
The unix programming environment

Edition 2.2, August 2001

Mark Burgess
Centre of Science and Technology
Faculty of Engineering, Oslo College

Foreword
This is a revised version of the UNIX compendium which is available in printed form and online via the
WWW and info hypertext readers. It forms the basis for a one or two semester course in UNIX. The
most up-to-date version of this manual can be found at

http://www.iu.hio.no/~mark/unix/unix.html.

It is a reference guide which contains enough to help you to find what you need from other sources. It is
not (and probably can never be) a complete and self-contained work. Certain topics are covered in more
detail than others. Some topics are included for future reference and are not intended to be part of an
introductory course, but will probably be useful later. The chapter on X11 programming has been
deleted for the time being.

Comments to Mark.Burgess@iu.hio.no Oslo, August 2001

Welcome
If you are coming to unix for the first time, from a Windows or MacIntosh environment, be prepared for
a rather different culture than the one you are used to. UNIX is not about ‘products’ and off-the-shelf
software, it is about open standards, free software and the ability to change just about everything.

What you personally might perceive as user friendliness in other systems, others might perceive as
annoying time wasting. UNIX offers you just about every level of friendliness and unfriendliness,
if you choose your programs right. In this book, we take the programmer’s point of view.
UNIX is about functionality, not about simplicity. Be prepared for powerful, not necessarily
‘simple’ solutions.

You should approach UNIX the way you should approach any new system: with an open mind. The
journey begins...

Overview
In this manual the word "host" is used to refer to a single computer system -- i.e. a single machine which

has a name termed its "hostname".

What is unix?

UNIX is one of the most important operating system in use today, perhaps even the most important.
Since its invention around the beginning of the 1970s it has been an object of continual research and
development. UNIX is not popular because it is the best operating system one could imagine, but
because it is an extremely flexible system which is easy to extend and modify. It is an ideal platform for
developing new ideas.

Much of the success of UNIX may be attributed to the rapid pace of its development (a development to
which all of its users have been able to contribute) its efficiency at running programs and the many
powerful tools which have been written for it over the years, such as the C programming language,
make, shell, lex and yacc and many others. UNIX was written by programmers for programmers. It is
popular in situations where a lot of computing power is required and for database applications, where
timesharing is critical. In contrast to some operating systems, UNIX performs equally well on large
scale computers (with many processors) and small computers which fit in your suitcase!

All of the basic mechanisms required of a multi-user operating system are present in UNIX. During the
last few years it has become ever more popular and has formed the basis of newer, though less mature,
systems like NT. One reason for this that now computers have now become powerful enough to run
UNIX effectively. UNIX places burdens on the resources of a computer, since it expects to be able to
run potentially many programs simultaneously.

If you are coming to UNIX from Windows or DOS you may well be used to using applications software
or helpful interactive utilities to solve every problem. UNIX is not usually like this: the operating system
has much greater functionality and provides the possibilities for making your own, so it is less common
to find applications software which implements the same things. In UNIX you are usually asked to learn
a language in order to express exactly what you want. This is much more powerful than menu systems,
but it is harder to learn

UNIX has long been in the hands of academics who are used to making their own applications or writing
their own programs, whereas as the Windows world has been driven by businesses who are willing to
spend money on software. For that reason commercial UNIX software is often very expensive and
therefore not available at this college. On the other hand, the flexibility of UNIX means that it is easy to
write programs and it is possible to fetch gigabytes of free software from the Internet to suit your needs.
It may not look exactly like what you are used to on your PC, but then you have to remember that UNIX
users are a different kind of animal altogether

Like all operating systems, UNIX has many faults. The biggest problem for any operating system is that
it evolves without being redesigned. Operating systems evolve as more and more patches and hacks are
applied to solve day-to-day problems. The result is either a mess which works somehow (like UNIX) or
a blank refusal to change (like DOS or the MacIntosh, prior to MacOS X, which is based on BSD
UNIX). From a practical perspective, UNIX is important and successful because it is a multi-process
system which

has an enormous functionality built in, and the capacity to adapt itself to changing technologies,
is relatively portable,

is good at sharing resources (but not so good at security),
has tools which are each developed to do one thing well,
allows these tools to be combined in every imaginable way, using pipes and channeling of data
streams,
incorporates networking almost trivially, because all the right mechanisms are already there for
providing services and sharing, building client-server pairs etc,.
it is very adaptable and is often used to develop new ideas because of the rich variety of tools it
possesses.

UNIX has some problems: it is old, it contains a lot of rubbish which no one ever bothered to throw
away. Although it develops quickly (at light speed compared to either DOS/Windows or MacIntosh) the
user interface has been the slowest thing to change. UNIX is not user-friendly for beginners, it is
user-friendly for advanced users: it is made for users who know about computing. It sometimes makes
simple things difficult, but above all it makes things possible!

The aim of this introduction is to

introduce the unix system basics and user interface,
develop the unix philosophy of using and combining tools,
learn how to make new tools and write software,
learn how to understand existing software.

To accomplish this task, we must first learn something about the shell language (the way in which UNIX
starts programs). Later we shall learn how to solve more complex problems using Perl and C. Each of
these is a language which can be used to put UNIX to work. We must also learn when to use which tool,
so that we do not waste time and effort. Typical uses for these different interfaces are

shell Command line interaction, making scripts which performs simple jobs such as running programs,
installing new software, simple system configuration and administration.

perl Text interpretation, text formatting, output filters, mail robots, WWW cgi (common gateway
interface) scripts in forms, password testing, simple database manipulation, simple client-server
applications.

C Nearly all of UNIX is written in C. Any program which cannot be solved quickly using shell or
perl can be written in C. One advantage is that C is a compiled language and many simple errors
can be caught at compile time.

Much of UNIX’s recent popularity has been a result of its networking abilities: UNIX is the backbone of
the Internet. No other widely available system could keep the Internet alive today. GNU/Linux is a
free/open source re-write of the UNIX operating system, which many enhancements. While GNU/Linux
is not "rocket science" to computer experts, it has distilled the essence of UNIX and placed it in the
hands of everyone. It runs on wrist watches and mainframe computers. Like it or loathe it, GNU/Linux
is probably the most important single development in computer operating systems for many years.

Once you have mastered the UNIX interface and philosophy you will find that i) the PC and MacIntosh
window environments might seem to be easy to use, but are simplistic and primitive by comparison; ii)
UNIX is far from being the perfect operating system--it has a whole different set of problems and flaws.

The operating system of the future will not be UNIX or GNU/Linux as we see it today (hopefully), nor

will is be DOS or MacIntosh, but one thing is for certain: it will owe a lot to the UNIX operating system
and will contain many of the tools and mechanisms we shall describe below.

Flavours of unix

UNIX is not a single operating system. It has branched out in many different directions since it was
introduced by AT&T. The most important ‘fork()’ in its history happened early on when the
university of Berkeley, California created the BSD (Berkeley Software Distribution), adding network
support and the C-shell.

Here are some of the most common implementations of unix.

BSD:
Berkeley, BSD

SunOS:
Sun Microsystems, BSD/sys 5

Solaris:
Sun Microsystems, Sys 5/BSD

Ultrix:
Digital Equipment Corporation, BSD

OSF 1:
Digital Equipment Corporation, BSD/sys 5

HPUX:
Hewlett-Packard, Sys 5

AIX: IBM, Sys 5 / BSD
IRIX:

Silicon Graphics, Sys 5
GNU/Linux:

GNU, BSD/Posix

How to use this reference guide

This programming guide is something between a user manual and a tutorial. The information contained
here should be sufficient to get you started with the unix system, but it is far from complete.

To use this programming guide, you will need to work through the basics from each chapter. You will
find that there is much more information here than you need straight away, so try not to be overwhelmed
by the amount of material. Use the contents and the indices at the back to find the information you need.
If you are following a one-semester UNIX course, you should probably concentrate on the following:

The remainder of this introduction
The detailed knowledge of the Bash shell
A detailed knowledge of Perl, guided by chapter 6. This chapter provides pointers on how to get
started in perl. It is not a substitute for the perl book.
A sound appreciation of chapter 8 on network programming.

The only way to learn UNIX is to sit down and try it. As with any new thing, it is a pain to get started,

but once you are started, you will probably come to agree that UNIX contains a wealth of possibilities,
perhaps more than you had ever though was possible or useful!

One of the advantages of the UNIX system is that the entire UNIX manual is available on-line. You
should get used to looking for information in the online manual pages. For instance, suppose you do not
remember how to create a new directory, you could do the following:

nexus% man -k dir

dir ls (1) - list contents of directories
dirname dirname (1) - strip non-directory suffix from file name
dirs bash (1) - bash built-in commands, see bash(1)
find find (1) - search for files in a directory hierarchy
ls ls (1) - list contents of directories
mkdir mkdir (1) - make directories
pwd pwd (1) - print name of current/working directory
rmdir rmdir (1) - remove empty directories

The ‘man -k’ command looks for a keyword in the manual and lists all the references it finds. The
command ‘apropos’ is completely equivalent to ‘man -k’. Having discovered that the command to
create a directory is ‘mkdir’ you can now look up the specific manual page on ‘mkdir’ to find out how
to use it:

man mkdir

Some but no all of the UNIX commands also have a help option which is activated with the ‘-h’ or
‘--help’ command-line option.

dax% mkdir --help
Usage: mkdir [OPTION] DIRECTORY...

 -p, --parents no error if existing, make parent directories as needed
 -m, --mode=MODE set permission mode (as in chmod), not 0777 - umask
 --help display this help and exit
 --version output version information and exit
dax%

NEVER-DO’s in UNIX

There are some things that you should never do in UNIX. Some of these will cause you more serious
problems than others. You can make your own list as you discover more.

You should NEVER EVER switch off the power on a UNIX computer unless you know what you
are doing. A UNIX machine is not like a PC running DOS. Even when you are not doing anything,
the system is working in the background. If you switch off the power, you could interrupt the
system while it is writing to the disk drive and destroy your disk. You must also remember that
several users might be using the system even though you cannot see them: they do not have to be
sitting at the machine, they could be logged in over the network. If you switch off the power, you
might ruin their valuable work.
Once you have deleted a UNIX file using rm it is impossible to recover it! Don’t use wildcards
with rm without thinking quite carefully about what you are doing! It has happened to very many
users throughout the history of UNIX that one tries to type

rm *~

but instead, by a slip of the hand, one writes

rm * ~

UNIX then takes these wildcards in turn, so that the first command is rm * which deletes all of
your files! BE CAREFUL!
Don’t ever call a program or an important file ‘core’. Many scripts go around deleting files called
‘core’ because the, when a program crashes, UNIX dumps the entire kernel image to a file called
‘core’ and these files use up a lot of disk space. If you call a file ‘core’ it might get deleted!
Don’t call test programs test. There is a UNIX command which is already called test and chances
are that when you try to run your program you will start the UNIX command instead. This can
cause a lot of confusion because the UNIX command doesn’t seem to do very much at all!

What you should know before starting

One library: several interfaces

The core of unix is the library of functions (written in C) which access the system. Everything you do on
a unix system goes through this set of functions. However, you can choose your own interface to these
library functions. UNIX has very many different interfaces to its libraries in the form of languages and
command interpreters.

You can use the functions directly in C, or you can use command programs like ‘ls’, ‘cd’ etc. These
functions just provide a simple user interface to the C calls. You can also use a variety of ‘script’
languages: C-shell, Bourne shell, Perl, Tcl, scheme. You choose the interface which solves your
problem most easily.

UNIX commands are files

With the exception of a few simple commands which are built into the command interpreter (shell), all
unix commands and programs consist of executable files. In other words, there is a separate executable
file for each command. This makes it extremely simple to add new commands to the system. One simply
makes a program with the desired name and places it in the appropriate directory.

UNIX commands live in special directories (usually called bin for binary files). The location of these
directories is recorded in a variable called path or PATH which is used by the system to search for
binaries. We shall return to this in more detail in later chapters.

Kernel and Shell

Since users cannot command the kernel directly, UNIX has a command language known as the shell.
The word shell implies a layer around the kernel. A shell is a user interface, or command interpreter.

There are two main versions of the shell, plus a number of enhancements.

/bin/sh
The Bourne Shell. The shell is most often used for writing system scripts. It is part of the original
unix system.

/bin/csh
The C-shell. This was added to unix by the Berkeley workers. The commands and syntax resemble
C code. C-shell is better suited for interactive work than the Bourne shell.

The program tcsh is a public-domain enhancement of the csh and is in common use. Two improved
versions of the Bourne shell also exist: ksh, the Korn shell and bash, the Bourne-again shell.

Although the shells are mainly tools for typing in commands (which are executable files to be loaded
and run), they contain features such as aliases, a command history, wildcard-expansions and job control
functions which provide a comfortable user environment.

The role of C

Most of the unix kernel and daemons are written in the C programming language (1). Calls to the kernel
and to services are made through functions in the standard C library. The commands like chmod, mkdir
and cd are all C functions. The binary files of the same name /bin/chmod, /bin/mkdir etc. are just
trivial "wrapper" programs for these C functions.

Until Solaris 2, the C compiler was a standard part of the UNIX operating system, thus C is the most
natural language to program in in a UNIX environment. Some tools are provided for C programmers:

dbx A symbolic debugger. Also gdb, xxgdb ddd.
make

A development tool for compiling large programs.
lex A ‘lexer’. A program which generates C code to recognize words of text.
yacc A ‘parser’. This is a tool which generates C code for checking the syntax of groups of textual

words.
rpcgen

A protocol compiler which generates C code from a higher level language, for programming RPC
applications.

Stdin, stdout, stderr

UNIX has three logical streams or files which are always open and are available to any program.

stdin The standard input - file descriptor 0.
stdout

The standard output - file descriptor 1.
stderr

The standard error - file descriptor 2.

The names are a part of the C language and are defined as pointers of type FILE.

#include <stdio.h>

/* FILE *stdin, *stdout, *stderr; */

fprintf(stderr,"This is an error message!\n");

The names are ‘logical’ in the sense that they do not refer to a particular device, or a particular place for
information to come from or go. Their role is analogous to the ‘.’ and ‘..’ directories in the filesystem.
Programs can write to these files without worrying about where the information comes from or goes to.
The user can personally define these places by redirecting standard I/O. This is discussed in the next
chapter.

A separate stream is kept for error messages so that error output does not get mixed up with a program’s
intended output.

The superuser (root) and nobody

When logged onto a UNIX system directly, the user whose name is root has unlimited access to the
files on the system. root can also become any other user without having to give a password. root is
reserved for the system administrator or trusted users.

Certain commands are forbidden to normal users. For example, a regular user should not be able to halt
the system, or change the ownership of files (see next paragraph). These things are reserved for the root
or superuser.

In a networked environment, root has no automatic authority on remote machines. This is to prevent the
system administrator of one machine in Canada from being able to edit files on another in China. He or
she must log in directly and supply a password in order to gain access privileges. On a network where
files are often accessible in principle to anyone, the username root gets mapped to the user nobody,
who has no rights at all.

The file hierarchy

UNIX has a hierarchical filesystem, which makes use of directories and sub-directories to form a tree.
The root of the tree is called the root filesystem or ‘/’. Although the details of where every file is located
differ for different versions of unix, some basic features are the same. The main sub-directories of the
root directory together with the most important file are shown in the figure. Their contents are as
follows.

‘/bin’
Executable (binary) programs. On most systems this is a separate directory to /usr/bin. In SunOS,
this is a pointer (link) to /usr/bin.

‘/etc’
Miscellaneous programs and configuration files. This directory has become very messy over the
history of UNIX and has become a dumping ground for almost anything. Recent versions of unix
have begun to tidy up this directory by creating subdirectories ‘/etc/mail’, ‘/etc/services’
etc!

‘/usr’
This contains the main meat of UNIX. This is where application software lives, together with all

of the basic libraries used by the OS.
‘/usr/bin’

More executables from the OS.
‘/usr/local’

This is where users’ custom software is normally added.
‘/sbin’

A special area for statically linked system binaries. They are placed here to distinguish commands
used solely by the system administrator from user commands and so that they lie on the system
root partition where they are guaranteed to be accessible during booting.

‘/sys’
This holds the configuration data which go to build the system kernel. (See below.)

‘/export’
Network servers only use this. This contains the disk space set aside for client machines which do
not have their own disks. It is like a ‘virtual disk’ for diskless clients.

‘/dev, /devices’
A place where all the ‘logical devices’ are collected. These are called ‘device nodes’ in unix and
are created by mknod. Logical devices are UNIX’s official entry points for writing to devices. For
instance, /dev/console is a route to the system console, while /dev/kmem is a route for reading
kernel memory. Device nodes enable devices to be treated as though they were files.

‘/home’
(Called /users on some systems.) Each user has a separate login directory where files can be kept.
These are normally stored under /home by some convention decided by the system administrator.

‘/var’
System 5 and mixed systems have a separate directory for spooling. Under old BSD systems,
/usr/spool contains spool queues and system data. /var/spool and /var/adm etc are used for
holding queues and system log files.

‘/vmunix’
This is the program code for the unix kernel (see below). On HPUX systems with file is called
‘hp-ux’. On linux it is called ‘linux’.

‘/kernel’
On newer systems the kernel is built up from a number of modules which are placed in this
directory.

Every unix directory contains two ‘virtual’ directories marked by a single dot and two dots.

ls -a
. ..

The single dot represents the directory one is already in (the current directory). The double dots mean
the directory one level up the tree from the current location. Thus, if one writes

cd /usr/local
cd ..

the final directory is /usr. The single dot is very useful in C programming if one wishes to read ‘the
current directory’. Since this is always called ‘.’ there is no need to keep track of what the current
directory really is.

‘.’ and ‘..’ are ‘hard links’ to the true directories.

Symbolic links

A symbolic link is a pointer or an alias to another file. The command

ln -s fromfile /other/directory/tolink

makes the file fromfile appear to exist at /other/directory/tolink simultaneously. The file is not
copied, it merely appears to be a part of the file tree in two places. Symbolic links can be made to both
files and directories.

A symbolic link is just a small file which contains the name of the real file one is interested in. It cannot
be opened like an ordinary file, but may be read with the C call readlink() See section lstat and
readlink. If we remove the file a symbolic link points to, the link remains -- it just points nowhere.

Hard links

A hard link is a duplicate inode in the filesystem which is in every way equivalent to the original file
inode. If a file is pointed to by a hard link, it cannot be removed until the link is removed. If a file has
@math{n} hard links -- all of them must be removed before the file can be removed. The number of
hard links to a file is stored in the filesystem index node for the file.

Getting started
If you have never met unix, or another multiuser system before, then you might find the idea daunting.
There are several things you should know.

Logging in

Each time you use unix you must log on to the system by typing a username and a password. Your login
name is sometimes called an ‘account’ because some unix systems implement strict quotas for computer
resources which have to be paid for with real money(2).

 login: mark
 password:

Once you have typed in your password, you are ‘logged on’. What happens then depends on what kind
of system you are logged onto and how. If you have a colour monitor and keyboard in front of you, with
a graphical user interface, you will see a number of windows appear, perhaps a menu bar. You then use
a mouse and keyboard just like any other system.

This is not the only way to log onto unix. You can also log in remotely, from another machine, using the
Secure Shell ssh program (this replaces the now antiquated telnet and rlogin programs). If you use
these programs, you will normally only get a text or command line interface (though graphical interfaces
can easily be arranged).

Once you have logged in, a short message will be printed (called Message of the Day or motd) and you
will see the C-shell prompt: the name of the host you are logged onto followed by a percent sign, e.g.

Linux cube 2.2.19pre13 #2 Mon Feb 26 15:53:31 MET 2001 i686 unknown

 This is GNU/Linux - send problems to help@example.org

10:44pm up 8 days, 13:34, 3 users, load average: 0.08, 0.02, 0.01

There are 480 messages in your incoming mailbox.

Remember that every UNIX machine is a separate entity: it is not like logging onto a PC system where
you log onto the ‘network’ i.e. the PC file server. Every UNIX machine is a server, or a client -- more
correctly a "peer" (equal partner). The network, in unix-land, has lots of players.

The first thing you should do once you have logged on is to set a reliable password. A poor password
might be okay on a PC which is not attached to a large network, but once you are attached to the
Internet, you have to remember that the whole world will be trying to crack your password. Don’t think
that no one will bother: some people really have nothing better to do. A password should not contain any
word that could be in a list of words (in any language), or be a simple concatenation of a word and a
number (e.g. mark123). It takes seconds to crack such a password. Choose instead something which is
easy to remember. Feel free to use the PIN number from your bankers card in your password! This will
leave you with fewer things to remember. e.g. Ma9876rk). Passwords can be up to eight characters long.

Some sites allow you to change your password anywhere. Other sites require you to log onto a special
machine to change your password:

 dax%
 dax% passwd
 Change your password on host nexus
 You cannot change it here
 dax% rlogin nexus
 password: ******

 nexus% passwd
 Changing password for mark
 Enter login password: ********
 Enter new password: ********
 Reenter new passwd: ********

You will be prompted for your old password and your new password twice. If your network is large, it
might take the system up to an hour or two to register the change in your password, so don’t forget the
old one right away!

Mouse buttons

UNIX has three mouse buttons. On some PC’s running GNU/Linux or some other PC unix, there are
only two, but the middle mouse button can be simulated by pressing both mouse buttons simultaneously.
The mouse buttons have the following general functions. They may also have additional functions in

special software.

index finger
This is used to select and click on objects. It is also used to mark out areas and copy by dragging.
This is the button you normally use.

middle finger
Used to pull down menus. It is also used to paste a marked area somewhere at the mouse position.

outer finger
Pulls down menus.

On a left-handed system right and left are reversed.

E-mail

Reading electronic mail on unix is just like any other system, but there are many programs to choose
from. There are very old programs from the seventies such as

mail

and there are fully graphical mail programs such as

tkrat
mailtool

Choose the program you like best. Not all of the programs support modern multimedia extensions
because of their age. Some programs like tkrat have immediate mail notification alerts. To start a mail
program you just type its name. If you have an icon-bar, you can click on the mail-icon.

Simple commands

Inexperienced computer users often prefer to use file-manager programs to avoid typing anything. With
a mouse you can click your way through directories and files without having to type anything (e.g. the
kfm or tkdesk programs). More experienced users generally find this to be slow and tedious after a
while and prefer to use written commands. UNIX has many short cuts and keyboard features which
make typed commands extremely fast and much more powerful than use of the mouse.

Today the CDE, KDE and GNOME projects are the most important efforts to write graphical user
interfaces for computers. The CDE (Common Desktop Environment) is a commercial program
developed by IBM, Hewlett-Packard, Sun Microsystems and many other vendors. KDE (a German
effort, a pun on CDE) and GNOME are free software window systems which have taken windowing to
the next level. While they have borrowed and stolen many ideas from Windows’ innovative Windows
95 user interface, they have taken windowing beyond this.

If you come from a Windows environment, the UNIX commands can be a little strange. It is a different
way of thinking: using language to ask for exactly what you want, instead of pointing to a menu of
limited choices. It is also a strange language. Because they stem from an era when keyboards had to be
hit with hammer force, and machines were very slow, the UNIX command names are as short as
possible, so they seem pretty cryptic. Some familiar ones which DOS borrowed from UNIX include,

cd
mkdir

which change to a new directory and make a new directory respectively. To list the files in the current
directory you use,

ls

To rename a file, you ‘move’ it:

mv old-name new-name

Text editing and word processing

Text editing is one of the things which people spend most time doing on any computer. It is important to
distinguish text editing from word processing. On a PC or MacIntosh, you are perhaps used to Word or
WordPerfect for writing documents.

UNIX has a Word-like program called lyx, and even several Office clones (e.g. Star Office soffice),
but for the most part UNIX users do not use word processors. It is more common in the UNIX
community to write all documents, regardless of whether they are letters, books or computer programs,
using a non-formatting text editor. (UNIX word processors like Framemaker do exist, but they are very
expensive. A version of MS-Word also exists for some unices.) Once you have written a document in a
normal text editor, you call up a text formatter to make it pretty. You might think this strange, but the
truth of the matter is that this two-stage process gives you the most power and flexibility--and that is
what most UNIX folks like.

For writing programs, or anything else, you edit a file by typing:

 emacs myfile

emacs is one of dozens of text-editors. It is not the simplest or most intuitive, but it is the most powerful
and if you are going to spend time learning an editor, it wouldn’t do any harm to make it this one. You
could also click on emacs’ icon if you are relying on a window system. Emacs is almost certainly the
most powerful text editor that exists on any system. It is not a word-processor, it is not for formatting
printed documents, but it can be linked to almost any other program in order to format and print text. It
contains a powerful programming language and has many intelligent features. We shall not go into the
details of document formatting in this book, but only mention that programs like troff and Tex or
Latex are used for this purpose to obtain typeset-quality printing. Text formatting is an area where
UNIX folks do things differently to PC folks.

The login environment
UNIX began as a timesharing mainframe system in the seventies, when the only terminals available
were text based teletype terminals or tty-s. Later, the Massachusetts Institute of Technology (MIT)
developed the X-windows interface which is now a standard across UNIX platforms. Because of this
history, the X-window system works as a front end to the standard UNIX shell and interface, so to

understand the user environment we must first understand the shell.

Shells

A shell is a command interpreter. In the early days of UNIX, a shell was the only way of issuing
commands to the system. Nowadays many window-based application programs provide menus and
buttons to perform simple commands, but the UNIX shell remains the most powerful and flexible way
of interacting with the system.

After logging in and entering a password, the UNIX process init starts a shell for the user logging in.
UNIX has several different kinds of shell to choose from, so that each user can pick his/her favourite
command interface. The type of shell which the system starts at login is determined by the user’s entry
in the passwd database. On most systems, the standard login shell is a variant of the C-shell.

Shells provide facilities and commands which

Start and stop processes (programs)
Allow two processes to communicate through a pipe
Allow the user to redirect the flow of input or output
Allow simple command line editing and command history
Define aliases to frequently used commands
Define global "environment" variables which are used to configure the default behaviour of a
variety of programs. These lie in an "associated array" for each process and may be seen with the
‘env’ command. Environment variables are inherited by all processes which are started from a
shell.
Provide wildcard expansion (joker notation) of filenames using ‘*,?,[]’
Provide a simple script language, with tests and loops, so that users can combine system programs
to create new programs of their own.
Change and remember the location of the current working directory, or location within the file
hierarchy.

The shell does not contain any more specific functions--all other commands, such as programs which list
files or create directories etc., are executable programs which are independent of the shell. When you
type ‘ls’, the shell looks for the executable file called ‘ls’ in a special list of directories called the
command path (which is contained in the environment variable $PATH) and attempts to start this
program. This allows such programs to be developed and replaced independently of the actual command
interpreter.

Each shell which is started can be customized and configured by editing a setup file. For the Bash shell
this file is called ‘.bashrc’, and for the C-shell and its variants it is called ‘.profile’. (Note that files
which begin with leading dots are not normally visible with the ‘ls’ command. Use ‘ls -a’ to view
these.) Any commands which are placed in these files are interpreted by the shell before the first
command prompt is issued. These files are typically used to define a command search path and terminal
characteristics.

On each new command line you can use the cursor keys to edit the line. The up-arrow browses back
through earlier commands. CTRL-a takes you to the start of the line. CTRL-e takes you to the end of the
line. The TAB can be used to save typing with the ‘completion’ facility See section Command/filename

completion.

Shell commands generally

Shell commands are commands like cp, mv, passwd, cat, more, less, cc, grep, ps etc..

One thing you can always bet on with Unix is that there is not just one way of doing things -- there are
so many standards, that there is often a bewildering array to choose from. UNIX has two main command
shells. They are called sh (Bourne Shell) and csh C-shell. Their modern implementations are called
Bash (Bourne Again Shell) and tcsh (T-C shell).

Very few commands are actually built into the shell command line interpreter, in the same way that they
are built into DOS. Rather commands are programs which exist as actual program files. When we type a
command, the shell searches for a program with the same name and tries to execute it. This is very
flexible, since anyone is free to write their own programs and therefore extend the command language
of the system. The file must be executable, or a Command not found error will result. To see what
actually happens when you type a command like gcc, try typing the following into a GNU/Linux
system: (you can type this exactly as shown into a Bash shell)

cube$ IFS=:

cube$ for dir in $PATH # for every directory in the list path
>do
> if [-x $dir/gcc] # if the file is executable
> then
> echo Found $dir/gcc # Print message found!
> break # break out of loop
> else
> echo Searching $dir/gcc
> fi
>done

If you use C-shell (e.g. tcsh), try typing in the following C-shell commands directly into a C-shell.

nexus% foreach dir ($path) # for every directory in the list path
> if (-x $dir/gcc) then # if the file is executable
> echo Found $dir/gcc # Print message found!
> break # break out of loop
> else
> echo Searching $dir/gcc
> endif
> end

The output of these command sequences is something like this:

 Searching /usr/lang/gcc
 Searching /usr/openwin/bin/gcc
 Searching /usr/openwin/bin/xview/gcc
 Searching /physics/lib/framemaker/bin/gcc
 Searching /physics/motif/bin/gcc
 Searching /physics/mutils/bin/gcc
 Searching /physics/common/scripts/gcc
 Found /physics/bin/gcc

If you type

 echo $PATH

in Bourne Shell, or

 echo $path

in C-shell you will see the entire list of directories which are searched by the shell. If we had left out the
‘break’ command, we might have discovered that UNIX often has several programs with the same
name, in different directories! For example,

/bin/mail
/usr/ucb/mail
/bin/Mail

/bin/make
/usr/local/bin/make.

Also, different versions of UNIX have different conventions for placing the commands in directories, so
the path list needs to be different for different types of UNIX machine. In Bash a few basic commands
like cd and kill are built into the shell (as in DOS).

You can find out which directory a command is stored in using

type

command. For example

cube$ type cd
cd is a shell builtin
cube$ type mv
mv is /bin/mv
cube$

type only searches the directories in $PATH and quits after the first match, so if there are several
commands with the same name, you will only see the first of them using type.

Finally, in the C-shell the command corresponding to type is built in and called which. In Bash which is
a program:

cube$ type which
which is /usr/bin/which
cube$ tcsh
cube% which which
which: shell built-in command.

Take a look at the script /usr/bin/which. It is a script written in bash.

Environment and shell variables

Environment variables are variables which the shell keeps. They are normally used to configure the
behaviour of utility programs like lpr (which sends a file to the printer) and mail (which reads and

sends mail) so that special options do not have to be typed in every time you run these programs.

Any program can read these variables to find out how you have configured your working environment.
We shall meet these variables frequently. Here are some important variables

PATH # The search path for shell commands (bash)
TERM # The terminal type (bash and csh)
DISPLAY # X11 - the name of your display
LD_LIBRARY_PATH # Path to search for object and shared libraries
HOSTNAME # Name of this UNIX host
PRINTER # Default printer (lpr)
HOME # The path to your home directory (bash)
PS1 # The default prompt for bash

path # The search path for shell commands (csh)
term # The terminal type (csh)
prompt # The default prompt for csh
home # The path to your home directory (csh)

These variables fall into two groups. Traditionally the first group always have names in uppercase letters
and are called environment variables, whereas variables in the second group have names with lowercase
letters and are called shell variables-- but this is only a convention. The uppercase variables are global
variables, whereas the lower case variables are local variables. Local variables are not defined for
programs or sub-shells started by the current shell, while global variables are inherited by all sub-shells.

The Bash-shell and the C-shell use these conventions differently and not always consistently. You will
see how to define these below. For now you just have to know that you can use the command env can be
used in Bash shell to see all of the defined global environment variables while set lists both the global
and the local variables.

Wildcards

Sometimes you want to be able to refer to several files in one go. For instance, you might want to copy
all files ending in ‘.c’ to a new directory. To do this one uses wildcards. Wildcards are characters like *
? which stand for any character or group of characters. In card games the joker is a ‘wild card’ which
can be substituted for any other card. Use of wildcards is also called filename substitution in the UNIX
manuals, in the sections on sh and csh.

The wildcard symbols are,

‘?’ Match single character. e.g. ls /etc/rc.????
‘*’ Match any number of characters. e.g. ls /etc/rc.*
‘[...]’

Match any character in a list enclosed by these brackets. e.g. ls [abc].C

Here are some examples and explanations.

‘/etc/rc.????’
Match all files in /etc whose first three characters are rc. and are 7 characters long.

‘*.c’

Match all files ending in ‘.c’ i.e. all C programs.
‘*.[Cc]’

List all files ending on ‘.c’ or ‘.C’ i.e. all C and C++ programs.
‘*.[a-z]’

Match any file ending in .a, .b, .c, ... up to .z etc.

It is important to understand that the shell expands wildcards. When you type a command, the program
is not invoked with an argument that contains * or ?. The shell expands the special characters first and
invokes commands with the entire list of files which match the patterns. The programs never see the
wildcard characters, only the list of files they stand for. To see this in action, you can type

echo /etc/rc*

which gives

/etc/rc0 /etc/rc0.d /etc/rc1 /etc/rc1.d /etc/rc2 /etc/rc2.d /etc/rc3
/etc/rc3.d /etc/rc5 /etc/rc6 /etc/rcS /etc/rcS.d

All shell commands are invoked with a command line of this form. This has an important corollary. It
means that multiple renaming cannot work!

UNIX files are renamed using the mv command. In many microcomputer operating systems one can
write

rename *.x *.y

which changes the file extension of all files ending in ‘.x’ to the same name with a ‘.y’ extension. This
cannot work in UNIX, because the shell tries expands everything before passing the arguments to the
command line.

Regular expressions

The wildcards belong to the shell. They are used for matching filenames. UNIX has a more general and
widely used mechanism for matching strings, this is through regular expressions.

Regular expressions are used by the egrep utility, text editors like ed, vi and emacs and sed and awk.
They are also used in the C programming language for matching input as well as in the Perl
programming language and lex tokenizer. Here are some examples using the egrep command which
print lines from the file /etc/rc which match certain conditions. The construction is part of egrep.
Everything in between these symbols is a regular expression. Notice that special shell symbols ! * &
have to be preceded with a backslash \ in order to prevent the shell from expanding them!

Print all lines beginning with a comment
egrep ’(^#)’ /etc/rc

Print all lines which DON’T begin with
egrep ’(^[^#])’ /etc/rc

Print all lines beginning with e, f or g.
egrep ’(^[efg])’ /etc/rc

Print all lines beginning with uppercase
egrep ’(^[A-Z])’ /etc/rc

Print all lines NOT beginning with uppercase
egrep ’(^[^A-Z])’ /etc/rc

Print all lines containing ! * &
egrep ’([\!*\&])’ /etc/rc

All lines containing ! * & but not starting
egrep ’([^#][\!*\&])’ /etc/rc

Regular expressions are made up of the following ‘atoms’.

These examples assume that the file ‘/etc/rc’ exists. If it doesn’t exist on the machine you are using,
try to find the equivalent by, for instance, replacing /etc/rc with /etc/rc* which will try to find a
match beginning with the rc.

‘.’ Match any single character except the end of line.
‘^’ Match the beginning of a line as the first character.
‘$’ Match end of line as last character.
‘[..]’

Match any character in the list between the square brackets.(see below).
‘*’ Match zero or more occurrences of the preceding expression.
‘+’ Match one or more occurrences of the preceding expression.
‘?’ Match zero or one occurrence of the preceding expression.

You can find a complete list in the UNIX manual pages. The square brackets above are used to define a
class of characters to be matched. Here are some examples,

If the square brackets contain a list of characters, $[a-z156]$ then a single occurrence of any
character in the list will match the regular expression: in this case any lowercase letter or the
numbers 1, 5 and 6.
If the first character in the brackets is the caret symbol ‘^’ then any character except those in the
list will be matched.
Normally a dash or minus sign ‘-’ means a range of characters. If it is the first character after the
‘[’ or after ‘[^’ then it is treated literally.

Nested shell commands and "

The backwards apostrophes ‘...‘ can be used in all shells and also in the programming language Perl.
When these are encountered in a string the shell tries to execute the command inside the quotes and
replace the quoted expression by the result of that command. For example:

UNIX$ echo "This system’s kernel type is ‘/usr/bin/file /boot/vmlinuz-2.2.19pre13‘"
This system’s kernel type is /boot/vmlinuz-2.2.19pre13: Linux kernel x86 boot executable bzImage, version 2.2.19pre13

UNIX$ for file in ‘ls /local/ssl/misc/*‘
> do
> echo I found a config file $file
> echo Its type is ‘/usr/bin/file $file‘

> done
I found a config file /local/ssl/misc/CA.pl
Its type is /local/ssl/misc/CA.pl: perl script text
I found a config file /local/ssl/misc/CA.sh
Its type is /local/ssl/misc/CA.sh: Bourne shell script text
I found a config file /local/ssl/misc/c_hash
Its type is /local/ssl/misc/c_hash: Bourne shell script text
I found a config file /local/ssl/misc/c_info
Its type is /local/ssl/misc/c_info: Bourne shell script text
I found a config file /local/ssl/misc/c_issuer
Its type is /local/ssl/misc/c_issuer: Bourne shell script text
I found a config file /local/ssl/misc/c_name
Its type is /local/ssl/misc/c_name: Bourne shell script text
I found a config file /local/ssl/misc/der_chop
Its type is /local/ssl/misc/der_chop: perl script text

This is how we insert the result of a shell command into a text string or variable.

UNIX command overview

Important keys

TAB The TAB key is used by Bash and Emacs for "filename completion", i.e. when you are uncertain of
the correct name of something, or simply can’t be bothered to type it out, you can hit TAB to either
finish off the word, or show you alternative choices. e.g. try in Bash

cube$ loadTAB
loadkeys loadmeter loadunimap

This shows the possible completions of commands which match "load". Type one more letter and
TAB, and the rest will be filled in.

CTRL-A
Jump to start of line. If ‘screen’ is active, this prefixes all control key commands for ‘screen’
and then the normal CTRL-A is replaced by CTRL-a a.

CTRL-C
Interrupt or break key. Sends signal 15 to a process.

CTRL-D
Signifies ‘EOF’ (end of file) or shows expansion matches in command/filename completion See
section Command/filename completion.

CTRL-E
Jump to end of line.

CTRL-L
Clear screen in newer shells and in emacs. Same as ‘clear’ in the shell.

CTRL-Z
Suspend the present process, but do not destroy it. This sends signal 18 to the process.

Alternative shells

bash The Bourne Again shell, an improved sh.
csh The standard C-shell.
jsh The same as sh, with C-shell style job control.

ksh The Korn shell, an improved sh.
sh The original Bourne shell.
sh5 On ULTRIX systems the standard Bourne shell is quite stupid. sh5 corresponds to the normal

Bourne shell on these systems.
tcsh An improved C-shell.
zsh An improved sh.

Window based terminal emulators

xterm
The standard X11 terminal window.

shelltool, cmdtool
Openwindows terminals from Sun Microsystems. These are not completely X11 compatible
during copy/paste operations.

screen
This is not a window in itself, but allows you to emulate having several windows inside a single
(say) xterm window. The user can switch between different windows and open new ones, but can
only see one window at a time See section Multiple screens.

Remote shells and logins

The best way to log onto another system is to use the Secure Shell command ssh. This replaces the now
obsolete commands:

rlogin
Login onto a remote UNIX system.

rsh Open a shell on a remote system (require access rights).
telnet

Open a connection to a remove system using the telnet protocol.

These old commands are insecure andnote very flexible. The Secure Shell offers encryption, strong
authentication and greater functionality. It can be used to run a single program on a remote machine, or
to login on the remote machine.

cube$ ssh metaverse date
cube$ ssh metaverse

Text editors

ed An ancient line-editor.
vi Visual interface to ed. This is the only "standard" UNIX text editor supplied by vendors.
emacs

The most powerful UNIX editor. A fully configurable, user programmable editor which works
under X11 and on tty-terminals.

xemacs
A pretty version of emacs for X11 windows.

pico A tty-terminal only editor, comes as part of the PINE mail package.

xedit
A test X11-only editor supplied with X-windows.

textedit
A simple X11-only editor supplied by Sun Microsystems.

File handling commands

ls List files in specified directory (like dir on other systems).
cp Copy files.
mv Move or rename files.
touch

Creates an empty new file if none exists, or updates date and time stamps on existing files.
rm, unlink

Remove a file or link (delete).
mkdir, rmdir

Make or remove a directory. A directory must be empty in order to be able to remove it.
cat Concatenate or join together a number of files. The output is written to the standard output by

default. Can also be used to simply print a file on screen.
lp, lpr

Line printer. Send a file to the default printer, or the printer defined in the ‘PRINTER’ environment
variable.

lpq, lpstat
Show the status of the print queue.

File browsing

more Shows one screen full at a time. Possibility to search for a string and edit the file. This is like
‘type file | more’ in DOS.

less An enhanced version of more.
mc Midnight commander, a free version of the ‘Norton Commander’ PC utility for UNIX. (Only for

non-serious UNIX users...)
kfm A window based file manager with icons and all that nonsense.

Ownership and granting access permission

chmod
Change file access mode.

chown, chgrp
Change owner and group of a file. The GNU version of chown allows both these operations to be
performed together using the syntax chown owner.group file.

acl On newer Unices, Access control lists allow access to be granted on a per-user basis rather than by
groups.

Extracting from and rebuilding files

cut Extract a column in a table
paste

Merge several files so that each file becomes a column in a table.
sed A batch text-editor for searching, replacing and selecting text without human intervention.
awk A prerunner to the Perl language, for extracting and modifying textfiles.
rmcr Strip carriage return (ASCII 13) characters from a file. Useful for converting DOS files to UNIX.

Locating files

find Search for files from a specified directory using various criteria.
locate

Fast search in a global file database for files containing a search-string.
whereis

Look for a command and its documentation on the system.

Disk usage.

du Show number of blocks used by a file or files.
df Show the state of usage for one or more disk partitions.

Show other users logged on

users
Simple list of other users.

finger
Show who is logged onto this and other systems.

who List of users logged into this system.
w Long list of who is logged onto this system and what they are doing.

Contacting other users

write
Send a simple message to the named user, end with CTRL-D. The command ‘mesg n’ switches off
messages receipt.

talk Interactive two-way conversation with named user.
irc Internet relay chat. A conferencing system for realtime multi-user conversations, for addicts and

losers.

Mail senders/readers

mail The standard (old) mail interface.
Mail Another mail interface.
elm Electronic Mail program. Lots of functionality but poor support for multimedia.
pine Rumours (untrue) are that pine stands for Pine is Not Elm; it actually stands for nothing at all.

Improved support for multimedia but very slow and rather stupid at times. Some of the best
features of elm have been removed!

mailtool
Sun’s openwindows client program.

rmail

A mail interface built into the emacs editor.
netscape mail

A mail interface built into the netscape navigator.
zmail

A commercial mail package.
tkrat

A graphical mail reader which supports most MIME types, written in tcl/tk. This program has a
nice feel and allows you to create a searchable database of old mail messages, but has a hopeless
locking mechanism.

File transfer

ftp The File Transfer program - copies files to/from a remote host.
ncftp

An enhanced ftp for anonymous login.

Compilers

cc The C compiler.
CC The C++ compiler.
gcc The GNU C compiler.
g++ The GNU C++ compiler.
javac

A generator of Java bytecode.
java A Java Virtual Machine.
ld The system linker/loader.
ar Archive library builder.
dbx A symbolic debugger.
gdb The GNU symbolic debugger.
xxgdb

The GNU debugger with a window driven front-end.
ddd A motif based front-end to the gdb debugger.

Other interpreted languages

perl Practical extraction an report language.
tcl A perl-like language with special support for building user interfaces and command shells.
php Personal Home Page Tools (officially "PHP: Hypertext Preprocessor"). A server-side

HTML-embedded scripting language.
scheme

A lisp-like extensible scripting language from GNU.
mercury

A prolog-like language for artificial intelligence.

Processes and system statistics

ps List system process table.

vmstat
List kernel virtual-memory statistics.

netstat
List network connections and statistics.

rpcinfo
Show rpc information.

showmount
Show clients mounting local filesystems.

System identity

uname
Display system name and operating system release.

hostname
Show the name of this host.

domainname
Show the name of the local NIS domain. Normally this is chosen to be the same as the BIND/DNS
domain, but it need not be.

nslookup
Interrogate the DNS/BIND name service (hostname to IP address conversion).

Internet resources

archie, xarchie
Search the internet ftp database for files.

xrn, fnews
Read news (browser).

netscape, xmosaic
Read world wide web (WWW) (browser).

Text formatting and postscript

tex, latex
Donald Knuth’s text formatting language, pronounced "tek" (the x is really a Greek "chi"). Used
widely for technical publications. Compiles to dvi (device independent) file format.

texinfo
A hypertext documentation system using tex and "info" format. This is the GNU documentation
system. This UNIX guide is written in texinfo!!!

xdvi View a tex dvi file on screen.
dvips

Convert dvi format into postscript.
ghostview, ghostscript

View a postscript file on screen.

Picture editors and processors

xv Handles, edits and processes pictures in a variety of standard graphics formats (gif, jpg, tiff etc).

Use xv -quit to place a picture on your root window.
xpaint

A simple paint program.
xfig A line drawing figure editor. Produces postscript, tex, and a variety of other output formats.
xmgr A graphing and analysis program.
xsetroot

Load an X-bitmap image into the screen (root window) background. Small images are tiled.

Miscellaneous

date Print the date and time.
ispell

Spelling checker.
xcalc

A graphical calculator.
dc,bc

Text-based calculators.
xclock

A clock!
ping Send a "sonar" ping to see if another UNIX host is alive.

Terminals

In order to communicate with a user, a shell needs to have access to a terminal. UNIX was designed to
work with many different kinds of terminals. Input/output commands in UNIX read and write to a
virtual terminal. In reality a terminal might be a text-based Teletype terminal (called a tty for short) or a
graphics based terminal; it might be 80-characters wide or it might be wider or narrower. UNIX take
into account these possibility by defining a number of instances of terminals in a more or less object
oriented way.

Each user’s terminal has to be configured before cursor based input/output will work correctly.
Normally this is done by choosing one of a number of standard terminal types a list which is supplied by
the system. In practice the user defines the value of the environment variable ‘TERM’ to an appropriate
name. Typical examples are ‘vt100’ and ‘xterm’. If no standard setup is found, the terminal can
always be configured manually using UNIX’s most cryptic and opaque of commands: ‘stty’.

The job of configuring terminals is much easier now that hardware is more standard. Users’ terminals
are usually configured centrally by the system administrator and it is seldom indeed that one ever has to
choose anything other than ‘vt100’ or ‘xterm’.

The X window system

Because UNIX originated before windowing technology was available, the user-interface was not
designed with windowing in mind. The X window system attempts to be like a virtual machine park,
running a different program in each window. Although the programs appear on one screen, they may in
fact be running on UNIX systems anywhere in the world, with only the output being local to the user’s
display. The standard shell interface is available by running an X client application called ‘xterm’

which is a graphical front-end to the standard UNIX textual interface.

The ‘xterm’ program provides a virtual terminal using the X windows graphical user interface. It works
in exactly the same way as a tty terminal, except that standard graphical facilities like copy and paste are
available. Moreover, the user has the convenience of being able to run a different shell in every window.
For example, using the ‘rlogin’ command, it is possible to work on the local system in one window,
and on another remote system in another window. The X-window environment allows one to cut and
paste between windows, regardless of which host the shell runs on.

The components of the X-window system

The X11 system is based on the client-server model. You might wonder why a window system would be
based on a model which was introduced for interprocess communication, or network communication.
The answer is straightforward.

The designers of the X window system realized that network communication was to be the paradigm of
the next generation of computer systems. They wanted to design a system of windows which would
enable a user to sit at a terminal in Massachusetts and work on a machine in Tokyo -- and still be able to
get high quality windows displayed on their terminal. The aim of X windows from the beginning is to
create a distributed window environment.

When I log onto my friend’s Hewlett Packard workstation to use the text editor (because I don’t like the
one on my EUNUCHS workstation) I want it to work correctly on my screen, with my keyboard -- even
though my workstation is manufactured by a different company. I also want the colours to be right
despite the fact that the HP machine uses a completely different video hardware to my machine. When I
press the curly brace key {, I want to see a curly brace, and not some hieroglyphic because the HP
station uses a different keyboard.

These are the problems which X tries to address. In a network environment we need a common window
system which will work on any kind of hardware, and hide the differences between different machines as
far as possible. But it has to be flexible enough to allow us to change all of the things we don’t like -- to
choose our own colours, and the kind of window borders we want etc. Other windowing systems (like
Microsoft windows) ignore these problems and thereby lock the user to a single vendors products and a
single operating system. (That, of course, is no accident.)

The way X solves this problem is to use the client server model. Each program which wants to open a
window on somebody’s compute screen is a client of the X window service. To get something drawn on
a user’s screen, the client asks a server on the host of interest to draw windows for it. No client ever
draws anything itself -- it asks the server to do it on its behalf. There are several reasons for this:

The clients can all talk a common ‘window language’ or protocol. We can hide the difference
between different kinds of hardware by making the machine-specific part of drawing graphics
entirely a problem of implementing the server on the particular hardware. When a new type of
hardware comes along, we just need to modify the server -- none of the clients need to be
modified.
We can contact different servers and send our output to different hardware -- thus even though a
program is running on a CPU in Tokyo, it can ask the server in Massachusetts to display its
window for it.

When more than one window is on a user’s display, it eventually becomes necessary to move the
windows around and then figure out which windows are on top of which other windows etc. If all
of the drawing information is kept in a server, it is straightforward to work out this information. If
every client drew where it wanted to, it would be impossible to know which window was supposed
to be on top of another.

In X, the window manager is a different program to the server which does the drawing of graphics -- but
the client-server idea still applies, it just has one more piece to its puzzle.

How to set up X windows

The X windows system is large and complex and not particularly user friendly. When you log in to the
system, X reads two files in your home directory which decide which applications will be started what
they will look like. The files are called

.Xsession
This file is a shell script which starts up a number of applications as background processes and
exits by calling a window manager. Here is a simple example file

#!/bin/bash
#
.xsession file
#
#

PATH="/usr/bin:/bin:/local/gnu/bin:/usr/X11R6/bin"

#
List applications here, with & at the end
so they run in the background
#

 xterm -T NewTitle -sl 1000 -geometry 90x45+16+150 -sb &
 xclock &
 xbiff -geometry 80x80+510+0 &
 netscape -iconic&

Start a window manager. Exec replaces this script with
the fvwm process, so that it doesn’t exist as a separate
(useless) process.

 exec /local/bin/fvwm

.Xdefaults
This file specifies all of the resources which X programs use. It can be used to change the colours
used by applications, or font types etc. The subject of X-resources is a large one and we don’t have
time for it here. Here is a simple example, which shows how you can make your over-bright xterm
and emacs windows less bright grey shade.

xterm*background: LightGrey
Emacs*background: grey92
Xemacs*background: grey92

X displays and authority

In the terminology used by X11, every client program has to contact a display in order to open a
window. A display is a virtual screen which is created by the X server on a particular host. X can create
several separate displays on a given host, though most machines only have one.

When an X client program wants to open a window, it looks in the UNIX environment variable
‘DISPLAY’ for the IP address of a host which has an X server it can contact. For example, if we wrote

DISPLAY="myhost:0"
export DISPLAY

the client would try to contact the X server on ‘myhost’ and ask for a window on display number zero
(the usual display). If we wrote

DISPLAY="198.112.208.35:0"
export DISPLAY

the client would try to open display zero on the X server at the host with the IP address
‘198.112.208.35’.

Clearly there must be some kind of security mechanism to prevent just anybody from opening windows
on someone’s display. X has two such mechanisms:

xhost
This mechanism is now obsolete. The ‘xhost’ command is used to define a list of hosts which are
allowed to open windows on the user’s display. It cannot distinguish between individual users. i.e.
the command xhost yourhost would allow anyone using yourhost to access the local display.
This mechanism is only present for backward compatibility with early versions of X windows.
Normally one should use the command xhost - to exclude all others from accessing the display.

Xauthority
The Xauthority mechanism has replaced the xhost scheme. It provides a security mechanism
which can distinguish individual users, not just hosts. In order for a user to open a window on a
display, he/she must have a ticket--called a "magic cookie". This is a binary file called
‘.Xauthority’ which is created in the user’s home directory when he/she first starts the
X-windows system. Anyone who does not have a recent copy of this file cannot open windows or
read the display of the user’s terminal. This mechanism is based on the idea that the user’s home
directory is available via NFS on all hosts he/she will log onto, and thus the owner of the display
will always have access to the magic cookie, and will therefore always be able to open windows
on the display. Other users must obtain a copy of the file in order to open windows there. The
command xauth is an interactive utility used for controlling the contents of the ‘.Xauthority’
file. See the ‘xauth’ manual page for more information.

Multiple screens

The window paradigm has been very successful in many ways, but anyone who has used a window
system knows that the screen is simply not big enough for all the windows one would like! UNIX has
several solutions to this problem.

One solution is to attach several physical screens to a terminal. The X window system can support any
number of physical screens of different types. A graphical designer might want a high resolution colour
screen for drawing and a black and white screen for writing text, for instance. The disadvantage with
this method is the cost of the hardware.

A cheaper solution is to use a window manager such as ‘fwvm’ which creates a virtual screen of
unlimited size on a single monitor. As the mouse pointer reaches the edge of the true screen, the window
manager replaces the display with a new "blank screen" in which to place windows. A miniaturized
image of the windows on a control panel acts as a map which makes it possible to find the applications
on the virtual screen.

Yet another possibility is to create virtual displays inside a single window. In other words, one can
collapse several shell windows into a single ‘xterm’ window by running the program ‘screen’. The
screen command allows you to start several shells in a single window (using CTRL-a CTRL-c) and to
switch between them (by typing CTRL-a CTRL-n). It is only possible to see one shell window at a time,
but it is still possible to cut and paste between windows and one has a considerable saving of space. The
‘screen’ command also allows you to suspend a shell session, log out, log in again later and resume the
session precisely where you left off.

Here is a summary of some useful screen commands:

screen
Start the screen server.

screen -r
Resume a previously suspended screen session if possible.

CTRL-a CTRL-c
Start a new shell on top of the others (a fresh ‘screen’) in the current window.

CTRL-a CTRL-n
Switch to the next ‘screen’.

CTRL-a CTRL-a
Switch to the last screen used.

CTRL-a a
When screen is running, CTRL-a is used for screen commands and cannot therefore be used in its
usual shell meaning of ‘jump to start of line’. CTRL-a a replaces this.

CTRL-a CTRL-d
Detach the screen session from the current window so that it can be resumed later. It can be
resumed with the ‘screen -r’ command.

CTRL-a ?
Help screen.

Files and access
To prevent all users from being able to access all files on the system, UNIX records information about
who creates files and also who is allowed to access them later.

Each user has a unique username or loginname together with a unique user id or uid. The user id is a
number, whereas the login name is a text string -- otherwise the two express the same information. A file

belongs to user A if it is owned by user A. User A then decides whether or not other users can read,
write or execute the file by setting the protection bits or the permission of the file using the command
chmod.

In addition to user identities, there are groups of users. The idea of a group is that several named users
might want to be able to read and work on a file, without other users being able to access it. Every user
is a member of at least one group, called the login group and each group has both a textual name and a
number (group id). The uid and gid of each user is recorded in the file /etc/passwd (See chapter 6).
Membership of other groups is recorded in the file /etc/group or on some systems /etc/logingroup.

Protection bits

The following output is from the command ls -lag executed on a SunOS type machine.

lrwxrwxrwx 1 root wheel 7 Jun 1 1993 bin -> usr/bin
-r--r--r-- 1 root bin 103512 Jun 1 1993 boot
drwxr-sr-x 2 bin staff 11264 May 11 17:00 dev
drwxr-sr-x 10 bin staff 2560 Jul 8 02:06 etc
drwxr-sr-x 8 root wheel 512 Jun 1 1993 export
drwx------ 2 root daemon 512 Sep 26 1993 home
-rwxr-xr-x 1 root wheel 249079 Jun 1 1993 kadb
lrwxrwxrwx 1 root wheel 7 Jun 1 1993 lib -> usr/lib
drwxr-xr-x 2 root wheel 8192 Jun 1 1993 lost+found
drwxr-sr-x 2 bin staff 512 Jul 23 1992 mnt
dr-xr-xr-x 1 root wheel 512 May 11 17:00 net
drwxr-sr-x 2 root wheel 512 Jun 1 1993 pcfs
drwxr-sr-x 2 bin staff 512 Jun 1 1993 sbin
lrwxrwxrwx 1 root wheel 13 Jun 1 1993 sys->kvm/sys
drwxrwxrwx 6 root wheel 732 Jul 8 19:23 tmp
drwxr-xr-x 27 root wheel 1024 Jun 14 1993 usr
drwxr-sr-x 10 bin staff 512 Jul 23 1992 var
-rwxr-xr-x 1 root daemon 2182656 Jun 4 1993 vmUNIX

The first column is a textual representation of the protection bits for each file. Column two is the number
of hard links to the file (See exercises below). The third and fourth columns are the user name and group
name and the remainder show the file size in bytes and the creation date. Notice that the directories /bin
and /sys are symbolic links to other directories.

There are sixteen protection bits for a UNIX file, but only twelve of them can be changed by users.
These twelve are split into four groups of three. Each three-bit number corresponds to one octal number.

The leading four invisible bits gives information about the type of file: is the file a plain file, a directory
or a link. In the output from ls this is represented by a single character: -, d or l.

The next three bits set the so-called s-bits and t-bit which are explained below.

The remaining three groups of three bits set flags which indicate whether a file can be read ‘r’, written
to ‘w’ or executed ‘x’ by (i) the user who created them, (ii) the other users who are in the group the file
is marked with, and (iii) any user at all.

For example, the permission

Type Owner Group Anyone
 d rwx r-x ---

tells us that the file is a directory, which can be read and written to by the owner, can be read by others
in its group, but not by anyone else.

Note about directories. It is impossible to cd to a directory unless the x bit is set. That is, directories
must be ‘executable’ in order to be accessible.

Here are some examples of the relationship between binary, octal and the textual representation of file
modes.

Binary Octal Text

 001 1 x
 010 2 w
 100 4 r
 110 6 rw-
 101 5 r-x
 - 644 rw-r--r--

It is well worth becoming familiar with the octal number representation of these permissions.

chmod

The chmod command changes the permission or mode of a file. Only the owner of the file or the
superuser can change the permission. Here are some examples of its use. Try them.

make read/write-able for everyone
chmod a+w myfile

add the ’execute’ flag for directory
chmod u+x mydir/

open all files for everyone
chmod 755 *

set the s-bit on my-dir’s group
chmod g+s mydir/

descend recursively into directory opening all files
chmod -R a+r dir

Umask

When a new file gets created, the operating system must decide what default protection bits to set on
that file. The variable umask decides this. umask is normally set by each user in his or her .cshrc file
(see next chapter). For example

umask 077 # safe

umask 022 # liberal

According the UNIX documentation, the value of umask is ‘XOR’ed (exclusive ‘OR’) with a value of
666 & umask for plain files or 777 & umask for directories in order to find out the standard protection.
Actually this is not quite true: ‘umask’ only removes bits, it never sets bits which were not already set in
666. For instance

umask Permission

077 600 (plain)
077 700 (dir)
022 644 (plain)
022 755 (dir)

The correct rule for computing permissions is not XOR but ‘NOT AND’.

Making programs executable

A UNIX program is normally executed by typing its pathname. If the x execute bit is not set on the file,
this will generate a ‘Permission denied’ error. This protects the system from interpreting nonsense files
as programs. To make a program executable for someone, you must therefore ensure that they can
execute the file, using a command like

chmod u+x filename

This command would set execute permissions for the owner of the file;

chmod ug+x filename

would set execute permissions for the owner and for any users in the same group as the file. Note that
script programs must also be readable in order to be executable, since the shell has the interpret them by
reading.

chown and chgrp

These two commands change the ownership and the group ownership of a file. Only the superuser can
change the ownership of a file on most systems. This is to prevent users from being able to defeat quota
mechanisms. (On some systems, which do not implement quotas, ordinary users can give a file away to
another user but not get it back again.) The same applies to group ownership.

Making a group

Normally users other than root cannot define their own groups. This is a weakness in UNIX from older
times which no one seems to be in a hurry to change.

s-bit and t-bit (sticky bit)

The s and t bits have special uses. They are described as follows.

Octal Text Name

4000 chmod u+s Setuid bit
2000 chmod g+s Setgid bit
1000 chmod +t Sticky bit

The effect of these bits differs for plain files and directories and differ between different versions of
UNIX. You should check the manual page man sticky to find out about your system! The following is
common behaviour.

For executable files, the setuid bit tells UNIX that regardless of who runs the program it should be
executed with the permissions and rights of owner of the file. This is often used to allow normal users
limited access to root privileges. A setuid-root program is executed as root for any user. The setgid bit
sets the group execution rights of the program in a similar way.

In BSD UNIX, if the setgid bit is set on a directory then any new files created in that directory assume
the group ownership of the parent directory and not the logingroup of the user who created the file. This
is standard policy under system 5.

A directory for which the sticky bit is set restrict the deletion of files within it. A file or directory inside
a directory with the t-bit set can only be deleted or renamed by its owner or the superuser. This is useful
for directories like the mail spool area and /tmp which must be writable to everyone, but should not
allow a user to delete another user’s files.

(Ultrix) If an executable file is marked with a sticky bit, it is held in the memory or system swap area. It
does not have to be fetched from disk each time it is executed. This saves time for frequently used
programs like ls.

(Solaris 1) If a non-executable file is marked with the sticky bit, it will not be held in the disk page cache
-- that is, it is never copied from the disk and held in RAM but is written to directly. This is used to
prevent certain files from using up valuable memory.

On some systems (e.g. ULTRIX), only the superuser can set the sticky bit. On others (e.g. SunOS) any
user can create a sticky directory.

Bourne Again shell
The Bourne Again shell (Bash) is the command interpreter which you use to run programs and utilities.
It contains a simple programming language for writing tailor-made commands, and allows you to join
together UNIX commands with pipes. It is a configurable environment, and once you know it well, it is
the most efficient way of working with UNIX.

The Bourne Again shell was written by the Free Software Foundation as a part of the GNU project and
Bash is the default shell in most GNU/Linux distributions. Because of its command line editing features,
it is much more efficient for interactive use than Bourne shell, the original UNIX shell. Most of the
system scripts in UNIX are written in the Bourne shell. Although Bash includes many extensions and
features not found in the Bourne shell, it maintains compatibility with it so that you can run Bourne shell
scripts under Bash. On many GNU/Linux systems Bourne shell (‘/bin/sh’) is symbolically linked to
Bash (‘/bin/bash’) so that the scripts that require the presence of the Bourne shell still run. If you
want to write a platform independent shell script able to run on as many UNIX variants as possible, you

should stick to Bourne shell syntax and avoid the Bash extensions.

‘~/.bashrc’ and ‘~/.bash_profile’ files

When you log on to a GNU/Linux system and your login shell is defined in ‘/etc/passwd’ to be Bash,
it first executes commands in the ‘/etc/profile’ file. It then searches for the ‘~/.bash_profile’,
‘~/.bash_login’ or ‘~/.profile’ file, in this order, and executes commands in the first of these that is
found and is readable. When a login exits, it executes commands in the ‘~/.bash_logout’ file.

When you start an non-login interactive Bash shell, it only executes commands in the ‘~/.bashrc’ file,
if it exists and is readable. However, this shell inherits any environment (exported) variables from the
parent shell, so environment variables set in ‘/etc/profile’ and ‘~/.bash_profile’ are passed onto
the non-login shells and later to its subshells.

Here is a very simple example ‘~/.bashrc’ file:

#
.bashrc - read in by every bash that starts.
#

umask 077 # Set the default file creation mask
PATH="~/bin:$PATH" # Inserts own bin directory first in PATH

PS1="‘uname‘:\h\$ " # prompt
PS2="\h > " # prompt for foreach and while
PRINTER=myprinter

Aliases are shortcuts to UNIX commands
alias h=history
alias ll="ls -l"
alias cp=’cp -i’
alias rm=’rm -i’
alias c=’ssh cube’

In order to make sure your ‘~/.bashrc’ file is read when logging on with ssh to another machine, you
may start your ‘~/.bash_profile’ file like this:

#
.bash_profile - read in every login.
#

if [-f ~/.bashrc]
then
 source ~/.bashrc # runs .bashrc as if they where
 # typed into this file
fi

Variables and export

Shell variables are defined using the syntax

VARIABLE="username is"

myname="‘whoami‘"

It is important that there be no space between the variable and the equals sign. These variables are then
referred to using the dollar ‘$’ symbol.

$ echo "My $VARIABLE $myname"
My username is mark

When assigning values to variables the dollar symbol is never used. By default these variables are local -
that is they will not be passed on to programs and sub-shells running under the current shell. To make
them global (so that child processes will inherit them) we use the command

export VARIABLE

This adds the variable to the process environment. Under Bash (but not under the old Bourne shell) it is
also possible to declare a variable to be global on a single line by

export GLOBALVAR="global"

The command

set -a

changes the default so that all variables, after the command are created global.

Arrays or lists are often simulated in Bourne shell by sandwiching the colon ‘:’ symbol between items

PATH=/bin:/usr/bin:/etc:/local/bin:.

LD_LIBARAY_PATH=/usr/lib:/usr/openwin/lib:/local/lib

but there is no real facility for arrays in the Bourne shell. Note that the UNIX ‘cut’ command can be
used to extract the elements of the list. Loops can also read such lists directly See section Loops in Bash.
However, Bash version 2.x supports arrays as seen in the next section.

The value of a variable is given by the dollar symbol. It is also possible to use curly braces around the
variable name to ‘protect’ the variable from interfering text. For example:

$ animal=worm
$ echo book$animal
bookworm
$ thing=book
$ echo $thingworm
 (nothing..)
$ echo ${thing}worm
bookworm

Default values can be given to variables in the Bourne shell. The following commands illustrate this.

echo ${var-"No value set"}
echo ${var="Octopus"}
echo ${var+"Forced value"}
echo ${var?"No such variable"}

The first of these prints out the contents of ‘$var’, if it is defined. If it is not defined the variable is
substituted for the string "No value set". The value of ‘var’ is not changed by this operation. It is only
for convenience.

The second command has the same effect as the first, but here the value of ‘$var’ is actually changed to
"Octopus" if ‘$var’ is not set.

The third version is slightly peculiar. If ‘$var’ is already set, its value will be forced to be "Forced
value", otherwise it is left undefined.

Finally the last instance issues an error message "No such variable" if ‘$var’ is not defined.

In Bash 2.x it is possible to extract parts of the string a variable is set to using the construction
${variable:offset:length}| as shown in the next example.

var="abcdefg"
middle=${var:2:3}
echo $middle
cde

An offset of 2 skips the first 2 characters and a string of length 3 is extracted from the middle of the
string.

Bash arrays

The original Bourne shell does not have arrays. Bash version 2.x does have arrays, however. An array
can be assigned from a string of words separated by whitespaces or the individual elements of the array
can be set individually.

colours=(red white green)
colours[3]="yellow"

An element of the array must be referred to using curly braces.

echo ${colours[1]}
white

Note that the first element of the array has index 0. The set of all elements is referred to by
${colours[*]}.

echo ${colours[*]}
red white green yellow
echo ${#colours[*]}
4

As seen the number of elements in an array is given by ${#colours[*]}.

Stdin, stdout, stderr and redirection to and from files

When the shell starts up, it inherits three files: ‘stdin’, ‘stdout’, and ‘stderr’. Standard input

normally comes from the keyboard. Standard output and standard error normally go to the screen. There
are times you want to read input from a file or send output of errors to a file. This can be accomplished
by using I/O redirection.

In Bash and the Bourne shell, the standard input/output files are referred to by numbers rather than by
names.

stdin File number 0
stdout

File number 1
stderr

File number 2

The default routes for these files can be changed by redirection. The output of the command echo is by
default sent to the screen, that is the stdout with file number 1 is sent to the screen. Using redirection
operators it is possible to redirect the standard out of echo to where we want it. We can send output to a
file with the following command.

echo "should be sent to a file" > file.txt

This creates a new file ‘file.txt’ containing the string ’should be sent to a file’. The redirection
operator could have been given as 1>, but it is understood that standard out is meant when skipping the
number of the file handle. The single ’>’ always creates a new file, while ’>>’ appends to the end of a
file.

If you had mistyped the command echo the result would have been:

ehco "should be sent to a file" > file.txt
bash: ehco: command not found

The standard error with file handle 2 is by default sent to the screen, independent of where standard out
(1) is sent. If you like you can redirect stdout to another or the same file.

ehco "should be sent to a file" > file.txt 2> error.txt
cat error.txt
bash: ehco: command not found

There are several ways to send stderr to the same file as stdin is redirected to. The following three
commands are equivalent.

ehco "should be sent to a file" >& file.txt
ehco "should be sent to a file" > file.txt 2> file.txt
ehco "should be sent to a file" > file.txt 2>&1

The string 2>&1 means that stderr(2) should be sent to the same file as stdout(1). This is the only why to
do this under the Bourne shell and this construction is therefore often seen in system shell scripts.

Furthermore it is possible to force a command which by default takes standard input from the keyboard,
to read input from a file by redirecting stdin. The mail-command expects input from keyboard, but the
’<’ redirection operator makes it send the password file to the user mark:

/bin/mail mark < /etc/passwd

The following table summarizes the most important redirection operators:

Redirection operator What it does

< Redirects input
> Redirects output
>> Appends output
2> Redirects error
>& Redirects output and error (Bash only)
2>&1 Redirects error where output (1) is going

Pipes

A pipe takes the output from the command on the left-hand side of the pipe symbol and sends it to the
input of the command on the right-hand side of the pipe symbol. A pipeline can consist of several pipes
and this makes pipes a very powerful tool. It enables us to combine all the small and efficient UNIX
commands in any thinkable way. If you want to count the number of people logged on, you could save
the output of the command who in the temporary file ‘tmp’, use wc -l to count the number of lines in
‘tmp’ and finally remove the temporary file.

$ who > tmp
$ wc -l tmp
 4 tmp
$ rm tmp

Using a pipe saves disk space and time: the stdout from who can be redirected to the stdin of wc -l
through a pipe and there is no need for temporarily storing the output from who.

$ who | wc -l
 4

Most UNIX-commands are constructed with piping in mind and this makes it possible to solve complex
tasks easily, by joining commands along a pipeline. Consider the following pipeline:

cat big.jpg | djpeg | pnmscale -pixels 150000 | cjpeg > small.jpg

The command cat sends the large JPEG-image to djpeg which decompresses it and sends the resulting
bitmap to stdout. The stream of data floats through the next pipe to pnmscale which scales the bitmap
image down to the given size. The scaled image is piped to the command cjpeg which compresses the
standard input and finally produces a JPEG-image of reduced size which is stored in the file
‘small.jpg’.

Command history

The history feature in Bash means that you do not have to type commands over and over again. You can
use the UP ARROW key to browse back through the list of commands you have typed previously and the
keys LEFT ARROW and RIGHT ARROW to edit these commands.

In addition there are a couple of commands which selects commands from the history list.

‘!!’ Execute the last command again.
‘!4’ Execute command number 4.

The first of these simply repeats the last command. The second command gives an absolute number. The
absolute command number can be seen by typing ‘history’.

Command/filename completion

In Bash you can save hours worth of typing errors by using the completion mechanism. This feature is
based on the TAB key.

The idea is that if you type half a filename and press TAB, the shell will try to guess the remainder of the
filename. It does this by looking at the files which match what you have already typed and trying to fill
in the rest. If there are several files which match, the shell sounds the "bell" or beeps. You can then type
TAB twice to obtain a list of the possible alternatives. Here is an example: suppose you have just a single
file in the current directory called ‘very_long_filename’, typing

more TAB

results in the following appearing on the command line

more very_long_filename

The shell was able to identify a unique file. Now suppose that you have two files called
‘very_long_filename’ and ‘very_big_filename’, typing

more TAB

results in the following appearing on the command line

more very_

and the shell beeps, indicating that the choice was not unique and a decision is required. Next, you type
TAB twice(3) to see which files you have to choose from and the shell lists them and returns you to the
command line, exactly where you were. You now choose ‘very_long_filename’ by typing ‘l’. This
is enough to uniquely identify the file. Pressing the TAB key again results in

more very_long_filename

on the screen. As long as you have written enough to select a file uniquely, the shell will be able to
complete the name for you.

Completion also works on shell commands, but it is a little slower since the shell must search through all
the directories in the command path to complete commands.

Single and double quotes

Two kinds of quotes can be used in shell apart from the backward quotes we mentioned above. The

essential difference between them is that certain shell commands work inside double quotes but not
inside single quotes. For example

cube$ echo /etc/rc*
/etc/rc.boot /etc/rc0.d /etc/rc1.d /etc/rc2.d /etc/rc3.d /etc/rc4.d

cube$ echo "/etc/rc*"
/etc/rc*

cube$ echo "‘whoami‘ -- my name is $USER"
mark -- my name is mark

cube$ echo ’‘whoami‘ -- my name is $USER’
‘whoami‘ -- my name is $USER

We see that the single quotes prevent variable substitution and sub-shells. Wildcards do not work inside
either single or double quotes.

Job control, break key, ‘fg’, ‘bg’

So far we haven’t mentioned UNIX’s ability to multitask. In the Bourne shell (‘sh’) there are no
facilities for controlling several user processes. Bash provides some commands for starting and stopping
processes. These originate from the days before windows and X11, so some of them may seem a little
old-fashioned. They are still very useful nonetheless.

Let’s begin by looking at the commands which are true for any shell. Most programs are run in the
foreground or interactively. That means that they are connected to the standard input and send their
output to the standard output. A program can be made to run in the background, if it does not need to use
the standard I/O. For example, a program which generates output and sends it to a file could run in the
background. In a window environment, programs which create their own windows can also be started as
background processes, leaving standard I/O in the shell free.

Background processes run independently of what you are doing in the foreground.

UNIX Processes and BSD signals

A background process is started using the special character ‘&’ at the end of the command line.

find / -name ’*lib*’ -print >& output &

The final ‘&’ on the end of this line means that the job will be run in the background. Note that this is
not confused with the redirection operator ‘>&’ since it must be the last character on the line. The
command above looks for any files in the system containing the string ‘lib’ and writes the list of files to
a file called ‘output’. This might be a useful way of searching for missing libraries which you want to
include in your environment variable ‘LD_LIBRARY_PATH’. Searching the entire disk from the root
directory ‘/’ could take a long time, so it pays to run this in the background.

If we want to see what processes are running, we can use the ‘ps’ command. ‘ps’ without any
arguments lists all of your processes, i.e. all processes owned by the user name you logged in with in the

current shell. ‘ps’ takes many options, for instance ‘ps auxg’ will list all processes in gruesome detail
(The "g" is for group, not gruesome!). ‘ps’ reads the kernel’s process tables directly.

Processes can be stopped and started, or killed one and for all. The ‘kill’ command does this. There
are, in fact, two versions of the ‘kill’ command. One of them is built into Bash and the other is not. If
you use Bash then you will never care about the difference. We shall nonetheless mention the special
features of Bash built-ins below. The kill command takes a number called a signal as an argument and
another number called the process identifier or PID for short. Kill send signals to processes. Some of
these are fatal and some are for information only. The two commands

kill -15 127
kill 127

are identical. They both send signal 15 to PID 127. This is the normal termination signal and it is often
enough to stop any process from running.

Programs can choose to ignore certain signals by trapping signals with a special handler. One signal they
cannot ignore is signal 9.

kill -9 127

is a sure way of killing PID 127. Even though the process dies, it may not be removed from the kernel’s
process table if it has a parent (see next section).

Here is the complete list of signals which the Linux kernel send to processes in different circumstances.

#define SIGHUP 1 /* Hangup (POSIX). */
#define SIGINT 2 /* Interrupt (ANSI). */
#define SIGQUIT 3 /* Quit (POSIX). */
#define SIGILL 4 /* Illegal instruction (ANSI). */
#define SIGTRAP 5 /* Trace trap (POSIX). */
#define SIGABRT 6 /* Abort (ANSI). */
#define SIGIOT 6 /* IOT trap (4.2 BSD). */
#define SIGBUS 7 /* BUS error (4.2 BSD). */
#define SIGFPE 8 /* Floating-point exception (ANSI). */
#define SIGKILL 9 /* Kill, unblockable (POSIX). */
#define SIGUSR1 10 /* User-defined signal 1 (POSIX). */
#define SIGSEGV 11 /* Segmentation violation (ANSI). */
#define SIGUSR2 12 /* User-defined signal 2 (POSIX). */
#define SIGPIPE 13 /* Broken pipe (POSIX). */
#define SIGALRM 14 /* Alarm clock (POSIX). */
#define SIGTERM 15 /* Termination (ANSI). */
#define SIGSTKFLT 16 /* Stack fault. */
#define SIGCLD SIGCHLD /* Same as SIGCHLD (System V). */
#define SIGCHLD 17 /* Child status has changed (POSIX). */
#define SIGCONT 18 /* Continue (POSIX). */
#define SIGSTOP 19 /* Stop, unblockable (POSIX). */
#define SIGTSTP 20 /* Keyboard stop (POSIX). */
#define SIGTTIN 21 /* Background read from tty (POSIX). */
#define SIGTTOU 22 /* Background write to tty (POSIX). */
#define SIGURG 23 /* Urgent condition on socket (4.2 BSD). */
#define SIGXCPU 24 /* CPU limit exceeded (4.2 BSD). */
#define SIGXFSZ 25 /* File size limit exceeded (4.2 BSD). */
#define SIGVTALRM 26 /* Virtual alarm clock (4.2 BSD). */
#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD). */

#define SIGWINCH 28 /* Window size change (4.3 BSD, Sun). */
#define SIGPOLL SIGIO /* Pollable event occurred (System V). */
#define SIGIO 29 /* I/O now possible (4.2 BSD). */
#define SIGPWR 30 /* Power failure restart (System V). */
#define SIGSYS 31 /* Bad system call. */

We have already mentioned 15 and 9 which are the main signals for users. Signal 1, or ‘HUP’ can be
sent to certain programs by the superuser. For instance

kill -1 <inetd>
kill -HUP <inetd>

which forces ‘inetd’ to reread its configuration file. Sometimes it is useful to suspend a process
temporarily and then restart it later.

kill -20 <PID> # suspend process <PID>
kill -18 <PID> # resume process <PID>

Child Processes and zombies

When you start a process from a shell, regardless of whether it is a background process or a foreground
process, the new process becomes a child of the original shell. Remember that the shell is just a UNIX
process itself. Moreover, if one of the children starts a new process then it will be a child of the child (a
grandchild?)! Processes therefore form hierarchies. Several children can have a common parent.

If we kill a parent, then (unless the child has detached itself from the parent) all of its children die too. If
a child dies, the parent is not affected. Sometimes when a child is killed, it does not die but becomes
"defunct" or a zombie process. This means that the child has a parent which is waiting for it to finish. If
the parent has not yet been informed that the child has died, for example because it has been suspended
itself, then the dead child is not removed from the kernel’s process table. When the parent wakes up and
receives the message that the child has terminated, the process entry for the dead child can be removed.

Bash builtins: ‘jobs’, ‘kill’, ‘fg’,‘bg’, break key

Now let’s look at some commands which are built into Bash for starting and stopping processes. Bash
refers to user programs as ‘jobs’ rather than processes -- but there is no real difference. The added bonus
of Bash is that each shell has a job number in addition to its PID. The job numbers are simpler and are
private for the shell, whereas the PIDs are assigned by the kernel and are often very large numbers
which are difficult to to remember. When a command is executed in the shell, it is assigned a job
number. If you never run any background jobs then there is only ever one job number: 1, since every job
exits before the next one starts. However, if you run background tasks, then you can have several jobs
"active" at any time. Moreover, by suspending jobs, Bash allows you to have several interactive
programs running on the same terminal -- the ‘fg’ and ‘bg’ commands allow you to move commands
from the background to the foreground and vice-versa.

Take a look at the following shell session.

cube$ emacs myfile&
[3] 771
cube$

 (other commands ... , edit myfile and close emacs)

When a background job is done, the shell prints a message at a suitable moment between prompts.

[3]+ Done emacs myfile
cube$

This tells you that job number 1 finished normally. If the job exits abnormally then the word ‘Done’
may be replaced by some other message. For instance, if you kill the job, it will say

cube$ kill %3
cube$
[3]+ Terminated emacs myfile
cube$

You can list the jobs you have running using the ‘jobs’ command. The output looks something like

cube$ jobs
[1] Terminated xdvi unix
[2] Running xemacs unix.texinfo &
[3] Running xterm -sb -sl 10000 &
[4] Running ghostview &
[5] Running netscape &
[6] Running xterm -sb -sl 10000 &
[7] Running xemacs fil &
[8]+ Stopped emacs unix.log
[9]- Running gimp &

To suspend a program which you are running in the foreground you can type CTRL-z (this is like
sending a ‘kill -20’ signal from the keyboard). (4) You can suspend any number of programs and
then restart them one at a time using ‘fg’ and ‘bg’. If you want job 5 to be restarted in the foreground,
you would type

fg %5

When you have had enough of job 5, you can type CTRL-z to suspend it and then type

fg %6

to activate job 6. Provided a job does not want to send output to ‘stdout’, you can restart any job in the
background, using a command like.

bg %4

This method of working was useful before windows were available. Using ‘fg’ and ‘bg’, you can edit
several files or work on several programs without have to quit to move from one to another.

See also some related commands for batch processing ‘at’, ‘batch’ and ‘atq’, ‘cron’.

NOTE: CTRL-c sends a ‘kill -2’ signal, which send a standard interrupt message to a program. This is
always a safe way to interrupt a shell command.

Arithmetic in Bash

In Bourne shell arithmetic is performed entirely ‘by proxy’. To evaluate an expression we call the
‘expr’ command or the ‘bc’ precision calculator. Here are some examples of ‘expr’

a=‘expr $a+1‘ # increment a
a=‘expr 4 + 10 * 5‘ # 4+10*5
check = ‘expr $a \> $b‘ # true=1, false=0. True if $a > $b

‘expr’ is very sensitive to spaces and backslash characters and this makes it a bit awkward to do
arithmetic under the Bourne shell.

Bash 2.0 provides a new and simpler way to do arithmetic using double parentheses. If you surround any
integer arithmetic expression as in ((x = y + 1)), you can perform most arithmetic operations with
the same syntax as in Java and C.

((x = 1))
echo $x
1
((x++))
((y = 4*x))
echo $y
8

Note that you do not need to use the dollar symbol to refer to a variable within the double parentheses
(but you may do it) and that spaces are allowed.

((sum = 2))
((total = 4*$sum + sum))
echo $total
10

The variables within double parentheses are throughout treated as integers. Assigning a float value like
2.5 to a variable results in an syntax error while assigning a string to a variable cause the string to be
stored as zero.

Scripts and arguments

Scripts are created by making an executable file which begins with the sequence of characters

#!/bin/bash

This construction is quite general: any executable file which begins with a sequence

#!myprogram -option

will cause the shell to attempt to execute

myprogam -option filename

where filename is the name of the file.

If a script is to accept arguments then these can be referred to as ‘ $1 $2 $3..$9’. There is a logical
limit of nine arguments to a Bourne script, but Bash handles the next arguments as ‘${10}’. ‘$0’ is the

name of the script itself.

Here is a simple Bash script which prints out all its arguments.

#!/bin/bash

Print all arguments (version 1)
#

for arg in $*
do
 echo Argument $arg
done

echo Total number of arguments was $#

The ‘$*’ symbol stands for the entire list of arguments and ‘$#’ is the total number of arguments.

Another way of achieving the same is to use the ‘shift’ command. We shall meet this again in the Perl
programming language. ‘shift’ takes the first argument from the argument list and deletes it, moving
all of the other arguments down one number -- this is how we can handle long lists of arguments in the
Bourne shell.

#!/bin/bash
#
Print all arguments (version 2)
#

while (true)
do
 arg=$1;
 shift;
 echo $arg was an argument;
 if [$# -eq 0]; then
 break
 fi
done

Return codes

All programs which execute in UNIX return a value through the C ‘return’ command. There is a
convention that a return value of zero (0) means that everything went well, whereas any other value
implies that some error occurred. The return value is usually the value returned in ‘errno’, the external
error variable in C.

Shell scripts can test for these values either by placing the command directly inside an ‘if’ test, or by
testing the variable ‘$?’ which is always set to the return code of the last command. Some examples are
given following the next two sections.

Tests and conditionals

Bash and the Bourne shell has an array of tests. They are written as follows. Notice that ‘test’ is itself
not a part of the shell, but is a program which works out conditions and provides a return code. See the
manual page on ‘test’ for more details.

test -f file
True if the file is a plain file

test -d file
True if the file is a directory

test -r file
True if the file is readable

test -w file
True if the file is writable

test -x file
True if the file is executable

test -s file
True if the file contains something

test -g file
True if setgid bit is set

test -u file
True if setuid bit is set

test s1 = s2
True if strings s1 and s2 are equal

test s1 != s2
True if strings s1 and s2 are unequal

test x -eq y
True if the integers x and y are numerically equal

test x -ne y
True if integers are not equal

test x -gt y
True if x is greater than y

test x -lt y
True if x is less than y

test x -ge y
True if x>=y

test x -le y
True if x <= y

! Logical NOT operator
-a Logical AND
-o Logical OR

Note that an alternate syntax for writing these commands if to use the square brackets, instead of writing
the word test.

 [$x -lt $y] "==" test $x -lt $y

Just as with the arithmetic expressions, Bash 2.x provides a syntax for conditionals which are more
similar to Java and C. While arithmetic C-like expressions can be used within double parentheses, C-like
tests can be used within double square brackets.

 [[$var == "OK" || $var == "yes"]]

This C-like syntax is not allowed in the Bourne shell, but is equivalent to

[$var = "OK" -o $var = "yes"]

which is valid in both shells.

Arithmetic C-like tests can be used within double parentheses so that under Bash 2.x the following tests
are equivalent:

 [$x -lt $y] "==" ((x < y))

Conditional structures

The conditional structures have the following syntax.

if UNIX-command
then
 command
else
 commands
fi

The ‘else’ clause is, of course, optional. As noted before, the first UNIX command could be anything,
since every command has a return code. The result is TRUE if it evaluates to zero and false otherwise
(in contrast to the conventions in most languages). Multiple tests can be made using

if UNIX-command
then
 commands
elif UNIX-command
then
 commands
elif UNIX-command
then
 commands
else
 commands
fi

where ‘elif’ means ‘else-if’.

The equivalent of the C-school’s ‘switch’ statement is a more Pascal-like ‘case’ structure.

case UNIX-command-or-variable in

 wildcard1) commands ;;
 wildcard2) commands ;;
 wildcard3) commands ;;

esac

This structure uses the wildcards to match the output of the command or variable in the first line. The
first pattern which matches gets executed.

Input from the user in Bash

In shell you can read the value of a variable using the ‘read’ command, with syntax

read variable

This reads in a string from the keyboard and terminates on a newline character. Under the old Bourne
shell another way to do this is to use the ‘input’ command to access a particular logical device. The
keyboard device in the current terminal is ‘/dev/tty’, so that one writes

variable = ‘line < /dev/tty‘

which fetches a single line from the user. The command line is however not available in most
GNU/Linux distributions.

Here are some examples of these commands. First a program which asks yes or no...

#!/bin/bash
#
Yes or no
#

echo "Please answer yes or no: "

read answer

case $answer in

 y* | Y* | j* | J*) echo YES!! ;;

 n* | N*) echo NO!! ;;

 *) echo "Can’t you answer a simple question?"

esac

echo The end

Notice the use of pattern matching and the ‘|’ ‘OR’ symbol.

#!/bin/bash
#
Kernel check
#

if test ! -f /vmUNIX # Check that the kernel is there!
then
 echo "This is not BSD UNIX...hmmm"
 if [-f /hp-ux]
 then
 echo "It’s a Hewlett Packard machine!"
 fi
elif [-w /vmUNIX]
then
 echo "HEY!! The kernel is writable my me!";
else

 echo "The kernel is write protected."
 echo "The system is safe from me today."
fi

Loops in Bash

The loop structures in Bash and in the Bourne shell have the following syntax.

while UNIX-command
do
 commands
done

The first command will most likely be a test but, as before, it could in principle be any UNIX command.
The ‘until’ loop, reminiscent of BCPL, carries out a task until its argument evaluates to TRUE.

until UNIX-command
do
 commands
done

Finally the ‘for’ structure has already been used above.

for variable in list
do
 commands
done

Often we want to be able to use an array of values as the list which for parses, but Bourne shell has no
array variables. This problem is usually solved by making a long string separated by, for example,
colons. For example, the $PATH variable has the form

PATH = /usr/bin:/bin:/local/gnu/bin

Bourne shell allows us to split such a string on whatever character we wish. Normally the split is made
on spaces, but the variable ‘IFS’ can be defined with a replacement. To make a loop over all directories
in the command path we would therefore write

IFS=:

for name in $PATH; do

 commands

done

The best way to gain experience with these commands is through some examples.

#!/bin/bash
#
Get text from user repeatedly
#

echo "Type away..."

while read TEXT
do

 echo You typed $TEXT

 if ["$TEXT" = "quit"]; then
 echo "(So I quit!)"
 exit 0
 fi

done

echo "HELP!"

This very simple script is a typical use for a while-loop. It gets text repeatedly until the user type ‘quit’.
Since read never returns ‘false’ unless an error occurs or it detects an EOF (end of file) character
CTRL-D, it will never exit without some help from an ‘if’ test. If it does receive a CTRL-D signal, the
script prints ‘HELP!’.

#!/bin/bash
#
Watch in the background for a particular user
and give alarm if he/she logs in
#
To be run in the background, using &
#

if [$# -ne 1]; then
 echo "Give the name of the user as an argument" > /dev/tty
 exit 1
fi

echo "Looking for $1"

until users | grep -s $1
do
 sleep 60
done

echo "!!! WAKE UP !!!" > /dev/tty
echo "User $1 just logged in" > /dev/tty

This script uses ‘grep’ in ‘silent mode’ (-s option). i.e. grep never writes anything to the terminal. The
only thing we are interested in is the return code the piped command produces. If ‘grep’ detects a line
containing the username we are interested in, then the result evaluates to TRUE and the sleep-loop exits.

Our final example is the kind of script which is useful for a system administrator. It transfers over the
Network Information Service database files so that a slave server is up to date. All we have to do is
make a list of the files and place it in a ‘for’ loop. The names used below are the actual names of the
NIS maps, well known to system administrators.

#!/bin/bash
#
Update the NIS database maps on a client server. This program
shouldn’t have to be run, but sometimes things go wrong and we

have to force a download from the main sever.
#
PATH=/etc/yp:/usr/etc/yp:$PATH

MASTER=myNISserver

for map in auto.direct auto.master ethers.byaddr ethers.byname\
 group.bygid group.byname hosts.byaddr hosts.byname\
 mail.aliases netgroup.byhost netgroup.byuser netgroup\
 netid.byname networks.byaddr networks.byname passwd.byname\
 passwd.byuid priss.byname protocols.byname protocols.bynumber\
 rpc.bynumber services.byname services usenetgroups.byname;
do
 ypxfr $1 -h $MASTER $map
done

Procedures and traps

One of the worthy features of the Bourne shell is that it allows you to define subroutines or procedures.
Subroutines work just like subroutines in any other programming language. They are executed in same
shell (not as a sub-process).

Here is an interesting program which demonstrates two useful things at the same time. First of all, it
shows how to make a hierarchical subroutine structure using the Bourne shell. Secondly, it shows how
the ‘trap’ directive can be used to trap signals, so that Bourne shell programs can exit safely when they
are killed or when CTRL-C is typed.

#!/bin/bash
#
How to make a signal handler in Bourne Shell
using subroutines
#

###
Level 2
###

ReallyQuit()
{
while true
do
 echo "Do you really want to quit?"
 read answer

 case $answer in

 y* | Y*) return 0;;
 *) echo "Resuming..."
 return 1;;

 esac

done
}

###
Level 1

###

SignalHandler()

{
if ReallyQuit # Call a function
then
 exit 0
else
 return 0
fi
}

###
Level 0 : main program
###

trap SignalHandler 2 15 # Trap kill signals 2 and 15

echo "Type some lines of text..."

while read text
do

 echo "$text - CTRL-C to exit"

done

Note that the logical tree structure of this program is upside down (the highest level comes at the
bottom). This is because all subroutines must be defined before they are used.

This example concludes our survey of Bash and the Bourne shell.

setuid and setgid scripts

The superuser ‘root’ is the only privileged user in UNIX. All other users have only restricted access to
the system. Usually this is desirable, but sometimes it is a nuisance.

A setuid script is a script which has its setuid-bit set. When such a script is executed by a user, it is run
with all the rights and privileges of the owner of the script. All of the commands in the script are
executed as the owner of the file and not with the user-id of the person who ran the script. If the owner
of the setuid script is ‘root’ then the commands in the script are run with root privileges!

Setuid scripts are clearly a touchy security issue. When giving away one’s rights to another user
(especially those of ‘root’) one is tempting hackers. Setuid scripts should be avoided.

A setgid program is almost the same, but only the group id is set to that of the owner of the file. Often
the effect is the same.

An example of a setuid program is the ‘ps’ program. ‘ps’ lists all of the processes running in the
kernel. In order to do this it needs permission to access the private data structures in the kernel. By
making ‘ps’ setgid root, it allows ordinary users to be able to read as much as the writers of ‘ps’
thought fit, but no more.

Naturally, only the superuser can make a file setuid or setgid root.

Exercises

1. Write an improved ‘which’ command in Bash.
2. Make a counter program which records in a file how many times you log in to your account. You

can call this in your .bashrc file.
3. Make a Bourne shell script to kill all the processes owned by a particular user. (Note, that if you

are not the superuser, you cannot kill processes owned by other users.)
4. Write a script to replace the ‘rm’ command with something safer. Think about a way of

implementing ‘rm’ so that it is possible to get deleted files back again in case of emergencies.
This is not possible using the normal ‘rm’ command. Hint: save files in a hidden directory
‘.deleted’. Make your script delete files in the ‘.deleted’ directory if they are older than a
week, so that you don’t fill up the disk with rubbish.

5. Suppose you have a bunch of files with a particular file-extension: write a script in Bash to change
the extension to something else. e.g. to change *.C into *.c. Give the old and new extensions as
arguments to the script.

6. Write a program in Bash to search for files in the current directory which contain a certain string.
e.g. search for all files which contain the word "if". Hint: use the "find" command.

7. Use the manual pages to find out about the commands ‘at’, ‘batch’ and ‘atq’. Test these
commands by executing the shell command ‘date’ at some time of your choice. Use the ‘-m’
option so that the result of the job is mailed to you.

8. Write a script in Bash to list all of the files bigger than a certain size starting from the current
directory, and including all subdirectories. This kind of program is useful for system
administrators when a disk becomes full.

C shell
Programmers who are used to C or C++ often find it easier to program in C-shell because there are
strong similarities between the two.

.cshrc and .login files

Most users run the C-shell ‘/bin/csh’ as their login environment, or these days, preferably the ‘tcsh’
which is an improved version of csh. When a user logs in to a UNIX system the C-shell starts by reading
some files which configure the environment by defining variables like path.

The file ‘.cshrc’ is searched for in your home directory. i.e. ‘~/.cshrc’. If it is found, its
contents are interpreted by the C-shell as C-shell instructions, before giving you the command
prompt(5).
If and only if this is the login shell (not a sub-shell that you have started after login) then the file
‘~/.login’ is searched for and executed.

With the advent of the X11 windowing system, this has changed slightly. Since the window system
takes over the entire login procedure, users never get to run ‘login shells’, since the login shell is used up

by the X11 system. On an X-terminal or host running X the ‘.login’ file normally has no effect.

With some thought, the ‘.login’ file can be eliminated entirely, and we can put everything into the
.cshrc file. Here is a very simple example ‘.cshrc’ file.

#
.cshrc - read in by every csh that starts.
#

Set the default file creation mask
umask 077

Set the path
set path=(/usr/local/bin /usr/bin/X11 /usr/ucb /bin /usr/bin .)

Exit here if the shell is not interactive
if ($?prompt == 0) exit

Set some variables

set noclobber notify filec nobeep
set history=100
set prompt="‘hostname‘%"
set prompt2 = "%m %h>" # tcsh, prompt for foreach and while

setenv PRINTER myprinter
setenv LD_LIBRARY_PATH /usr/lib:/usr/local/lib:/usr/openwin/lib

Aliases are shortcuts to UNIX commands

alias passwd yppasswd
alias dir ’ls -lg \!* | more’
alias sys ’ps aux | more’
alias h history

It is possible to make a much more complicated .cshrc file than this. The advent of distributed
computing and NFS (Network file system) means that you might log into many different machines
running different versions of UNIX. The command path would have to be set differently for each type of
machine.

Defining variables with set, setenv

We have already seen in the examples above how to define variables in C-shell. Let’s formalize this. To
define a local variable -- that is, one which will not get passed on to programs and sub-shells running
under the current shell, we write

set local = "some string"
set myname = "‘whoami‘"

These variables are then referred to by using the dollar ‘$’ symbol. i.e. The value of the variable
‘local’ is ‘$local’.

echo $local $myname

Global variables, that is variables which all sub-shells inherit from the current shell are defined using

‘setenv’

setenv GLOBAL "Some other string"
setenv MYNAME "‘who am i‘"

Their values are also referred to using the ‘$’ symbol. Notice that set uses an ‘=’ sign while ‘setenv’
does not.

Variables can be also created without a value. The shell uses this method to switch on and off certain
features, using variables like ‘noclobber’ and ‘noglob’. For instance

nexus% set flag
nexus% if ($?flag) echo ’Flag is set!’
Flag is set!
nexus% unset flag
nexus% if ($?flag) echo ’Flag is set!’
nexus%

The operator ‘$?variable’ is ‘true’ if variable exists and ‘false’ if it does not. It does not matter
whether the variable holds any information.

The commands ‘unset’ and ‘unsetenv’ can be used to undefine or delete variables when you don’t
want them anymore.

Arrays

A useful facility in the C-shell is the ability to make arrays out of strings and other variables. The round
parentheses ‘(..)’ do this. For example, look at the following commands.

nexus% set array = (a b c d)
nexus% echo $array[1]
a
nexus% echo $array[2]
b
nexus% echo $array[$#array]
d

nexus% set noarray = ("a b c d")
nexus% echo $noarray[1]
a b c d
nexus% echo $noarray[$#noarray]
a b c d

The first command defines an array containing the elements ‘a b c d’. The elements of the array are
referred to using square brackets ‘[..]’ and the first element is ‘$array[1]’. The last element is
‘$array[4]’. NOTE: this is not the same as in C or C++ where the first element of the array is the
zeroth element!

The special operator ‘$#’ returns the number of elements in an array. This gives us a simple way of
finding the end of the array. For example

nexus% echo $#path
23

nexus% echo "The last element in path is $path[$#path]"
The last element in path is .

To find the next last element we need to be able to do arithmetic. We’ll come back to this later.

Pipes and redirection in csh

The symbols

 < > >> << | &

have a special meaning in the shell. By default, most commands take their input from the file ‘stdin’
(the keyboard) and write their output to the file ‘stdout’ and their error messages to the file ‘stderr’
(normally, both of these output files are defined to be the current terminal device ‘/dev/tty’, or
‘/dev/console’).

‘stdin’, ‘stdout’ and ‘stderr’, known collectively as ‘stdio’, can be redefined or redirected so
that information is taken from or sent to a different file. The output direction can be changed with the
symbol ‘>’. For example,

echo testing > myfile

produces a file called ‘myfile’ which contains the string ‘testing’. The single ‘>’ (greater than) sign
always creates a new file, whereas the double ‘>>’ appends to the end of a file, if it already exists. So
the first of the commands

echo blah blah >> myfile
echo Newfile > myfile

adds a second line to ‘myfile’ after ‘testing’, whereas the second command writes over ‘myfile’ and
ends up with just one line ‘Newfile’.

Now suppose we mistype a command

ehco test > myfile

The command ‘ehco’ does not exist and so the error message ‘ehco: Command not found’ appears
on the terminal. This error message was sent to stderr -- so even though we redirected output to a file,
the error message appeared on the screen to tell us that an error occurred. Even this can be changed.
‘stderr’ can also be redirected by adding an ampersand ‘&’ character to the ‘>’ symbol. The
command

ehco test >& myfile

results in the file ‘myfile’ being created, containing the error message ‘ehco: Command not found’.

The input direction can be changed using the ‘<’ symbol for example

/bin/mail mark < message

would send the file ‘message’ to the user ‘mark’ by electronic mail. The mail program takes its input

from the file instead of waiting for keyboard input.

There are some refinements to the redirection symbols. First of all, let us introduce the C-shell variable
‘noclobber’. If this variable is set with a command like

set noclobber

then files will not be overwritten by the ‘>’ command. If one tries to redirect output to an existing file,
the following happens.

UNIX% set noclobber
UNIX% touch blah # create an empty file blah
UNIX% echo test > blah
blah: File exists.

If you are nervous about overwriting files, then you can set ‘noclobber’ in your ‘.cshrc’ file.
‘noclobber’ can be overridden using the pling ‘!’ symbol. So

UNIX% set noclobber
UNIX% touch blah # create an empty file blah
UNIX% echo test >! blah

writes over the file ‘blah’ even though ‘noclobber’ is set.

Here are some other combinations of redirection symbols

‘>>’ Append, including ‘stderr’
‘>>!’

Append, ignoring ‘noclobber’
‘>>&!’

Append ‘stdout’, ‘stderr’, ignore ‘noclobber’
‘<<’ See below.

The last of these commands reads from the standard input until it finds a line which contains a word. It
then feeds all of this input into the program concerned. For example,

nexus% mail mark <<quit
nexus 1> Hello mark
nexus 2> Nothing much to say...
nexus 2> so bye
nexus 2>
nexus 2> quit
Sending mail...
Mail sent!

The mail message contains all the lines up to, but not including ‘marker’. This method can also be used
to print text verbatim from a file without using multiple echo commands. Inside a script one may write:

cat << "marker";

 MENU

 1) choice 1
 2) choice 2

 ...

marker

The cat command writes directly to stdout and the input is redirected and taken directly from the script
file.

A very useful construction is the ‘pipe’ facility. Using the ‘|’ symbol one can feed the ‘stdout’ of one
program straight into the ‘stdin’ of another program. Similarly with ‘|&’ both ‘stdout’ and
‘stderr’ can be piped into the input of another program. This is very convenient. For instance, look up
the following commands in the manual and try them.

ps aux | more
echo ’Keep on sharpening them there knives!’ | mail henry
vmstat 1 | head
ls -l /etc | tail

Note that when piping both standard input and standard error to another program, the two files do not
mix synchronously. Often ‘stderr’ appears first.

‘tee’ and ‘script’

Occasionally you might want to have a copy of what you see on your terminal sent to a file. ‘tee’ and
‘script’ do this. For instance,

find / -type l -print | tee myfile

sends a copy of the output of ‘find’ to the file ‘myfile’. ‘tee’ can split the output into as many files as
you want:

command | tee file1 file2

You can also choose to record the output an entire shell session using the ‘script’ command.

nexus% script mysession
Script started, file is mysession

nexus% echo Big brother is scripting you
Big brother is scripting you

nexus% exit
exit
Script done, file is mysession

The file ‘mysession’ is a text file which contains a transcript of the session.

Scripts with arguments

One of the useful features of the shell is that you can use the normal UNIX commands to make
programs called scripts. To make a script, you just create a file containing shell commands you want to
execute and make sure that the first line of the file looks like the following example.

#!/bin/csh -f
#
A simple script: check for user’s mail
#
#

set path = (/bin /usr/ucb) # Set the local path

cd /var/spool/mail # Change dir

foreach uid (*)

 echo "$uid has mail in the intray! " # space prevents an error!

end

The sequence ‘#!/bin/csh’ means that the following commands are to be fed into ‘/bin/csh’. The
two symbols ‘#!’ must be the very first two characters in the file. The ‘-f’ option means that your
‘.cshrc’ file is not read by the shell when it starts up. The file containing this script must be executable
(see ‘chmod’) and must be in the current path, like all other programs.

Like C programs, C-shell scripts can accept command line arguments. Suppose you want to make a
program to say hello to some other users who are logged onto the system.

say-hello mark sarah mel

To do this you need to know the names that were typed on the command line. These names are copied
into an array in the C-shell called the argument vector, or ‘argv’. To read these arguments, you just
treat ‘argv’ as an array.

#!/bin/csh -f
#
Say hello
#

foreach name ($argv)

 echo Saying hello to $name
 echo "Hello from $user! " | write $name

end

The elements of the array can be referred to as ‘argv[1]’..‘argv[$#argv]’ as usual. They can also be
referred to as ‘$1’..‘$3’ up to the last acceptable number. This makes C-shell compatible with the
Bourne shell as far as arguments are concerned. One extra flourish in this method is that you can also
refer to the name of the program itself as ‘$0’. For example,

#!/bin/csh -f

echo This is program $0 running for $user

‘$argv’ represents all the arguments. You can also use ‘$*’ from the Bourne shell.

Sub-shells ()

The C-shell does not allow you to define subroutines or functions, but you can create a local shell, with
its own private variables by enclosing commands in parentheses.

#!/bin/csh

cd /etc

(cd /usr/bin; ls *) > myfile

pwd

This program changes the working directory to /etc and then executes a subshell which inside the
brackets changes directory to /usr/bin and lists the files there. The output of this private shell are sent to
a file ‘myfile’. At the end we print out the current working directory just to show that the ‘cd’
command in brackets had no effect on the main program.

Normally both parentheses must be on the same line. If a subshell command line gets too long, so that
the brackets are not on the same line, you have to use backslash characters to continue the lines,

(command \
 command \
 command \
)

Tests and conditions

No programming language would be complete without tests and loops. C-shell has two kinds of decision
structure: the ‘if..then..else’ and the ‘switch’ structure. These are closely related to their C
counterparts. The syntax of these is

if (condition) command

if (condition) then
 command
 command..
else
 command
 command..
endif

switch (string)

 case one:
 commands
 breaksw

 case two:
 commands
 breaksw

 ...

endsw

In the latter case, no commands should appear on the same line as a ‘case’ statement, or they will be
ignored. Also, if the ‘breaksw’ commands are omitted, then control flows through all the commands for
case 2, case 3 etc, exactly as it does in the C programming language.

We shall consider some examples of these statements in a moment, but first it is worth listing some
important tests which can be used in ‘if’ questions to find out information about files.

‘-r file’
True if the file exists and is readable

‘-w file’
True if the file exists and is writable

‘-x file’
True if the file exists and is executable

‘-e file’
True if the file simply exists

‘-z file’
True if the file exists and is empty

‘-f file’
True if the file is a plain file

‘-d file’
True if the file is a directory

We shall also have need of the following comparison operators.

‘==’ is equal to (string comparison)
‘!=’ is not equal to
‘>’ is greater than
‘<’ is less than
‘>=’ is greater than or equal to
‘<=’ is less than or equal to
‘=~’ matches a wildcard
‘!~’ does not match a wildcard

The simplest way to learn about these statements is to use them, so we shall now look at some examples.

#!/bin/csh -f
#
Safe copy from <arg[1]> to <arg[2]>
#
#

if ($#argv != 2) then

 echo "Syntax: copy <from-file> <to-file>"
 exit 0

endif

if (-f $argv[2]) then

 echo "File exists. Copy anyway?"

 switch ($<) # Get a line from user

 case y:
 breaksw

 default:
 echo "Doing nothing!"
 exit 0

 endsw

endif

echo -n "Copying $argv[1] to $argv[2]..."
cp $argv[1] $argv[2]
echo done

endif

This script tries to copy a file from one location to another. If the user does not type exactly two
arguments, the script quits with a message about the correct syntax. Otherwise it tests to see whether a
plain file has the same name as the file the user wanted to copy to. If such a file exists, it asks the user if
he/she wants to continue before proceeding to copy.

Switch example: configure script

Here is another example which compiles a software package. This is a problem we shall return to later
See section Make. The problem this script tries to address is the following. There are many different
versions of UNIX and they are not exactly compatible with one another. The program this file compiles
has to work on any kind of UNIX, so it tries first to determine what kind of UNIX system the script is
being run on by calling ‘uname’. Then it defines a variable ‘MAKE’ which contains the path to the
‘make’ program which will build software. The make program reads a file called ‘Makefile’ which
contains instructions for compiling the program, but this file needs to know the type of UNIX, so the
script first copies a file ‘Makefile.src’ using ‘sed’ replace a dummy string with the real name of the
UNIX. Then it calls make and sets the correct permission on the file using ‘chmod’.

#!/bin/csh -f
###
#
#
CONFIGURE Makefile AND BUILD software
#
#
###

set NAME = (‘uname -r -s‘)

switch ($NAME[1])

 case SunOS*:

 switch ($NAME[2])

 case 4*:
 setenv TYPE SUN4
 setenv MAKE /bin/make
 breaksw
 case 5*:
 setenv TYPE SOLARIS
 setenv MAKE /usr/ccs/bin/make
 breaksw

 endsw
 breaksw

 case ULTRIX*:
 setenv TYPE ULTRIX
 setenv MAKE /bin/make
 breaksw
 case HP-UX*:
 setenv TYPE HPUX
 setenv MAKE /bin/make
 breaksw
 case AIX*:
 setenv TYPE AIX
 setenv MAKE /bin/make
 breaksw

 case OSF*:
 setenv TYPE OSF
 setenv MAKE /bin/make
 breaksw
 case IRIX*:
 setenv TYPE IRIX
 setenv MAKE /bin/make
 breaksw

 default:
 echo Unknown architecture $NAME[1]

endsw

 # Generate Makefile from source file

sed s/HOSTTYPE/$TYPE/ Makefile.src > Makefile

echo "Making software. Type CTRL-C to abort and edit Makefile"

$MAKE software # call make to build program
chmod 755 software # set correct protection

Loops in csh

The C-shell has three loop structures: ‘repeat’, ‘while’ and ‘foreach’. We have already seen some
examples of the ‘foreach’ loop.

The structure of these loops is as follows

repeat number-of-times command

while (test expression)

 commands

end

foreach control-variable (list-or-array)

 commands

end

The commands ‘break’ and ‘continue’ can be used to break out of the loops at any time. Here are
some examples.

repeat 2 echo "Yo!" | write mark

This sends the message "Yo!" to mark’s terminal twice.

repeat 5 echo ‘echo "Shutdown time! Log out now" | wall ; sleep 30‘ ; halt

This example repeats the command ‘echo Shutdown time...’ five times at 30 second intervals, before
shutting down the system. Only the superuser can run this command! Note the strange construction with
‘echo echo’. This is to force the repeat command to take two shell commands as an argument. (Try to
explain why this works for yourself.)

Input from the user

Test a user response

echo "Answer y/n (yes or no)"

set valid = false

while ($valid == false)

 switch ($<)

 case y:
 echo "You answered yes"
 set valid = true
 breaksw

 case n:
 echo "You answered no"
 set valid = true
 breaksw

 default:
 echo "Invalid response, try again"
 breaksw

 endsw

end

Notice that it would have been simpler to replace the two lines

 set valid = true
 breaksw

by a single line ‘break’. ‘breaksw’ jumps out of the switch construction, after which the ‘while’ test
fails. ‘break’ jumps out of the entire while loop.

Extracting parts of a pathname

A path name consists of a number of different parts:

The path to the directory where a file is held.
The name of the file itself.
The file extension (after a dot).

By using one of the following modifiers, we can extract these different elements.

‘:h’ The path to the file
‘:t’ The filename itself
‘:e’ The file extension
‘:r’ The complete file-path minus the file extension

Here are some examples and the results:

set f = ~/progs/c++/test.C

echo $f:h

 /home/mark/progs/c++

echo $f:t

 test.C

echo $f:e

 C
echo $f:r

 /home/mark/progs/c++/test

Arithmetic

Before using these features in a real script, we need one more possibility: numerical addition,
subtraction and multiplication etc.

To tell the C-shell that you want to perform an operation on numbers rather than strings, you use the ‘@’
symbol followed by a space. Then the following operations are possible.

@ var = 45 # Assign a numerical value to var
echo $var # Print the value

@ var = $var + 34 # Add 34 to var
@ var += 34 # Add 34 to var

@ var -= 1 # subtract 1 from var
@ var *= 5 # Multiply var by 5

@ var /= 3 # Divide var by 3 (integer division)
@ var %= 3 # Remainder after dividing var by 3

@ var++ # Increment var by 1
@ var-- # Decrement var by 1

@ array[1] = 5 # Numerical array

@ logic = ($x > 6 && $x < 10) # AND
@ logic = ($x > 6 || $x < 10) # OR
@ false = ! $var # Logical NOT

@ bits = ($x | $y) # Bitwise OR
@ bits = ($x ^ $y) # Bitwise XOR
@ bits = ($x & $y) # Bitwise AND

@ shifted = ($var >> 2) # Bitwise shift right
@ back = ($var << 2) # Bitwise shift left

These operators are precisely those found in the C programming language.

Examples

The following script uses the operators in the last two sections to take a list of files with a given file
extension (say ‘.doc’) and change it for another (say ‘.tex’). This is a partial solution to the limitation
of not being able to do multiple renames in shell.

#!/bin/csh -f
###
#
Change file extension for multiple files
#
###

if ($#argv < 2) then
 echo Syntax: chext oldpattern newextension
 echo "e.g: chext *.doc tex "
 exit 0
endif

mkdir /tmp/chext.$user # Make a scratch area

set newext="$argv[$#argv]" # Last arg is new ext
set oldext="$argv[1]:e"

echo "Old extension was ($oldext)""
echo "New extension ($newext) -- okay? (y/n)"

switch($<)

 case y:
 breaksw
 default:
 echo "Nothing done."
 exit 0
endsw

##
Remove the last file extension from files
##

 i = 0

foreach file ($argv)

 i++
 if ($i == $#argv) break
 cp $file /tmp/chext.$user/$file:r # temporary store

end

###
Add .newext file extension to files
###

set array = (‘ls /tmp/chext.$user‘)

foreach file ($array)

 if (-f $file.$newext) then
 echo destination file $file.$newext exists. No action taken.
 continue
 endif

 cp /tmp/chext.$user/$file $file.$newext
 rm $file.$oldext

end

rm -r /tmp/chext.$user

Here is another example to try to decipher. Use the manual pages to find out about ‘awk’. This script
can be written much more easily in Perl or C, as we shall see in the next chapters. It is also trivially
implemented as a script in the system administration language cfengine.

#!/bin/csh -f
###
#
KILL all processes owned by $argv[1] with PID > $argv[2]
#
###

if ("‘whoami‘" != "root") then
 echo Permission denied
 exit 0
endif

if ($#argv < 1 || $#argv > 2) then

 echo Usage: KILL username lowest-pid
 exit 0
endif

if ($argv[1] == "root") then
 echo No! Too dangerous -- system will crash
 exit 0
endif

##
Kill everything
##

if ($#argv == 1) then

 set killarray = (‘ps aux | awk ’{ if ($1 == user) \
{printf "%s ",$2}}’ user=$argv[1]‘)

 foreach process ($killarray)

 kill -1 $process
 kill -15 $process > /dev/null
 kill -9 $process > /dev/null

 if ("‘kill -9 $process | egrep -e ’No such process’‘" == "") then
 echo "Warning - $process would not die - try again"
 endif
 end

###
Start from a certain PID
###

else if ($#argv == 2) then

 set killarray = (‘ps aux | awk ’{ if ($1 == user && $2 > uid) \
{printf "%s ",$2}}’ user=$argv[1] uid=$argv[2]‘)

 foreach process ($killarray)

 kill -1 $process > /dev/null
 kill -15 $process
 sleep 2
 kill -9 $process > /dev/null

 if ("‘kill -9 $process | egrep -e ’No such process’‘" == "") then
 echo "Warning - $process would not die - try again"
 endif
 end

endif

This program would be better written in C or Perl.

Summary: Limitations of shell programming

To summarize the last two long and oppressive chapters we shall take a step back from the details and
look at what we have achieved.

The idea behind the shell is to provide a user interface, with access to the system’s facilities at a simple
level. In the 70’s user interfaces were not designed to be user-friendly. The UNIX shell is not
particularly use friendly, but it is very powerful. Perhaps it would have been enough to provide only
commands to allow users to write C programs. Since all of the system functions are available from C,
that would certainly allow everyone to do what anything that UNIX can do. But shell programming is
much more immediate than C. It is an environment of frequently used tools. Also for quick
programming solutions: C is a compiled language, whereas the shell is an interpreter. A quick shell
program can solve many problems in no time at all, without having to compile anything.

Shell programming is only useful for ‘quick and easy’ programs. To use it for anything serious is an
abuse. Programming difficult things in shell is clumsy, and it is difficult to get returned-information
(like error messages) back in a useful form. Besides, shell scripts are slow compared to real programs
since they involve starting a new program for each new command.

These difficulties are solved partly by Perl, which we shall consider next -- but in the final analysis, real
programs of substance need to be written in C. Contrary to popular belief, this is not more difficult than
programming in the shell -- in fact, many things are much simpler, because all of the shell commands
originated as C functions. The shell is an extra layer of the UNIX onion which we have to battle our way
through to get where we’re going.

Sometimes it is helpful to be shielded from low level details -- sometimes it is a hindrance. In the
remaining chapters we shall consider more involved programming needs.

Perl
So far, we have been looking at shell programming for performing fairly simple tasks. Now let’s extend
the idea of shell programming to cover more complex tasks like systems programming and network
communications. Perl is a language which was designed to retain the immediateness of shell languages,
but at the same time capture some of the flexibility of C. Perl is an acronym for Practical extraction and
report language. In this chapter, we shall not aim to teach Perl from scratch -- the best way to learn it is
to use it! Rather we shall concentrate on demonstrating some principles.

Sed and awk, cut and paste

One of the reasons for using Perl is that it is extremely good at textfile handling--one of the most
important things for UNIX users, and particularly useful in connection with CGI script processing on the
World Wide Web. It has simple built-in constructs for searching and replacing text, storing information
in arrays and retrieving them in sorted form. All of the these things have previously been possible using
the UNIX shell commands

sed
awk
cut
paste

but these commands were designed to work primarily in the Bourne shell and are a bit ‘awk’ward to use
for all but the simplest applications.

‘sed’
is a stream editor. It takes command line instructions, reads input from the stream stdin and
produces output on stdout according to those instructions. ‘sed’ works line by line from the start
of a textfile.

‘awk’
is a pattern matching and processing language. It takes a textfile and reads it line by line, matching
regular expressions and acting on them. ‘awk’ is powerful enough to have conditional instructions
like ‘if..then..else’ and uses C’s ‘printf’ construction for output.

‘cut’
Takes a line of input and cuts it into fields, separated by some character. For instance, a normal
line of text is a string of words separated by spaces. Each word is a different field. ‘cut’ can be
used, for instance, to pick out the third column in a table. Any character can be specified as the
separator.

‘paste’
is the logical opposite of cut. It concatenates @math{n} files, and makes each line in the file into a
column of a table. For instance, ‘paste one two three’ would make a table in which the first
column consisted of all lines in ‘one’, the second of all lines in ‘two’ and the third of all lines in
‘three’. If one file is longer than the others, then some columns have blank spaces.

Perl unifies all of these operations and more. It also makes them much simpler.

Program structure

To summarize Perl, we need to know about the structure of a Perl program, the conditional constructs it
has, its loops and its variables. In the latest versions of Perl (Perl 5), you can write object oriented
programs of great complexity. We shall not go into this depth, for the simple reason that Perl’s strength
is not as a general programming language but as a specialized language for textfile handling. The syntax
of Perl is in many ways like the C programming language, but there are important differences.

Variables do not have types. They are interpreted in a context sensitive way. The operators which
acts upon variables determine whether a variable is to be considered a string or as an integer etc.
Although there are no types, Perl defines arrays of different kinds. There are three different kinds
of array, labelled by the symbols ‘$’, ‘@’ and ‘%’.
Perl keeps a number of standard variables with special names e.g. ‘$_ @ARGV’ and ‘%ENV’.
Special attention should be paid to these. They are very important!
The shell reverse apostrophe notation ‘command‘ can be used to execute UNIX programs and get
the result into a Perl variable.

Here is a simple ‘structured hello world’ program in Perl. Notice that subroutines are called using the
‘&’ symbol. There is no special way of marking the main program -- it is simply that part of the
program which starts at line 1.

#!/local/bin/perl
#
Comments
#

&Hello();
&World;

end of main

sub Hello
 {
 print "Hello";
 }

sub World
 {
 print "World\n";
 }

The parentheses on subroutines are optional, if there are no parameters passed. Notice that each line
must end in a semi-colon.

Perl variables

Scalar variables

In Perl, variables do not have to be declared before they are used. Whenever you use a new symbol, Perl
automatically adds the symbol to its symbol table and initializes the variable to the empty string.

It is important to understand that there is no practical difference between zero and the empty string in
perl -- except in the way that you, the user, choose to use it. Perl makes no distinction between strings
and integers or any other types of data -- except when it wants to interpret them. For instance, to
compare two variables as strings is not the same as comparing them as integers, even if the string
contains a textual representation of an integer. Take a look at the following program.

#!/local/bin/perl
#
Nothing!
#

print "Nothing == $nothing\n";

print "Nothing is zero!\n" if ($nothing == 0);

if ($nothing eq "")
 {
 print STDERR "Nothing is really nothing!\n";
 }

$nothing = 0;

print "Nothing is now $nothing\n";

The output from this program is

Nothing ==
Nothing is zero!
Nothing is really nothing!
Nothing is now 0

There are several important things to note here. First of all, we never declare the variable ‘nothing’.
When we try to write its value, perl creates the name and associates a NULL value to it i.e. the empty
string. There is no error. Perl knows it is a variable because of the ‘$’ symbol in front of it. All scalar
variables are identified by using the dollar symbol.

Next, we compare the value of ‘$nothing’ to the integer ‘0’ using the integer comparison symbol ‘==’,
and then we compare it to the empty string using the string comparison symbol ‘eq’. Both tests are true!
That means that the empty string is interpreted as having a numerical value of zero. In fact any string
which does not form a valid integer number has a numerical value of zero.

Finally we can set ‘$nothing’ explicitly to a valid integer string zero, which would now pass the first
test, but fail the second.

As extra spice, this program also demonstrates two different ways of writing the ‘if’ command in perl.

The default scalar variable.

The special variable ‘$_’ is used for many purposes in Perl. It is used as a buffer to contain the result of
the last operation, the last line read in from a file etc. It is so general that many functions which act on
scalar variables work by default on ‘$_’ if no other argument is specified. For example,

print;

is the same as

print $_;

Array (vector) variables

The complement of scalar variables is arrays. An array, in Perl is identified by the ‘@’ symbol and, like
scalar variables, is allocated and initialized dynamically.

@array[0] = "This little piggy went to market";
@array[2] = "This little piggy stayed at home";

print "@array[0] @array[1] @array[2]";

The index of an array is always understood to be a number, not a string, so if you use a non-numerical
string to refer to an array element, you will always get the zeroth element, since a non-numerical string
has an integer value of zero.

An important array which every program defines is

@ARGV

This is the argument vector array, and contains the commands line arguments by analogy with the
C-shell variable ‘$argv[]’.

Given an array, we can find the last element by using the ‘$#’ operator. For example,

$last_element = $ARGV[$#ARGV];

Notice that each element in an array is a scalar variable. The ‘$#’ cannot be interpreted directly as the
number of elements in the array, as it can in the C-shell. You should experiment with the value of this
quantity -- it often necessary to add 1 or 2 to its value in order to get the behaviour one is used to in the
C-shell.

Perl does not support multiple-dimension arrays directly, but it is possible to simulate them yourself.
(See the Perl book.)

Special array commands

The ‘shift’ command acts on arrays and returns and removes the first element of the array.
Afterwards, all of the elements are shifted down one place. So one way to read the elements of an array
in order is to repeatedly call ‘shift’.

$next_element=shift(@myarray);

Note that, if the array argument is omitted, then ‘shift’ works on ‘@ARGV’ by default.

Another useful function is ‘split’, which takes a string and turns it into an array of strings. ‘split’
works by choosing a character (usually a space) to delimit the array elements, so a string containing a
sentence separated by spaces would be turned into an array of words. The syntax is

@array = split; # works with spaces on $_
@array = split(pattern,string); # Breaks on pattern
($v1,$v2...) = split(pattern,string); # Name array elements with scalars

In the first of these cases, it is assumed that the variable ‘$_’ is to be split on whitespace characters. In
the second case, we decide on what character the split is to take place and on what string the function is
to act. For instance

@new_array = split(":","name:passwd:uid:gid:gcos:home:shell");

The result is a seven element array called ‘@new_array’, where ‘$new_array[0]’ is ‘name’ etc.

In the final example, the left hand side shows that we wish to capture elements of the array in a named
set of scalar variables. If the number of variables on the lefthand side is fewer than the number of strings
which are generated on the right hand side, they are discarded. If the number on the left hand side is
greater, then the remainder variables are empty.

Associated arrays

One of the very nice features of Perl is the ability to use one string as an index to another string in an
array. For example, we can make a short encyclopedia of zoo animals by constructing an associative
array in which the keys (or indices) of the array are the names of animals, and the contents of the array
are the information about them.

$animals{"Penguin"} = "A suspicious animal, good with cheese crackers...";
$animals{"dog"} = "Plays stupid, but could be a cover...";

if ($index eq "fish")
 {
 $animals{$index} = "Often comes in square boxes. Very cold.";
 }

An entire associated array is written ‘%array’, while the elements are ‘$array{$key}’.

Perl provides a special associative array for every program called ‘%ENV’. This contains the environment
variables defined in the parent shell which is running the Perl program. For example

print "Username = $ENV{"USER"}\n";

$ld = "LD_LIBRARY_PATH";
print "The link editor path is $ENV{$ld}\n";

To get the current path into an ordinary array, one could write,

@path_array= split(":",$ENV{"PATH"});

Array example program

Here is an example which prints out a list of files in a specified directory, in order of their UNIX
protection bits. The least protected file files come first.

#!/local/bin/perl
#
Demonstration of arrays and associated arrays.
Print out a list of files, sorted by protection,
so that the least secure files come first.
#
e.g. arrays <list of words>
arrays *.C
#
##

print "You typed in ",$#ARGV+1," arguments to command\n";

if ($#ARGV < 1)
 {
 print "That’s not enough to do anything with!\n";
 }

while ($next_arg = shift(@ARGV))
 {
 if (! (-f $next_arg || -d $next_arg))
 {
 print "No such file: $next_arg\n";
 next;
 }

 ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size) = stat($next_arg);
 $octalmode = sprintf("%o",$mode & 0777);

 $assoc_array{$octalmode} .= $next_arg.
 " : size (".$size."), mode (".$octalmode.")\n";
 }

print "In order: LEAST secure first!\n\n";

foreach $i (reverse sort keys(%assoc_array))
 {
 print $assoc_array{$i};
 }

Loops and conditionals

Here are some of the most commonly used decision-making constructions and loops in Perl. The
following is not a comprehensive list -- for that, you will have to look in the Perl bible: Programming
Perl, by Larry Wall and Randal Schwartz. The basic pattern follows the C programming language quite
closely. In the case of the ‘for’ loop, Perl has both the C-like version, called ‘for’ and a ‘foreach’
command which is like the C-shell implementation.

if (expression)
 {
 block;
 }
else
 {
 block;
 }

command if (expression);

unless (expression)
 {
 block;
 }
else
 {
 block;
 }

while (expression)
 {
 block;
 }

do
 {
 block;
 }
while (expression);

for (initializer; expression; statement)
 {
 block;
 }

foreach variable(array)
 {

 block;
 }

In all cases, the ‘else’ clauses may be omitted.

Strangely, perl does not have a ‘switch’ statement, but the Perl book describes how to make one using
the features provided.

The for loop

The for loop is exactly like that in C or C++ and is used to iterate over a numerical index, like this:

for ($i = 0; $i < 10; $i++)
 {
 print $i, "\n";
 }

The foreach loop

The foreach loop is like its counterpart in the C shell. It is used for reading elements one by one from a
regular array. For example,

foreach $i (@array)
 {
 print $i, "\n";
 }

Iterating over elements in arrays

One of the main uses for ‘for’ type loops is to iterate over successive values in an array. This can be
done in two ways which show the essential difference between for and foreach.

If we want to fetch each value in an array in turn, without caring about numerical indices, the it is
simplest to use the foreach loop.

 @array = split(" ","a b c d e f g");

 foreach $var (@array)
 {
 print $var, "\n";
 }

This example prints each letter on a separate line. If, on the other hand, we are interested in the index,
for the purposes of some calculation, then the for loop is preferable.

 @array = split(" ","a b c d e f g");

 for ($i = 0; $i <= $#array; $i++)
 {
 print $array[$i], "\n";
 }

Notice that, unlike the for-loop idiom in C/C++, the limit is ‘$i <= $#array’, i.e. ‘less than or equal
to’ rather than ‘less than’. This is because the ‘$#’ operator does not return the number of elements in
the array but rather the last element.

Associated arrays are slightly different, since they do not use numerical keys. Instead they use a set of
strings, like in a database, so that you can use one string to look up another. In order to iterate over the
values in the array we need to get a list of these strings. The keys command is used for this.

 $assoc{"mark"} = "cool";
 $assoc{"GNU"} = "brave";
 $assoc{"zebra"} = "stripy";

 foreach $var (keys %assoc)
 {
 print "$var , $assoc{$var} \n";
 }

The order of the keys is not defined in the above example, but you can choose to sort them
alphabetically by writing

 foreach $var (sort keys %assoc)

instead.

Iterating over lines in a file

Since Perl is about file handling we are very interested in reading files. Unlike C and C++, perl likes to
read files line by line. The angle brackets are used for this, See section Files in perl. Assuming that we
have some file handle ‘<file>’, for instance ‘<STDIN>’, we can always read the file line by line with a
while-loop like this.

 while ($line = <file>)
 {
 print $line;
 }

Note that $line includes the end of line character on the end of each line. If you want to remove it, you
should add a ‘chop’ command:

 while ($line = <file>)
 {
 chop $line;
 print "line = ($line)\n";
 }

Files in perl

Opening files is straightforward in Perl. Files must be opened and closed using -- wait for it -- the
commands ‘open’ and ‘close’. You should be careful to close files after you have finished with them
-- especially if you are writing to a file. Files are buffered and often large parts of a file are not actually
written until the ‘close’ command is received.

Three files are, of course, always open for every program, namely ‘STDIN’, ‘STDOUT’and ‘STDERR’.

Formally, to open a file, we must obtain a file descriptor or file handle. This is done using ‘open’;

open (file_descrip,"Filename");

The angular brackets ‘<..>’ are used to read from the file. For example,

$line = <file_descrip>;

reads one line from the file associated with ‘file_descrip’.

Let’s look at some examples of filing opening. Here is how we can implement UNIX’s ‘cut’ and
‘paste’ commands in perl:

#!/local/bin/perl
#
Cut in perl
#

 # Cut second column

while (<>)
 {
 @cut_array = split;

 print "@cut_array[1]\n";
 }

This is the simplest way to open a file. The empty file descriptor ‘<>’ tells perl to take the argument of
the command as a filename and open that file for reading. This is really short for ‘while($_=<STDIN>)’
with the standard input redirected to the named file.

The ‘paste’program can be written as follows:

#!/local/bin/perl
#
Paste in perl
#
Two files only, syntax : paste file 1file2
#

open (file1,"@ARGV[0]") || die "Can’t open @ARGV[0]\n";
open (file2,"@ARGV[1]") || die "Can’t open @ARGV[1]\n";

while (($line1 = <file1>) || ($line2 = <file2>))

 {
 chop $line1;
 chop $line2;

 print "$line1 $line2\n"; # tab character between
 }

Here we see more formally how to read from two separate files at the same time. Notice that, by putting
the read commands into the test-expression for the ‘while’ loop, we are using the fact that ‘<..>’
returns a non-zero (true) value unless we have reached the end of the file.

To write and append to files, we use the shell redirection symbols inside the ‘open’ command.

open(fd,"> filename"); # open file for writing
open(fd,">> filename"); # open file for appending

We can also open a pipe from an arbitrary UNIX command and receive the output of that command as
our input:

open (fd,"/bin/ps aux | ");

A simple perl program

Let us now write the simplest perl program which illustrates the way in which perl can save time. We
shall write it in three different ways to show what the short cuts mean. Let us implement the ‘cat’
command, which copies files to the standard output. The simplest way to write this is perl is the
following:

#!/local/bin/perl

while (<>)
 {
 print;
 }

Here we have made heavy use of the many default assumptions which perl makes. The program is
simple, but difficult to understand for novices. First of all we use the default file handle <> which means,
take one line of input from a default file. This object returns true as long as it has not reached the end of
the file, so this loop continues to read lines until it reaches the end of file. The default file is standard
input, unless this script is invoked with a command line argument, in which case the argument is treated
as a filename and perl attempts to open the argument-filename for reading. The print statement has no
argument telling it what to print, but perl takes this to mean: print the default variable ‘$_’.

We can therefore write this more explicitly as follows:

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

while (<HANDLE>)

 {
 print $_;
 }

Here we have simply filled in the assumptions explicitly. The command ‘<HANDLE>’ now reads a single
line from the named file-handle into the default variable ‘$_’. To make this program more general, we
can eliminate the defaults entirely.

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

while ($line=<HANDLE>)
 {
 print $line;
 }

== and ‘eq’

Be careful to distinguish between the comparison operator for integers ‘==’ and the corresponding
operator for strings ‘eq’. These do not work in each other’s places so if you get the wrong comparison
operator your program might not work and it is quite difficult to find the error.

chop

The command ‘chop’ cuts off the last character of a string. This is useful for removing newline
characters when reading files etc. The syntax is

chop; # chop $_;

chop $scalar; # remove last character in $scalar

Perl subroutines

Subroutines are indicated, as in the example above, by the ampersand ‘&’ symbol. When parameters are
passed to a Perl subroutine, they are handed over as an array called ‘@_’. Which is analogous to the
‘$_’ variable. Here is a simple example:

#!/local/bin/perl

$a="silver";
$b="gold";

&PrintArgs($a,$b);

end of main

sub PrintArgs

 {
 ($local_a,$local_b) = @_;

 print "$local_a, $local_b\n";

 }

die - exit on error

When a program has to quit and give a message, the ‘die’ command is normally used. If called without
an argument, Perl generates its own message including a line number at which the error occurred. To
include your own message, you write

die "My message....";

If the string is terminated with a ‘\n’ newline character, the line number of the error is not printed,
otherwise Perl appends the line number to your string.

When opening files, it is common to see the syntax:

open (filehandle,"Filename") || die "Can’t open...";

The logical ‘OR’ symbol is used, because ‘open’ returns true if all goes well, in which case the right
hand side is never evaluated. If ‘open’ is false, then die is executed. You can decide for yourself
whether or not you think this is good programming style -- we mention it here because it is common
practice.

The stat() idiom

The UNIX library function stat() is used to find out information about a given file. This function is
available both in C and in Perl. In perl, it returns an array of values. Usually we are interested in
knowing the access permissions of a file. stat() is called using the syntax

@array = stat ("filename");

or alternatively, using a named array

($device,$inode,$mode) = stat("filename");

The value returned in the mode variable is a bit-pattern, See section Protection bits. The most useful way
of treating these bit patterns is to use octal numbers to interpret their meaning.

To find out whether a file is readable or writable to a group of users, we use a programming idiom
which is very common for dealing with bit patterns: first we define a mask which zeroes out all of the
bits in the mode string except those which we are specifically interested in. This is done by defining a
mask value in which the bits we want are set to 1 and all others are set to zero. Then we AND the mask
with the mode string. If the result is different from zero then we know that all of the bits were also set in
the mode string. As in C, the bitwise AND operator in perl is called ‘&’.

For example, to test whether a file is writable to other users in the same group as the file, we would

write the following.

$mask = 020; # Leading 0 means octal number

($device,$inode,$mode) = stat("file");

if ($mode & $mask)
 {
 print "File is writable by the group\n";
 }

Here the 2 in the second octal number means "write", the fact that it is the second octal number from the
right means that it refers to "group". Thus the result of the if-test is only true if that particular bit is true.
We shall see this idiom in action below.

Perl example programs

The passwd program and ‘crypt()’ function

Here is a simple implementation of the UNIX ‘passwd’ program in Perl.

#!/local/bin/perl
#
A perl version of the passwd program.
#
Note - the real passwd program needs to be much more
secure than this one. This is just to demonstrate the
use of the crypt() function.
#
###

print "Changing passwd for $ENV{’USER’} on $ENV{’HOST’}\n";

system ’stty’,’-echo’;
print "Old passwd: ";

$oldpwd = <STDIN>;
chop $oldpwd;

($name,$coded_pwd,$uid,$gid,$x,$y,$z,$gcos,$home,$shell)
 = getpwnam($ENV{"USER"});

if (crypt($oldpwd,$coded_pwd) ne $coded_pwd)
 {
 print "\nPasswd incorrect\n";
 exit (1);
 }

$oldpwd = ""; # Destroy the evidence!

print "\nNew passwd: ";

$newpwd = <STDIN>;

print "\nRepeat new passwd: ";

$rnewpwd = <STDIN>;

chop $newpwd;
chop $rnewpwd;

if ($newpwd ne $rnewpwd)
 {
 print "\n Incorrectly typed. Password unchanged.\n";
 exit (1);
 }

$salt = rand();
$new_coded_pwd = crypt($newpwd,$salt);

print "\n\n$name:$new_coded_pwd:$uid:$gid:$gcos:$home:$shell\n";

Example with ‘fork()’

The following example uses the ‘fork’ function to start a daemon which goes into the background and
watches the system to which process is using the greatest amount of CPU time each minute. A pipe is
opened from the BSD ‘ps’ command.

#!/local/bin/perl
#
A fork() demo. This program will sit in the background and
make a list of the process which uses the maximum CPU average
at 1 minute intervals. On a quiet BSD like system this will
normally be the swapper (long term scheduler).
#

$true = 1;
$logfile="perl.cpu.logfile";

print "Max CPU logfile, forking daemon...\n";

if (fork())
 {
 exit(0);
 }

while ($true)
 {
 open (logfile,">> $logfile") || die "Can’t open $logfile\n";
 open (ps,"/bin/ps aux |") || die "Couldn’t open a pipe from ps !!\n";

 $skip_first_line = <ps>;
 $max_process = <ps>;
 close(ps);

 print logfile $max_process;
 close(logfile);
 sleep 60;

 ($a,$b,$c,$d,$e,$f,$g,$size) = stat($logfile);

 if ($size > 500)
 {
 print STDERR "Log file getting big, better quit!\n";

 exit(0);
 }
 }

Example reading databases

Here is an example program with several of the above features demonstrated simultaneously. This
following program lists all users who have home directories on the current host. If the home area has
sub-directories, corresponding to groups, then this is specified on the command line. The word ‘home’
causes the program to print out the home directories of the users.

#!/local/bin/perl
##
#
allusers - list all users on named host, i.e. all
users who can log into this machine.
#
Syntax: allusers group
allusers mygroup home
allusers myhost group home
#
NOTE : This command returns only users who are registered on
the current host. It will not find users which cannot
be validated in the passwd file, or in the named groups
in NIS. It assumes that the users belonging to
different groups are saved in subdirectories of
/home/hostname.
#
##

&arguments();

die "\n" if (! -d "/home/$server");

$disks = ‘/bin/ls -d /home/$server/$group‘;

foreach $home (split(/\s/,$disks))
 {
 open (LS,"cd $home; /bin/ls $home |") || die "allusers: Pipe didn’t open";

 while (<LS>)
 {
 $exists = "";
 ($user) = split;
 ($exists,$pw,$uid,$gid,$qu,$cm,$gcos,$dir)=getpwnam($user);

 if ($exists)
 {
 if ($printhomes)
 {
 print "$dir\n";
 }
 else
 {
 print "$user\n";
 }
 }
 }

 close(LS);
 }

##

sub arguments
 {
 $printhomes = 0;
 $group = "*";
 $server = ‘/bin/hostname‘;
 chop $server;

 foreach $arg (@ARGV)
 {
 if (substr($arg,0,1) eq "u")
 {
 $group = $arg;
 next;
 }

 if ($arg eq "home")
 {
 $printhomes = 1;
 next;
 }

 $server= $arg; #default is to interpret as a server.
 }
 }

Pattern matching and extraction

Perl has regular expression operators for identifying patterns. The operator

 /regular expression/

returns true of false depending on whether the regular expression matches the contents of $_. For
example

 if (/perl/)
 {
 print "String contains perl as a substring";
 }

 if (/(Sat|Sun)day/)
 {
 print "Weekend day....";
 }

The effect is rather like the grep command. To use this operator on other variables you would write:

 $variable =~ /regexp/

Regular expression can contain parenthetic sub-expressions, e.g.

 if (/(Sat|Sun)day (..)th (.*)/)
 {
 $first = $1;
 $second = $2;
 $third = $3;
 }

in which case perl places the objects matched by such sub-expressions in the variables $1, $2 etc.

Searching and replacing text

The ‘sed’-like function for replacing all occurances of a string is easily implemented in Perl using

while (<input>)
 {
 s/$search/$replace/g;
 print output;
 }

This example replaces the string inside the default variable. To replace in a general variable we use the
operator ‘=~’, with syntax:

$variable =~ s/search/replace/

Here is an example of some of this operator in use. The following is a program which searches and
replaces a string in several files. This is useful program indeed for making a change globally in a group
of files! The program is called ‘file-replace’.

#!/local/bin/perl
##
#
Look through files for findstring and change to newstring
in all files.
#
##

#
Define a temporary file and check it doesn’t exist
#

$outputfile = "tmpmarkfind";
unlink $outputfile;

#
Check command line for list of files
#

if ($#ARGV < 0)
 {
 die "Syntax: file-replace [file list]\n";
 }

print "Enter the string you want to find (Don’t use quotes):\n\n:";

$findstring=<STDIN>;
chop $findstring;

print "Enter the string you want to replace with (Don’t use quotes):\n\n:";
$replacestring=<STDIN>;
chop $replacestring;

#

print "\nFind: $findstring\n";
print "Replace: $replacestring\n";
print "\nConfirm (y/n) ";
$y = <STDIN>;
chop $y;

if ($y ne "y")
 {
 die "Aborted -- nothing done.\n";
 }
else
 {
 print "Use CTRL-C to interrupt...\n";
 }

#
Now shift default array @ARGV to get arguments 1 by 1
#

while ($file = shift)
 {
 if ($file eq "file-replace")
 {
 print "Findmark will not operate on itself!";
 next;
 }

 #
 # Save existing mode of file for later
 #

 ($dev,$ino,$mode)=stat($file);

 open (INPUT,$file) || warn "Couldn’t open $file\n";
 open (OUTPUT,"> $outputfile") || warn "Can’t open tmp";

 $notify = 1;

 while (<INPUT>)
 {
 if (/$findstring/ && $notify)
 {
 print "Fixing $file...\n";
 $notify = 0;
 }
 s/$findstring/$replacestring/g;
 print OUTPUT;
 }

 close (OUTPUT);

 #

 # If nothing went wrong (if outfile not empty)
 # move temp file to original and reset the
 # file mode saved above
 #

 if (! -z $outputfile)
 {
 rename ($outputfile,$file);
 chmod ($mode,$file);
 }
 else
 {
 print "Warning: file empty!\n.";
 }
 }

Similarly we can search for lines containing a string. Here is the grep program written in perl

#!/local/bin/perl
#
grep as a perl program
#

Check arguments etc

while (<>)
 {
 print if (/$ARGV[1]/);
 }

The operator ‘/search-string/’ returns true if the search string is a substring of the default variable
$_. To search an arbitrary string, we write

 if (teststring =~ /search-string/);

Here teststring is searched for occurrances of search-string and the result is true if one is found.

In perl you can use regular expressions to search for text patterns. Note however that, like all regular
expression dialects, perl has its own conventions. For example the dollar sign does not mean "match the
end of line" in perl, instead one uses the ‘\n’ symbol. Here is an example program which illustrates the
use of regular expressions in perl:

#!/local/bin/perl
#
Test regular expressions in perl
#
NB - careful with \ $ * symbols etc. Use " quotes since
the shell interprets these!
#

open (FILE,"regex_test");

$regex = $ARGV[$#ARGV];

print "Looking for $ARGV[$#ARGV] in file...\n";

while (<FILE>)

 {
 if (/$regex/)
 {
 print;
 }
 }

#
Test like this:
#
regex ’.*’ - prints every line (matches everything)
regex ’.’ - all lines except those containing only blanks
(. doesn’t match ws/white-space)
regex ’[a-z]’ - matches any line containing lowercase
regex ’[^a-z]’ - matches any line containg something which is
not lowercase a-z
regex ’[A-Za-z]’ - matches any line containing letters of any kind
regex ’[0-9]’ - match any line containing numbers
regex ’#.*’ - line containing a hash symbol followed by anything
regex ’^#.*’ - line starting with hash symbol (first char)
regex ’;\n’ - match line ending in a semi-colon
#

Try running this program with the test data on the following file which is called ‘regex_test’ in the
example program.

A line beginning with a hash symbol

JUST UPPERCASE LETTERS

just lowercase letters

Letters and numbers 123456

123456

A line ending with a semi-colon;

Line with a comment # COMMENT...

Example: convert mail to WWW pages

Here is an example program which you could use to automatically turn a mail message of the form

From: Newswire
To: Mail2html
Subject: Nothing happened

On the 13th February at kl. 09:30 nothing happened. No footprints
were found leading to the scene of a terrible murder, no evidence
of a struggle etc etc

into an html-file for the world wide web. The program works by extracting the message body and
subject from the mail and writing html-commands around these to make a web page. The subject field of

