
Faculdade de Engenharia da Universidade do Porto
Licenciatura em Engenharia Informática e Computação

Analysis, design and development of an automated testing
platform for a multi-function network appliance

at Critical Software

LEIC curricular internship report, 2006

Rui André Augusto Ferreira

Supervisor at University of Porto: Prof. Jorge Barbosa
Supervisor at Critical Software: Alexandre Esper

September, 2006

To my family...

Abstract

abstract aqui!

CONTENTS

Contents

Preface vii

Acknowledgements ix

Guide to readers xi

Acronyms xiii

1 Introduction 1

1.1 The company . 1

1.1.1 Background . 1

1.1.2 Company profile . 1

1.1.3 Organization . 1

1.2 Overview of the product . 3

1.2.1 edgeBOX . 3

1.2.2 Items . 3

1.3 The internship . 3

1.3.1 Global goal . 3

1.3.2 Workplace . 4

1.3.3 Objectives . 4

1.3.4 Framing of the internship in the product . 4

1.3.5 Tasks . 4

1.3.6 Planning . 5

2 The product: a network appliance 7

2.1 Introduction . 7

2.1.1 Market opportunity . 7

2.1.2 Market size . 7

2.1.3 The product and the services . 8

2.1.4 Business model . 10

2.1.5 Critical Links . 11

iii

CONTENTS

2.2 Organization . 11

2.2.1 Group organization . 11

2.2.2 Development model . 11

2.3 Comparison with other products . 13

2.4 Product architecture . 13

2.4.1 The operating system . 13

2.4.2 Packages manager and licences authentication . 13

2.4.3 Configuration architecture . 14

2.4.4 Request handling . 14

3 The project: automated testing platform 15

3.1 Important concepts on testing . 15

3.2 Problem domain . 17

3.3 State of the art . 17

3.4 Comparison . 19

4 Requirements analysis 21

4.1 Automated testing platform definition . 21

4.2 Objectives . 21

4.3 User roles and responsibilities . 22

4.4 Interactions with other systems . 22

4.5 Functional requirements . 22

4.5.1 Use cases . 22

4.5.2 Example automated test implementations required . 25

4.5.3 Usage scenarios . 25

4.6 Non-functional requirements . 26

4.6.1 Usability . 26

4.6.2 Time requirements . 26

4.6.3 Architecture requirements . 26

4.6.4 Hardware considerations . 26

4.7 User interface prototypes . 26

4.8 Scope . 26

5 Architecture and detailed design 27

5.1 Design standards . 27

5.2 Integration in the system . 27

5.3 System overview . 28

5.3.1 Architecture justification . 29

5.3.2 Design Patterns . 30

iv

CONTENTS

5.4 Data model . 31

5.4.1 Class model . 31

5.4.2 Physical model . 31

5.5 System decomposition . 33

5.5.1 Core module . 33

5.5.2 User interface . 34

5.5.3 Automated test case . 35

6 Testing and software quality assurance 37

6.1 Scope of testing . 37

6.2 Schedule . 37

6.3 Approach . 37

6.4 Test cases . 38

6.5 Unit testing . 40

6.6 Code inspections . 40

6.7 Beta testing . 41

7 Documentation 43

7.1 Approach to documentation . 43

7.2 User manual and application tour . 43

7.2.1 Application front page . 43

7.2.2 Manage tests . 44

7.2.3 Manage areas . 44

7.2.4 Manage campaigns . 46

7.2.5 List and view executions . 46

7.2.6 View statistics . 49

7.3 Installation manual . 50

8 Final considerations and results analysis 51

8.1 Automated testing platform results . 51

8.1.1 Improvements . 51

8.2 Automated tests results . 51

8.3 Internship considerations . 52

A Gant chart 55

B User interface prototypes 59

C Edgebox Fleur 61

D CD 65

v

LIST OF FIGURES

List of Figures

1.1 Offices . 2

1.2 Certifications . 2

2.1 Worldwide business gateway revenue forecast (�M) 2005-2010 8

2.2 European managed services revenue forecast (�M) 2005-2010 8

2.3 Telecom revenue (�B) 1999-2003 . 8

2.4 Features . 9

2.5 Business relations . 10

2.6 Target markets . 10

2.7 Group organization . 11

2.8 Group meetings . 12

2.9 Coordination tools . 12

2.10 Product comparison . 13

2.11 Architecture and flow of the configuration system. 14

3.1 Conceptual domain model . 17

4.1 Actors . 22

4.2 Tester’s use cases . 23

4.3 Administrator’s use cases . 24

4.4 Activity diagram with the most common scenarios . 25

5.1 ATP integration with edgeBOX components . 28

5.2 ATP decomposition in high-level components . 29

5.3 Class diagram of the ATP . 31

5.4 Physical model of the ATP . 32

5.5 Components of the core module . 33

5.6 Components of the user interface . 34

5.7 Components of an automated test case . 36

5.8 Example of an automated test . 36

vii

LIST OF FIGURES

7.1 Main page - interface . 44

7.2 Manage tests - interfaces . 45

7.3 Manage areas - interfaces . 46

7.4 Manage campaigns - interfaces . 47

7.5 View executions- interfaces . 48

7.6 View statistics - interfaces . 49

B.1 User interface prototypes . 60

viii

Preface

This document intents do describe the work developed at Critical Software between March, 2006 and August,
2006 in the scope of the internship project ”Analysis, design and development of an automated testing platform
for a multi-function network appliance” by Rui Ferreira.

The language of choice was English since it is the standard language for the production of documentation at
Critical Software and it allows this document to reach a wider audience.

The target audience is the jury appointed to the evaluation of the internship but this can be considered an introduc-
tion to the automated testing platform described here or even to automated testing in general.

The project and all associated information was developed and producted under contractual agreement among
Critical Software, S.A and University of Porto. Therefore the access is restricted according to the defined in the
internship protocol and the non-disclosure agreement signed.

ix

Acknowledgements

No one who achieves success does so without acknowledging the help of others.
The wise and confident acknowledge this help with gratitude.

– Alfred Whitehead

My acknowledgement to Critical Software S.A for the opportunity offered of a great internship, the warm welcome
and outstanding work conditions.

To my university tutor in the Engineering University of the University of Porto, Jorge Barbosa for his constant
availability and support.

To my company tutor in Critical Software S.A, Alexandre Esper for his successful efforts for my integration within
the team, the development of a interesting project and above all, the opportunity of learning.

To all Critical Software workers and interns for, with no exceptions their companionship and support. A special
thanks to Nelson Vale, Bruno Ramos, Andre Barbosa, Andre Lemos, Helder Sousa, Goncalo Jesus, Claudia
Serafim and Rui Portugal.

Being this the end of an important cycle in my life and the beginning of a new one, I thank my family and my
friends who always helped me in the course of my life.

xi

Guide to readers

It is well to read everything of something, and something of everything.
– Lord Henry P. Brougham

This documents tries to describe the work done at Critical Software between March and August of 2006 in a
chronological order and trying to give insights of the software development stages.

Chapter 1, Introduction, starts by presenting the company Critical Software where the internship occurred. The
product to which the software developed is applied is also introduced in this chapter. The introduction is finished
by presenting the internship goals, tasks and planning.

Chapter 2, The product: a network appliance, includes information about the edgeBOX. A business overview, the
organization, the market competition and product architecture are the topics explored.

Chapter 3, The project: automated testing platform, introduces the area of testing by giving an overview of the
modern concepts in automated testing, the domain of the problem and the state of the art.

Chapter 4, Requirements analysis, specifies the requirements for the automated testing application to be developed
and tries to provide the reader information to understand the application by the means of use cases and usage
scenarios.

Chapter 5, Architecture and detailed design, explains the architecture and technologies by reviewing in detail the
system, each of its modules and the data structures used.

Chapter 6, Testing and software quality assurance, sums up the testing done to the application by including a
summary of the test cases specified and by explaining the unit testing, code inspection and beta testing approaches.

Chapter 7, Documentation, describes the approach and tools used to document the system and provides the reader
with manuals to use and install the platform. These manuals can be used as tour of the application and show
clearly why it is useful.

This document ends with chapter 8, Final considerations and results analysis, where a review of the work produced
and results archived is presented.

Some chapters refer to external information that is available in appendix.

xiii

Acronyms

CSW Critical Software

SME Small Medium Enterprises

SMB Small Medium Business

EBO Enterprise Branch Offices

CEO Chief Executive Officer

CFO Chief Financial Officer

ARPU Average Revenue Per User

POTS Plain Old Telephone Service

VoIP Voice over Internet Protocol

IT Information Technology

CPE Costumer Premises Equipment

NOC Network Operations Center

COTS Commercial Off-The-Shelf

VAR Value-Added Reseller

CRM Costumer Relationship Management

eOS edgeBOX Operating System

LFS Linux From Scratch

CLI Command Line Interface

PDP Policy Decision Point

PEP Policy Enforcement Point

IPC Inter Process Communication

ATP Automated Testing Platform

GUI Graphical User Interface

xv

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 The company

1.1.1 Background

Critical Software (CSW) supplies solutions, services and technologies for companies’ information systems, an-
swering to the necessities of several markets as telecommunication, public sector, industry and the aerospace and
defense sectors. The company was founded in 1998 and currently employs more than 140 people in their offices
in Coimbra, Lisboa, Porto in Portugal, Southapton in the United Kingdom and San Jose, California in the USA
[Figure 1.1].

Critical Links is a wholly owned subsidiary of Critical Software that develops and markets edgeBOX, a multi-
function server appliance or ”business gateway” targeted at Small Medium Enterprises (SME) and Enterprise
Branch Offices (EBO).

The management and product team behind Critical Links builds on the success and reputation of the parent com-
pany Critical Software and leverages its technical talent and market experience.

1.1.2 Company profile

Critical Software success is based upon the use of high quality levels and technological innovation as agents in
the introduction competitive advantages in clients and partners. The company currently commercializes in the
international market innovative products in areas as dependability and high performance computing.

Accordingly, the company invests heavily on R&D (around 12% of total revenues) as well as in its quality system
that have been certified to demanding international standards.

Critical is flexible and agile, and has proved that it can respond quickly and efficiently to customers’ rapidly
changing business environments. From its foundation in 1998, Critical has received several awards and distinc-
tions. Among them, it has been listed in Business-Week’s Top 300 fastest growing companies and has been
awarded by INSEAD for Management excellence.

Critical has a strong international customer base spread across Europe, the US, and Asia in the Telecom, Aerospace
and Defense Sectors. The experience acquired working with customers in these sectors provides extensive business
knowledge that Critical Links is using in developing innovative products and services such as edgeBOX and
ITEMS.

1.1.3 Organization

One way of describing the positioning and operations of Critical Software is to look at its horizontal organization.

1

CHAPTER 1. INTRODUCTION

(a) Coimbra

(b) Lisboa (c) Porto (d) California, USA (e) United Kingdom

Figure 1.1: Offices

(a) ISO 9001:2000 TickIT (b) CMMI Level 3 (c) Nato Secret Level (d) ISO 15504 Spice

Figure 1.2: Certifications

Enterprise application integration Deals with complex problems of integration and development of applica-
tions.

Dependability Focus on dependability and trustability of software and computers. Experimental and analytical
methods are applied.

Ground segment software Offers solutions to the communication area mainly to the spacial, aeronautical and
defense sectors

Networking and communication Focus on planning, design and development of communication solutions.

High performance computing Dedication to performance problems in companies and organizations information
systems. Products and services include optimization, tuning the parametrization of processes, development
of parallel code and applications

Manufacturing execution systems Focus on industrial information systems and in its integration with assembly
lines.

Critical has experience and know-how in the following vertical markets.

Aerospace with Jet Propulsion Laboratory, NASA, Eumetsat, ESA, EADS, Astrium, Alcatel.

Telecommunication with Vodafone, TMN, Portugal Telecom.

Public sector with the Portuguese Government.

Industry with Infineon Technologies, Soporcel.

Defense with NATO, Portuguese Marines.

2

CHAPTER 1. INTRODUCTION

The administration is composed by:

Goncalo Quadros Chief Executive Officer (CEO)

João Carreira VP business development

Diamantino Costa VP business development

Abel Pinto VP finance and human resources

Pedro Murtinho Chief Financial Officer (CFO)

Rui Cordeiro Engineering director

1.2 Overview of the product

1.2.1 edgeBOX

Installed at the edge of the WAN and the LAN, the edgeBOX delivers high-speed internet access and enables a
wealth of managed services out of a single, integrated, secure, flexible, reliable and easy-to-use platform.

The edgeBOX replaces 5-8 traditional costumer premise equipments.

Router Forwards data packets across a network toward their destinations.

Security Controls traffic between different zones of trust.

VoIP, IP-PBX Allows voice over internet protocol with call switching.

WiFi Access Point Offers a wireless local area network access point.

Network Access Controller Enforces security policy and restrict prohibited traffic types.

Quality of Service Offers bandwidth constraining by class of user.

Storage Allows users to create personal network storage, public storage and group storage.

Collaboration Includes mail server, webmail, web server, CMS server.

The edgeBOX uses community open source software but brings the ease of use of professional software by offering
an user friendly and ”idiot proof” web interface. It ends with manual edition of configuration files but still has
the flexibility to be used in small/medium enterprises or enterprise branch offices. Another advantage is that it is
certified for specific hardware appropriate to different company sizes.

A business, organizational and technical analysis of the product and its organization can be found in chapter 2.

1.2.2 Items

Items is a tool for the batch configuration of several edgeBOX. This tool makes business sense to companies that
want to offer edgeBOX’s services as a added value service to their core products and services.

Once again, in chapter 2 more information can be found on this topic.

1.3 The internship

1.3.1 Global goal

The global goal of the internship is the development and integration of open-source based technologies and tools
to the construction of an automated testing platform for edgeBOX’s testbed.

3

CHAPTER 1. INTRODUCTION

1.3.2 Workplace

The internship took place in Coimbra’s premises [Figure 1.1a] where the edgeBOX development team is based.

1.3.3 Objectives

1. Acquire know-how in testing processes and results analysis.

2. Analysis of the processes, tools and technologies used in the product.

3. Integrate the edgeBOX development cycle.

4. Design and implement an automated testing platform.

5. Implement some automated tests as a proof of concept.

1.3.4 Framing of the internship in the product

In the edgeBOX’s development process, after the development phase, all functionalities should be tested (regres-
sion testing). This is necessary because posterior changes can cause already implemented functionalities to fail.
This task consumes a big quantity of resources and is unsustainable.

The solution is to have a set of automated tests that check if the core functionalities of the product still work.
Besides system testing, this solution also has the advantage of being able to do diagnose tests in the costumers
machines and, in the development stage, to do integration testing.

Having an automated test, it is possible to do stress testing and benchmarking of the certificated hardware. This
creates added value to the product, since, beside certificating hardware, it is possible to certificate hardware for a
specific number of users.

1.3.5 Tasks

Product study

This task includes the technical study of the product. Architecture of the system, technologies used, open-source
packages used and tools used to coordinate the development were explored.

Participation in a product development cycle

With the objective of understanding the qualities and deficiencies of the product and also to provide a pair of
working hands in a needful hour, a considerable amount of time was spent actually testing the product in an
effective (old fashioned) way.

Testing tools study

Open source automated testing and functional testing tools were studied in order to develop a state of the art testing
tool.

Complete development of an automated testing platform

Full cycle development of an automated testing platform including:

1. Requirements specification

4

CHAPTER 1. INTRODUCTION

2. Architecture definition

3. Prototyping

4. Complete implementation

5. Testing

6. Documentation

Development of some automated tests

To prove that the platform is functional and useful some automated tests were developed and the results were
analyzed.

1.3.6 Planning

The detailed task plan in the form of a gant chart is included in appendix 8.3. Table 1.1 sums up the global plan.

Task Duration 1

Introduction 9 days
Requirements specification 5 days
Architecture specification 7 days
Experience in a software development iteration 40 days
Implementation 66 days
Testing 8 days
Internship report 17 days
Total 152 days

Table 1.1: Task planning

1. There is a gap between the days estimated in the the table 1.1 and the ones in the appendix 8.3 caused by consideration of week days
instead of work days.

5

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Chapter 2

The product: a network appliance

How many IT services can you squeeze into a box for an SMB? Juniper Networks, Cisco Systems, and 3Com have
come up with some for security and Avaya, Alcatel, Nortel, and Siemens for communications. But how about 50

applications that do everything from being a wireless router; has web, e-mail and DNS/DHCP services; IP
telephony (with Asterisk IP PBX); and firewall with VPN, authentication and anti-spam/anti-virus capabilities?

The edgeBOX is what they call it and the company called Critical Software put it together.
– Benjamin Koe in Security Tech Planet

2.1 Introduction

2.1.1 Market opportunity

The market opportunity appears from the latest movements in service providers and from the new needs from
SMEs and EBO.

Service providers

In the last few years, broadband prices have suffered a significant decrease. Service providers need to increase the
Average Revenue Per User (ARPU) through the sale of value added services. Considering the market dimensions,
service providers need to easily and effectively manage these value added services in a wide number of clients.

Most broadband providers also provide Plain Old Telephone Service (POTS), and with the market shifting to
Voice over Internet Protocol (VoIP) it is easier for them to keep the clients since they provide a similar service
since long. Nevertheless, Skype, Microsoft and Google are big names the will have a word to say in this market.

SMEs and EBOs

With typically low Information Technology (IT) budgets and lack of specialized IT know-how, SMEs and EBOs
need to have access to proper network services. The use of the IT infrastructure to compete, the need for security,
the growing number of home-workers and the market shift to VoIP will be key instruments and challenges to the
future of the world’s companies.

2.1.2 Market size

InSTAT/MDR estimates that the business gateways market will be worth �1.6bn by 2010 [Figure 2.1]. Worldwide
broadband Costumer Premises Equipment (CPE) revenues grew 123% last year to reach �4.9bn in 2005 and it

7

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Source: InStat/MDR Report IN0501821LN

Figure 2.1: Worldwide business gateway revenue forecast (�M) 2005-2010

Source: Forrester Research Inc.

Figure 2.2: European managed services revenue forecast (�M) 2005-2010

is expected to reach �6.5bn in 2009. VoIP usage, including wholesale, retail consumer and retail business, was
estimated to top 2.4 trillion minutes in 2005.

Critical is well positioned to have a important worldwide stake of this market that, as figures 2.2 and 2.3 show, has
a huge dimension.

2.1.3 The product and the services

The edgeBOX delivers high-speed internet access and enables a wealth of managed services out of a single,
integrated, secure, flexible, reliable and easy-to-use platform.

Items, installed at the Service Providers Network Operations Center (NOC), pairs with edgeBOX to provide an
end-to-end solution than fulfils services providers’ needs to market, provision and manage the services that SME
and EBO require today.

Source: Ofcom Market Intelligence

Figure 2.3: Telecom revenue (�B) 1999-2003

8

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.4: Features

edgeBOXGateway = edgeBOXSoftware + COTSHardware

Hardware

The edgeBOX is installed in different Commercial Off-The-Shelf (COTS) hardware (eg. Dell, IBM) according
to the performance needs of the final client. Service providers or Value-Added Reseller (VAR)s assemble the
edgeBOX and install the software. The hardware is certified by Critical [Figure 2.1] to assure the whole box runs
properly.

Model Hardware platform Number of users

Office gateway

Dell PowerEdge 400 Series
IBM xSeries 206

Lexcom Twister 863A
Advantech FWA-3140

1-20

Business gateway
Dell PowerEdge 800 Series

IBM xSeries 226
Advantech FWA-3140, FWA-6280, RSA-200

20-100

Enterprise gateway
Dell PowerEdge 1800/2800

IBM xSeries 236
Advantech FWA-6280, RSA-200

100-500

Table 2.1: Certified hardware

Software

The edgeBOX uses the linux kernel and several other open-source packages to provide its operating system. The
software developed by Critical includes providing to the user an easy way of configuring services. Other software
developed in house includes an update system, and licenses enforcement.

Features

The highlights of edgeBOX features are in figure 2.4. The complete list of features can be found in the edgeBOX
technical flyer [Appendix C].

9

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.5: Business relations

2.1.4 Business model

The supply chain is represented in figure 2.5.

Target markets

The main target markets [Figure 2.6] are emerging market where the IT infrastructure has not been build yet.
Brasil, India, Russia and Chine are big targets and developed markets will follow.

Figure 2.6: Target markets

10

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.7: Group organization

2.1.5 Critical Links

In order for Critical Software be able to finance such a huge project, a new company was founded. With this
company, Critical Links, it is being negocied the inclusion of venture capital. Critical Links uses all Critical
Software infrastructure and support areas.

2.2 Organization

2.2.1 Group organization

The project is coordinated by Helder Sousa and is organized in 4 areas [Figure 2.7], a Business Development
department and a Marketing and Communication department.

The PreSales area’s is responsible for preparation and accomplishment of presentations of edgeBOX’s solutions
to prospect customers, partners and analysts. This area offers the technical contact to the partner and prospect/cus-
tomer within the whole sales cycle. Another central duty is to collaborate with the Product Management, including
transfer of qualified information for future product development (competitor information, market trends, product
enhancements), as well as the cooperation to prepare functional specifications.

The Support area’s role is to supply assistance to clients, triage and report problems found by costumers and
provide user documentation of the product.

The Research and Development area develops the product features, solves problems found in previous releases
and evaluates the technical difficulty of costumers requests.

The Testing area tests new features, the integration of new features on the previous features, tests problems found
by costumers, benchmarks the performance of the product and certificates hardware.

2.2.2 Development model

The edgeBOX team uses an iterative and incremental development model with an average 3 month release cycle.
Given the time it takes to develop this large sophisticated software system, it is not possible to define the problem
and build the solution in a single step. Requirements often change throughout a project’s development, due to
architectural constraints, customer’s needs or a greater understanding of the original problem.

The edgeBOX update system is an excellent tool for the application of this development model since it allows the
clients to have access to the new features. It is also possible to use the update system to have beta clients that
provide feedback about each modification, bug-fix or even the usability of the product.

Requirements analysis

There is a medium-long term road-map with planned features for future releases. This plan is highly flexible.
Before a release cycle, there is a discussion within the product board [Figure 2.8] that merges the engineering,

11

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.8: Group meetings

(a) Wiki (b) CVS (c) Salome

(d) Bugzilla (e) Sugar (f) Enterprise Architect

Figure 2.9: Coordination tools

sales, clients and management views. A special attention in given to the client’s view, represented by the PreSales
area.

Tools used for coordination

Wiki is used as an information management system. Documents, organization, tasks are accessible through the
Wiki SnipSnap [Figure 2.9a].

CVS (Concurrent Versioning System) implements a version control system. It keeps track of all work and all
changes in the implementation and documentation. It is used for collaborative work in the same modules of
code [Figure 2.9b].

Salome TMF is an independent Test Management Tool used to manage the entire testing process by creating
tests, executing manual tests and tracking results [Figure 2.9c].

Bugzilla is used as a bug-tracking tool originally developed and used by the Mozilla Foundation [Figure 2.9d].

Sugar is a Costumer Relationship Management (CRM) system and is used to track communication with clients
[Figure 2.9e].

Enterprise Architect is used for UML design and construction including Use Case, Logical, Dynamic and Phys-
ical models. Also allows process modeling and project documentation [Figure 2.9f].

12

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.10: Product comparison

2.3 Comparison with other products

Although the market of converged offices in a box is extremely competitive, the edgeBOX offers a very complete
solution with several unique selling points.

The edgeBOX focus on service providers and is designed from scratch with end-to-end support for managed
services through Items. It has a software approach using COTS hardware enabling shorter period development
and carrier certification cycles. It is the most comprehensive and integrated IP, IT and VoIP solution in the market.
With the use of open standards and open software has a great expandability and mainly because of that, it has a
very competitive price targeting SMEs.

Figure 2.10 shows a comparison with similar products comparing the price, data capabilities and voice capabilities.
It is perceptible that edgeBOX offers the most comprehensive product with the best quality/price relation.

2.4 Product architecture

2.4.1 The operating system

The edgeBOX Operating System (eOS) uses the linux kernel. Some parts of the eOS are based in Debian and in
Linux From Scratch (LFS).

2.4.2 Packages manager and licences authentication

Each license has a server entry with the version it is running and an hardware key. The installer, during the
installation, checks if the license is valid comparing the local hardware key and the server key version.

13

CHAPTER 2. THE PRODUCT: A NETWORK APPLIANCE

Figure 2.11: Architecture and flow of the configuration system.

During the updates, besides checking the hardware key, the edgeBOX uses the information in the server to install
the right packages of the appropriate version.

2.4.3 Configuration architecture

When there is a configuration change [Figure 2.11] through the web interface, that change is sent to the Policy
Decision Point (PDP). After that, the PDP sends the information to the Policy Enforcement Point (PEP) which
applies the changes by configuring the edgeBOX operating system.

The Command Line Interface (CLI), that allows command line editing of the edgeBOX, connects directly to the
PEP.

2.4.4 Request handling

The PEP scripts are written in perl and are objected-oriented modules organized in packages.

The message requests are passed to the PEP already parsed as XML::DOM elements. The PEP changes these
elements a return them to the requester.

Each PEP can implement some methods. The pre method which is executed once when the PEP is executed, the
react method which is executed each time for each XML element, the stat method to check the status of a service
and the post method that is called after react is executed for each command node.

The PEP server is a daemon that receives requests for the PEPs, executes them and replies with the result. It
uses different processes to handle with the requests. To talk with those handlers the PEP server uses Inter Process
Communication (IPC).

14

CHAPTER 3. THE PROJECT: AUTOMATED TESTING PLATFORM

Chapter 3

The project: automated testing platform

3.1 Important concepts on testing

In this section, important concepts to understand posterior information are defined and explained. For a more
profound knowledge search there are several books and websites detailed in the bibliography.

Faults and failures

Software engineers distinguish software faults from software failures. In case of a failure, the software does not do
what the user expects. A fault is a programming error that may or may not actually manifest as a failure. A fault
can also be described as an error in the correctness of the semantic of a computer program. A fault will become a
failure if the exact computation conditions are met.

White-box and black-box testing

In the terminology of testing professionals (software and some hardware) the phrases ”white box”, or ”glass
box”/”clear box”, and ”black box” testing refer to whether the test case developer has access to the source code
of the software under test, and whether the testing is done through (simulated) user interfaces or through the
application programming interfaces either exposed by (published) or internal to the target.

In white box testing the test developer has access to the source code and can write code that links into the libraries
which are linked into the target software. This is typical of unit tests, which only test parts of a software system.
They ensure that components used in the construction are functional and robust to some degree.

In black box testing the test engineer only accesses the software through the same interfaces that the customer
or user would, or possibly through remotely controllable, automation interfaces that connect another computer or
another process into the target of the test. For example a test harness might push virtual keystrokes and mouse or
other pointer operations into a program through any inter-process communications mechanism, with the assurance
that these events are routed through the same code paths as real keystrokes and mouse clicks.

System testing

System testing is testing conducted on a complete, integrated system to evaluate the system’s compliance with its
specified requirements. System testing falls within the scope of Black box testing, and as such, should require no
knowledge of the inner design of the code or logic. Alpha testing and Beta testing are sub-categories of System
testing.

15

CHAPTER 3. THE PROJECT: AUTOMATED TESTING PLATFORM

Alfa and Beta testing

In the first phase of alpha testing, developers test the software using white box techniques. Additional inspection
is then performed using black box or grey box techniques. This is usually done by a dedicated testing team. This
is often known as the second stage of alpha testing.

Once the alpha phase is complete, development enters the beta phase. Versions of the software, known as beta
versions, are released to a limited audience outside of the company. The software is released to groups of people
so that further testing can ensure the product has few faults or bugs. Sometimes, beta-versions are made available
to the open public to increase the feedback field to a maximal number of future users.

Testing during the beta phase, informally called beta testing, is generally constrained to black box techniques
although a core of test engineers are likely to continue with white box testing in parallel to the beta tests. Thus the
term beta test can refer to the stage of the software - closer to release than being ”in alpha” - or it can refer to the
particular group and process being done at that stage. So a tester might be continuing to work in white box testing
while the software is ”in beta” (a stage) but he or she would then not be part of ”the beta test” (group/activity).

Regression testing

Regression testing is any type of software testing which seeks to uncover regression bugs. Regression bugs occur
whenever software functionality that previously worked as desired stops working or no longer works in the same
way that was previously planned. Typically regression bugs occur as an unintended consequence of program
changes.

Test case

In software engineering, a test case is a set of conditions or variables (test steps) under which a tester will determine
if a requirement upon an application is partially or fully satisfied. Written test cases include a description of the
functionality to be tested taken from either the requirements or use cases, and the preparation required to ensure
that the test can be conducted. Written test cases are usually collected into Test suites.

Scenario test

A scenario test is a test based on a hypothetical story used to help a person think through a complex problem or
system. They can be as simple as a diagram for a testing environment or they could be a description written in
prose. The ideal scenario test has five key characteristics. It is (a) a story that is (b) motivating, (c) credible, (d)
complex, and (e) easy to evaluate. They are usually different from test cases in that test cases are single steps and
scenarios cover a number of steps. Test suites and scenarios can be used in concert for complete system tests.

Test plan

A test plan is a systematic approach to testing a system such as a machine or software. In software testing, a test
plan gives detailed testing information regarding an upcoming testing effort, including scope of testing, schedule,
test deliverables, release criteria, and risks and contingencies.

Test suite

The most common term for a collection of test cases is a test suite. The test suite often also contains more detailed
instructions or goals for each collection of test cases. It definitely contains a section where the tester identifies the
system configuration used during testing. A group of test cases may also contain prerequisite states or steps, and
descriptions of the following tests.

16

CHAPTER 3. THE PROJECT: AUTOMATED TESTING PLATFORM

Figure 3.1: Conceptual domain model

Test script

A test script is a short program written in a programming language used to test part of the functionality of a
software system.

Testing campaign

A testing campaign is the execution of a set of the test suite with the intention of testing a functionality or a set of
functionalities.

3.2 Problem domain

Figure 3.1 represents the domain of automated testing platforms and clears the relations among concepts explained
in the previous section.

A test case is a member of a testing area. Testing campaigns contain several test cases and can be executed in
a machine with the intention of testing the machine and the version of a functionality. A test case execution is
composed by test steps that can have different proposes according to the result of previous test steps.

This is the most common domain but some variations also are usual. Sometimes, a test definition has a static set
of tests that, in contrast with the previous definition, are not defined in run-time. It is also happens that sometimes
a test case definition belongs to more than one testing areas.

3.3 State of the art

Considering the previous overview, this section will explore what is the state of the art mainly, but not only,
in open-source tools that target the same global objectives. The descriptions shown here consider the product’s
homepage, public forums and, if it was possible, trials.

17

CHAPTER 3. THE PROJECT: AUTOMATED TESTING PLATFORM

TestDirector

TestDirector is a proprietary management tool for all aspects of software testing, ranging from capturing require-
ments, storing test scripts, test execution and defect management.

Salome-TMF

Salome-TMF is an independent Test Management Tool, which manages the entire testing process - by creating
tests, executing manual or automatic tests, tracking results, managing requirements and defects and producing
HTML documentation. Salome-TMF is compatible with Junit, Abbot and Beanshell to define automatic tests, and
with Bugzilla and Mantis to manage your defects. Salome-TMF can also be extended by plug-in according to
your requirements.

Bugzilla Test Runner

Bugzilla Test Runner is a test case management system that works as an add-on over the Bugzilla bug-tracking
system.

FitNesse

FitNesse is a collaborative testing and documentation tool. It provides a very simple way for teams to collabora-
tively create documents, specify tests and run those tests.

QATraq

Covers everything from defining test plans to writing test cases and recording results.

Rth

A web-based tool designed to manage requirements, tests, test results, and defects throughout the application life
cycle. The tool provides a structured approach to software testing and increases the visibility of the testing process
by creating a common repository for all test assets including requirements, test cases, test plans, and test results.

Test case Web

Test Case Web is an online TCM system built with PHP and a SQL backend. It provides an efficient means for
generation, organization, and execution reporting of test cases among projects and by multiple testers and versions.
It provides various at-a-glance views of the test suite for easy status determination and test suite navigation. TCW
also provides basic reporting capabilities and per-project access control.

Tesly

Tesly is a Web application written in PHP that helps you create, execute, and report on test plans. QA leaders can
track the progress of testing as testers use the interface to report completion of test cases.

Test Environment Toolkit

Test planning software that is a commercial package but available for free to open source, non-profit and educa-
tional projects.

18

CHAPTER 3. THE PROJECT: AUTOMATED TESTING PLATFORM

Testitool

Testitool is a Web-based application for QA test planning. It creates a test plan and populates it with test cases,
maps test cases to functional requirements, instantiates a test plan, begins executing test cases and marks them as
successful or failed, generates reports on test plans, copies test plans and test cases, and tailors test plan instances
by adding and removing test cases from them.

TestLink

Web-based test management and test execution system allowing QA teams to create, manage, execute and track
test cases and organize them into test plans.

TestMaster

A testcase management, logging, reporting and test automation tool, similar to the commercial product TestDirec-
tor. Features: Progress stats, reports, test case import from CSV,doc,web or SQL, STAF plugin.

3.4 Comparison

Many of the tools mentioned above are non-commercial and have a clear lack of quality, simplicity and good
architecture design. The exception is Test Director. Test Director is a commercial, expensive and over-complete
tool. Therefore, it is not an option on the short term.

The advantages of the development of an testing platform from scratch are:

• A tool tailored to the networking product that is supposed to test.

• The merge of functional testing, load and stress testing, and benchmarks on one tool.

• An architecture suitable for network distribution.

• Ease of developing collaboration with other development tools used in the project.

More on this topic will be discussed in the results analysis [Chapter 8].

19

CHAPTER 4. REQUIREMENTS ANALYSIS

Chapter 4

Requirements analysis

Not everything that can be counted counts, and not everything that counts can be counted.
– Albert Einstein

Requirements are like water. They’re easier to build on when they’re frozen.
– Anonymous

The hardest part of the software task is arriving at a complete and consistent specification, and much of the
essence of building a program is in fact the debugging of the specification.

– Frederick P. Brooks

4.1 Automated testing platform definition

An automated testing platform is a software tool that allows an automatic execution of previously defined auto-
mated test cases1. An automated test case can be an automated functionality test, an automated load test or a
benchmark.

The focus of the tool is the management and operations over test cases, testing areas and testing campaigns and
the respective results.

4.2 Objectives

In every release of developed software, new functionalities added can interfere with the core functions imple-
mented previously. As mentioned, it is a resources consuming task to, in each release cycle, test all features again.
Therefore, it is extremely useful to have a tool that tests, in an automated way, the core functionalities.

Having an automated testing platform, it can be used to benchmark the performance of the functionalities and to
test them under high usage load.

The objectives expected to reach are:

• To develop an Automated Testing Platform (ATP) to manage and execute tests of a set of functionalities of
the edgeBOX project.

• To make a general automated testing and benchmarking platform easily scalable and with the flexibility to
be ported to different, but with similar architecture, projects.

• To have a simple graphical interface to define which tests are going to be executed.

1. The definition of concepts used is provided in section 3.1

21

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.1: Actors

• To have a simple graphical interface to execute the desired actions.

• To have a simple graphical interface to see the results of the executed tests.

• To allow inspection and analysis of unexpected testing behaviour.

4.3 User roles and responsibilities

There are two different actors (kinds of users) of the platform [Figure 4.1].

Tester

The tester is the user that wants to test, benchmark and see the results of one or more services of the software.

Administrator

The administrator is a tester that can define, develop and document new tests in the Automated Testing Platform.

4.4 Interactions with other systems

The ATP has an interface with the application to be tested. In the case of the edgeBOX, this interface was defined
to be the PDP in contrast with the CLI that connects directly with the PEP server.

This is an important point on the definition of the requirements since it enables the ATP to simulate the interaction
of the Graphical User Interface (GUI) and the Items configuration module.

4.5 Functional requirements

4.5.1 Use cases

In this section the use cases of the general automated testing platform are defined.

Tester

The list of use cases available to the tester [Figure 4.2] are here defined. This list has the requirements that have
very high priority and are definitely to be implemented as the prototype of the automated testing platform.

List available tests

See a list and search available tests, its description and documentation.

22

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.2: Tester’s use cases

List testing areas

See a list and search testing areas and its description. See the list of tests included in each testing area.

List campaigns

See a list and search testing campaigns including the lists of tests included in each campaign.

Create a new campaign

Select tests and write a description to include in a new campaign.

Execute a campaign

Execute a campaign.
Execute multiple times a campaign.
Execute multiple times a campaign in a concurrent manner.

23

CHAPTER 4. REQUIREMENTS ANALYSIS

See statistics about executed tests

See time statistics about the tests executed including per campaign, per test, per machine and per version.

Generate reports about executed campaigns

Generate a printer friendly report of an executed campaign.

See the result of one campaign

See the results of a campaign in run-time or of previously executed campaigns.
Results of each campaign include results of each automated test and respective test steps .

See list of executed campaigns

The tester can see through the interface a list of the executed campaigns in the past, including related informa-
tion and the campaign result.

Admin

Figure 4.3: Administrator’s use cases

The list of use cases available to the administrator [Figure 4.3] are here defined. This list has the requirements that
have very high priority and are definitely to be implemented as the prototype of the automated testing platform.

Add new test case

The stubs of a new test case can be added through the interface. After, the administrator has to complete the
test through another mean (e.g. command line, text editor) offline to the the platform.

24

CHAPTER 4. REQUIREMENTS ANALYSIS

Edit test case

The name, description and properties of a test case can be edited through the interface.

Configure the settings of the platform

Configure the properties of the automated testing platform.

4.5.2 Example automated test implementations required

With the objective of demonstrating the application execution a small set of automated tests is to be developed.

Services Test Priority: 1 Difficulty: 1

Users Management Priority: 1 Difficulty: 2

Authentication Priority: 1 Difficulty: 3

QoS Priority: 2 Difficulty: 3

SMTP Priority: 2 Difficulty: 2

FireWall Priority: 2 Difficulty: 4

Backup Priority: 1 Difficulty: 4

4.5.3 Usage scenarios

Figure 4.4: Activity diagram with the most common scenarios

In order to have a better understanding of the use flow of the application, figure 4.4 has an activity diagram that
includes the most common scenarios of use.

25

CHAPTER 4. REQUIREMENTS ANALYSIS

4.6 Non-functional requirements

4.6.1 Usability

The Automated Testing Platform will follow the available standard interface guidelines on the several technologies
adopted.

It is important that the system is easy to learn. Regular software developers and testers with basic testing expe-
rience shall have an easy learning process. An usability test will be performed with future users of the platform.
Their comments will be taken in account.

A particularly important point is error handling.

4.6.2 Time requirements

• The time bound of the execution will be in each test time and not by internal ATP processing

• The tool will answer to user calls in an instantaneous way.

• The time measuring of executions can’t count with internal operations of the testing platform.

4.6.3 Architecture requirements

The target operating system over which the testing platform will run is Linux. But it is expected that with little or
no effort porting the platform to other operating systems can be archived.

It is expected a modular architecture to assure the possibility of future improvements that may include:

• Use of the platform to manage manual test cases, areas and campaigns.

• Extension of the platform to a distributed model.

4.6.4 Hardware considerations

The platform shall be targeted for x86 architectures with recent, but not necessarily top of the art, characteristics.

4.7 User interface prototypes

Figure B.1 in appendix B includes prototypes of the user interfaces. Although rough, these prototypes are useful
to understand the style of the interface that is provided to the user.

4.8 Scope

As a first prototype, the ATP structure, and the authentication will be implemented. According to the internship
plan, this phase will be ready in the 21th of June, 2006

The automated tests are going to be implemented by priority. They are only being implemented as a proof of
concept of the platform and are just provided as an add-on to the internship project.

26

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Chapter 5

Architecture and detailed design

Programming without an overall architecture or design in mind is like exploring a cave with only a flashlight:
You don’t know where you’ve been, you don’t know where you’re going, and you don’t know quite where you are.

– Danny Thorpe

There are two ways of constructing a software design: One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.
– C. A. R. Hoare

5.1 Design standards

In order to have an high homogeneity level, use good software practices and maximize code reuse, Critical Soft-
ware has a common set of standards used in its software development process. Among this set of standards the
following are of particular importance:

• The use of UML 1.4 for specification of all components of the system.

• The use of Enterprise Architect as a tool for project management and specification.

• The use of Critical Software’s coding standards.

5.2 Integration in the system

The Automated Testing Platform connects to the edgeBOX through the HTTP or HTTPS protocols using post
procedures, server and client side cookies for authentication and XML for passing parameters.

This procedure is the same that is used by the GUI and therefore enables to do the same configuration changes
that must be validated in the same way.

The ethernet links allow the ATP to connect to the edgeBOX as regular LAN client, WAN provider or EWAN/DMZ
server. With these connections, all services provided can be tested making the ATP an useful and complete network
testing suite.

A diagram of the connection of the ATP to the edgeBOX’s components is provided in figure 5.1.

27

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.1: ATP integration with edgeBOX components

5.3 System overview

In this section the architecture of the Automated Testing Platform is explained and the architectural and techno-
logical options taken are justified.

The Automated Testing Platform is divided in 3 main modules [Figure 5.2]. Different modules use different
technologies and communicate with each other in different ways according to performance, scalability and main-
tainability reasons that will be justified in the next section.

As an overview of the application organization and the interaction between modules is here defined.

Graphical user interface

The GUI provides an interface to the user where she can execute all scenarios with the exception of the develop-
ment of the automated test case. This module is implemented in PHP.

Core module

The Core module manages the application’s logic. It is responsible for executing operations defined in the user
interface (e.g. execution of campaigns). It also updates the information base according to the results of test cases,
benchmarks, testing stages, automated test cases or test steps. This module is developed in C++.

Automated test module

The automated test case module may have several instances that share a common API for communication with
other modules. Its task is to perform tests in an automated way and report results to the core of the application.

28

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.2: ATP decomposition in high-level components

This module uses the language Perl.

User interface and application’s core communication

The user interface and the core module use a mysql database to process information. All data created and actions
performed in the user interface are added to the database. The core frequently polls the database for new requests.
These requests are processed and the results are written back in the database.

Automated tests execution

The automated tests are executed by the core module using command line execution. This is important since it is
intended that the languages in which the tests are executed is not specified.

Application’s core and automated tests communication

When the core executes a new automated test it opens a TCP socket connection with the test to communicate
useful information including when a test starts or finishes, what is the propose of a test step or what was the result
of a test step.

5.3.1 Architecture justification

This architecture was selected considering the several requirements defined. The requirement of scalability for a
distributed system is of particular importance when the objective is to stress the target machine. In order to fulfill

29

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

this requirement, having a central server to schedule where and when the programs are going to be executed is fun-
damental. That was also the reason of the option for standard, tested and efficient TCP sockets for communication
between the core application and the automated test cases.

The reasons for the use of Perl to develop the test APIs was that it already exists a broad code base using that
uses Perl and that can be reused. Anyway, if there is interest in developing an API in other language, for instance
Python, this should be a straight forward operation and no modifications in the other modules are required.

The language PHP was the option to use in the user interface because of the ease of use and the short development
effort needed.

The database choice was the open-source, complete and efficient mysql. This option is not of most importance
since all modules that have interaction with the database have data access layers that use standard and generic
database abstraction libraries.

5.3.2 Design Patterns

With the objective of having a very modular, scalable and maintainable platform, the following design patterns
were applied.

Model-view-controller

The model-view-controller (MVC) design pattern is the model that shapes the architecture of the Automated
Testing Platform. This software architecture separates the application’s data model, user-interface and control
logic in three distinct components causing that modifications in one component have minimal impact in others.

The model component includes the database storage mechanism and data access layers that interact with the data
storage and include domain logic to add some meaning to the raw data and object orientation. The view component
includes the web interface and presents information to the user. The controller component includes the core of the
application and the automated test cases.

Client-server

The controller component of the MVC design pattern implements another architectural design pattern, the client-
server model. The core of the application is considered the server and executes several instances of automated test
cases, waits for requests and processes them. Each test case is considered a client that connects to the server and
places notifications of the status of the test.

Interface pattern

The interface pattern is used in communication among different modules. When two modules communicate,
abstraction class or interfaces are used. This is clear in the database abstraction classes in user interface and
application’s core modules. Another use of this pattern is in the communication class between the automated test
and the core.

Bridge pattern

The bridge pattern is used in the core of the application when all runnable tests have an abstraction and use the
virtual execution and timer function which can have different implementations. This is useful since measuring
time or executing a campaign can be different of doing the same in a single test and in case of modification in one
of these methods, the modifications are encapsulated in one class.

30

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.3: Class diagram of the ATP

Extensibility pattern

The automated testing platform allows users to add extensions to the platform in form of new tests. New test
can be added through the user interface without the modification or compilation of the platform’s code. This is
archived by using the client-server model and the interface pattern.

5.4 Data model

Considering the domain model represented in figure 3.1, data models were constructed and refined with the ob-
jective to have appropriate data structure and model with efficient performance and expansion capabilities.

5.4.1 Class model

Figure 5.3 includes the class diagram used in the architecture of the system.

This figure is a refinement of the domain model [Figure 3.1]. The most significant change is the introduction of a
class to represent the campaign execution with the objective of simplifying the implementation of the requirements
that include operations with campaigns.

On this diagram, the level of detail was also increased by the specification of the attributes in each class. An
in-depth view of the attributes is presented in the next section.

5.4.2 Physical model

The database model used in the ATP is in the third normal form and is represented in the figure 5.4. It was an
option taken not to go in much detail since the much of the data and relationships were already explained.

The tables defined can be classified on three different types. The class definition type, the class execution type and
the results of execution.

The class definition type represents the tables that define the concepts used in the domain. These concepts’
definition includes the tables version, machine, testarea, testcasedefinition, campaign and the table campaign test
that is used to represent the n-to-n connection between a campaign and a testcasedefinition. The attributes of these

31

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.4: Physical model of the ATP

32

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.5: Components of the core module

tables have keys that represent the logical connection among them and descriptive attributes like the name of the
entity and, sometimes, the description of the class.

The class execution type is used to represent information about the execution of the class definition. Tables
campaignexecution, testexecution and teststep have information about the objective of the execution, the target of
the execution, the way that the execution in going to be performed (e.g. parallel or sequential) and time information
about the start of the execution.

The results of execution type is used to store the information about the results of an execution. The tables cam-
paignresult, testexecutionresult and teststepresult include information about to which execution they belong, an
integer result of the execution using the posix returning results convention, a textual description of the result in
order to include some automatic error information retrieval and information about the end time of the execution.

5.5 System decomposition

This section explores the several modules of the platform in detail.

5.5.1 Core module

The core of the ATP [Figure 5.5] follows an object oriented architecture implemented in C++ that uses the model
described in figure 5.3. The architectures uses, in an interesting way, the bridge design pattern. There are classes
that implement the timing and execution functions, this brings an excellent modularity to the system making it
possible to change the way the timer and the executor works without changing the implementation of the objects.

The core module has a set of components that have crucial importance:

Timer This class has abstractions to OS timer functions and declares virtual functions to that are implemented in
the internal data structures.

33

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.6: Components of the user interface

Runner This class has abstractions to the OS execution functions and declares virtual functions that are imple-
mented in the internal data structures.

Data access ObjectFactory When the database is pooled, this class generates the object to the internal structures
according to the elements created by the user in the user interface.

Data access ObjectRecorder When important changes occur in the internal data objects, the ObjectRecorder
saves the information back in the database so it can be accessible to the user.

Test communication ObjectFactory Once that the creation of test steps is dynamic and can happen in runtime,
when the test reports a new test step, the communication layer constructs the object automatically and
appends it to the internal data structures.

Testing script communication

As explained before, the communication with the testing script uses sockets abstracted in a multi-operating system
library. The messages passed using XML as defined in the following document type definition (DTD).

<!DOCTYPE test [
<!ELEMENT test (test?,(logfile?,description?,status))>
<!ATTLIST test name CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT logfile (#PCDATA)>
<!ELEMENT status (PASS|FAIL)>

]>

5.5.2 User interface

The web interface chosen platform is PHP4 producing a web accessible HTTP interface. This interface is very
flexible because the HTTP protocol is a wide spread standard and can be accessed from a remote computer.

The user interface has two main layers. The data access layer produces an abstraction to the database communi-
cation. The web interface layer shows information and allows users to pass actions to the core application.

The data access layer has the following main components.

Add Operations In this component, the operations that add records to the database are defined and implemented.

Update Operations In this component, the operations that update records in the database are defined and imple-
mented.

34

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Delete Operations In this component, the operations that remove records from the database are defined and
implemented.

Select Operations In this component, the operations that select records from the database are defined and imple-
mented.

The web interface has the following main components.

Test Manager This component shows information and provides operations over tests.

Area Manager This component shows information and provides operations over areas.

Campaign Manager This component shows information and provides operations over campaigns.

AJAX Campaign Run-Time Presenter This component uses Asynchronous JavaScript and XML (AJAX) with
the objective of providing an interactive real-time presentation of the global state and test details of a cam-
paign execution.

Statistics calculator This component calculates the statistics defined in the requirements and shows them in a
user friendly way.

In the architecture of the user interface some usability design patterns are to be followed.

Search do not sort! This Gmail like usability design pattern was followed by keeping sorting to a minimum,
allowing the user to search all tests, campaigns and test steps.

Content/Operations separtion There is a clear separation of content and operation by the use of menus.

The users’ manual and a demonstration of the application is included in section 7.2.

5.5.3 Automated test case

A components diagram of this module is available in figure 5.7.

An automated test case uses three APIs that were implemented using Perl Modules but that, because of the mod-
ularity of the system, can be easily implemented in other computer languages. The use of these APIs brings
great abstraction to the code, promotes code reutilization and don’t cause the system to be recompiled since an
interpreted language is used.

The ATP protocol’s layer implements an interface to the protocol so that the user can abstract it and use simple
functions instead. Functions to initialize the protocol, start a test step or declare the result of a test step are
provided.

The configuration API abstract the protocol of configuration causing that if the functionality changes, the change
in the automated test only has to be correct one time.

The system API is offered by the language itself and doesn’t ties the code to any operating system or architecture,
as long there is an interpreter of Perl to that operating system or computer architecture.

The use of these APIs cause that the code of an automated test to be almost similar to pseudo-code. To illustrate,
a very simple example of this code is in figure 5.8.

35

CHAPTER 5. ARCHITECTURE AND DETAILED DESIGN

Figure 5.7: Components of an automated test case

! / u s r / b i n / p e r l
use ATP ;

$ a t p = ATP−>new ($ARGV [0]) ; # s t a r t t h e communica t ion w i t h t h e s e r v e r
i f (! $a tp−>l o g i n ()) { # l o g i n as an a d m i n i s t r a t o r

e x i t 1 ; # f a i l e d t o l o g i n (t h i s e r r o r i s r e p o r t e d a u t o m a g i c a l y)
}
my $ i d = $a tp−>s t a r t S t e p (” Turn on NAT”) ; # d e c l a r e a new t e s t w i t h a purpose
$a tp−>se tNatOn () ; # use t h e c o n f i g u r a t i o n API t o t u r n t h e ne twork t r a n s a t i o n on
i f ($a tp−>n a t I s O n ()) { # v e r i f y c u r r e n t s t a t u s

$a tp−>endS tep ($id , 0 , ” Succeeded t o t u r n NAT on ”) ; # r e p o r t s u c c e s s
$a tp−>end () ;
e x i t 0 ;

}
$a tp−>endS tep ($id , 1 , ” F a i l e d t o t u r n NAT on ”) ; # r e p o r t f a l u r e
$a tp−>end () ;
e x i t 1 ;

Figure 5.8: Example of an automated test

36

CHAPTER 6. TESTING AND SOFTWARE QUALITY ASSURANCE

Chapter 6

Testing and software quality assurance

An effective way to test code is to exercise it at its natural boundaries.
– Brian Kernighan

Program testing can be used to show the presence of bugs, but never to show their absence!
– Edsger Dijkstra

Beware of bugs in the above code; I have only proved it correct, not tried it.
– Donald Knuth

6.1 Scope of testing

This chapter gives an overview of the software quality assurance used in all the development process, the test
specification and the test execution.

The software quality assurance used, follows the Critical’s Quality Management System (QMS) and has the ob-
jective of producing high quality standards software. Most of the process described here uses the tool Enterprise
Architect that simplifies the organization of testing plans and software quality assurance.

6.2 Schedule

The testing process was distributed along the development of the software. Although this temporal distribution,
there were three periods where there was a bigger focus on testing. From 21st to 29th of June, the testing was
targeted to the functionalities offered by the prototype. From the 18th of July to the 1st of August, the platform
was tested in the release 4.1 of the edgeBOX by beta usage of the implemented automated tests (e.g. test of the
backup and restore feature). In the first fifteen days of August a more methodical approach to tests was taken
including the documentation of unit tests performed during the development, specified functional tests and code
inspection.

6.3 Approach

The test of features is going to be based almost completely on tests of the use cases. Another crucial point is in
the proof of user introduced errors on the use of library of communication with the application’s core with the
test scripts. This last test has particular importance since it could cause testing data to be badly organized or the
application to run unpredictably.

37

CHAPTER 6. TESTING AND SOFTWARE QUALITY ASSURANCE

Other quality assurances, not only focused in features, include code inspections and module unit testing of the
core of the application by feeding simulated user operations and executing simulated test cases.

6.4 Test cases

This section lists a summary of the set of test cases defined for the application including the purpose, expected
result and obtained result but omitting the test steps in order to provide useful, readable and understandable
information.

Testing areas

Testing summary:

1. Create a new testing area with valid name and description.

2. Create a new testing area with the same name to one that already exists.

3. Create a new testing area with names bigger than the allowed.

4. Try the three previous tests in edition of an already existing area.

5. Try several searches of existing testing areas.

Expected results:

1. The area must be listed in the list of testing areas.

2. An error must be presented to the user.

3. It can’t be possible to introduce more than the number of allowed characters in the text fields.

4. The same results of the previous tests must occur.

5. The list of the testing areas must be narrowed to match the search.

Results archived:
The expected results were obtained.

Test cases

Testing summary:

1. Check listed testing areas in the option menu when adding a new test

2. Create a new test case with valid name, description and testing area.

3. Create a new test case with the same name to one that already exists.

4. Create a new test case with names bigger than the allowed.

5. Try the previous tests in edition of an already existing test.

6. Try several searches of existing test cases.

7. Follow the create stub link.

Expected results:

1. All existing areas must be listed in the option menu.

2. The test must be listed in the list of test cases.

3. An error must be presented to the user.

4. It can’t be possible to introduce more than the number of allowed characters in the text fields.

5. The same results of the previous tests must occur.

6. The list of the test cases must be narrowed to match the search.

7. A sample automated test must be created in the file system and the create stub link must disappear.

Results archived:
The expected results were obtained.

38

CHAPTER 6. TESTING AND SOFTWARE QUALITY ASSURANCE

Campaigns

Testing summary:

1. Create a new campaign with valid name and description and using some testcases.

2. Test the addition and remotion of tests included in the campaign.

3. Create a new campaign with names bigger than the allowed.

4. Try the three previous tests in edition of an already existing campaign.

5. Try several searches of existing campaigns.

Expected results:

1. The campaign must be listed in the list of campaign and the test cases used must be listed under the campaign.

2. The tests included must disappear from the list of tests to include.

3. It can’t be possible to introduce more than the number of allowed characters in the text fields.

4. The same results of the previous tests must occur.

5. The list of campaigns must be narrowed to match the search.

Results archived:
The expected results were obtained.

Campaign executions

Testing summary:

1. Try executing a campaign with an old target machine and with a new target machine.

2. Try executing a campaign targeting a old version and a new version.

3. Try executing a campaign using a valid IP address and an invalid IP address.

4. Execute a campaign using the several execution strategies.

5. Try several executions of a campaign.

Expected results:

1. A list of target machines already tested must be presented in a option menu. If a new target machine is selected, this
machine must appear in the menu the next time a campaign is executed.

2. A list of versions already tested must be presented in a option menu. If a new version is selected, this version must
appear in the menu the next time a campaign is executed.

3. If the IP address is valid the test must be executed. If the IP address in not valid the test must be executed, fail and
stop in the beginning of the execution and output the proper error message.

4. The campaigns must be executed according to the selected execution strategy. If there are several execution strategies
in queue, the one in the first campaign must be selected and the other campaigns only can run after all the tests within
the execution strategy are finished.

5. The several campaigns must be inserted in the campaigns waiting to run queue.

Results archived:
The expected results were obtained.

39

CHAPTER 6. TESTING AND SOFTWARE QUALITY ASSURANCE

Campaign lists and campaign details

Testing summary:

1. View list of campaigns

2. View details of a campaign.

Expected results:

1. The campaigns must be in three different lists. The campaign can be in queue for execution, can be executing or
with its execution complete. The campaigns finished executing must appear with different colors if they fail or pass.

2. If a campaign is running the details must appear dynamically without refresh of the page. If the campaign execution
is completed all details must appear. Also the result must be differentiated with colors and the running time of test
steps must be available to the user.

Results archived:
The expected results were obtained.

Execution statistics

Testing summary:

1. View execution statistics page.

Expected results:

1. The metrics shown must only consider the tests executed with success. The metrics are to be organized by campaign,
test case, target machine and version tested.

Results archived:
The expected results were obtained.

Some, but not all, of these tests were produced before the implementation of the application. They were used as
acceptance tests and although some tests failed during the implementation, in the end, all tests were producing
satisfactory results.

6.5 Unit testing

Only the core module of the system was submitted to unit testing since it is the most critical module of the
application. These tests were produced by feeding defined testing orders to the database and by checking the
results afterwards. With the execution of these unit tests it was also possible to submit the platform to stress tests
by executing them a massive amount of times and doing the tests in the previous section.

The results of this type of testing were positive an the platform proved to be prepared to deal with great quantities
of data.

6.6 Code inspections

An inspection of a part of the code was performed by a member of the development team that evaluated the coding
style, the code organization, the documentation and reviewed with particular attention the most crucial methods
of the application’s core.

The code reviewer comments were very positive and his suggestions were taken in account.

40

CHAPTER 6. TESTING AND SOFTWARE QUALITY ASSURANCE

6.7 Beta testing

During the edgeBOX’s release in the begging of August, the Automated Testing Platform was used and some
automated tests were executed. The test of backups and restores was very useful due to its implications in a great
set of the functionalities and the amount of work and time involved in changing configurations and restoring them.
A test to the DHCP server was also performed in an automated way since the simulation of several users requesting
IP addresses is difficult to do manually.

During this phase, the requests, comments and observations of tester and developers were taken in account and
later integrated in the application or left in the future improvements list. Most of these comments were usability
issues and particular uses that were unforeseen in the planification of the application. In spite of non-planning
of these functionalities, considering the modular design of the application, the changes won’t affect a significant
amount of code.

41

CHAPTER 7. DOCUMENTATION

Chapter 7

Documentation

Every technology really needs to be shipped with a special manual– not how to use it but why, when and for what.
– Alan Kay

The idea is to try to give all the information to help others to judge the value of your contribution; not just the
information that leads to judgment in one particular direction or another.

– Richard Feynman

Hungarians assume that everything will soon break. And they usually want to fix it themselves. So good
Hungarian manuals read more like machine shop specifications than user guides.

– János Kosztolányi

7.1 Approach to documentation

The implementation of the Automated Testing Platform was documented using Doxygen. Doxygen generates
several kinds of outputs (e.g. LaTeX and HTML) that can give an insight to the details of the code. The tests
scripts developed using Perl were documented using the excellent Perl documentation system that produces code
information similar to unix man pages.

7.2 User manual and application tour

This section explains the how to use the Automated Testing Platform and is included in this report mainly as a tour
of the application so that the final work can be analyzed and evaluated. A movie is included in the CD [Appendix
D] so a real example of the application in use can be observed.

7.2.1 Application front page

In the application’s front page, the user has access to the several conceptual areas in which the Automated Testing
Platform is divided.

Manage test cases In this menu it is possible to create, edit and remove tests from the test list. There is also
documentation about the tests and automatic stub generation tools.

Manage test areas Testing areas allow a user to group tests. In this menu it is possible to create, edit, and remove
testing areas.

43

CHAPTER 7. DOCUMENTATION

Figure 7.1: Main page - interface

Manage campaigns A test campaign is a set of tests to be executed. In this menu it is possible to view, create,
edit, remove and execute a campaign.

List executions In this menu it is possible to view a summary and the details of running, past and pending
executions.

Show statistics In this menu it is possible to view execution time statistics of campaigns, tests and versions.

An image of the application’s front page is available in figure 7.1.

7.2.2 Manage tests

When opening the Manage test menu, the user is presented with the list of tests in the system [Figure 7.2a]. Then,
using the search box on the right, it’s possible to filter the list by keywords [Figure 7.2b].

To create a new automated test case, click on the link on the right side. A new form will appear where the test
name, a descriptive text are inserted and the area, in which the test in included, is selected from the list of existing
areas [Figure 7.2c]. By submitting the form, the page is reloaded, a confirmation that the test was included in the
application is presented and the test is listed in the list of tests.

A test can be deleted or edited by selecting the proper operation in operation column in the list of test. To edit, a
similar form as to add a new test is presented with the current test definitions.

After adding a new test it is possible to create the skeleton of the test script by pressing the Create stub link [Figure
7.2d]. This stub is created in the tests directory in the base folder of the application. Then, the user have to edit
the test by programming in the language Perl. Other languages can be used just by declaring the language in the
begging of the script in the standard unix shell way.

7.2.3 Manage areas

The list of testing areas is available in the Manage areas menu [Figure 7.3b]. By using the search box in the right
the used can narrow the list.

To add a new area, click on the link on the right side. A form where the user can enter the name and description
of the area appears and, after submitting the form, the new area is listed alongside the other areas.

The possibility of removing or editing an area is available in the operation column in the list of areas. The scheme
for editing is the same than for addition of a new area.

44

CHAPTER 7. DOCUMENTATION

(a) List of tests

(b) Search tests

(c) Add new test

(d) Create a test stub

Figure 7.2: Manage tests - interfaces

45

CHAPTER 7. DOCUMENTATION

(a) List of areas

(b) Add new area

Figure 7.3: Manage areas - interfaces

7.2.4 Manage campaigns

The manage campaign menu lists the campaigns in the system [Figure 7.4a] and allows searching by writing the
keywords in the search field in the right. To view the tests included in each campaign, it is possible to click in the
folder’s icon and the new, more detailed list, will appear [Figure 7.4b].

To create a new campaign, click on the link in the right menu. A new form requiring information about the
campaign will appear. A description is to be added and a subset of the tests is to be selected using the horizontal
arrows to select and the vertical arrows to sort [Figure 7.4c]. After submitting, the campaign is visible in the list
of campaigns.

To execute a campaign, the user presses the corresponding link in the operation column. Then, a form for execution
of campaigns appears [Figure 7.4d] and the user introduces the several fields and the target machine, version in
test, IP address of the target machine, how many executions to perform and the execution strategy. According to its
strategy, executions can run sequentially, run in parallel or run in parallel just in executions of different campaigns.
After submitting the form, the user is redirected to the List executions area,

7.2.5 List and view executions

The executions listing page is divided in the following three areas [Figure 7.5a]:

Running executions The list of executions that are currently running.

Pending executions The list of executions that are in the waiting queue.

Past executions The list of executions that were already completely executed. Campaigns that are colored green

46

CHAPTER 7. DOCUMENTATION

(a) List of campaigns

(b) Expanded list of campaigns

(c) Creation of a new campaign

(d) Execute a campaign

Figure 7.4: Manage campaigns - interfaces

47

CHAPTER 7. DOCUMENTATION

(a) List of executions

(b) Add new area

(c) Add new area

Figure 7.5: View executions- interfaces

48

CHAPTER 7. DOCUMENTATION

(a) Overview of the statistics

(b) Statistics by campaign, test, machine and version

Figure 7.6: View statistics - interfaces

were successfully executed, red campaigns failed to execute or the result of the execution was not the
expected.

To view the execution details, follow the link in the execution list. If the execution is running, the results will
appear dynamically using AJAX technology. If the execution is over, all information is available [Figure 7.5b]
and further details can be analyzed by expanding each execution [Figure 7.5c].

This interface also provides a way to see reports by clicking in the pdf icon or to manually change the result status
of the execution.

7.2.6 View statistics

The statistics page has a list of the average running time and standard deviation of the successful executions of
each campaign. If the information is expanded by pressing the folder link this information is grouped by the tests
included in the campaign. If further expansion is requested, the information is grouped by the model of the target
machine and by the version tested.

This information is very useful to compare the performance of subsequent releases in the same machine, compare
the effect of better hardware in the same version or benchmark the execution of tests.

49

CHAPTER 7. DOCUMENTATION

7.3 Installation manual

Since, almost completely, Debian based Linux distributions are used in the project, this installation manual as-
sumes the apt installation suite is used. For non-debian systems, the used packages can be installed using the
distribution’s package manager.

For installing the platform execute the following commands:

i n s t a l l d e p e n d e n c i e s
$> sudo ap t−g e t i n s t a l l apache2 php5 l i b a p a c h e 2−mod−php5 g++ p e r l a u t o t o o l s

download t h e a p p l i c a t i o n from CVS
$> cvs co user@cvs . c r i t i c a l . p t : cvs / c r i t i c a l / edge−d e v i c e / i m p l e m e n t a t i o n / au tomated− t e s t i n g

c r e a t e a s y m b o l i c l i n k i n t h e HTTP d i r e c t o r y t o t h e u s e r i n t e r f a c e
$> l n −s p u b l i c h t m l / / au tomated− t e s t i n g / a t p / u i /

c o m p i l e t h e core o f t h e a p p l i c a t i o n
$> . / c o n f i g u r e
$> make
$> sudo make i n s t a l l

i n s t a l l t h e p e r l module o f t h e t e s t i n g API
$> . / i n s t a l l −sh

Some automated testing scripts implemented use perl libraries that have to be installed. Each of these tests include
comments with the libraries used and the user shall install them by the perl command line.

50

CHAPTER 8. FINAL CONSIDERATIONS AND RESULTS ANALYSIS

Chapter 8

Final considerations and results analysis

The single most important thing to remember about any enterprise is that there are no results inside its walls.
The result of a business is a satisfied customer.

- Peter Drucker

The truth is, there are only two things in life, reasons and results, and reasons simply don’t count.
– Robert Anthony

8.1 Automated testing platform results

The objectives proposed in the beginning of the internship were archived. An automated testing platform, with
some innovative functionalities, was developed as required. Some automated tests were also implemented to show
the use, functionalities and value of the platform. The results were very satisfying.

As an analysis of the platform, the unique points in comparison with the other products mentioned in section 3.3
are:

• Architected to test network applications in particular the edgeBOX.

• Unifies functional testing and benckmarking.

• Architecture supports distributed automated testing.

8.1.1 Improvements

During the development and testing, some ideas for new features were suggested by the future users of the appli-
cation. These include:

• Better integration among test definition on the platform and test documentation.

• An interface to provide arguments to the automated tests.

• Easier distributed system testing platform functionalities.

8.2 Automated tests results

The automated test cases implemented were just a proof of concept to show that [part of] the testing of the
edgeBOX can be done using the automated testing platform. This objective was archived during the edgeBOX’s

51

CHAPTER 8. FINAL CONSIDERATIONS AND RESULTS ANALYSIS

release in the beginning of August by using the platform for testing of sensitive and difficult functionalities as the
backup or the DHCP server package.

8.3 Internship considerations

During this internship, an inside knowledge of the edgeBOX was gained. It’s was a valuable experience for me as
a student to work in a real world team’s project with its time, money and quality constrains.

At a technical level, new technologies were learned, my networking knowledge has increase since it was something
in which I didn’t had great interest during my degree and that was a gap in my formation as a computer engineer.

I learned a great deal about organization of software projects, how to contribute, as a member of a team, to a big
project (10 members in the engineering team and 10 members in supporting areas) when there are multiple goals
and short amount of time and resources.

I’ve also gained life experience that, for sure, is going to be helpful in the rest of my professional life by moving to
a different city, meeting different people from different nationalities and by working in one of the most dynamic
and innovative Portuguese companies.

I feel that I’ve archived my objectives and that it was a very good choice to be an intern at Critical Software. In
my opinion and from the feedback I’ve received, Critical’s managers were also very happy with my performance.
I was evaluated according to the standards of the company having a final classification of superior (4,2 out of
5), a excellent classification considering the exigence of the evaluation. I was invited to keep working at Critical
Software, a propose that I’m going to ponder and decide after the deliver and presentation of this report.

52

BIBLIOGRAPHY

Bibliography

[1] Tanenbaum, A., ”Computer Networks” Fourth edition, Prentice Hall, 2003

[2] Tanenbaum, A. and Steen, M., ”Distributed Systems”, Prentice Hall, 2002

[3] Srinivasan, S., ”Advanced Perl Programming”, O’Reilly, 1997

[4] Beck, k., ”Test-Driven Development”, Addison-Wesley, 2003

[5] Brooks, F., ”The Mythical Man-Month”, Addison-Wesley, 1975

[6] Gamma, E. et al., ”Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-
Wesley, 1997

[7] Stroustrup, B., ”The C++ Programming Language”, Addison-Wesley, 1991

53

APPENDIX A. GANT CHART

Appendix A

Gant chart

55

ID Task Name Duration Start

1 Introduction 13 days Wed 01-03-06

2 Introduction to the company, workplace and work mates 3 days Wed 01-03-06

3 Global planning 4 days Fri 03-03-06

4 Meeting with tutors and planning aprovment 5 days Tue 07-03-06

5 Elaboration of a document about the organization of the edgebox development, architecture and technologies involved5 days Mon 13-03-06

6 Requirements specification 8 days Mon 20-03-06

7 Brainstorming about the requirements 3 days Mon 20-03-06

8 Definition of a set of tests that can be performed automatically with the priority defined3 days Tue 21-03-06

9 Elaboration of the requirements document 5 days Thu 23-03-06

10 Architecture specification 7 days Thu 30-03-06

11 Brainstorming about the architecture 5 days Thu 30-03-06

12 Elaboration of the architecture document 7 days Thu 30-03-06

13 Experience in a software development iteration 40 days? Mon 17-04-06

14 Implementation 86 days Mon 03-04-06

15 Elaboration of a vertical prototype for a specific use case 70 days Mon 03-04-06

16 Functionality prototype 30 days Mon 03-04-06

17 Stress test prototype 5 days Mon 26-06-06

18 Benchmark test prototype 5 days Mon 03-07-06

19 Testing of the prototype for feedback 13 days Wed 21-06-06

20 Revision of the test cases to implement 2 days Thu 29-06-06

21 Implementation of the test cases (by order of priority) 21 days Mon 03-07-06

22 Testing of use cases for feedback (trial) 10 days Tue 18-07-06

23 Testing 12 days Tue 01-08-06

24 Functional tests 5 days Tue 01-08-06

25 Unit testing 5 days Tue 08-08-06

26 Code inspection 2 days Tue 15-08-06

27 Internship report 22 days Tue 01-08-06

28 Structure definition 3 days Tue 01-08-06

29 Elaboration 18 days Thu 03-08-06

30 Reviews from tutors and others 8 days Mon 21-08-06

T W T F S S M T W T F S S M T W T
eb '06 06 Mar '06 13 Mar '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: plan
Date: Wed 28-06-06

F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
20 Mar '06 27 Mar '06 03 Apr '06 10 Apr '06 17 Apr '06 24 Apr '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 2

Project: plan
Date: Wed 28-06-06

F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
01 May '06 08 May '06 15 May '06 22 May '06 29 May '06 05 Jun '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 3

Project: plan
Date: Wed 28-06-06

F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
12 Jun '06 19 Jun '06 26 Jun '06 03 Jul '06 10 Jul '06 17 Jul '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 4

Project: plan
Date: Wed 28-06-06

F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T
24 Jul '06 31 Jul '06 07 Aug '06 14 Aug '06 21 Aug '06 28 Aug '06

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 5

Project: plan
Date: Wed 28-06-06

APPENDIX B. USER INTERFACE PROTOTYPES

Appendix B

User interface prototypes

59

APPENDIX B. USER INTERFACE PROTOTYPES

(a) Front page interface (b) Manage tests interface

(c) Manage areas interface (d) Manage campaigns interface

(e) View campaign executions (f) View campaign details interface

Figure B.1: User interface prototypes

60

APPENDIX C. EDGEBOX FLEUR

Appendix C

Edgebox Fleur

61

Today, affordable high-speed internet access coupled
with advances in networking technologies create a new
opportunity for small and medium sized enterprises
(SMEs) and organisations with branch offices to
become more efficient and competitive by
interconnecting sites, deploying collaborative and
productivity-enhancing applications, increasing access
to data inside and outside the office (teleworkers) and
integrating data and voice (VoIP).

Unlike large enterprises, these businesses typically
don’t have the necessary IT resources to deploy,
integrate and manage these services. They need a pre-
configured, fully integrated device that can be easily
installed, used and maintained by non-IT experts.

edgeBOX is such a device with a comprehensive range
of networking services including the latest in VoIP
technologies, plug-and-play installation and remote
management features, it is the only device an SME or
branch office needs for deployment of a fully converged
enterprise grade network.

� High speed internet access via ADSL, Cable, UMTS,
or other technology converted to Ethernet.

� VPNs based on both Internet Protocol Security (IPSec)
and Point-to-Point-Tunnelling-Protocol (PPTP) for site-
to-site and tele-workers respectively.

� WiFi at each site with integrated security and
authentication

� Authentication, Authorisation and Accounting
providing complete control and auditing of network
resources

� Firewall management, either basic or authenticated
stateful firewall for each external link and VPN

� VoIP Gateway for routing between PSTN and IP
networks

� IP PBX with a comprehensive feature list for inbound
and outbound call management

� QoS and Bandwidth Management for service and
user prioritisation and ensuring voice quality

� Web server for intranet, extranet, or internet.

� Intranet out-of-the-box with standard collaborative
services

� Email and associated services (SMTP, POP, IMAP,
Webmail, anti-virus, anti-spam) for email hosting (or
relaying)

� File and printer sharing for office desktop user
collaboration.

� Storage with quota management and automatic
backup to a local disk or remote server

� Remote configuration and support

� WAN capabilities between sites

Business Gateway for
SMEs and Enterprise
Branch Offices

edgeBOX is a fully integrated network device with
comprehensive networking, security, collaboration,
storage, built-in QoS and a feature-rich IP-PBX providing
a complete converged voice and data solution for Small
and Medium sized Enterprises (SMEs)

BBBeeesssttt BBBrrroooaaadddbbbaaannnddd

AAApppppp lll iii aaannnccceee 222000000555

Every feature of edgeBOX is controlled via a simple web-
based management interface that can be accessed on-site
or remotely.

Wizards are available for initial setup and there are several
pre-defined templates that reduce installation and setup
time

edgeBOX has a built-in router, ADSL modem (optional),
Wireless access point card (optional), cable UMTS support
and services such as DHCP, NAT and DNS which enable it
to integrate into any type of network with minimum
administration effort.

WiFi support also enables instant deployment of a LAN at
“Greenfield” sites and of hot-spots that are integrated into
the network. A local RADIUS server allows for anonymous
access or connection to a remote server allows for access
by account holders.

Figure 1: edgeBOX 100% java and web-based management GUI

Simple Network
Deployment

Figure 3: Illustrative edgeBOX deployment scenario

Enterprise Grade
Security
edgeBOX contains a range of security features designed to
protect the network from outside attack and internal misuse,
including:

� Stateful Inspection Firewall for enterprise-grade security
for data and applications connected via physical links and
VPNs. Protects the network from all common types of threat
such as suspicious packets, and denial of service attacks.
Customisation options and detailed event logs included

� Authentication at Firewall enables user authentication at
firewall level before granting access to services and
resources. Enables policy enforcing and selective access
based on user/machine/group separately for the WAN,
LAN, and EWAN.

� Network Access Policies provide fully configurable and
audited internet access policies for the WAN and EWAN by
user/machine/group. Each may have different QoS classes,
access restricted to specific time periods, restrictions on
service access (e.g. VoIP, mail, web).

� Virtual Private Networks (VPNs) with IPSec allowing the
secure connection of private networks through the internet
cith 3DES encryption and MD5 authentication. PPTP
Connections enable the establishment of VPN tunnels
across the internet for secure remote access by
teleworkers.

Collaboration through sharing of data and network resources
is provided via the inbuilt:

� Web and FTP Server for easy deployment of intranet and
internet pages including default user home pages

� Email Server maintains full internal email services in
cases of WAN link failure. Includes relay control, LDAP
authentication, ban lists, aliases, anti-spam, POP, IMAP,
Web-mail, anti-virus, and remote mail storage

� Print Server Enables installation and management of
shared printers at the customer premises

� Seamless integration with Windows, with single-point
log-on via Windows Server (using LDAP) and can act as a
primary domain controller

� Web Filtering Enables web site access blocking based on
keywords

� File Sharing Enables sharing of files by acting as a FTP,
HTTP or Windows file server with configurable disk quotas

� Web Caching Provides cached content for fast access
and bandwidth saving.

Collaboration
Services

Figure 2: Connects to the LAN, WAN and acts as a VoIP Gateway

A platform for the future

Unlike other proprietary appliances and business gateways,
edgeBOX runs on Commercial-off-the-shelf (COTS) hardware
providing a platform that is easy to upgrade and expand as
additional functions are used or the number of users grow.
Hardware reliability is guaranteed and warranty issues are
simplified while ensuring the latest hardware technologies can
always be utilised, such as faster network interconnects and VoIP
gateway cards.

edgeBOX is certified to run on a number of hardware
configurations from Dell, IBM, Advantech and Lexcom with other
platforms available on request.

Administration of edgeBOX can be performed on-site or off-site via
the simple-to-use web based interface. If a service management
company is contracted to support edgeBOX they will be able to
remotely support and maintain the device without the need for on-
site intervention, greatly reducing the effort and cost involved.

Critical Links provides an update service, which can automatically
download, and installation software updates and patches to ensure
edgeBOX has the latest features and remains secure. The
edgeBOX support team monitors global security alerts on a 24x7
basis.

Tight monitoring and control over network service usage is
provided through detailed event logging, statistics and
accumulated histories with remote logging support (syslog).

Automatic Data Backup can be performed to a local USB-disk or
off-site server (e.g. Data Center).

Integrated Failover* supports failover of edgeBOX to a backup unit
with the possibly of using different connection types (dual-homing).

A Business Gateway
for Small and Medium
Sized businesses

Simplified Management

Integrated Voice
and Data
A Software PBX and VoIP Gateway

edgeBOX includes a complete soft PBX based on
Asterisk, providing all of the features expected from a PBX
such as IVR (Interactive Voice Response), ACD
(Automatic Call Distribution), digital receptionist, incoming
call rules, sound manager, call routing, forwarding,
queuing and parking, LCR tables, conference bridging,
hunt groups, telephone number mapping (ENUM), music-
on-hold, email forwarding and user management with call
permissions.

To ensure the quality of VoIP calls edgeBOX provides
QoS (Quality of Service) and bandwidth management
which allows for reservation and prioritisation of a
percentage of available bandwidth for voice traffic.

Branch offices can route calls between edgeBOX units at
each site over secure IPSec VPNs and teleworkers can
access their extensions over secure PPTP VPNs. This
allows free calls to be made between all staff members,
regardless of where they are located. Calls can also be
routed through an ITSP (Internet Telephony Service
Provider) that provides free calls to other IP Telephony
users and reduced rate calls to land line numbers and
mobile phones. The combined effect of these cost savings
can greatly reduce a company’s phone bill while providing
improved functionality to end-users.

Scalable, Standards Based

* Available Q1 2006

Figure 4: VoIP deployment scenario

Figure 4: Remote management and

software update services mean

edgeBOX is easy to support and

maintain

MODEL HARDWARE REC # USERS

Office Gateway appliance, entry-level server 1-20

Business Gateway standard server 20-100

Enterprise Gateway high-end, rack-mountable server 100-500

Hardware Options

edgeBOX GATEWAY Configurations based on standard COTS hardware

WiFi PCI AP

ADSL PCI Modem

ISDN BRI and PRI single, dual or quad span

FXO/FXS 2+2

Software Features

Security
Stateful Inspection Firewall
• Filter on source and/or destination IP address/port

value

• Filter on SYN, ACK flags and ICMP

• Stateful inspection

• Provides enterprise-grade firewall protection

• Full-time Stateful Packet Inspection with built-in support
for most popular applications

• No predefined limit on the number of rules that can be
created and applied

• All firewall messages can be logged to syslog servers

• AAA, Authentication, authorisation, and accounting
(external and internal)

• Group based access control

Virtual Private Networking
• IPSec, no pre-defined limit on VPN tunnels

• Internet Key Exchange (IKE) including Aggressive
Mode

• 3DES (168-bit) encryption

• Supports Perfect Forward Secrecy (DH Group 2 and 5)

• Provides protection from replay attacks

• IPSec VPN Firewall to control tunnel access

• PPTP Server with local or remote authentication

User Authentication
• Local, RADIUS server, or LDAP server (e.g. W2K)

Configuration and Management
Configuration

• Easy setup through a browser-based user interface

• Wizard based setup

• Default basic configuration

• Configuration and management using HTTP, serial
console and SSH

• Syslog server support

Secure Management
• Local and remote management

• RADIUS management authentication support

• RADIUS support for accounting (time & traffic)

• SSH secure management channel

• SNMP support

Software Update Management
• Automatic update from central update server

(update.edgebox.net)

• Manual configuration option which downloads available
updates and waits for user confirmation before install

• Notifications for service shutdown and service restart
for planned maintenance

• Update service access based on yearly subscription

Anti-piracy protection
• Proprietary software is encrypted (AES 256 bit)

• Software key lock tied to hardware signature to deter
piracy, renders edgeBOX software useless in other
hardware

• License key controls access to update server on
update.edgebox.net

IP Quality of Service (IP QoS)
• DiffServ traffic prioritisation (ToS byte marking)

• Inbound and Outbound QoS

• CBQ traffic prioritisation

• Configurable traffic prioritisation policies by:
addresses, users, groups, port, protocol

High Availability
• Data backup to remote FPT site or USB disk

• Automatic, configurable regular backups

• Manual restore of backed up data from restore list

• Failover *

• Dual-homing*

* To be released in Q1 2006

Networking
• PPP over Ethernet and PPP over ATM

• Automatic IP and DNS assignment

• Static routing on the LAN and/or WAN

• DHCP server and client

• DNS Server (Master and Forward)

• Dynamic DNS client

• Network Address Translation (NAT)

• Port Forwarding

• Supports public Web and e-mail servers with NAT

Collaboration Services
• HTTP Server with user home pages

• FTP Server

• Email server supporting: POP3, IMAP, SMTP

• Web mail

• LDAP Intranet Mail routing

• Email remote storage

• Email aliases management

• Email antivirus (interfaces with Sophos)

• Email antispam (based on RBLs)

• SMTP relay for road warriors

• Print Server (for USB printers)

• Windows file sharing (SME)

• Web Transparent Caching

• User Disk Quotas

VoIP and IP PBX
• SIP and IAX support

• Analogue and Digital PSTN gateway

• Least Cost Routing

• Interactive Voice Response (IVR)

• Automatic Call Distribution (ACD)

• Telephone Number Mapping (ENUM)

• Voice Mail with optional email forwarding of voice
messages

• Call routing between remote edgeBOX switches
(branch offices)

• Digital Receptionist

• Incoming Call Rules

• DID Call Routing

• Sound Manager

• Follow-me feature for user extensions

• Call Parking

• Call Forwarding

• Conference Bridging

• Music on Hold

• Call Queuing

• Hunt Groups

• User Profiles with call permissions

• Support for all common codecs

European Headquarters

Critical Links, S.A.

Parque Industrial de Taveiro, Lote 48,

3045-504 Coimbra, Portugal

Tel +351 239 989 100 Fax +351 239 989 119

Lisbon Office

Critical Software, S.A, Polo Tecnológico de Lisboa

USA Office

Critical Software, Limited

San Jose, California, USA

UK Office

Critical Software Technologies Ltd

72 New Bond Street, London, W1S 1RR

www.critical-links.com
edgebox@critical-links.com

technical data-sheet

Hardware Features

edgeBOX runs on standard hardware and supports a
range of hardware features listed below. For support of
specific hardware configurations please contact us.

WAN Interface
• Cable Modems

• ADSL modems (internal or USB)

• UMTS

• Ethernet-based modems

LAN Interface
• Primary Ethernet

• Secondary Ethernet for DMZ or bridging

• WiFi (802.11b/g) AP mode

EWAN Interface
• Ethernet port for Enterprise WAN

Serial Interface
• One asynchronous serial console port

Telephony
For interconnection with digital and analog telephony
equipment, edgeBOX supports and auto-detects a
number of hardware devices from various
manufacturers including BRI boards (1, 4 and 8 ports),
PRI (up to 124 channels) and POTS 2+2 boards from
Digium and Beronet.
No additional hardware is needed for VoIP.

Open Source Software

The edgeBOX software distribution includes a number
of open-source packages that are distributed according
to their specific licenses, including: Linux 2.6 kernel,
Openldap, Apache, php, sendmail, OpenSSL, bind,
dhcpd, OpenSwan, Squid, Samba, Iptables, Iproute2,
Asterisk, qpopper, imapd, postgreSQL, tomcat, proftpd,
net-snmp, freeradius, OpenSSH, mrtg, mailscanner.

Copyright 2006 Critical Links S.A. All rights reserved. Critical, edgeBOX, iTEMS and their respective logos are trademarks of Critical Software SA. All other trademarks are held by

their respective companies. Critical reserves the right to make changes to the product specifications at any time without notice.

APPENDIX D. CD

Appendix D

CD

65

