The unix programming environment
Edition 2.2, August 2001

Mark Burgess
Centre of Science and Technology
Faculty of Engineering, Oslo College

Foreword

Thisisarevised version of the UNIX compendium which is available in printed form and online viathe
WWW and info hypertext readers. It forms the basis for a one or two semester coursein UNIX. The
most up-to-date version of this manual can be found at

http://wwv. i u. hi 0. no/ ~mar k/ uni x/ uni x. ht m .

It is areference guide which contains enough to help you to find what you need from other sources. It is
not (and probably can never be) a complete and self-contained work. Certain topics are covered in more
detail than others. Some topics are included for future reference and are not intended to be part of an
introductory course, but will probably be useful later. The chapter on X11 programming has been
deleted for the time being.

Comments to Mark.Burgess@iu.hio.no Oslo, August 2001

Welcome

If you are coming to unix for the first time, from a Windows or Maclntosh environment, be prepared for
arather different culture than the one you are used to. UNIX is not about ‘ products’ and off-the-shelf
software, it is about open standards, free software and the ability to change just about everything.

® What you personally might perceive as user friendliness in other systems, others might perceive as
annoying time wasting. UNIX offersyou just about every level of friendliness and unfriendliness,
if you choose your programs right. In this book, we take the programmer’ s point of view.

® UNIX isabout functionality, not about simplicity. Be prepared for powerful, not necessarily
‘ssimple’ solutions.

Y ou should approach UNIX the way you should approach any new system: with an open mind. The
journey begins...

Overview

In this manual the word "host" is used to refer to a single computer system -- i.e. a single machine which

has a name termed its "hostname”.

What isunix?

UNIX isone of the most important operating system in use today, perhaps even the most important.
Sinceitsinvention around the beginning of the 1970s it has been an object of continual research and
development. UNIX is not popular because it is the best operating system one could imagine, but
because it is an extremely flexible system which is easy to extend and modify. It isan ideal platform for
developing new idess.

Much of the success of UNIX may be attributed to the rapid pace of its development (a development to
which all of its users have been able to contribute) its efficiency at running programs and the many
powerful tools which have been written for it over the years, such as the C programming language,
make, shell, I ex and yacc and many others. UNIX was written by programmers for programmers. It is
popular in situations where a lot of computing power is required and for database applications, where
timesharing is critical. In contrast to some operating systems, UNIX performs equally well on large
scale computers (with many processors) and small computers which fit in your suitcase!

All of the basic mechanisms required of a multi-user operating system are present in UNIX. During the
last few yearsit has become ever more popular and has formed the basis of newer, though less mature,
systems like NT. One reason for this that now computers have now become powerful enough to run
UNIX effectively. UNIX places burdens on the resources of a computer, since it expectsto be able to
run potentially many programs simultaneously.

If you are coming to UNIX from Windows or DOS you may well be used to using applications software
or helpful interactive utilities to solve every problem. UNIX is not usualy like this: the operating system
has much greater functionality and provides the possibilities for making your own, so it isless common
to find applications software which implements the same things. In UNIX you are usually asked to learn
alanguage in order to express exactly what you want. Thisis much more powerful than menu systems,
but it is harder to learn

UNIX has long been in the hands of academics who are used to making their own applications or writing
their own programs, whereas as the Windows world has been driven by businesses who are willing to
spend money on software. For that reason commercial UNIX software is often very expensive and
therefore not available at this college. On the other hand, the flexibility of UNIX meansthat it is easy to
write programs and it is possible to fetch gigabytes of free software from the Internet to suit your needs.
It may not look exactly like what you are used to on your PC, but then you have to remember that UNIX
users are adifferent kind of animal altogether

Like all operating systems, UNIX has many faults. The biggest problem for any operating system is that
it evolves without being redesigned. Operating systems evolve as more and more patches and hacks are
applied to solve day-to-day problems. The result is either a mess which works somehow (like UNIX) or
ablank refusal to change (like DOS or the Maclntosh, prior to MacOS X, which is based on BSD
UNIX). From apractical perspective, UNIX isimportant and successful because it is a multi-process
system which

® has an enormous functionality built in, and the capacity to adapt itself to changing technologies,
® isrelatively portable,

® isgood at sharing resources (but not so good at security),

® has tools which are each developed to do one thing well,

® alows these tools to be combined in every imaginable way, using pipes and channeling of data
streams,

® incorporates networking almost trivially, because al the right mechanisms are already there for
providing services and sharing, building client-server pairs etc,.

® itisvery adaptable and is often used to develop new ideas because of the rich variety of toolsit
POSSESSES.

UNIX has some problems: it isold, it contains alot of rubbish which no one ever bothered to throw
away. Although it develops quickly (at light speed compared to either DOS/Windows or Macintosh) the
user interface has been the slowest thing to change. UNIX is not user-friendly for beginners, it is
user-friendly for advanced users: it is made for users who know about computing. It sometimes makes
simple things difficult, but above al it makes things possible!

The aim of thisintroduction isto

@ introduce the unix system basics and user interface,

® develop the unix philosophy of using and combining tools,
® |earn how to make new tools and write software,

® |earn how to understand existing software.

To accomplish this task, we must first learn something about the shell language (the way in which UNIX
starts programs). Later we shall learn how to solve more complex problems using Perl and C. Each of
these is alanguage which can be used to put UNIX to work. We must aso learn when to use which tool,
so that we do not waste time and effort. Typical uses for these different interfaces are

shell Command line interaction, making scripts which performs simple jobs such as running programs,
installing new software, simple system configuration and administration.

perl Text interpretation, text formatting, output filters, mail robots, WWW cgi (common gateway
interface) scriptsin forms, password testing, simple database manipulation, simple client-server
applications.

C Nearly al of UNIX iswritten in C. Any program which cannot be solved quickly using shell or
perl can be written in C. One advantage is that C is a compiled language and many simple errors
can be caught at compile time.

Much of UNIX’s recent popularity has been aresult of its networking abilities: UNIX is the backbone of
the Internet. No other widely available system could keep the Internet alive today. GNU/Linux isa
free/open source re-write of the UNIX operating system, which many enhancements. While GNU/Linux
isnot "rocket science" to computer experts, it has distilled the essence of UNIX and placed it in the
hands of everyone. It runs on wrist watches and mainframe computers. Like it or loathe it, GNU/Linux
is probably the most important single development in computer operating systems for many years.

Once you have mastered the UNIX interface and philosophy you will find that i) the PC and MacIntosh
window environments might seem to be easy to use, but are simplistic and primitive by comparison; ii)
UNIX isfar from being the perfect operating system--it has a whole different set of problems and flaws.

The operating system of the future will not be UNIX or GNU/Linux as we seeit today (hopefully), nor

will isbe DOS or Maclntosh, but one thing is for certain: it will owe alot to the UNIX operating system
and will contain many of the tools and mechanisms we shall describe below.

Flavours of unix

UNIX is not asingle operating system. It has branched out in many different directions since it was
introduced by AT&T. The most important * f or k() * inits history happened early on when the
university of Berkeley, California created the BSD (Berkeley Software Distribution), adding network
support and the C-shell.

Here are some of the most common implementations of unix.

BD:

Berkeley, BSD
UNOS,

Sun Microsystems, BSD/sys 5
Solaris:

Sun Microsystems, Sys 5/BSD
Ultrix:

Digital Equipment Corporation, BSD
OS 1.

Digital Equipment Corporation, BSD/sys5
HPUX:

Hewlett-Packard, Sys 5
AIX: IBM, Sys5/BSD
IRIX:

Silicon Graphics, Sys5
GNU/Linux:

GNU, BSD/Posix

How to usethisreference guide

This programming guide is something between a user manual and atutorial. The information contained
here should be sufficient to get you started with the unix system, but it is far from complete.

To use this programming guide, you will need to work through the basics from each chapter. Y ou will
find that there is much more information here than you need straight away, so try not to be overwhelmed
by the amount of material. Use the contents and the indices at the back to find the information you need.
If you are following a one-semester UNIX course, you should probably concentrate on the following:

® Theremainder of thisintroduction

® The detailed knowledge of the Bash shell

® A detailed knowledge of Perl, guided by chapter 6. This chapter provides pointers on how to get
started in perl. It is not a substitute for the perl book.

® A sound appreciation of chapter 8 on network programming.

The only way to learn UNIX isto sit down and try it. Aswith any new thing, it isapain to get started,

but once you are started, you will probably come to agree that UNIX contains awealth of possibilities,
perhaps more than you had ever though was possible or useful!

One of the advantages of the UNIX system isthat the entire UNIX manual is available on-line. You
should get used to looking for information in the online manual pages. For instance, suppose you do not
remember how to create a new directory, you could do the following:

nexus% man -k dir

dir s (1) - list contents of directories

di r name di rname (1) - strip non-directory suffix fromfile nane
dirs bash (1) - bash built-in commands, see bash(1)

find find (1) - search for files in a directory hierarchy
I's s (1) - list contents of directories

nmkdi r mkdir (1) - make directories

pwd pwd (1) - print name of current/working directory
rdi r rdir (1) - renove enpty directories

The* man -k’ command looks for akeyword in the manual and lists al the referencesit finds. The
command ‘ apr opos’ iscompletely equivalent to* man -k’ . Having discovered that the command to
create adirectory is* mkdi r’ you can now look up the specific manual page on ‘ nkdi r’ to find out how
to useit:

man nkdir

Some but no all of the UNIX commands also have a help option which is activated with the* - h’ or
‘- -hel p’ command-line option.

dax% nkdir --help
Usage: nkdir [OPTION] DI RECTORY. .

-p, --parents no error if existing, make parent directories as needed
-m --nmode=MODE set permission nbde (as in chnod), not 0777 - umask
--help di splay this help and exit
--version out put version information and exit
dax%

NEVER-DO’sin UNIX

There are some things that you should never do in UNIX. Some of these will cause you more serious
problems than others. Y ou can make your own list as you discover more.

® You should NEVER EVER switch off the power on a UNIX computer unless you know what you
are doing. A UNIX machineis not like a PC running DOS. Even when you are not doing anything,
the system is working in the background. If you switch off the power, you could interrupt the
system while it iswriting to the disk drive and destroy your disk. Y ou must also remember that
several users might be using the system even though you cannot see them: they do not have to be
sitting at the machine, they could be logged in over the network. If you switch off the power, you
might ruin their valuable work.

® Onceyou have deleted aUNIX fileusing r mit isimpossible to recover it! Don’'t use wildcards
with r mwithout thinking quite carefully about what you are doing! It has happened to very many
users throughout the history of UNIX that onetries to type

rm*-~
but instead, by a dlip of the hand, one writes
rm* ~

UNIX then takes these wildcards in turn, so that the first command isr m * which deletes all of
your filest BE CAREFUL!

® Don't ever call aprogram or an important file* core’ . Many scripts go around deleting files called
“ core’ because the, when a program crashes, UNIX dumps the entire kernel image to afile called
‘core’ andthesefilesuse up alot of disk space. If you call afile‘ core’ it might get deleted!

® Don't call test programst est . ThereisaUNIX command which is aready called test and chances
are that when you try to run your program you will start the UNIX command instead. This can
cause alot of confusion because the UNIX command doesn’t seem to do very much at all!

What you should know before starting

Onelibrary: several interfaces

The core of unix isthe library of functions (written in C) which access the system. Everything you do on
aunix system goes through this set of functions. However, you can choose your own interface to these
library functions. UNIX has very many different interfacesto its libraries in the form of languages and
command interpreters.

Y ou can use the functions directly in C, or you can use command programslike‘ s’ ,‘ cd’ etc. These
functions just provide a simple user interface to the C calls. You can also use a variety of ‘script’
languages: C-shell, Bourne shell, Perl, Tcl, scheme. Y ou choose the interface which solves your
problem most easily.

UNIX commands arefiles

With the exception of afew simple commands which are built into the command interpreter (shell), all
unix commands and programs consist of executable files. In other words, there is a separate executable
file for each command. This makesit extremely simple to add new commands to the system. One ssimply
makes a program with the desired name and placesit in the appropriate directory.

UNIX commands live in specia directories (usually called bi n for binary files). The location of these

directoriesisrecorded in avariable called pat h or PATHwhich is used by the system to search for
binaries. We shall return to thisin more detail in later chapters.

Kernel and Shell

Since users cannot command the kernel directly, UNIX has a command language known as the shell.
The word shell implies alayer around the kernel. A shell isauser interface, or command interpreter.

There are two main versions of the shell, plus a number of enhancements.

/bin/sh
The Bourne Shell. The shell is most often used for writing system scripts. It is part of the original
unix system.

/bin/csh
The C-shell. This was added to unix by the Berkeley workers. The commands and syntax resemble
C code. C-shell is better suited for interactive work than the Bourne shell.

The program t csh is a public-domain enhancement of the csh and isin common use. Two improved
versions of the Bourne shell also exist: ksh, the Korn shell and bash, the Bourne-again shell.

Although the shells are mainly tools for typing in commands (which are executable files to be |oaded
and run), they contain features such as aliases, acommand history, wildcard-expansions and job control
functions which provide a comfortable user environment.

Theroleof C

Most of the unix kernel and daemons are written in the C programming language (1). Calls to the kernel
and to services are made through functionsin the standard C library. The commands like chnod, nkdi r
and cd are al C functions. The binary files of the same name/ bi n/ chrod, / bi n/ nkdi r €tc. are just
trivial "wrapper" programs for these C functions.

Until Solaris 2, the C compiler was a standard part of the UNIX operating system, thus C is the most
natural language to program inin a UNIX environment. Some tools are provided for C programmers:

dbx A symbolic debugger. Also gdb, xxgdb ddd.

make
A development tool for compiling large programs.

lex A ‘lexer’. A program which generates C code to recognize words of text.

yacc A ‘parser’. Thisisatool which generates C code for checking the syntax of groups of textual
words.

rpcgen
A protocol compiler which generates C code from a higher level language, for programming RPC
applications.

Stdin, stdout, stderr
UNIX hasthree logical streams or files which are always open and are available to any program.

stdin The standard input - file descriptor 0.
stdout

The standard output - file descriptor 1.
stderr

The standard error - file descriptor 2.

The names are a part of the C language and are defined as pointers of type FI LE.

#i ncl ude <stdi o. h>

/* FILE *stdin, *stdout, *stderr; */

fprintf(stderr,"This is an error nmessage!\n");

The names are ‘logical’ in the sense that they do not refer to a particular device, or a particular place for
information to come from or go. Their roleisanalogousto the ‘.’ and ‘.. directoriesin the filesystem.
Programs can write to these files without worrying about where the information comes from or goes to.
The user can personally define these places by redirecting standard 1/0. Thisis discussed in the next
chapter.

A separate stream is kept for error messages so that error output does not get mixed up with aprogram’s
intended output.

The superuser (root) and nobody

When logged onto a UNIX system directly, the user whose nameisr oot has unlimited access to the
files on the system. r oot can aso become any other user without having to give a password. r oot is
reserved for the system administrator or trusted users.

Certain commands are forbidden to normal users. For example, aregular user should not be able to halt
the system, or change the ownership of files (see next paragraph). These things are reserved for ther oot
Or superuser.

In a networked environment, r oot has no automatic authority on remote machines. Thisisto prevent the
system administrator of one machine in Canada from being able to edit files on another in China. He or
she must log in directly and supply a password in order to gain access privileges. On a network where
files are often accessible in principle to anyone, the username r oot gets mapped to the user nobody,

who has no rights at all.

Thefile hierarchy

UNIX has ahierarchical filesystem, which makes use of directories and sub-directoriesto form atree.
Theroot of thetreeis called the root filesystem or ‘/*. Although the details of where every fileislocated
differ for different versions of unix, some basic features are the same. The main sub-directories of the
root directory together with the most important file are shown in the figure. Their contents are as
follows.

“/bin’
Executable (binary) programs. On most systems thisis a separate directory to /usr/bin. In SUnOS,
thisisapointer (link) to /usr/bin.

‘“letc’
Miscellaneous programs and configuration files. This directory has become very messy over the
history of UNIX and has become a dumping ground for almost anything. Recent versions of unix
have begun to tidy up this directory by creating subdirectories‘ /et c/ mai |’ ,* /et c/ servi ces’
etc!

“/usr’
This contains the main meat of UNIX. Thisiswhere application software lives, together with all

of the basic libraries used by the OS.

“/usr/bin
More executables from the OS.

“/usr/local’
Thisiswhere users custom software is normally added.

“/sbin’
A special areafor statically linked system binaries. They are placed here to distinguish commands
used solely by the system administrator from user commands and so that they lie on the system
root partition where they are guaranteed to be accessible during booting.

‘/sys’
This holds the configuration data which go to build the system kernel. (See below.)

‘/ export’
Network servers only use this. This contains the disk space set aside for client machines which do
not have their own disks. Itislikea‘virtual disk’ for diskless clients.

‘/dev, [/devices’
A place where all the *logical devices are collected. These are called ‘ device nodes' in unix and
are created by nmknod. Logical devices are UNIX’ s official entry points for writing to devices. For
instance, / dev/ consol e isaroute to the system console, while/ dev/ knemis aroute for reading
kernel memory. Device nodes enable devices to be treated as though they were files.

‘/ horre’
(Called /users on some systems.) Each user has a separate login directory where files can be kept.
These are normally stored under / home by some convention decided by the system administrator.

“/var’
System 5 and mixed systems have a separate directory for spooling. Under old BSD systems,
/ usr/ spool contains spool queues and system data. / var / spool and/ var/ admetc are used for
holding queues and system log files.

“/vmuni x’
Thisisthe program code for the unix kernel (see below). On HPUX systemswith fileis called
“hp-ux’.Onlinuxitiscaled I'i nux’ .

‘/ kernel’
On newer systems the kernel is built up from a number of modules which are placed in this
directory.

Every unix directory containstwo ‘virtual’ directories marked by a single dot and two dots.

s -a

The single dot represents the directory oneis already in (the current directory). The double dots mean
the directory one level up the tree from the current location. Thus, if one writes

cd /usr/ |l ocal
cd ..

thefinal directory is/ usr. The single dot is very useful in C programming if one wishesto read ‘the
current directory’. Since thisisawayscalled ‘.’ thereis no need to keep track of what the current
directory redly is.

‘’and‘.” are‘hard links' to the true directories.

Symbolic links

A symbolic link is apointer or an aias to another file. The command
In -s fronfile /other/directory/tolink

makesthefilefronfil e appear to exist a / ot her/ di rect ory/ t ol i nk Simultaneously. Thefileis not
copied, it merely appears to be a part of the file tree in two places. Symbolic links can be made to both
filesand directories.

A symbolic link isjust asmall file which contains the name of the real file oneisinterested in. It cannot
be opened like an ordinary file, but may be read with the C call r eadl i nk() See section Istat and
readlink. If we remove the file a symbolic link points to, the link remains -- it just points nowhere.

Hard links

A hard link isaduplicate inode in the filesystem which isin every way equivalent to the original file
inode. If afileispointed to by a hard link, it cannot be removed until the link isremoved. If afile has
@math{ n} hard links -- al of them must be removed before the file can be removed. The number of
hard links to afileis stored in the filesystem index node for the file.

Getting started

If you have never met unix, or another multiuser system before, then you might find the idea daunting.
There are several things you should know.

Loggingin

Each time you use unix you must log on to the system by typing a username and a password. Y our login
name is sometimes called an ‘account’ because some unix systems implement strict quotas for computer
resources which have to be paid for with real money(2).

[ogi n: mark
passwor d:

Once you have typed in your password, you are ‘logged on’. What happens then depends on what kind
of system you are logged onto and how. If you have a colour monitor and keyboard in front of you, with
agraphical user interface, you will see a number of windows appear, perhaps a menu bar. Y ou then use
amouse and keyboard just like any other system.

Thisis not the only way to log onto unix. You can also log in remotely, from another machine, using the
Secure Shell ssh program (this replaces the now antiquated t el net andr | ogi n programs). If you use
these programs, you will normally only get atext or command line interface (though graphical interfaces
can easily be arranged).

Once you have logged in, a short message will be printed (called Message of the Day or motd) and you
will see the C-shell prompt: the name of the host you are logged onto followed by a percent sign, e.g.

Li nux cube 2.2.19prel3 #2 Mon Feb 26 15:53:31 MET 2001 i 686 unknown
This is GNU Linux - send problens to hel p@xanple.org
10: 44pm up 8 days, 13:34, 3 users, |oad average: 0.08, 0.02, 0.01

There are 480 nessages in your incom ng nail box.

Remember that every UNIX machine is a separate entity: it is not like logging onto a PC system where
you log onto the ‘network’ i.e. the PC file server. Every UNIX machineis a server, or aclient -- more
correctly a"peer" (equal partner). The network, in unix-land, has lots of players.

The first thing you should do once you have logged on isto set areliable password. A poor password
might be okay on a PC which is not attached to alarge network, but once you are attached to the
Internet, you have to remember that the whole world will be trying to crack your password. Don’t think
that no one will bother: some people really have nothing better to do. A password should not contain any
word that could bein alist of words (in any language), or be a simple concatenation of aword and a
number (e.g. mark123). It takes seconds to crack such a password. Choose instead something which is
easy to remember. Feel free to use the PIN number from your bankers card in your password! This will
leave you with fewer things to remember. e.g. Ma9876rk). Passwords can be up to eight characters long.

Some sites allow you to change your password anywhere. Other sites require you to log onto a special
machine to change your password:

dax%

dax% passwd

Change your password on host nexus
You cannot change it here
dax% r | ogi n nexus

password: **x**x

nexus% passwd

Changi ng password for mark
Enter |ogin password: ***xxxxx*
Enter new password: *****xxx
Reent er new passwd: **xxxxxx

Y ou will be prompted for your old password and your new password twice. If your network islarge, it
might take the system up to an hour or two to register the change in your password, so don’t forget the
old one right away!

M ouse buttons

UNIX has three mouse buttons. On some PC’s running GNU/Linux or some other PC unix, there are
only two, but the middle mouse button can be simulated by pressing both mouse buttons simultaneously.
The mouse buttons have the following general functions. They may aso have additional functionsin

special software.

index finger
Thisis used to select and click on objects. It is aso used to mark out areas and copy by dragging.
Thisisthe button you normally use.
middle finger
Used to pull down menus. It is also used to paste a marked area somewhere at the mouse position.
outer finger
Pulls down menus.

On aleft-handed system right and | eft are reversed.
E-mail

Reading electronic mail on unix isjust like any other system, but there are many programs to choose
from. There are very old programs from the seventies such as

mai |
and there are fully graphical mail programs such as

t kr at
mai | t ool

Choose the program you like best. Not all of the programs support modern multimedia extensions
because of their age. Some programs liket kr at have immediate mail notification aerts. To start amail
program you just type its name. If you have an icon-bar, you can click on the mail-icon.

Simple commands

Inexperienced computer users often prefer to use file-manager programs to avoid typing anything. With
amouse you can click your way through directories and files without having to type anything (e.g. the
kf mor t kdesk programs). More experienced users generally find this to be slow and tedious after a
while and prefer to use written commands. UNIX has many short cuts and keyboard features which
make typed commands extremely fast and much more powerful than use of the mouse.

Today the CDE, KDE and GNOME projects are the most important efforts to write graphical user
interfaces for computers. The CDE (Common Desktop Environment) isacommercial program
developed by IBM, Hewlett-Packard, Sun Microsystems and many other vendors. KDE (a German
effort, apun on CDE) and GNOME are free software window systems which have taken windowing to
the next level. While they have borrowed and stolen many ideas from Windows' innovative Windows
95 user interface, they have taken windowing beyond this.

If you come from a Windows environment, the UNIX commands can be alittle strange. It is adifferent
way of thinking: using language to ask for exactly what you want, instead of pointing to a menu of
limited choices. It is also a strange language. Because they stem from an era when keyboards had to be
hit with hammer force, and machines were very slow, the UNIX command names are as short as
possible, so they seem pretty cryptic. Some familiar ones which DOS borrowed from UNIX include,

cd
nkdi r

which change to a new directory and make a new directory respectively. To list the filesin the current
directory you use,

I's
To rename afile, you ‘move' it:

mv ol d- nane new nane

Text editing and word processing

Text editing is one of the things which people spend most time doing on any computer. It isimportant to
distinguish text editing from word processing. On a PC or Maclntosh, you are perhaps used to Word or
WordPerfect for writing documents.

UNIX hasaWord-like program called | yx, and even several Office clones (e.g. Star Officesof fi ce),
but for the most part UNIX users do not use word processors. It is more common in the UNIX
community to write all documents, regardless of whether they are letters, books or computer programs,
using a non-formatting text editor. (UNIX word processors like Fr anemaker do exist, but they are very
expensive. A version of MS-Word also exists for some unices.) Once you have written a document in a
normal text editor, you call up atext formatter to make it pretty. Y ou might think this strange, but the
truth of the matter is that this two-stage process gives you the most power and flexibility--and that is
what most UNIX folkslike.

For writing programs, or anything else, you edit afile by typing:
emacs nmyfile

emacs iSone of dozens of text-editors. It is not the simplest or most intuitive, but it is the most powerful
and if you are going to spend time learning an editor, it wouldn’t do any harm to make it this one. You
could aso click on emacs' icon if you are relying on awindow system. Emacsis almost certainly the
most powerful text editor that exists on any system. It is not aword-processor, it is not for formatting
printed documents, but it can be linked to aimost any other program in order to format and print text. It
contains a powerful programming language and has many intelligent features. We shall not go into the
details of document formatting in this book, but only mention that programsliket r of f and Tex or

Lat ex are used for this purpose to obtain typeset-quality printing. Text formatting is an area where
UNIX folks do things differently to PC folks.

Thelogin environment

UNIX began as atimesharing mainframe system in the seventies, when the only terminals available
were text based teletype terminals or tty-s. Later, the Massachusetts Institute of Technology (MIT)
developed the X-windows interface which is now a standard across UNIX platforms. Because of this
history, the X-window system works as afront end to the standard UNIX shell and interface, so to

understand the user environment we must first understand the shell.

Shells

A shell isacommand interpreter. In the early days of UNIX, a shell was the only way of issuing
commands to the system. Nowadays many window-based application programs provide menus and
buttons to perform simple commands, but the UNIX shell remains the most powerful and flexible way
of interacting with the system.

After logging in and entering a password, the UNIX process init starts a shell for the user logging in.
UNIX has several different kinds of shell to choose from, so that each user can pick his/her favourite
command interface. The type of shell which the system starts at login is determined by the user’s entry
in the passwd database. On most systems, the standard login shell is avariant of the C-shell.

Shells provide facilities and commands which

Start and stop processes (programs)

Allow two processes to communicate through a pipe

Allow the user to redirect the flow of input or output

Allow simple command line editing and command history

Define aliases to frequently used commands

Define global "environment™ variables which are used to configure the default behaviour of a

variety of programs. These lie in an "associated array” for each process and may be seen with the

“env’ command. Environment variables are inherited by all processes which are started from a

shell.

Provide wildcard expansion (joker notation) of filenamesusing* *, 2, [1’

® Provide asimple script language, with tests and loops, so that users can combine system programs
to create new programs of their own.

® Change and remember the location of the current working directory, or location within the file

hierarchy.

The shell does not contain any more specific functions--all other commands, such as programs which list
files or create directories etc., are executable programs which are independent of the shell. When you
type* | s’ , the shell looks for the executablefilecalled I s inaspecial list of directories called the
command path (which is contained in the environment variable $PATH) and attempts to start this
program. This allows such programs to be developed and replaced independently of the actual command
interpreter.

Each shell which is started can be customized and configured by editing a setup file. For the Bash shell
thisfileiscalled‘ . bashrc’ , and for the C-shell and itsvariantsitiscaled . profil e’ . (Notethat files
which begin with leading dots are not normally visible withthe* I s’ command. Use‘1s -a’ toview
these.) Any commands which are placed in these files are interpreted by the shell before the first
command prompt isissued. Thesefiles are typically used to define a command search path and terminal
characterigtics.

On each new command line you can use the cursor keysto edit the line. The up-arrow browses back
through earlier commands. CTRL- a takes you to the start of the line. CTRL- e takes you to the end of the
line. The TAB can be used to save typing with the ‘ completion’ facility See section Command/filename

completion.

Shell commands generally
Shell commands are commands like cp, nv, passwd, cat , nore, | ess, cc, gr ep, ps €fC..

One thing you can always bet on with Unix isthat there is not just one way of doing things -- there are
so many standards, that there is often a bewildering array to choose from. UNIX has two main command
shells. They are called sh (Bourne Shell) and csh C-shell. Their modern implementations are called
Bash (Bourne Again Shell) and t csh (T-C shell).

Very few commands are actually built into the shell command line interpreter, in the same way that they
are built into DOS. Rather commands are programs which exist as actual program files. When we type a
command, the shell searches for a program with the same name and triesto execute it. Thisisvery
flexible, since anyone is free to write their own programs and therefore extend the command language
of the system. The file must be executable, or aCormand not f ound error will result. To see what
actually happens when you type acommand like gcc, try typing the following into a GNU/Linux
system: (you can type this exactly as shown into a Bash shell)

cube$ | FS=:

cube$ for dir in $PATH # for every directory in the list path
>do

> if [-x $dir/gcc] # if the file is executable

> then

> echo Found $dir/gcc # Print nessage found!
> br eak # break out of |oop

> else

> echo Searching $dir/gcc

> fi

>done

If you use C-shell (e.g. tcsh), try typing in the following C-shell commands directly into a C-shell.

nexus% foreach dir ($path) # for every directory in the list path
if (-x $dir/gcc) then # if the file is executable

>

> echo Found $dir/gcc # Print nessage found!
> br eak # break out of |oop

> el se

> echo Searching $dir/gcc

> endi f

> end

The output of these command sequences is something like this:

Searching /usr/lang/gcc

Sear chi ng /usr/openw n/ bi n/gcc

Sear chi ng /usr/openwi n/ bi n/ xvi ew gcc

Sear chi ng / physics/1ib/framenmaker/ bi n/ gcc
Sear chi ng / physi cs/ notif/bin/gcc

Sear chi ng / physics/ mutil s/ bin/gcc

Sear chi ng / physi cs/ conmon/ scri pt s/ gcc
Found / physi cs/ bi n/ gcc

If you type
echo $PATH

in Bourne Shell, or
echo $path

in C-shell you will seethe entire list of directories which are searched by the shell. If we had left out the
‘break’ command, we might have discovered that UNIX often has several programs with the same
name, in different directories! For example,

/ bi n/ mai |
/usr/ucb/ mai |
/ bi n/ Mai |

/ bi n/ make
/usr/ | ocal / bi n/ make.

Also, different versions of UNIX have different conventions for placing the commands in directories, so
the path list needs to be different for different types of UNIX machine. In Bash afew basic commands
likecd and ki I I arebuilt into the shell (asin DOS).

Y ou can find out which directory acommand is stored in using

type
command. For example

cube$ type cd

cd is a shell builtin
cube$ type mv

nv is /bin/nm

cube$

t ype only searches the directoriesin $PATH and quits after the first match, so if there are severad
commands with the same name, you will only see the first of them using t ype.

Finally, in the C-shell the command corresponding to type is built in and called whi ch. In Bash whi ch is
aprogram:

cube$ type which

whi ch is /usr/bin/which

cube$ tcsh

cube% whi ch whi ch

whi ch: shell built-in command.

Take alook at the script / usr/ bi n/ whi ch. It isascript written in bash.

Environment and shell variables

Environment variables are variables which the shell keeps. They are normally used to configure the
behaviour of utility programslikel pr (which sends afile to the printer) and mai I (which reads and

sends mail) so that special options do not have to be typed in every time you run these programs.

Any program can read these variables to find out how you have configured your working environment.
We shall meet these variables frequently. Here are some important variables

PATH # The search path for shell commands (bash)
TERM # The term nal type (bash and csh)

DI SPLAY # X11 - the name of your display

LD LI BRARY_PATH # Path to search for object and shared libraries
HOSTNAME # Name of this UN X host

PRI NTER # Default printer (Ilpr)

HOVE # The path to your hone directory (bash)
pPs1 # The default pronpt for bash

pat h # The search path for shell commands (csh)
term # The term nal type (csh)

pr onpt # The default pronpt for csh

hone # The path to your hone directory (csh)

These variables fall into two groups. Traditionally the first group always have namesin uppercase letters
and are called environment variables, whereas variables in the second group have names with lowercase
letters and are called shell variables-- but thisis only a convention. The uppercase variables are global
variables, whereas the lower case variables are local variables. Local variables are not defined for
programs or sub-shells started by the current shell, while global variables are inherited by all sub-shells.

The Bash-shell and the C-shell use these conventions differently and not always consistently. Y ou will
see how to define these below. For now you just have to know that you can use the command env can be
used in Bash shell to see all of the defined global environment variables while set lists both the global
and the local variables.

Wildcards

Sometimes you want to be able to refer to several filesin one go. For instance, you might want to copy
al filesending in*.c’ to anew directory. To do this one uses wildcards. Wildcards are characters like *
? which stand for any character or group of characters. In card gamesthe joker isa‘wild card’ which
can be substituted for any other card. Use of wildcardsis also called filename substitution in the UNIX
manuals, in the sections on sh and csh.

The wildcard symbols are,

*?° Match single character. eg.1's /etc/rc. 2?2?22
*** Match any number of characters. e.g.1's /etc/rc. *
‘...1
Match any character in alist enclosed by these brackets. e.g.1's [abc].C

Here are some examples and explanations.
“letclrc.?2?2?2?

Match all filesin /etc whose first three charactersarer c. and are 7 characterslong.
Cx o

Match al filesendingin‘.c i.e. al C programs.

. *. [Q:] 1
List dl filesendingon‘.c’ or *.C' i.e. al C and C++ programs.
‘*. la-z]’

Match any fileending in .a, .b, .c, ... up to .z etc.

It isimportant to understand that the shell expands wildcards. When you type a command, the program
is not invoked with an argument that contains* or 2. The shell expands the special charactersfirst and
invokes commands with the entire list of files which match the patterns. The programs never see the
wildcard characters, only the list of filesthey stand for. To see thisin action, you can type

echo /etc/rc*
which gives

/etc/rcO /etc/rcO.d /etc/rcl /etc/rcl.d /etc/rc2 /etc/rc2.d /etc/rc3
/etc/rc3.d /etc/rch /etc/rc6 /etc/rcS /etc/rcS. d

All shell commands are invoked with acommand line of this form. This has an important corollary. It
means that multiple renaming cannot work!

UNIX files are renamed using the mv command. In many microcomputer operating systems one can
write

rename *.x *.y

which changes the file extension of all filesending in *.x’ to the same name with a‘.y’ extension. This
cannot work in UNIX, because the shell tries expands everything before passing the arguments to the
command line.

Regular expressions

The wildcards belong to the shell. They are used for matching filenames. UNIX has a more general and
widely used mechanism for matching strings, thisis through regular expressions.

Regular expressions are used by the egr ep utility, text editorslikeed, vi and enacs and sed and awk.
They are also used in the C programming language for matching input as well asin the Perl
programming language and | ex tokenizer. Here are some examples using the egr ep command which
print lines from thefile/ et ¢/ r ¢ which match certain conditions. The construction is part of egr ep.
Everything in between these symbolsis aregular expression. Notice that special shell symbols! * &
have to be preceded with abackslash\ in order to prevent the shell from expanding them!

Print all lines beginning with a conment
egrep ' ("#)’ letclrc

Print all lines which DON T begin with
egrep ' (M M) letclrc

Print all lines beginning with e, f or g.

egrep '(~efg])’ letclrc

Print all lines beginning with uppercase

egrep '(MMA-Z])’ letclrc

Print all lines NOT beginning with uppercase
egrep ' (M "MA-Z]) letclrc

Print all lines containing ! * &

egrep " ([\'*\&])’ /etclrc

Al lines contain

ng ! * & but not starting #
)

[
egrep ([[\!IV*\ & letclrc

Regular expressions are made up of the following ‘atoms'.

These examples assume that thefile* /et c/rc’ exists. If it doesn’t exist on the machine you are using,
try to find the equivalent by, for instance, replacing / et ¢/ rc with/ et ¢/ r c* which will try to find a
match beginning with the rc.

.’ Match any single character except the end of line.
“~* Match the beginning of aline asthefirst character.
*$ Match end of line aslast character.
TR

Match any character in the list between the square brackets.(see below).

*** Match zero or more occurrences of the preceding expression.
“+ Match one or more occurrences of the preceding expression.
2 Match zero or one occurrence of the preceding expression.

Y ou can find acomplete list in the UNIX manual pages. The square brackets above are used to define a
class of characters to be matched. Here are some examples,

® |f the square brackets contain alist of characters, ${a-z156]$ then a single occurrence of any
character in the list will match the regular expression: in this case any lowercase letter or the
numbers 1, 5 and 6.

® |f thefirst character in the bracketsisthe caret symbol * ~* then any character except those in the
list will be matched.

® Normally adash or minussign' -’ means arange of characters. If it isthe first character after the
‘[’ orafter: [~ thenitistreated literaly.

Nested shell commandsand

The backwards apostrophes ‘... can be used in all shells and also in the programming language Perl.
When these are encountered in a string the shell tries to execute the command inside the quotes and
replace the quoted expression by the result of that command. For example:

UNI X$ echo "This system s kernel type is ‘/usr/bin/file /boot/vminuz-2.2.19prel3""
This systemis kernel type is /boot/vminuz-2.2.19prel3: Linux kernel x86 boot execut

UNI X$ for filein ‘ls /local/ssl/msc/*
> do

> echo | found a config file $file

> echo Its type is ‘/usr/bin/file $file’

> done

| found a config file /local/ssl/msc/CA pl

Its type is /local/ssl/msc/CA pl: perl script text

I found a config file /local/ssl/msc/CA sh

Its type is /local/ssl/msc/CA sh: Bourne shell script text
| found a config file /local/ssl/msc/c_hash

Its type is /local/ssl/msc/c_hash: Bourne shell script text
I found a config file /local/ssl/msc/c_info

Its type is /local/ssl/msc/c_info: Bourne shell script text
I found a config file /local/ssl/msc/c_issuer

Its type is /local/ssl/msc/c_issuer: Bourne shell script text
I found a config file /local/ssl/msc/c_nane

Its type is /local/ssl/msc/c_nane: Bourne shell script text
I found a config file /local/ssl/msc/der_chop

Its type is /local/ssl/msc/der_chop: perl script text

Thisishow weinsert the result of ashell command into atext string or variable.

UNI X command overview

I mportant keys

TAB The TAB key is used by Bash and Emacs for "filename completion™, i.e. when you are uncertain of
the correct name of something, or ssimply can’t be bothered to type it out, you can hit TAB to either
finish off the word, or show you alternative choices. e.g. try in Bash

cube$ | oadTAB
| oadkeys | oadnet er | oaduni map

This shows the possible completions of commands which match "load". Type one more letter and
TAB, and the rest will befilled in.
CTRL- A
Jump to start of line. If - screen’ isactive, this prefixes all control key commands for * screen’
and then the normal CTRL- Aisreplaced by CTRL- a a.
CTRL-C
Interrupt or break key. Sends signal 15 to a process.
CTRL- D
Signifies* EOF’ (end of file) or shows expansion matches in command/filename completion See
section Command/filename completion.
CTRL-E
Jump to end of line.
CTRL- L
Clear screen in newer shellsand in emacs. Sameas' cl ear’ inthe shell.
CTRL-Z
Suspend the present process, but do not destroy it. This sends signal 18 to the process.

Alternative shells

bash The Bourne Again shell, an improved sh.
csh The standard C-shell.
j sh The same as sh, with C-shell stylejob control.

ksh TheKorn shell, an improved sh.

sh Theoriginal Bourne shell.

sh5 On ULTRIX systemsthe standard Bourne shell is quite stupid. sh5 corresponds to the normal
Bourne shell on these systems.

t csh Animproved C-shell.

zsh Animproved sh.

Window based ter minal emulators

Xxterm
The standard X 11 terminal window.

shel I tool, cndtoo
Openwindows terminals from Sun Microsystems. These are not completely X11 compatible
during copy/paste operations.

SCreen
Thisisnot awindow initself, but alows you to emulate having several windowsinside asingle
(say) xterm window. The user can switch between different windows and open new ones, but can
only see one window at atime See section Multiple screens.

Remote shellsand logins

The best way to log onto another system is to use the Secure Shell command ssh. This replaces the now
obsolete commands:

rlogin
Login onto aremote UNIX system.
rsh Open ashell on aremote system (require access rights).
t el net
Open a connection to aremove system using the telnet protocol.

These old commands are insecure andnote very flexible. The Secure Shell offers encryption, strong
authentication and greater functionality. It can be used to run a single program on a remote machine, or
to login on the remote machine.

cube$ ssh netaverse date
cube$ ssh net averse

Text editors

ed Anancient line-editor.
vi Visua interfaceto ed. Thisisthe only "standard" UNIX text editor supplied by vendors.
enacs
The most powerful UNIX editor. A fully configurable, user programmable editor which works
under X11 and on tty-terminals.
Xemacs
A pretty version of emacs for X11 windows.
pi co A tty-terminal only editor, comes as part of the PINE mail package.

xedi t

A test X11-only editor supplied with X-windows.
textedit

A ssmple X11-only editor supplied by Sun Microsystems.

File handling commands

I's Listfilesin specified directory (likedi r on other systems).

cp Copy files.
my Move or renamefiles.
t ouch

Creates an empty new fileif none exists, or updates date and time stamps on existing files.
rm unlink
Remove afile or link (delete).
nkdir, rndir
Make or remove adirectory. A directory must be empty in order to be able to remove it.
cat Concatenate or join together a number of files. The output is written to the standard output by
default. Can also be used to simply print afile on screen.

I p, |pr
Line printer. Send afile to the default printer, or the printer defined in the* PRI NTER environment
variable.

 pq, | pstat

Show the status of the print queue.

File browsing

nor e Shows one screen full at atime. Possibility to search for astring and edit thefile. Thisislike
‘“type file | nore’ inDOS.

| ess An enhanced version of more.

mc Midnight commander, afree version of the ‘Norton Commander’ PC utility for UNIX. (Only for
non-serious UNIX users...)

kf m A window based file manager with icons and all that nonsense.

Owner ship and granting access permission

chnod
Change file access mode.

chown, chgrp
Change owner and group of afile. The GNU version of chown allows both these operations to be
performed together using the syntax chown owner . group file.

acl On newer Unices, Access control lists allow access to be granted on a per-user basis rather than by
groups.

Extracting from and rebuilding files

cut Extract acolumnin atable
paste

Merge several files so that each file becomes a column in atable.
sed A batch text-editor for searching, replacing and selecting text without human intervention.
awk A prerunner to the Perl language, for extracting and modifying textfiles.
rier Strip carriage return (ASCII 13) characters from afile. Useful for converting DOS filesto UNIX.

L ocating files

find Search for filesfrom a specified directory using various criteria.
| ocate

Fast search in aglobal file database for files containing a search-string.
wher ei s

Look for acommand and its documentation on the system.

Disk usage.

du Show number of blocks used by afile or files.
df Show the state of usage for one or more disk partitions.

Show other userslogged on

users
Simplelist of other users.
finger
Show who islogged onto this and other systems.
who List of userslogged into this system.
w Long list of who islogged onto this system and what they are doing.

Contacting other users

wite
Send a simple message to the named user, end with CTRL- D. The command * nesg n’ switches off
messages receipt.

t al k Interactive two-way conversation with named user.

irc Internet relay chat. A conferencing system for realtime multi-user conversations, for addicts and
losers.

Mail sender s/readers

mai | The standard (old) mail interface.

Mai | Another mail interface.

el m Electronic Mail program. Lots of functionality but poor support for multimedia.

pi ne Rumours (untrue) are that pine stands for Pineis Not EIm; it actually stands for nothing at al.
Improved support for multimedia but very slow and rather stupid at times. Some of the best
features of elm have been removed!

mai | t ool
Sun’ s openwindows client program.

rmai |

A mail interface built into the emacs editor.

net scape mai l
A mall interface built into the netscape navigator.

zmai |
A commercia mail package.

t kr at
A graphical mail reader which supports most MIME types, written in tcl/tk. This program has a
nice feel and allows you to create a searchable database of old mail messages, but has a hopeless
locking mechanism.

Filetransfer

ftp TheFileTransfer program - copies files to/from aremote host.
ncftp
An enhanced ftp for anonymous login.

Compilers

cc TheC compiler.
cC The C++ compiler.
gcc The GNU C compiler.
g++ The GNU C++ compiler.
j avac
A generator of Java bytecode.
j ava A JavaVirtual Machine.
Id Thesystem linker/loader.
ar Archivelibrary builder.
dbx A symbolic debugger.
gdb The GNU symbolic debugger.
xxgdb
The GNU debugger with awindow driven front-end.
ddd A motif based front-end to the gdb debugger.

Other interpreted languages

per| Practical extraction an report language.
tcl A perl-like language with specia support for building user interfaces and command shells.
php Personal Home Page Tools (officialy "PHP: Hypertext Preprocessor"). A server-side
HTML-embedded scripting language.
schene
A lisp-like extensible scripting language from GNU.
nercury
A prolog-like language for artificial intelligence.

Processes and system statistics

ps List system process table.

virst at
List kernel virtual-memory statistics.
net st at
List network connections and statistics.
rpcinfo
Show rpc information.
showrount
Show clients mounting local filesystems.

System identity

unane
Display system name and operating system release.
host narne
Show the name of this host.
donmai nname
Show the name of the local NIS domain. Normally thisis chosen to be the same as the BIND/DNS
domain, but it need not be.
nsl ookup
Interrogate the DNS/BIND name service (hostname to IP address conversion).

I nter net resour ces

archie, xarchie

Search the internet ftp database for files.
xrn, fnews

Read news (browser).
net scape, xnosaic

Read world wide web (WWW) (browser).

Text formatting and postscript

tex, latex
Donald Knuth’ s text formatting language, pronounced "tek" (the x isreally a Greek "chi"). Used
widely for technical publications. Compiles to dvi (device independent) file format.

texinfo
A hypertext documentation system using tex and "info" format. Thisisthe GNU documentation
system. This UNIX guide iswritten in texinfo!!!

xdvi View atex dvi file on screen.

dvi ps
Convert dvi format into postscript.

ghost vi ew, ghostscri pt
View a postscript file on screen.

Picture editors and processors

xv Handles, edits and processes picturesin avariety of standard graphics formats (gif, jpg, tiff etc).

Usexv -quit to place apicture on your root window.
xpai nt
A simple paint program.
xfi g A linedrawing figure editor. Produces postscript, tex, and a variety of other output formats.
xmgr A graphing and analysis program.
xset r oot
Load an X-bitmap image into the screen (root window) background. Small images are tiled.

M iscellaneous

dat e Print the date and time.

i spel |

Spelling checker.
xcal ¢

A graphical caculator.
dc, bc

Text-based calculators.
xcl ock

A clock!

pi ng Send a"sonar" ping to seeif another UNIX host isalive.

Terminals

In order to communicate with a user, a shell needs to have accessto aterminal. UNIX was designed to
work with many different kinds of terminals. Input/output commandsin UNIX read and writeto a
virtual terminal. In reality aterminal might be atext-based Teletype terminal (called atty for short) or a
graphics based terminal; it might be 80-characters wide or it might be wider or narrower. UNIX take
into account these possibility by defining a number of instances of terminalsin amore or less object
oriented way.

Each user’ sterminal has to be configured before cursor based input/output will work correctly.
Normally thisis done by choosing one of a number of standard terminal types alist which is supplied by
the system. In practice the user defines the value of the environment variable* TERM to an appropriate
name. Typical examplesare® vt 100’ and* xt er ni . If no standard setup is found, the terminal can
always be configured manually using UNIX’s most cryptic and opaque of commands: “ stty’ .

The job of configuring terminalsis much easier now that hardware is more standard. Users' terminals
are usually configured centrally by the system administrator and it is seldom indeed that one ever has to
choose anything other than“ vt 100 or* xterni .

The X window system

Because UNIX originated before windowing technology was available, the user-interface was not
designed with windowing in mind. The X window system attempts to be like a virtual machine park,
running a different program in each window. Although the programs appear on one screen, they may in
fact be running on UNIX systems anywhere in the world, with only the output being local to the user’s
display. The standard shell interface is available by running an X client application called * xt er i

which isagraphical front-end to the standard UNIX textual interface.

The' xternmi program provides avirtual terminal using the X windows graphical user interface. It works
in exactly the same way as atty terminal, except that standard graphical facilities like copy and paste are
available. Moreover, the user has the convenience of being able to run a different shell in every window.
For example, using the* r1 ogi n” command, it is possible to work on the local system in one window,
and on another remote system in another window. The X-window environment allows one to cut and
paste between windows, regardless of which host the shell runs on.

The components of the X-window system

The X11 system is based on the client-server model. Y ou might wonder why awindow system would be
based on a model which was introduced for interprocess communication, or network communication.
The answer is straightforward.

The designers of the X window system realized that network communication was to be the paradigm of
the next generation of computer systems. They wanted to design a system of windows which would
enable a user to sit at atermina in Massachusetts and work on a machine in Tokyo -- and still be ableto
get high quality windows displayed on their terminal. The aim of X windows from the beginningisto
create a distributed window environment.

When | log onto my friend’ s Hewlett Packard workstation to use the text editor (because | don't like the
one on my EUNUCHS workstation) | want it to work correctly on my screen, with my keyboard -- even
though my workstation is manufactured by a different company. | aso want the colours to be right
despite the fact that the HP machine uses a completely different video hardware to my machine. When |
press the curly brace key {, | want to see a curly brace, and not some hieroglyphic because the HP
station uses a different keyboard.

These are the problems which X tries to address. In a network environment we need a common window
system which will work on any kind of hardware, and hide the differences between different machines as
far as possible. But it has to be flexible enough to allow us to change all of the things we don'’t like -- to
choose our own colours, and the kind of window borders we want etc. Other windowing systems (like
Microsoft windows) ignore these problems and thereby lock the user to a single vendors products and a
single operating system. (That, of course, isno accident.)

Theway X solvesthis problem isto use the client server model. Each program which wants to open a
window on somebody’ s compute screen isaclient of the X window service. To get something drawn on
auser’ s screen, the client asks a server on the host of interest to draw windows for it. No client ever
draws anything itself -- it asks the server to do it on its behalf. There are several reasons for this:

® Theclients can al talk acommon ‘window language’ or protocol. We can hide the difference
between different kinds of hardware by making the machine-specific part of drawing graphics
entirely a problem of implementing the server on the particular hardware. When a new type of
hardware comes along, we just need to modify the server -- none of the clients need to be
modified.

® \We can contact different servers and send our output to different hardware -- thus even though a
program is running on a CPU in Tokyo, it can ask the server in Massachusetts to display its
window for it.

® \When more than one window ison a user’ s display, it eventually becomes necessary to move the
windows around and then figure out which windows are on top of which other windows etc. If all
of the drawing information is kept in aserver, it is straightforward to work out thisinformation. If
every client drew where it wanted to, it would be impossible to know which window was supposed
to be on top of another.

In X, the window manager is a different program to the server which does the drawing of graphics -- but
the client-server idea still applies, it just has one more piece to its puzzle.

How to set up X windows

The X windows system is large and complex and not particularly user friendly. When you log in to the
system, X reads two filesin your home directory which decide which applications will be started what
they will look like. Thefiles are called

Xsession
Thisfileisashell script which starts up a number of applications as background processes and
exits by calling awindow manager. Here is asimple examplefile

#!/ bi n/ bash

#

.xsession file
#

#

PATH="/usr/bin:/bin:/local/gnu/bin:/usr/X11R6/bin"

Li st applications here, with & at the end
so they run in the background

HHHH

xterm-T NewTitle -sl 1000 -geonetry 90x45+16+150 -sbh &
xcl ock &

xbi ff -geonetry 80x80+510+0 &

net scape -iconic&

Start a wi ndow nanager. Exec replaces this script with
the fvwm process, so that it doesn't exist as a separate
(usel ess) process.

H*HHH*

exec /| ocal/bin/fvwn

Xdefaults
Thisfile specifies all of the resources which X programs use. It can be used to change the colours
used by applications, or font types etc. The subject of X-resourcesis alarge one and we don’t have
timefor it here. Here is a simple example, which shows how you can make your over-bright xterm
and emacs windows less bright grey shade.

xt er ntbackground: Light G ey
Emacs*background: grey92
Xemacs*background: grey92

X displays and authority

In the terminology used by X 11, every client program hasto contact a display in order to open a
window. A display isavirtual screen which is created by the X server on a particular host. X can create
severa separate displays on agiven host, though most machines only have one.

When an X client program wants to open awindow, it looks in the UNIX environment variable
‘DI SPLAY’ for the IP address of a host which hasan X server it can contact. For example, if we wrote

DI SPLAY="rmyhost : 0"
export DI SPLAY

the client would try to contact the X server on ‘myhost’ and ask for awindow on display number zero
(the usual display). If we wrote

DI SPLAY="198. 112. 208. 35: 0"
export DI SPLAY

the client would try to open display zero on the X server at the host with the | P address
198.112. 208. 35’ .

Clearly there must be some kind of security mechanism to prevent just anybody from opening windows
on someone’ s display. X has two such mechanisms:

xhost
This mechanism is now obsolete. The* xhost’ command is used to define alist of hosts which are
allowed to open windows on the user’ s display. It cannot distinguish between individual users. i.e.
the command xhost your host would allow anyone using yourhost to access the local display.
This mechanism is only present for backward compatibility with early versions of X windows.
Normally one should use the command xhost - to exclude all others from accessing the display.

Xauthority
The Xauthority mechanism has replaced the xhost scheme. It provides a security mechanism
which can distinguish individual users, not just hosts. In order for a user to open awindow on a
display, he/she must have aticket--called a"magic cookie'. Thisisabinary file called
‘. Xaut hority’ whichiscreated in the user’s home directory when he/she first starts the
X-windows system. Anyone who does not have arecent copy of this file cannot open windows or
read the display of the user’sterminal. This mechanism is based on the idea that the user’s home
directory isavailable viaNFS on al hosts he/she will log onto, and thus the owner of the display
will always have access to the magic cookie, and will therefore aways be able to open windows
on the display. Other users must obtain a copy of the file in order to open windows there. The
command xaut h isan interactive utility used for controlling the contents of the* . Xaut hority’
file. Seethe* xaut h» manual page for more information.

Multiple screens

The window paradigm has been very successful in many ways, but anyone who has used a window
system knows that the screen is simply not big enough for all the windows one would like! UNIX has
several solutionsto this problem.

One solution is to attach several physical screensto aterminal. The X window system can support any
number of physical screens of different types. A graphical designer might want a high resolution colour
screen for drawing and a black and white screen for writing text, for instance. The disadvantage with
this method is the cost of the hardware.

A cheaper solution isto use awindow manager such as* f wni which creates a virtual screen of
unlimited size on a single monitor. As the mouse pointer reaches the edge of the true screen, the window
manager replaces the display with anew "blank screen” in which to place windows. A miniaturized
image of the windows on a control panel acts as a map which makesit possible to find the applications
on the virtual screen.

Y et another possibility isto create virtual displaysinside a single window. In other words, one can
collapse several shell windowsinto asingle* xt ermi window by running the program * screen’ . The
screen command allows you to start several shellsin asingle window (using CTRL-a CTRL-c¢) and to
switch between them (by typing CTRL- a CTRL- n). It isonly possible to see one shell window at atime,
but it is still possible to cut and paste between windows and one has a considerable saving of space. The
“screen’ command also allows you to suspend a shell session, log out, log in again later and resume the
session precisely where you left off.

Hereisasummary of some useful screen commands:

Screen
Start the screen server.
screen -r

Resume a previously suspended screen session if possible.
CTRL-a CTRL-c
Start anew shell on top of the others (afresh ‘screen’) in the current window.
CTRL-a CTRL-n
Switch to the next ‘ screen’.
CTRL-a CTRL-a
Switch to the last screen used.
CTRL-a a
When screen isrunning, CTRL- a is used for screen commands and cannot therefore be used in its
usual shell meaning of ‘jump to start of lin€’. CTRL- a a replacesthis.
CTRL-a CTRL-d
Detach the screen session from the current window so that it can be resumed later. It can be
resumed with the* screen -r’ command.
CTRL-a ?
Help screen.

Files and access

To prevent all users from being able to access all files on the system, UNIX records information about
who creates files and also who is allowed to access them later.

Each user has a unique username or loginname together with aunique user id or uid. The user idisa
number, whereas the login nameis atext string -- otherwise the two express the same information. A file

belongsto user A if it isowned by user A. User A then decides whether or not other users can read,
write or execute the file by setting the protection bits or the permission of the file using the command
chnod.

In addition to user identities, there are groups of users. Theidea of agroup isthat several named users
might want to be able to read and work on afile, without other users being able to accessit. Every user
isamember of at least one group, called the login group and each group has both atextual name and a
number (group id). The uid and gid of each user isrecorded in thefile/ et c/ passwd (See chapter 6).
Membership of other groupsisrecorded inthefile/ et ¢/ gr oup or on some systems/ et ¢/ | ogi ngr oup.

Protection bits

The following output isfrom the command | s -1 ag executed on a SUnOS type machine.

| rvwxrwxrwx 1 root wheel 7 Jun 1 1993 bin -> usr/bin
-r--r--r-- 1 root bi n 103512 Jun 1 1993 boot
drwxr-sr-x 2 bin staff 11264 May 11 17:00 dev

drwxr-sr-x 10 bin staff 2560 Jul 8 02:06 etc

drwxr-sr-x 8 root wheel 512 Jun 1 1993 export
drwx------ 2 root daenon 512 Sep 26 1993 hone
-FrWXr-xr-x 1 root wheel 249079 Jun 1 1993 kadb

| rwxrwxrwx 1 root wheel 7 Jun 1 1993 lib -> usr/lib
drwxr-xr-x 2 root wheel 8192 Jun 1 1993 | ost+found
drwxr-sr-x 2 bin staff 512 Jul 23 1992 mmt

dr-xr-xr-x 1 root wheel 512 May 11 17: 00 net

drwxr-sr-x 2 root wheel 512 Jun 1 1993 pcfs
drwxr-sr-x 2 bin staff 512 Jun 1 1993 shin

[rwxrwxrwx 1 root wheel 13 Jun 1 1993 sys->kvm sys
dr wxrwxrwx 6 root wheel 732 Jul 8 19:23 tnp

dr wxr - Xr-x 27 root wheel 1024 Jun 14 1993 usr

drwxr-sr-x 10 bin staff 512 Jul 23 1992 var

-rwxr-xr-x 1 root daenon 2182656 Jun 4 1993 vnUNI X

Thefirst column is atextual representation of the protection bits for each file. Column two is the number
of hard links to the file (See exercises below). The third and fourth columns are the user name and group
name and the remainder show the file size in bytes and the creation date. Notice that the directories/ bi n
and/ sys are symbolic links to other directories.

There are sixteen protection bits for a UNIX file, but only twelve of them can be changed by users.
These twelve are split into four groups of three. Each three-bit number corresponds to one octal number.

The leading four invisible bits gives information about the type of file: isthefile a plain file, adirectory
or alink. In the output from | s thisisrepresented by asingle character: -, d or | .

The next three bits set the so-called s-bits and t-bit which are explained below.
The remaining three groups of three bits set flags which indicate whether afile can beread ‘ r’ , written

to'w orexecuted* x’ by (i) the user who created them, (ii) the other users who are in the group the file
ismarked with, and (iii) any user at all.

For example, the permission

Type Owner G oup Anyone
d rwx r-x ---

tellsusthat the file is a directory, which can be read and written to by the owner, can be read by others
in its group, but not by anyone else.

Note about directories. It isimpossible to cd to a directory unlessthe x bit is set. That is, directories
must be ‘executable’ in order to be accessible.

Here are some examples of the relationship between binary, octal and the textual representation of file
modes.

Binary Cctal Text

001 1 X

010 2 W

100 4 r

110 6 r w

101 5 r-x

- 644 FrWr--r--

It iswell worth becoming familiar with the octal number representation of these permissions.

chmod

The chmod command changes the permission or mode of afile. Only the owner of the file or the
superuser can change the permission. Here are some examples of itsuse. Try them.

make read/wite-able for everyone
chnod a+w nyfile

add the 'execute’' flag for directory
chnmod u+x nydir/

open all files for everyone
chnod 755 *

set the s-bit on ny-dir’'s group
chnod g+s nydir/

descend recursively into directory opening all files
chrmod -R a+r dir

Umask

When a new file gets created, the operating system must decide what default protection bitsto set on
that file. The variable umask decides this. umask is hormally set by each user in hisor her . cshrc file
(see next chapter). For example

umask 077 # safe

umask 022 # 1ibera

According the UNIX documentation, the value of umask is* XOR ed (exclusive* OrR) with avalue of
666 & umask for plainfilesor 777 & unask for directoriesin order to find out the standard protection.
Actualy thisis not quite true: * umask’ only removes bits, it never sets bits which were not already set in
666. For instance

umask Per m ssi on
077 600 (plain)
077 700 (dir)
022 644 (pl ain)
022 755 (dir)

The correct rule for computing permissionsis not XOR but * NOT AND .

Making programs executable

A UNIX program is normally executed by typing its pathname. If the x execute bit is not set on thefile,
thiswill generate a‘Permission denied’ error. This protects the system from interpreting nonsense files
as programs. To make a program executable for someone, you must therefore ensure that they can
execute the file, using acommand like

chnmod u+x fil ename
This command would set execute permissions for the owner of thefile;
chnmod ug+x fil enane

would set execute permissions for the owner and for any users in the same group as the file. Note that
script programs must also be readable in order to be executable, since the shell has the interpret them by
reading.

chown and chgrp
These two commands change the ownership and the group ownership of afile. Only the superuser can
change the ownership of afile on most systems. Thisisto prevent users from being able to defeat quota

mechanisms. (On some systems, which do not implement quotas, ordinary users can give afile away to
another user but not get it back again.) The same applies to group ownership.

Making a group

Normally users other than root cannot define their own groups. Thisis aweaknessin UNIX from older
times which no one seemsto be in a hurry to change.

s-bit and t-bit (sticky bit)
Thes andt bits have special uses. They are described as follows.

Cct al Text Nane

4000 chnod u+s Setuid bit
2000 chnod g+s Setgid bit
1000 chnod +t Sticky bit

The effect of these bits differsfor plain files and directories and differ between different versions of
UNIX. Y ou should check the manual page man sti cky to find out about your system! The following is
common behaviour.

For executable files, the setuid bit tells UNIX that regardless of who runs the programit should be
executed with the permissions and rights of owner of the file. Thisis often used to allow normal users
limited accesstor oot privileges. A setuid-root program is executed asr oot for any user. The setgid bit
sets the group execution rights of the program in asimilar way.

In BSD UNIX, if the setgid bit is set on a directory then any new files created in that directory assume
the group ownership of the parent directory and not the logingroup of the user who created the file. This
is standard policy under system 5.

A directory for which the sticky bit is set restrict the deletion of fileswithin it. A file or directory inside
adirectory with the t-bit set can only be deleted or renamed by its owner or the superuser. Thisis useful
for directories like the mail spool areaand/ t np which must be writable to everyone, but should not
allow auser to delete another user’ sfiles.

(Ultrix) If an executable file is marked with a sticky bit, it is held in the memory or system swap area. It
does not have to be fetched from disk each timeit is executed. This saves time for frequently used
programslikel s.

(Solaris 1) If anon-executable file is marked with the sticky bit, it will not be held in the disk page cache
--that is, it is never copied from the disk and held in RAM but iswritten to directly. Thisis used to
prevent certain files from using up valuable memory.

On some systems (e.g. ULTRIX), only the superuser can set the sticky bit. On others (e.g. SUnOS) any
user can create a sticky directory.

Bourne Again shell

The Bourne Again shell (Bash) is the command interpreter which you use to run programs and utilities.
It contains a simple programming language for writing tailor-made commands, and allows you to join
together UNIX commands with pipes. It is a configurable environment, and once you know it well, it is
the most efficient way of working with UNIX.

The Bourne Again shell was written by the Free Software Foundation as a part of the GNU project and
Bash isthe default shell in most GNU/Linux distributions. Because of its command line editing features,
it is much more efficient for interactive use than Bourne shell, the original UNIX shell. Most of the
system scripts in UNIX are written in the Bourne shell. Although Bash includes many extensions and
features not found in the Bourne shell, it maintains compatibility with it so that you can run Bourne shell
scripts under Bash. On many GNU/Linux systems Bourne shell (* / bi n/ sh’) issymbolically linked to
Bash (* / bi n/ bash’) so that the scripts that require the presence of the Bourne shell still run. If you
want to write a platform independent shell script able to run on as many UNIX variants as possible, you

should stick to Bourne shell syntax and avoid the Bash extensions.

‘~/ . bashrc’and ‘ ~/ . bash_profil e'files

When you log on to a GNU/Linux system and your login shell isdefined in / et ¢/ passwd’ to be Bash,
it first executescommandsinthe‘ /et c/ profile’ file. It then searchesfor the® ~/ . bash_profil e,
“~/ . bash_l ogi n'or * ~/ . profil efile inthisorder, and executes commandsin the first of thesethat is
found and is readable. When alogin exits, it executes commandsin the® ~/ . bash_| ogout 'file.

When you start an non-login interactive Bash shell, it only executes commandsinthe* ~/ . bashr c’file,
if it exists and is readable. However, this shell inherits any environment (exported) variables from the
parent shell, so environment variablessetin‘ /etc/profile’ and‘ ~/. bash_profil e’are passed onto
the non-login shells and later to its subshells.

Hereisavery simple example* ~/ . bashr c’file:

#

.bashrc - read in by every bash that starts.

#

umask 077 # Set the default file creation mask
PATH=" ~/ bi n: $PATH" # Inserts own bin directory first in PATH

PS1="*unane':\h\$ " # pronpt
ps2="\h > " # pronpt for foreach and while
PRI NTER=nypri nt er

Aliases are shortcuts to UNI X commands
al i as h=history

alias Il="Is -1"

alias cp="cp -i’

alias rmF rm-i

alias c='ssh cube’

In order to make sure your * ~/ . bashr c’fileis read when logging on with ssh to another machine, you
may start your * ~/ . bash_profi | e’filelikethis:

#
.bash_profile - read in every login
#

if [-f ~/.bashrc]
t hen
source ~/.bashrc # runs .bashrc as if they where

typed into this file
f

Variables and export

Shell variables are defined using the syntax

VARI ABLE="user nane i s"

nyname=""‘ whoani * "

It isimportant that there be no space between the variable and the equals sign. These variables are then
referred to using the dollar © $' symbol.

$ echo "My $VARI ABLE $nynane"
My username is nmark

When assigning values to variables the dollar symbol is never used. By default these variables are local -
that isthey will not be passed on to programs and sub-shells running under the current shell. To make
them global (so that child processes will inherit them) we use the command

export VARI ABLE

This adds the variable to the process environment. Under Bash (but not under the old Bourne shell) it is
also possible to declare a variable to be global on a single line by

export GLOBALVAR="gl obal "
The command
set -a

changes the default so that all variables, after the command are created global.

Arraysor lists are often simulated in Bourne shell by sandwiching the colon :* symbol between items

PATH=/ bi n: /usr/bin:/etc: /1 ocal/bin:.

LD LI BARAY_PATH=/usr/lib:/usr/openwin/lib:/local/lib

but thereisno real facility for arrays in the Bourne shell. Note that the UNIX ‘ cut’ command can be
used to extract the elements of the list. Loops can also read such lists directly See section Loopsin Bash.
However, Bash version 2.x supports arrays as seen in the next section.

The value of avariableis given by the dollar symbol. It is also possible to use curly braces around the
variable nameto ‘protect’ the variable from interfering text. For example:

$ ani mal =worm
$ echo book$ani nal
bookwor m
$ t hi ng=book
$ echo $t hi ngworm
(not hing..)
$ echo ${thi ng}worm
bookwor m

Default values can be given to variablesin the Bourne shell. The following commandsiillustrate this.

echo ${var-"No val ue set"}
echo ${var="Cctopus"}

echo ${var+"Forced val ue"}
echo ${var?"No such variabl e"}

The first of these prints out the contents of * $var’ , if it isdefined. If it is not defined the variableis
substituted for the string "No value set”. The value of * var’ isnot changed by this operation. It isonly
for convenience.

The second command has the same effect as the first, but here the value of * $var’ isactualy changed to
"Octopus" if * $var’ isnot set.

Thethird version is slightly peculiar. If * $var’ isalready set, its value will be forced to be "Forced
value", otherwiseit is left undefined.

Finally the last instance issues an error message "No such variable" if * $var’ isnot defined.

In Bash 2.x it is possible to extract parts of the string a variable is set to using the construction
${vari abl e: of f set : | engt h} | asshown in the next example.

var ="abcdef g"

m ddl e=${var: 2: 3}
echo $middl e

cde

An offset of 2 skipsthefirst 2 characters and a string of length 3 is extracted from the middle of the
string.

Bash arrays

The original Bourne shell does not have arrays. Bash version 2.x does have arrays, however. An array
can be assigned from a string of words separated by whitespaces or the individual elements of the array
can be set individually.

col ours=(red white green)
col ours[3] ="yel | oW

An element of the array must be referred to using curly braces.

echo ${col ours[1]}
white

Note that the first element of the array hasindex 0. The set of all elementsisreferred to by
${col ours[*]}.

echo ${col ours[*]}

red white green yell ow
echo ${#col ours[*]}

4

As seen the number of elementsin an array isgiven by ${#col ours[*]}.

Stdin, stdout, stderr and redirection to and from files

When the shell startsup, it inheritsthreefiles: * stdin’,* stdout’,and* stderr’ . Standard input

normally comes from the keyboard. Standard output and standard error normally go to the screen. There
are times you want to read input from afile or send output of errorsto afile. This can be accomplished
by using I/O redirection.

In Bash and the Bourne shell, the standard input/output files are referred to by numbers rather than by
names.

stdin File number O
stdout

File number 1
stderr

File number 2

The default routes for these files can be changed by redirection. The output of the command echo is by
default sent to the screen, that is the stdout with file number 1 is sent to the screen. Using redirection
operatorsit is possible to redirect the standard out of echo to where we want it. We can send output to a
file with the following command.

echo "should be sent to a file" > file.txt

Thiscreatesanew file‘ file. txt’ containing the string 'should be sent to afile’. The redirection
operator could have been given as 1>, but it is understood that standard out is meant when skipping the
number of the file handle. The single’>" aways creates anew file, while’>>" appends to the end of a
file.

If you had mistyped the command echo the result would have been:

ehco "should be sent to a file" > file.txt
bash: ehco: command not found

The standard error with file handle 2 is by default sent to the screen, independent of where standard out
(1) issent. If you like you can redirect stdout to another or the samefile.

ehco "should be sent to a file" > file.txt 2> error.txt
cat error.txt
bash: ehco: command not found

There are several ways to send stderr to the samefile as stdin is redirected to. The following three
commands are equivalent.

ehco "should be sent to a file" >& file.txt
ehco "should be sent to a file" > file.txt 2> file.txt
ehco "should be sent to a file" > file.txt 2>&l

The string 2>&1 means that stderr(2) should be sent to the same file as stdout(1). Thisisthe only why to
do this under the Bourne shell and this construction is therefore often seen in system shell scripts.

Furthermore it is possible to force a command which by default takes standard input from the keyboard,
to read input from afile by redirecting stdin. The mail-command expects input from keyboard, but the
"<’ redirection operator makes it send the password file to the user mark:

/bin/mai|l mark < /etc/passwd

The following table summarizes the most important redirection operators:

Redi recti on operat or VWhat it does

< Redi rects i nput

> Redi rect s out put

>> Appends out put

2> Redi rects error

>& Redi rects output and error (Bash only)
2>8&1 Redirects error where output (1) is going
Pipes

A pipe takes the output from the command on the left-hand side of the pipe symbol and sendsiit to the
input of the command on the right-hand side of the pipe symbol. A pipeline can consist of severa pipes
and this makes pipes a very powerful tool. It enables usto combine al the small and efficient UNIX
commands in any thinkable way. If you want to count the number of people logged on, you could save
the output of the command who in the temporary file‘ t np’ , usewc -1 to count the number of linesin
“tnp’ and finally remove the temporary file.

$ who > tnp

$we -l tnp
4 tnp

$rmtnp

Using a pipe saves disk space and time: the stdout from who can be redirected to the stdin of we - |
through a pipe and there is no need for temporarily storing the output from who.

$ who | we -1
4

Most UNIX-commands are constructed with piping in mind and this makes it possible to solve complex
tasks easily, by joining commands along a pipeline. Consider the following pipeline:

cat big.jpg | djpeg | pnnscal e -pixels 150000 | cjpeg > small.|pg

The command cat sends the large JPEG-image to dj peg which decompresses it and sends the resulting
bitmap to stdout. The stream of data floats through the next pipe to pnnscal e which scales the bitmap
image down to the given size. The scaled image is piped to the command cj peg which compresses the
standard input and finally produces a JPEG-image of reduced size which is stored in the file
‘“smal | .jpg’ .

Command history

The history feature in Bash means that you do not have to type commands over and over again. Y ou can
use the UP ARROWKey to browse back through the list of commands you have typed previously and the
keysLEFT ARROWand Rl GHT ARROWtO edit these commands.

In addition there are a couple of commands which selects commands from the history list.

‘11’ Execute the last command again.
‘14" Execute command number 4.

Thefirst of these smply repeats the last command. The second command gives an absolute number. The
absolute command number can be seen by typing ‘ hi story’ .

Command/filename completion

In Bash you can save hours worth of typing errors by using the completion mechanism. Thisfeatureis
based on the TAB key.

Theideaisthat if you type half afilename and press TAB, the shell will try to guess the remainder of the
filename. It does this by looking at the files which match what you have already typed and trying to fill
in therest. If there are several files which match, the shell sounds the "bell" or beeps. Y ou can then type
TAB twice to obtain alist of the possible alternatives. Here is an example: suppose you have just asingle
filein the current directory called* very_| ong_fi | ename’ , typing

nmore TAB
results in the following appearing on the command line
nore very_long_fil ename

The shell was able to identify a unique file. Now suppose that you have two files called
“very_long_filenane’ and‘very_big_fil enanme’,typing

more TAB
results in the following appearing on the command line
nore very_

and the shell beeps, indicating that the choice was not unique and adecision is required. Next, you type
TAB twice(3) to see which files you have to choose from and the shell lists them and returns you to the
command line, exactly where you were. Y ou now choose very_| ong_fil enane’ by typing‘ 1’ . This
is enough to uniquely identify the file. Pressing the TAB key again resultsin

nore very long fil enane

on the screen. Aslong as you have written enough to select afile uniquely, the shell will be able to
complete the name for you.

Completion also works on shell commands, but it isalittle slower since the shell must search through all
the directories in the command path to complete commands.

Single and double quotes

Two kinds of quotes can be used in shell apart from the backward quotes we mentioned above. The

essential difference between them isthat certain shell commands work inside double quotes but not
inside single quotes. For example

cube$ echo /etc/rc*
/etc/rc.boot /etc/rcO.d /etc/rcl.d /etc/rc2.d /etc/rc3.d /etc/rc4.d

cube$ echo "/etc/rc*"

/etc/rc*

cube$ echo "‘whoam‘ -- ny nanme is $USER'
mark -- my name is mark

cube$ echo ' ‘whoam‘ -- my nane is $USER
‘“whoam * -- my nanme is $USER

We see that the single quotes prevent variable substitution and sub-shells. Wildcards do not work inside
either single or double quotes.

Job control, break key, fg’, ‘ by’

So far we haven't mentioned UNIX’ s ability to multitask. In the Bourne shell (* sh’) there are no
facilitiesfor controlling severa user processes. Bash provides some commands for starting and stopping
processes. These originate from the days before windows and X 11, so some of them may seem alittle
old-fashioned. They are still very useful nonetheless.

Let’s begin by looking at the commands which are true for any shell. Most programs are run in the
foreground or interactively. That means that they are connected to the standard input and send their
output to the standard output. A program can be made to run in the background, if it does not need to use
the standard 1/0O. For example, a program which generates output and sendsit to afile could run in the
background. In awindow environment, programs which create their own windows can also be started as
background processes, leaving standard 1/0O in the shell free.

Background processes run independently of what you are doing in the foreground.

UNI X Processes and BSD signals

A background process is started using the special character + & at the end of the command line.
find / -name "*lib*" -print >& output &

Thefina * & ontheend of thisline means that the job will be run in the background. Note that thisis
not confused with the redirection operator * >& since it must be the last character on the line. The
command above looks for any files in the system containing the string ‘lib’ and writesthe list of filesto
afilecalled ‘output’. This might be a useful way of searching for missing libraries which you want to
include in your environment variable LD_LI BRARY_PATH . Searching the entire disk from the root
directory * /* could take along time, so it pays to run this in the background.

If we want to see what processes are running, we can usethe‘ ps’ command. * ps’ without any
arguments lists all of your processes, i.e. all processes owned by the user name you logged in with in the

current shell. ps’ takes many options, for instance‘ ps auxg’ will list all processes in gruesome detail
(The"g" isfor group, not gruesome!). * ps’ reads the kernel’ s process tables directly.

Processes can be stopped and started, or killed one and for all. The ki I I command does this. There
are, in fact, two versions of the* ki I 1 command. One of them is built into Bash and the other is not. If
you use Bash then you will never care about the difference. We shall nonetheless mention the special
features of Bash built-ins below. The kill command takes a number called a signal as an argument and
another number called the processidentifier or PID for short. Kill send signals to processes. Some of
these are fatal and some are for information only. The two commands

areidentical. They both send signal 15 to PID 127. Thisisthe normal termination signal and it is often
enough to stop any process from running.

Programs can choose to ignore certain signals by trapping signals with a special handler. One signal they
cannot ignoreissignal 9.

kill -9 127

isasureway of killing PID 127. Even though the process dies, it may not be removed from the kernel’s
process table if it has a parent (see next section).

Hereisthe complete list of signals which the Linux kernel send to processes in different circumstances.

#defi ne S| GHUP
#define SI A NT
#define SIGQUI T
#define SIALL
#defi ne S| GTRAP
#def i ne SI GABRT
#define SI A OT
#defi ne Sl GBUS
#defi ne S| GFPE
#define SI &KILL
#def i ne SI GUSR1 10
#def i ne S| GSEGV 11

/* Hangup (POSI X). */
/* Interrupt (ANSI). */
[* Qit (POSIX). */
/* Illegal instruction (ANSI). */
/* Trace trap (PCSIX). */
/* Abort (ANSI). */
/[* 10T trap (4.2 BSD). */
/* BUS error (4.2 BSD). */
/* Fl oating-point exception (ANSI). */
/* Kill, unblockable (POSIX). */
/* User-defined signal 1 (PCSIX). */
/* Segmentation violation (ANSI). */
#def i ne Sl GUSR2 12 /* User-defined signal 2 (PCSIX). */
#def i ne S| GPI PE 13 /* Broken pipe (PCSIX). */
#def i ne SI GALRM 14 /* Alarmclock (PCSIX). */

"

/*

/*

/*

/-k

/*

/*

/*

/-k

/*

/*

/*

/-k

OCO~NOOUITRWNE

#def i ne SI GTERM 15 Term nation (ANSI). */

#def i ne SI GSTKFLT 16 Stack fault. */

#define SI GCLD SI GCHLD Sane as SIGCHLD (System V). */

#def i ne SI GCHLD 17 Child status has changed (POSI X). */
#def i ne SI GCONT 18 Continue (POSI X). */

#def i ne SI GSTOP 19 St op, unbl ockable (PCSIX). */

#def i ne S| GTSTP 20 Keyboard stop (PCSI X). */

#define SIGITIN 21 Background read fromtty (PQCSIX). */
#define SI GTTOU 22 Background wite to tty (PCSIX). */
#def i ne SI GURG 23 Urgent condition on socket (4.2 BSD). */
#def i ne Sl GXCPU 24 CPU limt exceeded (4.2 BSD). */

#def i ne Sl GXFSZ 25 File size limt exceeded (4.2 BSD). */
#define SI GVTALRM 26 Virtual alarmclock (4.2 BSD). */
#def i ne Sl GPROF 27 Profiling alarmclock (4.2 BSD). */

#define SIGNNCH 28 /* W ndow si ze change (4.3 BSD, Sun). */
#def i ne SI GPOLL SIGdO /* Pollable event occurred (SystemV). */
#define SIA O 29 /* 1/ 0 now possible (4.2 BSD). */
#def i ne SI GPVWR 30 /* Power failure restart (SystemV). */
#def i ne SI GSYS 31 /* Bad systemcall. */

We have aready mentioned 15 and 9 which are the main signals for users. Signal 1, or * HUP' can be
sent to certain programs by the superuser. For instance

kill -1 <i net d>
kKill -HUP <inetd>

which forces' i net d’ to reread its configuration file. Sometimes it is useful to suspend a process
temporarily and then restart it later.

-20 <PI D> # suspend process <Pl D>

ill
ill -18 <Pl D> # resune process <Pl D>

Child Processes and zombies

When you start a process from a shell, regardless of whether it is a background process or a foreground
process, the new process becomes a child of the original shell. Remember that the shell isjust a UNIX
process itself. Moreover, if one of the children starts a new process then it will be a child of the child (a
grandchild?)! Processes therefore form hierarchies. Several children can have acommon parent.

If wekill aparent, then (unless the child has detached itself from the parent) all of its children die too. If
achild dies, the parent is not affected. Sometimes when achild iskilled, it does not die but becomes
"defunct” or azombie process. This means that the child has a parent which iswaiting for it to finish. If
the parent has not yet been informed that the child has died, for example because it has been suspended
itself, then the dead child is not removed from the kernel’ s process table. When the parent wakes up and
receives the message that the child has terminated, the process entry for the dead child can be removed.

Bash builtins: “jobs’ ,*kill’, fg , bg , break key

Now let’slook at some commands which are built into Bash for starting and stopping processes. Bash
refersto user programs as ‘jobs’ rather than processes -- but there is no real difference. The added bonus
of Bash isthat each shell has a job number in addition to its PID. The job numbers are simpler and are
private for the shell, whereas the PIDs are assigned by the kernel and are often very large numbers
which are difficult to to remember. When acommand is executed in the shell, it isassigned ajob
number. If you never run any background jobs then thereis only ever one job number: 1, since every job
exits before the next one starts. However, if you run background tasks, then you can have several jobs
"active" at any time. Moreover, by suspending jobs, Bash allows you to have severa interactive
programs running on the same terminal -- the* f g’ and* bg® commands allow you to move commands
from the background to the foreground and vice-versa.

Take alook at the following shell session.

cube$ emacs nyfile&
[3] 771
cube$

(other commands ... , edit nyfile and cl ose emacs)

When a background job is done, the shell prints a message at a suitable moment between prompts.

[3]+ Done emacs nyfile
cube$

Thistells you that job number 1 finished normally. If the job exits abnormally then the word * Don€e’
may be replaced by some other message. For instance, if you kill the job, it will say

cube$ kill 93

cube$

[3]+ Termnated emacs nyfile
cube$

Y ou can list the jobs you have running using the * j obs’ command. The output |ooks something like

cube$ j obs

[1] Term nat ed xdvi uni x

[2] Runni ng xemacs uni x.texinfo &
[3] Runni ng xterm-sb -sl 10000 &
[4] Runni ng ghostvi ew &

[5] Runni ng net scape &

[6] Runni ng xterm-sb -sl 10000 &
[7] Runni ng xemacs fil &

[8]+ Stopped emacs uni x. | og

[9] Runni ng ginp &

To suspend a program which you are running in the foreground you can type CTRL- z (thisislike
sendinga‘ kill -20" signa from the keyboard). (4) Y ou can suspend any number of programs and
then restart them one at atimeusing* fg° and* bg’ . If you want job 5 to be restarted in the foreground,
you would type

fg %
When you have had enough of job 5, you can type CTRL-z to suspend it and then type
fg %

to activate job 6. Provided ajob does not want to send output to * st dout’ , you can restart any job in the
background, using a command like.

bg %

This method of working was useful before windows were available. Using‘ f g’ and* bg’ , you can edit
several files or work on several programs without have to quit to move from one to another.

See also some related commands for batch processing ‘ at’ , * batch’ and*‘ atq’,‘ cron’.

NOTE: CTRL-c sendsa’ kil I -2’ signal, which send a standard interrupt message to a program. Thisis
always a safe way to interrupt a shell command.

Arithmetic in Bash

In Bourne shell arithmetic is performed entirely by proxy’. To evaluate an expression we call the
“expr’ command or the bc’ precision calculator. Here are some examples of * expr’

a='expr $a+l # increment a
a="expr 4 + 10 * 5 # 4+10*5
check = “expr $a \> $b’ # true=1, false=0. True if $a > $b

“expr’ isvery sensitive to spaces and backslash characters and this makesiit a bit awkward to do
arithmetic under the Bourne shell.

Bash 2.0 provides a new and ssmpler way to do arithmetic using double parentheses. If you surround any
integer arithmetic expressionasin((x =y + 1)), you can perform most arithmetic operations with
the same syntax asin Javaand C.

((x=1))

echo $x

1
((x++))

(Cy =4*x))
echo Sy
8

Note that you do not need to use the dollar symbol to refer to a variable within the double parentheses
(but you may do it) and that spaces are allowed.

((sum=2)))
((total = 4*$sum + sum))

echo $total
10

The variables within double parentheses are throughout treated as integers. Assigning afloat value like
2.5to avariable results in an syntax error while assigning a string to a variable cause the string to be
stored as zero.

Scriptsand arguments

Scripts are created by making an executable file which begins with the sequence of characters
#!1/ bi n/ bash

This construction is quite general: any executable file which begins with a sequence

#! myprogram -option

will cause the shell to attempt to execute

nyprogam -option fil enane

where filename is the name of thefile.

If ascript isto accept arguments then these can bereferredtoas® $1 $2 $3..3$9' . Thereisalogica
limit of nine arguments to a Bourne script, but Bash handles the next argumentsas* ${ 10}’ .* $0’ isthe

name of the script itself.

Hereisasimple Bash script which prints out all its arguments.

#!/ bi n/ bash

#

Print all argunents (version 1)
#

for arg in $*
do

echo Argunment $arg
done

echo Total nunber of argunents was $#

The* $** symbol stands for the entire list of argumentsand * $# is the total number of arguments.

Another way of achieving the sameisto usethe* shi ft’ command. We shall meet this again in the Perl
programming language. * shi ft’ takesthe first argument from the argument list and deletes it, moving
al of the other arguments down one number -- thisis how we can handle long lists of argumentsin the
Bourne shell.

#1/ bi n/ bash

#

Print all argunents (version 2)
#

while (true)
do
ar g=%1;
shift;
echo $arg was an argument;
if [$# -eq 0]; then
br eak
f
done

Return codes

All programs which execute in UNIX return avaue through the C ret urn’ command. Thereisa
convention that areturn value of zero (0) means that everything went well, whereas any other value
implies that some error occurred. The return value is usually the value returned in“ err no’ , the external
error variablein C.

Shell scripts can test for these values either by placing the command directly inside an ‘if’ test, or by

testing the variable* $?° which is always set to the return code of the last command. Some examples are
given following the next two sections.

Tests and conditionals

Bash and the Bourne shell has an array of tests. They are written asfollows. Noticethat “ t est’ isitself
not a part of the shell, but is a program which works out conditions and provides a return code. See the
manual pageon‘ test’ for more details.

test -f file
Trueif thefileisaplainfile
test -d file
Trueif thefileisadirectory
test -r file
Trueif thefileisreadable
test -wfile
Trueif thefileiswritable
test -x file
Trueif thefileis executable
test -s file
Trueif the file contains something
test -g file
Trueif setgid bit is set
test -u file
Trueif setuid bit is set
test sl = s2
Trueif strings sl and s2 are equal
test s1 I= s2
Trueif strings sl and s2 are unequal
test x -eq vy
Trueif the integers x and y are numerically equal
test x -ne vy
Trueif integers are not equal
test x -gt y
Trueif xisgreater thany
test x -1t vy
Trueif xislessthany
test x -ge vy
Trueif x>=y
test x -ley
Trueif x<=vy
! Logical NOT operator
-a Logical AND
-0 Logical OR

Note that an alternate syntax for writing these commands if to use the square brackets, instead of writing
the word test.

[$x -1t $y] " == test $x -1t $y

Just as with the arithmetic expressions, Bash 2.x provides a syntax for conditionals which are more
similar to Javaand C. While arithmetic C-like expressions can be used within double parentheses, C-like
tests can be used within double square brackets.

[[$var == "CK" || $var == "yes" 1]
This C-like syntax is not allowed in the Bourne shell, but is equivalent to
[$var = "OK" -0 $var = "yes" |
which isvalid in both shells.

Arithmetic C-like tests can be used within double parentheses so that under Bash 2.x the following tests
are equivalent:

[$x -1t Sy] "==" ((x <y))
Conditional structures

The conditional structures have the following syntax.

i f UNI X- conmand
t hen
conmmand
el se
conmmands
f

The* el se’ clauseis, of course, optional. As noted before, the first UNIX command could be anything,
since every command has areturn code. The result is TRUE if it evaluates to zero and false otherwise
(in contrast to the conventions in most languages). Multiple tests can be made using

i f UNI X- conmand

t hen

conmands
elif UN X-command
t hen

commands
elif UN X-command
t hen

conmmands
el se

conmands

f
where* el i f’ means'else-if’.
The equivalent of the C-school’s* swi t ch’ statement isamore Pascal-like* case’ structure.
case UNI X-conmand-or-variable in
wi | dcardl) commands ;
wi | dcard2) commands ; ;
wi | dcard3) commands ; ;

esac

This structure uses the wildcards to match the output of the command or variable in the first line. The
first pattern which matches gets executed.

| nput from the user in Bash

In shell you can read the value of avariable using the* read’” command, with syntax
read vari abl e

Thisreads in a string from the keyboard and terminates on a newline character. Under the old Bourne
shell another way to do thisisto usethe* i nput’ command to access a particular logical device. The
keyboard device in the current terminal is‘ / dev/tty’ , SO that one writes

variable = ‘line < /dev/tty’

which fetches a single line from the user. The command I i ne is however not available in most
GNU/Linux distributions.

Here are some examples of these commands. First a program which asks yes or no...

#!/ bi n/ bash
#
Yes or no
#

echo "Pl ease answer yes or no:
read answer
case $answer in

y* | Y| j* | J*) echo YES!I! ;;

n* | N) echo NO'! ;;
*) echo "Can’t you answer a sinple question?"
esac

echo The end

Notice the use of pattern matching and the* |* *OR’ symbol.

#!/ bi n/ bash

#

Kernel check

#

if test I -f /vnUN X # Check that the kernel is there!
t hen

echo "This is not BSD UN X. .. hnmmt

if [-f /hp-ux]

t hen

echo "It’s a Hew ett Packard machi ne!"

f
elif [-w/vrN X]
t hen

echo "HEY!! The kernel is witable ny ne!";
el se

echo "The kernel is wite protected.™
echo "The systemis safe fromne today."
f

L oopsin Bash

The loop structures in Bash and in the Bourne shell have the following syntax.

whi | e UNI X- conmmand
do

conmmands
done

The first command will most likely be atest but, as before, it could in principle be any UNIX command.
The* until’ loop, reminiscent of BCPL, carries out atask until its argument evaluates to TRUE.

until UNI X- conmand
do

conmmands
done

Finally the* f or’ structure has already been used above.

for variable in |ist
do

commands
done

Often we want to be able to use an array of values asthe list which f or parses, but Bourne shell has no
array variables. This problem is usually solved by making along string separated by, for example,
colons. For example, the $PATH variable has the form

PATH = /usr/bin:/bin:/local/gnu/bin

Bourne shell allows us to split such a string on whatever character we wish. Normally the split is made
on spaces, but the variable‘ | FS' can be defined with a replacement. To make aloop over all directories
in the command path we would therefore write

| FS=:
for name in $PATH, do
conmmands

done

The best way to gain experience with these commands is through some exampl es.

#! / bi n/ bash

#

CGet text fromuser repeatedly
#

echo "Type away..."

whi l e read TEXT
do

echo You typed $TEXT

if ["STEXT" = "quit"]; then
echo "(So I quit!)"
exit O
f
done
echo "HELP!'"

Thisvery ssimple script isatypical use for awhile-loop. It gets text repeatedly until the user type ‘quit’.
Since read never returns ‘false’ unless an error occurs or it detects an EOF (end of file) character

CTRL- D, it will never exit without some help from an ‘if’ test. If it doesreceive a CTRL- D signal, the
script prints ‘HELP!'.

#!/ bi n/ bash

#

Watch in the background for a particul ar user
and give alarmif he/she logs in

#

To be run in the background, using &

#

if [$# -ne 1]; then
echo "G ve the nane of the user as an argunment" > /dev/tty
exit 1

f

echo "Looking for $1"

until users | grep -s $1

do
sl eep 60
done
echo "!'!'l WAKE UP !'l'l" > [dev/tty

echo "User $1 just logged in" > /dev/tty

Thisscript uses* grep’ in‘silent mode’ (-soption). i.e. grep never writes anything to the terminal. The
only thing we are interested in is the return code the piped command produces. If ‘grep’ detectsaline
containing the username we are interested in, then the result evaluates to TRUE and the sleep-loop exits.

Our final exampleisthe kind of script which is useful for a system administrator. It transfers over the
Network Information Service database files so that a Slave server is up to date. All we havetodois
make alist of thefilesand placeitina“ f or’ loop. The names used below are the actual names of the
NIS maps, well known to system administrators.

#!/ bi n/ bash

#

Update the NI S dat abase maps on a client server. This program
shoul dn’t have to be run, but sonetinmes things go wong and we

have to force a downl oad fromthe nmmi n sever.
#
PATH=/ et c/ yp: /usr/etc/yp: $PATH

MASTER=nyNI Sser ver

for map in auto.direct auto.nmaster ethers.byaddr ethers. bynane\
group. bygi d group. bynane hosts. byaddr hosts. bynane\
mai | . al i ases net group. byhost net group. byuser net group\
neti d. bynane networ ks. byaddr networ ks. byname passwd. bynane\
passwd. byui d priss. bynane protocol s. bynanme protocol s. bynunber\
rpc. bynunber services. bynane servi ces usenetgroups. bynane;

do

ypxfr $1 -h $MASTER $nap
done

Procedures and traps

One of the worthy features of the Bourne shell isthat it allows you to define subroutines or procedures.
Subroutines work just like subroutines in any other programming language. They are executed in same
shell (not as a sub-process).

Hereis an interesting program which demonstrates two useful things at the same time. First of al, it
shows how to make a hierarchical subroutine structure using the Bourne shell. Secondly, it shows how
the‘ trap’ directive can be used to trap signals, so that Bourne shell programs can exit safely when they
arekilled or when CTRL-C istyped.

#! / bi n/ bash

#

How to make a signal handler in Bourne Shel
using subroutines

#

HHHBHEBHHBHESHHH R H B R H R R H R R H R R R R RS R #
Level 2
HHHHHES R R R R R R R R R R R R]

Real | yQui t ()
{

while true

do
echo "Do you really want to quit?"
read answer

case $answer in
y* | Y*) return O;
*) echo "Resunmi ng..."
return 1;
esac

done

}

BHBHBHBHHHHHHBHBHBHBH B H B R AR R
Level 1

HERHHHHH B H T H T H R H T R
Si gnal Handl er ()

{
if ReallyQuit # Call a function
t hen
exit O
el se
return 0
f
}

HHHHBHHH B H B H R H R H R H R R R R R
Level 0 : main program

HHHHBHHH R H R R R R R R
trap SignalHandler 2 15 # Trap kill signals 2 and 15
echo "Type some lines of text..."

whil e read text
do

echo "$text - CTRL-C to exit"

done

Note that the logical tree structure of this program is upside down (the highest level comes at the
bottom). Thisis because all subroutines must be defined before they are used.

This example concludes our survey of Bash and the Bourne shell.

setuid and setgid scripts

The superuser * root * isthe only privileged user in UNIX. All other users have only restricted access to
the system. Usually thisis desirable, but sometimesit is a nuisance.

A setuid script isa script which hasits setuid-bit set. When such a script is executed by a user, itisrun
with all the rights and privileges of the owner of the script. All of the commandsin the script are
executed as the owner of the file and not with the user-id of the person who ran the script. If the owner
of the setuid scriptis‘ root’ then the commands in the script are run with root privileges!

Setuid scripts are clearly atouchy security issue. When giving away one’ s rights to another user
(especialy those of * r oot *) oneistempting hackers. Setuid scripts should be avoided.

A setgid program is almost the same, but only the group id is set to that of the owner of the file. Often
the effect is the same.

An example of asetuid program isthe ps’ program. ‘ ps’ listsall of the processes running in the
kernel. In order to do this it needs permission to access the private data structures in the kernel. By
making ‘ ps’ setgid root, it allows ordinary users to be able to read as much as the writers of * ps’
thought fit, but no more.

Naturally, only the superuser can make afile setuid or setgid root.

Exercises

1. Writeanimproved ‘ whi ch’ command in Bash.

2. Make a counter program which recordsin afile how many times you log in to your account. You
can call thisin your .bashrc file.

3. Make aBourne shell script to kill all the processes owned by a particular user. (Note, that if you
are not the superuser, you cannot kill processes owned by other users.)

4. Writeascript to replacethe’ r i command with something safer. Think about away of
implementing ‘ r ni so that it is possible to get deleted files back again in case of emergencies.
Thisisnot possible using the normal * r i command. Hint: save filesin a hidden directory
‘. del et ed’ . Makeyour script deletefilesinthe . del et ed’ directory if they are older than a
week, so that you don’t fill up the disk with rubbish.

5. Suppose you have a bunch of fileswith a particular file-extension: write a script in Bash to change
the extension to something else. e.g. to change *.C into *.c. Give the old and new extensions as
arguments to the script.

6. Writeaprogram in Bash to search for filesin the current directory which contain a certain string.
e.g. search for al files which contain the word "if". Hint: use the "find" command.

7. Usethe manual pages to find out about the commands* at’ , ‘ bat ch’ and* at g’ . Test these
commands by executing the shell command * dat e’ at some time of your choice. Usethe* - m
option so that the result of the job is mailed to you.

8. Writeascript in Bash to list all of the files bigger than a certain size starting from the current
directory, and including all subdirectories. Thiskind of program is useful for system
administrators when a disk becomes full.

C shell

Programmers who are used to C or C++ often find it easier to program in C-shell because there are
strong similarities between the two.

.cshrc and .login files

Most users run the C-shell * / bi n/ csh’ astheir login environment, or these days, preferably the* t csh’
which isan improved version of csh. When a user logsin to a UNIX system the C-shell starts by reading
some files which configure the environment by defining variables like pat h.

® Thefile' . cshrc’ issearched for in your homedirectory.i.e.* ~/ . cshrc: If itisfound, its
contents are interpreted by the C-shell as C-shell instructions, before giving you the command
prompt(5).

® |f and only if thisis the login shell (not a sub-shell that you have started after login) then thefile
“~/ . 1 ogi n’is searched for and executed.

With the advent of the X 11 windowing system, this has changed dlightly. Since the window system
takes over the entire login procedure, users never get to run ‘login shells’, since the login shell is used up

by the X11 system. On an X-terminal or host running X the . 1 ogi n’ file normally has no effect.

With some thought, the* . 1 ogi n’ file can be eliminated entirely, and we can put everything into the
.cshrc file. Hereisavery ssmple example* . cshrc’ file.

#
.cshrc - read in by every csh that starts.
#

Set the default file creation mask
umask 077

Set the path
set path=(/usr/local/bin /usr/bin/X11 /usr/ucb /bin /fusr/bin .)

Exit here if the shell is not interactive
if ($?prompt == 0) exit

Set sone vari abl es

set nocl obber notify filec nobeep

set history=100

set pronpt="‘host nane’' %

set pronpt2 = "%n 9%>" # tcsh, pronpt for foreach and while

setenv PRI NTER myprinter
setenv LD LI BRARY _PATH /usr/lib:/usr/local/lib:/usr/openwin/lib

Aliases are shortcuts to UN X conmands

alias passwd yppasswd

alias dir "I's -lg \!'* | nore’
alias sys "ps aux | nore’
alias h hi story

It is possible to make a much more complicated .cshrc file than this. The advent of distributed
computing and NFS (Network file system) means that you might log into many different machines
running different versions of UNIX. The command path would have to be set differently for each type of
machine.

Defining variables with set, setenv

We have already seen in the examples above how to define variablesin C-shell. Let’sformalize this. To
define alocal variable -- that is, one which will not get passed on to programs and sub-shells running
under the current shell, we write

set local = "sone string"
set mynane = "‘whoanm ‘"

These variables are then referred to by using the dollar * $' symboal. i.e. The value of the variable
‘I ocal’ is* $local .

echo $l ocal $nynane

Global variables, that is variables which all sub-shellsinherit from the current shell are defined using

‘setenv’

setenv GLOBAL "Sone ot her string"
setenv MYNAME "‘who ami ‘"

Their values are also referred to using the* $' symbol. Notice that set usesan* =" signwhile* set env’
does not.

Variables can be also created without a value. The shell uses this method to switch on and off certain
features, using variables like‘ nocl obber’ and* nogl ob’ . For instance

nexus% set fl ag

nexus%if ($?flag) echo 'Flag is set!’
Flag is set!

nexus% unset fl ag

nexus%if ($?flag) echo "Flag is set!’
nexus%

The operator * $2?vari abl e’ is‘ true’ if variableexistsand ' f al se’ if it does not. It does not matter
whether the variable holds any information.

The commands* unset’ and* unset env’ can be used to undefine or delete variables when you don’t
want them anymore.

Arrays

A useful facility in the C-shell isthe ability to make arrays out of strings and other variables. The round
parentheses® (. .)’ do this. For example, look at the following commands.

nexus% set array = (a b c d)
nexus% echo $array|[1]

a

nexus% echo $array| 2]

b

nexus% echo $array[$#array]

d

nexus% set noarray = ("a b c d")
nexus% echo $noarray| 1]

abcd

nexus% echo $noarray[$#noarr ay]
abcd

The first command defines an array containing the elements* a b ¢ d’ . The elements of the array are
referred to using square brackets‘ [..]’ andthefirst elementis‘ sarray[1]’ . Thelast element is
“$array[4]’ . NOTE: thisis not the same asin C or C++ where thefirst element of the array isthe
zeroth element!

The special operator * $#' returns the number of elementsin an array. This gives us a simple way of
finding the end of the array. For example

nexus% echo $#path
23

nexus% echo "The last elenment in path is $path[$#path]"
The last element in path is .

To find the next last e ement we need to be able to do arithmetic. We' |l come back to this later.

Pipesand redirection in csh

The symbols

< > > << | &

have a special meaning in the shell. By default, most commands take their input from thefile* st di n’
(the keyboard) and write their output to thefile st dout* and their error messagesto thefile* st derr’
(normally, both of these output files are defined to be the current terminal device* / dev/tty’, or

“/ dev/ consol).

“stdin’,*stdout’ and stderr’, known collectively as st di o’ , can be redefined or redirected so
that information is taken from or sent to adifferent file. The output direction can be changed with the
symbol ‘ > . For example,

echo testing > nyfile

produces afilecaled myfil e’ which containsthe string ‘testing’. The single® > (greater than) sign
always creates anew file, whereas the double* >>' appends to the end of afile, if it aready exists. So
the first of the commands

echo bl ah blah >> nyfile
echo Newfile > nyfile

addsasecond lineto* nyfil e’ after ‘testing’, whereas the second command writes over * nyfil e’ and
ends up with just one line ‘Newfile'.

Now suppose we mistype a command
ehco test > nmyfile

The command * ehco’ does not exist and so the error message* ehco: Conmand not found’ appears
on the terminal. This error message was sent to stderr -- so even though we redirected output to afile,
the error message appeared on the screen to tell usthat an error occurred. Even this can be changed.
“stderr’ can also beredirected by adding an ampersand * & character to the* > symbol. The
command

ehco test >& nyfile

resultsin thefile* myfil e’ being created, containing the error message ‘ ehco: Command not found'.
The input direction can be changed using the* <* symbol for example

/bin/mai | mark < nessage

would send thefile* message’ totheuser * mark’ by electronic mail. The mail program takes its input

from the file instead of waiting for keyboard input.

There are some refinements to the redirection symbols. First of all, let usintroduce the C-shell variable
‘nocl obber’ . If thisvariableis set with acommand like

set nocl obber

then files will not be overwritten by the* > command. If one triesto redirect output to an existing file,
the following happens.

UNI X% set nocl obber

UNI X% t ouch bl ah # create an enpty file blah
UNI X% echo test > bl ah

bl ah: File exists.

If you are nervous about overwriting files, then you can set * nocl obber’ inyour* . cshrc’ file.
‘ nocl obber’ can be overridden using the pling“ ! * symbol. So

UNI X% set nocl obber
UNI X% t ouch bl ah # create an enpty file blah
UNI X% echo test >! bl ah

writes over thefile bl ah’ even though ‘ nocl obber’ isset.
Here are some other combinations of redirection symbols

*>> Append, including * stderr’

f>>1

Append, ignoring ‘ nocl obber’
Comgl

Append‘ stdout’,* stderr’,ignore‘ nocl obber’
‘<<’ Seebelow.

The last of these commands reads from the standard input until it finds aline which contains aword. It
then feeds all of thisinput into the program concerned. For example,

nexus% mai | mark <<quit

nexus 1> Hello mark

nexus 2> Not hing rmuch to say. ..
nexus 2> so bye

nexus 2>

nexus 2> quit

Sending mail ..

Mai | sent!

The mail message contains all the lines up to, but not including ‘ marker’. This method can also be used
to print text verbatim from afile without using multiple echo commands. Inside a script one may write:

cat << "marker";
MENU

1) choice 1
2) choice 2

mar ker

Thecat command writes directly to st dout and the input is redirected and taken directly from the script
file.

A very useful construction isthe ‘pipe’ facility. Using the* | * symbol one can feed the* st dout’ of one
program straight into the* st di n’ of another program. Similarly with* | & both* st dout’ and
“stderr’ can be piped into the input of another program. Thisis very convenient. For instance, 0ok up
the following commands in the manual and try them.

ps aux | nore

echo ' Keep on sharpening themthere knives!’ | mail henry
vnstat 1 | head
Is -1 /etc | tai

Note that when piping both standard input and standard error to another program, the two files do not
mix synchronously. Often * st derr’ appearsfirst.

‘tee’ and ‘ script’

Occasionally you might want to have a copy of what you see on your terminal sent to afile.* t ee’ and
“script’ dothis. For instance,

find / -type |l -print | tee nyfile

sends a copy of the output of * fi nd’ tothefile ‘myfile'. * t ee’ can split the output into as many files as
you want:

command | tee filel file2
Y ou can a'so choose to record the output an entire shell session using the* scri pt’ command.

nexus% script mysession
Script started, file is mysession

nexus% echo Big brother is scripting you
Big brother is scripting you

nexus% exi t

exit
Script done, file is nysession

Thefile ‘mysession’ is atext file which contains a transcript of the session.

Scriptswith arguments

One of the useful features of the shell isthat you can use the normal UNIX commands to make
programs called scripts. To make a script, you just create afile containing shell commands you want to
execute and make sure that the first line of the file looks like the following example.

#!'/ bin/csh -f

z A sinple script: check for user’s nai

y

set path = (/bin /usr/ucb) # Set the local path
cd /var/spool / mai | # Change dir

foreach uid (*)
echo "$uid has mail in the intray! " # space prevents an error

end

The sequence* #! / bi n/ csh’ means that the following commands areto be fed into * / bi n/ csh’ . The
two symbols* #!’ must be the very first two charactersin thefile. The* - f* option means that your

. cshre’ fileisnot read by the shell when it starts up. The file containing this script must be executable
(see chnod’) and must be in the current path, like all other programs.

Like C programs, C-shell scripts can accept command line arguments. Suppose you want to make a
program to say hello to some other users who are logged onto the system.

say-hell o mark sarah nel

To do this you need to know the names that were typed on the command line. These names are copied
into an array in the C-shell called the argument vector, or “ ar gv’ . To read these arguments, you just
trea * argv’ asan array.

#!/bin/csh -f
#

Say hello
#

foreach name ($argv)

echo Saying hello to $nane
echo "Hello from $user! " | wite $nane

end

The elements of the array can bereferredto as* argv[1] ' .. ar gv[$#ar gv]’ asusua. They can aso be
referredtoas‘ $1' .. $3' up to the last acceptable number. This makes C-shell compatible with the
Bourne shell as far as arguments are concerned. One extra flourish in this method is that you can also
refer to the name of the program itself as* $0’ . For example,

#!/bin/csh -f

echo This is program $0 runni ng for S$user

“$argv’ representsal the arguments. You can asouse® $*' from the Bourne shell.

Sub-shells ()

The C-shell does not alow you to define subroutines or functions, but you can create alocal shell, with
its own private variables by enclosing commands in parentheses.

#!1/ bi n/ csh

cd /etc

(cd /usr/bin; Is *) > nyfile
pwd

This program changes the working directory to /etc and then executes a subshell which inside the
brackets changes directory to /usr/bin and lists the files there. The output of this private shell are sent to
afile ‘myfile’. At the end we print out the current working directory just to show that the* cd’
command in brackets had no effect on the main program.

Normally both parentheses must be on the same line. If a subshell command line gets too long, so that
the brackets are not on the same line, you have to use backslash characters to continue the lines,

(conmand \
conmand \
command \

Tests and conditions

No programming language would be complete without tests and loops. C-shell has two kinds of decision
structure: the* i f..then..el se’ andthe‘ switch’ structure. These are closely related to their C
counterparts. The syntax of theseis

if (condition) command

if (condition) then
conmand
command. .

el se
comand
conmmand. .

endi f

switch (string)

case one
comands
br eaksw
case two:
comands

br eaksw

endsw

In the latter case, no commands should appear on the samelineasa‘case’ statement, or they will be
ignored. Also, if the* br eaksw commands are omitted, then control flows through all the commands for
case 2, case 3 etc, exactly asit doesin the C programming language.

We shall consider some examples of these statements in a moment, but first it is worth listing some
important tests which can beused in ‘i f* questions to find out information about files.

“-er file’
Trueif thefile exists and is readable

“-wfile

Trueif the file exists and is writable
f-x file’

Trueif the file exists and is executable
‘-e file’

Trueif the file smply exists
‘oz file

Trueif the file exists and is empty
C-f file

Trueif thefileisaplainfile
‘-d file’

Trueif thefileisadirectory

We shall also have need of the following comparison operators.

“==" isequal to (string comparison)
‘1= isnot equal to

*>" isgreater than

‘< islessthan

*>=’ [sgreater than or equal to
‘<=’ islessthan or equal to

* =~ matches awildcard

1~ does not match awildcard

The ssimplest way to learn about these statementsis to use them, so we shall now look at some examples.

#!/bin/csh -f

#

Safe copy from<arg[1l]> to <arg[2]>
#

#

if ($#argv '= 2) then

echo "Syntax: copy <fromfile> <to-file>"
exit O

endi f
if (-f $argv[2]) then

echo "File exists. Copy anyway?"

switch ($<) # Get a line fromuser
case y:
br eaksw
defaul t:
echo "Doi ng nothing!"
exit O
endsw
endi f

echo -n "Copying $argv[1l] to $argv[2]..."
cp $argv[1l] $argv]?2]
echo done

endi f

This script triesto copy afile from one location to another. If the user does not type exactly two
arguments, the script quits with a message about the correct syntax. Otherwise it tests to see whether a
plain file has the same name as the file the user wanted to copy to. If such afile exists, it asks the user if
he/she wants to continue before proceeding to copy.

Switch example: configure script

Here is another example which compiles a software package. Thisis a problem we shall return to later
See section Make. The problem this script tries to address is the following. There are many different
versions of UNIX and they are not exactly compatible with one another. The program this file compiles
has to work on any kind of UNIX, so it triesfirst to determine what kind of UNIX system the script is
being run on by calling - unane’ . Then it definesavariable MAKE' which contains the path to the
‘make’ program which will build software. The make program reads afile called * Makefile’ which
contains instructions for compiling the program, but this file needs to know the type of UNIX, so the
script first copies afile ‘Makefile.src’ using * sed’ replace adummy string with the real name of the
UNIX. Then it calls make and sets the correct permission on the fileusing ‘ chrnod’ .

#!/bin/csh -f

HHHHHUHHH SRR U U U U R R R R
#

#

CONFI GURE Makefil e AND BUI LD sof tware

#

#

HHEBHES RS R S R R R R R

set NAME = (‘uname -r -s')
switch ($NAMVE[1])

case SunQS*:

switch ($NAVE[2])

case 4*:
setenv TYPE SUN4
set env MAKE / bi n/ nake
br eaksw
case 5*:
setenv TYPE SOLARI S
set env MAKE /usr/ ccs/ bi n/ make
br eaksw
endsw
br eaksw

case ULTRI X*:
setenv TYPE ULTRI X
set env MAKE / bi n/ nake
br eaksw

case HP- UX*:
set env TYPE HPUX
set env MAKE / bi n/ nake
br eaksw

case Al X*:
setenv TYPE Al X
set env MAKE / bi n/ nake
br eaksw

case OSF*:
setenv TYPE OSF
set env MAKE / bi n/ nake
br eaksw

case | Rl X*:
setenv TYPE | Rl X
set env MAKE / bi n/ nake
br eaksw

def aul t:
echo Unknown architecture $NAME[1]

endsw
CGenerate Makefile fromsource file
sed s/ HOSTTYPE/ $TYPE/ Makefile.src > Makefile

echo "Making software. Type CTRL-C to abort and edit Makefile"

$MAKE sof tware # call make to build program
chnod 755 software # set correct protection
L oopsin csh

The C-shell hasthree loop structures: ‘ repeat’ , * whil e’ and* f or each’ . We have already seen some
examples of the ' f or each’ loop.

The structure of these loopsis as follows

repeat nunber-of-tinmes comand

while (test expression)
comands

end

foreach <control-variable (list-or-array)
commands

end

The commands* br eak’ and* conti nue’ can be used to break out of the loops at any time. Here are
some examples.

repeat 2 echo "Yo!" | wite nmark
This sends the message "Y 0!" to mark’ sterminal twice.
repeat 5 echo ‘echo "Shutdown tine! Log out now' | wall ; sleep 30' ; halt

This exampl e repeats the command ‘ echo Shutdown time...” five times at 30 second intervals, before
shutting down the system. Only the superuser can run this command! Note the strange construction with
‘echo echo’. Thisisto force the repeat command to take two shell commands as an argument. (Try to
explain why this works for yourself.)

| nput from the user

Test a user response

echo "Answer y/n (yes or no)"
set valid = fal se

while ($valid == false)

switch ($<)

case y:
echo "You answered yes”
set valid = true
br eaksw
case n:
echo "You answered no"
set valid = true
br eaksw
defaul t:
echo "Invalid response, try again"
br eaksw

endsw

end
Notice that it would have been simpler to replace the two lines

set valid = true
br eaksw

by asingleline* break’ .* breaksw jumps out of the switch construction, after which the* whi | e’ test
fails.* break’ jumpsout of the entire while loop.

Extracting parts of a pathname

A path name consists of a number of different parts:

® The path to the directory where afileis held.
® The name of thefileitself.
® Thefile extension (after a dot).

By using one of the following modifiers, we can extract these different elements.

The path to thefile

The filename itself

Thefile extension

The complete file-path minus the file extension

- ® T

Here are some examples and the results:

set f = ~/progs/c++/test.C
echo $f:h
/ hone/ mar k/ progs/ c++
echo $f:t
test.C
echo $f:e

C
echo $f:r

/ hone/ mar k/ progs/ c++/ t est

Arithmetic

Before using these featuresin areal script, we need one more possibility: numerical addition,
subtraction and multiplication etc.

To tell the C-shell that you want to perform an operation on numbers rather than strings, you usethe* @
symbol followed by a space. Then the following operations are possible.

@var = 45 # Assign a nunerical value to var
echo $var # Print the value

@var = $var + 34 # Add 34 to var

@var += 34 # Add 34 to var

@var -=1 # subtract 1 from var

@var *=5 # Multiply var by 5

@var /=3 # Divide var by 3 (integer division)
@var % 3 # Remai nder after dividing var by 3
@var ++ # Increment var by 1

@var - - # Decrement var by 1

@array[1l] =5 # Numerical array

@logic = ($x > 6 && $x < 10) # AND

@logic = ($x > 6 || $x < 10) # OR

@false =1 $var # Logi cal NOT

@bits = ($x | $y) # Bitwi se OR

@bits = ($x N $y) # Bitw se XOR

@bits = ($x & $y) # Bitwi se AND

@shifted = ($var >> 2) # Bitwi se shift right

@ back = ($var << 2) # Bitwise shift left

These operators are precisely those found in the C programming language.

Examples

The following script uses the operators in the last two sections to take a list of fileswith agiven file
extension (say * . doc’) and changeit for another (say * . t ex’). Thisisapartial solution to the limitation
of not being able to do multiple renames in shell.

#!/bin/csh -f

HERHHHHH BT H R
#

Change file extension for nultiple files

#

HERHHHHH B HH T H T R R

if ($#argv < 2) then
echo Syntax: chext ol dpattern newextension
echo "e.g: chext *.doc tex "

exit O
endi f
nkdi r /tnp/chext. $user # Make a scratch area
set newext ="$ar gv[$#argv]" # Last arg is new ext

set ol dext="%argv[1]:e"

echo "O d extension was (%ol dext)""
echo "New extensi on ($newext) -- okay? (y/n)"

switch($<)

case y:

br eaksw
def aul t:
echo "Not hi ng done."
exit O
endsw

HHHHHHHBHHH B HH B HH B HH R B H R R R R R R R R R R SRR RS

Renpove the last file extension fromfiles

BHBHBHEHBHHHH B BHBHBH B H B H B R AR H R R R R R
i =0

foreach file ($argv)

i ++
if ($i == $#argv) break
cp $file /tnp/chext.$user/S$file:r # tenmporary store
end

BHBHBHBHBH R BB B HBH BB H B R R R AR R R
Add .newext file extension to files
HHHHHHHBHHH B H R HH B HH R H R BB H R R RHHH R

set array = (‘Is /tnp/chext. $user*)
foreach file ($array)

if (-f $file.$newext) then
echo destination file $file.$newext exists. No action taken
conti nue

endi f

cp /tnp/chext. $user/$file $file. $newnext
rm $file. $ol dext

end

rm-r /tnp/chext. $user

Here is another example to try to decipher. Use the manual pages to find out about * awk’ . This script
can be written much more easily in Perl or C, aswe shall see in the next chapters. It isaso trivially
implemented as a script in the system administration language cfengine.

#!/ bin/csh -f

HH R R R R R R R R R R R R R R R R R HHHH T R R R R
#

KILL all processes owned by $argv[1l] with PID > $argv][2]
#

HH R R R R R R R R R R R R R R R R R HHHH T R R R R

if ("*whoam*'" != "root") then
echo Perm ssion denied
exit O

endi f

if ($#argv < 1 || S$#argv > 2) then

echo Usage: KILL usernane | owest-pid

exit O

endi f

if ($argv[1l] == "root") then
echo No! Too dangerous -- systemw |l crash
exit O

endi f

HERHHHHH TR
Kill everything

HARHHHHH TR H T H S H T H R
if ($#argv == 1) then

set killarray = (‘ps aux | awk "{ if ($1 == user) \
{printf "% ",$2}}’ user=$argv[1]"‘)

foreach process ($killarray)

[l -1 $process
kill -15 $process > /dev/ nul
Il

ki -9 $process > /dev/nul
if (""kill -9 $process | egrep -e 'No such process’*" == "") then
echo "Warning - $process would not die - try again"
endi f
end

BHBHBHBHBH R R R R R R R
Start froma certain PID
BHBHBHBEHBH R HHBHBHBHBHBH B H B R AR R R

else if ($#argv == 2) then

set killarray = (‘ps aux | awk "{ if ($1 == user && $2 > uid) \
{printf "% ",$2}}’ wuser=$argv[1] uid=S$argv[2]‘)

foreach process ($killarray)
kill -1 $process > /dev/nul
kill -15 $process
sleep 2
kill -9 $process > /dev/nul
if (""kill -9 $process | egrep -e 'No such process’ " == "") then
echo "Warning - $process would not die - try again"
endi f
end

endi f

This program would be better written in C or Perl.

Summary: Limitations of shell programming

To summarize the last two long and oppressive chapters we shall take a step back from the details and
look at what we have achieved.

The idea behind the shell isto provide a user interface, with access to the system’ sfacilities at asimple
level. In the 70’ s user interfaces were not designed to be user-friendly. The UNIX shell is not
particularly use friendly, but it is very powerful. Perhaps it would have been enough to provide only
commands to allow users to write C programs. Since all of the system functions are available from C,
that would certainly allow everyone to do what anything that UNIX can do. But shell programming is
much more immediate than C. It is an environment of frequently used tools. Also for quick
programming solutions: C is a compiled language, whereas the shell is an interpreter. A quick shell
program can solve many problemsin no time at al, without having to compile anything.

Shell programming is only useful for *quick and easy’ programs. To use it for anything seriousis an
abuse. Programming difficult things in shell is clumsy, and it is difficult to get returned-information
(like error messages) back in auseful form. Besides, shell scripts are slow compared to real programs
since they involve starting a new program for each new command.

These difficulties are solved partly by Perl, which we shall consider next -- but in the final analysis, real
programs of substance need to be written in C. Contrary to popular belief, thisis not more difficult than
programming in the shell -- in fact, many things are much simpler, because all of the shell commands
originated as C functions. The shell is an extralayer of the UNIX onion which we have to battle our way
through to get where we're going.

Sometimesiit is helpful to be shielded from low level details -- sometimesit is ahindrance. In the
remaining chapters we shall consider more involved programming needs.

Per |

So far, we have been looking at shell programming for performing fairly simple tasks. Now let’s extend
the idea of shell programming to cover more complex tasks like systems programming and network
communications. Perl is alanguage which was designed to retain the immediateness of shell languages,
but at the same time capture some of the flexibility of C. Perl isan acronym for Practical extraction and
report language. In this chapter, we shall not aim to teach Perl from scratch -- the best way to learnitis
to useit! Rather we shall concentrate on demonstrating some principles.

Sed and awk, cut and paste

One of the reasons for using Perl isthat it is extremely good at textfile handling--one of the most
important things for UNIX users, and particularly useful in connection with CGI script processing on the
World Wide Web. It has simple built-in constructs for searching and replacing text, storing information
in arrays and retrieving them in sorted form. All of the these things have previously been possible using
the UNIX shell commands

sed
awnk
cut
paste

but these commands were designed to work primarily in the Bourne shell and are abit * awk’ ward to use
for al but the simplest applications.

‘sed’

nav\ky

‘cut’

isastream editor. It takes command line instructions, reads input from the stream st di n and
produces output on stdout according to those instructions. * sed” works line by line from the start
of atextfile.

is a pattern matching and processing language. It takes a textfile and reads it line by line, matching
regular expressions and acting on them. * awk’ is powerful enough to have conditional instructions
like*if..then..else’ andusesC's* printf’ construction for output.

Takes aline of input and cuts it into fields, separated by some character. For instance, a normal
line of text isastring of words separated by spaces. Each word is a different field. * cut’ can be
used, for instance, to pick out the third column in atable. Any character can be specified as the
separator.

‘ paste’

isthe logical opposite of cut. It concatenates @math{ n} files, and makes each linein thefileinto a
column of atable. For instance, ‘ paste one two three’ would make atablein which the first
column consisted of al linesin* one’ , the second of al linesin‘ two’ and the third of all linesin
“three’ . If onefileislonger than the others, then some columns have blank spaces.

Perl unifies all of these operations and more. It also makes them much simpler.

Program structure

To summarize Perl, we need to know about the structure of a Perl program, the conditional constructsit
has, itsloops and its variables. In the latest versions of Perl (Perl 5), you can write object oriented
programs of great complexity. We shall not go into this depth, for the simple reason that Perl’ s strength
isnot as ageneral programming language but as a specialized language for textfile handling. The syntax
of Perl isin many ways like the C programming language, but there are important differences.

Variables do not have types. They are interpreted in a context sensitive way. The operators which
acts upon variables determine whether avariable is to be considered a string or as an integer etc.
Although there are no types, Perl defines arrays of different kinds. There are three different kinds
of array, labelled by the symbols‘ $' ,* @ and* % .

Perl keeps a number of standard variables with special namese.g.* $_ @RGv and‘ YENV .
Specia attention should be paid to these. They are very important!

The shell reverse apostrophe notation * command* can be used to execute UNIX programs and get
the result into a Perl variable.

Hereisasimple ‘structured hello world” program in Perl. Notice that subroutines are called using the
* & symbol. Thereis no special way of marking the main program -- it issimply that part of the
program which starts at line 1.

#!/1 ocal / bi n/ perl

#

Comment s

#

&Hel I o();
&orl d;

end of nmin
sub Hello

{
print "Hello";
}

sub World

{
print "World\n";
}

The parentheses on subroutines are optional, if there are no parameters passed. Notice that each line
must end in a semi-colon.

Perl| variables

Scalar variables

In Perl, variables do not have to be declared before they are used. Whenever you use a new symbol, Perl
automatically adds the symbol to its symbol table and initializes the variable to the empty string.

It isimportant to understand that there is no practical difference between zero and the empty string in
perl -- except in the way that you, the user, choose to use it. Perl makes no distinction between strings
and integers or any other types of data-- except when it wants to interpret them. For instance, to
compare two variables as strings is not the same as comparing them as integers, even if the string
contains atextual representation of an integer. Take alook at the following program.

#!/1 ocal / bi n/ perl

ﬁ Not hi ng!

#

print "Nothing == $not hi ng\ n";

print "Nothing is zero!\n" if ($nothing == 0);
if §$nothi ng eq "")

print STDERR "Nothing is really nothing!\n";
}

$not hing = 0;

print "Nothing is now $not hi ng\ n";
The output from this program is

Not hi ng ==

Not hing is zerol!

Not hing is really nothing!
Not hing is now O

There are several important things to note here. First of al, we never declare the variable ‘ nothing’.
When we try to write its value, perl creates the name and associatesa NULL vaueto it i.e. the empty
string. Thereisno error. Perl knows it is avariable because of the* $' symbol in front of it. All scalar
variables are identified by using the dollar symbol.

Next, we compare the value of * $not hi ng’ to theinteger ‘O’ using the integer comparison symbol * ==',
and then we compare it to the empty string using the string comparison symbol ‘ eq’ . Both tests are true!
That means that the empty string is interpreted as having a numerical value of zero. In fact any string
which does not form avalid integer number has a numerical value of zero.

Finally we can set * $not hi ng’ explicitly to avalid integer string zero, which would now pass the first
test, but fail the second.

As extra spice, this program also demonstrates two different ways of writing the* i f* command in perl.

The default scalar variable.

The special variable* $_’ isused for many purposesin Perl. It is used as a buffer to contain the result of
the last operation, the last line read in from afile etc. It is so genera that many functions which act on
scalar variables work by default on“ $_’ if no other argument is specified. For example,

print;
isthe same as
print $_;

Array (vector) variables

The complement of scalar variablesis arrays. An array, in Perl isidentified by the: @ symbol and, like
scalar variables, is allocated and initialized dynamically.

@rray[0]
@rrayl[2]

print "@rray[0] @rray[l] @rray[2]";

"This little piggy went to market";
"This little piggy stayed at honme";

The index of an array is always understood to be a number, not a string, so if you use a non-numerical
string to refer to an array element, you will always get the zeroth element, since a non-numerical string
has an integer value of zero.

An important array which every program definesis
@\RGV

Thisisthe argument vector array, and contains the commands line arguments by analogy with the
C-shell variable* sargv[]’ .

Given an array, we can find the last element by using the* $#' operator. For example,
$l ast _el ement = $ARGV] $#ARGV] ;

Notice that each element in an array isa scalar variable. The* $# cannot be interpreted directly asthe
number of elementsin the array, asit can in the C-shell. Y ou should experiment with the value of this
quantity -- it often necessary to add 1 or 2 to its value in order to get the behaviour oneis used to in the
C-shell.

Perl does not support multiple-dimension arrays directly, but it is possible to simulate them yourself.
(See the Perl book.)

Special array commands

The* shi ft’ command acts on arrays and returns and removes the first element of the array.
Afterwards, all of the elements are shifted down one place. So one way to read the elements of an array
inorder isto repeatedly call * shift’ .

$next _el enent =shi ft (@warray);

Note that, if the array argument is omitted, then shi ft’ workson* @RGv by default.

Another useful functionis® split’, which takesastring and turnsit into an array of strings. “ split’
works by choosing a character (usually a space) to delimit the array elements, so a string containing a
sentence separated by spaces would be turned into an array of words. The syntax is

@rray = split; # works with spaces on $_
@rray split(pattern,string); # Breaks on pattern
($v1,$v2...) = split(pattern,string); # Name array elenents with scalars

In the first of these cases, it is assumed that the variable* $_’ isto be split on whitespace characters. In
the second case, we decide on what character the split is to take place and on what string the function is
to act. For instance

@ew array = split(":","nanme: passwd: ui d: gi d: gcos: hone: shel | ") ;
Theresult isa seven element array called* @ew array’ , where* $new_array[0]’ iS‘ nane’ €tc.

In the final example, the left hand side shows that we wish to capture elements of the array in anamed
set of scalar variables. If the number of variables on the lefthand side is fewer than the number of strings
which are generated on the right hand side, they are discarded. If the number on the left hand sideis
greater, then the remainder variables are empty.

Associated arrays

One of the very nice features of Perl isthe ability to use one string as an index to another string in an
array. For example, we can make a short encyclopedia of zoo animals by constructing an associative
array in which the keys (or indices) of the array are the names of animals, and the contents of the array
are the information about them.

$ani mal s{"Pengui n"} = "A suspicious animal, good with cheese crackers...";
$ani mal s{"dog"} = "Plays stupid, but could be a cover...";

if ($index eq "fish")

$ani mal s{$i ndex} = "Often cones in square boxes. Very cold.";

An entire associated array iswritten * %ar r ay’ , while the elementsare* $ar r ay{ $key} ' .

Perl provides a special associative array for every program called * €NV . This contains the environment
variables defined in the parent shell which is running the Perl program. For example

print "Username = $ENV{"USER'}\n";

$ld = "LD LI BRARY_PATH';
print "The link editor path is $ENV{$l d}\n";

To get the current path into an ordinary array, one could write,
@ath_array= split(":", $ENV{"PATH'});
Array example program

Here is an example which prints out alist of filesin a specified directory, in order of their UNIX
protection bits. The least protected file files come first.

#!/1 ocal / bi n/ perl

H*

Denonstration of arrays and associ ated arrays.
Print out alist of files, sorted by protection
so that the | east secure files come first.

e.Jg. arrays <list of words>
arrays *.C

#
#
#
#
#
#
#
HURHHHHH AR
print "You typed in ", $#ARGV+1," argunents to comuand\n"

if ($#ARGV < 1)

{

print "That's not enough to do anything with!\n";

}
while ($next_arg = shift(@RGY))

{

if (' (-f $next_arg || -d $next_arg))
{
print "No such file: $next_arg\n";
next;
}

($dev, $i no, $node, $nl i nk, $ui d, $gi d, $rdev, $si ze) = stat ($next _arg);
$oct al nbde = sprintf("%", $node & 0777);

$assoc_array{$oct al rode} .= $next_arg.
size (".%size."), node (".$octal node.")\n";
}

print "In order: LEAST secure first!\n\n";

foreach $i (reverse sort keys(%assoc_array))

print $assoc_array{$i};

}

L oops and conditionals

Here are some of the most commonly used decision-making constructions and loopsin Perl. The
following is not a comprehensive list -- for that, you will have to look in the Perl bible: Programming
Perl, by Larry Wall and Randal Schwartz. The basic pattern follows the C programming language quite
closaly. Inthe case of the* f or’ loop, Perl has both the C-like version, called * for’ and a’ f or each’
command which is like the C-shell implementation.
i f (expression)

{

bl ock;
el se

{
bl ock;
}

command i f (expression);
unl ess (expression)

{

bl ock;

}

el se

{
bl ock;
}

whil e (expression)

bl ock;
}

do
{
bl ock;
whi | e (expression);
for (initializer; expression; statenent)

{
bl ock;
}

foreach variabl e(array)

{

bl ock;

In all cases, the* el se’ clauses may be omitted.

Strangely, perl does not havea* swi t ch’ statement, but the Perl book describes how to make one using
the features provided.

Thefor loop
Thefor loop is exactly likethat in C or C++ and is used to iterate over a numerical index, like this:

for ($i =0; $i < 10; $i++)
{

print $i, "\n";
}

The foreach loop

The foreach loop islikeits counterpart in the C shell. It is used for reading elements one by one from a
regular array. For example,

foreach $i (@rray)
{
print $i, "\n";
}

Iterating over elementsin arrays

One of themain usesfor * for’ typeloopsisto iterate over successive valuesin an array. This can be
done in two ways which show the essential difference between f or and f or each.

If we want to fetch each valuein an array in turn, without caring about numerical indices, theitis
simplest to use the f or each loop.

@rray = split(" ","abcdef g");
foreach $var (@rray)

{

print $var, "\n";

}

This example prints each letter on a separate line. If, on the other hand, we are interested in the index,
for the purposes of some calculation, then thef or loop is preferable.

@rray = split(" ","abcdef g");

for ($i = 0; $i <= $#array; $i++)

{
print $array[$i], "\n";
}

Notice that, unlike the for-loop idiom in C/C++, thelimitis® $i <= $#array’,i.e. ‘lessthan or equal
to’ rather than ‘lessthan’. Thisis becausethe $# operator does not return the number of elementsin
the array but rather the last element.

Associated arrays are dlightly different, since they do not use numerical keys. Instead they use a set of
strings, like in adatabase, so that you can use one string to look up another. In order to iterate over the
valuesin the array we need to get alist of these strings. The keys command is used for this.

$assoc{"mark"} = "cool"
$assoc{"G\NU'} = "brave";
$assoc{"zebra"} = "stripy";

foreach $var (keys %assoc)

print "$var , $assoc{$var} \n";

}

The order of the keysis not defined in the above example, but you can choose to sort them
alphabetically by writing

foreach $var (sort keys %assoc)

instead.

Iterating over linesin afile

Since Perl is about file handling we are very interested in reading files. Unlike C and C++, perl likesto
read filesline by line. The angle brackets are used for this, See section Filesin perl. Assuming that we
have somefile handle <fi | e>' , for instance* <STDI N> , we can always read the file line by line with a
while-loop like this.

while ($line = <file>)
{
print $line;
}

Note that $I i ne includes the end of line character on the end of each line. If you want to remove it, you
should add a‘ chop’ command:

while ($line = <file>)

chop $li ne;
print "line = ($line)\n";

}

Filesin perl

Opening filesis straightforward in Perl. Files must be opened and closed using -- wait for it -- the
commands* open’ and‘ cl ose’ . You should be careful to close files after you have finished with them
-- especialy if you are writing to afile. Files are buffered and often large parts of afile are not actually
written until the cl ose’ command is received.

Threefiles are, of course, always open for every program, namely * STDI N, * STDOUT’ and * STDERR .

Formally, to open afile, we must obtain afile descriptor or file handle. Thisisdone using ‘ open’ ;
open (file_descrip,"Filenanme");

The angular brackets* <. . >’ are used to read from the file. For example,

$line = <file_descrip>;

reads one line from the file associated with * fi |l e_descrip’.

Let’slook at some examples of filing opening. Here is how we can implement UNIX’s* cut’ and
‘ past e’ commandsin perl:

#!/1 ocal / bi n/ perl
z Cut in perl
#
Cut second col um
while (<>)
{@ut_array = split;
][)ri nt "@ut_array[1]\n";

Thisisthe ssmplest way to open afile. The empty file descriptor * <> tells perl to take the argument of
the command as a filename and open that file for reading. Thisisreally short for * whi | e($_=<STDI N>)’
with the standard input redirected to the named file.

The* past e’ program can be written as follows:

#!/1 ocal / bi n/ perl

#

Paste in perl

#

Two files only, syntax : paste file 1file2
#

open (filel, "@RGV[O]")
open (file2,"@RGV1]")

"Can't open @\RGV[O0]\n";

|| die
|| die "Can't open @RGV[1]\n";

while (($linel = <filel>) || ($line2 = <file2>))

{
chop $linel;
chop $line2;

print "$linel $line2\ n"; # tab character between

}

Here we see more formally how to read from two separate files at the same time. Notice that, by putting
the read commands into the test-expression for the* whi | e’ loop, we are using the fact that * <. . >’
returns a non-zero (true) value unless we have reached the end of thefile.

To write and append to files, we use the shell redirection symbolsinside the* open’ command.

open(fd,"> filenane"); # open file for witing
open(fd,">> fil ename"); # open file for appending

We can also open a pipe from an arbitrary UNIX command and receive the output of that command as
our input:

open (fd,"/bin/ps aux | ");
A simpleperl program

Let us now write the simplest perl program which illustrates the way in which perl can save time. We
shall writeit in three different ways to show what the short cuts mean. Let usimplement the* cat’
command, which copiesfilesto the standard output. The simplest way to write thisis perl isthe
following:

#!/1 ocal / bi n/ perl
while (<>)
{

print;

Here we have made heavy use of the many default assumptions which perl makes. The programis
simple, but difficult to understand for novices. First of all we use the default file handle <> which means,
take one line of input from a default file. This object returns true aslong as it has not reached the end of
thefile, so thisloop continuesto read lines until it reaches the end of file. The default file is standard
input, unless this script is invoked with a command line argument, in which case the argument is treated
as afilename and perl attempts to open the argument-filename for reading. The pri nt statement has no
argument telling it what to print, but perl takes thisto mean: print the default variable* $_' .

We can therefore write this more explicitly as follows:
#!/1 ocal / bi n/ perl

open (HANDLE, "$ARGV[1]");
whi | e (<HANDLE>)

print $_;
}

Here we have simply filled in the assumptions explicitly. The command * <HANDLE>' now reads asingle
line from the named file-handle into the default variable® $_’ . To make this program more general, we
can eliminate the defaults entirely.

#!/1 ocal / bi n/ perl
open (HANDLE, "$ARGV[1]");
whil e ($l i ne=<HANDLE>)

print $line;
}

Be careful to distinguish between the comparison operator for integers* ==" and the corresponding
operator for strings* eq’ . These do not work in each other’ s places so if you get the wrong comparison
operator your program might not work and it is quite difficult to find the error.

chop

The command ‘ chop’ cuts off the last character of a string. Thisis useful for removing newline
characters when reading files etc. The syntax is

chop; # chop $_;

chop $scal ar; # renove | ast character in $scal ar

Per| subroutines

Subroutines are indicated, asin the example above, by the ampersand * & symbol. When parameters are
passed to a Perl subroutine, they are handed over asan array called* @’ . Which is analogous to the
*$_ ' variable. Here isasimple example:

#!/1 ocal / bi n/ perl

$a="silver";
$b="gol d";

&Pri nt Args($a, $b) ;
end of nmin

sub PrintArgs

E$I ocal _a, $local _b) = @;

print "$local _a, $local_b\n";

die- exit on error

When a program has to quit and give amessage, the di e’ command is normally used. If called without
an argument, Perl generates its own message including a line number at which the error occurred. To
include your own message, you write

die "My nessage....";

If the string isterminated with a* \ n’ newline character, the line number of the error is not printed,
otherwise Perl appends the line number to your string.

When opening files, it is common to see the syntax:
open (filehandle,"Filenane") || die "Can’t open...";

Thelogical * orR symbol isused, because* open’ returnstrueif all goes well, in which case the right
hand side is never evaluated. If * open’ isfalse, then dieis executed. You can decide for yourself
whether or not you think thisis good programming style -- we mention it here because it is common
practice.

Thestat () idiom

The UNIX library function st at () isused to find out information about a given file. Thisfunction is
available both in C and in Perl. In perl, it returns an array of values. Usually we are interested in
knowing the access permissions of afile. st at () iscalled using the syntax

@rray = stat ("filename");
or alternatively, using a named array
($devi ce, $i node, $node) = stat("fil ename");

The value returned in the mode variable is a bit-pattern, See section Protection bits. The most useful way
of treating these bit patternsis to use octal numbers to interpret their meaning.

To find out whether afileis readable or writable to a group of users, we use a programming idiom
which is very common for dealing with bit patterns: first we define a mask which zeroes out all of the
bits in the mode string except those which we are specifically interested in. Thisis done by defining a
mask value in which the bits we want are set to 1 and all others are set to zero. Then we AND the mask
with the mode string. If the result is different from zero then we know that all of the bits were also set in
the mode string. Asin C, the bitwise AND operator in perl iscalled* & .

For example, to test whether afileiswritable to other usersin the same group as the file, we would

write the following.

$mask = 020; # Leadi ng 0 neans octal nunber
($devi ce, $i node, $node) = stat("file");
if ($node & $mask)

E)rint "File is witable by the group\n";

Here the 2 in the second octal number means "write", the fact that it is the second octal number from the
right meansthat it refersto "group”. Thus the result of theif-test isonly trueif that particular bit istrue.
We shall see thisidiom in action below.

Perl example programs

Thepasswd program and ‘ crypt ()’ function

Hereis a simple implementation of the UNIX * passwd’ program in Perl.

#!/1 ocal / bi n/ perl

#

A perl version of the passwd program

#

Note - the real passwd program needs to be nuch nore

secure than this one. This is just to denonstrate the

use of the crypt() function.

#

HHRHHH B R AT H SRR HTH R R R R R R AR
print "Changing passwd for $ENV{' USER } on $ENV{’' HOST }\n";

system’'stty’,’-echo’;
print "Ad passwd:

$ol dpwd = <STDI N>;
chop $ol dpwd;

($nane, $coded_pwd, $ui d, $gi d, $x, $y, $z, $gcos, $hone, $shel |)
= get pwnam($ENV{ " USER"}) ;

if (crypt($ol dpwd, $coded_pwd) ne $coded_pwd)
print "\ nPasswd incorrect\n";
exit (1);
$ol dpwd = ""; # Destroy the evidence!
print "\ nNew passwd:
$newpwd = <STDI N>;

print "\nRepeat new passwd:

$rnewpwd = <STDI N>

chop $newpwd;
chop $rnewpwd;

if ($newpwd ne $r newpwd)
print "\'n Incorrectly typed. Password unchanged.\n";
exit (1);
$salt = rand();
$new coded_pwd = crypt ($newpwd, $sal t);
print "\ n\n$nane: $new_coded_pwd: $ui d: $gi d: $gcos: $hone: $shel [\ n";

Examplewith ‘ fork()’

The following example usesthe* f or k’ function to start a daemon which goes into the background and
watches the system to which processis using the greatest amount of CPU time each minute. A pipeis
opened from the BSD * ps’ command.

#!/1 ocal / bi n/ per|
A fork() deno. This programwll sit in the background and
make a |list of the process which uses the maxi mum CPU aver age

#
#
#
at 1 minute intervals. On a quiet BSD | i ke systemthis wll
normal |y be the swapper (long term schedul er).

#

$true = 1;
$logfile="perl.cpu.logfile";
print "Max CPU | ogfile, forking daenon...\n";
if (fork())
exit(0);
}

whi

le ($true)

{
open (logfile,">> $logfile")

|| die "Can’t open $logfile\n";
open (ps,"/bin/ps aux |") || di

e
e "Couldn’t open a pipe fromps !!\n";
$skip first_line = <ps>;

$max_process = <ps>;

cl ose(ps);

print |logfile $max_process;

close(logfile);

sl eep 60

($a, $b, $c, $d, $e, $f, $g, $si ze) = stat($logfile);

if ($size > 500)

{
print STDERR "Log file getting big, better quit!\n";

exit(0);
}

Example reading databases

Here is an example program with several of the above features demonstrated simultaneously. This
following program lists all users who have home directories on the current host. If the home area has
sub-directories, corresponding to groups, then thisis specified on the command line. The word * home'
causes the program to print out the home directories of the users.

#!/1 ocal / bi n/ perl
HHRHHH BB R HH SRR HHH R TR R R R TR T R R TR R R T R R R R R R

allusers - list all users on naned host, i.e. al
users who can log into this nmachine

Syntax: allusers group
al l users nygroup hone
al l users nyhost group hone

NOTE : This command returns only users who are regi stered on
the current host. It will not find users which cannot
be validated in the passwd file, or in the named groups
in NIS. It assunes that the users belonging to
different groups are saved in subdirectories of
/ hone/ host name.

HHHEHFFEHFHHFHHEHFFEHFRHR

HHHHHH AR R R R R R R R R R R R R R R R R R
&ar gunment s() ;
die "\n" if (! -d "/honme/$server");
$disks = ‘/bin/ls -d /honme/ $server/ $group‘;
foreach $hone (split(/\s/, $disks))
gpen (LS, "cd $hone; /bin/ls $home |") || die "allusers: Pipe didn't open";
whil e (<LS>)
éexists

($user) spiit;
($exi sts, $pw, $ui d, $gi d, $qu, $cm $gcos, $di r) =get pwnan{ $user) ;

if ($exists)
{
if ($printhones)

{
print "$dir\n";
}

el se
{
print "$user\n";
}

}

}

cl ose(LS);
}

HHHHHHHHH R AR H R R R R R R R R R R R R R
sub argunents
$printhomes = 0;
$group = "*";
$server = ‘/bin/hostnane';
chop $server;
foreach $arg (GARGV)
{
if (substr($arg,0,1) eq "u")
{
$group = $arg;
next ;

}
if ($arg eq "home")
$printhomes = 1;

next;

}

$server= $arg; #default is to interpret as a server.

}
}

Pattern matching and extraction

Perl has regular expression operators for identifying patterns. The operator
/regul ar expression/

returns true of false depending on whether the regular expression matches the contents of $_. For
example

if (/perll)

print "String contains perl as a substring"

}
if (/(Sat| Sun)day/)

print "Wekend day....";
}

The effect israther like the gr ep command. To use this operator on other variables you would write:

$vari abl e =~ fegexp/

Regular expression can contain parenthetic sub-expressions, e.g.

if (/(Sat|Sun)day (..)th (.*)/)

{

$first = $1;
$second = $2;
$third = $3;
}

in which case perl places the objects matched by such sub-expressionsin the variables $1, $2 etc.

Sear ching and replacing text

The* sed’ -like function for replacing al occurances of astring is easily implemented in Perl using
whi | e (<i nput>)

s/ $search/ $repl ace/ g;
print output;

}

This exampl e replaces the string inside the default variable. To replace in a general variable we use the
operator * =~ with syntax:

$vari abl e =~ sbearch/repl ace/

Hereis an example of some of this operator in use. The following is a program which searches and
replaces astring in severa files. Thisis useful program indeed for making a change globally in a group
of files! The program iscalled ‘file-replace’.

#! /1 ocal / bi n/ per|

HERHHHHH P H T R
#

Look through files for findstring and change to newstring
#in all files.

#

HHHHHEH AR AR R R R R R R R R R R R R R R

#
Define a tenporary file and check it doesn’'t exist
#

$outputfile = "tnmpmarkfind";
unl i nk $out putfile;

#

Check command line for list of files
#

if ($#ARGV < 0)

die "Syntax: file-replace [file list]\n";

}

print "Enter the string you want to find (Don’'t use quotes):\n\n:"

$f i ndst ri ng=<STDI N>;
chop $findstring;

print "Enter the string you want to replace with (Don't
$repl acest ri ng=<STDI N>
chop $repl acestring;

#

print "\ nFind: $findstring\n";
print "Replace: $replacestring\n";
print "\nConfirm (y/n) ";

$y = <STDI N>;

chop $y;

i f E $y ne "y")

die "Aborted -- nothing done.\n";
}

el se

{
print "Use CTRL-C to interrupt...\n";

}
#

Now shift default array @GARGV to get argunments 1 by 1
#

while ($file = shift)

{
if ($file eq "file-replace")

print "Findmark will not operate on itself!";
next ;
}

#

Save existing node of file for later

#

($dev, $i no, $node) =stat ($file);

open (INPUT,$file) || warn "Couldn’t open $file\n";

use quotes):\n\n:";

open (QUTPUT, "> $outputfile") || warn "Can’t open tnp";

$notify = 1;
whi | e (<I NPUT>)
if (/$findstring/ && $notify)
éri nt "Fixing $file...\n";
$notify = 0;

}
s/ $f i ndstri ng/ $repl acestring/g;
print OUTPUT;
}

cl ose (QUTPUT);
#

If nothing went wong (if outfile not enpty)
move tenp file to original and reset the

file node saved above

#

if (! -z $outputfile)

rename ($outputfile, $file);
chnod ($node, $file);
}

el se

{
print "Warning: file empty!\n.";

}
}

Similarly we can search for lines containing a string. Here is the grep program written in perl

#!/1 ocal / bi n/ perl
#
grep as a perl program
#
Check argunents etc
while (<>)
{
print if (/$ARGV[1]/);
}

The operator * / sear ch-string/’ returnstrueif the search string is a substring of the default variable
$_. To search an arbitrary string, we write

if (teststring =~ search-string/);

Hereteststring is searched for occurrances of search-string and the result istrue if oneis found.

In perl you can use regular expressions to search for text patterns. Note however that, like all regular
expression dialects, perl has its own conventions. For example the dollar sign does not mean "match the
end of line" in perl, instead one usesthe \ n’ symbol. Here is an example program which illustrates the
use of regular expressionsin perl:

#! /1 ocal / bi n/ per|

z Test regul ar expressions in perl

z NB - careful with \ $ * synbols etc. Use " quotes since
z the shell interprets these!

open (FILE, "regex_test");

$regex = $ARGV[$#ARGV] ;

print "Looking for $ARGV[$#ARGV] in file...\n";

while (<FILE>)

ff (/ $regex/)
{

print;
}
}
#
Test like this:
#
regex '.*’ - prints every line (matches everything)
regex .’ - all lines except those containing only blanks
(. doesn’t match ws/white-space)
regex '[a-z]’ - matches any line containing | owercase
regex '["a-z]’ - matches any line containg sonething which is
not | owercase a-z
regex '[A-Za-z]' - matches any line containing letters of any kind
regex '[0-9]’ - match any |ine containing nunbers
regex '#.*’ - line containing a hash synbol followed by anything
regex 'N#* - line starting with hash synmbol (first char)
regex ';\n’ - match line ending in a sem -col on
#

Try running this program with the test data on the following file which iscalled ‘ r egex_t est’ inthe
example program.

A line beginning with a hash synbol
JUST UPPERCASE LETTERS

just |owercase letters

Letters and nunbers 123456

123456

Aline ending with a sem -col on;

Line with a coment # COMVENT. .

Example: convert mail to WWW pages

Here is an example program which you could use to automatically turn a mail message of the form

From Newswire
To: Mail 2ht
Subj ect: Not hi ng happened

On the 13th February at kl. 09:30 nothing happened. No footprints
were found leading to the scene of a terrible rmurder, no evidence
of a struggle etc etc

into an html-file for the world wide web. The program works by extracting the message body and
subject from the mail and writing html-commands around these to make aweb page. The subject field of

