
FTP Client Engine

Reference Manual

(FCE_REF)

Version 3.2

May 21, 2012

This software is provided as-is.
There are no warranties, expressed or implied.

Copyright (C) 2012
All rights reserved

MarshallSoft Computing, Inc.
Post Office Box 4543

Huntsville AL 35815 USA

Voice: 1.256.881.4630
Email: info@marshallsoft.com
Web: www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

 1

TABLE OF CONTENTS

1 Introduction Page 3
 1.1 General Remarks Page 3
 1.2 Documentation Set Page 4
 1.3 Declaration Files Page 4
 1.4 Language Notes Page 5
2 FCE Functions Page 6
 2.1 fceAbort Page 6
 2.2 fceAttach Page 7
 2.3 fceByteToShort Page 8
 2.4 fceClose Page 9
 2.5 fceCommand Page 10
 2.6 fceConnect Page 11
 2.7 fceDelFile Page 12
 2.8 fceDelServerDir Page 13
 2.9 fceDriver Page 14
 2.10 fceErrorText Page 15
 2.11 fceExtract Page 16
 2.12 fceFileLength Page 17
 2.13 fceGetDirFiles Page 18
 2.14 fceGetFile Page 19
 2.15 fceGetFileSize Page 20
 2.16 fceGetFileTime Page 21
 2.17 fceGetInteger Page 22
 2.18 fceGetList Page 23
 2.19 fceGetLocalDir Page 24
 2.20 fceGetLocalFList Page 25
 2.21 fceGetLocalFSize Page 26
 2.22 fceGetServerDir Page 27
 2.23 fceGetString Page 28
 2.24 fceGetTicks Page 29
 2.25 fceHello Page 30
 2.26 fceIsConnected Page 31
 2.27 fceMakeServerDir Page 32
 2.28 fceMatchFile Page 33
 2.29 fcePutDirFiles Page 34
 2.30 fcePutFile Page 35
 2.31 fceRelease Page 36
 2.32 fceSetInteger Page 37
 2.33 fceSetLocalDir Page 39
 2.34 fceSetMode Page 40
 2.35 fceSetServerDir Page 41
 2.36 fceSetString Page 42
 2.37 fceShortToByte Page 43
 2.38 fceToInteger Page 44
3 FCE Error Return Code List Page 45

 2

1 Introduction

The FTP Client Engine (FCE) is a component library that uses the Windows API to provide direct and
simple control of the FTP protocol. The FCE component library can be used for both anonymous and
private FTP sessions.

A straightforward interface provides the capability to quickly develop FTP software applications to
connect to any FTP server, navigate its directory structure, list files, upload files, delete files, append files,
and download files using the FTP protocol.

The FCE Reference Manual (FCE_REF) contains details on each individual FCE function.
Fully functional versions of our FTP Client software components are provided so that the developer can
test the FCE library in their environment. The evaluation version as well as a list of the many FTP Client
library features provided can be found on our website at:

http://www.marshallsoft.com/ftp-client-library.htm

1.1 General Remarks

All functions return an integer code. Negative values are always errors. See Section 3 "FCE Error Return
Code List". Non-negative return codes are never errors.

Note that the fceErrorText function is used to get the text message associated with any error code.

Each function argument is marked as:

• (I) : 4-byte integer (Win32).
• (L) : 4-byte integer (Win32).
• (P) : 4-byte pointer (Win32).

Refer to the declaration files (see section 1.3 below) for the exact syntax of each FCE function. Also note
that the example programs show exactly how FCE functions are called.

 3

http://www.marshallsoft.com/ftp-client-library.htm

1.2 Documentation Set

The complete set of documentation consists of three manuals. This is the third manual (FCE_REF) in the
set.

• FCE4x Programmer’s Manual (FCE_4x.PDF)
• FCE User’s Manual (FCE_USR.PDF)
• FCE Reference Manual (FCE_REF.PDF)

The FCE4x Programmer’s Manual is the computer language specific manual. All language dependent
programming issues including installation, compiling and example programs are discussed in this manual.
Language specific manuals are as follows:

• FCE_4C.PDF FCE Programmer's Manual for C/C++
• FCE_4D.PDF FCE Programmer's Manual for Delphi
• FCE_4VB.PDF FCE Programmer's Manual for Visual Basic
• FCE_4PB.PDF FCE Programmer's Manual for PowerBASIC
• FCE_4FP.PDF FCE Programmer's Manual for Visual FoxPro
• FCE_4DB.PDF FCE Programmer's Manual for Visual dBase
• FCE_4XB.PDF FCE Programmer's Manual for Xbase++

The FCE User’s Manual (FCE_USR) discusses FTP processing as well as language independent
programming issues. License and purchase information is also provided. Read this manual after reading
the FCE_4x Programmer’s Manual.

The FCE Reference Manual (FCE_REF) contains details on each individual FCE function.

All documentation can also be accessed online at
http://www.marshallsoft.com/support.htm.

1.3 Declaration Files

The exact syntax for calling FCE functions are specific to the host language (C/C++, Delphi, VB, etc.) and
are defined for each language in the “FCE declaration files”. Each FCE product comes with the
appropriate declaration file for the supported language. For example,

 FCE4C C/C++ and .NET FCE.H
 FCE4VB Visual Basic FCE32.BAS/ FCE64.BAS
 VBA (EXCEL,ACCESS,etc.) FCE32.BAS
 FCE4PB PowerBASIC FCE32.PBI
 FCE4D Borland/Embarcadero Delphi FCE32.PAS/FCE64.PAS
 FCE4FP Visual FoxPro FCE32.FOX
 FCE4DB Visual dBase FCE32.CC
 FCE4XB Xbase++ FCE32.CH

All FCE functions are used in one or more example programs.

 4

http://www.marshallsoft.com/fce_4c.pdf
http://www.marshallsoft.com/fce_4d.pdf
http://www.marshallsoft.com/fce_4vb.pdf
http://www.marshallsoft.com/fce_4pb.pdf
http://www.marshallsoft.com/fce_4fp.pdf
http://www.marshallsoft.com/fce_4db.pdf
http://www.marshallsoft.com/fce_4xb.pdf
http://www.marshallsoft.com/support.htm

1.4 Language Notes

All language versions of FCE include the example program FCEVER. Refer to this program and the
declaration file as defined in Section 1.3 above to see how FCE functions are called. The FCEVER
program is also the first program that should be compiled and run.

1.4.1 C/C++

None.

1.4.2 Delphi

Functions defined in the Delphi Unit FCEW.PAS begin with "f" rather than "fce".

1.4.3 Visual Basic

None.

1.4.4 PowerBASIC

Constants defined for PowerBASIC (FCE32.PBI) begin with the character '%' symbol. The FCE keycode
is defined in KEYCODE.PBI.

1.4.5 Visual FoxPro

All strings passed to FCE functions must be prefixed with the '@' character.

1.4.6 Visual dBase

None.

1.4.7 Xbase++

Functions defined for Xbase++ begin with 'X'. All strings passed to FCE functions must be prefixed with
the '@' character.

 5

2 FCE Functions

fceDebug is not listed below since it is used only for internal diagnostics.

2.1 fceAbort Abort fceDriver.

SYNTAX

fceAbort(Channel)

 Channel : (I) Channel number

REMARKS

The fceAbort function is used to abort the FCE state driver. This is used when calling the FCE state driver
(fceDriver) directly and it is necessary to abort.

After calling fceAbort, subsequent calls to fceDriver will return 0 (IDLE). Thus, FCE is ready for the
next command.

This function is not required unless the state driver fceDriver is being called directly.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // abort FCE
 fceAbort(0);

BASIC Example

 ' abort FCE
 Code = fceAbort(0)

ALSO SEE

fceDriver

 6

2.2 fceAttach Initializes FTP Client Engine

SYNTAX

fceAttach(NbrChans, KeyCode)

 NbrChans : (I) Number of channels or threads.
 KeyCode : (L) Registration key code.

REMARKS

The fceAttach function must be the first FCE call made. Pass the maximum number of channels or
threads that will be in use. Use NbrChans = 1 for non-threaded applications.

The 'Chan' parameter for subsequent calls to FCE functions must be in the range of 0 to NbrChans.

Up to 32 threads (numbered from 0 to 31) can be started, each of which can be connected to a different
FTP server and run independently.

When FCE is registered, you will receive a 'KeyCode' that matches the 'KeyCode' within the registered
DLL. For the evaluation version, the keycode is 0. See file KEYCODE.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

All example programs call fceAttach.

C/C++ Example

 // Initialize FCE (look in KEYCODE.H for FCE_KEY_CODE)
 fceAttach(1, FCE_KEY_CODE);

BASIC Example

 ' Initialize FCE (look in KEYCODE.BAS for FCE_KEY_CODE)
 Code = fceAttach(1, FCE_KEY_CODE)

ALSO SEE

fceRelease.

 7

2.3 fceByteToShort Converts 8-bit character buffer to 16-bit

SYNTAX

fceByteToShort(Buffer)

 Buffer : (P) character buffer

REMARKS

The fceByteToShort function converts the (null terminated) character buffer ‘Buffer’ from 8-bit ASCII
characters to 16-bit Unicode ASCII characters.

The buffer must be null terminated (last character is a hex 00) and the buffer must be at least twice the size
(in bytes) of the character string (since 16-bit characters require twice the space as 8-bit characters).

This function is only necessary when working with 16-bit Unicode ASCII characters in C# and Delphi
2005.

RETURNS

None.

EXAMPLES

See C# example cs_get.csproj

C# Example

 char[] UnsafeBuffer = new char[128];
 // get the registration string
 fixed (char* pBuffer = UnsafeBuffer)
 Code = fceGetString(0, FCE_GET_REGISTRATION, pBuffer, 127);
 if(Code>0)
 {// convert (null terminated) UnsafeBuffer[] to 16-bit chars (unicode)
 fixed (char* pBuffer = UnsafeBuffer)
 fceByteToShort(pBuffer);
 }

ALSO SEE

fceShortToByte

 8

2.4 fceClose Closes connection opened by fceConnect.

SYNTAX

fceClose(Channel)

 Channel : (I) Channel number

REMARKS

The fceClose function closes the connection to the FTP server opened with fceConnect. After closing,
another connection on channel 'Chan' may be opened with fceConnect.

If fceConnect fails, do NOT call fceClose.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

All example programs that call fceConnect will also call fceClose.

C/C++ Example

 // close connection.
 fceClose(0);

BASIC Example

 ' close connection.
 Code = fceClose(0)

ALSO SEE

fceConnect.

 9

2.5 fceCommand Sends arbitrary command to server.

SYNTAX

fceCommand(Channel, Text)

 Channel : (I) Channel number.
 Text : (P) Command text.

REMARKS

The fceCommand function is used to send an FTP protocol command (up to 128 bytes) to the FTP server.
The FTP server must recognize the command text. A non-negative return code indicates that the server
has accepted the command.

Some of the FTP protocol commands that may be useful are:

 RNFR Rename file "from" (on server).
 RNTO Rename file "to" (on server)
 SYST Request the host operating system.
 STAT Request status of current file transfer.
 HELP Request help on supported FTP commands.
 NOOP No operation.

RFC 959 contains the full list of FTP protocol commands.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

C/C++ Example

 // rename file "oldname.txt" to "newname.txt".
 fceCommand(0, "RNFR oldname.txt");
 fceCommand(0, "RNTO newname.txt");

BASIC Example

 ' rename file "oldname.txt" to "newname.txt".
 fceCommand(0, "RNFR oldname.txt")
 fceCommand(0, "RNTO newname.txt")

 10

2.6 fceConnect Connects to an FTP server.

SYNTAX

fceConnect(Channel, Server, User, Pass)

 Channel : (I) Channel number.
 Server : (P) Server name or dotted IP address.
 User : (P) Users account name or "anonymous".
 Pass : (P) Password for above.

REMARKS

The fceConnect function connects to the FTP server 'Server' and logs on as 'User' with password 'Pass'.

FTP servers that allow anonymous access will accept "ftp" or "anonymous" for the user name and your
email address for the password.

Pass a null string (a string in which the first byte is zero) for 'User', and 'User' and 'Pass' will not be sent to
the server when connecting. Pass a null string for 'Pass', and the 'Pass' is not sent to the server. In these
case, the fceCommand function must be used to pass any required information to the server. This is
typically necessary when connecting through a proxy server.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

Most example programs call fceConnect.

C/C++ Example

 // Connect to FTP server
 Code = fceConnect(0,"ftp.hiwaay.net","ftp","you@yourisp.com");

BASIC Example

 ' Connect to FTP server
 Code = fceConnect(0,"ftp.hiwaay.net","ftp","you@yourisp.com")

ALSO SEE

fceClose.

 11

2.7 fceDelFile Deletes file from the FTP server.

SYNTAX

fceDelFile(Channel, FileName)

 Channel : (I) Channel number.
 FileName : (P) Name of file to delete.

REMARKS

The fceDelFile function is used to delete the file 'FileName' from the FTP server.

The delete may fail if either you don't have the necessary permission (as is typical when you connect as an
anonymous user) or the file itself is marked as read only.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // delete file
 fceDelFile(0,"PRODUCTS.TXT");

BASIC Example

 ' delete file
 Code = fceDelFile(0, "PRODUCTS.TXT")

ALSO SEE

fcePutFile and fceDelServerDir

 12

2.8 fceDelServerDir Deletes the server directory.

SYNTAX

fceDelServerDir(Channel, DirName)

 Channel : (I) Channel number.
 DirName : (P) Name of directory to delete.

REMARKS

The fceDelServerDir function is used to delete the server directory 'DirName' from the FTP server.

The delete may fail if you don't have the necessary permission, as is typical when you connect as an
anonymous user.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // delete server directory MYSTUFF.DIR
 Code = fceDelServerDir(0,"MYSTUFF.DIR");

BASIC Example

 ' delete server directory MYSTUFF.DIR
 Code = fceDelServerDir(0,"MYSTUFF.DIR")

ALSO SEE

fceDelFile

 13

2.9 fceDriver Executes the next state in the FCE state engine.

SYNTAX

fceDriver(Channel)

 Channel : (I) Channel number.

REMARKS

The fceDriver function executes the next state in the FCE state engine.

This function is only used when FCE_SET_AUTO_CALL_DRIVER is set to 0.

Refer to Section 4, "Theory of Operation" in the FCE Users Manual (FCE_USR) for more details.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return = 0 : The driver is finished (idle).
Return > 0 : The driver is not yet finished.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // call driver until it returns 0
 while (fceDriver(0)!=0);

BASIC Example

 ' call driver until it returns 0
 While fceDriver(0) > 0
 '
 Wend

ALSO SEE

See Section 4, "Theory of Operation" in the User’s Manual (FCE_USR.PDF). Also
view online at http://www.marshallsoft.com/fce_usr.pdf

 14

http://www.marshallsoft.com/fce_usr.pdf

2.10 fceErrorText Formats an error message.

SYNTAX

fceErrorText(Channel, ErrCode, Buffer, BufLen)

 Channel : (I) Channel number.
 ErrCode : (I) Error code.
 Buffer : (P) Pointer to put error message.
 BufLen : (I) Size of 'Buffer'.

REMARKS

The fceErrorText function formats the error message for error 'Code' in 'Buffer'.

Call this function when an error (a negative value) is returned from a FCE function so that the error
message can be displayed or logged.

RETURNS

The number of characters copied to 'Buffer'.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 n = fceErrorText(0,ErrCode,(char *)Buffer,100);
 if(n>0) printf("ERROR %s\n", Buffer);

BASIC Example

 Buffer = SPACE$(100)
 N = fceErrorText(0, ErrCode, Buffer, 100)
 If N > 0 Then
 Print Buffer
 End If

ALSO SEE

None.

 15

2.11 fceExtract Extracts strings from FTP formatted file lists.

SYNTAX

fceExtract(Buffer, LineNbr, FieldNbr, BufPtr, BufLen)

 Buffer : (P) Buffer returned by fceGetList.
 LineNbr : (I) Line number [1,2,...] wanted.
 FieldNbr : (I) Field number [1,2,...] wanted.
 BufPtr : (P) Resultant buffer.
 BufLen : (I) Size of 'BufPtr'.

REMARKS

The fceExtract function extracts fields from FTP formatted file lists for line 'LineNbr' and field 'FieldNbr'.
The extracted substring is copied into 'BufPtr'. Use 'FieldNbr' 0 in order to copy the entire line rather than
a field.

A typical line in a full FTP directory listing may look like the following. Note that there are 9 fields.

rw rr 1 345 15 100424 Feb 8 16:26 fce4c10b.zip

Note that in the line above, field 5 is the file length.

The fceExtract function is typically called after calling fceGetList. See LIST for an example of use.

RETURNS

The number of characters copied to 'BufPtr'.

EXAMPLES

See the GETPRO example program.

C/C++ Example

 /* get each field for line 8 (returned from call to fceGetList) */
 for(i=1;i<=9;i)
 {Code = fceExtract((char *)DataBuffer, 8, i, (char *)LineBuf, 100);
 printf("FIELD %d: %s \n", i, LineBuf);
 }

BASIC Example

 ' get each field for line 8 (returned from call to fceGetList)
 For I = 1 To 9
 LineBuf = SPACE$(100)
 Code = fceExtract(DataBuffer, 8, I, LineBuf, 100)
 Print 'FIELD ', I, ' :', LineBuf

 Next I

ALSO SEE

fceGetList

 16

2.12 fceFileLength Extracts file length from listing field.

SYNTAX

fceFileLength (Buffer, FieldBeg, FieldEnd)

 Buffer : (P) Buffer returned by fceGetList.
 FieldBeg : (I) Field # (1,2,...) to start.
 FieldEnd : (I) Field # (2,3,...) to end.

REMARKS

The fceFileLength function examines each field in ‘Buffer’ beginning with field ‘FieldBeg’ through
‘FieldEnd’ and returns the value of the first completely numeric field found.

The purpose of this function is to return the value of the file length field. This can be problematic since
there is no standard FTP format for file listings. For example, field 6 contains the file length in the first
example (from a UNIX server), and field 4 in the second example (from a Windows XP server).

rw rr 1 345 15 287967 Feb 8 16:26 fce4pb32.zip

01/06/2003 09:45 AM 287967 fce4pb32.zip

RETURNS

The numeric value of the first fully numeric field, or –1 that indicates that no numeric file is found.

EXAMPLES

Note that fceGetList(0, FCE_FULL_LIST_FILE, . . .) must be called first, in which the filename
wanted in first placed in "DataBuffer". Be sure that ‘DataBuffer’ is sufficiently large for the full file
listing.

C/C++ Example

 Code = fceGetList(0, FCE_FULL_LIST_FILE, (char *)DataBuffer, 256);
 . . .
 Value = fceFileLength((char *)DataBuffer,3,7);
 if(Value>=0) printf("Filelength = %d\n",Value);
 else printf("Cannot determine file length\n");

BASIC Example

 Code = fceGetList(0, FCE_FULL_LIST_FILE, DataBuffer, 256)
 . . .
 Value = fceFileLength(DataBuffer,3,7)
 IF Value >= 0 THEN
 PRINT "Filelength = " + Str$(Value)
 END IF

ALSO SEE

 fceGetFileSize

 17

2.13 fceGetDirFiles Gets (downloads) files from FTP server.

SYNTAX

fceGetDirFiles(Channel, Pattern, Buffer, BufLen, CaseSen)

 Channel : (I) Channel number.
 Pattern : (P) File pattern of files to be downloaded.
 Buffer : (P) Work buffer (for file list).
 BufLen : (I) Size of 'Buffer'.
 CaseSen : (I) T if pattern is case sensitive.

REMARKS

The fceGetDirFiles function is used to download all files matching the file pattern 'Pattern' from the FTP
server. The 'Pattern' is a filename which may contain '?' and '*' wildcards. The '?' character matches any
one character while '*' matches any series of characters. For example, "*.ZIP" specifies all files that end
with extension ".ZIP". The 'Buffer' is a work buffer that must be sufficiently large to store all filenames.

Call fceSetServerDir to specify the server directory and fceSetLocalDir to specify the local directory
before downloading.

Note that ASCII transfer mode is normally the default. Call fceSetMode(Chan,'B') to set the transfer mode
to binary for non-ASCII files.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the mGet example program.

C/C++ Example

 char Buffer[64000];
 char *Pattern = "*.txt";
 // download all files matching "*.txt"
 Code = fceGetDirFiles(0, Pattern, (char *)Buffer, 64000, FALSE);

BASIC Example

 Dim Buffer As String
 Dim Pattern As String
 Buffer = SPACE(64000)
 Pattern = "*.txt"
 // download all files matching "*.txt"
 Code = fceGetDirFiles(0, Pattern, Buffer, 64000, False)

ALSO SEE

fcePutDirFiles

 18

2.14 fceGetFile Gets (downloads) file from FTP server.

SYNTAX

fceGetFile(Channel, FileName)

 Channel : (I) Channel number.
 FileName : (P) Name of file to download.

REMARKS

The fceGetFile function is used to download the file 'FileName' from the FTP server. The file can be also
be renamed when it is saved by specifying "oldname:newname" for filename. See example below.

Call fceSetServerDir to specify the server directory and fceSetLocalDir to specify the local directory
before downloading.

Note that ASCII transfer mode is normally the default. Call fceSetMode(Chan,'B') to set the transfer mode
to binary for non-ASCII files.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // download file "PRODUCTS.TXT"
 Code = fceGetFile(0,"PRODUCTS.TXT");
 // download "YOURFILE.BIN" and save as "MYFILE.BIN"
 Code = fceGetFile(0, "YOURFILE.BIN:MYFILE.BIN");

BASIC Example

 ' download file "PRODUCTS.TXT"
 Code = fceGetFile(0,"PRODUCTS.TXT")
 ' download "YOURFILE.BIN" and save as "MYFILE.BIN"
 Code = fceGetFile(0, "YOURFILE.BIN:MYFILE.BIN")

ALSO SEE

fcePutFile

 19

2.15 fceGetFileSize Gets file size from FTP server.

SYNTAX

fceGetFileSize(Channel, FileName)

 Channel : (I) Channel number.
 FileName : (P) Name of file

REMARKS

The fceGetFileSize function is used to get the size of file 'FileName' from the FTP server.

The fceGetFileSize function uses the "extended FTP" command "SIZE", which is not supported by all
FTP servers. In this case, use the fceFileLength command instead.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

C/C++ Example

 // get size of file "PRODUCTS.TXT"
 Code = fceGetFileSize(0,"PRODUCTS.TXT");

BASIC Example

 ' get size of file "PRODUCTS.TXT"

 Code = fceGetFileSize(0,"PRODUCTS.TXT")

ALSO SEE

fceFileLength

 20

2.16 fceGetFileTime Gets file timestamp from FTP server.

SYNTAX

fceGetFile(Channel, FileName, Buffer, BufLen()

 Channel : (I) Channel number.
 FileName : (P) Name of file
 Buffer : (P) Buffer into which timestamp is copied
 BufLen : (I) Length of buffer (should be >= 16)

REMARKS

The fceGetFileTime function is used to get the timestamp (of last modification) of file 'FileName' from
the FTP server. The timestamp should be in GMT (Greenwich Mean Time), although this may vary
between individual servers.

The fceGetFileTime function uses the "extended FTP" command "MDTM", which is not supported by all
FTP servers.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

C/C++ Example

 // get timestamp of file "PRODUCTS.TXT"
 Code = fceGetFileTime(0,"PRODUCTS.TXT", (char *)Buffer, 16);

BASIC Example

 ' get timestamp of file "PRODUCTS.TXT"
 Buffer = SPACE(16)
 Code = fceGetFileTime(0,"PRODUCTS.TXT", Buffer, 16)

ALSO SEE

fcePutFile

 21

2.17 fceGetInteger Returns numeric parameter for FTP processing.

SYNTAX

fceGetInteger(Channel, ParamName)

 Channel : (I) Channel number.
 ParamName : (I) Parameter name.

REMARKS

The fceGetInteger function returns the value of the specified parameter 'ParamName'.

Note that the return type is unsigned long.

 FCE_GET_BUILD Returns FCE build number.
 FCE_GET_CONNECT_STATUS Returns 1 if connected.
 FCE_GET_COUNTER Returns # times FCE driver was called.
 FCE_GET_FILE_BYTES_RCVD Returns # file bytes received.
 FCE_GET_FILE_BYTES_SENT Returns # file bytes sent.
 FCE_GET_RESPONSE Returns last (numerical) FTP response.
 FCE_GET_SOCKET Returns control socket number.
 FCE_GET_SOCK_ERROR Returns last socket error code.
 FCE_GET_TOTAL_BYTES_RCVD Returns total bytes received.
 FCE_GET_TOTAL_BYTES_SENT Returns total file bytes sent.
 FCE_GET_VERSION Returns FCE version.
 FCE_GET_QUEUE_ZERO Returns # times fceQueueLoad returns 0.
 FCE_GET_DATA_PORT Returns last data port used.
 FCE_GET_DAYS_LEFT Returns # days left for evaluation version.
 FCE_SKEY_WAS_SEEN Returns 1 if S/KEY was seen while connecting.

RETURNS

Value of parameter requested [long integer (L)].

EXAMPLES

Most example programs call fceGetInteger.

C/C++ Example

 // display FCE version and build number.
 Version = fceGetInteger(0, FCE_GET_VERSION);
 printf("FCE32 Version: %1d.%1d.%1d \n",
 0x0f&(Version>>8),0x0f&(Version>>4),0x0f&Version);

BASIC Example

 Version = fceGetInteger(0, FCE_GET_VERSION)
 S = Hex$(Version)

 Print Mid$(S, 1, 1) + "." + Mid$(S, 2, 1) + "." + Mid$(S, 3, 1)

ALSO SEE

fceGetString

 22

2.18 fceGetList Gets file list from FTP server.

SYNTAX

fceGetList(Channel, Flag, Buffer, BufLen)

 Channel : (I) Channel number.
 Flag : (I) Listing type flag (see below).
 Buffer : (P) List buffer.
 BufLen : (I) Size of 'Buffer'

REMARKS

The fceGetList function downloads the directory list from the FTP server.

If 'FCE_FULL_LIST' is passed for 'Flag', a full directory listing is returned in 'Buffer'. Note that the exact
format of the list depends on the particular FTP server.

If 'FCE_NAME_LIST' is passed for 'Flag', a listing is returned consisting of file names only. Note that
some FTP servers do not support the name list function.

If 'FCE_FULL_LIST_FILE' is passed for 'Flag', the filename to list is taken from 'Buffer'. If the file
exists, a listing of this file is returned.

If 'FCE_NAME LIST_FILE' is passed for 'Flag', the filename to list is taken from 'Buffer'. If the file
exists, the name of this file is returned. Be sure to check the return code length.

File lists consist of a zero terminated list of file entries, each of which is terminated by a carriage return,
line feed pair. Also check the return code, which contains the length of the characters placed in 'Buffer'.

Note: The buffer passed to fceGetList must have space for 'BufLen' bytes.

RETURNS

Return < 0 : An error has occurred (buffer overflow). Call fceErrorText.
Return > 0 : Number of characters copied to 'Buffer'.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // get file name list
 Code = fceGetList(0, FCE_NAME_LIST, (char *)Buffer, 2000);
 if(Code>0) printf("%s", Buffer);

BASIC Example

 ' get file name list
 Buffer = SPACE$(2000)
 Code = fceGetList(0, FCE_NAME_LIST, Buffer, 2000)
 If Code > 0 Then
 Print Buffer

 End If

 23

2.19 fceGetLocalDir Returns the local upload/download directory.

SYNTAX

fceGetLocalDir(Channel, Buffer, BufLen)

 Channel : (I) Channel number.
 Buffer : (P) String buffer.
 BufLen : (I) Size of 'Buffer'.

REMARKS

The fceGetLocalDir function returns the local upload/download directory.

The local upload/download directory is the directory used for all uploads and downloads. The default is
the current directory (".").

Both relative and absolute directories may be specified.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return > 0 : The number of characters copied.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 char Buffer(128);
 Get local upload/download directory.
 fceGetLocalDir(0, (char *)Buffer, 128);

BASIC Example

 Dim Buffer As String * 128
 ' Get local upload/download directory.
 fceGetLocalDir(0, Buffer, 128)

ALSO SEE

fceSetLocalDir

 24

2.20 fceGetLocalFList Gets list of all files in local directory.

SYNTAX

fceGetLocalFList(Channel, Buffer, BufLen)

 Channel : (I) Channel number.
 Buffer : (P) String buffer.
 BufLen : (I) Size of 'Buffer'.

REMARKS

The fceGetLocalFList function is used to return a list of files in the local upload/download directory.

Note that the local upload/download directory is set with fceSetLocalDir and read by fceGetLocalDir.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return = 0 : No files in local directory.
Return > 0 : The number of filenames in 'Buffer'.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 int FileCount;
 FileCount = fceGetLocalFList(0, (char *)Buffer, MAX_BUF);

BASIC Example

 Dim FileCount As Integer
 Dim Buffer As String * 5001
 Buffer = Space(5001)

 FileCount = fceGetLocalFList(0, Buffer, 5000)

ALSO SEE

fceGetLocalFSize

 25

2.21 fceGetLocalFSize Gets size of file in upload/download directory.

SYNTAX

fceGetLocalFSize (Channel, FileName)

 Channel : (I) Channel number.
 FileName : (P) Name of file in local directory.

REMARKS

The fceGetLocalFSize function is used to return the length of the file in the local upload/download
directory specified by 'FileName'.

Note that the local upload/download directory is set with fceSetLocalDir and read by fceGetLocalDir.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return > 0 : File length of 'FileName'.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 int FileCount;
 FileCount = fceGetLocalFSize (0, (char *)"MyFile.bin");

BASIC Example

 Dim FileCount As Integer
 Dim FileName As String
 FileName = "MyFile.bin"

 FileCount = fceGetLocalFSize(0, FileName)

ALSO SEE

fceGetLocalFList

 26

2.22 fceGetServerDir Returns the FTP server directory.

SYNTAX

fceGetServerDir(Channel, Buffer, Buflen)

 Channel : (I) Channel number
 Buffer : (P) String buffer.
 BufLen : (I) Size of 'Buffer'.

REMARKS

The fceGetServerDir function returns the FTP server directory.

Note that most FTP servers will restrict clients as to which directories on the server can be accessed.

The default is the current logged directory on the FTP server.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return > 0 : The number of characters copied.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // copy directory string to 'Buffer'
 Code = fceGetServerDir(0, (char *)Buffer, 65);
 printf("Server directory is %s\n", Buffer);

BASIC Example

 ' copy directory string to 'Buffer'
 Buffer = SPSACE$(65)
 Code = fceGetServerDir(0, Buffer, 65)
 Print "Server directory is ", Buffer

ALSO SEE

fceSetServerDir

 27

2.23 fceGetString Returns string parameter for FTP processing.

SYNTAX

fceGetString(Channel, ParamName, Buffer, BufLen)

 Channel : (I) Channel number
 ParamName : (P) Parameter name
 Buffer : (P) String buffer.
 BufLen : (I) Size of 'Buffer'.

REMARKS

The fceGetString function returns the string parameter 'ParamName'.

 FCE_GET_LINE_COUNT Returns the # lines in 'Buffer'.
 FCE_GET_LAST_RESPONSE Returns last FTP response.
 FCE_GET_REGISTRATION Returns registration string.
 FCE_GET_SERVER_IP Returns IP address of FTP server.
 FCE_GET_LOCAL_IP Returns local IP address.
 FCE_GET_FULL_RESPONSE Returns multi-line server response.
 FCE_GET_REGISTRATION Returns registration string.
 FCE_GET_LAST_RESPONSE Returns last server response.
 FCE_GET_SERVER_IP Returns IP address of server.
 FCE_GET_LINE_COUNT Returns # lines in 'Buffer'.
 FCE_GET_LOCAL_IP Returns local IP address (once connected)
 FCE_GET_ERROR_LINE Returns text of error from last server response.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return > 0 : Number of characters copied to 'Buffer', or(FCE_GET_LINE_COUNT)
 the number of lines in 'Buffer'.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // display registration string within the DLL
 Code = fceGetString(0, FCE_GET_REGISTRATION, (char *)Buffer, 50);
 printf("Registration = '%s'\n", Buffer);

BASIC Example

 ' display registration string within the DLL
 Buffer = SPACE$(50)
 Code = fceGetString(0, FCE_GET_REGISTRATION, Buffer, 50)
 Print "Registration ", Buffer

ALSO SEE

fceGetInteger

 28

2.24 fceGetTicks Returns # milliseconds since system boot.

SYNTAX

fceGetTicks()

REMARKS

The fceGetTicks function returns the system time in milliseconds since the system was booted. fceGetTicks
calls the Windows API function GetCurrentTime. This function is provided as a convenience for computer
languages in which GetCurrentTime can not be called directly.

RETURNS

The system time in milliseconds.

EXAMPLES

C/C++ Example

 ULONG TimeMark;
 TimeMark = fceGetTicks();
 printf("Time is %ld ticks\n", TimeMark);

BASIC Example

 DIM TimeMark As LONG
 TimeMark = fceGetTicks()
 Print "Time is " + Str$(TimeMark)

ALSO SEE

None.

 29

2.25 fceHello Issues NOOP command to server.

SYNTAX

fceHello(Channel)

 Channel : (I) Channel number.

REMARKS

The fceHello function issues a "NOOP" command to the server. The primary purpose for this command is
to determine if the server is still responding to commands.

This function can sometimes be used as a "keep alive" command, although most servers will drop your
connection after a fixed period of time unless data is transferred.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.
Return > 0 : The number of characters copied.

EXAMPLES

C/C++ Example

 // is the server responding ?
 Code = fceHello(0);
 if(Code>=0) printf("Server is responding\n");

BASIC Example

 ' is the server responding ?
 Code = fceHello(0)
 If Code >=0 Then
 Print "Server is responding"

 End If

ALSO SEE

None.

 30

2.26 fceIsConnected Returns the current connection status.

SYNTAX

fceIsConnected(Channel)

 Channel : (I) Channel number.

REMARKS

The fceIsConnected function is used determine the current connection status. It returns TRUE for a live
connection and FALSE if the connection has been dropped.

EXAMPLE (C/C++)

 //test connection
 if(!fceIsConnected(vSock))
 {printf("*** ERROR: Connection has been dropped!\n");
 break;
 }

EXAMPLE (VB)

 Dim vSock As Long
 If fceIsConnected(vSock) = 0 Then
 Result.Text = "*** ERROR: Connection has been dropped!"
 End If

RETURNS

True : Connective is OK.
False : Connection has been dropped.

 31

2.27 fceMakeServerDir Creates server directory.

SYNTAX

fceMakeServerDir(Channel, DirName)

 Channel : (I) Channel number.
 DirName : (P) Name of directory to make.

REMARKS

The fceMakeServerDir function is used to make (create) server directory 'DirName' on the FTP server.

The make may fail if you don't have the necessary permission, as is typical when you connect as an
anonymous user.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // create new directory
 Code = fceMakeServerDir(0, "MYSTUFF.DIR");

BASIC Example

 ' create new directory
 Code = fceMakeServerDir(0, "MYSTUFF.DIR")

ALSO SEE

fceDelServerDir

 32

2.28 fceMatchFile: Match next file name in list.

SYNTAX

fceMatchFile(ListBuf,Start,NameBuf,NameLen,FileSpec,CaseFlag)

 ListBuf : (P) Multi-line filename buffer.
 Start : (I) Offset into above to start.
 NameBuf : (P) Buffer to put matched name into.
 NameLen : (I) Size of above.
 FileSpec : (P) File specification pattern.
 CaseFlag : (I) Case sensitive comparisons if true.

REMARKS

The fceMatchFile function is used to copy the next filename into 'NameBuf' from the 'ListBuf' starting at
byte offset 'Start' that matches the file specification pattern 'FileSpec'.

'ListBuf' must consist of one or more filenames separated by carriage return, line feed pairs. This is
normally returned by the FTP server when requesting a name list (FCE_NAME_LIST).

The 'FileSpec' is a filename which may contain '?' and '*' wildcards. The '?' character matches any one
character while '*' matches any series of characters. For example, "*.ZIP" specifies all files that end with
extension ".ZIP".

fceMatchFile returns the offset to the next file name after the matched file. Pass this offset as the 'Start'
parameter in the next call to fceMatchFile in order to find the next matching file name.

The primary purpose of fceMatch file is to enable multi-file transfers based on a filename pattern. See the
MGET example program for a complete example.

RETURNS

Return > 0 : The offset to the next file name in 'ListBuf' after matched file.
Return = 0 : The end of the list has been reached.
Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the MGET example program.

ALSO SEE

fceExtract

 33

2.29 fcePutDirFiles Puts (uploads) files to FTP server.

SYNTAX

fcePutDirFiles(Channel, Pattern, Buffer, BufLen, CaseSen)

 Channel : (I) Channel number.
 Pattern : (P) File pattern of files to be downloaded.
 Buffer : (P) Work buffer (for file list).
 BufLen : (I) Size of 'Buffer'.
 CaseSen : (I) T if pattern is case sensitive.

REMARKS

The fcePutDirFiles function is used to upload all files matching the file pattern 'Pattern' to the FTP server.
The 'Pattern' is a filename which may contain '?' and '*' wildcards. The '?' character matches any one
character while '*' matches any series of characters. For example, "*.ZIP" specifies all files that end with
extension ".ZIP". The 'Buffer' is a work buffer that must be sufficiently large to store all filenames.

Call fceSetServerDir to specify the server directory and fceSetLocalDir to specify the local directory
before uploading.

Note that ASCII transfer mode is normally the default. Call fceSetMode(Chan,'B') to set the transfer mode
to binary for non-ASCII files.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the mPut example program.

C/C++ Example

 char Buffer[64000];
 char *Pattern = "*.txt";
 // upload all files matching "*.txt" (in the local directory)
 Code = fcePutDirFiles(0, Pattern, (char *)Buffer, 64000, FALSE);

BASIC Example

 Dim Buffer As String
 Dim Pattern As String
 Buffer = SPACE(64000)
 Pattern = "*.txt"
 // upload all files matching "*.txt"
 Code = fcePutDirFiles(0, Pattern, Buffer, 64000, False)

ALSO SEE

fceGetDirFiles

 34

2.30 fcePutFile Uploads file to FTP server.

SYNTAX

fcePutFile(Channel, FileName)

 Channel : (I) Channel number.
 FileName : (P) Name of file to upload.

REMARKS

The fcePutFile function uploads the file 'FileName' to the FTP server.

Call fceSetServerDir to specify the server directory and fceSetLocalDir to specify the local directory
before uploading.

The file 'FileName' to be uploaded must be in the local upload/download directory. Transfer mode is by
default ASCII. For binary mode, pass ‘B’ to fceSetMode before calling fcePutFile.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // upload file
 Code = fcePutFile(0, "COMMENTS.TXT");

BASIC Example

 ' upload file
 Code = fcePutFile(0, "COMMENTS.TXT")

ALSO SEE

fceGetFile.

 35

2.31 fceRelease Releases FCE.

SYNTAX

fceRelease

REMARKS

The fceRelease function releases the FCE system. This should be the very last function called.

fceClose should be called for all channels before calling fceRelease.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

All example programs call fceRelease.

C/C++ Example

 // Terminate FCE
 fceRelease();

BASIC Example

 ' Terminate FCE

 Code = fceRelease()

ALSO SEE

fceAttach.

 36

2.32 fceSetInteger Sets numeric parameter for FTP processing.

SYNTAX

fceSetInteger(Channel, ParamName, ParamValue)

 Channel : (I) Channel number.
 ParamName : (I) Parameter name.
 ParamValue : (L) Parameter value.

REMARKS

The fceSetInteger function sets the numeric parameter 'ParamName' to the value 'ParamValue'.

 Parameter Name Default

 FCE_SET_AUTO_CALL_DRIVER 1 (TRUE)
 FCE_SET_CLOSE_LINGER 50
 FCE_SET_CONNECT_WAIT 60000
 FCE_SET_DATA_PORT (none)
 FCE_SET_FTP_PORT 21
 FCE_SET_MAX_LINE_WAIT 20000
 FCE_SET_MAX_LISTEN_WAIT 25000
 FCE_SET_MAX_RESPONSE_WAIT 10000
 FCE_SET_MIN_LINE_WAIT 0
 FCE_SET_MIN_RESPONSE_WAIT 0
 FCE_SET_PASSIVE 0 (FALSE)
 FCE_SET_SLEEP_TIME 20
 FCE_SET_WRITE_BUFSIZE 1024
 FCE_SET_MASTER_INDEX 0
 FCE_SET_APPEND_MODE 0 (FALSE)
 FCE_SET_CLIENT_OFFSET 0
 FCE_SET_SERVER_OFFSET 0
 FCE_SET_BLOCKING_MODE 1 (TRUE)
 FCE_HIDE_PASSWORD 0 (FALSE)
 FCE_SET_FIRST_DATA_PORT Depends on # channels.
 FCE_SET_LAST_DATA_PORT Depends on # channels.
 FCE_CLOSE_LOG_FILE None.
 FCE_AUTO_LOG_CLOSE 0 (FALSE)
 FCE_STATUS_BEFORE_WRITE 1 (TRUE)
 FCE_LOCAL_DIR_IS_CDROM 0 (FALSE)
 FCE_DISABLE_SKEY 0 (FALSE)

FCE_SET_AUTO_CALL_DRIVER enables and disables automatic calling of fceDriver.

FCE_SET_CLOSE_LINGER is the "linger" time after an upload is completed before closing the data socket.
Setting this value too small causes the data socket to be closed before the last block of data is transmitted.

FCE_SET_CONNECT_WAIT is the maximum time allowed to complete a connection to the FTP server.

FCE_SET_DATA_PORT specifies the port number to use (in non-passive mode) for the next list or file
transfer command.

FCE_SET_FTP_PORT is the port number to use when connecting to the FTP server. The default is the
well-known port number 21.

 37

FCE_SET_MAX_LINE_WAIT is the time after which a "time out" error is declared if the server has not
responded.

FCE_SET_MAX_LISTEN_WAIT is the time after which a "time out" error is declared while waiting for a
data port "Listen" to complete.

FCE_SET_MAX_RESPONSE_WAIT is the time after which a "time out" error occurs if the server has not
responded.

FCE_SET_MIN_LINE_WAIT is the delay before checking if the server is ready to accept the next line of
input.

FCE_SET_MIN_RESPONSE_WAIT is the delay before looking for the server's response.

FCE_HIDE_PASSWORD is used to direct FCE to replace the password characters with asterisks in the in log
file. Pass 1 to hide your password and 0 to allow the password in the log file. The default is 0; passwords
are not “hidden”.

FCE_SET_FIRST_DATA_PORT specifies the first data port to be used in the allowed port range for file
transfers (list, uploads, and downloads). This is useful when a range of ports that are allowed through a
firewall must be specified.

FCE_SET_LAST_DATA_PORT specifies the last data port to be used in the allowed port range for file
transfers (list, uploads, and downloads). This is useful when a range of ports that are allowed through a
firewall must be specified.

FCE_CLOSE_LOG_FILE is used to close the log file immediately.

FCE_AUTO_LOG_CLOSE specifies that the log file should be closed automatically whenever fceClose is
called. The default value is 1 (TRUE). Pass 0 to keep the log file open when fceClose is called.

FCE_SET_PASSIVE sets passive mode on (1) and off (0). Passive mode means that the server specifies
the data port rather than the client when listing or transferring files.

FCE_SET_SLEEP_TIME is the sleep time (in milliseconds) when waiting for socket I/O to complete.
Useful in multi threaded environments.

FCE_SET_WRITE_BUFSIZE is the transmit block size. The maximum value is 4096.

FCE_SET_MASTER_INDEX is the last index (into the internal Winsock IP address table) searched when
calling fceGetServerIP. This applies ONLY to multi-homed (multiple IP addresses) local machines.

FCE_SET_SERVER_OFFSET sets the server file offset for the next call to fceGetFile. This allows an
interrupted download to be resumed. FCE_APPEND_MODE must also be set for the offset value to be used.
Refer to FCE_SET_APPEND_MODE below.

FCE_SET_CLIENT_OFFSET sets the client file offset for the next call to fceGetFile or fcePutFile. This
allows an interrupted upload or download to be resumed. FCE_APPEND_MODE must also be set for the
offset value to be used. Refer to FCE_SET_APPEND_MODE below.

 38

FCE_SET_APPEND_MODE sets the upload/download mode to "append". The next file uploaded (with
fcePutFile) or downloaded (with fceGetFile) will be appended to the existing file. Append mode
stays in effect for the next upload or download only. For more information, refer to section "Using
Append Mode for Uploads" and "Using Append Mode for Downloads" in the User's Manual (FCE_USR).
Also view online at http://www.marshallsoft.com/fce_usr.pdf

FCE_SET_BLOCKING_MODE sets the blocking mode used when connecting. Pass TRUE (default) to enable blocking
while connecting, and FALSE (0) to disable blocking mode while connecting.

FCE_STATUS_BEFORE_WRITE if set to true, causes the WRITE status to always be checked before writing.

FCE_LOCAL_DIR_IS_CDROM allows the local directory to be a read-only device such as a CDROM.

FCE_DISABLE_SKEY disables S/KEY processing.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

Most example programs call fceSetInteger.

C/C++ Example

 // disable the automatic calling of the state driver.
 fceSetInteger(0, FCE_SET_AUTO_CALL_DRIVER, 0);

BASIC Example

 ' disable the automatic calling of the state driver.
 Code = fceSetInteger(0, FCE_SET_AUTO_CALL_DRIVER, 0)

ALSO SEE

fceSetString

 39

http://www.marshallsoft.com/fce_usr.pdf

2.33 fceSetLocalDir Sets the local upload/download directory.

SYNTAX

fceSetLocalDir(Channel, DirName)

 Channel : (I) Channel number.
 DirName : (P) Local directory path.

REMARKS

The fceSetLocalDir function sets the local computer upload/download directory. The upload/download
directory is the directory used by FCE for all uploads and downloads.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // specify the local upload/download directory.
 fceSetLocalDir(0, "C:\\TEMP");

BASIC Example

 ' specify the local upload/download directory.

 Code = fceSetLocalDir(0, "C:\TEMP");

ALSO SEE

fceGetLocalDir

 40

2.34 fceSetMode Sets FTP transfer mode.

SYNTAX

fceSetMode(Channel, Mode)

 Channel : (I) Channel number.
 Mode : (I) transfer mode ('A' or 'B').

REMARKS

The fceSetMode function sets the FTP transfer mode. Pass 'A' to specify ASCII mode and 'B' to specify
binary mode.

Since the FTP default is usually ASCII, it is good practice to always specify the transfer mode before the
first call to fceGetFile or fcePutFile.

If unsure of the transfer mode, choose binary.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // set binary mode
 fceSetMode(0, 'B');

BASIC Example

 ' set binary mode
 Code = fceSetMode(0, ASC("B"))

ALSO SEE

fceGetFile and fcePutFile.

 41

2.35 fceSetServerDir Sets the remote FTP directory .

SYNTAX

fceSetServerDir(Channel, DirName)

 Channel : (I) Channel number.
 DirName : (P) Directory name.

REMARKS

The fceSetServerDir sets the FTP directory to 'DirName' that is used for subsequent FCE calls.

Note that UNIX FTP servers use forward slashes for directories while Windows FTP servers use backward
slashes.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // note forward slashes
 Code = fceSetServerDir (0, "marshallsoft/other")

BASIC Example

 ' note forward slashes
 Code = fceSetServerDir (0, "marshallsoft/other")

ALSO SEE

None.

 42

2.36 fceSetString Sets string parameter for FTP processing.

SYNTAX

fceSetString(Channel, ParamName, ParamPtr)

 Channel : (I) Channel number.
 ParamName : (I) Parameter name.
 ParamPtr : (P) Parameter string.

REMARKS

The fceSetString function sets the string parameter 'ParamName' to 'ParamPtr'.

FCE_SET_LOG_FILE is used to specify the log file name. Log files can be quite large, so use only when
necessary.

FCE_WRITE_TO_LOG is used to write a string (message) to log file.

FCE_BIND_TO_LOCAL_IP is used to bind the control port to the specified local IP address.

RETURNS

Return < 0 : An error has occurred. Call fceErrorText.

EXAMPLES

See the WINFTP example program.

C/C++ Example

 // open LOG file
 fceSetString(0, FCE_SET_LOG_FILE, "program.log");

BASIC Example

 ' open LOG file
 Code = fceSetString(0, FCE_SET_LOG_FILE, "program.log")

ALSO SEE

fceSetInteger

 43

2.37 fceShortToByte Converts 16-bit ASCII character buffer to 8-bit

SYNTAX

fceShortToByte(Buffer)

 Buffer : (P) character buffer

REMARKS

The fceShortToByte function converts the (null terminated) character buffer ‘Buffer’ from 16-bit Unicode
ASCII characters to 8-bit ASCII characters.

The buffer must be null terminated (last character is a hex 00).

This function is only necessary when working with 16-bit Unicode ASCII characters in C# and Delphi
2005.

RETURNS

None.

EXAMPLES

See C# example cs_get.csproj

C# Example

 NameString = “MyFile.zip\0”
 char[] NameBuffer = NameString.ToCharArray();
 // convert (null terminated) 16-unicode buffer to 8-bit
 fixed (char* pNameBuffer = NameBuffer)
 fceShortToByte(pNameBuffer);

ALSO SEE

fceByteToShort

 44

2.38 fceToInteger Converts ASCII text to integer

SYNTAX

fceToInteger(Buffer)

 Buffer : (P) text buffer containing ASCII digits
 Start : (I) offset to start of first digit
 Count : (I) maximum number of characters to convert

REMARKS

The fceToInteger function provides a convenient way to convert text to an integer. For example, if the
text buffer passed to fceToInteger contains “ABC123XYZ”, calling fceToInteger(Buffer, 3, 3) will return
the integer 123. The first character that is not a (decimal) digit will terminate the conversion, so
fceToInteger(Buffer, 3, 8) will also return 123 but fceToInteger(Buffer, 3, 2) will return 12.

The buffer must be null terminated (last character is a hex 00).

RETURNS

The converted integer. Zero is returned if no integer digits are found.

EXAMPLES

See the MDTM example program in the APPS directory.

 45

3 FCE Error Return Code List

The complete list of FCE error codes follows.

 FCE_ABORTED Internal checksum fails!
 FCE_ACCEPT_SILENT Timed out waiting for accept.
 FCE_ALREADY_ATTACHED Already attached.
 FCE_BAD_STATUS_FLAG Bad status flag passed to fceStatus.
 FCE_BUFFER_OVERFLOW List buffer overflow.
 FCE_CANNOT_ALLOC Cannot allocate memory.
 FCE_CANNOT_COMPLY Cannot comply.
 FCE_CANNOT_CREATE_SOCK Cannot create socket.
 FCE_CANNOT_OPEN Cannot open file.
 FCE_CHAN_OUT_OF_RANGE Channel out of range.
 FCE_CONNECT_ERROR Error attempting to connect.
 FCE_EOF Socket has been closed.
 FCE_FILE_IO_ERROR File I/O error.
 FCE_INVALID_SOCKET Invalid socket.
 FCE_IS_BLOCKING WINSOCK is currently blocking.
 FCE_LISTEN_ERROR Listen error.
 FCE_LISTENER_SILENT No response on listener socket.
 FCE_MODE_NOT_AB Must specify 'A' or 'B' for mode.
 FCE_NO_GREETING Missing server greeting message.
 FCE_NO_HOST No host name.
 FCE_NO_SERVER Cannot find FTP server.
 FCE_NO_SOCK_ADDR No available sockaddr structures.
 FCE_NOT_ATTACHED Must call fceAttach first.
 FCE_NOT_COMPLETED LIST/GET/PUT not completed.
 FCE_NOT_SERVER Illegal chars in server name.
 FCE_PASS_NULL_ARG PASSWORD not specified.
 FCE_PASV_ERROR Cannot find PASV port.
 FCE_PORT_RANGE Port number out of range.
 FCE_SERVER_ERROR FTP server returned error.
 FCE_SERVER_NULL_ARG SERVER not specified.
 FCE_SOCK_READ_ERROR Socket read error.
 FCE_SOCK_WRITE_ERROR Socket write error.
 FCE_TIMED_OUT Socket timed out.
 FCE_USER_NULL_ARG USER name not specified.

The numerical value for each error codes is listed in the file fceErrors.txt.

 46

