

AdvancedMC[®]

EP8548A 1.2 (DES0212) User Manual

Developing Embedded Applications and Products Utilizing Freescale[™] PowerQUICC[™] III 85xx Processors

Copyright

Copyright © 2007 Embedded Planet, LLC. All Rights Reserved.

This manual is copyrighted by Embedded Planet, LLC. No part of this document may be copied or reproduced in any form or by any means without the express written permission of Embedded Planet, LLC.

Notice

Embedded Planet, LLC., reserves the right to modify the information contained herein as necessary. Embedded Planet assumes no responsibility for any errors which may appear in this document. Information in this document is provided solely to enable system and software implementers to use Embedded Planet products.

This manual in whole or in part, is to be considered the intellectual property of Embedded Planet. This document is intended for the sole purpose of the owner of an Embedded Planet product. Neither the document, nor reproductions of it, nor information derived from it is to be given to others, nor used for any other purpose other than for development of Embedded Planet computing engine applications, by original, authorized owners of Embedded Planet products.

Trademarks

Embedded Planet, Linux Planet, Blue Planet, RPX LITE, and RPX LICC are trademarks or registered trademarks of Embedded Planet.

Freescale, PowerQUICC, and QUICC Engine are trademarks of Freescale Semiconductor, Inc.

IBM and PowerPC are registered trademarks of International Business Machines, Inc.

AdvanceTCA and ATCA are registered trademarks of PCI Industrial Computer Manufacturers Group (PICMG). AdvancedMC and MicroTCA are trademarks of PICMG.

Wind River Systems, VxWorks, and Tornado are registered trademarks of Wind River Systems, Inc.

All other names and trademarks are the property of their respective owners and are hereby acknowledged.

Contents

Chapter 1 Introduction	
Functions	9
First Steps	10
How to Use This Manual	
About Embedded Planet	
Customer Support	
Contact Embedded Planet	
Document Conventions	
Reference Documents	
Chapter 2 Description	
PowerPC Processor	
SDRAM Organization	
FLASH Organization	
Processor I/O Interface Signals	
I2C Devices	
Operating Modes	20
Thermal	20
Firmware	20
Restoring MAC Addresses	20
Chapter 3 Getting Started	
Serial Monitor Connection	
Network Connection	
Power Up	
Chapter 4 Setup	25
SRIO Configuration	
MMC Configuration	
JTAG/COP Configuration	
JIIIC, COL COMPANIE	20
Chapter 5 Connectors and Headers	
Power	
Processor Monitor Port	
Ethernet Port	
JTAG/COP Port	
MMC Serial Port	
MMC Debug Port	
12 VDC Fan Header	
AMC Connector	29
Chapter 6 Operation	
System Reset Pushbutton	
Board LEDs	
Ethernet Port LEDs	
User Applications	
RS-232 Connection	

Contents (continued)

Chapter 7 Board Control and Status Registers	35
Chapter 8 Memory and Interrupts	
Memory Map	
External Interrupts	39

List of Figures

No.	Title	Page
2-1.	Simplified Block Diagram	
2-2.	EP Board - Top View	
2-3.	EP Board - Bottom View	
2-4.	FLASH Address and Data Lines	
A-1.	Mechanical Dimensions	

List of Tables

No

No.	Title	Page
1-1.	Hardware Features	9
2-1.	FLASH Devices	
2-2.	I/O Signals	
2-3.	I2C Address Map	
4-1.	SERDES Port Configuration (SW1[1:3])	
4-2.	MMC Configuration (SW4[1:4])	
4-3.	JTAG/COP Configuration (J6)	
5-1.	Monitor Port Pinout (P11)	
5-2.	Ethernet Port Pinout (J2, J3)	
5-3.	COP Port Pinout (P12)	
5-4.	MMC Serial Port Pinout (J7)	
5-5.	MMC Debug Port Pinout (P13)	
5-6.	12 VDC Fan Header Pinout (P1)	
5-7.	AMC Connector (P15)	
6-1.	Board LEDs	
6-2.	Ethernet Port (J2, J3) LEDs	
7-1.	BCSR0 - Board ID	
7-2.	BCSR1 - CPLD Code Revision	
7-3.	BCSR2 - FLASH Status	
7-4.	BCSR3 - Reserved	
7-5.	BCSR4 - FLASH, EEPROM, LED Control and User Switch Status	

List of Tables (continued)

Title	Page
BCSR5 - Monitor, Ethernet, Reset Control	
BCSR6 - Interrupt Status	

Introduction

Chapter 1

The EP8548A board is a single-width, full-height advanced mezzanine card (AMC) based on the Freescale MPC8548E PowerQUICC III processor. The EP8548A board can operate as an AdvancedMC module within an AdvancedTCA® system when plugged into an ATCA® carrier or MicroTCA® chassis. The board can also operate as a stand-alone module for rapid application development outside of the integrated ATCA or MicroTCA environment.

Functions

The functions included on the EP board are listed in Table 1-1.

Table 1-1. Hardware Features

Entity	Description
Form factor	Single-width, full-height AMC.0 compliant
Processor	MPC8548A (up to 1.33 GHz)
SDRAM	Up to 2 GBytes, x64 DDR2, SODIMM
FLASH	Up to 128 MBytes, x32
NVRAM	Up to 1 MBytes, x16
Ethernet	2 10/100/1000, front panel RJ-45
	2 10/100/1000, AMC connector port 0 and port 1
Serial port	2-wire RS-232, front panel RJ-45
Serial RIO	AMC.4 compliant x1/x4 data, AMC connector port 4, 5, 6, 7 1.25, 2.5, or 3.125 Gbaud; 8b/10b encoding
Serial EEPROM	12C
Serial temperature	
Serial real-time clock (battery-backed	
BCSR	Board control and status registers (CPLD)
LED	 Power status 2 user controlled LEDs Ethernet PHY controlled MMC controlled
Switch	 4-position user switch Processor configuration MMC configuration
Debug	JTAG/COP port access for software debug and programming

Table 1-1. Hardware Features (continued)

Entity	Description
Power requirements	12 VDC @ 3A maximum from barrel connector (stand-alone) or via AMC backplane connector
	3.3 VDC @ 100 mA maximum via AMC backplane connector
Operating temperature ¹	0° C to 70° C (32° C to 158° F)

NOTES:

1. Contact Embedded Planet for information about an industrial temperature version board.

2. The means of disconnection from the mains power supply is the plug.

3. No serviceable parts.

First Steps

While it may be tempting to jump right into application development, it is recommended that you take a few minutes to review the Getting Started material, paying special attention to the following recommended first steps.

1. Register your EP board; go to Support at www.embeddedplanet.com.

2. Complete the steps in Chapter 3 when ready to connect and powerup the EP board for development.

Reminder You must register your EP board to become eligible for customer assistance or more detailed technical support from Embedded Planet. Refer to *Customer Support* in this chapter.

How to Use This Manual

1. Refer to Chapter 2 for a description of the board features and functions.

2. Refer to Chapter 3 for quick start information: connection, configuration, and powerup.

3. Refer to Chapter 4 for setup information including switch and jumper settings.

4. Refer to Chapter 5 for a description of the connectors and headers available on the board.

- 5. Refer to Chapter 6 for information about the operation of the EP board.
- 6. Refer to Chapter 8 for memory map and interrupt information.

About Embedded Planet

Embedded Planet is a leading single board computer and embedded systems solution provider. Our capabilities range from standard off the shelf single board computer products and embedded operating systems to full custom design and intellectual property solutions.

In 1997, Embedded Planet pioneered the Design, Develop, Deploy process for embedded systems engineering. This process allows our customers to take advan-

tage of production tested, reusable product designs in all phases of system development to reduce time to market, project risk, and development costs.

Design Embedded Planet products help remove risk and shorten the design cycle through production tested, integrated hardware and software designs. CPU module design is becoming more complicated with advanced memory interfaces and highly integrated communications processors. Our production proven modules help OEMs eliminate the risky and time intensive design and verification of the CPU module and focus on their value added application.

Develop Embedded Planet products provide early access to production modules for all members of the engineering team to allow for a parallel development path. Software developers get access to turnkey platforms with the operating system of their choice ready to run out of the box. Hardware developers gain access to production designs and prototyping systems to test advanced system functionality. Fully integrated software and hardware platforms simplify and shorten the development cycle.

Deploy Embedded Planet products are ready to go to market today. Our designs are production proven and ready to be manufactured in quantity. We offer full lifecycle management to simplify the deployment of your embedded solution.

Customer Support

Embedded Planet provides complete support for our product line. Embedded Planet technical support includes product assistance for EP firmware and hardware. Technical support can assist with setup, installation, configuration, documentation, product related questions, and expansion guidelines. Second level software support for SDP's is handled through our partners. We also provide development tools for all of our PowerPC boards.

Using our online support system our technical support engineers can assist you with questions regarding Embedded Planet products. Via a browser our support team can access your system directly and quickly answer your technical questions. Please contact us today to learn more; refer to *Contact Embedded Planet* in this chapter.

Contact Embedded Planet

Embedded Planet 4760 Richmond Road, Suite 400, Warrensville Heights, OH 44128 Phone: 216.245.4180 Fax: 216.292.0561 www.embeddedplanet.com

Company E-mail
DirectoryMarketing: marketing@embeddedplanet.com
Sales: sales@embeddedplanet.com
Information Request: info@embeddedplanet.com
Technical Support: techsupport@embeddedplanet.com
Webmaster: webmaster@embeddedplanet.com

Document Conventions

	This document uses standard text conventions to represent keys, display items, and user data inputs:
Display Item	<i>Italic</i> - Identifies an item that displays on the screen such as a menu option or message (e.g., <i>File</i> > <i>Open</i>).
User Data Input	Bold - Identifies any part of a command or user entry that is not optional or variable and must be entered exactly as shown.
	<i>Italic</i> - Identifies any part of a command or user entry that is a variable parameter.
	[] - Identifies any part of a command or user entry that is an optional parameter; text within the brackets follows the previously described conventions.
	Key - Identifies a specific key that is not alphabetic, numeric, or punctuation:
	Press ENTER Press ESC V M (press and release each key in sequence) Press CTRL-ALT-DEL (press all keys in sequence simultaneously).
File Names	Name - Indicates a file or directory name. Example:
	file.h /bin

Reference Documents

- MPC8548E PowerQUICC III Integrated Host Processor Reference Manual
- AMC.0 R2.0, Advanced Mezzanine Card, Base Specification
- AMC.4 Rx.x, Advanced Mezzanine Card, Serial RapidIO

Description

Chapter 2

This chapter provides some description of the EP8548A board features including the PowerPC processor, external interfaces, and u-boot firmware. Figure 2-1 is a simplified block diagram of the EP board. Figures 2-2 and 2-3 show the top and bottom views of the board layout. These figures show the headers unpopulated (i.e., without pins or connectors).

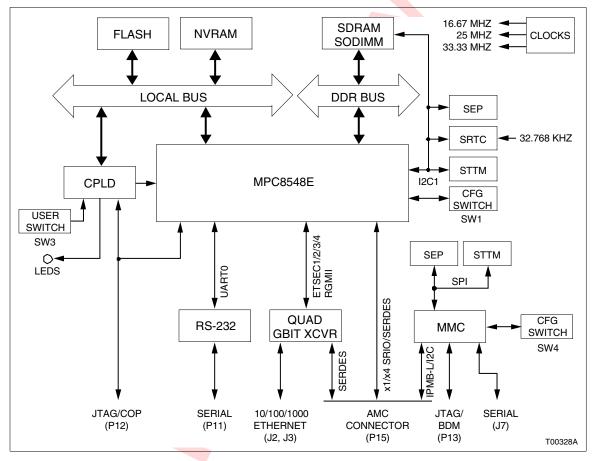


Figure 2-1. Simplified Block Diagram

MPC8548E

Refer to *PowerPC Processor* in this chapter.

Clocks All of the clocks used on the EP board are generated locally. There are a few distinct clocking environments on the board:

- System clock and real-time clock.
- Ethernet clock.
- SERDES clock.

An onboard 33.33 MHz clock oscillator (ECS-3953C or equivalent) generates the system clock (SYSCLK) input to the MPC8548E processor. This is the primary

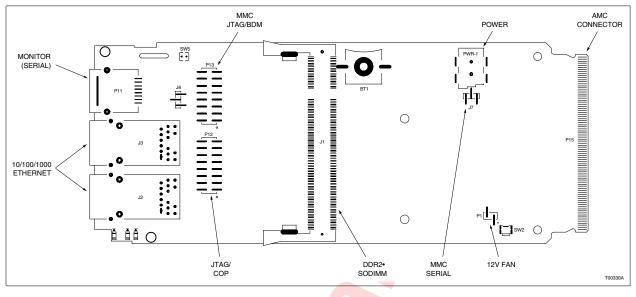
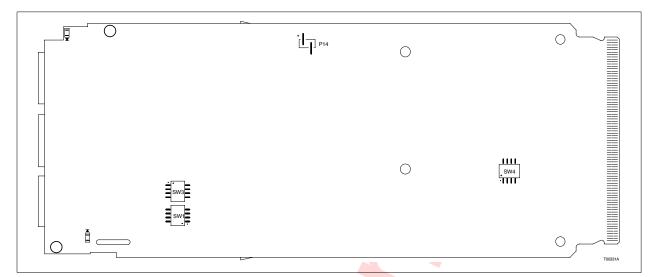


Figure 2-2. EP Board - Top View

clock input to the device. A zero delay buffer (CY2304 or equivalent) is used to distribute the 33.33 MHz clock to the processor and to also divide this clock input to provide a 16.67 MHz real-time clock (RTC) input to the processor. The 16.67 MHz clock input can be used to clock the time base of the processor and to clock the global timers in the programmable interrupt controller (PIC) of the processor.

The CLK_OUT of the processor routes to the CPLD for timing purposes. The actual frequency of the CLK_OUT signal depends on the clock selection in the processor.


An onboard 25 MHz crystal oscillator (FX532 or equivalent) provides the clock input needed by the Ethernet transceiver. The Ethernet controller (eTSEC) of the processor requires a 125 MHz external clock input. The Ethernet transceiver generates the 125 MHz clock to the processor (EC_GTX_CLK125) from its 25 MHz clock input.

The high-speed SERDES interface of the processor requires either a 100 MHz or 125 MHz LVDS clock reference to operate SRIO at either 1.25, 2.5, or 3.125 Gbaud. A frequency synthesizer device (ICS840001-34) generates the 100 MHz or 125 MHz clock from an onboard 25 MHz crystal oscillator (FX532 or equivalent) input. An LVDS clock fan-out buffer (ICS8545)selects either the 100 MHz or 125 MHz single-ended input and distributes it to the processor as an LVDS reference clock (SD_REF_CLK, <u>SD_REF_CLK</u>).

NOTE: An option to clock the SERDES interface from CLK3 of the AMC connector is provided. Additionally an option to source CLK3 to the AMC connector is provided. These options are controlled from a BCSR register; refer to Table 7-9.

Memory The board has DDR2 SDRAM memory, FLASH memory, and NVRAM memory (Table 1-1).

DDR2 SDRAM is supported via an SODIMM socket. The memory bus is 64-bit bus width; refer to *SDRAM Organization* in this chapter for additional information. There is no ECC option. Access to the SPD functions of the SODIMM module is from I2C port 1 of the processor; refer to Table 2-3 for its I2C address.

Figure 2-3. EP Board - Bottom View

The FLASH memory is Spansion[™] MirrorBit. The memory bus is 32-bit bus width; refer to *FLASH Organization* in this chapter for additional information.

The NVRAM memory is battery-backed SRAM memory. The memory device is an STMicro M68AWxxxD or equivalent. The memory bus is 16-bit bus width. An onboard battery provides backup power for the NVRAM device.

NOTE: The local bus address and data lines are multiplexed. An external demultiplexer, controlled by the address latch enable (LALE) signal, is used to separate the address and data bus. The local bus is buffered using a data latch for the address lines (SN74LVC32373A or equivalent) and a bus transceiver for the data lines (SN74LVCH32245A or equivalent).

- **RS-232** There is one RS-232 serial port available at the front panel (P11). The port communicates via UART0 of the processor. The serial port uses an Intersil ICL3225E RS-232 transceiver or equivalent.
- Ethernet There are two 10/100/1000 Ethernet ports available at the front panel (J2, J3). Two additional 10/100/1000 Ethernet ports are available at the AMC connector.

The Ethernet ports communicate via eTSEC1, eTSEC2, eTSEC3, and eTSEC4 of the processor and use a Marvell® 88E1145 quad transceiver device. The interface to the processor is RGMII.

Port 3 of the transceiver device routes to AMC port 0 and port 4 of the transceiver device routes to AMC port 1 in the common options region of the AMC port mappings. The interface to the AMC connector is SERDES using SGMII protocol. An external PHY or SERDES device is required to complete the interface to the media.

The MII management connection (MDC/MDIO) to the processor is for configuration and monitoring of the transceiver device. The default Ethernet PHY addresses are 0b00000, 0b00001, 0b00010, and 0b00011 respectively.

BCSR Board control and status registers (BCSR) provide hardware control and status to the processor. BCSR bits selectively enable/disable and configure board features, and control LEDs, read switch settings, and provide status indications. The BCSR registers of the EP board are implemented in control logic within a complex pro-

grammable logic device (CPLD). Refer to the Chapter x for BCSR programming information.

- SEP There is one serial EEPROM (SEP) on the local I2C port 1 bus; refer to Table 2-3 for its I2C address. This SEP device is available for user application storage. The SEP is a 2-wire, AT24C04 device or equivalent.
- STTM There is one serial temperature and thermal monitor (STTM) device on the local I2C port 1 bus; refer to Table 2-3 for its I2C address. The STTM part is a 2-wire, digital temperature sensor. Its functionality is equivalent to the Microchip TCN75 part. The minimum resolution provided by this part is a 9-bit temperature conversion.
- SRTC There is one serial real-time clock (SRTC) device on the local I2C port1 bus; refer to Table 2-3 for its I2C address. It provides clock and calendar functions for the board. Counters for tenths/hundredths of seconds, seconds, minutes, hours, day, date, month, year, and century are provided. Its functionality is equivalent to the STMicrodevices M41T81 part. An onboard battery provides backup power for the SRTC device.
- JTAG/COP The P12 header provides access to the COP port of the processor for debug access. Additionally P12 can be configured with jumper settings to give access to the CPLD JTAG. Refer to *JTAG/COP Configuration* in Chapter 4.
 - MMC The module management controller (MMC) funtionality required for AMC.0 compliance is implemented in an MCF5213 Coldfire processor. The MMC communicates with the ATCA carrier or microTCA carrier hub over the IPMB-L bus using I2C protocol. The carrier and MMC communicate through a limited set of IPMI commands.

Two serial temperature sensors and a serial EEPROM implement the temperature sensor and FRU information storage device requirements for AMC.0 compliance. These devices are accessed via the SPI bus of the Coldfire processor. Additionally access to the RS-232 serial port and JTAG/BDM port of the Coldfire processor are provided for development purposes.

Refer to Chapter 5 for more information and pinouts for the connectors.

PowerPC Processor

The EP board incorporates an MPC8548E PowerQUICC III integrated host processor. This 32-bit processor includes an integrated PowerPC core and peripheral interfaces that can be used in a variety of embedded networking, telecom transmission and switching, 3G wireless infrastructure, storage, and high-end imaging applications. The MPC8548E processor incorporates:

- e500 core scaling up to 1.33 GHz.
- DDR memory controller operating at up to 667 MHz data rate.
- Local bus controller operating at up to 166 MHz.
- OCeaN switch fabric.
- Dual UART (DUART).
- Dual I2C interfaces (master or slave mode).
- Serial RapidIO interface unit.
- PCI Express interface unit (not accessible on EP board).
- Four enhanced three-speed Ethernet controllers (eTSEC).

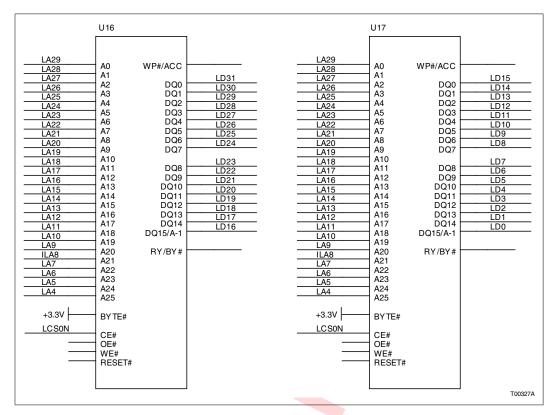
- Two PCI/PCI-X controllers (not accessible on EP board).
- Programmable interrupt controller (PIC).
- Four-channel DMA controller.
- System performance monitor.
- Integrated security engine.

SDRAM Organization

Memory Clock	The DDR SDRAM clock speed is generated internal to the CPU and is equal to 1/2 the e500 core complex bus clock (ccb_clk). The maximum is 667 MHz data rate (333.33 MHz clock) for the MPC8548E processor with a 33.33 MHz SYSCLK.
1 GByte	128M x 64, 200-Pin DDR2 SDRAM SODIMM
-	Micron MT16HTF12864H or equivalent
	2 bit bank address (BA0-BA1)
	14 bit row address (A0-A13)
	10 bit column address (A0-A9)
	2 module rank address ($\overline{50}, \overline{51}$)
2 GByte	256M x 64, 200-Pin DDR2 SDRAM SODIMM
	Micron MT16HTS25664H or equivalent
	3 bit bank address (BA0-BA2)
	14 bit row address (A0-A13)
	10 bit column address (A0-A9)
	2 module rank address (50, 51)

FLASH Organization

The FLASH memory on the EP board is accessed using the general purpose chip select machine (GPCM) of the processor. Figure 2-4 shows the address and data line connections. An offset is needed when issuing commands to the FLASH devices due to the address line connections.


Table 2-1 lists the FLASH memory devices and their device IDs that are currently supported on the board. Refer to the Spansion datasheets for detailed information about the FLASH memory devices. Command codes for all Spansion devices are the same. Device ID varies among the different devices. Sector addresses also vary among the different devices.

The following guidelines apply to x32 ported FLASH memory:

- FLASH devices configured in 16-bit mode.
- Sector and chip erases should be performed only on a long word (32-bit) basis.
- Programming should be done on a long word (32-bit) basis if possible.

Processor I/O Interface Signals

Table 2-2 lists the processor I/O interface signals used on the EP board.

Table 2-1. FLASH Devices

Device	MFG ID	Device ID
S29GL128	0001	0x2101
S29GL256		0x2201
S29GL512		0x2301

Table 2-2. I/O Signals

	Interface	Signal
	Serial	UART_SOUT0
/		UART_SIN0
		UART_CTS0
		UART_RTS0
	12C	IIC1_SDA
		IIC1_SCL

Interface	Signal
Ethernet	EC_MDC
	EC_MDIO
	EC_GTX_CLK125
	TSEC1_TXD[3:0]
	TSEC1_TX_EN
	TSEC1_GTX_CLK
	TSEC1_RXD[3:0]
	TSEC1_RX_DV
	TSEC1_RX_CLK
	TSEC2_TXD[3:0]
	TSEC2_TX_EN
	TSEC2_GTX_CLK
	TSEC2_RXD[3:0]
	TSEC2_RX_DV
	TSEC2_RX_CLK
	TSEC3_TXD[3:0]
	TSEC3_TX_EN
	TSEC3_GTX_CLK
	TSEC3_RXD[3:0]
	TSEC3_RX_DV
	TSEC3_RX_CLK
	TSEC4_TXD[3:0]
	TSEC4_TX_EN
	TSEC4_GTX_CLK
	TSEC4_RXD[3:0]
	TSEC4_RX_DV
	TSEC4_RX_CLK
SRIO	SD_TX[4:7]
	SD_TX[4:7]
	SD_RX[4:7]
	SD_RX[4:7]
	SD_REF_CLK
	SD_REF_CLK

Table 2-2. I/O Signals (continued)

I2C Devices

The evaluation board has several I2C bus devices: STTM, SEP, SRTC, SODIMM. Table 2-3 describes the I2C address map.

Device	Function	I2C Addressing	
SODIMM	SDP, 2K device (256 x 8)	0xA0 - 0xA1	0b1010000x
SEP	Serial EEPROM,4K device (512 x 8)	0xAC - 0xAF	0b1010110x (256) 0b1010111x (256)
STTM	Serial temperature and thermal monitor	0x90 - 0x91	0b1001000x
SRTC	Serial real-time-clock	0xD0 - 0xD1	0b1101000x

Table 2-3. I2C Address Map

Operating Modes

The EP board can operate in two different modes:

- Stand-alone mode.
- AdvancedMC mode.

Stand-alone mode is primarily intended for development; AMC mode provides the ability to use the same development board in a carrier card or chassis environment. There are no configuration options to select to switch between stand-alone and AMC modes. The only real difference is where power is applied. Refer to *Power* in Chapter 5.

Thermal

The MPC8548E processor is fitted with a heat sink. The choice of size and type of heat sink is dependent on the environment in which the board is operating. Factors such as processor speed, ambient temperature, and air flow all dictate the specific characteristics of the heat sink required. Additionally, the choice of heat sink is dependent on the space available which is ultimately determined by the mechanical constraints of the system in which the EP board will operate. The heat sink used when the card is situated in a chassis environment with forced air flow will differ from that used when the card operates stand-alone. Refer to the *MPC8548E Reference Manual* for the processor thermal characteristics.

Firmware

U-boot is open source firmware for the embedded PowerPC architecture. It can be installed in a boot ROM and used to initialize and test hardware or to download and run application code.

The EP8548A board is shipped with the u-boot firmware residing in FLASH memory. U-boot loads at the address 0xFFF00000. U-boot utilities provide the ability to initialize the board and auto execute an operating system or application. Refer to online u-boot documentation for complete information about u-boot and its utilities.

Restoring MAC Addresses

The EP board has four media access control (MAC) address assigned to it. The MAC address is the physical address of a device connected to a network,

expressed as a 48-bit hexadecimal number. The EP boards are assigned MAC addresses during manufacture using the following convention:

Enet controller 1 MAC = 0x0010ECxxxxx ORed with 0x00000000000 Enet controller 2 MAC = 0x0010ECxxxxx ORed with 0x00000800000 Enet controller 3 MAC = 0x0010ECxxxxx ORed with 0x000000400000 Enet controller 4 MAC = 0x0010ECxxxxx ORed with 0x000000C00000

where

xxxxxx

EP board serial number. The serial number can be found in decimal form on a label affixed to the Ethernet port on the board (e.g., 007573).

For example, a board with a serial number of 007573 decimal (001D95 hexadecimal) has a MAC address of:

00:10:EC:00:1D:95 for Enet controller 1 00:10:EC:80:1D:95 for Enet controller 2

If it becomes necessary to restore a missing or corrupted MAC address, use the above procedure to determine the EP board's MAC addresses and issue the following commands in u-boot:

setenv ethaddr *<MAC ADDRESS1>* ENTER setenv eth1addr *<MAC ADDRESS2>* ENTER setenv eth2addr *<MAC ADDRESS3>* ENTER setenv eth3addr *<MAC ADDRESS4>* ENTER saveenv ENTER

Getting Started

Chapter 3

This chapter describes how to get the EP board up and running in stand-alone mode including initial configuration, connection, and powerup. The board comes preprogrammed with u-boot firmware. An RS-232 serial monitor connection is required to access u-boot utilities. A network connection is required to transfer files to the EP board using TFTP.

To start up and begin communicating with the EP board:

NOTE: The EP board does not require any special configuration to operate in stand-alone mode.

1. Establish a serial connection; refer to *Serial Monitor Connection* in this chapter.

2. Establish a network connection, if required; refer to *Network Connection* in this chapter.

3. Apply power; refer to *Power Up* in this chapter.

Serial Monitor Connection

A terminal emulator program on the host machine (e.g., minicom, Tera Term, or HyperTerminal) or a dumb terminal is required to interact with the EP board. To establish a serial monitor connection with the host system:

- 1. Connect the RJ-45 patch cable to the RJ-45 monitor port (Fig. 2-2).
- 2. Connect the opposite end of the RJ-45 cable to the RJ-45 to DB-9 adapter.

3. Connect the DB-9 adapter to a serial port on the host machine (or dumb terminal).

The default settings for the monitor port are:

- 115200 baud.
- 8 data bits.
- 1 stop bit.
- No parity.
- No flow control.

Network Connection

A network connection between the development target (i.e., EP board) and host system is needed if planning to use TFTP services to transfer files to the EP board. A TFTP server must be running on the host machine to use the network connection for file transfer. Connect to the EP board in one of two ways: directly or through a network hub or switch. Direct To directly connect to the host machine, use a Ethernet crossover cable connected between the RJ-45 Ethernet port on the EP board (Fig. 2-2) and the Ethernet port on the host machine.

Hub or Switch To connect to the host machine via a hub or switch, use a standard Ethernet patch cable connected between the RJ-45 Ethernet port on the EP board (Fig. 2-2) and a free port on the hub.

NOTE: Most new Ethernet cards, hubs, and switches have auto-crossover capabilities which means the same cable may be able to be used for either direct, hub, or switch connection.

Power Up

NOTE: Start the terminal emulation program (e.g., minicom, Tera Term, or HyperTerminal) or make sure the dumb terminal is connected before powering up the EP board.

When operating stand-alone, an external cooling fan is required. Optionally, a 12 VDC fan can be powered from the fan header (P1) of the EP board; refer to Table 5-6. The fan should be placed next to the board and in a position so as to maximize airflow over the processor.

After all connections have been properly made, connect the 12 VDC power supply to the barrel connector P5 (Fig. 2-2). The EP board will boot up into u-boot automatically. Refer to online u-boot documentation for complete information about u-boot and its utilities.

Setup

Chapter 4

This chapter describes the various configuration switches that setup the EP8548A board for operation.

SRIO Configuration

Switches SW1 configure SRIO options. Table 4-1 describes the configuration options. Refer to Figure 2-3 for the location of the switch.

Table 4-1.	SERDES	Port	Configuration	(SW1[1:3])
------------	--------	------	---------------	------------

Option 1 2 3 4	Description
100x	x4 SRIO, 2.5 Gbaud interface; 100 MHz reference clock
101x	x4 SRIO, 3.125 Gbaud interface; 125 MHz reference clock
110x	x4 SRIO, 1.25 Gbaud interface; 100 MHz reference clock
x x x 0	Large system size; up to 65,536 devices
x x x 1	Small system size; up to 256 devices
NOTES	

NOTES:

1. on = closed position = logic 0; off = open position = logic 1.

2. Refer to the *MPC8548E Reference Manual* for additional information.

MMC Configuration

Switch SW4 configures the MMC processor options. Table 4-2 describes the configuration options. Refer to Figure 2-3 for the location of the switch.

NOTE: This switch is primarily for development purposes. It is factory set and should **not** be changed.

Table 4-2. MMC Configuration (SW4[1:4])

Position	Description
1	RCON; selects serial FLASH programming mode: 0 = enable serial FLASH programming mode 1 = disable serial FLASH programming mode
2	JTAG_EN; selects between debug and JTAG mode: 0 = debug mode 1 = JTAG mode
3	CLKMOD[1:0]; determines the clock mode:
4	00 = PLL disabled 10 = PLL in normal mode

NOTES:

1. on = closed position = logic 0; off = open position = logic 1

2. Refer to the MCF5213 Reference Manual for additional information.

JTAG/COP Configuration

Jumper J6 configures the JTAG chain and COP mode. Table 4-3 describes the configuration options. Refer to Figure 2-2 for the location of the switch.

Table 4-3. JTAG/COP Configuration (J6)

Purpose	Setting	Function	
COP	J6: 1-2	P12 operates in COP mode to support hardware and software development and debugging.	
JTAG (CPLD only)	J6: 2-3	JTAG chain active at P12. This setting puts only the CPLD in the JTAG chain to support programming.	
JTAG (complete)	J6: open	JTAG chain active at P12. This setting completes the JTAG chain at P12 and includes:	
		AMC->CPU->CPLD->MMC->ETH_PHY->AMC	

Chapter 5

Connectors and Headers

The EP8548A board has the following connectors for I/O functions and expandability:

- One connector for power (used for stand-alone only).
- One RJ-45 connector for processor RS-232 monitor port.
- Two RJ-45 connectors for the 10/100/1000 Ethernet ports.
- One 200-pin SODIMM connector.
- One 2 × 8 header for JTAG/COP access.
- One 1 × 3 header for MMC RS-232 serial port.
- One 2 × 8 header for MMC debug port.
- One 1 × 2 header for external 12 VDC fan.
- AMC bus connector.

This chapter describes these connectors and headers. Refer to Figure 2-2 for the locations of these connectors and headers.

Power	
	Refer to Table 1-1 for input power requirements.
Stand-Alone	When operating in stand-alone mode the EP board is powered from +12 VDC supplied through the barrel connector (PWR-1). An onboard regulator generates +3.3 VDC to power the MMC. The specifications for the mating connector are:
	Inner diameter = 2.1 mm (0.083 inches) Outer diameter = 5.5 mm (0.217 inches) Outer shell is GND Inner shell is 12 VDC
AMC	When operating in AMC mode the EP board is powered from the AMC connector of the carrier card or from the chassis backplane. Both +12 VDC to power the board and +3.3 VDC to power the MMC are required.

Processor Monitor Port

The RS-232 monitor port is connector P11. It is an RJ-45 connector. Table 5-1 shows the port pinout. The monitor port is from UART0.

Table 5-1.	Monitor	Port I	Pinout	(P11)
------------	---------	--------	--------	-------

Pin	Function	Pin	Function
1	_	5	RXD
2	_	6	TXD
3	_	7	CTS
4	GND	8	RTS

NOTE:

1. Pin numbering is from right (1) to left (8) when looking into the RJ-45 jack with the locking tab on top.

Ethernet Port

The 10/100/1000 Ethernet ports are connectors J2 and J3. The connectors are shielded RJ-45 jacks. Table 5-2 shows the RJ-45 jack pinout.

Table 5-2. Ethernet Port Pinout (J2, J3)

Pin	Function	Pin	Function
1	TXD+	5	-
2	TXD-	6	RXD-
3	RXD+	7	-
4	_	8	-

NOTE:

1. Pin numbering is from right (1) to left (8) when looking into the RJ-45 jack with the locking tab on top.

JTAG/COP Port

The JTAG/COP port is P12. It is a 2×8 (0.1 × 0.1) header. Table 5-3 shows the COP header pinout.

Table 5-3. COP Port Pinout (P12)

Pin	Function	Pin	Function
1	TDO	2	GND
3	TDI	4	TRST
5	+3.3V	6	+3.3V
7	ТСК	8	CHKSTOP_IN
9	TMS	10	—
11	SRESET	12	GND
13	HRESET	14	_
15	CHKSTOP_OUT	16	GND

MMC Serial Port

The MMC serial port is connector J7. It is a 1×3 (0.1 \times 0.1) header. Table 5-4 shows the pinout.

Table 5-4. MMC Serial Port Pinout (J7)

Pin	Function
1	TXD
2	GND
3	RXD

MMC Debug Port

The MMC debug port is P13. It is a 2×8 (0.1 × 0.1) header. Table 5-5 shows the utility header pinout.

Table 5-5.	MMC Debug Port Pinout (P13)
------------	----------------------------	---

Pin	Function	Pin	Function
1	—	2	TMS
3	GND	4	TRST
5	GND	6	тск
7	RST_IN	8	TDI
9	IPMCV	10	TDO
11	GND	12	ALLPST
13	ALLPST	14	ALLPST
15	ALLPST	16	_

12 VDC Fan Header

The 12 VDC fan header is connector P1. It is a 1×2 (0.1×0.1) header. Table 5-4 shows the pinout.

Table 5-6. 12 VDC Fan Header Pinout (P1)

Pin	Function
1	GND
2	+12V

AMC Connector

Table 5-7 lists the pin assignments for the AMC connector (P15). The AMC connector signal assignments follow the AMC standard.

Table 5-7.	AMC	Connector	(P15)
------------	-----	-----------	-------

Pin	Signal	Pin	Signal
1	GND	170	GND
2	+12V	169	TDI
3	PS1	168	TDO
4	+3.3V IPMCV	167	TRST
5	GA0	166	TMS
6	_	165	TCLK
7	GND	164	GND
8	_	163	-
9	+12V	162	_
10	GND	161	GND
11	TX0+	160	
12	TX0-	159	_
13	GND	158	GND
14	RX0+	157	201
15	RX0-	156	_
16	GND	155	GND
17	GA1	154	_
18	+12V	153	_
19	GND	152	GND
20	TX1+	151	—
21	TX1-	150	_
22	GND	149	GND
23	RX1+	148	_
24	RX1-	147	_
25	GND	146	GND
26	GA2	145	_
27	+12V	144	_
28	GND	143	GND
29		142	_
30	_	141	_
31	GND	140	GND
32	_	139	_
33	_	138	_
34	GND	137	GND
35	_	136	_
36	_	135	_
37	GND	134	GND
38	_	133	_
39	_	132	_
40	GND	131	GND
41	ENABLE	130	_
	1		1

Pin	Signal	Pin	Signal
42	+12V	129	—
43	GND	128	GND
44	TX4+	127	—
45	TX4-	126	—
46	GND	125	GND
47	RX4+	124	—
48	RX4-	123	—
49	GND	122	GND
50	TX5+	121	_
51	TX5-	120	_
52	GND	119	GND
53	RX5+	118	-
54	RX5-	117	-
55	GND	116	GND
56	SCL_L	115	
57	+12V	114	
58	GND	113	GND
59	TX6+	112	_
60	ТХ6-	111	—
61	GND	110	GND
62	RX6+	109	<u> </u>
63	RX6-	108	<u> </u>
64	GND	107	GND
65	TX7+	106	<u> </u>
66	ТХ7-	105	<u> </u>
67	GND	104	GND
68	RX7+	103	<u> </u>
69	RX7-	102	<u> </u>
70	GND	101	GND
71	SDA_L	100	—
72	+12V	99	—
73	GND	98	GND
74	-	97	<u> -</u>
75	-	96	-
76	GND	95	GND
77	-	94	<u> </u>
78	-	93	<u> </u>
79	GND	92	GND
80	CLK3+	91	<u> </u>
81	CLK3-	90	<u> </u>
82	GND	89	GND

Table 5-7. AMC Connector (P15) (continued)

Pin	Signal	Pin	Signal
83	PS0	88	_
84	+12V	87	—
85	GND	86	GND

 Table 5-7. AMC Connector (P15) (continued)

Operation

Chapter 6

This chapter describes the reset switch and board LED indications for the EP8548A board. It also provides some firmware description and communication information.

System Reset Pushbutton

The system reset pushbutton (SW2) can be used to reset the board. This pushbutton activates a hard reset (HRESET) to the board. Refer to Figure 2-2 for the location of the pushbutton.

Board LEDs

Table 6-1 describes the indications for the EP board LEDs

Table 6-1. Board LEDs

LED	Definition (On)	Color
CR9	AMC hot swap indicator	Blue
CR10	AMC LED1	Red
CR8	AMC LED2	Green
CR11	AMC LED3	Amber
CR22	+12 VDC power OK	Green
CR20	+3.3V power OK	Green
CR21	+2.5V PHY power OK	Green
CR19	+1.8V DDR power OK Green	
CR18	+1.1V e500 power OK Green	
CR12	User LED0 Green	
CR13	User LED1	Green
CR14	Ethernet port 2 RXD Green	
CR15	Ethernet port 2 TXD Green	
CR16	Ethernet port 3 RXD Green	
CR17	Ethernet port 3 TXD Green	

NOTE: AMC LEDs are under MMC control.

Ethernet Port LEDs

Table 6-2 describes the indications given by the Ethernet port LEDs (J2, J3). Refer to Figure 2-2 for the location of the Ethernet port.

Chata	Indication		
State	LED1 (Yellow) LED2 (Green		
Off	No RXD/TXD activity	10 Mbps	
On	RXD/TXD activity	100 Mbps (amber) 1000 Mbps (green)	

Table 6-2. Ethernet Port (J2, J3) LEDs

User Applications

The u-boot firmware assumes the board is connected to a dumb terminal or a PC-based terminal emulator, and requires user intervention for the utilities. The dumb terminal or PC serial port should be set as follows:

- 115200 baud (default).
- 8 data bits.
- 1 stop bit.
- No parity.
- No hardware handshake.

Proper interfacing to the serial port via the correct RS-232 connections must be insured as described in *RS-232 Connection* in this chapter.

RS-232 Connection

A DB-9 (or DB-25) to RJ-45 connection is required for RS-232 communication. Table 5-1 provides the pinouts for the RJ-45 connector. The EP board has its serial ports wired as DTE. A null modem type of connection is required when interfacing to a DTE port.

For DTE:

DB9-3 = TXD	DB25-2 = TXD
DB9-2 = RXD	DB25-3 = RXD
DB9-8 = CTS	DB25-5 = CTS
DB9-7 = RTS	DB25-4 = RTS
DB9-5 = GND	DB25-7 = GND

Board Control and Status Registers

The EP8548A board has onboard control and status registers. These registers are configured as x8 registers. Bit 0 is the most significant bit (MSB). The registers are defined as shown in Tables 7-1 through 7-10.

NOTES:

1. Any unused or reserved BCSR bits should always write back the value read. This will help guarantee that revisions to the board will be backward compatible with existing software.

2. The base address of the BCSR is determined by the firmware or application; refer to Table 8-1.

Register values at reset (values in binary):

Register 0	Board ID
Register 1	CPLD code revision
Register 2	FLASH status
Register 3	Reserved
Register 4	FLASH, EEPROM, LED control and user switch status
Register 5	Monitor, Ethernet, reset control
Register 6	Interrupt status
Register 7	Interrupt masking
Register 8	SERDES control
Register 9	MMC debug status

Table 7-1.	BCSR0 -	Board ID
	DOOIIO	Douidin

Byte Address		Function	Bit	R/W	Definition
BASE	ID		0	RO	ID = 0x4 = EP8548 1.2
ADDRESS + 0x0			1	RO	
			2	RO	
reset value = ID			3	RO	
			4	RO	
			5	RO	
			6	RO	
			7	RO	

Table 7-2. BCSR1 - CPLD Code Revision

Byte Address	Function	Bit	R/W	Definition
BASE	CPLD revision 0	0	RO	REV = revision of CPLD code
ADDRESS +		1	RO	
0x1		2	RO	
reset value = REV		3	RO	
n L v	2	4	RO	
		5	RO	
		6	RO	
		7	RO	

Table 7-3. BCSR2 - FLASH Status

Byte Address	Function	Bit	R/W	Definition
BASE	Reserved	0	RO	
ADDRESS + 0x2		1	RO	
-		2	RO	
reset value = 0000 0x00		3	RO	
		4	RO	
	FLASH ready/busy	5	RQ	0 = FLASH operation executing and busy
				1 = FLASH operation complete (ready)
	Reserved	6	RO	
		7	RO	

Table 7-4. BCSR3 - Reserved

Byte Address	Function	Bit	R/W	Definition
BASE	Reserved	0	RO	
ADDRESS + 0x3		1	RO	
		2	RO	
reset value = 0000 0000		3	RO	
0000 0000		4	RO	
		5	RO	
		6	RO	
		7	RO	

Byte Address	Function	Bit	R/W	Definition		
BASE ADDRESS +	FLASH write protect	0	R/W	0 = FLASH write protect disabled 1 = FLASH write protect enabled		
0x4 reset value =	EEPROM write protect	1	R/W	0 = EEPROM write protect disabled 1 = EEPROM write protect enabled		
0000 uuuu	User LED0	2	R/W	0 = LED off		
	User LED1	3	R/W	1 = LED on		
	User switch	4	RO	BCSR4.4 is position 1 on switch		
		5	RO	Switch closed = logic 0 = on		
		6	RO	Switch open = logic 1 = off		
		7	RO			
able 7-6. BCSR5 - Monitor, Ethernet, Reset Control						

Byte Address	Function	Bit	R/W	Definition
BASE ADDRESS +	Monitor port	0	R/W	0 = disa <mark>ble monito</mark> r transceiver 1 = enable <mark>monit</mark> or transceiver
0x5	Reserved	1	RO	
reset value =		2	RO	
1000 0000		3	RO	
	Ethernet PHY	4	R/W	0 = enable Ethernet PHY 1 = disable Ethernet PHY (reset)
	Software reset	5	R/W	1 = enable HRESET
	Reserved	6	RO	
		7	RO	

Table 7-7. BCSR6 - Interrupt Status

Byte Address	Function	Bit	R/W	Definition
BASE ADDRESS +		0	RO	0 = Ethernet 0 IRQ active 1 = Ethernet 0 IRQ inactive
0x6 reset value =		1	RO	0 = Ethernet 1 IRQ active 1 = Ethernet 1 IRQ inactive
xxxx xx00		2	RO	0 = Ethernet 2 IRQ active 1 = Ethernet 2 IRQ inactive
		3	RO	0 = Ethernet 3 IRQ active 1 = Ethernet 3 IRQ inactive
		4	RO	0 = SRTC IRQ active 1 = SRTC IRQ inactive
		5	RO	0 = STTM IRQ active 1 = STTM IRQ inactive
	Reserved	6	RO	
		7	RO	

Table 7-8. BCSR7 - Interrupt Masking

Byte Address	Function	Bit	R/W	Definition
BASE ADDRESS +	Interrupt	0	R/W	0 = Ethernet 0 IRQ unmasked 1 = Ethernet 0 IRQ masked
0x7 reset value =		1	R/W	0 = Ethernet 1 IRQ unmasked 1 = Ethernet 1 IRQ masked
1111 1100		2	R/W	0 = Ethernet 2 IRQ unmasked 1 = Ethernet 2 IRQ masked
		3	R/W	0 = Ethernet 3 IRQ unmasked 1 = Ethernet 3 IRQ masked
		4	R/W	0 = SRTC IRQ unmasked 1 = SRTC IRQ masked
		5	R/W	0 = STTM IRQ unmasked 1 = STTM IRQ masked
	Reserved	6	RO	
		7	RO	

Table 7-9. BCSR8 - SERDES Control

Byte Address	Function	Bit	R/W	Definition
BASE ADDRESS +	SERDES clock select	0	R/W	0 = AMC connector 1 = onboard
0x8 reset value = 1100 0000	AMC CLK3	1	R/W	0 = onboard SERDES clock enabled at AMC CLK3 1 = onboard SERDES clock disabled at AMC CLK3 NOTE: BCSR8[0] = 1 is required to enable AMC CLK3.
	Reserved	2 3 4 5 6 7	R/W R/W R/W R/W RO	

Table 7-10. BCSR9 - MMC Debug Status

Byte Address	Function	Bit	R/W	Definition
BASE	ALLPST	0	R/W	Status of ALLPST at P13
ADDRESS + 0x9	Reserved	1	R/W	
		2	R/W	
reset value = x000 000		3	R/W	
		4	R/W	
		5	R/W	
		6	RO	
		7	RO	

Memory and Interrupts

Chapter 8

This chapter contains memory map and interrupt information for the EP8548A board.

Memory Map

Table 8-1 describes the default memory map for the EP board.

NOTE: The address map is recommended for the EP board and is as defined in u-boot. Other mappings can be utilized for any given application.

Chip Select	Function	Address	Size	Description
LCS0	FLASH	0xF8000000	128 MB	32-bit, GPCM
LCS1	NVRAM	0x??	1 MB	16-bit, GPCM
LCS2	BCSR	0x??	32 KB	8-bit, GPCM
LCS3	—	_	_	Unused
LCS4	—	-		Unused
LCS5	—	-	_	Unused
LCS6	—	-	_	Unused
LCS7	—		—	Unused
MCS0	DDR SDRAM	0x0000000	1 GB	64-bit, DDR controller
MCS1		0x4000000	1 GB	64-bit, DDR controller
MCS2			—	Unused
MCS3			_	Unused
—	CCSRBAR	0xE0000000	1 MB	Memory mapped processor registers

External Interrupts

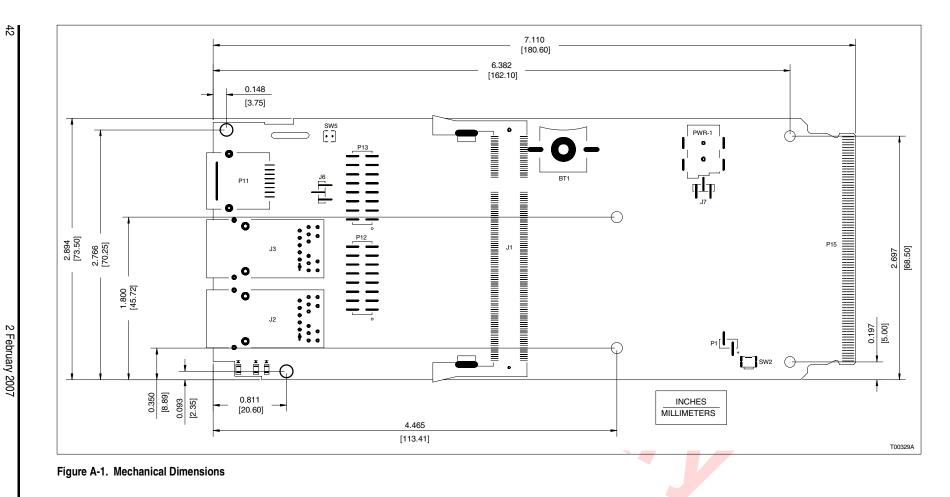
All onboard, external interrupts are active low signals. Each IRQ line has a 10 Kohm pull-up resister. All used IRQ lines should be programmed for level sense. Table 8-2 identifies the IRQ lines used by the EP board.

NOTE: IRQ_OUT of the processor connects to the MMC.

Table 8-2. External Interrupts

IRQ	Interrupt Source
IRQ0	Unused
IRQ1	Unused
IRQ2	SRTC
IRQ3	STTM

IRQ	Interrupt Source		
IRQ4	Ethernet port 1		
IRQ5	Ethernet port 2		
IRQ6	Ethernet port 3		
IRQ7	Ethernet port 4		
IRQ8	Unused		
IRQ9	Unused		
IRQ10	Unused		
IRQ11	Unused		


Table 8-2. External Interrupts (continued)

Mechanical Dimensions

Appendix A

This appendix contains mechanical dimension drawings for the EP8548A board. The board is designed as a single-width, full-height AMC module. Figure A-1 shows the dimensions for the EP board.

NOTE: The dimensions in this document are believed correct, but if this unit is to be placed into a housing that has cut outs, an actual unit must be procured to verify all required connector cut outs. In addition, the vendor datasheets for the connectors should be referenced to determine the tolerances of the connectors.

Embedded Planet 4760 Richmond Road, Suite 400 Warrensville Heights, OH 44128 www.embeddedplanet.com Phone: 216.245.4180 Fax: 216.292.0561

Form P501000086RA00 Preliminary Litho in U.S.A. Feb2007 Copyright © 2007 Embedded Planet, LLC. All Rights Reserved.