable object. A ReportTable can hold:

• Any number of data elements, indicators, data sets, periods, and organisation units.

• A RelativePeriods object, which holds 10 variants of relative periods. Examples of such periods are last 3 months, so
far this year, and last 3 to 6 months. These periods are relative to the reporting month. The purpose of this is to make
the report table re-usable in time, i.e. avoid the need for the user to replace periods in the report table as time goes by.

• A ReportParams object, which holds report table parameters for reporting month, parent organisation unit, and
current organisation unit. The purpose is to make the report table re-usable across the organisation unit hierarchy
and in time, i.e. make it possible for the user to re-use the report table across organisation units and as time goes by.

• User options such as regression lines. Value series which represents regression values can be included when the
report table is crosstabulated on the period dimension.

Fig. Report table diagram

The ReportTableStore is responsible for persisting ReportTable objects, and currently has a Hibernate implementation.

The ReportTableService is responsible for performing business logic related to report tables such as generation of
relative periods, as well as delegating CRUD operations to the ReportTableStore.

DHIS 2 Technical Architecture The Reporting Project

128

The ReportTableManager is responsible for creating and removing report tables, as well as retrieving data.

The ReportTableCreator is the key component, and is responsible for:

• Exporting relevant data to the data mart using the DataMartExportService or the DataSetCompletenessService. Data
will later be retrieved from here and used to populate the report table.

• Create the report table using the ReportTableManager.

• Include potential regression values.

• Populate the report table using a BatchHandler.

• Remove the report table using the ReportTableManager.

7.3.2. Chart

The Chart object represents preferences for charts. Charts are either period based or organisation unit based. A chart
has tree dimensions, namely the value, category, and filter dimension. The value dimension contains any numbers
of indicators. In the period based chart, the category dimension contains any number of periods while the filter
dimension contains a single organisation unit. In the organisation unit based chart, the category dimension contains
any number of organisation units while the filter dimension contains a single period. Two types of charts are available,
namely bar charts and line charts. Charts are materialized using the JFreeChart library. The bar charts are rendered
with a BarRenderer [2], the line charts with a LineAndShapeRenderer [2], while the data source for both variants
is a DefaultCategoryDataSet [3]. The ChartService is responsible for CRUD operations, while the ChartService is
responsible for creating JfreeCharts instances based on a Chart object.

Fig. Chart diagram

7.3.3. Data set completeness

The purpose of the data set completeness functionality is to record the number of data sets that have been completed.
The definition of when a data set is complete is subjective and based on a function in the data entry screen where the user
can mark the current data set as complete. This functionality provides a percentage completeness value based on the
number of reporting organisation units with completed data sets compared to the total number of reporting organisation
units for a given data set. This functionality also provides the number of completed data sets reported on-time, more
specifically reported before a defined number of days after the end of the reporting period. This date is configurable.

DHIS 2 Technical Architecture The Reporting Project

129

Fig. Data set completeness diagram

The CompleteDataSetRegistration object is representing a data set marked as complete by a user. This property
holds the data set, period, organisation unit and date for when the complete registrations took place. The
CompleteDataSetRegistrationStore is responsible for persistence of CompleteDataSetRegistration objects and
provides methods returning collections of objects queried with different variants of data sets, periods, and organisation
units as input parameters. The CompleteDataSetRegistrationService is mainly delegating method calls the store layer.
These components are located in the dhis-service-core project.

The completeness output is represented by the DataSetCompletenessResult object. This object holds information
about the request that produced it such as data set, period, organisation unit, and information about the data
set completeness situation such as number of reporting organisation units, number of complete registrations,
and number of complete registrations on-time. The DataSetCompletenessService is responsible for the business
logic related to data set completeness reporting. It provides methods which mainly returns collections of
DataSetCompletenessResults and takes different variants of period, organisation unit and data set as parameters. It
uses the CompleteDataSetRegistrationService to retrieve the number of registrations, the DataSetService to retrieve
the number of reporting organisation units, and performs calculations to derive the completeness percentage based on
these retrieved numbers.

The DataSetCompletenessExportService is responsible for writing DataSetCompletenessResults to a database table
called “aggregateddatasetcompleteness”. This functionality is considered to be part of the data mart as this data can be
used both inside DHIS 2 for e.g. report tables and by third-party reporting applications like MS Excel. This component
is retrieving data set completeness information from the DataSetCompeletenessService and is using the BatchHandler
interface to write such data to the database.

7.3.4. Document

The Document object represents either a document which is uploaded to the system or a URL. The DocumentStore is
responsible for persisting Document objects, while the DocumentService is responsible for business logic.

DHIS 2 Technical Architecture The System Support Project

130

Fig. Document diagram

7.3.5. Pivot table

The PivotTable object represents a pivot table. It can hold any number of indicators, periods, organisation units, and
corresponding aggregated indicator values. It offers basic pivot functionality like pivoting and filtering the table on all
dimensions. The business logic related to pivot tables is implemented in Javascript and is located in the presentation
layer. The PivotTableService is reponsible for creating and populating PivotTable objects.

7.3.6. The External Project

The LocationManager component is responsible for the communication between DHIS 2 and the file system of the
operating system. It contains methods which provide read access to files through File and InputStream instances, and
write access to the file system through File and OutputStream instances. The target location is relative to a system
property “dhis2.home” and an environment variable “DHIS2_HOME” in that order. This component is used e.g. by
the HibernateConfigurationProvider to read in the Hibernate configuration file, and should be re-used by all new
development efforts.

The ConfigurationManager is a component which facilitates the use of configuration files for different purposes in
DHIS 2. It provides methods for writing and reading configuration objects to and from XML. The XStream library is
used to implement this functionality. This component is typically used in conjunction with the LocationManager.

7.4. The System Support Project

The system support project contains supportive classes that are general and can be reused througout the system.

7.4.1. DeletionManager

The deletion manager solution is responsible for deletion of associated objects. When an object has a depdency to
another object this association needs to be removed by the application before the latter object can be deleted (unless the
association is defined to be cascading in the DBMS). Often an object in a peripheral module will have an associations
to a core object. When deleting the core object this association must be removed before deleting the core object.The
core module cannot have a dependency to the peripheral module however due to the system design and the problem of
cyclic dependencies. The deletion manager solves this by letting all objects implement a DeletionHandler which takes
care of associations to other objects. A DeletionHandler should override methods for objects that, when deleted, will
affect the current object in any way. The DeletionHandler can choose to disallow the deletion completely by overriding
the allowDelete* method, or choose to allow the deletion and remove the associations by overriding the delete*
method. Eg. a DeletionHandler for DataElementGroup should override the deleteDataElement(..) method which should
remove the DataElement from all DataElementGroups. If one decide that DataElement which are a member of any
DataElementGroups cannot be deleted, it should override the allowDeleteDataElement() method and return false if
there exists DataElementGroups with associations to that DataElement.

First, all DeletionHandler implementations are registered with the DeletionManager through a Spring
MethodInvokingFactoryBean in the Spring config file. This solution adheres to the observer design pattern.

Second, all method invocations that should make the DeletionManager execute are mapped to the DeletionInterceptor
with Spring AOP advice in the Spring config file. The DeletionInterceptor in turn invokes the execute method
of the DeletionManager. First, the DeletionManager will through reflection invoke the allowDelete* method on

DHIS 2 Technical Architecture The Presentation Layer

131

all DeletionHandlers. If no DeletionHandlers returned false it will proceed to invoke the delete* method on all
DeletionHandlers. This way all DeletionHandlers get a chance to clean up associations to the object being deleted.
Finally the object itself is deleted.

8. The Presentation Layer

The presentation layer of DHIS 2 is based on web modules which are assembled into a portal. This implies
a modularized design where each module has its own domain, e.g. the dhis-web-reporting module deals with
reports, charts, pivot tables, documents, while the dhis-web-maintenance-dataset module is responsible for data set
management. The web modules are based on Struts and follow the MVC pattern [5]. The modules also follow the
Maven standard for directory layout, which implies that Java classes are located in src/main/java, configuration files
and other resources in src/main/resources, and templates and other web resources in src/main/webapp. All modules
can be run as a standalone application.

Common Java classes, configuration files, and property files are located in the dhis-web-commons project, which is
packaged as a JAR file. Common templates, style sheets and other web resources are located in the dhis-web-commons-
resources project, which is packaged as a WAR file. These are closely related but are separated into two projects. The
reason for this is that other modules must be able to have compile dependencies on the common Java code, which
requires it to be packaged as a JAR file. For other modules to be able to access the common web resources, these must
be packaged as a WAR file [6].

8.1. The Portal

DHIS 2 uses a light-weight portal construct to assemble all web modules into one application. The portal functionality
is located in the dhis-web-portal project. The portal solution is integrated with Struts, and the following section requires
some prior knowledge about this framework, please refer to struts.apache.org for more information.

8.1.1. Module Assembly

All web modules are packaged as WAR files. The portal uses the Maven WAR plug-in to assemble the common web
modules and all web modules into a single WAR file. Which modules are included in the portal can be controlled
simply through the dependency section in the POM file [7] in the dhis-web-portal project. The web module WAR files
will be extracted and its content merged together.

8.1.2. Portal Module Requirements

The portal requires the web modules to adhere to a few principles:

• The web resources must be located in a folder src/main/webapp/<module-artifact-id >.

• The xwork.xml configuration file must extend the dhis-web-commons.xml configuration file.

• The action definitions in xwork.xml for a module must be in a package where the name is <module-artifact-id>,
namespace is /<module-artifact-id>, and which extends the dhis-web-commons package.

• All modules must define a default action called index.

• The web.xml of the module must define a redirect filter, open-session-in-view filter, security filter, and the Struts
FilterDispatcher [8].

• All modules must have dependencies to the dhis-web-commons and dhis-web-commons-resources projects.

8.1.3. Common Look-And-Feel

Common look and feel is achieved using a back-bone Velocity template which includes a page template and a menu
template defined by individual actions in the web modules. This is done by using static parameters in the Struts/Xwork
xwork.xml configuration file. The action response is mapped to the back-bone template called main.vm, while static
parameters called page and menu refers to the templates that should be included. This allows the web modules to
display its desired content and left side menu while maintaining a common look-and-feel.

DHIS 2 Technical Architecture Framework Stack

132

8.1.4. Main Menu

The main menu contains links to each module. Each menu link will redirect to the index action of each module. The
menu is updated dynamically according to which web modules are on the classpath. The menu is visibly generated
using the ModuleManager component, which provides information about which modules are currently included. A
module is represented by the Module object, which holds properties about the name, package name, and default action
name. The ModuleManager detects web modules by reading the Struts Configuration and PackageConfig objects, and
derives the various module names from the name of each package definition. The Module objects are loaded onto the
Struts value stack by Struts interceptors using the ModuleManager. These values are finally used in the back-bone
Velocity template to produce the menu mark-up.

9. Framework Stack

The following frameworks are used in the DHIS 2 application.

9.1. Application Frameworks
• Hibernate (www.hibernate.org)

• Spring (www.springframework.org)

• Struts struts.apache.org

• Velocity (www.velocity.apache.org)

• Commons (www.commons.apache.org)

• JasperReports jasperforge.org/projects/jasperreports

• JFreeChart (www.jfree.org/jfreechart/)

• JUnit (www.junit.org)

9.2. Development Frameworks
• Maven (apache.maven.org)

• Bazaar (bazaar-vcs.org)

10. Definitions

[1] “Classpath” refers to the root of a JAR file, /WEB-INF/lib or /WEB-INF/classes in a WAR-file and /src/main/
resources in the source code; locations from where the JVM is able to load classes.

[2] JFreeChart class located in the org.jfree.chart.renderer package.

[3] JFreeChart class located in the org.jfree.data.category package.

[4] Operations related to creating, retrieving, updating, and deleting objects.

[5] Model-View-Controller, design pattern for web applications which separates mark-up code from application logic
code.

[6] The WAR-file dependency is a Maven construct and allows projects to access the WAR file contents during runtime.

[7] Project Object Model, the key configuration file in a Maven 2 project.

[8] Represents the front controller in the MVC design pattern in Struts.

[9] Hibernate second-level cache does not provide satisfactory performance.

http://www.hibernate.org
http://www.springframework.org
struts.apache.org
http://www.velocity.apache.org
http://www.commons.apache.org
jasperforge.org/projects/jasperreports
http://www.jfree.org/jfreechart/
http://www.junit.org
http://www.apache.maven.org
http://www.bazaar-vcs.org

R and DHIS 2 Integration Introduction

133

Appendix A. R and DHIS 2 Integration

A.1. Introduction

R is freely available, open source statistical computing environment. R refers to both the computer programming
language, as well as the software which can be used to create and run R scripts. There are numerous sources on the
web which describe the extensive set of features of R.

R is a natural extension to DHIS2, as it provides powerful statistical routines, data manipulation functions, and
visualization tools. This chapter will describe how to setup R and DHIS2 on the same server, and will provide a simple
example of how to retrieve data from the DHIS2 database into an R data frame and perform some basic calculations.

A.2. Using ODBC to retrieve data from DHIS2 into R

In this example, we will use a system-wide ODBC connector which will be used to retrieve data from the DHIS2
database. There are some disadvantages with this approach, as ODBC is slower than other methods and it does raise
some security concerns by providing a system-wide connector to all users. However, it is a convenient method to
provide a connection to multiple users. The use of the R package RODBC will be used in this case. Other alternatives
would be the use of the RPostgreSQL package, which can interface directly through the Postgresql driver described
in Section A.4, “Mapping with R and PostgreSQL”

Assuming you have already installed R from the procedure in the previous section. Invoke the following command to
add the required libraries for this example.

apt-get install r-cran-rodbc r-cran-lattice odbc-postgresql

Next, we need to configure the ODBC connection. Edit the file to suit your local situation using the following template
as a guide. Lets create and edit a file called odbc.ini

[dhis2]
Description = DHIS2 Database
Driver = /usr/lib/odbc/psqlodbcw.so
Trace = No
TraceFile = /tmp/sql.log
Database = dhis2
Servername = 127.0.0.1
UserName = postgres
Password = SomethingSecure
Port = 5432
Protocol = 9.0
ReadOnly = Yes
RowVersioning = No
ShowSystemTables = No
ShowOidColumn = No
FakeOidIndex = No
ConnSettings =
Debug = 0

Finally, we need to install the ODBC connection with odbcinst -i -d -f odbc.ini

From the R prompt, execute the following commands to connect to the DHIS2 database.

> library(RODBC)
> channel<-odbcConnect("dhis2")#Note that the name must match the ODBC connector name
> sqlTest<-c("SELECT dataelementid, name FROM dataelement LIMIT 10;")

http://cran.r-project.org/
http://cran.r-project.org/
http://dirk.eddelbuettel.com/code/rpostgresql.html

R and DHIS 2 Integration Using ODBC to retrieve data from DHIS2
into R

134

> sqlQuery(channel,sqlTest)
 name
1 OPD First Attendances Under 5
2 OPD First Attendances Over 5
3 Deaths Anaemia Under 5 Years
4 Deaths Clinical Case of Malaria Under 5 Years
5 Inpatient discharges under 5
6 Inpatient Under 5 Admissions
7 Number ITNs
8 OPD 1st Attendance Clinical Case of Malaria Under 5
9 IP Discharge Clinical Case of Malaria Under 5 Years
10 Deaths of malaria case provided with anti-malarial treatment 1 to 5 Years
>

It seems R is able to retrieve data from the DHIS2 database.

As an illustrative example, lets say we have been asked to calculate the relative percentage of OPD male and female
under 5 attendances for the last twelve months.First, lets create an SQL query which will provide us the basic
information which will be required.

OPD<-sqlQuery(channel,"SELECT p.startdate, de.name as de, sum(dv.value::double
 precision)
 FROM datavalue dv
 INNER JOIN period p on dv.periodid = p.periodid
 INNER JOIN dataelement de on dv.dataelementid = de.dataelementid
 WHERE p.startdate >= '2011-01-01'
 and p.enddate <= '2011-12-31'
 and de.name ~*('Attendance OPD')
 GROUP BY p.startdate, de.name;")

We have stored the result of the SQL query in an R data frame called "OPD". Lets take a look at what the data looks like.

> head(OPD)
 startdate de sum
1 2011-12-01 Attendance OPD <12 months female 42557
2 2011-02-01 Attendance OPD <12 months female 127485
3 2011-01-01 Attendance OPD 12-59 months male 200734
4 2011-04-01 Attendance OPD 12-59 months male 222649
5 2011-06-01 Attendance OPD 12-59 months male 168896
6 2011-03-01 Attendance OPD 12-59 months female 268141
> unique(OPD$de)
[1] Attendance OPD <12 months female Attendance OPD 12-59 months male
[3] Attendance OPD 12-59 months female Attendance OPD >5 years male
[5] Attendance OPD <12 months male Attendance OPD >5 years female
6 Levels: Attendance OPD 12-59 months female ... Attendance OPD >5 years male
>

We can see that we need to aggregate the two age groups (< 12 months and 12-59 months) into a single variable,
based on the gender. Lets reshape the data into a crosstabulated table to make this easier to visualize and calculate
the summaries.

>OPD.ct<-cast(OPD,startdate ~ de)
>colnames(OPD.ct)
[1] "startdate" "Attendance OPD 12-59 months female"
[3] "Attendance OPD 12-59 months male" "Attendance OPD <12 months female"
[5] "Attendance OPD <12 months male" "Attendance OPD >5 years female"
[7] "Attendance OPD >5 years male"

We have reshaped the data so that the data elements are individual columns. It looks like we need to aggregate the
second and fourth columns together to get the under 5 female attendance, and then the third and fifth columns to get
the male under 5 attendance.After this, lets subset the data into a new data frame just to get the required information
and display the results.

R and DHIS 2 Integration Using R with MyDatamart

135

> OPD.ct$OPDUnder5Female<-OPD.ct[,2]+OPD.ct[,4]#Females
> OPD.ct$OPDUnder5Male<-OPD.ct[,3]+OPD.ct[,5]#males
> OPD.ct.summary<-OPD.ct[,c(1,8,9)]#new summary data frame
>OPD.ct.summary$FemalePercent<-
OPD.ct.summary$OPDUnder5Female/
(OPD.ct.summary$OPDUnder5Female + OPD.ct.summary$OPDUnder5Male)*100#Females
>OPD.ct.summary$MalePercent<-
OPD.ct.summary$OPDUnder5Male/
(OPD.ct.summary$OPDUnder5Female + OPD.ct.summary$OPDUnder5Male)*100#Males

Of course, this could be accomplished much more elegantly, but for the purpose of the illustration, this code is rather
verbose.Finally, lets display the required information.

> OPD.ct.summary[,c(1,4,5)]
 startdate FemalePercent MalePercent
1 2011-01-01 51.13360 48.86640
2 2011-02-01 51.49154 48.50846
3 2011-03-01 51.55651 48.44349
4 2011-04-01 51.19867 48.80133
5 2011-05-01 51.29902 48.70098
6 2011-06-01 51.66519 48.33481
7 2011-07-01 51.68762 48.31238
8 2011-08-01 51.49467 48.50533
9 2011-09-01 51.20394 48.79606
10 2011-10-01 51.34465 48.65535
11 2011-11-01 51.42526 48.57474
12 2011-12-01 50.68933 49.31067

We can see that the male and female attendances are very similar for each month of the year, with seemingly higher
male attendance relative to female attendance in the month of December.

In this example, we showed how to retrieve data from the DHIS2 database and manipulate in with some simple R
commands. The basic pattern for using DHIS2 and R together, will be the retrieval of data from the DHIS2 database
with an SQL query into an R data frame, followed by whatever routines (statistical analysis, plotting, etc) which may
be required.

A.3. Using R with MyDatamart

MyDatamart provides useful interface to the DHIS2 database by making a local copy of the database available on a
users desktop. This means that the user does not need direct access to the database and the data can be worked with
offline on the users local machine. In this example, we will have used the demo database. Data was downloaded at the
district level for Jan 2011-Dec 201l. Consult the MyDatamart section in this manual for more detailed information.

First, lets load some required R packages. If you do not have these packages already installed in your version of R,
you will need to do so before proceeding with the example.

library("DBI")
library("RSQLite")
library("lattice")
library("latticeExtra")

Next, we are going to connect to the local copy of the MyDatamart database. In this case, it was located at C:
\dhis2\sl.dmart.

dbPath<-"C:\\dhis2\\sl.dmart"
drv<-dbDriver("SQLite")
db<-dbConnect(drv,dbPath)

Let suppose we have been asked to compare ANC 1, 2, 3 coverage rates for each district for 2011. We can define an
SQL query to retrieve data from the MyDatamart database into an R data frame as follows.

http://play.dhis2.org/demo

R and DHIS 2 Integration Using R with MyDatamart

136

#An SQL query which will retreive all indicators
#at OU2 le
sql<-"SELECT * FROM pivotsource_indicator_ou2_m
WHERE year = '2011'"
#Execute the query into a new result set
rs<-dbSendQuery(db,sql)
#Put the entire result set into a new data frame
Inds<-fetch(rs,n=-1)
#Clean up a bit
dbClearResult(rs)
dbDisconnect(db)

We used one of the pre-existing Pivot Source queries in the database to get all of the indicator values. Of course, we
could have retrieved only the ANC indicators, but we did not exactly know how the data was structured, or how the
columns were named, so lets take a closer look.

#Get the name of the columns
colnames(Inds)
#output not shown for brevity
levels(as.factor(Inds$indshort))

We see from the colnames command that there is an column called "indshort" which looks like it contains some
indicator names. We can see the names using the second command. After we have determined which ones we need
(ANC 1, 2, and 3), lets further subset the data so that we only have these.

#Subset the data for ANC
ANC<-Inds[grep("ANC (1|2|3) Coverage",as.factor(Inds$indshort)),]

We just used R's grep function to retrieve all the rows and columns of the Inds data frame which matched the regular
expression "ANC (1|2|3) Coverage" and put this into a new data frame called "ANC".

By looking at the data with the str(ANC) command, we will notice that the time periods are not ordered correctly, so
lets fix this before we try and create a plot of the data.

#Lets reorder the months
MonthOrder<-c('Jan','Feb','Mar','Apr',
'May','Jun','Jul','Aug','Sep','Oct','Nov','Dec')
ANC$month<-factor(ANC$month,levels=MonthOrder)

Next, we need to actually calculate the indicator value from the numerator, factor and denominator.

#Calculate the indicator value
ANC$value<-ANC$numxfactor/ANC$denominatorvalue

Finally, lets create a simple trellis plot which compares ANC 1, 2, 3 for each district by month and save it to our local
working directory in a file called "District_ANC.png".

png(filename="District_ANC.png",width=1024,height=768)
plot.new()
 xyplot(value ~ month | ou2, data=ANC, type="a", main="District ANC Comparison Sierra
 Leone 2011",
 groups=indshort,xlab="Month",ylab="ANC Coverage",
 scales = list(x = list(rot=90)),
 key = simpleKey(levels(factor(ANC$indshort)),
 points=FALSE,lines=TRUE,corner=c(1,1)))
 mtext(date(), side=1, line=3, outer=F, adj=0, cex=0.7)
dev.off()

The results of which are displayed below.

R and DHIS 2 Integration Mapping with R and PostgreSQL

137

A.4. Mapping with R and PostgreSQL

A somewhat more extended example, will use the RPostgreSQL library and several other libraries to produce a map
from the coordinates stored in the database. We will define a few helper functions to provide a layer of abstraction,
which will make the R code more reusable.

#load some dependent libraries
 library(maps)
 library(maptools)
 library(ColorBrewer)
 library(ClassInt)
 library(RPostgreSQL)

#Define some helper functions

#Returns a dataframe from the connection for a valid statement
dfFromSQL<-function (con,sql){
 rs<-dbSendQuery(con,sql)
 result<-fetch(rs,n=-1)
 return(result)
}
#Returns a list of latitudes and
 longitudes from the orgunit table
dhisGetFacilityCoordinates<- function(con,levelLimit=4) {
sqlCoords<-paste("SELECT ou.organisationunitid, ou.name,
substring(ou.coordinates from E'(?=,?)-[0-9]+\\.[0-9]+')::double precision as
 latitude,
substring(ou.coordinates from E'[0-9\\.]+')::double precision as
 longitude FROM organisationunit ou where ou.organisationunitid
 in (SELECT DISTINCT idlevel",levelLimit, " from _orgunitstructure)
 and ou.featuretype = 'Point'
 ;",sep="")
 result<-dfFromSQL(con,sqlCoords)
 return(result)
 }

R and DHIS 2 Integration Mapping with R and PostgreSQL

138

#Gets a dataframe of IndicatorValues,
provided the name of the indicator,
startdate, periodtype and level
dhisGetAggregatedIndicatorValues<-function(con,
indicatorName,
startdate,
periodtype="Yearly",
level=4)
{
 sql<-paste("SELECT organisationunitid,dv.value FROM aggregatedindicatorvalue dv
where dv.indicatorid =
(SELECT indicatorid from indicator where name = \'",indicatorName,"\') and dv.level
 =", level,"and
 dv.periodid =
(SELECT periodid from period where
startdate = \'",startdate,"\'
and periodtypeid =
(SELECT periodtypeid from periodtype
 where name = \'",periodtype,"\'));",sep="")
 result<-dfFromSQL(con,sql)
 return(result)
 }

#Main function which handles the plotting.
#con is the database connection
#IndicatorName is the name of the Indicator
#StartDate is the startdate
#baselayer is the baselayer
plotIndicator<-function(con,
IndicatorName,
StartDate,
periodtype="Yearly",
level=4,baselayer)
{
#First, get the desired indicator data
myDF<-dhisGetAggregatedIndicatorValues(con,
IndicatorName,StartDate,periodtype,level)
#Next, get the coordinates
coords<-dhisGetFacilityCoordinates(con,level)
#Merge the indicataors with the coordinates data frame
myDF<-merge(myDF,coords)
#We need to cast the new data fram to a spatial data
#frame in order to utilize plot
myDF<-SpatialPointsDataFrame(myDF[,
c("longitude","latitude")],myDF)
#Define some color scales
IndColors<-c("firebrick4","firebrick1","gold"
,"darkolivegreen1","darkgreen")
#Define the class breaks. In this case, we are going
#to use 6 quantiles
class<-classIntervals(myDF$value,n=6,style="quantile"
,pal=IndColors)
#Define a vector for the color codes to be used for the
#coloring of points by class
colCode<-findColours(class,IndColors)
#Go ahead and make the plot
myPlot<-plot.new()
#First, plot the base layer
plot(baselayer)
#Next, add the points data frame
points(myDF,col=colCode,pch=19)
#Add the indicator name to the title of the map
title(main=IndicatorName,sub=StartDate)

R and DHIS 2 Integration Mapping with R and PostgreSQL

139

#Finally, return the plot from the function
return(myPlot) }

Up until this point, we have defined a few functions to help us make a map. We need to get the coordinates stored in
the database and merge these with the indicator which we plan to map. We then retrieve the data from the aggregated
indicator table, create a special type of data frame (SpatialPointsDataFrame), apply some styling to this, and then create
the plot.

#Now we define the actual thing to do
#Lets get a connection to the database
con <- dbConnect(PostgreSQL(), user= "dhis", password="SomethingSecure",
 dbname="dhis")
#Define the name of the indicator to plot
MyIndicatorName<-"Total OPD Attendance"
MyPeriodType<-"Yearly"
#This should match the level where coordinates are stored
MyLevel<-4
#Given the startdate and period type, it is enough
#to determine the period
MyStartDate<-"2010-01-01"
#Get some Some Zambia district data from GADM
#This is going to be used as the background layer
con <- url("http://www.filefactory.com/file/c2a3898/n/ZMB_adm2_RData")
print(load(con))#saved as gadm object
#Make the map
plotIndicator(con,MyIndicatorName,MyStartDate,MyPeriodType,MyLevel,gadm)

The results of the plotIndicator function are shown below.

R and DHIS 2 Integration Using R, DHIS2 and the Google
Visualization API

140

In this example, we showed how to use the RPostgreSQL library and other helper libraries(Maptools, ColorBrewer)
to create a simple map from the DHIS2 data mart.

A.5. Using R, DHIS2 and the Google Visualization API

Google's Visualization API provides a very rich set of tools for the visualization of multi-dimensional data. In this
simple example, we will show how to create a simple motion chart with the Google Visualization API using the
"googleVis" R package. Full information on the package can be found here.. The basic principle, as with the other
examples, is to get some data from the DHIS2 database, and bring it into R, perform some minor alterations on the
data to make it easier to work with, and then create the chart. In this case, we will compare ANC1,2,3 data over time
and see how they are related with a motion chart.

#Load some libraries
library(RPostgreSQL)
library(googleVis)
library(reshape)
#A small helper function to get a data frame from some SQL
dfFromSQL<-function (con,sql){

http://code.google.com/p/google-motion-charts-with-r/

R and DHIS 2 Integration Using R, DHIS2 and the Google
Visualization API

141

 rs<-dbSendQuery(con,sql)
 result<-fetch(rs,n=-1)
 return(result)
}

#Get a database connection
user<-"postgres"
password<-"postgres"
host<-"127.0.0.1"
port<-"5432"
dbname<-"dhis2_demo"
con <- dbConnect(PostgreSQL(), user= user,
password=password,host=host, port=port,dbname=dbname)
#Let's retrieve some ANC data from the demo database
sql<-"SELECT ou.shortname as province,
i.shortname as indicator,
extract(year from p.startdate) as year,
 a.value
FROM aggregatedindicatorvalue a
INNER JOIN organisationunit ou on a.organisationunitid = ou.organisationunitid
INNER JOIN indicator i on a.indicatorid = i.indicatorid
INNER JOIN period p on a.periodid = p.periodid
WHERE a.indicatorid IN
(SELECT DISTINCT indicatorid from indicator where shortname ~*('ANC [123] Coverage'))
AND a.organisationunitid IN
 (SELECT DISTINCT idlevel2 from _orgunitstructure where idlevel2 is not null)
AND a.periodtypeid = (SELECT DISTINCT periodtypeid from periodtype where name =
 'Yearly')"
#Store this in a data frame
anc<-dfFromSQL(con,sql)
#Change these some columns to factors so that the reshape will work more easily

anc$province<-as.factor(anc$province)
anc$indicator<-as.factor(anc$indicator)
#We need the time variable as numeric
anc$year<-as.numeric(as.character(anc$year))
#Need to cast the table into a slightly different format
anc<-cast(anc,province + year ~ indicator)
#Now, create the motion chart and plot it
M<-gvisMotionChart(anc,idvar="province",timevar="year")
plot(M)

The resulting graph is displayed below.

R and DHIS 2 Integration Using PL/R with DHIS2

142

Using packages like brew or Rapache, these types of graphs could be easily integrated into external web sites. A fully
functional version of the chart shown above can be accessed here.

A.6. Using PL/R with DHIS2

The procedural language for R is an extension to the core of PostgreSQL which allows data to be passed from the
database to R, where calculations in R can be performed. The data can then be passed back to the database for further
processing.. In this example, we will create a function to calculate some summary statistics which do not exist by
default in SQL by using R. We will then create an SQL View in DHIS2 to display the results. The advantage of utilizing
R in this context is that we do not need to write any significant amount of code to return these summary statistics, but
simply utilize the built-in functions of R to do the work for us.

First, you will need to install PL/R, which is described in detail here.. Following the example from the PL/R site, we
will create some custom aggregate functions as detailed here. We will create two functions, to return the median and
the skewness of a range of values.

CREATE OR REPLACE FUNCTION r_median(_float8) returns float as '
 median(arg1)
' language 'plr';

CREATE AGGREGATE median (
 sfunc = plr_array_accum,
 basetype = float8,
 stype = _float8,
 finalfunc = r_median

http://cran.r-project.org/package=brew
http://rapache.net
http://dhis2.net/R/google-motion-chart.html
http://www.joeconway.com/plr/
http://www.joeconway.com/plr/doc/plr-install.html
http://www.joeconway.com/plr/doc/plr-aggregate-funcs.html

R and DHIS 2 Integration Using this DHIS2 Web API with R

143

);

CREATE OR REPLACE FUNCTION r_skewness(_float8) returns float as '
 require(e1071)
 skewness(arg1)
' language 'plr';

CREATE AGGREGATE skewness (
 sfunc = plr_array_accum,
 basetype = float8,
 stype = _float8,
 finalfunc = r_skewness
);

Next, we will define an SQL query which will be used to retrieve the two new aggregate functions (median and
skewness) which will be calculated using R. In this case, we will just get a single indicator from the data mart at the
district level and calculate the summary values based on the name of the district which the values belong to. This query
is very specific, but could be easily adapted to your own database.

SELECT ou.shortname,avg(dv.value),
median(dv.value),skewness(dv.value) FROM aggregatedindicatorvalue dv
INNER JOIN period p on p.periodid = dv.periodid
INNER JOIN organisationunit ou on
dv.organisationunitid = ou.organisationunitid
WHERE dv.indicatorid = 112670
AND dv.level = 3
AND dv.periodtypeid = 3
AND p.startdate >='2009-01-01'
GROUP BY ou.shortname;

We can then save this query in the form of SQL View in DHIS2. A clipped version of the results are shown below.

In this simple example, we have shown how to use PL/R with the DHIS2 database and web interface to display some
summary statistics using R to perform the calculations.

A.7. Using this DHIS2 Web API with R

DHIS2 has a powerful Web API which can be used to integrate applications together. In this section, we will illustrate
a few trivial examples of the use of the Web API, and how we can retrieve data and metadata for use in R. The Web
API uses basic HTTP authentication (as described in the Web API section of this document). Using two R packages
"RCurl" and "XML", we will be able to work with the output of the API in R. In the first example, we will get some
metadata from the database.

#We are going to need these two libraries
require(RCurl)
require(XML)
#This is a URL endpoint for a report table which we can
#get from the WebAPI.

url<-"https://play.dhis2.org/dev/api/reportTables/KJFbpIymTAo/data.csv"
#Lets get the response and we do not need the headers

R and DHIS 2 Integration Using this DHIS2 Web API with R

144

#This site has some issues with its SSL certificate
#so lets not verify it.
response<-getURL(url,userpwd="admin:district"
,httpauth = 1L, header=FALSE,ssl.verifypeer = FALSE)
#Unquote the data
data<-noquote(response)
#here is the data.
mydata<-read.table(textConnection(data),sep=",",header=T)
head(mydata)

Here, we have shown how to get some aggregate data from the DHIS2 demo database using the DHIS2's Web API.

In the next code example, we will retrieve some metadata, namely a list of data elements and their unique identifiers.

#Get the list of data elements. Turn off paging and links
#This site has some issues with its SSL certificate
#so lets not verify it.
url<-"https://play.dhis2.org/dev/api/dataElements.xml?
paging=false&links=false"
response<-getURL(url,userpwd="admin:district",
httpauth = 1L, header=FALSE,ssl.verifypeer = FALSE)
#We ned to parse the result
bri<-xmlParse(response)
#And get the root
r<-xmlRoot(bri)
#Parse out what we need explicitly, in this case from the first node
#Just get the names and ids as separate arrays
de_names<-xmlSApply(r[['dataElements']],xmlGetAttr,"name")
de_id<-xmlSApply(r[['dataElements']],xmlGetAttr,"id")
#Lets bind them together
#but we need to be careful for missing attribute values
foo<-cbind(de_names,de_id)
#Recast this as a data frame
data_elements<-as.data.frame(foo,
stringsAsFactors=FALSE,row.names=1:nrow(foo))
head(data_elements)

Note that the values which we are interested in are stored as XML attributes and were parsed into two separate matrices
and then combined together into a single data frame.

	DHIS2 Developer Manual
	Table of Contents
	Chapter 1. Web API
	1.1. Introduction
	1.2. Authentication
	1.2.1. Basic Authentication
	1.2.2. OAuth2
	1.2.2.1. Adding a client using the web-api
	1.2.2.2. Grant type password
	1.2.2.3. Grant type refresh_token
	1.2.2.4. Grant type authorized_code

	1.3. Error and info messages
	1.4. Date and period format
	1.5. Browsing the Web API
	1.5.1. Translation

	1.6. Working with the metadata API
	1.6.1. Content types
	1.6.2. Query parameters
	1.6.3. Available strategies for import
	1.6.4. Examples

	1.7. Metadata object filter
	1.8. Metadata field filter
	1.8.1. Field transformers
	1.8.2. Field converters

	1.9. Metadata create, read, update, delete, validate
	1.9.1. Create / update parameters
	1.9.2. Creating and updating objects
	1.9.3. Deleting objects
	1.9.4. Adding and removing objects to/from collections
	1.9.5. Validating payloads
	1.9.6. Partial updates

	1.10. CSV metadata import
	1.11. File resources
	1.11.1. File resource constraints

	1.12. Data values
	1.12.1. Sending data values
	1.12.2. Sending bulks of data values
	1.12.2.1. Identifier schemes

	1.12.3. CSV data value format
	1.12.4. Generating data value set template
	1.12.5. Sending, reading and deleting individual data values
	1.12.5.1. Working with file data values

	1.12.6. Reading data values

	1.13. ADX formatted data
	1.13.1. The adx root element
	1.13.2. The group element
	1.13.3. Data values
	1.13.4. POSTing data

	1.14. Events
	1.14.1. Sending events
	1.14.2. CSV Import / Export
	1.14.3. Querying and reading events
	1.14.3.1. Examples

	1.15. Forms
	1.16. Validation
	1.17. Data integrity
	1.17.1. Running data integrity
	1.17.2. Fetching the result

	1.18. Indicators
	1.18.1. Aggregate indicators
	1.18.2. Program indicators
	1.18.3. Expressions

	1.19. Complete data set registrations
	1.19.1. Completing and un-completing data sets
	1.19.2. Reading complete data set registrations

	1.20. Data approval
	1.21. Messages
	1.21.1. Writing and reading messages
	1.21.2. Managing messages

	1.22. Interpretations
	1.22.1. Reading interpretations
	1.22.2. Writing interpretations
	1.22.3. Creating, updating and removing interpretation comments

	1.23. Viewing analytical resource representations
	1.24. Plugins
	1.24.1. Embedding pivot tables with the Pivot Table plug-in
	1.24.2. Embedding charts with the Visualizer chart plug-in
	1.24.3. Embedding maps with the GIS map plug-in
	1.24.4. Creating a chart carousel with the carousel plug-in

	1.25. SQL views
	1.25.1. Criteria
	1.25.2. Variables

	1.26. Dashboard
	1.26.1. Browsing dashboards
	1.26.2. Searching dashboards
	1.26.3. Creating, updating and removing dashboards
	1.26.4. Adding, moving and removing dashboard items and content

	1.27. Analytics
	1.27.1. Dimensions and items
	1.27.2. Request query parameters
	1.27.3. Response formats
	1.27.4. Constraints
	1.27.5. Debugging

	1.28. Event analytics
	1.28.1. Dimensions and items
	1.28.2. Request query parameters
	1.28.3. Event query analytics
	1.28.3.1. Filtering
	1.28.3.2. Response formats

	1.28.4. Event aggregate analytics
	1.28.4.1. Ranges / legend sets
	1.28.4.2. Response formats

	1.29. Geo features
	1.29.1. GeoJSON

	1.30. Generating resource and analytics tables
	1.31. Maintenance
	1.32. System resource
	1.32.1. Generate identifiers
	1.32.2. View system information
	1.32.3. Check if username and password combination is correct
	1.32.4. View asynchronous task status
	1.32.5. Get appearance information

	1.33. Users
	1.33.1. User query
	1.33.2. User account create and update
	1.33.3. User account invitations
	1.33.4. User replication

	1.34. Current user information and associations
	1.35. System settings
	1.36. User settings
	1.37. Organisation units
	1.38. Static content
	1.39. Configuration
	1.40. Internationalization
	1.41. SVG conversion
	1.42. Tracked entity management
	1.43. Tracked entity instance management
	1.43.1. Creating a new tracked entity instance
	1.43.2. Updating a tracked entity instance
	1.43.3. Deleting a tracked entity instance
	1.43.4. Enrolling a tracked entity instance into a program
	1.43.5. Update strategies

	1.44. Enrollment instance query
	1.44.1. Request syntax
	1.44.2. Response format

	1.45. Tracked entity instance query
	1.45.1. Request syntax
	1.45.2. Response format

	1.46. Tracked entity instance grid query
	1.46.1. Request syntax
	1.46.2. Response format

	1.47. Email
	1.47.1. System notification
	1.47.2. Test message

	1.48. Sharing
	1.49. Scheduling
	1.50. Schema Resource
	1.51. UI customization with Javascript and CSS files
	1.52. Synchronization
	1.52.1. Data push
	1.52.2. Metadata pull

	1.53. FRED API
	1.54. Data store
	1.54.1. Get keys and namespaces
	1.54.2. Create and update values
	1.54.3. Delete keys

	1.55. Metadata repository

	Chapter 2. Apps
	2.1. Purpose of packaged Apps
	2.2. Creating Apps
	2.3. Configuring DHIS 2 for Apps Installation
	2.4. Installing Apps into DHIS 2
	2.5. Launching Apps
	2.6. Web-API for Apps
	2.7. Adding the DHIS 2 menu to your app

	Chapter 3. Infrastructure
	3.1. Release process

	DHIS 2 Technical Architecture
	1. Overview
	2. Technical Requirements
	3. Project Structure
	4. Project Dependencies
	5. The Data Model
	6. The Persistence Layer
	7. The Business Layer
	7.1. The JDBC Service Project
	7.2. The Data Mart Project
	7.3. The Reporting Project
	7.3.1. Report table
	7.3.2. Chart
	7.3.3. Data set completeness
	7.3.4. Document
	7.3.5. Pivot table
	7.3.6. The External Project

	7.4. The System Support Project
	7.4.1. DeletionManager

	8. The Presentation Layer
	8.1. The Portal
	8.1.1. Module Assembly
	8.1.2. Portal Module Requirements
	8.1.3. Common Look-And-Feel
	8.1.4. Main Menu

	9. Framework Stack
	9.1. Application Frameworks
	9.2. Development Frameworks

	10. Definitions

	Appendix A. R and DHIS 2 Integration
	A.1. Introduction
	A.2. Using ODBC to retrieve data from DHIS2 into R
	A.3. Using R with MyDatamart
	A.4. Mapping with R and PostgreSQL
	A.5. Using R, DHIS2 and the Google Visualization API
	A.6. Using PL/R with DHIS2
	A.7. Using this DHIS2 Web API with R

