

5.1 Features

• ARM PrimeCell™ Vectored Interrupt Controller

• 32 interrupt request inputs

• 16 vectored IRQ interrupts

• 16 priority levels dynamically assigned to interrupt requests

• Software interrupt generation

5.2 Description

The Vectored Interrupt Controller (VIC) takes 32 interrupt request inputs and
programmably assigns them into 3 categories, FIQ, vectored IRQ, and non-vectored IRQ.
The programmable assignment scheme means that priorities of interrupts from the
various peripherals can be dynamically assigned and adjusted.

Fast Interrupt reQuest (FIQ) requests have the highest priority. If more than one request is
assigned to FIQ, the VIC ORs the requests to produce the FIQ signal to the ARM
processor. The fastest possible FIQ latency is achieved when only one request is
classified as FIQ, because then the FIQ service routine can simply start dealing with that
device. But if more than one request is assigned to the FIQ class, the FIQ service routine
can read a word from the VIC that identifies which FIQ source(s) is (are) requesting an
interrupt.

Vectored IRQs have the middle priority, but only 16 of the 32 requests can be assigned to
this category. Any of the 32 requests can be assigned to any of the 16 vectored IRQ slots,
among which slot 0 has the highest priority and slot 15 has the lowest.

Non-vectored IRQs have the lowest priority.

The VIC ORs the requests from all the vectored and non-vectored IRQs to produce the
IRQ signal to the ARM processor. The IRQ service routine can start by reading a register
from the VIC and jumping there. If any of the vectored IRQs are requesting, the VIC
provides the address of the highest-priority requesting IRQs service routine, otherwise it
provides the address of a default routine that is shared by all the non-vectored IRQs. The
default routine can read another VIC register to see what IRQs are active.

All registers in the VIC are word registers. Byte and halfword reads and write are not
supported.

Additional information on the Vectored Interrupt Controller is available in the ARM
PrimeCell™ Vectored Interrupt Controller (PL190) documentation.

5.3 Register description

The VIC implements the registers shown in Table 33. More detailed descriptions follow.

UM10120
Chapter 5: Vectored Interrupt Controller (VIC)
Rev. 01 — 24 June 2005 User manual
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 48

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

Table 33: VIC register map

Name Description Access Reset
value[1]

Address

VICIRQStatus IRQ Status Register. This register reads out the state of
those interrupt requests that are enabled and classified as
IRQ.

RO 0 0xFFFF F000

VICFIQStatus FIQ Status Requests. This register reads out the state of
those interrupt requests that are enabled and classified as
FIQ.

RO 0 0xFFFF F004

VICRawIntr Raw Interrupt Status Register. This register reads out the
state of the 32 interrupt requests / software interrupts,
regardless of enabling or classification.

RO 0 0xFFFF F008

VICIntSelect Interrupt Select Register. This register classifies each of the
32 interrupt requests as contributing to FIQ or IRQ.

R/W 0 0xFFFF F00C

VICIntEnable Interrupt Enable Register. This register controls which of the
32 interrupt requests and software interrupts are enabled to
contribute to FIQ or IRQ.

R/W 0 0xFFFF F010

VICIntEnClr Interrupt Enable Clear Register. This register allows
software to clear one or more bits in the Interrupt Enable
register.

WO 0 0xFFFF F014

VICSoftInt Software Interrupt Register. The contents of this register are
ORed with the 32 interrupt requests from various peripheral
functions.

R/W 0 0xFFFF F018

VICSoftIntClear Software Interrupt Clear Register. This register allows
software to clear one or more bits in the Software Interrupt
register.

WO 0 0xFFFF F01C

VICProtection Protection enable register. This register allows limiting
access to the VIC registers by software running in privileged
mode.

R/W 0 0xFFFF F020

VICVectAddr Vector Address Register. When an IRQ interrupt occurs, the
IRQ service routine can read this register and jump to the
value read.

R/W 0 0xFFFF F030

VICDefVectAddr Default Vector Address Register. This register holds the
address of the Interrupt Service routine (ISR) for
non-vectored IRQs.

R/W 0 0xFFFF F034

VICVectAddr0 Vector address 0 register. Vector Address Registers 0-15
hold the addresses of the Interrupt Service routines (ISRs)
for the 16 vectored IRQ slots.

R/W 0 0xFFFF F100

VICVectAddr1 Vector address 1 register. R/W 0 0xFFFF F104

VICVectAddr2 Vector address 2 register. R/W 0 0xFFFF F108

VICVectAddr3 Vector address 3 register. R/W 0 0xFFFF F10C

VICVectAddr4 Vector address 4 register. R/W 0 0xFFFF F110

VICVectAddr5 Vector address 5 register. R/W 0 0xFFFF F114

VICVectAddr6 Vector address 6 register. R/W 0 0xFFFF F118

VICVectAddr7 Vector address 7 register. R/W 0 0xFFFF F11C

VICVectAddr8 Vector address 8 register. R/W 0 0xFFFF F120

VICVectAddr9 Vector address 9 register. R/W 0 0xFFFF F124

VICVectAddr10 Vector address 10 register. R/W 0 0xFFFF F128

VICVectAddr11 Vector address 11 register. R/W 0 0xFFFF F12C
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 49

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

[1] Reset value relects the data stored in used bits only. It does not include reserved bits content.

5.4 VIC registers

The following section describes the VIC registers in the order in which they are used in the
VIC logic, from those closest to the interrupt request inputs to those most abstracted for
use by software. For most people, this is also the best order to read about the registers
when learning the VIC.

5.4.1 Software Interrupt register (VICSoftInt - 0xFFFF F018)
The contents of this register are ORed with the 32 interrupt requests from the various
peripherals, before any other logic is applied.

VICVectAddr12 Vector address 12 register. R/W 0 0xFFFF F130

VICVectAddr13 Vector address 13 register. R/W 0 0xFFFF F134

VICVectAddr14 Vector address 14 register. R/W 0 0xFFFF F138

VICVectAddr15 Vector address 15 register. R/W 0 0xFFFF F13C

VICVectCntl0 Vector control 0 register. Vector Control Registers 0-15 each
control one of the 16 vectored IRQ slots. Slot 0 has the
highest priority and slot 15 the lowest.

R/W 0 0xFFFF F200

VICVectCntl1 Vector control 1 register. R/W 0 0xFFFF F204

VICVectCntl2 Vector control 2 register. R/W 0 0xFFFF F208

VICVectCntl3 Vector control 3 register. R/W 0 0xFFFF F20C

VICVectCntl4 Vector control 4 register. R/W 0 0xFFFF F210

VICVectCntl5 Vector control 5 register. R/W 0 0xFFFF F214

VICVectCntl6 Vector control 6 register. R/W 0 0xFFFF F218

VICVectCntl7 Vector control 7 register. R/W 0 0xFFFF F21C

VICVectCntl8 Vector control 8 register. R/W 0 0xFFFF F220

VICVectCntl9 Vector control 9 register. R/W 0 0xFFFF F224

VICVectCntl10 Vector control 10 register. R/W 0 0xFFFF F228

VICVectCntl11 Vector control 11 register. R/W 0 0xFFFF F22C

VICVectCntl12 Vector control 12 register. R/W 0 0xFFFF F230

VICVectCntl13 Vector control 13 register. R/W 0 0xFFFF F234

VICVectCntl14 Vector control 14 register. R/W 0 0xFFFF F238

VICVectCntl15 Vector control 15 register. R/W 0 0xFFFF F23C

Table 33: VIC register map

Name Description Access Reset
value[1]

Address

Table 34: Software Interrupt register (VICSoftInt - address 0xFFFF F018) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access R/W R/W R/W R/W R/W R/W R/W R/W
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 50

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.2 Software Interrupt Clear register (VICSoftIntClear - 0xFFFF F01C)

This register allows software to clear one or more bits in the Software Interrupt register,
without having to first read it.

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access R/W R/W R/W R/W R/W R/W R/W R/W

Table 35: Software Interrupt register (VICSoftInt - address 0xFFFF F018) bit description

Bit Symbol Value Description Reset value

31:0 See VICSoftInt
bit allocation
table.

0 Do not force the interrupt request with this bit number. Writing
zeroes to bits in VICSoftInt has no effect, see VICSoftIntClear
(Section 5.4.2).

0

1 Force the interrupt request with this bit number.

Table 36: Software Interrupt Clear register (VICSoftIntClear - address 0xFFFF F01C) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access WO WO WO WO WO WO WO WO

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access WO WO WO WO WO WO WO WO

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access WO WO WO WO WO WO WO WO

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access WO WO WO WO WO WO WO WO

Table 37: Software Interrupt Clear register (VICSoftIntClear - address 0xFFFF F01C) bit description

Bit Symbol Value Description Reset
value

31:0 See
VICSoftIntClea
r bit allocation
table.

0 Writing a 0 leaves the corresponding bit in VICSoftInt unchanged. 0

1 Writing a 1 clears the corresponding bit in the Software Interrupt
register, thus releasing the forcing of this request.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 51

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.3 Raw Interrupt status register (VICRawIntr - 0xFFFF F008)
This is a read only register. This register reads out the state of the 32 interrupt requests
and software interrupts, regardless of enabling or classification.

5.4.4 Interrupt Enable register (VICIntEnable - 0xFFFF F010)
This is a read/write accessible register. This register controls which of the 32 interrupt
requests and software interrupts contribute to FIQ or IRQ.

Table 38: Raw Interrupt status register (VICRawIntr - address 0xFFFF F008) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access RO RO RO RO RO RO RO RO

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access RO RO RO RO RO RO RO RO

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access RO RO RO RO RO RO RO RO

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access RO RO RO RO RO RO RO RO

Table 39: Raw Interrupt status register (VICRawIntr - address 0xFFFF F008) bit description

Bit Symbol Value Description Reset
value

31:0 See
VICRawIntr bit
allocation
table.

0 The interrupt request or software interrupt with this bit number is
negated.

0

1 The interrupt request or software interrupt with this bit number is
negated.

Table 40: Interrupt Enable register (VICIntEnable - address 0xFFFF F010) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access R/W R/W R/W R/W R/W R/W R/W R/W
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 52

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.5 Interrupt Enable Clear register (VICIntEnClear - 0xFFFF F014)
This is a write only register. This register allows software to clear one or more bits in the
Interrupt Enable register (see Section 5.4.4 “Interrupt Enable register (VICIntEnable -
0xFFFF F010)” on page 52), without having to first read it.

5.4.6 Interrupt Select register (VICIntSelect - 0xFFFF F00C)
This is a read/write accessible register. This register classifies each of the 32 interrupt
requests as contributing to FIQ or IRQ.

Table 41: Interrupt Enable register (VICIntEnable - address 0xFFFF F010) bit description

Bit Symbol Description Reset
value

31:0 See
VICIntEnable
bit allocation
table.

When this register is read, 1s indicate interrupt requests or software interrupts
that are enabled to contribute to FIQ or IRQ.

When this register is written, ones enable interrupt requests or software
interrupts to contribute to FIQ or IRQ, zeroes have no effect. See Section 5.4.5
“Interrupt Enable Clear register (VICIntEnClear - 0xFFFF F014)” on page 53
and Table 43 below for how to disable interrupts.

0

Table 42: Software Interrupt Clear register (VICIntEnClear - address 0xFFFF F014) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access WO WO WO WO WO WO WO WO

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access WO WO WO WO WO WO WO WO

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access WO WO WO WO WO WO WO WO

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access WO WO WO WO WO WO WO WO

Table 43: Software Interrupt Clear register (VICIntEnClear - address 0xFFFF F014) bit description

Bit Symbol Value Description Reset
value

31:0 See
VICIntEnClear
bit allocation
table.

0 Writing a 0 leaves the corresponding bit in VICIntEnable
unchanged.

0

1 Writing a 1 clears the corresponding bit in the Interrupt Enable
register, thus disabling interrupts for this request.

Table 44: Interrupt Select register (VICIntSelect - address 0xFFFF F00C) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access R/W R/W R/W R/W R/W R/W R/W R/W
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 53

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.7 IRQ Status register (VICIRQStatus - 0xFFFF F000)

This is a read only register. This register reads out the state of those interrupt requests
that are enabled and classified as IRQ. It does not differentiate between vectored and
non-vectored IRQs.

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access R/W R/W R/W R/W R/W R/W R/W R/W

Table 45: Interrupt Select register (VICIntSelect - address 0xFFFF F00C) bit description

Bit Symbol Value Description Reset
value

31:0 See
VICIntSelect
bit allocation
table.

0 The interrupt request with this bit number is assigned to the IRQ
category.

0

1 The interrupt request with this bit number is assigned to the FIQ
category.

Table 46: IRQ Status register (VICIRQStatus - address 0xFFFF F000) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access RO RO RO RO RO RO RO RO

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access RO RO RO RO RO RO RO RO

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access RO RO RO RO RO RO RO RO

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access RO RO RO RO RO RO RO RO

Table 47: IRQ Status register (VICIRQStatus - address 0xFFFF F000) bit description

Bit Symbol Description Reset
value

31:0 See
VICIRQStatus
bit allocation
table.

A bit read as 1 indicates a coresponding interrupt request being enabled,
classified as IRQ, and asserted

0

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 54

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.8 FIQ Status register (VICFIQStatus - 0xFFFF F004)
This is a read only register. This register reads out the state of those interrupt requests
that are enabled and classified as FIQ. If more than one request is classified as FIQ, the
FIQ service routine can read this register to see which request(s) is (are) active.

5.4.9 Vector Control registers 0-15 (VICvectCntl0-15 - 0xFFFF F200-23C)
These are a read/write accessible registers. Each of these registers controls one of the 16
vectored IRQ slots. Slot 0 has the highest priority and slot 15 the lowest. Note that
disabling a vectored IRQ slot in one of the VICVectCntl registers does not disable the
interrupt itself, the interrupt is simply changed to the non-vectored form.

Table 48: FIQ Status register (VICFIQStatus - address 0xFFFF F004) bit allocation
Reset value: 0x0000 0000

Bit 31 30 29 28 27 26 25 24

Symbol - - - - - - - -

Access RO RO RO RO RO RO RO RO

Bit 23 22 21 20 19 18 17 16

Symbol - - AD1 BOD I2C1 AD0 EINT3 EINT2

Access RO RO RO RO RO RO RO RO

Bit 15 14 13 12 11 10 9 8

Symbol EINT1 EINT0 RTC PLL SPI1/SSP SPI0 I2C0 PWM0

Access RO RO RO RO RO RO RO RO

Bit 7 6 5 4 3 2 1 0

Symbol UART1 UART0 TIMER1 TIMER0 ARMCore1 ARMCore0 - WDT

Access RO RO RO RO RO RO RO RO

Table 49: FIQ Status register (VICFIQStatus - address 0xFFFF F004) bit description

Bit Symbol Description Reset
value

31:0 See
VICFIQStatus
bit allocation
table.

A bit read as 1 indicates a coresponding interrupt request being enabled,
classified as IRQ, and asserted

0

Table 50: Vector Control registers 0-15 (VICvectCntl0-15 - 0xFFFF F200-23C) bit description

Bit Symbol Description Reset
value

4:0 int_request/
sw_int_assig

The number of the interrupt request or software interrupt assigned to this
vectored IRQ slot. As a matter of good programming practice, software should
not assign the same interrupt number to more than one enabled vectored IRQ
slot. But if this does occur, the lowernumbered slot will be used when the
interrupt request or software interrupt is enabled, classified as IRQ, and
asserted.

0

5 IRQslot_en When 1, this vectored IRQ slot is enabled, and can produce a unique ISR
address when its assigned interrupt request or software interrupt is enabled,
classified as IRQ, and asserted.

0

31:6 - Reserved, user software should not write ones to reserved bits. The value read
from a reserved bit is not defined.

NA
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 55

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.4.10 Vector Address registers 0-15 (VICVectAddr0-15 - 0xFFFF F100-13C)
These are a read/write accessible registers. These registers hold the addresses of the
Interrupt Service routines (ISRs) for the 16 vectored IRQ slots.

5.4.11 Default Vector Address register (VICDefVectAddr - 0xFFFF F034)
This is a read/write accessible register. This register holds the address of the Interrupt
Service routine (ISR) for non-vectored IRQs.

5.4.12 Vector Address register (VICVectAddr - 0xFFFF F030)
This is a read/write accessible register. When an IRQ interrupt occurs, the IRQ service
routine can read this register and jump to the value read.

5.4.13 Protection Enable register (VICProtection - 0xFFFF F020)
This is a read/write accessible register. This one-bit register controls access to the VIC
registers by software running in User mode.

Table 51: Vector Address registers (VICVectAddr0-15 - addresses 0xFFFF F100-13C) bit description

Bit Symbol Description Reset value

31:0 IRQ_vector When one or more interrupt request or software interrupt is (are) enabled,
classified as IRQ, asserted, and assigned to an enabled vectored IRQ slot,
the value from this register for the highest-priority such slot will be provided
when the IRQ service routine reads the Vector Address register -VICVectAddr
(Section 5.4.10).

0x0000 0000

Table 52: Default Vector Address register (VICDefVectAddr - address 0xFFFF F034) bit description

Bit Symbol Description Reset value

31:0 IRQ_vector When an IRQ service routine reads the Vector Address register
(VICVectAddr), and no IRQ slot responds as described above, this address is
returned.

0x0000 0000

Table 53: Vector Address register (VICVectAddr - address 0xFFFF F030) bit description

Bit Symbol Description Reset value

31:0 IRQ_vector If any of the interrupt requests or software interrupts that are assigned to a
vectored IRQ slot is (are) enabled, classified as IRQ, and asserted, reading
from this register returns the address in the Vector Address Register for the
highest-priority such slot (lowest-numbered) such slot. Otherwise it returns the
address in the Default Vector Address Register.

Writing to this register does not set the value for future reads from it. Rather,
this register should be written near the end of an ISR, to update the priority
hardware.

0x0000 0000

Table 54: Protection Enable register (VICProtection - address 0xFFFF F020) bit description

Bit Symbol Value Description Reset
value

0 VIC_access 0 VIC registers can be accessed in User or privileged mode. 0

1 The VIC registers can only be accessed in privileged mode.

31:1 - Reserved, user software should not write ones to reserved bits. The
value read from a reserved bit is not defined.

NA
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 56

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.5 Interrupt sources

Table 55 lists the interrupt sources for each peripheral function. Each peripheral device
has one interrupt line connected to the Vectored Interrupt Controller, but may have several
internal interrupt flags. Individual interrupt flags may also represent more than one
interrupt source.

Table 55: Connection of interrupt sources to the Vectored Interrupt Controller (VIC)

Block Flag(s) VIC Channel # and Hex
Mask

WDT Watchdog Interrupt (WDINT) 0 0x0000 0001

- Reserved for Software Interrupts only 1 0x0000 0002

ARM Core Embedded ICE, DbgCommRx 2 0x0000 0004

ARM Core Embedded ICE, DbgCommTX 3 0x0000 0008

TIMER0 Match 0 - 3 (MR0, MR1, MR2, MR3)

Capture 0 - 3 (CR0, CR1, CR2, CR3)

4 0x0000 0010

TIMER1 Match 0 - 3 (MR0, MR1, MR2, MR3)

Capture 0 - 3 (CR0, CR1, CR2, CR3)

5 0x0000 0020

UART0 Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)

Rx Data Available (RDA)

Character Time-out Indicator (CTI)

6 0x0000 0040

UART1 Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)

Rx Data Available (RDA)

Character Time-out Indicator (CTI)

Modem Status Interrupt (MSI)[1]

7 0x0000 0080

PWM0 Match 0 - 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6) 8 0x0000 0100

I2C0 SI (state change) 9 0x0000 0200

SPI0 SPI Interrupt Flag (SPIF)

Mode Fault (MODF)

10 0x0000 0400

SPI1 (SSP) TX FIFO at least half empty (TXRIS)

Rx FIFO at least half full (RXRIS)

Receive Timeout condition (RTRIS)

Receive overrun (RORRIS)

11 0x0000 0800

PLL PLL Lock (PLOCK) 12 0x0000 1000

RTC Counter Increment (RTCCIF)

Alarm (RTCALF)

13 0x0000 2000

System Control External Interrupt 0 (EINT0) 14 0x0000 4000

External Interrupt 1 (EINT1) 15 0x0000 8000

External Interrupt 2 (EINT2) 16 0x0001 0000

External Interrupt 3 (EINT3) 17 0x0002 0000

ADC0 A/D Converter 0 end of conversion 18 0x0004 0000
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 57

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

[1] LPC2134/6/8 Only.

I2C1 SI (state change) 19 0x0008 0000

BOD Brown Out detect 20 0x0010 0000

ADC1 A/D Converter 1 end of conversion[1] 21 0x0020 0000

Table 55: Connection of interrupt sources to the Vectored Interrupt Controller (VIC)

Block Flag(s) VIC Channel # and Hex
Mask

Fig 14. Block diagram of the Vectored Interrupt Controller (VIC)

FIQSTATUS
[31:0]

VECTIRQ0 HARDWARE
PRIORITY

LOGIC

IRQSTATUS
[31:0]

nVICFIQ

NonVectIRQ

Non-vectored IRQ interrupt logic

Priority 0

nVICIRQ

VECTADDR0[31:0]

VECTIRQ1

VECTIRQ15

VECTADDR1[31:0]

VECTADDR15[31:0]

IRQ

Address select for
highest priority
interrupt

VECTORADDR
[31:0]

VICVECT
ADDROUT

[31:0]

DEFAULT
VECTORADDR

[31:0]

Priority14

Priority15

Priority2

Priority1

VECTORADDR
[31:0]

SOURCE

VECTORCNTL[5:0]

ENABLE

Vector interrupt 0

Vector interrupt 1

Vector interrupt 15

RAWINTERRUPT
[31:0]

INTSELECT
[31:0]

SOFTINT
[31:0]

INTENABLE
[31:0]

SOFTINTCLEAR
[31:0]

INTENABLECLEAR
[31:0]

VICINT
SOURCE

[31:0]
IRQSTATUS[31:0]

FIQSTATUS[31:0]

nVICFIQIN Non-vectored FIQ interrupt logic

Interrupt priority logic

Interrupt request, masking and selection

nVICIRQIN VICVECTADDRIN[31:0]

IRQ
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 58

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

5.6 Spurious interrupts

Spurious interrupts are possible in the ARM7TDMI based microcontrollers such as the
LPC2131/2/4/6/8 due to asynchronous interrupt handling. The asynchronous character of
the interrupt processing has its roots in the interaction of the core and the VIC. If the VIC
state is changed between the moments when the core detects an interrupt, and the core
actually processes an interrupt, problems may be generated.

Real-life applications may experience the following scenarios:

1. VIC decides there is an IRQ interrupt and sends the IRQ signal to the core.

2. Core latches the IRQ state.

3. Processing continues for a few cycles due to pipelining.

4. Core loads IRQ address from VIC.

Furthermore, It is possible that the VIC state has changed during step 3. For example, VIC
was modified so that the interrupt that triggered the sequence starting with step 1) is no
longer pending -interrupt got disabled in the executed code. In this case, the VIC will not
be able to clearly identify the interrupt that generated the interrupt request, and as a result
the VIC will return the default interrupt VicDefVectAddr (0xFFFF F034).

This potentially disastrous chain of events can be prevented in two ways:

1. Application code should be set up in a way to prevent the spurious interrupts from
occurring. Simple guarding of changes to the VIC may not be enough since, for
example, glitches on level sensitive interrupts can also cause spurious interrupts.

2. VIC default handler should be set up and tested properly.

5.6.1 Details and case studies on spurious interrupts
This chapter contains details that can be obtained from the official ARM website
(http://www.arm.com), FAQ section under the "Technical Support" link:
http://www.arm.com/support/faqip/3677.html.

What happens if an interrupt occurs as it is being disabled?

Applies to: ARM7TDMI

If an interrupt is received by the core during execution of an instruction that disables
interrupts, the ARM7 family will still take the interrupt. This occurs for both IRQ and FIQ
interrupts.

For example, consider the following instruction sequence:

MRS r0, cpsr
ORR r0, r0, #I_Bit:OR:F_Bit ;disable IRQ and FIQ interrupts
MSR cpsr_c, r0

If an IRQ interrupt is received during execution of the MSR instruction, then the behavior
will be as follows:

• The IRQ interrupt is latched.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 59

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

• The MSR cpsr, r0 executes to completion setting both the I bit and the F bit in the
CPSR.

• The IRQ interrupt is taken because the core was committed to taking the interrupt
exception before the I bit was set in the CPSR.

• The CPSR (with the I bit and F bit set) is moved to the SPSR_IRQ.

This means that, on entry to the IRQ interrupt service routine, you can see the unusual
effect that an IRQ interrupt has just been taken while the I bit in the SPSR is set. In the
example above, the F bit will also be set in both the CPSR and SPSR. This means that
FIQs are disabled upon entry to the IRQ service routine, and will remain so until explicitly
re-enabled. FIQs will not be reenabled automatically by the IRQ return sequence.

Although the example shows both IRQ and FIQ interrupts being disabled, similar behavior
occurs when only one of the two interrupt types is being disabled. The fact that the core
processes the IRQ after completion of the MSR instruction which disables IRQs does not
normally cause a problem, since an interrupt arriving just one cycle earlier would be
expected to be taken. When the interrupt routine returns with an instruction like:

SUBS pc, lr, #4

the SPSR_IRQ is restored to the CPSR. The CPSR will now have the I bit and F bit set,
and therefore execution will continue with all interrupts disabled. However, this can cause
problems in the following cases:

Problem 1: A particular routine maybe called as an IRQ handler, or as a regular
subroutine. In the latter case, the system guarantees that IRQs would have been disabled
prior to the routine being called. The routine exploits this restriction to determine how it
was called (by examining the I bit of the SPSR), and returns using the appropriate
instruction. If the routine is entered due to an IRQ being received during execution of the
MSR instruction which disables IRQs, then the I bit in the SPSR will be set. The routine
would therefore assume that it could not have been entered via an IRQ.

Problem 2: FIQs and IRQs are both disabled by the same write to the CPSR. In this case,
if an IRQ is received during the CPSR write, FIQs will be disabled for the execution time of
the IRQ handler. This may not be acceptable in a system where FIQs must not be
disabled for more than a few cycles.

5.6.2 Workaround
There are 3 suggested workarounds. Which of these is most applicable will depend upon
the requirements of the particular system.

5.6.3 Solution 1: test for an IRQ received during a write to disable IRQs
Add code similar to the following at the start of the interrupt routine.

SUB lr, lr, #4 ; Adjust LR to point to return
STMFD sp!, {..., lr} ; Get some free regs
MRS lr, SPSR ; See if we got an interrupt while
TST lr, #I_Bit ; interrupts were disabled.
LDMNEFD sp!, {..., pc}^ ; If so, just return immediately.
 ; The interrupt will remain pending since we haven’t
 ; acknowledged it and will be reissued when interrupts
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 60

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

 ; are next enabled.
 ; Rest of interrupt routine

This code will test for the situation where the IRQ was received during a write to disable
IRQs. If this is the case, the code returns immediately - resulting in the IRQ not being
acknowledged (cleared), and further IRQs being disabled.

Similar code may also be applied to the FIQ handler, in order to resolve the first issue.

This is the recommended workaround, as it overcomes both problems mentioned above.
However, in the case of problem two, it does add several cycles to the maximum length of
time FIQs will be disabled.

5.6.4 Solution 2: disable IRQs and FIQs using separate writes to the CPSR

MRS r0, cpsr
ORR r0, r0, #I_Bit ;disable IRQs
MSR cpsr_c, r0
ORR r0, r0, #F_Bit ;disable FIQs
MSR cpsr_c, r0

This is the best workaround where the maximum time for which FIQs are disabled is
critical (it does not increase this time at all). However, it does not solve problem one, and
requires extra instructions at every point where IRQs and FIQs are disabled together.

5.6.5 Solution 3: re-enable FIQs at the beginning of the IRQ handler
As the required state of all bits in the c field of the CPSR are known, this can be most
efficiently be achieved by writing an immediate value to CPSR_C, for example:

MSR cpsr_c, #I_Bit:OR:irq_MODE ;IRQ should be disabled
 ;FIQ enabled
 ;ARM state, IRQ mode

This requires only the IRQ handler to be modified, and FIQs may be re-enabled more
quickly than by using workaround 1. However, this should only be used if the system can
guarantee that FIQs are never disabled while IRQs are enabled. It does not address
problem one.

5.7 VIC usage notes

If user code is running from an on-chip RAM and an application uses interrupts, interrupt
vectors must be re-mapped to on-chip address 0x0. This is necessary because all the
exception vectors are located at addresses 0x0 and above. This is easily achieved by
configuring the MEMMAP register (see Section 3.6.1 “Memory Mapping control register
(MEMMAP - 0xE01F C040)” on page 25) to User RAM mode. Application code should be
linked such that at 0x4000 0000 the Interrupt Vector Table (IVT) will reside.

Although multiple sources can be selected (VICIntSelect) to generate FIQ request, only
one interrupt service routine should be dedicated to service all available/present FIQ
request(s). Therefore, if more than one interrupt sources are classified as FIQ the FIQ
interrupt service routine must read VICFIQStatus to decide based on this content what to
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 61

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

do and how to process the interrupt request. However, it is recommended that only one
interrupt source should be classified as FIQ. Classifying more than one interrupt sources
as FIQ will increase the interrupt latency.

Following the completion of the desired interrupt service routine, clearing of the interrupt
flag on the peripheral level will propagate to corresponding bits in VIC registers
(VICRawIntr, VICFIQStatus and VICIRQStatus). Also, before the next interrupt can be
serviced, it is necessary that write is performed into the VICVectAddr register before the
return from interrupt is executed. This write will clear the respective interrupt flag in the
internal interrupt priority hardware.

In order to disable the interrupt at the VIC you need to clear corresponding bit in the
VICIntEnClr register, which in turn clears the related bit in the VICIntEnable register. This
also applies to the VICSoftInt and VICSoftIntClear in which VICSoftIntClear will clear the
respective bits in VICSoftInt. For example, if VICSoftInt = 0x0000 0005 and bit 0 has to be
cleared, VICSoftIntClear = 0x0000 0001 will accomplish this. Before the new clear
operation on the same bit in VICSoftInt using writing into VICSoftIntClear is performed in
the future, VICSoftIntClear = 0x0000 0000 must be assigned. Therefore writing 1 to any
bit in Clear register will have one-time-effect in the destination register.

If the watchdog is enabled for interrupt on underflow or invalid feed sequence only then
there is no way of clearing the interrupt. The only way you could perform return from
interrupt is by disabling the interrupt at the VIC (using VICIntEnClr).

Example:

Assuming that UART0 and SPI0 are generating interrupt requests that are classified as
vectored IRQs (UART0 being on the higher level than SPI0), while UART1 and I2C are
generating non-vectored IRQs, the following could be one possibility for VIC setup:

VICIntSelect = 0x0000 0000 ; SPI0, I2C, UART1 and UART0 are IRQ =>
 ; bit10, bit9, bit7 and bit6=0
VICIntEnable = 0x0000 06C0 ; SPI0, I2C, UART1 and UART0 are enabled interrupts =>
 ; bit10, bit9, bit 7 and bit6=1
VICDefVectAddr = 0x... ; holds address at what routine for servicing
 ; non-vectored IRQs (i.e. UART1 and I2C) starts
VICVectAddr0 = 0x... ; holds address where UART0 IRQ service routine starts
VICVectAddr1 = 0x... ; holds address where SPI0 IRQ service routine starts
VICVectCntl0 = 0x0000 0026 ; interrupt source with index 6 (UART0) is enabled as
 ; the one with priority 0 (the highest)
VICVectCntl1 = 0x0000 002A ; interrupt source with index 10 (SPI0) is enabled
 ; as the one with priority 1

After any of IRQ requests (SPI0, I2C, UART0 or UART1) is made, microcontroller will
redirect code execution to the address specified at location 0x0000 0018. For vectored
and non-vectored IRQ’s the following instruction could be placed at 0x0000 0018:

LDR pc, [pc,#-0xFF0]

This instruction loads PC with the address that is present in VICVectAddr register.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 62

Philips Semiconductors UM10120
Volume 1 Chapter 5: VIC

In case UART0 request has been made, VICVectAddr will be identical to VICVectAddr0,
while in case SPI0 request has been made value from VICVectAddr1 will be found here. If
neither UART0 nor SPI0 have generated IRQ request but UART1 and/or I2C were the
reason, content of VICVectAddr will be identical to VICDefVectAddr.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

User manual Rev. 01 — 24 June 2005 63

	Chapter 1: General information
	1.1 Introduction
	1.2 Features
	1.3 Applications
	1.4 Device information
	1.5 Architectural overview
	1.6 ARM7TDMI-S processor
	1.7 On-chip Flash memory system
	1.8 On-chip Static RAM (SRAM)
	1.9 Block diagram

	Chapter 2: LPC2131/2/4/6/8 Memory Addressing
	2.1 Memory maps
	2.2 LPC2131/2132/2134/2136/2138 memory re-mapping and boot block
	2.2.1 Memory map concepts and operating modes
	2.2.2 Memory re-mapping

	2.3 Prefetch abort and data abort exceptions

	Chapter 3: System Control Block
	3.1 Summary of system control block functions
	3.2 Pin description
	3.3 Register description
	3.4 Crystal oscillator
	3.5 External interrupt inputs
	3.5.1 Register description
	3.5.2 External Interrupt Flag register (EXTINT - 0xE01F C140)
	3.5.3 Interrupt Wakeup register (INTWAKE - 0xE01F C144)
	3.5.4 External Interrupt Mode register (EXTMODE - 0xE01F C148)
	3.5.5 External Interrupt Polarity register (EXTPOLAR - 0xE01F C14C)
	3.5.6 Multiple external interrupt pins

	3.6 Memory mapping control
	3.6.1 Memory Mapping control register (MEMMAP - 0xE01F C040)
	3.6.2 Memory mapping control usage notes

	3.7 Phase Locked Loop (PLL)
	3.7.1 Register description
	3.7.2 PLL Control register (PLLCON - 0xE01F C080)
	3.7.3 PLL Configuration register (PLLCFG - 0xE01F C084)
	3.7.4 PLL Status register (PLLSTAT - 0xE01F C088)
	3.7.5 PLL Interrupt
	3.7.6 PLL Modes
	3.7.7 PLL Feed register (PLLFEED - 0xE01F C08C)
	3.7.8 PLL and Power-down mode
	3.7.9 PLL frequency calculation
	3.7.10 Procedure for detrmining PLL settings
	3.7.11 PLL example

	3.8 Power control
	3.8.1 Register description
	3.8.2 Power Control register (PCON - 0xE01F COCO)
	3.8.3 Power Control for Peripherals register (PCONP - 0xE01F COC4)
	3.8.4 Power control usage notes

	3.9 Reset
	3.9.1 Reset Source Identification Register (RSIR - 0xE01F C180)

	3.10 VPB divider
	3.10.1 Register description
	3.10.2 VPBDIV register (VPBDIV - 0xE01F C100)

	3.11 Wakeup timer
	3.12 Brown-out detection
	3.13 Code security vs debugging

	Chapter 4: Memory Acceleration Module (MAM)
	4.1 Introduction
	4.2 Operation
	4.3 MAM blocks
	4.3.1 Flash memory bank
	4.3.2 Instruction latches and data latches
	4.3.3 Flash programming Issues

	4.4 MAM operating modes
	4.5 MAM configuration
	4.6 Register description
	4.7 MAM Control Register (MAMCR - 0xE01F C000)
	4.8 MAM Timing register (MAMTIM - 0xE01F C004)
	4.9 MAM usage notes

	Chapter 5: Vectored Interrupt Controller (VIC)
	5.1 Features
	5.2 Description
	5.3 Register description
	5.4 VIC registers
	5.4.1 Software Interrupt register (VICSoftInt - 0xFFFF F018)
	5.4.2 Software Interrupt Clear register (VICSoftIntClear - 0xFFFF F01C)
	5.4.3 Raw Interrupt status register (VICRawIntr - 0xFFFF F008)
	5.4.4 Interrupt Enable register (VICIntEnable - 0xFFFF F010)
	5.4.5 Interrupt Enable Clear register (VICIntEnClear - 0xFFFF F014)
	5.4.6 Interrupt Select register (VICIntSelect - 0xFFFF F00C)
	5.4.7 IRQ Status register (VICIRQStatus - 0xFFFF F000)
	5.4.8 FIQ Status register (VICFIQStatus - 0xFFFF F004)
	5.4.9 Vector Control registers 0-15 (VICvectCntl0-15 - 0xFFFF F200-23C)
	5.4.10 Vector Address registers 0-15 (VICVectAddr0-15 - 0xFFFF F100-13C)
	5.4.11 Default Vector Address register (VICDefVectAddr - 0xFFFF F034)
	5.4.12 Vector Address register (VICVectAddr - 0xFFFF F030)
	5.4.13 Protection Enable register (VICProtection - 0xFFFF F020)

	5.5 Interrupt sources
	5.6 Spurious interrupts
	5.6.1 Details and case studies on spurious interrupts
	5.6.2 Workaround
	5.6.3 Solution 1: test for an IRQ received during a write to disable IRQs
	5.6.4 Solution 2: disable IRQs and FIQs using separate writes to the CPSR
	5.6.5 Solution 3: re-enable FIQs at the beginning of the IRQ handler

	5.7 VIC usage notes

	Chapter 6: Pin configuration
	6.1 LPC2131/2132/2134/2136/2138 pinout
	6.2 Pin description for LPC2131/2/4/6/8

	Chapter 7: Pin Connect Block
	7.1 Features
	7.2 Applications
	7.3 Description
	7.4 Register description
	7.4.1 Pin Function Select Register 0 (PINSEL0 - 0xE002 C000)
	7.4.2 Pin function Select register 1 (PINSEL1 - 0xE002 C004)
	7.4.3 Pin function Select register 2 (PINSEL2 - 0xE002 C014)
	7.4.4 Pin function select register values

	Chapter 8: General Purpose Input/Output ports (GPIO)
	8.1 Features
	8.2 Applications
	8.3 Pin description
	8.4 Register description
	8.4.1 GPIO Pin Value register 0 and 1 (IO0PIN - 0xE002 8000 and IO1PIN - 0xE002 8010)
	8.4.2 GPIO Output Set register 0 and 1 (IO0SET - 0xE002 8004 and IO1SET - 0xE002 8014)
	8.4.3 GPIO Output Clear register 0 and 1 (IO0CLR - 0xE002 800C and IO1CLR - 0xE002 801C)
	8.4.4 GPIO Direction Register 0 and 1 (IO0DIR - 0xE002 8008 and IO1DIR - 0xE002 8018)

	8.5 GPIO usage notes
	8.5.1 Example 1: sequential accesses to IOSET and IOCLR affecting the same GPIO pin/bit
	8.5.2 Example 2: immediate output of 0s and 1s on a GPIO port
	8.5.3 Writing to IOSET/IOCLR .vs. IOPIN

	Chapter 9: Universal Asynchronous Receiver/Transmitter 0 (UART0)
	9.1 Features
	9.2 Pin description
	9.3 Register description
	9.3.1 UART0 Receiver Buffer Register (U0RBR - 0xE000 C000, when DLAB = 0, Read Only)
	9.3.2 UART0 Transmit Holding Register (U0THR - 0xE000 C000, when DLAB = 0, Write Only)
	9.3.3 UART0 Divisor Latch Registers 0 and 1 (U0DLL - 0xE000 C000 and U0DLM - 0xE000 C004, when DLAB = 1)
	9.3.4 UART0 Baud-rate calculation
	9.3.5 UART0 Interrupt Enable Register (U0IER - 0xE000 C004, when DLAB = 0)
	9.3.6 UART0 Interrupt Identification Register (U0IIR - 0xE000 C008, Read Only)
	9.3.7 UART0 FIFO Control Register (U0FCR - 0xE000 C008)
	9.3.8 UART0 Line Control Register (U0LCR - 0xE000 C00C)
	9.3.9 UART0 Line Status Register (U0LSR - 0xE000 C014, Read Only)
	9.3.10 UART0 Scratch pad register (U0SCR - 0xE000 C01C)
	9.3.11 UART0 Transmit Enable Register (U0TER - 0xE000 C030)

	9.4 Architecture

	Chapter 10: Universal Asynchronous Receiver/Transmitter 1 (UART1)
	10.1 Features
	10.2 Pin description
	10.3 Register description
	10.3.1 UART1 Receiver Buffer Register (U1RBR - 0xE001 0000, when DLAB = 0 Read Only)
	10.3.2 UART1 Transmitter Holding Register (U1THR - 0xE001 0000, when DLAB = 0 Write Only)
	10.3.3 UART1 Divisor Latch Registers 0 and 1 (U1DLL - 0xE001 0000 and U1DLM - 0xE001 0004, when DLAB = 1)
	10.3.4 UART1 Baud-rate calculation
	10.3.5 UART1 Interrupt Enable Register (U1IER - 0xE001 0004, when DLAB = 0)
	10.3.6 UART1 Interrupt Identification Register (U1IIR - 0xE001 0008, Read Only)
	10.3.7 UART1 FIFO Control Register (U1FCR - 0xE001 0008)
	10.3.8 UART1 Line Control Register (U1LCR - 0xE001 000C)
	10.3.9 UART1 Modem Control Register (U1MCR - 0xE001 0010), LPC2134/6/8 only
	10.3.10 UART1 Line Status Register (U1LSR - 0xE001 0014, Read Only)
	10.3.11 UART1 Modem Status Register (U1MSR - 0xE001 0018), LPC2134/6/8 only
	10.3.12 UART1 Scratch pad register (U1SCR - 0xE001 001C)
	10.3.13 UART1 Transmit Enable Register (U1TER - 0xE001 0030)

	10.4 Architecture

	Chapter 11: I2C interfaces I2C0 and I2C1
	11.1 Features
	11.2 Applications
	11.3 Description
	11.4 Pin description
	11.5 I2C operating modes
	11.5.1 Master Transmitter mode
	11.5.2 Master Receiver mode
	11.5.3 Slave Receiver mode
	11.5.4 Slave Transmitter mode

	11.6 I2C Implementation and operation
	11.6.1 Input filters and output stages
	11.6.2 Address Register, I2ADDR
	11.6.3 Comparator
	11.6.4 Shift register, I2DAT
	11.6.5 Arbitration and synchronization logic
	11.6.6 Serial clock generator
	11.6.7 Timing and control
	11.6.8 Control register, I2CONSET and I2CONCLR
	11.6.9 Status decoder and Status register

	11.7 Register description
	11.7.1 I2C Control Set register (I2CONSET: I2C0, I2C0CONSET - 0xE001 C000 and I2C1, I2C1CONSET - 0xE005 C000)
	11.7.2 I2C Control Clear register (I2CONCLR: I2C0, I2C0CONCLR - 0xE001 C018 and I2C1, I2C1CONCLR - 0xE005 C018)
	11.7.3 I2C Status register (I2STAT: I2C0, I2C0STAT - 0xE001 C004 and I2C1, I2C1STAT - 0xE005 C004)
	11.7.4 I2C Data register (I2DAT: I2C0, I2C0DAT - 0xE001 C008 and I2C1, I2C1DAT - 0xE005 C008)
	11.7.5 I2C Slave Address register (I2ADR: I2C0, I2C0ADR - 0xE001 C00C and I2C1, I2C1ADR - address 0xE005 C00C)
	11.7.6 I2C SCL High duty cycle register (I2SCLH: I2C0, I2C0SCLH - 0xE001 C010 and I2C1, I2C1SCLH - 0xE0015 C010)
	11.7.7 I2C SCL Low duty cycle register (I2SCLL: I2C0 - I2C0SCLL: 0xE001 C014; I2C1 - I2C1SCLL: 0xE0015 C014)
	11.7.8 Selecting the appropriate I2C data rate and duty cycle

	11.8 Details of I2C operating modes
	11.8.1 Master Transmitter mode
	11.8.2 Master Receiver mode
	11.8.3 Slave Receiver mode
	11.8.4 Slave Transmitter mode
	11.8.5 Miscellaneous States
	11.8.6 I2STAT = 0xF8
	11.8.7 I2STAT = 0x00
	11.8.8 Some special cases
	11.8.9 Simultaneous repeated START conditions from two masters
	11.8.10 Data transfer after loss of arbitration
	11.8.11 Forced access to the I2C-bus
	11.8.12 I2C-bus obstructed by a low level on SCL or SDA
	11.8.13 Bus error
	11.8.14 I2C State service routines
	11.8.15 Initialization
	11.8.16 I2C interrupt service
	11.8.17 The State service routines
	11.8.18 Adapting State services to an application

	11.9 Software example
	11.9.1 Initialization routine
	11.9.2 Start Master Transmit function
	11.9.3 Start Master Receive function
	11.9.4 I2C interrupt routine
	11.9.5 Non mode specific States
	11.9.6 State : 0x00
	11.9.7 Master States
	11.9.8 State : 0x08
	11.9.9 State : 0x10
	11.9.10 Master Transmitter States
	11.9.11 State : 0x18
	11.9.12 State : 0x20
	11.9.13 State : 0x28
	11.9.14 State : 0x30
	11.9.15 State : 0x38
	11.9.16 Master Receive States
	11.9.17 State : 0x40
	11.9.18 State : 0x48
	11.9.19 State : 0x50
	11.9.20 State : 0x58
	11.9.21 Slave Receiver States
	11.9.22 State : 0x60
	11.9.23 State : 0x68
	11.9.24 State : 0x70
	11.9.25 State : 0x78
	11.9.26 State : 0x80
	11.9.27 State : 0x88
	11.9.28 State : 0x90
	11.9.29 State : 0x98
	11.9.30 State : 0xA0
	11.9.31 Slave Transmitter States
	11.9.32 State : 0xA8
	11.9.33 State : 0xB0
	11.9.34 State : 0xB8
	11.9.35 State : 0xC0
	11.9.36 State : 0xC8

	Chapter 12: SPI Interface (SPI0)
	12.1 Features
	12.2 Description
	12.2.1 SPI overview
	12.2.2 SPI data transfers
	12.2.3 General information
	12.2.4 Master operation
	12.2.5 Slave operation
	12.2.6 Exception conditions
	12.2.7 Read Overrun
	12.2.8 Write Collision
	12.2.9 Mode Fault
	12.2.10 Slave Abort

	12.3 Pin description
	12.4 Register description
	12.4.1 SPI Control Register (S0SPCR - 0xE002 0000)
	12.4.2 SPI Status Register (S0SPSR - 0xE002 0004)
	12.4.3 SPI Data Register (S0SPDR - 0xE002 0008)
	12.4.4 SPI Clock Counter Register (S0SPCCR - 0xE002 000C)
	12.4.5 SPI Interrupt register (S0SPINT - 0xE002 001C)

	12.5 Architecture

	Chapter 13: SSP Controller (SPI1)
	13.1 Features
	13.2 Description
	13.3 Bus description
	13.3.1 Texas Instruments Synchronous Serial (SSI) frame format
	13.3.2 SPI frame format
	13.3.3 Clock Polarity (CPOL) and Clock Phase (CPHA) control
	13.3.4 SPI format with CPOL=0,CPHA=0
	13.3.5 SPI format with CPOL=0,CPHA=1
	13.3.6 SPI format with CPOL = 1,CPHA = 0
	13.3.7 SPI format with CPOL = 1,CPHA = 1
	13.3.8 Semiconductor Microwire frame format
	13.3.9 Setup and hold time requirements on CS with respect to SK in Microwire mode

	13.4 Register description
	13.4.1 SSP Control Register 0 (SSPCR0 - 0xE006 8000)
	13.4.2 SSP Control Register 1 (SSPCR1 - 0xE006 8004)
	13.4.3 SSP Data Register (SSPDR - 0xE006 8008)
	13.4.4 SSP Status Register (SSPSR - 0xE006 800C)
	13.4.5 SSP Clock Prescale Register (SSPCPSR - 0xE006 8010)
	13.4.6 SSP Interrupt Mask Set/Clear register (SSPIMSC - 0xE006 8014)
	13.4.7 SSP Raw Interrupt Status register (SSPRIS - 0xE006 8018)
	13.4.8 SSP Masked Interrupt register (SSPMIS - 0xE006 801C)
	13.4.9 SSP Interrupt Clear Register (SSPICR - 0xE006 8020)

	Chapter 14: Timer/Counter TIMER0 and TIMER1
	14.1 Features
	14.2 Applications
	14.3 Description
	14.4 Pin description
	14.5 Register description
	14.5.1 Interrupt Register (IR, TIMER0: T0IR - 0xE000 4000 and TIMER1: T1IR - 0xE000 8000)
	14.5.2 Timer Control Register (TCR, TIMER0: T0TCR - 0xE000 4004 and TIMER1: T1TCR - 0xE000 8004)
	14.5.3 Count Control Register (CTCR, TIMER0: T0CTCR - 0xE000 4070 and TIMER1: T1TCR - 0xE000 8070)
	14.5.4 Timer Counter (TC, TIMER0: T0TC - 0xE000 4008 and TIMER1: T1TC - 0xE000 8008)
	14.5.5 Prescale Register (PR, TIMER0: T0PR - 0xE000 400C and TIMER1: T1PR - 0xE000 800C)
	14.5.6 Prescale Counter Register (PC, TIMER0: T0PC - 0xE000 4010 and TIMER1: T1PC - 0xE000 8010)
	14.5.7 Match Registers (MR0 - MR3)
	14.5.8 Match Control Register (MCR, TIMER0: T0MCR - 0xE000 4014 and TIMER1: T1MCR - 0xE000 8014)
	14.5.9 Capture Registers (CR0 - CR3)
	14.5.10 Capture Control Register (CCR, TIMER0: T0CCR - 0xE000 4028 and TIMER1: T1CCR - 0xE000 8028)
	14.5.11 External Match Register (EMR, TIMER0: T0EMR - 0xE000 403C; and TIMER1: T1EMR - 0xE000 803C)

	14.6 Example timer operation
	14.7 Architecture

	Chapter 15: Pulse Width Modulator (PWM)
	15.1 Features
	15.2 Description
	15.2.1 Rules for single edge controlled PWM outputs
	15.2.2 Rules for double edge controlled PWM outputs

	15.3 Pin description
	15.4 Register description
	15.4.1 PWM Interrupt Register (PWMIR - 0xE001 4000)
	15.4.2 PWM Timer Control Register (PWMTCR - 0xE001 4004)
	15.4.3 PWM Timer Counter (PWMTC - 0xE001 4008)
	15.4.4 PWM Prescale Register (PWMPR - 0xE001 400C)
	15.4.5 PWM Prescale Counter register (PWMPC - 0xE001 4010)
	15.4.6 PWM Match Registers (PWMMR0 - PWMMR6)
	15.4.7 PWM Match Control Register (PWMMCR - 0xE001 4014)
	15.4.8 PWM Control Register (PWMPCR - 0xE001 404C)
	15.4.9 PWM Latch Enable Register (PWMLER - 0xE001 4050)

	Chapter 16: Analog-to-Digital Converter (ADC)
	16.1 Features
	16.2 Description
	16.3 Pin description
	16.4 Register description
	16.4.1 A/D Control Register (AD0CR - 0xE003 4000 and AD1CR - 0xE006 0000)
	16.4.2 A/D Data Register (AD0DR - 0xE003 4004 and AD1DR - 0xE006 0004)
	16.4.3 A/D Global Start Register (ADGSR - 0xE003 4008)

	16.5 Operation
	16.5.1 Hardware-triggered conversion
	16.5.2 Interrupts
	16.5.3 Accuracy vs. digital receiver

	Chapter 17: Digital-to-Analog Converter (DAC)
	17.1 Features
	17.2 Pin description
	17.3 DAC Register (DACR - 0xE006 C000)
	17.4 Operation

	Chapter 18: Real Time Clock
	18.1 Features
	18.2 Description
	18.3 Architecture
	18.4 Register description
	18.4.1 RTC interrupts
	18.4.2 Miscellaneous register group
	18.4.3 Interrupt Location Register (ILR - 0xE002 4000)
	18.4.4 Clock Tick Counter Register (CTCR - 0xE002 4004)
	18.4.5 Clock Control Register (CCR - 0xE002 4008)
	18.4.6 Counter Increment Interrupt Register (CIIR - 0xE002 400C)
	18.4.7 Alarm Mask Register (AMR - 0xE002 4010)
	18.4.8 Consolidated time registers
	18.4.9 Consolidated Time register 0 (CTIME0 - 0xE002 4014)
	18.4.10 Consolidated Time register 1 (CTIME1 - 0xE002 4018)
	18.4.11 Consolidated Time register 2 (CTIME2 - 0xE002 401C)
	18.4.12 Time counter group
	18.4.13 Leap year calculation
	18.4.14 Alarm register group

	18.5 RTC usage notes
	18.6 Reference clock divider (prescaler)
	18.6.1 Prescaler Integer register (PREINT - 0xE002 4080)
	18.6.2 Prescaler Fraction register (PREFRAC - 0xE002 4084)
	18.6.3 Example of prescaler usage
	18.6.4 Prescaler operation

	18.7 RTC external 32 kHz oscillator component selection

	Chapter 19: Watchdog Timer
	19.1 Features
	19.2 Applications
	19.3 Description
	19.4 Register description
	19.4.1 Watchdog Mode register (WDMOD - 0xE000 0000)
	19.4.2 Watchdog Timer Constant register (WDTC - 0xE000 0004)
	19.4.3 Watchdog Feed register (WDFEED - 0xE000 0008)
	19.4.4 Watchdog Timer Value register (WDTV - 0xE000 000C)

	19.5 Block diagram

	Chapter 20: Flash Memory System and Programming
	20.1 Flash Boot Loader
	20.2 Features
	20.3 Applications
	20.4 Description
	20.4.1 Memory map after any reset
	20.4.2 Criterion for valid user code
	20.4.3 Communication protocol
	20.4.4 ISP command format
	20.4.5 ISP response format
	20.4.6 ISP data format
	20.4.7 ISP flow control
	20.4.8 ISP command sbort
	20.4.9 Interrupts during ISP
	20.4.10 Interrupts during IAP
	20.4.11 RAM used by ISP command handler
	20.4.12 RAM used by IAP command handler
	20.4.13 RAM used by RealMonitor
	20.4.14 Boot process flowchart

	20.5 Sector numbers
	20.6 Flash content protection mechanism
	20.7 Code Read Protection (CRP)
	20.8 ISP commands
	20.8.1 Unlock <unlock code>
	20.8.2 Set Baud Rate <baud rate> <stop bit>
	20.8.3 Echo <setting>
	20.8.4 Write to RAM <start address> <number of bytes>
	20.8.5 Read memory <address> <no. of bytes>
	20.8.6 Prepare sector(s) for write operation <start sector number> <end sector number>
	20.8.7 Copy RAM to Flash <Flash address> <RAM address> <no of bytes>
	20.8.8 Go <address> <mode>
	20.8.9 Erase sector(s) <start sector number> <end sector number>
	20.8.10 Blank check sector(s) <sector number> <end sector number>
	20.8.11 Read Part Identification number
	20.8.12 Read Boot code version number
	20.8.13 Compare <address1> <address2> <no of bytes>
	20.8.14 ISP Return codes

	20.9 IAP Commands
	20.9.1 Prepare sector(s) for write operation
	20.9.2 Copy RAM to Flash
	20.9.3 Erase sector(s)
	20.9.4 Blank check sector(s)
	20.9.5 Read Part Identification number
	20.9.6 Read Boot code version number
	20.9.7 Compare <address1> <address2> <no of bytes>
	20.9.8 Reinvoke ISP
	20.9.9 IAP Status codes

	20.10 JTAG Flash programming interface

	Chapter 21: EmbeddedICE logic
	21.1 Features
	21.2 Applications
	21.3 Description
	21.4 Pin description
	21.5 Reset state of multiplexed pins
	21.6 Register description
	21.7 Block diagram

	Chapter 22: Embedded Trace Macrocell (ETM)
	22.1 Features
	22.2 Applications
	22.3 Description
	22.3.1 ETM configuration

	22.4 Pin description
	22.5 Reset state of multiplexed pins
	22.6 Register description
	22.7 Block diagram

	Chapter 23: RealMonitor
	23.1 Features
	23.2 Applications
	23.3 Description
	23.3.1 RealMonitor components
	23.3.2 RMHost
	23.3.3 RMTarget
	23.3.4 How RealMonitor works

	23.4 How to enable Realmonitor
	23.4.1 Adding stacks
	23.4.2 IRQ mode
	23.4.3 Undef mode
	23.4.4 SVC mode
	23.4.5 Prefetch Abort mode
	23.4.6 Data Abort mode
	23.4.7 User/System mode
	23.4.8 FIQ mode
	23.4.9 Handling exceptions
	23.4.10 RealMonitor exception handling
	23.4.11 RMTarget initialization
	23.4.12 Code example

	23.5 RealMonitor build options

	Chapter 24: Supplementary information
	24.1 Abbreviations
	24.2 Disclaimers
	24.3 Trademarks
	24.4 Tables
	24.5 Figures
	24.6 Contents

