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Abstract
Automotive industries are constantly increasing the number of electronically controlled
units in a vehicle to provide performance, comfort and extra features to the user. Com-
munication between these different electronic devices commonly occur through the Con-
troller Area Network (CAN) bus. Due to the presence of a large number of nodes in
the network, testing different nodes can be cumbersome. So to make the testing and
verification efficient and precise, a system that acts as an interface between a Personal
Computer (PC) and the CAN network has been designed in this project. Since CAN
messages can be scheduled within 1 ms time frames at maximum baud rate, the response
time of this interface must be of the same order to avoid missing any messages. With the
help of this interface, specific test sequences can be injected to a particular node and the
response can be observed. It can also be used to monitor the messages in the network at
frame level. A prototype of such an interface has been designed and implemented using
STM3240G-Eval Evaluation board. Ethernet and Universal Serial Bus (USB) are used
as the physical interface between PC and Microcontroller. An evaluation of different
physical interfaces were performed and it was found that Ethernet had a response time
of 0.4 ms making it suitable for this application. On the other hand USB in high-speed
mode had a very low response time of 0.08 ms and so can be used for applications that
require very high performance.
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Introduction

Electronic Control Units (ECUs) are used to control almost every aspect of the vehicle.
Automotive systems use these ECUs in engine control, active safety, driver assistance,
comfort etc. The basic necessity of any system is a reliable communication network be-
tween different components. With a common communication network one does not have
to change the wiring between components for every different configurations of various
components [1]. It also gives the flexibility of adding and removing devices from the
existing network without affecting the communication between other devices. The data
that is transferred in this communication network are to a large extent safety critical.
For example in a brake by wire system, any corruption of data might result in fatality.
So the time and integrity at which the messages reach different destinations is vital. The
communication must be highly stable and reliable to not degrade the performance of the
entire system.

With the help of a CAN network, different ECUs in a vehicle can communicate with
each other without a host computer [2]. The CAN protocol is a broadcast protocol, this
means that all the nodes in the network receive every message, but nodes that are not
expecting any messages just discard them. The CAN protocol facilitates the detection
of collision in messages and allows transmission of data based on priority of the nodes.

Some ECUs are used in applications such as transmission control, anti-lock braking
system, fuel injection etc. that are safety-critical, hence testing and verification of all
components of these systems is crucial. The complete system can be tested by sending
test data to all the components through the communication network and analyzing
the responses or each component can be tested individually. For doing such testing of
individual components, a high-performance interface to a PC is necessary. Now the rest
of the CAN network can be simulated in the PC and data sequences corresponding to
a particular node can be sent from the PC. The basic block diagram of the system is
shown in Figure 1.1.
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CHAPTER 1. INTRODUCTION

Figure 1.1: An overall block diagram with the components from PC, Interface and CAN
network

As shown in Figure 1.1, the device under test could be one of the nodes in the CAN
network and different applications on PC could send test sequences through the Micro-
controller (MCU) that acts as an interface.

1.1 Goal

The main goal of this project is to specify and develop a prototype of a high-performance
interface between PC and CAN network . This interface can be used to monitor mes-
sages on the CAN network. The PC can emulate a node in the network so that it can
send/receive customized messages to/from the network through the interface. This pro-
totype has to be developed using an Advanced RISC machine (ARM) microcontroller
(MCU), as the ARM architecture provides high performance necessary for this kind of
applications. An optimal physical interface between the MCU and PC has to be chosen
and an efficient communication protocol has to be developed. A routing server mecha-
nism that allows multiple application clients on PC to communicate with MCU has to
be designed. Further the response time of the interface should be in the order of 1 ms
to avoid dropping frames at the maximum baud rate of the CAN network.

1.2 Scope and Limitation

This project is focused on the technical aspects of the prototype, so that parameters
like performance and reliability are covered. All the implementations on the PC side are
designed based on Windows because of its prominent use in industry. Thus, there is no
guarantee that the same implementation will work on other Operating Systems (OSs).
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CHAPTER 1. INTRODUCTION

1.3 Report Outline

The rest of the report is organized as follows. In Chapter 2 the necessary technical back-
ground required to understand different design choices to the project is given. Chapter
3 provides a literature review and a review of similar solutions available on market to
indicate the need to develop such a prototype. The design and implementation of the
prototype is given in Chapter 4 followed by the evaluation of implementation in Chapter
5. Thereafter a discussion of the previously evaluated results and further improvements
that can be added is given in Chapter 6. Finally Chapter 7 summarizes and concludes
the project.
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2

Technical Background

This chapter provides the required knowledge to understand the design choices and
implementation of the prototype. Relevant material regarding various physical mediums
used in the project such as Ethernet, USB and CAN are provided. The information
found here is limited to the project area and does not cover all aspects of each medium.
With the basic understanding of how these components, media, protocols, algorithms
and functions operate, ease of insight and understanding will follow.

2.1 Open System Interconnection (OSI) Model

OSI model was developed by International Standards Organization (ISO). It describes
how data from an application on one computer is transferred to an application on another
computer. The model contains seven different layers as shown in Figure 2.1 [3].

Each layer works independent of each other and data is transferred between different
layers. The bottom most layer is the physical layer that does the actual transmission
of data over a medium of choice (Eg. Ethernet, WiFi, Optical Fiber Cable etc). The
digital transmission occur through signals that represent low and high voltage levels.
The next layer is the data link layer containing the basic functions that are necessary
for the transfer of data from one point to another. The data link layer takes care
of error detection, framing and addressing of data. Further the data layer provides
access permissions to the device in the network to transmit data. The network layer
is responsible for routing of data based on the source and destination addresses (Eg.
Internet Protocol (IP)). The transport layer controls the reliability of a given link between
a source and destination. The transport layer also handles acknowledgements, congestion
and collision control between different nodes in the network. Example transport layer
protocols are Transmission Control Protocol (TCP), User Datagram Protocol (UDP)
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CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.1: OSI Reference Model [3]

etc. The next layer called the sessions layer is responsible for opening and closing of a
connection. It also takes care of the direction of the data flow. The presentation layer
encodes and decodes the data between the application layer and all other layers below
it. It converts the data into human readable form for the applications running on a
computer. Finally the application layer is closest to the user (Eg. Web Browser, File
transfer applications, Mail clients like Outlook, Thunderbird etc.) and can be used to
initiate the data transfer process.

2.2 Controller Area Network (CAN)

Controller Area Network (CAN) bus is the most commonly used vehicle bus standard
that allows communication between the different ECUs in a vehicle without the help of
a host computer [2]. It was developed by Bosch and is a twisted pair cable multi-master
asynchronous serial communication protocol. The CAN 2.0 standard has a maximum
baud rate of 1Mbit/sec and the bit rate depends on the length of the bus.

The CAN communication protocol can be broken down into different abstraction layers
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CHAPTER 2. TECHNICAL BACKGROUND

as explained in Section 2.1. Since CAN is a broadcast protocol appropriate filtering is
done at the application layer of each node to accept messages that are addressed to that
particular ECU. The next layer is the transport layer that handles the main processes
of communication such as error detection, acknowledgement, message framing etc. It
is a is carrier-sense, multiple-access protocol with collision detection and arbitration on
message priority (Carrier Sense Multiple Access (CSMA)/Collision Detection (CD) +
Arbitration on Message Priority (AMP)). In case of a collision CSMA is responsible for
making different devices in the network to wait for a random period of idleness before
sending a message. CD+AMP takes care of collisions with a bit-wise arbitration based
on a static priority assigned to each message. The CAN uses “dominant” bits denoting
a logical 0 and “recessive” bits denoting a logical 1. An idle state is represented by a
recessive bit. So when a node transmits a dominant bit and another node transmits a
recessive bit, the contention is solved by giving priority to the node that transmitted
the dominant bit. The lowest layer is the physical layer that is a twisted-pair wire with
9-pin D-sub type connector. The messages are transmitted and received serially in this
layer using non-return-to-zero (NRZ) format.

The CAN messages are sent in the form of frames and are of four types:

Data Frame A frame that contains the data to be transmitted.

Remote Frame A frame that is used to request retransmission from a specific node.

Error Frame A frame that is transmitted by any node that detects an error.

Overload Frame A frame that is used to inject a delay between data and/or remote
frame

Data Frame Format

There are two types of CAN data frames namely Standard CAN and Extended CAN.
The difference is that the standard version uses 11-bit identifiers whereas the extended
version uses 29 bits. The Standard message format is shown in Figure 2.2.

Figure 2.2: Standard CAN Message Format [4]

The different fields in the message are explained below.

• SOF - The Start of frame is used to synchronize the nodes on the bus after being
idle.

6



CHAPTER 2. TECHNICAL BACKGROUND

• Identifier - It is used to denote the priority of the message; the lower the value of
this, higher the priority.

• RTR - The Remote transmission request bit is made dominant when information
is required from another node. The identifier determines a specific node and is the
same case while receiving the response as well.

• IDE - A dominant bit in Identifier extension means that a standard CAN identifier
with no extension is being transmitted.

• r0 - Reserved bit

• DLC - Data length code is 4 bits long and denotes the number of bytes of data
that is being transmitted

• Data - Upto 8 bytes of data can be transmitted

• CRC - A 16-bit Cyclic redundancy check contains the checksum of the preceding
data for error detection.

• ACK - This bit is changed to a dominant bit if no error is detected in the message
that was sent. But if the receiving node detects an error, it leaves this bit to be
recessive and the sending node re-sends the data after arbitration.

• EOF - The 7-bit End of frame field marks the end of a CAN frame.

• IFS - This 7-bit Inter-frame space provides the time required by the controller to
move a correctly received frame to its proper position in the message buffer.

The Extended message format is shown in Figure 2.3.

Figure 2.3: Extended CAN Message Format [4]

The extended message format has the same structure except for a few extra fields that
are listed below.

• SRR - The Substitute remote request replaces the RTR of the standard frame as
a placeholder in the extended format

• IDE - A recessive bit in this field indicates that there are more identifier bits to
follow.

• r1 - An additional reserve bit.

A message is considered error free when the last bit of the EOF field in a message is
received in an error-free recessive state. A dominant bit in the EOF will cause an error
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and the transmitter should repeat the transmission. The CAN protocol is considered
very robust due to three message level and two bit level error checking procedures. The
error checking is ensured by the use of CRC and ACK slots in the CAN frame.

2.3 Ethernet

Ethernet is a physical-layer Local Area Network (LAN) technology and has become the
most prominently used LAN technology due to its speed, cost and ease of installation.
It was invented by Robert Metcalfe in 1979 and is used to connect multiple computers
in a building using hardware [5]. It was standardized in 1983 as IEEE 802.3 and has
since then been refined to support higher bit rates and longer link distances. An Eth-
ernet LAN typically uses coaxial cable or special grades of twisted pair wires. Systems
communicating over Ethernet divide a stream of data into smaller pieces called frames.
According to the Open Systems Interconnection (OSI) model Figure 2.1, Ethernet pro-
vides services up to and including the data link layer. The data link layer is responsible
for access control, flow control and error correction during the communication. The
structure of an Ethernet frame is shown in Figure 2.4.

Preamble SOF Destination Address Source Address Length LLC Data Pad FCS

Figure 2.4: Structure of Ethernet Frame [5]

The different fields in the Ethernet frame structure are,

• Preamble - It signals that a frame is being sent and sets bit timing.

• SOF - An 8-bit sequence indicating the Start of frame

• Destination Address - It is a 48-bit hardware Media access control (MAC)
address of the destination.

• Source Address - 48-bit MAC address of the transmitting device

• Length - Indicates the length of the data field

• LLC - The Logical link control governs the assembly of data at the data link layer
of the Open Systems Interconnection (OSI) model of the communication system.

• Data - It can hold 46 to 1500 bytes of data.

• Pad - A number of bits with the value 0 are added to the end of data field if there
are fewer than 46 bytes of data to have a packet of minimum size.

• FCS - The Frame check sequence detects transmission errors and provides quality
of service at the receiving end.
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CHAPTER 2. TECHNICAL BACKGROUND

The layer above the data link layer would be the Network layer that manages multi-node
network by addressing and routing the packets. Internet Protocol (IP) is the mainly used
protocol in this layer. The IP has the main task of delivering a packet from a particular
source to a specific destination based on the IP addresses. Every device connected to
the network is assigned an IP address to identify itself in the network. It is with these
IP addresses the transactions occur in a point to point fashion. The next layer is the
transport layer comprised of protocols like Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP).

2.3.1 Transmission control protocol (TCP)

The TCP is a standard that defines how to establish and maintain a network conversation
through which application programs can exchange data. It works with IP, which defines
how computers send packets of data between each other. TCP is a connection-oriented
protocol, which means a connection is established between the sender and receiver and
maintained until the application programs at each end have finished exchanging mes-
sages. It determines how to break application data into packets that networks can
deliver [6].

An application does not need to know any particular mechanism for sending data via a
link to another host. The TCP at transport layer handles all the handshaking and trans-
mission details and presents an abstraction of the network connection to the application.
At the lower levels of the protocol stack the packets may be lost or delivered out of
order due to network congestion or traffic load balancing. TCP detects these problems
and requests retransmission of lost data, rearranges out-of-order data and even helps
to minimize network congestion to reduce the occurrence of other problems. A tech-
nique called positive acknowledgement with retransmission is used to ensure reliability
of packet transfer. So the receiver responds to each data received with an acknowledge-
ment message and the sender keeps track of each packet it sends. Further the sender
logs the time of each message sent and does a retransmission is done if the timer expires
before the message is acknowledged. TCP is optimized for accurate delivery rather than
timely delivery.

2.3.2 User Datagram Protocol (UDP)

UDP is a connectionless message based transmission model with no handshaking or
error corrections. In UDP the data is transferred in the form of small chunks called
datagram using a source and destination address. In this protocol the receiver does not
generate an acknowledgement of packet received and in turn the sender does not wait
for any acknowledgement making it unreliable. Retransmission and the need to reorder
packets after they arrive can introduce latency in a TCP stream. Highly time-sensitive
applications like Voice over IP and streaming video generally rely on a transport like

9
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UDP. These applications can afford to lose a few packets than to have a delayed reception
of packets. Like TCP, UDP also works with the IP to get a packet from one node to
another node. The application uses the software port number to send its data. Different
network applications running on the PC are differentiated by the port numbers. If a
higher reliability is necessary and TCP protocol is not an option, implementations in
the upper layers must be made.

2.4 Universal Serial Bus (USB)

The Universal Serial Bus is a high-speed wired serial communication standard (similar
to Ethernet) between electronic components. It is a host controlled protocol and allows
a single host in a system. The USB is based on “Tiered Star Topology” in which a
single host can be connected to up to 127 devices acting as slaves and works based on
different abstraction layers shown in Figure 2.1. The slave devices connect to the host
through a physical medium referred to as Ports. The USB 1.1 standard supports two
speeds namely Low speed (1.5 Mbits/s) and Full speed (12 Mbits/s) and the upgraded
version USB 2.0 supports an additional High speed (480 Mbits/s) [7]. Only the host can
initiate a communication and so no two slave devices can communicate with each other
without involving the host. In the same way if a device needs to transfer some data to
the host it has to wait until the host has requested the data. There is an additional tack
in the USB specification called “On-the-Go” that has implemented the host negotiation
protocol. With the help of the host negotiation protocol two devices can negotiate for
the role of host. The slave devices can also draw power (5 V, 100 mA) from the host
and it is also possible to remotely cut power to a particular device [8].

USB Packet

USB is made up of different layers of protocol but the USB controllers take care of the
lower layers of it and make it invisible to the end designer. The endpoint in an USB
communication denotes either a source or sink for data. The OUT endpoint means
from host to device and similarly IN endpoint means from device to host. A pipe is
a logical data connection between the host and a particular endpoint. The data to be
sent are in the form of packets and it could be considered as the smallest element in
the communication. The USB protocol sends the data with Least Significant Bit (LSB)
first. There are four types of packets namely Token Packet, Data Packet, Handshake
Packet, Start of Frame Packet. The basic structure of a packet is shown in Figure 2.5.

Sync Data Bytes EOP

Figure 2.5: Structure of a USB Packet [8]

10



CHAPTER 2. TECHNICAL BACKGROUND

The USB packets start with a Sync field followed by the data bytes that can have the
fields PID, ADDR, ENDP, CRC and ends with a EOP field.

Sync

Every packet begins with a sync field and is 8 bits long for Low and Full speed or 32
bits long for High speed modes. It is used to synchronize the clock of the receiver with
that of the transmitter.

PID

The PacketID field is used to identify the type of packet that is being sent. The PID is 4
bits long but in order to ensure that it is correctly received the 4 bits are complemented
and repeated to make it 8 bits in total.

ADDR

This field specifies the destination device for which the packet is intended. It is 7 bits
long, thereby allowing 127 devices to be connected to a host. Address 0 is invalid as it is
used by any device that has not been allocated an address and has to respond to packets
sent to that address.

ENDP

The Endpoint field is 4 bits long providing 16 possible endpoints.

CRC

The Cyclic Redundancy Checks (CRC) are done on the data within the payload of the
packet. It is 5 bit long (CRC5) for token packets and 16 bit long (CRC16) for data
packets.

EOP

The End of Packet field marks the end of packet and is signalled by Single ended zero
(SE0) for approximately two bit times.

11



CHAPTER 2. TECHNICAL BACKGROUND

2.5 RS232

The RS232 is a serial communication standard found commonly in computer serial ports
used in the data link layer shown in Figure 2.1 [9]. The RS232 port was once a feature
of personal computer used for communicating with mouse, printers, modem etc. But it
is not used prominently nowadays due to its low data transmission speed, high voltage
swing and size of the physical connector. The serial ports on a PC are full duplex and
uses separate lines for transmitting and receiving data. The communication starts with
a start bit followed by the actual data and the frame is terminated using the stop bit.
The number of data bits and a baud rate is set between the transmitter and received.
In addition to start and stop bits that are used for synchronization, parity bits can be
added to the data to check data integrity. The RS232 uses a DB9 or DB25 connector as
the physical medium.

12
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Literature Review

This chapter provides an overview of previous research that has been done to design
such an interface. It also explains the drawbacks of existing solutions and provides the
necessary data to design and implement an interface between a PC and CAN network.

Wang and Guo [10] developed a CAN protocol converter based on Microchip’s PIC18F2580
microcontroller with an integrated CAN module designed for RS232 and CAN protocol
converters to facilitate the direct communication between a computer and a CAN net-
work. The physical interface used was RS232, but nowadays this is being replaced by
the more advanced physical interfaces such as USB or Ethernet. The drawback of the
above system is that modern laptops no longer have RS232 connectors, so an external
converter to USB or Ethernet is required. Also, the communication speed of RS232 is
lower than that of USB or Ethernet, making it a less favorable option.

A hardware-based CAN bus simulation system has been implemented on a PC using the
Freescale’s automotive microcontroller MC9S12XEP100 with on-chip CAN controller by
Luo and Liu [11]. A software simulating multiple CAN buses to support the above
hardware has been developed. The software can be programmed with simulation scripts
that enable the emulated nodes to react to bus events. This response to bus events
might be an issue if the physical medium is chosen to be USB. Because in USB all
communications are initiated by the host. So if the host has to be aware of any data
that is sent by the MCU, the host has to poll the port continuously to ensure that the
data is received.

The CAN bus is also used in the field of automation, as it is cheap, immune to electrical
interference, is able to self-diagnose and repair data errors. Due to the critical nature of
the applications, it is very important to test data on frame level and bit level in the CAN
bus network. Further during testing it has become a necessity to further inject data into
the CAN network. So a RS232 based CAN bus network analyzer has been designed by
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Kumar [12]. The interface is designed based on ARM7 (LPC2129) microcontroller based
on acceptance filter concept. The CAN Bus Analyzer tool is used to monitor the CAN
network with the help of its Graphical User Interface (GUI) and interpret bus traffic.

Nedeoglo et al. [13] test their developed control system using the CAN bus adapter.
The adapter is based on Philips SJA1000 CAN bus controller that provides fast access
to the CAN network through direct memory mapping. A monitor program that listens
and visualises traffic of CAN bus and allows users to send manually composed messages
over the network was also developed. The system is supported under Linux OS.

Kashif et al. [14] developed a CAN-bus analyzer that can monitor and inject data in a
CAN network. The analyzer is developed on a System on Chip (SoC) and verified by
simulation and implementation on a Field Programmable Gate Array (FPGA) board.
The system uses SoC for implementing the CAN controller, a microcontroller, an error
injector and a serial interface.

Mostafa, Shalan and Hammad [15] propose a similar approach for testing a CAN bus
at the bit level. The approach depends on the generation of bus errors to cover crucial
corner cases, which in turn makes it possible to go beyond frame level testing that is
provided by many commercial tools. The system also allows bit-stream level testing and
data injection.

An analysis of possibilities available for testing the industrial distributed systems and
their components is done by Novak et al. [16]. It mainly focuses on erroneous state
handling tests caused by external electromagnetic disturbances. A so called Test Gen-
erator was developed to meet all specific test requirements. The main reason behind
development of such a system is to model the errors caused by the random disturbances
and use them to test the communication system and make it reliable.

Novak and Kocourek [17] design and implement an automated test site to avoid human
influence in testing. It realizes more than 50 physical, link and application protocol layer
tests. The tests of electronic components can be divided into several groups, according
to the development phase in which they are applied. One of them is the functional
testing focused on the accurate acquisition of input data and in-time evaluation of correct
outputs used either directly for system control or as the inputs for other components in
the system. The test site uses an FPGA for performing the tests on the ECU at both
hardware and software level.

The bottleneck in such high-speed networking systems would be the operating system of
the PC. The speed of the main memory and the IO devices are much lower than that of
the CPU. The cache systems developed in modern computers try to bridge the bandwidth
gap but the accesses generated to the IO buffers do not have sufficient locality to allow
the cache system to reduce the memory traffic. This leads to a drop in IO performance
and reduces the throughput thereby degrading the response time.
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3.1 Similar Systems

In addition to the above research approaches there are a few commercial products that
serve as interface between PC and CAN. One of the most commonly used product is
CANCaseXL from Vector Informatik [18]. There are other similar systems such as
PCAN of Peak Systems [19], ValueCAN from Intrepid Control Systems and CANUSB.
In the automotive industry, every person developing software for an ECU will need such
a system on their desk as this is the only way through which they can monitor the
operation of the ECU. So any automotive development industry will require several of
these interfaces. One drawback of these systems is that the user does not have any
control over the way in which data is being handled inside the hardware. Further these
commercial systems are expensive and commercial software to support these interfaces
on the PC makes it even more expensive.

3.2 QRCAN

In an effort to make a cheaper CAN interfaces for the PC, QRTech AB [20] developed
the so called QRCAN interface. This interface was used to support their Test Engine
which generated various test sequences to verify product requirements. But there were a
few drawbacks with the system. The response times for the messages sent from the PC
were around 25 ms which was not fast enough to be used in testing CAN networks in
real time. The long response time was primarily due to the fact that the PC was running
Windows 7 which is not a real time OS and has several other system processes running
in background. So the response time spiked when the PC was operated in heavy load.
So an interface with shorter response times that are independent of PC’s load had to be
designed.
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4

Design and Implementation

This chapter explains design and implementation of the interface system. An overview
of the implementation is given followed by a short description of the hardware platform
used to develop the prototype. Then the different libraries used and implementation
procedure of different blocks of the system is explained.

4.1 System Overview

With the existence of QRCAN it was possible to get some motivation and inspiration
on where to begin with development of such a prototype. Since the main impact on the
response time of the previous system was the applications and OS of PC, all influence
from the PC must be removed with the new design. One approach was to send all the
messages in a burst from the PC and store them in the RAM of the MCU and execute
them. To realize this approach, timestamps are required. The timestamps will represent
the execution time for each message and will therefore make it possible to predict and
verify message forwarding. Now the messages could be sent from the PC in bursts and
executed without the influence of the PC. The idea was to send all the messages in the
test sequence and perform the test from within the MCU. But the RAM available on
the MCU is 8 Kbytes which is too low for this purpose.

The STM3240G-EVAL Evaluation Board was chosen to be the hardware platform of the
prototype with the main reason being 192 kB of on-chip RAM and 16 Mb of external
RAM that can be used. Furthermore, it also has other features that are necessary for
implementing the prototype and STMicroelectronics have a very good documentation of
all their products. The overview of the system is shown in Figure 4.1.
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Figure 4.1: An outline of the full system with PC on one side and CAN network on the
other side is shown. The evaluation board works as an interface in the middle. The different
applications on a PC is used to test the CAN node.

The CAN network may contain a number of nodes that communicate with the evaluation
board using a CAN physical connector. The PC side has to support multiple applications
that communicate with CAN network in parallel. The support for multiple applications
on the PC can be provided with the help of a routing server mechanism that routes the
packets from different applications to the MCU. The physical medium between the PC
and MCU could be either USB or Ethernet. USB is a good option as all modern laptops
have USB ports in them that could be used to connect this device locally. But the ability
to connect the device using Ethernet opens up a new possibility of having the device in
a network and any PC or laptop connected to the network may use the device enabling
resource sharing which is inevitable in industries nowadays.

4.2 STM3240G - EVAL Evaluation Board

The STM3240G-EVAL evaluation board is a complete demonstration and development
platform for the STM32F4 series microcontroller. The key features of the evaluation
board that are of importance in this application are:

• STM32F407IGH6 high-performance ARM Cortex M4 32-bit microcontroller

• 192 + 4 Kbytes of on-chip SRAM

• 16 Mbit of external SRAM

• IEEE 802.3-2002 compliant Ethernet connector

• Two CAN 2.0 A/B channels on the same DB connector

• USB OTG (HS and FS) with Micro-AB connector
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4.3 Ethernet Communication

The communication between the PC and MCU with Ethernet as media is implemented
using the TCP and UDP protocols. Both protocols utilize sockets to communicate with
other programs using the standard Unix file descriptors. A socket can be configured to
act as a server and listen for incoming connections or connect to other servers applications
as a client. So a server or a client running in a computer has a socket bound to a specific
port number. For the implementation in this project in both TCP and UDP, the MCU
is made as the server and the PC acts as a client. The TCP/IP and UDP/IP protocol
stack is accomplished in the evaluation board using the so called software architecture
called Light-Weight IP.

4.3.1 Light-Weight Internet Protocol (LwIP)

The focus of the LwIP stack is to reduce memory usage and code size, making it suitable
for using it in small clients with very limited resources such as embedded systems. In
order to reduce processing and memory demands, LwIP uses a tailor made API that
does not require any data copying. The ability to have wired or wireless networks in
smaller embedded systems like sensors enable it to be connected to an existing network
infrastructure such as the global Internet and can be monitored from anywhere. LwIP
consists of different protocols such as TCP, UDP, IP etc. The implementation of different
protocols are done in layers, where each layer solves a separate part of the communication
problem. The process model used to implement the communication protocol is used to
let each protocol run as a stand alone process. Further LwIP is implemented as an user
space process rather than in operating system kernel, making it portable across different
platforms [21].

Data Structure

In LwIP a packet is internally represented using a structure called Packet buffer (pbuf).
The pbuf structure has support for both allocating dynamic memory to hold packet
contents and for letting packet data reside in static memory. The pbufs can be linked
together in a list called pbuf chain to accommodate large packets that may span over
several pbufs. The structure of a pbuf chain is shown in Figure 4.2.

The pbuf structure consists of two pointers, two length fields, a flag field and a reference
count. The next field is a pointer to the next pbuf in case of a pbuf chain. The payload
pointer points to the start of the data in the pbuf.The len field contains the length of
the data stored in that specific pbuf. The tot len contains the sum of the len fields of
all pbufs in the pbuf chain. The flags indicate the type of pbuf and ref field contains
a reference count.
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Figure 4.2: Structure of a pbuf Chain [21]

4.3.2 Transmission Control Protocol (TCP)

The implementation of TCP is made using the Socket Application Programming Inter-
face (API) that provides the functions required to establish a communication between
a client and a server. The Windows OS version of that API is known as the Winsock
or Windows Sockets API (WSA). The work-flow of a TCP/IP Client-Server is shown in
Figure 4.3.

Figure 4.3: TCP/IP Client-Server Work-flow [22]
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TCP Client

A client creates a socket using socket() that returns a socket descriptor and connects
to a particular server with the IP address and port number using connect(). After the
connection is established it sends the data request using write() and reads the response
from the server using read(). Finally after completing the data transfer, the client closes
the connection using close(). We have implemented the client on the PC using socket
module of Python and time module is used for response time measurements. The time
module uses the system clock of the PC to measure the time interval between two events.
So a nano-second precision can be obtained using time().

TCP Server

To start the communication process the server calls socket() which returns a socket
descriptor. Then a call to bind() is made with an IP address and TCP port number.
This makes the server bind to that port and it starts listening for connections on the
port given after calling listen(). The server can stay here infinitely until it receives a
request from a client. When the server receives a request from a client it accepts the
request using accept().

We have implemented the TCP server with the help of the LwIP stack. The processing
of a TCP connection is shown in Figure 4.4.

Figure 4.4: Control Flow in TCP Processing [21]

After a connection has been established between the server and a client, data can be
transferred in both directions. When the server wants to send data it calls tcp write().
The tcp write() command transfers the control to tcp enqueue() that breaks the data
into appropriate sized TCP segments and holds them in a queue of the connection.
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Then the function tcp output will check if it is possible to send the data by checking
the available space in the receiver window and sends the data using ip route() and
ip output if().

In the same way if a packet is received from the client, the process begins when ip input()
hands over a segment to tcp input(). An initial checksum verification is done and then
the segment is processed by tcp process() to find the TCP connection to which the
segment belongs. Then a TCP state machine to transfer control between different stages
is done. The tcp receive() is called if the connection is in a state to accept data from
the network and pass the segment up to the an application program. An ACK for the
received packet is sent using the tcp output().

4.3.3 User Datagram Protocol (UDP)

The implementation of UDP is also made using the Socket API. For a TCP implementa-
tion a stream socket was created but an UDP implementation requires datagram socket.
The work-flow of a UDP/IP Client-Server is shown in Figure 4.5

Figure 4.5: UDP/IP Client-Server Work-flow [22]

UDP Client

On the client side a socket is created using socket() and bound to a particular IP address
and port number using bind(). Then the client sends the required data request using
sendto() which is processed by the server to provide appropriate response that is read
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using recvfrom(). This implementation of the UDP on the PC side is done with Python
script. Time module is used here as well for the response time measurement.

UDP Server

A communication is initialized by the creation of a datagram socket using socket() by
the server. The server then binds to an IP address and a port number using bind(). The
server now waits in this state from any data request from a client. The UDP packets
are handled using pbuf and the processing of UDP is shown in Figure 4.6 [21].

Figure 4.6: Control Flow in UDP Processing [21]

To send data, the application program calles udp send() which in turn calls udp output().
Then the check-summing is done and header fields are filled. Since the UDP packet
contains the IP source address of the packet, the function ip route() is called to find the
network interface to which the packet is to be transmitted. Then the ip output if() is
used for the actual transmission of the packet. When the UDP datagram arrives, the
IP layer called the udp input() function and checksum verification is done. Finally the
recv() is called to handle the data contained in the datagram.

4.3.4 Routing Server

We designed an initial routing server C++ using Windows sockets and threads. It
was designed to accept all incoming connections and creating a separate thread for
each connection. These threads were tied to a thread handler which served as the
communication handler between the client applications and target device. A modified
point-to-point protocol was used to transmit packages to its targeted destination. We
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performed a test with two computers hosting one server each where a client sent a
message to be routed to the other server using Ethernet as media. The result was an
average Round trip time (RTT) of 0.25 ms which met the requirement. However, an
issue arose when the server had multiple clients accessing the same socket with block
receive. The result was that only one of the threads received the message and this thread
was not necessarily the intended one. So we designed a new server using events to trigger
on receive and accept flags. This event-based communication in combination with the
broadcasting of all incoming messages allowed multiple clients to communicate with the
same socket without erroneous behaviours. The RTT result was equal to that of its
predecessor. A diagrammatic representation of the routing server is given in Figure 4.7.

Figure 4.7: Control Flow in Routing Server

The routing server creates a socket that is bound to an IP and listens for any incoming
connections from clients. The MCU becomes a fixed client to this server. Then it
waits for a connection from other PC applications and broadcasts the message to all the
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connections in the network.

4.4 USB Communication

The second way of communicating with the MCU is using USB. The MCU supports
both High Speed (HS) and Full Speed (FS) modes of operation. USB is a host initi-
ated communication and a single host supports multiple devices connected to it. The
implementation procedure of USB communication is given below.

4.4.1 USB Host

The PC acts as the USB host which is implemented with Python. The PC application
is made to communicate with the MCU using the virtual COM port at 115.2 kbps
implemented using the serial module. The data is sent using write() and read using
read(). The response time measurement is done using the time module.

4.4.2 USB Device

The USB communication on the MCU is implemented using the STM32Cube USB device
library and Hardware Abstraction Layer (HAL) driver. This library contains functions
for most common USB device classes like Human Interface Device (HID), Mass Storeage
Class (MSC), Audio, Communication Device Class (CDC) etc. based on USB device
stack that supports all STM32 microcontroller series [23]. The USB device library is
generic for all STM32 microcontrollers and is present on top of the HAL driver and
offers all the APIs required to develop a USB device application. The drivers support
multi packet transferring features which allows for sending big amounts of data without
splitting it into max packet size transfers. It also provides configuration files to change
the core and the library configuration without changing the library code. The structure
of the USB Device library is shown in Figure 4.8 [24].

The application is developed on top of those layers. The USB device libary layer contains
the core and class drivers. The core consists of full set of APIs to manage the internal
USB device library state machine and call back processes from USB interrupts. It also
handles the interrupt requests and I/O requests. The USB core uses a control transfer
state machine that has four different states namely Default, Addressed, Configured and
Suspended.

For the implementation of the communication with PC, CDC class of drivers were used.
The CDC core uses two endpoint/transfer types,

• Bulk endpoints for data transfers (1 OUT endpoint and 1 IN endpoint)

• Interrupt endpoints for communication control (CDC requests, 1 IN endpoint)
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Figure 4.8: A set of library and driver functions that are used to develop user application
is present in the form of four layer abstraction [24]

The data transfer from the evaluation board to the PC is managed periodically depending
on host request. We use a circular buffer for storing data until the PC requests for
the data. The driver calls the lower OUT endpoint and waits until the function is
completed before allowing new transfers through the endpoint. The library uses the
callback function mechanism for the implementation of the application. The driver
structure is mapped to different functions in the application layer that can be used to
transfer data.

4.5 CAN Implementation

The STM3240G-Eval evaluation board has two CAN bus channels based on a DB9 con-
nector. It supports the CAN protocol version 2.0 A and B. The CAN controller can
support bit rates up to 1 Mbit/s and allows different types of messages like applica-
tion messages, network management and diagnostic messages. So an advanced filtering
mechanism is available. Our application program on the evaluation board uses different
registers to request transmissions, handle reception, manage interrupts and configure
CAN parameters like baud rate, filter specification etc. It operates in different modes
namely Initialization, Sleep, Normal, Loopback, Silent and Silent Loopback [25].

We implemented the interface between the software and hardware for CAN messages
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using mailboxes. A mailbox contains all the information related to a message such as
identifier, data, control, status and time stamp. In order to transmit a message the
application must select an empty mailbox and set up the Identifier, Data Length Code
(DLC) and the actual data before requesting for transmission. Then the CAN scheduler
schedules the mailbox with highest priority. The priority of the mailboxes is provided
based on the identifier. The message with the lowest identifier value has the highest
priority according to the arbitration of CAN protocol and if the identifier values are
equal the lower mailbox number is scheduled first. The mailbox goes to scheduled state
after it is scheduled and becomes empty after the transmission is completed.

The received CAN messages are stored in mailboxes organized as a First In First Out
(FIFO) and the application accesses the messages using the mailboxes. A received
message is valid when the message is received correctly according to the CAN protocol
and passes through a filter for message identifier successfully. Once a message is received
completely and stored in the FIFO mailbox, an interrupt request is generated for the
application program to process on it.

The configurations to the CAN related registers can be made only in the initialization
mode avoiding any disturbance to the communication that may be caused by changing
hardware configuration.

4.6 PC-MCU Communication Protocol

An efficient communication protocol is necessary to reduce the response time between the
PC and MCU. The protocol includes all possible types of data that could be transferred.
A basic protocol with Start, Data and End was available from QRCAN. But we made
a few improvements to that to accommodate efficient scheduling and access to multiple
applications on PC. The improvements were to add Time stamp, data length and CRC
fields to the protocol. The structure of a frame in the communication protocol is shown
in Figure 4.9.

Figure 4.9: Structure of a frame in Communication Protocol between PC and MCU

The description of different fields is given in Table 4.1
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Table 4.1: Description of fields in Communication Protocol

Start Indicates the start of frame (8 bits)

Time Stamp Relative time delay from the previous message (32 bits)

Data Length Length of the data (16 bits)

Data Payload of the frame (depends on Packet ID)

CRC Cyclic Redundancy Check (32 bits)

End Indicates the end of frame (8 bits)

Each frame starts with a Start byte that could be a fixed value (Eg. 11111111) followed
by a 32-bit time stamp. The Time stamp can have a resolution up to a few microseconds.
It is placed in the beginning of the message to provide an opportunity for the scheduler
to schedule messages even without knowing the content of the message. The CRC field
is provided to check the integrity of the message and the packet ends with a End byte
with a fixed value (Eg. 00000000).

The example data field in Figure 4.9 is a Digital IO message from the PC that signals
the MCU to set a specific pin. The type of message is specified in Packet ID followed by
the Response field that could be used by the MCU to send a response upon successful
completion of execution. Then the other fields specify the details of the pin that must
be set or reset.

4.7 Scheduler

The way in which messages are handled in the MCU is a crucial factor that determines
the efficiency of the protocol. The messages are stored in RAM and a scheduler has to
schedule all the messages according to the time stamp sent from the PC. The timestamp
is a relative delay from the previous message. We decided to use the relative delay over
absolute delay to reduce the load on the MCU for reordering the out of order messages
and scheduling them. The relative delay between the messages can be as short as 10 µs.
The delay before execution of different messages in the MCU is obtained by counting
the clock pulses operated by a 168 MHz clock, thus once every 5.95 ns.

An implementation of driving the Digital IO pin in the MCU in accordance with the
time stamps from the PC is shown in Figure 4.10. The highlighted portion of the image
shows the precise delay generated by the MCU.
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Figure 4.10: Example waveform generated by Digital IO pin. The high pulse is 10 µs long
(shown in top circle) and the low pulse is 30 µs long (shown in bottom circle)

4.8 BUSMASTER

BUSMASTER is an open source software tool that runs on Windows OS and helps in
monitoring, analyzing and simulating CAN bus network [26]. It has the functionality to
analyze the data bytes in raw, physical or logical format. The BUSMASTER has features
to display message content, message information, data logging, time stamping, message
filters etc. [27]. Further it allows multiple USB-CAN hardware to be connected to it
through USB or Ethernet. BUSMASTER uses an American Standard Code for Infor-
mation and Interchange (ASCII) based communication protocol to transfer information
about CAN messages. A window showing the CAN messages displayed in BUSMASTER
is shown in Figure 4.11.

Figure 4.11: CAN Messages displayed in BUSMASTER
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From the figure, it can be seen that multiple nodes in different CAN channels can be
monitored simultaneously. It is also possible to configure CAN filtering, baud rate etc.
from BUSMASTER. We decided to use BUSMASTER mainly to reduce the cost of
developing a custom software. We use it to monitor the messages on the CAN network
in real time and also to configure different parameters of the CAN network. Further an
emulation of CAN node was done to send specific test sequences to the device under
test.

Thus the different components of the system was implemented both on the PC and
MCU. A performance measurement of the different components are given in the next
chapter.
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Evaluation

This chapter presents an evaluation of the project with respect to the requirements. The
main evaluation parameter is the response time and design choices were made accord-
ing to the response time results. The response time values for different physical media
with different software configurations are given in this chapter. The response time mea-
surement was mainly done using the time module of Python and system clock of the
PC.

5.1 Ethernet Performance

Ethernet uses UDP/IP or TCP/IP protocol for transferring data. This section shows the
performance results with Ethernet for different transport layer protocols. The purpose
of the test was to measure the response times with the Ethernet media using TCP and
UDP protocol.

Setup

The MCU was programmed as a server which will receive a connection from a Test client
application on PC. The application will transfer 10000 test cases and measure response
times for each case. The response times are saved to a file.
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Results

Table 5.1: Response Times of Ethernet using TCP and UDP

TCP UDP

Average Time 0.39 ms 0.41 ms

Shortest Time 0.29 ms 0.25 ms

Longest Time 8.93 ms 14.94 ms

A graph showing the response times of all 10000 messages can be found in Appendix A.

Conclusion

The conclusion drawn from these tests is that the transport layer communication pro-
tocol used has little impact on the response time for this application. This is because,
TCP consumes more time only if there is a disturbance in the network causing it to
resend the packet. Since the test was conducted with just two devices on the network,
there was no disturbance in the network resulting in an almost equal response times
for the two protocols. Thus the choice of protocol was made solely on implementation
complexity. Since this application has important data transferred, TCP is chosen as the
main transport layer protocol due to its high reliability.

5.2 Routing Server

The various tests performed to check the performance of the routing server mechanisms
is given below.

5.2.1 Threaded Routing Server

A test to check the performance of the threaded routing server was done.

Setup

The setup of using a multi-threaded routing server with TCP connections was tested
with a client, routing server and an echo server. The servers were bounded to different
IPs after which the client would request a connection to the route server, start a timer
and send a message containing the destination address of the echo server. The echo
server sends back every incoming message to the socket from which it was received. The
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route server then forwards the message back to the client and the client measure time
between sending and receiving the message. 100000 messages were sent and RTTs were
saved. This was done both internally within a PC and over LAN using Ethernet.

Results

100% of messages accepted with an average RTT of 0.015ms internally within a PC and
0.25ms over LAN (Ethernet).

Conclusion

The measured RTT leaves 0.75ms for application layer protocol handling and extra
features. But handling of multiple clients requesting the same socket have proved trou-
blesome.

5.2.2 Event-driven routing server

A test to check if response time requirement was satisfied for the communication interface
while allowing easier multiple point-to-point connection was performed.

Setup

The setup for using an event driven routing server with TCP connections was tested
with a client, routing server and an echo server. The servers were bounded to separate
IPs after which the client would request a connection to the route server, start a timer
and send a message which then will be broadcasted to all connected sockets except the
sender and the routing server. The echo server sends back every incoming message to
the socket from which it was received. The route server broadcasts the message in the
same manner and the client measure time between sending and receiving the message.
100000 messages were sent and RTTs were saved. This was done both internally within
a PC and over LAN using Ethernet.

Results

100% of messages accepted with an average RTT of 0.015ms internally and 0.25ms over
LAN (Ethernet).
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Conclusion

The event driven routing server fulfills the time requirement while enabling a better
solution for the multiple point-to-point problem.

5.3 USB Performance

The tests that were performed to measure the performance of USB using FS and HS are
given below.

Setup

The MCU was programmed as an USB device that will connect to the USB host i.e.
PC. The PC transfers data using the virtual serial port available. The PC transfers test
cases and saves the response times to a file.

Results

Table 5.2: Response Times of USB using FS and HS

FS HS

Average Time 0.99 ms 0.08 ms

Shortest Time 0.15 ms 0.05 ms

Longest Time 8.75 ms 0.64 ms

A graph showing the response times of 10000 messages can be found in Appendix A.

Conclusion

The High Speed protocol is ten times faster then the Fast Speed protocol and meets the
response time requirement. Hence the HS was the obvious choice between the two for
high performance.

5.4 Response Time Comparison

A comparison between response times of different modes in the physical interface is
shown in Figure 5.1. As seen from the figure the USB-FS has the highest response time
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close to 1 ms making it impossible to use form this application. But on the other hand,
USB-HS is the fastest among the four and can be used for applications that require very
high performance. Both TCP and UDP have a have a response time of around 0.4 ms
and can be used for applications that are not performance critical.

Figure 5.1: Response Time Comparison
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Discussion and Future Work

6.1 Physical Interface

One of the central concerns throughout the project was directed towards the physical
media used between the PC and the MCU. The combination of media and protocols
available for each of them had an impact on the performance. There are pros and cons
with each medium that led to enabling of both modules depending on the situation.
Ethernet provides the possibility of connecting multiple PCs to the network to the device
thereby enabling resource sharing. This is a desired feature in such a device. The
downside of having only Ethernet is that, modern laptops today have only USB ports.
Hence the need to have the USB interface operational to be used locally with a single
PC. From the evaluation results, it can be seen that USB HS protocol had the best
performance.

Other possible physical media options could be WiFi, RS232, USB 3.0. From a general
point of view, Wi-Fi has a lower performance than Ethernet making it a less likely
choice. Moreover handling Wi-Fi data on the MCU side increases the complexity of
both the hardware and software. As mentioned earlier, RS232 is slower than USB and
its physical connector is no longer available in modern PCs. USB 3.0 could be a good
option to increase the performance, but it increases the complexity and price of the
MCU.

6.2 Routing Server

The route server application works with Ethernet and focuses on forwarding messages
with minimal delay while maintaining scalability. The existing design has a basic func-
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tionality of continuously accepting connections and forwarding messages. But this server
could be improved for logging all data traffic and detecting faults. Further a similar way
or routing messages from different applications must be done for USB.

6.3 Scheduler

The current design of scheduler handles messages based on relative delay between mes-
sages. The MCU starts execution of messages either after a buffer overflow or after
receiving all the messages from the PC which is denoted by an end of message frame. So
messages can be transmitted from the PC in bursts. But the relative delay mechanism
has a few disadvantages. It is difficult to maintain relative delay to previous message if
multiple applications on the PC try to send messages at the same time.

So a solution for allowing multiple applications to use time stamp could be to design the
scheduler based on absolute delay. This approach would require the clock of both the
PC and MCU to be synchronous. But the disadvantage with this approach is that, more
number of bits are required to send absolute time from PC making the frame size in the
communication protocol bigger. There are two approaches for the synchronization of
clocks. One way is to synchronize the clock without accounting for the time it takes to
transfer the reset-clock instruction to the receiving device. So the initiating device will
always experience a delay when logging messages. The advantage of choosing this design
is that the receiving device will on average have the same time that the sending device had
when setting time stamp, thus the processing and transferring time is already accounted
for and needs no further consideration when setting the time stamp. The other approach
is to account for transfer time in the calibration stage and thus provides more accurate
logging information since both devices are operating closer to each others clocks. Since
messages are now stored in a priority array and executed whenever their time stamp is
met, each message has to consider the processing and transferring time between the PC
to the MCU.

6.4 BUSMASTER Plug-in

The current design of this plug-in is a basic version and misses CAN data frames at
maximum baud rate. It is also good to have full control of the way in which data is
handled in BUSMASTER. So a solution to improve the performance would be to develop
a custom plug-in that suits the performance of the MCU. Some initial research has been
done for the implementation and it was found that a separate project can be created for
the plug-in and integrated with the existing main BUSMASTER repository.
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Conclusion

This report summarizes the implementation of an interface between PC and CAN net-
work based on an ARM microcontroller using USB or Ethernet as the physical interface.
An open source software supports the hardware and acts as an user interface from the
PC. The current version of the interface is fully functional, but a few improvements
can be done to make it suitable for complex applications. Future work considers the
custom-made BUSMASTER plug-in to enable traffic logging in real-time and verify-
ing application testing features with timestamped message priority. The protocol to
establish this communication has to be implemented on both ends. The designed sched-
uler using timestamped priority can be implemented to replace the current relative delay
scheduler. A routing server mechanism can be implemented for USB to support multiple
applications on PC.
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Appendices



A

Response Times Plots

Figure A.1: Response times of 10000 messages using TCP/IP



Figure A.2: Response times of 10000 messages using UDP/IP

Figure A.3: Response times of 10000 messages using USB-FS



Figure A.4: Response times of 10000 messages using USB-HS
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