
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Peter Fabian

Refactoring tree editor TrEd

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: doc. Ing. Zdeněk Žabokrtský, Ph.D.

Study programme: Computer Science

Specialization: Mathematical Linguistics

Prague 2011

I would like to thank my supervisor, Mr. Žabokrtský for the inspirations and his
patience. I would also like to thank my family for their endless support.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date

Název práce: Refaktorizace editoru stromů TrEd

Autor: Peter Fabian

Katedra: Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: doc. Ing. Zdeněk Žabokrtský, Ph.D., Ústav formálńı
a aplikované lingvistiky

Abstrakt: Ćılem práce bylo refaktorizovat editor stromů TrEd, zlepšit t́ım jeho
modularitu, usnadnit údržbu a daľśı vývoj aplikace. Důraz byl také kladen na
zachováńı rychlosti programu. Zdrojový kód TrEdu byl prozkoumán metodami
statické a dynamické analýzy, které pomohly identifikovat problémová mı́sta.
Bylo vytvořeno 50 nových modul̊u a přesunuto značné množstv́ı kódu. Byla
také vytvořena sada test̊u, zvolena pravidla pro psańı nového kódu a sepsána
dokumentace části stávaj́ıćıho kódu. Kód byl po refaktorizaci opětovně podroben
kvalitativńı i kvantitativńı analýze a jej́ı výsledky byly porovnány se stavem před
refaktorizaćı.

Kĺıčová slova: Editor stromů TrEd, Perl, refaktorizace, analýza kódu

Title: Refactoring tree editor TrEd

Author: Peter Fabian

Department: Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: The main goal of the thesis was to refactor tree editor TrEd, improve its
modularity, maintainability and make its further development less difficult. Static
and dynamic analysis of TrEd have been performed in order to help us find acrid
spots in the source code. More than 230 subroutines and data structures have
been moved between packages, 50 new packages and a test suite with more than
1,300 tests have been created. A new coding style have been chosen for further
development and most severe violations of this standard have been fixed. After
the changes done on the source code, it have been analyzed again and the results
have been compared with the previous state.

Keywords: Tree Editor TrEd, Perl, code refactoring, code analysis

Contents

1 Introduction 7

2 Code Analysis 8
2.1 Code smells . 8

2.1.1 Duplicated Code . 8
2.1.2 Long Subroutines . 9
2.1.3 Large Class . 9
2.1.4 Long Parameter List . 9
2.1.5 Divergent Change . 10
2.1.6 Shotgun Surgery . 10
2.1.7 Feature Envy . 10
2.1.8 Data Clumps . 10
2.1.9 Primitive Obsession . 11
2.1.10 Switch (Case) Statements 11
2.1.11 Parallel Inheritance Hierarchies 11
2.1.12 Lazy Class . 11
2.1.13 Speculative Generality . 11
2.1.14 Temporary Field . 11
2.1.15 Message Chains . 12
2.1.16 Middle Man . 12
2.1.17 Inappropriate Intimacy . 12
2.1.18 Alternative Classes with Different Interfaces 12
2.1.19 Incomplete Library Class 13
2.1.20 Data Class . 13
2.1.21 Refused Bequest . 13
2.1.22 Comments . 13

2.2 Static code analysis . 13
2.2.1 Overview . 14
2.2.2 Code Metrics . 15
2.2.3 Perl::Critic . 22
2.2.4 CCFinderX . 24

2.3 Dynamic Code Analysis . 26
2.3.1 bTrEd Evaluation . 29
2.3.2 TrEd Start . 29
2.3.3 Browsing in TrEd . 32

3 Design of TrEd 33
3.1 Overview . 33
3.2 Libraries . 34
3.3 TrEd start-up . 34
3.4 TrEd::File . 38
3.5 Filelists . 39

3.5.1 Filelist . 39
3.5.2 TrEd::Bookmarks . 40

3.6 TrEd::FileLock . 40

1

3.7 TrEd::Undo . 41
3.8 TrEd::Config . 41
3.9 Converting . 42
3.10 Annotation Modes . 42
3.11 TrEd::Stylesheet . 42
3.12 TrEd::Window . 42
3.13 Binding System . 43
3.14 Macro System . 43

3.14.1 Macros . 43
3.14.2 Hooks . 45
3.14.3 Extensions . 46
3.14.4 Minor Modes . 46

4 Coding style 47
4.1 Code Layout . 48

4.1.1 Bracketing . 48
4.1.2 Keywords . 48
4.1.3 Subroutines and Variables 48
4.1.4 Builtins . 49
4.1.5 Keys and Indices . 49
4.1.6 Operators . 49
4.1.7 Semicolons . 49
4.1.8 Commas . 50
4.1.9 Line Lengths . 50
4.1.10 Indentation . 50
4.1.11 Tabs . 50
4.1.12 Blocks . 51
4.1.13 Chunking . 51
4.1.14 Elses . 51
4.1.15 Vertical Alignment . 51
4.1.16 Breaking Long Lines . 52
4.1.17 Non-terminal Expressions 52
4.1.18 Breaking by Precedence 52
4.1.19 Assignments . 53
4.1.20 Ternaries . 53
4.1.21 Lists . 53
4.1.22 Automated Layout . 53

4.2 Naming Conventions . 54
4.2.1 Identifiers . 54
4.2.2 Booleans . 55
4.2.3 Reference Variables . 55
4.2.4 Arrays and Hashes . 55
4.2.5 Underscores . 55
4.2.6 Capitalization . 55
4.2.7 Abbreviation . 56
4.2.8 Ambiguous Abbreviations 56
4.2.9 Ambiguous Names . 56
4.2.10 Utility Subroutines . 56

2

4.3 Values and Expressions . 57
4.3.1 String Delimiters . 57
4.3.2 Empty Strings . 57
4.3.3 Single-Character Strings 57
4.3.4 Escaped Characters . 57
4.3.5 Constants . 58
4.3.6 Leading Zeros . 58
4.3.7 Long Numbers . 58
4.3.8 Multi-line strings . 59
4.3.9 Here Documents . 59
4.3.10 Heredoc Indentation . 59
4.3.11 Heredoc Terminators . 59
4.3.12 Heredoc Quoters . 60
4.3.13 Barewords . 60
4.3.14 Fat Commas . 60
4.3.15 Thin Commas . 60
4.3.16 Low-Precedence Operators 61
4.3.17 Lists . 61
4.3.18 List Membership . 61

4.4 Variables . 62
4.4.1 Lexical Variables . 62
4.4.2 Package Variables . 62
4.4.3 Localization . 62
4.4.4 Initialization . 63
4.4.5 Punctuation Variables . 63
4.4.6 Localizing Punctuation Variables 63
4.4.7 Match Variables . 63
4.4.8 Dollar-Underscore . 64
4.4.9 Array Indices . 64
4.4.10 Slicing . 64
4.4.11 Slice Layout . 65
4.4.12 Slice Factoring . 65

4.5 Control Structures . 65
4.5.1 If Blocks . 65
4.5.2 Postfix Selectors . 66
4.5.3 Other Postfix Modifiers . 66
4.5.4 Negative Control Statements 66
4.5.5 C-style Loops . 66
4.5.6 Unnecessary Subscripting 67
4.5.7 Necessary Subscripting . 67
4.5.8 Iterator Variables . 67
4.5.9 Non-Lexical Loop Iterators 67
4.5.10 List Generation . 67
4.5.11 List Selection . 68
4.5.12 List Transformation . 68
4.5.13 Complex Mappings . 68
4.5.14 List Processing Side Effects 68
4.5.15 Multipart Selections . 69

3

4.5.16 Value Swithces . 69
4.5.17 Tabular Ternaries . 69
4.5.18 do-while Loops . 69
4.5.19 Linear Coding . 70
4.5.20 Distributed Control . 70
4.5.21 Redoing . 70
4.5.22 Loop Labels . 70

4.6 Documentation . 71
4.6.1 Types of Documentation 71
4.6.2 Boilerplates . 71
4.6.3 Extended Boilerplates . 73
4.6.4 Location . 73
4.6.5 Contiguity . 74
4.6.6 Position . 74
4.6.7 Technical Documentation 74
4.6.8 Comments . 74
4.6.9 Algorithmic Documentation 75
4.6.10 Elucidating Documentation 75
4.6.11 Defense Documentation 75
4.6.12 Indicative Documentation 76
4.6.13 Discursive Documentation 76
4.6.14 Proofreading . 76

4.7 Built-in Functions . 76
4.7.1 Sorting . 77
4.7.2 Reversing Lists . 77
4.7.3 Reversing Scalars . 77
4.7.4 Fixed-Width Data . 77
4.7.5 Separated Data . 78
4.7.6 Variable-Width Data . 78
4.7.7 String Evaluations . 78
4.7.8 Automating Sorts . 78
4.7.9 Substrings . 79
4.7.10 Hash Values . 79
4.7.11 Globbing . 79
4.7.12 Sleeping . 79
4.7.13 Mapping and Grepping . 79
4.7.14 Utilities . 80

4.8 Subroutines . 80
4.8.1 Call syntax . 80
4.8.2 Homonyms . 80
4.8.3 Argument List . 81
4.8.4 Named Arguments . 81
4.8.5 Missing Arguments . 81
4.8.6 Default Argument Values 82
4.8.7 Scalar Return Values . 82
4.8.8 Contextual Return Values 82
4.8.9 Multi-Contextual Return Values 82
4.8.10 Prototypes . 83

4

4.8.11 Implicit Returns . 83
4.8.12 Returning Failure . 83

4.9 Input and Output . 84
4.9.1 Filehandles . 84
4.9.2 Indirect Filehandles . 84
4.9.3 Localizing Filehandles . 84
4.9.4 Opening Cleanly . 85
4.9.5 Error Checking . 85
4.9.6 Cleanup . 85
4.9.7 Input Loops . 86
4.9.8 Line-Based Input . 86
4.9.9 Simple Slurping . 86
4.9.10 Power Slurping . 86
4.9.11 Standard Input . 87
4.9.12 Printing to Filehandles . 87
4.9.13 Simple Prompting . 87
4.9.14 Interactivity . 87
4.9.15 Power Prompting . 88
4.9.16 Progress Indicators . 88
4.9.17 Automatic Progress Indicators 88
4.9.18 Autoflushing . 88

5 TrEd Refactoring 90
5.1 Conceptual Changes . 91
5.2 Static Analysis . 93

5.2.1 Code Metrics . 93
5.2.2 Perl::Critic . 96

5.3 Dynamic Analysis . 97
5.3.1 bTrEd Evaluation . 97
5.3.2 TrEd Start . 99
5.3.3 Browsing in TrEd . 99

5.4 Testing . 100

6 Future Work 103

7 Conclusion 104

References 105

List Of Tables 106

Appendices 107

A TrEd::FileLock 108

B TrEd::Undo 109

C TrEd::Macros 110

D TrEd Refactoring 111

5

E Contents of The Attached CD 114

F How To Make a Release of TrEd 115

6

1. Introduction

“TrEd is a fully customizable and programmable graphical editor and viewer of
tree-like structures such as dependency trees. Among other projects, it was used
as the main annotation tool for syntactical and tectogrammatical annotations of
The Prague Dependency Treebank, as well as for decision-tree based morpholog-
ical annotation of The Prague Arabic Dependency Treebank.” [8] It is actively
used in several academic institutions around the world. Since the original author
of TrEd, Petr Pajas, retired from working on this project and TrEd needs to be
maintained and new features need to be added, many people could benefit from
its improved modularity and robustness.

Changing the internal structure of computer programs and improving their
design is called refactoring. “It is the process of improving the internal structure
of the application’s source code without changing its behavior” [3]. Many types
of refactoring exist, [3] presents a great list of smaller and bigger refactorings in
his book. However, it’s still the programmer, who has to decide whether to split
a large function into more smaller ones (i.e. extract subroutine) or inline a small
function into another one, or decide whether to introduce a temporary variable
or use function call instead.

Refactoring, and in fact any change in software design and structure, is affect-
ed by many small decisions. Unlike the behavior of the program and correctness
of its output, which is usually subject to program specification, the internal struc-
ture of application is more affected by the individual styles and attitudes of the
developers who write the code. And since TrEd is almost exclusively a product
of one developer (Petr Pajas), who worked on it for almost 10 years, its whole
structure is subject to his own programming style.

Refactoring is also a challenging task, because it requires broad and deep
knowledge of programming languages used by the application, code testing tech-
niques and principles of applications’ design and architecture.

This thesis is thus dedicated to improvement of TrEd’s internal structure,
which should result in enhancing its external and internal quality.

The second chapter of this thesis is devoted to analysis of TrEd’s source code.
We give an overview of how much source code TrEd consists of and how it can
be divided into several categories. Afterwards, we use various tools for static and
dynamic analysis of Perl source code to identify the weakest points and candidates
for refactoring. Chapter 3 describes the design and the implementation of key
parts of TrEd. Chapter 4 presents coding style chosen for TrEd based on widely
adopted publication – Perl Best Practices by Damian Conway. The fifth chapter
describes changes done on TrEd’s source code during the work on this thesis. To
measure the quality of these changes, several metrics were evaluated. Finally, the
last chapter consists of discussion on how could be TrEd further improved and
possibilities of future work.

7

2. Code Analysis

Code analysis is the process of automatic analyzing the source code of computer
programs. There are two basic types of code analysis:

1. static analysis and

2. dynamic analysis.

Static analysis examines the source code of the application without running it,
while dynamic analysis examines the information gathered during the execution
of the program.

The first one tries to analyze all the paths through the program and is usually
easier to do for compiled languages like C/C++ or at least for languages with a
data type system like Java. Dynamic analysis maps just one run of the program
and thus can hardly analyze the program as a whole. It is usually the only option
for languages like Perl, where one can create new syntactic constructs and use
built-in functions like eval and do, which can execute user input or interpret
arbitrary files as Perl code.

Code analysis can help us to identify the most problematic parts of applica-
tion, which are usually called code smells in the world of refactoring. These are
the areas of the program’s source code which indicate that some refactoring could
improve the quality of the code in question.

In this chapter, we first take a look at code smells as they are described in [3].
Then, we shortly describe the overall code structure of TrEd and try to identify
the most acrid areas of TrEd’s source code by examining the results of static and
dynamic analysis of original TrEd.

2.1 Code smells

Since Martin Fowler wrote his book [3], signs of code that indicate the need
for refactoring are called smells. Originally, Fowler uses term code smells, other
authors broadened this term to architecture smells [5], which indicate also signs
of program architecture that indicate design faults. Code smells are usually not
strictly defined quantitatively, but one needs intuition as well as experience to
see what code to refactor. Fowler and Beck [3] presents 22 hints or advices how
to look for code smells and when they feel that refactoring is necessary.

2.1.1 Duplicated Code

Removing duplicated code is an easy way how to reduce number of lines of code
of the program without losing functionality. Not only Fowler, [2], but also general
wisdom states clearly that duplicated code belongs to a subroutine.

Code duplication can easily introduce bugs as the programmer easily loses
track of all the code copied over the program. When a modification is needed or
some piece of duplicated code is buggy, it must be changed in every copy, since
the modification is usually relevant for all the instances of copied code. It is very
easy to forget to change one of the instances of duplicated code, especially if the

8

maintenance programmer is not the one who wrote the code. Furthermore, code
duplication can be a sign of design without proper abstraction.

The percentage of code duplicity in TrEd is not very high; tred and btred

contain some common code and several subroutines have the same implemen-
tation on different places in code, e.g. uniq, appeared three times in various
packages in TrEd’s core. More information on code duplication in TrEd can be
found in Section 2.2.4.

2.1.2 Long Subroutines

The longer the procedure, the more it is difficult to understand, maintain and
test it. Fowler takes this approach to the limit and states that if you want to
comment a piece of code, make it a subroutine and give it a descriptive name.
“The key is not the length of the subroutine, but rather the semantic distance
between what the function does and how it is done” [3].

TrEd’s start up and some parts of modules are written in a fairly sequential
fashion, thus long subroutines are not very rare. As an example: TrEd::Exten-
sions:: populate extension pane subroutine was more than 500 lines long be-
fore refactoring, main::startMain was even more than 950 lines long before
refactoring. Subroutines should do one thing only and do it efficiently. Long
subroutine is hard to grasp, especially when they use a mix of local and global
variables, some of them with short undescriptive names like $l or $f.

Subroutines this long are also almost untestable, since it is very hard to find
all the paths through the subroutine and the number of combinations of many
conditions and loops can grow huge.

More exact numbers about the length of subroutines can be found in Sec-
tion 2.2.2.

2.1.3 Large Class

Large classes are usually trying to do too much and use many variables. TrEd
doesn’t use classes much since it is not written in object-oriented manner, but it
uses Perl packages to group subroutines and variables together. Large packages
are from conceptual point the same evil as long methods. They should be split
into smaller packages with more fine-grained and clear functionality.

TrEd’s main package, as stated above, is a good example of a large package
– it is more than 13,000 lines long and contains almost 600 subroutines. The
largest package, if we do not count the main package, is the default macro file
with API for macros and extensions – more than 4600 lines of code.

Class trying to do too much often shows up as too many instance variables.

2.1.4 Long Parameter List

In objected-oriented programs the lists of parameters are usually shorter than in
procedural programs. The reason for this is that on one hand, object’s methods
use object’s variables and on the other hand, it is usually possible to pass another
object as a parameter and use object’s methods to get needed values.

In Perl, programmers can use named parameters and pass only one (usually
anonymous) hash reference as a function parameter. Many functions take hash

9

reference holding TrEd’s configuration as their parameter. [2] advices to use
named arguments whenever the subroutine has more than 3 parameters. In fact,
it is a similar approach to Fowler’s Introduce Parameter Object refactoring [3],
the only difference is that the parameter object is anonymous and temporary.

2.1.5 Divergent Change

If changes in one external concept means that changes in two different conceptual
areas in one class are necessary, it is usually vital to split the class (or package)
into two or more smaller classes. Typical example is the main package of TrEd,
which contains many subroutines with various responsibilities and concepts.

This smell is rather a conceptual one. From a certain point of view, it may
overlap with Large Class code smell (Section 2.1.3).

2.1.6 Shotgun Surgery

This code smell is the opposite of the previous code smell: a change in one package
repeatedly requires little changes in many other classes. In this case all the little
changes can be abstracted into a separate package that covers a single concept.

The true question, though, is to where to draw the line between having se-
mantically different concepts grouped in one package and many small packages
that conforms to one logical concept.

The packages in TrEd are intertwined and changes in one package often re-
quires many changes in other packages. In the case of TrEd, I think that it is
caused by sharing global variables and by not adhering to encapsulation.

2.1.7 Feature Envy

Since one of the basic principles for creating packages (or classes) is to group
together data and the processes that operate on this data, we should be cautious,
when a function works with data from another package. If a subroutine in one
package uses lots of pieces from another package, it is an example of feature
envy code smell. The solution is to move the subroutine to the other package.
Of course, there are cases when a subroutine works half of the time with data
from one class and half of the time with data from another class. In this case,
the subroutine can usually be split into two pieces, each of them shall be put to
package where it belongs.

The example from TrEd could be subroutine applyWindowStylesheet in
TrEd::Utils package, which operated on a TrEd::Window object and applied
specified stylesheet to its tree view. This method has been moved to TrEd::Window
package in the process of refactoring.

2.1.8 Data Clumps

Sometimes data appear together in groups in more places in a source code. Data
that’s always hanging with each other (e.g. street name, street number, zip) can
be extracted into a class. This can also help in reducing the number of arguments
passed to subroutines using this data.

I have not spotted the presence of this code smell in TrEd.

10

2.1.9 Primitive Obsession

There is no reason to be reluctant to use small objects and classes and create
and use them frequently. Even some languages that did not initially supported
objects like Perl adds support for them now. Therefore there is no good reason
to be obsessed with primitive types.

Since Perl is a high level language, its built-in data types (namely hashes and
arrays) are used to build more complex objects. The Filelist package can serve
as an example that TrEd does not suffer from primitive obsession. The filelist is
in fact just an array of files.

2.1.10 Switch (Case) Statements

In object-oriented programming, switch statements are more rare than in classic
structural programming. This is because the switch statement can be elegantly
transformed into polymorphic classes.

TrEd does not use objects very often, nor switch statements. Cascading if-
elseif-else with many possibilities is, however, not very rare.

2.1.11 Parallel Inheritance Hierarchies

Parallel inheritance hierarchies are a special type of 2.1.6. Every time a subclass
of one class is created, a subclass of another class has to be created as well. TrEd
almost does not use classes, therefore this code smell is not present in the source
code.

2.1.12 Lazy Class

A class or package that is not used just adds to program complexity without any
measurable benefits. If the class does too little, its data and subroutines can be
attached to the class that uses it and the lazy class can be discarded.

The example of a class that is not used neither in TrEd, nor in the extensions
and macros is Tk::EditableCanvas class. This class has been deleted in the
processes of refactoring.

2.1.13 Speculative Generality

If there is a class designed to do something in the future but never ends up doing
it, it is a good candidate for removal. Constructing patulous APIs whose functions
are never used just makes program more complex and harder to maintain.

In TrEd, for example the TrEd::MinMax::shuffle function, which shuffles
elements of an array randomly, is never used. This subroutine has been deleted
in the processes of refactoring.

2.1.14 Temporary Field

Variables used only temporarily by some of the functions, which are of no value
to other functions after they have been used, could be confusing. These variables
can be moved into separate class along with the methods which use them.

11

This problem does not occur in TrEd, because it does not use classes to
encapsulate variables inside them. Package variables are usually part of the API
of corresponding packages and lexical variables are usually passed as arguments
of functions. This behaviour should, however, be changed. Package variables
should be encapsulated and made reachable via accessor methods.

2.1.15 Message Chains

If a message in program has to be delivered using several middle men, it means
that the client is tightly coupled to the structure of the navigation. Hiding a
delegate shortens the message chain and may improve understandability.

In TrEd, sometimes, there are longer message chains, but because it is not
written in object-oriented way, they are not very common. Objects used in TrEd,
e.g. Treex::PML::Document sometimes do use longer message chains, but these
are used to communicate with other objects in Treex::PML library.

2.1.16 Middle Man

If a considerable amount of work of a class is dedicated just to delegate messages
to another class, the “middle man” can be sometimes avoided and a direct access
can be used.

As well as with the previous example, we can mention Treex::PML library
here, too. Since it had been a part of TrEd until it was removed as a sep-
arate library, TrEd sometimes use direct access to objects in this library, e.g.
Treex::PML::Factory is bypassed when a new node is created in TrEd::Window

::TreeBasics module.

2.1.17 Inappropriate Intimacy

If two classes are intertwined together too much, they use each others methods
and data often, a common subset of these classes can be extracted to new class.
Circular references between classes and packages are not good from conceptual
point of view – they are harder to understand, maintain, reuse and test [5].

Sometimes, however, special kinds of classes (e.g. iterators) can exhibit such
behaviour. These are, of course, designed to work this way and refactoring them
is not desirable.

2.1.18 Alternative Classes with Different Interfaces

If two methods in different classes or packages have different names, but do the
same thing, they should be renamed. More methods could be added until the
classes don’t have the same interface. (If a duplication of code should occur,
common code could be moved to common superclass).

This code smell was encountered when new dialog packages was being created.
Since the subroutines which created the dialogs had been extracted from main
package, each subroutine had different name. These were later in the process of
refactoring unified to make all the dialogs have the same common interface.

12

2.1.19 Incomplete Library Class

If a method is missing from library and we can’t change the library, we can
either create this method in our object or make our own extension/subclass of
the library.

In TrEd there is a case of List::Util module from Perl’s core modules. Since
its usage in safe compartment was problematic, the functionality needed in safe
compartment was reimplemented as TrEd::MinMax module.

2.1.20 Data Class

The data classes are basically just big storages of data. These data should be
encapsulated and more methods which work with the data should be added over
time the class evolves.

An example of such package in TrEd is the TrEd::Config1 package. For the
sake of speed, especially because tredDebug is read often, these variables are
exported and can be accessed directly.

2.1.21 Refused Bequest

Subclass which does not use methods of superclass is a small smell. Stronger code
smell appears if the subclass does not support the interface of the superclass.

This is not a problem in TrEd, because it uses only very little inheritance.

2.1.22 Comments

If a block of code needs several lines of explanation, maybe it should better
constitute a distinct function, which can be extracted from its original position.
This approach allows for better abstraction and increases understandability of
code.

Comments in TrEd were used to extract not only subroutines, but whole
packages, e.g. TrEd::ManageFilelists has been created this way.

2.2 Static code analysis

As mentioned earlier, static code analysis examines code without running it (or, at
least, uses results of analysis which can be obtained without executing the code).
The term static code analysis usually means an analysis performed automatically
by computer programs, while analysis by humans is usually called code review
or code comprehension. The static code analysis tools try to find locations of
possible errors, obsoleted implementation, dangerous language constructs or code
duplication within the source code. More sophisticated tools are able to create
data-flow diagrams and help with formal verification of computer programs.

Unfortunately, more sophisticated tools are available for mainly for C++ or
Java, but their support for Perl is very limited. However, some of the tools for

1more details about TrEd::Config package can be found in Section 3.8

13

detection of code duplication are independent of language. There are also a few
Perl tools for static code analysis of Perl are available on CPAN2, too.

The main tools used for static code analysis of TrEd are:

1. Perl::Metrics::Simple CPAN module3

2. Perl::Critic CPAN module4

3. CCFinderX5

The first one, Perl::Metrics::Simple, is a code metrics tool. It counts the
number of lines of code inside subroutines, outside of subroutines, it can also
calculate the McCabe or cyclomatic complexity6 of subroutines and look at the
source code from quantitative point of view. The cyclomatic complexity of code
is a code measure which is usually computed by counting a number of decision
points (conditions, loops, logical expressions, etc.) in the subroutine. A little bit
more exactly, it can be seen as the number of independent paths in control-flow
graph of the examined code.

The second tool, Perl::Critic, is more aimed at quality of code. It uses a
set of rules and policies to determine possibly dangerous language constructs or
warn against using unclear coding style.

The last tool used for static code analysis of TrEd is CCFinderX, a tool to
find and identify code clones within large code bases.

Besides these three tools, various other tools like AutoDia7, UML::Sequence8

or Perl Subroutine Call Tree script9 were used, but as the number of subroutines
and used modules in TrEd is fairly large, the graphical representations of depen-
dencies between modules or call graphs contain too much information and are
of little practical use. The visualization of TrEd structure would require tools
that can display more abstract structures or tools that can isolate only part of
the web of dependencies and allow programmer to focus on smaller portions of
application. Some of the output from these tools is presented in Chapter 3.

2.2.1 Overview

The original source code of TrEd before refactoring can be divided to� TrEd’s core,� modules,� macros,� extensions,

2Comprehensive Perl Archive Network, http://search.cpan.org/
3http://search.cpan.org/dist/Perl-Metrics-Simple/
4http://search.cpan.org/dist/Perl-Critic/
5http://www.ccfinder.net/
6see [6] for details
7http://search.cpan.org/dist/Autodia/
8http://search.cpan.org/dist/UML-Sequence/
9http://www.teragridforum.org/mediawiki/index.php?title=Perl Static Source Code Analysis

14

Significant part of TrEd’s functionality had been moved to Treex::PML library
by its original author, Petr Pajas, before our work on this refactoring started.
Treex::PML library, which is available on CPAN, provides API for manipulating
linguistically annotated treebanks and implements a generic data-model of an
XML-based format called Prague Markup Language (PML) [9]. It also provides
an IO system with Treex::PML::Document objects for representing trees in XML
files and Treex::PML::Backend classes that supports loading treebank files in
various file formats, e.g. CSTS10, FS11, NTRED12, PML13, TrXML14, etc.

This library was not considered to be a part of TrEd for purposes of this thesis
and its refactoring is not considered here.

The TrEd’s core includes tred, btred (command-line macro processor of
the tree editor TrEd), ntred (bTrEd server controller/hub/client), jtred and
any2any Perl scripts.

The modules which implement basic TrEd functionality have mainly TrEd::

namespace prefix. Several additions to Tk library, corrections of default Tk mod-
ules and wrappers for backward compatibility belong to this category, too.

TrEd macros provide a system for executing code written by TrEd users to
extend TrEd’s functionality. This code can be evaluated interactively in TrEd
or as a batch on arbitrarily long filelists in bTrEd and nTrEd. The macros also
contain API for extensions so they can conveniently use TrEd’s functions without
exposing TrEd internals and implementation details.

The extensions are packages which may contain TrEd stylesheets, addition-
al Perl libraries, other resources needed to add support for new file types (like
xml schemas, etc) and executable macros to glue all the package together. The
extensions are a powerful tool as they can also add new toolbars and other user
interface elements, chenge key bindings in TrEd and possibly introduce a new
level of functionality like PML Tree Query extension.

2.2.2 Code Metrics

One of the basic static code analysis methods is code metrics, i.e. counting how
many lines of code a program contains, how many lines of documentation per line
of code is present, how many packages and subroutines the program comprises
of, etc. One can hardly tell that e.g. 20 % of the code should be documentation
and that average subroutine should not be longer than 10 lines of code, but these
numbers can give you a signal, where to look for odd code constructs, ridiculously
long functions or huge packages. These numbers can lead you to the low hanging
fruit and show you where to start with refactoring.

Of course, many lines of code or documentation written by a programmer
does not necessarily mean the code is high-quality and maintainable, and that the
documentation is understandable and up-to date with the current code. Scarcity

10SGML-based format called CSTS used in the Prague Dependency Treebank 1.0, see also
http://ufal.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/csts/DTD-HOME.html

11Feature structure format, see also http://ufal.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/fs.html
12backend for exchanging data with remote ntred servers
13XML-based data format intended primarily for interchange of linguistic annotations, see

also http://ufal.mff.cuni.cz/jazz/PML/
14XML-based representation of the FS format used in Prague Dependency Treebank 1.0, see

also http://ufal.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/whatis.html

15

Files Lines of code Lines of # Lines of POD Subroutines

Core files 4 18,199 844 1,476 426
Modules 53 22,826 1,208 2,105 686
Macros 22 9,582 458 2,553 375
Extensions 254 164,012 7,284 5,948 3,677
Treex::PML 49 21,013 540 6,239 811
Total15 333 214,619 9,794 12,082 5,164

Table 2.1: TrEd code overview

LOC/file sub/file lo#/LOC loPOD/file loPOD/LOC

Core files 4549.8 106.5 0.046 369.0 0.081
Modules 430.7 12.9 0.053 39.7 0.092
Macros 435.5 17.0 0.048 116.0 0.266
Extensions 645.7 14.5 0.044 23.4 0.036
Total 6,061.7 151.0 0.192 548.2 0.476

Table 2.2: TrEd code overview – relative

of documentation can be, however, a sign of a code that is underdocumented.
Reading the implementation of each function just to find out its purpose (not
to mention hunting down the correct number and type of function parameters,
remember we are using Perl) costs time and effort and slows down every mainte-
nance or adding new features.

Lines of code per subroutine or number of subroutines per package can be
a sign of poor design of application. [5] states a guideline that “If an element
consists of more than 30 subelements, it is highly probable that there is a serious
problem”, i.e. a subroutine should not have more than 30 lines of code, a pack-
age/class should not contain more than 30 subroutines and a subsystem should
not contain more than 30 classes. These numbers can provide a hint where to
look for “architecture smells”. Bigger subroutines, packages and subsystems are
not only more difficult to understand, but also it is almost impossible to test and
verify them. A function 500 lines long, including 20 loops, 90 conditions and 10
anonymous inline subroutines without a single line of documentation is very hard
to understand and maintain, not to mention writing tests (this is the case for
TrEd::Extensions:: populate extension pane() function).

On the other hand, [7] mentions several studies that showed that lower length
of subroutines is not correlated with lower error rate. Smaller subroutines are
reportedly cheaper to fix, but on average they contain more errors. The code
needed to be changed very rarely for subroutines which were around 100 lines
long and most dangerous routines are those with more than 500 lines of code [7].

The basic statistic of TrEd before refactoring can be seen in Table 2.1 and
Figure 2.1.

The “lines of code” column represents the actual number of lines in all files
included in the category. Lines of comments are counted as all the lines starting
with hash sign (#). These usually contain either explanation of code’s purpose
or intention, but these can also be used to comment out obsolete code. POD,

15without Treex::PML

16

Figure 2.1: TrEd’s source code – code metrics overview

which stands for Plain Old Documentation is a simple format used frequently
for documentation of Perl code. The documentation in TrEd is, however, only
intended for the end user. There is only a little of programmer’s documenta-
tion available in original TrEd and it is usually restricted to sparse remarks and
comments about tricky spots in source code.

As we can see in Figure 2.1, macros contain relatively more documentation
than the rest of the code (approximately 31%). On the other hand, extensions,
compared to their large amount of code, contain relatively small percentage of
documentation (around 8%). One of the aims of this thesis is to increase the
documentation levels, mainly in TrEd core and modules, which originally con-
tained 12 % and 14 % of documentation, respectively. Moreover, we have to
take into consideration that some of the documentation were only unedited POD
templates.

Table 2.1 show us that the amount of code in TrEd’s core files is almost 18,200
lines. More than 13,000 lines of TrEd’s core files is located in main tred file. This
file contains 360 subroutines and hardly any programmer’s documentation. The
amount of code in modules is slightly larger than the amount of code in the core
files. One of the objectives of this thesis is to move most of the code from the
main namespace of four core files to modules. Macros account for another 10,000
lines of code. Turning the macros into standard Perl code is another objective of
this thesis.

TrEd’s core

As we can see in Table 2.3 and Figures 2.4 and 2.5, a quarter of subroutines in
TrEd core is more than 30 lines long and the cyclomatic complexity of a quarter
of subroutines is over 13. [6] advices to split functions whenever their cyclomatic
complexity exceeds 10; 138 out of 430 (32%) subroutines in TrEd’s core have
cyclomatic complexity above 10.

In Table 2.4, we shall observe that the longest subroutines in TrEd’s core are

17

Core Modules Macros Extensions

0
10

20
30

40
50

Subroutines’ complexity

C
om

pl
ex

ity

Figure 2.2: TrEd’s source code – subroutines’ complexity overview

Core Modules Macros Extensions

0
50

10
0

15
0

20
0

Subroutines’ length

Li
ne

s
of

 C
od

e

Figure 2.3: TrEd’s source code – subroutines’ length overview

18

TrEd’s core −− subroutines’ complexity

Subroutines count by complexity

F
re

qu
en

cy

0 100 200 300 400

0
10

0
20

0
30

0

Figure 2.4: TrEd’s core source
code: subroutines’ complexity

TrEd’s core −− subroutines’ length

Subroutines count by length

F
re

qu
en

cy

0 200 400 600 800

0
10

0
20

0
30

0

Figure 2.5: TrEd’s core source
code: subroutines’ length

Complexity Length

Min 1.00 1.00
1st Q 3.00 8.00
Median 6.00 15.00
Mean 12.96 33.46
3rd Q 13.00 30.00
Max 385.00 866.00

Table 2.3: TrEd’s core code overview

initializations of TrEd and bTrEd or dialogs used in TrEd. These subroutines are
good candidates for refactoring – they can be split into smaller subroutines and
possibly moved outside of TrEd to packages of their own (especially the dialog
creating subroutines).

Modules

When we compare TrEd’s modules with its core files, we can see in Table 2.5
that the code in modules is more well-behaving. Only 122 subroutines out of 739
(16.5%) exceeds the cyclomatic complexity of 10. As we see from the distribution
of subroutines’ length and complexity (Figures 2.6 and 2.7), most of them are

Subroutine name Source File Lines of code

startMain ./tred 797
startMain ./btred 665
printDialog ./tred 361
filelistDialog ./tred 323
initSidePanel ./tred 306
openFile ./tred 214
editStylesheetDialog ./tred 213
findNodeDialog ./tred 177
macrolistDialog ./tred 153
createCanvasBindings ./tred 147

Table 2.4: Longest subroutines in TrEd’s core

19

TrEd’s modules −− subroutines’ complexity

Subroutines count by complexity

F
re

qu
en

cy

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 2.6: TrEd’s modules:
subroutines’ complexity

TrEd’s modules −− subroutines’ length

Subroutines count by length

F
re

qu
en

cy

0 200 400 600 800

0
10

0
30

0
50

0
70

0

Figure 2.7: TrEd’s modules:
subroutines’ length

Complexity Length

Min 1.00 1.00
1st Q 1.00 5.00
Median 3.00 9.00
Mean 8.22 23.55
3rd Q 7.00 19.00
Max 260.00 863.00

Table 2.5: TrEd’s modules code overview

quite short and simple (half of the subroutines is shorter than 9 lines of code).
The list of longest subroutines in TrEd modules is presented in Table 2.6. We

can see that TrEd::TreeView and Tk::TrEdNodeEdit modules contain at least
two of the longest packages. Especially the redraw function was not split because
additional function calls on every redraw can be costly and make the response
of TrEd unnecessarily longer. At least some refactoring could, however, improve
the readability and maintainability of these code areas.

Subroutine name Source File Lines of code

redraw TrEd/TreeView.pm 674
populate extension pane TrEd/Extensions.pm 503
print trees TrEd/Print.pm 433
draw canvas Tk/Canvas/SVG.pm 399
draw canvas Tk/Canvas/PDF.pm 332
set config TrEd/Config.pm 320
recalculate positions TrEd/TreeView.pm 280
add member Tk/TrEdNodeEdit.pm 278
add buttons Tk/TrEdNodeEdit.pm 194
Tk::Widget::TrEdNodeEditDlg Tk/TrEdNodeEdit.pm 179

Table 2.6: Longest subroutines in TrEd’s modules

20

TrEd’s macros −− subroutines’ complexity

Subroutines count by complexity

F
re

qu
en

cy

0 10 20 30 40 50

0
50

10
0

15
0

Figure 2.8: TrEd’s macros: sub-
routines’ complexity

TrEd’s macros −− subroutines’ length

Subroutines count by length

F
re

qu
en

cy

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Figure 2.9: TrEd’s macros: sub-
routines’ length

Complexity Length

Min 0.00 0.00
1st Q 1.00 4.00
Median 3.00 7.00
Mean 4.48 14.01
3rd Q 5.00 11.00
Max 53.00 1502.00

Table 2.7: TrEd’s macros code overview

Macros

Only 10% (38 out of 375) of subroutines in macros exceeds the cyclomatic com-
plexity of 10. The subroutines in macros are shorter both on average and in
extreme values. As we can see in Figures 2.2 and 2.3, the subroutines in macros
are usually the shortest and least complex in TrEd. If we don’t count the declar-
ative menu structure macro, the longest subroutine is only 149 lines long and
almost all macro subroutines are shorter than 100 lines.

Extensions

The amount of code in 29 extensions counts up to more than 160,000 lines of code.
Almost one third of the code mass is located in PML Tree Query extension. The
second largest extension is TectoMT extension with more than 20,000 lines of
code. Some parts of the source code are, however, generated decision trees or
grammars.

The Tree Query extension, which is a graphical client for PML Tree Query16

is a client for Tree Query search tool, which supports many kinds of linguistically
annotated treebanks. The code for this extension is more than 50,000 lines long
and functionally ranges from custom toolbars for TrEd to network communication
client and SQL evaluation engine.

The TectoMT17 extension provides basic libraries for TectoMT-based appli-
cations in TrEd. TectoMT is a modular software system primarily aimed at
machine translation. The code of this extension is more than 20,000 lines long

16see also http://ufal.mff.cuni.cz/∼pajas/pmltq/
17see also http://ufal.mff.cuni.cz/tectomt/index.html

21

Figure 2.10: TrEd’s extensions – code metrics overview

and contains libraries for natural language processing tasks, e.g. segmentation,
tokenization, tagging, parsing, etc.

The relative amount of code of extensions is show in Figure 2.10 and Table 2.8.
The size of the Treex::PML library is listed here mainly for illustrative pur-

poses. This library used for manipulating XML data was extracted from TrEd
before the work on this thesis began.

2.2.3 Perl::Critic

Perl::Critic is a highly configurable static code analysis engine which uses
rules to uncover weak spots in Perl source code. The rules applied to source code
can be enabled, disabled, added or removed according to developer’s need. Most
policies used by Perl::Critic are based on Damian Conway’s book Perl Best
Practices [2] and are explained thoroughly in Chapter 4. This module has been
developed by Elliot Shank and it is available on CPAN. The warnings produced by
this Perl module are divided into five categories by their importance or severity.
The range spawns from cosmetic and style-related hints to rules that prevent
introducing serious bugs.

This tool is aimed at measuring the quality of code; it should help Perl pro-
grammers to write more reliable, efficient and robust code.

We use the same division of source code, as in the previous section, that is
TrEd’s core files, modules and macros. Since the refactoring of extensions was
not a part of this thesis, we present the figures for them only for informative
purposes. The same applies to Treex::PML library, too.

The most frequent Perl::Critic warnings from TrEd’s source code were the
mild ones with low severity. If we filter out only those with severity 3-5, we

22

Extension name LOC Subroutines Files

arabic treebank 530 12 3
cac 1321 54 3
conll 2009 321 16 1
cz t analysis 212 4 2
draw 60 4 1
elixir 10661 183 13
filelist filter 603 8 1
hydt 1263 15 9
padt 14415 556 18
parallel 263 17 3
pcedt 159 7 2
pdt 10 7228 258 5
pdt 15 obsolete 21186 669 35
pdt20 6190 226 23
pdt20 sample 0 0 0
pdt auto afun 11785 39 5
pdt vallex 6465 312 18
pedt 0 0 0
pedt response type 265 14 2
pml schema tree 13 0 1
pmltq 52920 734 23
ptb 507 7 2
remote control 343 12 3
sdt 536 42 4
show valency 182 11 2
sinica 344 12 2
tectomt 24975 416 65
tiger 108 6 2
tmt 1157 44 6

total 164012 3678 254

Table 2.8: TrEd extensions code metrics overview

23

can create a list of most common pitfalls of TrEd’s source code, see Table 2.9.
Total number of violations divided by the severity of violations can be seen in
Table 2.10. By average, there is approximately 0.31 violations of Perl::Critic
rules in original TrEd.

The most common warnings are caused by not using proper flags when using
regular expressions, not using final return in subroutines and using package vari-
ables frequently. Adding requested flags to regular expressions would cause more
harm than good, because it changes semantics of these expressions and it would
therefore require to rewrite the regular expressions cautiously.

Adding final return to subroutines, on the other hand, can be useful, because
it makes the return value of subroutines well defined (in a sense that we know
what can be the returned value, even though undefined value as a special case
can be returned). Returning undef value explicitly is another common idiom
found in TrEd. Using it can lead to hard to spot bugs, and should be avoided.
Elimination of these warnings is a good refactoring suggestion.

Using package and global variables is a big problem in TrEd. The main tred

file contained more than 70 package variables (which were global in the whole
program). A lot of package variables are exported from other modules, too. This
situation allows for distant changes in these modules and the main application,
creates very complex relationships between modules and can be very hard to
track down. Reducing the number of global variables in TrEd is another good
refactoring proposition.

Adding strict and warnings pragmas is a very good idea, because it helps
to identify and track down bugs. Several bugs were found just by enabling these
pragmas (e.g. a typing error where scalar variable was used instead of an array).

Some of the warnings, however, can not be avoided. String eval have to
be used for macro evaluation and some of the sophisticated code requires the
strict pragma to be disabled. However, these areas should be marked and
well-documented in the source code.

2.2.4 CCFinderX

CCFinderX is a graphical tool created for detecting clones in large source code
bases. We used this tool to analyse TrEd’s source code to find possible code du-
plicates to make the code less redundant and thus more maintainable. Duplicated
code can become a maintenance nightmare, because it requires extra effort to edit
duplicated code – one has to make changes in all the spots, where the duplicates
appear. Even if maintainers know about duplication, it is easy to forget to alter
one of the copies and introduce a subtle bug (see also 2.1.1).

The graphical output from CCFinderX is presented in Figure 2.11. It is a
scatter graph which tells us how much each file is similar to all other files and
to itself. Every dot in the image means a duplicit code, grey lines divide exam-
ined files. The more lines of code a file contains, the larger is the square which
represents it. Dots in squares on the diagonal mean that there are duplicates
inside the file represented by the square, dots in squares outside the diagonal
mean that there exist some common code sequences among files defined by the
square’s coordinates.

We can see on the scatter graph that there is not much duplication of code in

24

Policy name Count Severity

RegularExpressions::RequireExtendedFormatting 836 3
Subroutines::RequireFinalReturn 745 4
Variables::ProhibitPackageVars 318 3
Subroutines::RequireArgUnpacking 260 4
Variables::ProhibitReusedNames 192 3
CodeLayout::ProhibitHardTabs 177 3
ValuesAndExpressions::ProhibitMixedBoolean-
Operators

177 4

ErrorHandling::RequireCheckingReturnValue-
OfEval

133 3

ControlStructures::ProhibitDeepNests 105 3
ErrorHandling::RequireCarping 93 3
Subroutines::ProhibitExplicitReturnUndef 74 5
Subroutines::ProhibitExcessComplexity 73 3
TestingAndDebugging::RequireUseWarnings 62 4
BuiltinFunctions::RequireBlockMap 56 4
ControlStructures::ProhibitNegativeExpressions-
InUnlessAndUntilConditions

51 3

TestingAndDebugging::RequireUseStrict 48 5
BuiltinFunctions::RequireBlockGrep 47 4
Subroutines::ProhibitSubroutinePrototypes 45 5
NamingConventions::ProhibitAmbiguousNames 43 3
Variables::RequireLocalizedPunctuationVars 42 4
ControlStructures::ProhibitCascadingIfElse 38 3

Table 2.9: Most common Perl::Critic warnings for TrEd

1 2 3 4 5 total violations per loc

Core 2,381 2,555 997 464 89 6,486 0.36
Modules 2,077 3,135 1,120 676 171 7,179 0.31
Macros 632 768 212 422 64 2,098 0.22
Total 5,090 6,458 2,329 1,562 324 15,763 0.31

Table 2.10: Code violations by severity in original TrEd

25

Figure 2.11: TrEd’s code duplication

TrEd; the files with highest ratio of similarity among other files are Tk/Adjuster.pm
and Tk/Separator.pm. The zoomed in part of the scatter graph is shown in Fig-
ure 2.12. By inspecting the files side by side, we can see (Fig 2.13), that the
duplicated code was identified correctly. The code for plotting PDF and SVG
canvas has the second largest ratio of similarity and, as can be easily seen by
inspecting these files, they really share a lot of common code.

Removing duplicates is one of the most basic method of refactoring. Putting
common code is vital for future changes in the program. Besides these two largest
duplicates, there are also smaller duplicated chunks of code scattered among the
source code of TrEd. We identified these and tried to eliminate them as much
as possible (e.g. subroutine uniq for filtering duplicit elements from arrays were
implemented 4 times in different source files, etc.).

The duplicity which can not be spotted easily by automatic tools like CCFind-
erX is the duplicity of functions between TrEd and bTrEd. Both these programs
use the common core features, but in some other aspects, they differ considerably.
While TrEd has to take care of managing graphic user interface by making use of
Tk library, bTrEd, on the other hand can be used as a server and includes code
for running batch scripts easily.

2.3 Dynamic Code Analysis

Dynamic code analysis is the analysis of code obtained by running the application.
For Perl, we used a tool available on CPAN: Devel::NYTProf. Devel::NYTProf
is a powerful, fast, feature-rich Perl source code profiler [1].

26

Figure 2.12: The duplication of code between Tk::Adjuster and Tk::Separator

Figure 2.13: The duplication of code between Tk::Adjuster and Tk::Separator,
side by side comparison

27

Profilers can measure the time spent executing various parts of code in com-
puter programs (lines of code, subroutines, blocks of code) and call counts of
subroutines. It is used to identify bottlenecks of programs and possibly estimate
execution times of computer programs. [7] refers to a research paper by Donald
Knuth who found out that usually less than 4 percent of a program accounts for
more than 50 percent of its runtime. It is therefore important to identify the bot-
tlenecks correctly and not waste time optimizing code that has only little effect
on program performance. Making assumptions about the speed of execution of a
program based on unverified claims usually leads to wrong results.

Since TrEd is a complex linguistic application that runs relatively small parts
of code code repeatedly for every node of a tree, it is important to be efficient
and have as little overhead as possible.

During the refactoring, it is important not to slow down the execution time
of TrEd and its batch counterpart, bTrEd. We chose to examine three model
situations for purposes of dynamic analysis:

1. simple bTrEd script,

2. start-up of TrEd with one sample file loaded,

3. browsing PML trees in TrEd.

The chosen btred script does not require any user interaction, it is a batch
script from btred’s user manual that runs for every node in every tree in 10 files
from Prague Dependency Treebank 2.0 (PDT 2.018) sample files.

The second model situation measures the start-up time of TrEd. The start
of TrEd was measured because a lot of complex initializations happen during the
start of TrEd (i.e. loading macros, stylesheets, creating key bindings, etc.) and
during loading files.

The third model situation begins by starting TrEd and then browses through
50 trees in 2 files, showing multiple trees at once and displaying information about
nodes in the side panel. Browsing between trees in a file is probably the most
common operation performed in TrEd, therefore we want to be sure that during
the refactoring, TrEd’s performance was not influenced negatively.

For the first two model situations, the time spent executing the scripts is
probably more important than the number of called subroutines. The third model
situation uses Tk timers to perform actions at specified time, therefore measuring
time is of little importance there.

The extensions installed during these experiments were

1. Prague Dependency Treebank 2.0 Sample Data,

2. Prague Dependency Treebank 2.0 Annotation,

3. PDT-ValLex Editor and

4. PML Tree Query Interface for TrEd.

18see also http://ufal.mff.cuni.cz/pdt2.0/

28

The first three extensions are used for displaying sample data in TrEd, the
last one is used for querying treebanks.

The testing platform used for the evaluation of these tests was a Core i5
M430 workstation with 4GiB of RAM running Kubuntu 11.04. The original
TrEd version was 1.4607, the refactored TrEd was a svn checkout of revision 139.

2.3.1 bTrEd Evaluation

The simple script run by bTrEd on 10 sample files is an example script from
bTrEd’s documentation. It can print five most frequent functors in each processed
file and uses hooks19 to print out the result.

#! btred −TNe count ()

my %cnt ;

sub file_opened_hook { %cnt=() }

sub file_close_hook {
my @sorted = sor t {$cnt{$b}<=>$cnt{$a}} keys %cnt ;
my $filename=FileName () ;$filename=˜s / .*\/// ;
p r i n t ”Five most f r equent f unc to r s in ” , $filename ,

” : ” , j o i n (” ” , @sorted [0 . . 4]) , ”\n” ;
}

sub count{ $cnt{$this−>{functor}}++ un l e s s $this eq $root}
The average time bTrEd spent evaluating sample script was 11.46 seconds. If

we filter out foreign module calls, most frequently called code lives in TrEd::Macros
package. As we can see in Table 2.11, the most of the work in bTrEd is, however,
done by Treex::PML and XML::LibXML libraries which are called very frequent-
ly and considerable amount of time was spent in them reading input files and
creating structures bTrEd can work with. Creating these structures is also time
consuming: as we can see in Table 2.12, only one bTrEd’s function is in the list
of functions where bTrEd spends most of its time.

2.3.2 TrEd Start

The average start time of TrEd was 4.74 seconds. Except for Tk initializations,
most time was spent initializing macros and extensions. From the results of
TrEd start analysis, we can see that more than 17% of all the statements were
executed and more than 18% of time was spent in TrEd::Macros package. The
preprocess and initialize macros subroutines are (after the Tk initializing
subroutines) the most time consuming parts of TrEd’s start-up code. That is
understandable, because using expression form of eval to run macros means that
this small blocks of code has to be compiled every time they are encountered. One
of the objectives in this thesis is to explore the possibility to remove macros and
turn as much of their code into standard Perl code as possible. That way less of
the code would be run using eval and it can also lead to more transparent code
(for more information about removing macros, see Section 5.1).

19for more details about hooks, see TrEd documentation and Section 3.14.2

29

Subroutine Call count % of all sub calls

TrEd::Macros::CORE:match 393,900 27.3
Treex::PML::Factory::ANON 63,265 4.4
Scalar::Util::weaken 49,507 3.4
XML::LibXML::Node::DESTROY 44,954 3.1
UNIVERSAL::isa 32,269 2.2
Treex::PML::Struct::DESTROY 25,288 1.8
Treex::PML::StandardFactory::createStructure 25,287 1.8
Treex::PML::Struct::new 25,287 1.8
Treex::PML::StandardFactory::createList 23,588 1.6
Treex::PML::List::new from ref 23,573 1.6
Total – 10 most frequent 706,918 49.1
Total 1,441,122 100.0

Table 2.11: Most frequently called subroutines in original bTrEd – simple bTrEd
script

Subroutine Exclusive time [ms] % of total time

Treex::PML::Instance::Reader::ANON 872 7.6
Treex::PML::Instance::Reader::ANON 864 7.5
XML::CompactTree::XS:: read-
SubtreeToPerl

787 6.9

Treex::PML::Instance::Reader::ANON 582 5.1
TrEd::Macros::preprocess 470 4.1
XML::LibXML::Reader::new 274 2.4
Treex::PML::Factory::ANON 270 2.4
XML::LibXML::Reader::nextElement 245 2.1
Treex::PML::Instance::Reader::ANON 235 2.0
Treex::PML::Instance::Reader::ANON 213 1.9
Total – 10 longest 4,812 42.0
Total 11,460.0 100.0

Table 2.12: Subroutines taking the longest time to execute in bTrEd – simple
bTrEd script

30

Subroutine Call count % of all sub calls

TrEd::Macros::CORE:match 403,658 61.0
Encode:: utf8 off 20,717 3.1
TrEd::Macros::CORE:readline 20,538 3.1
utf8::CORE:match 15,558 2.4
TredMacro::CORE:match 9,157 1.4
TredMacro::CORE:subst 9,129 1.4
Carp::CORE:substcont 6,209 0.9
XML::LibXML::Node::DESTROY 5,000 0.8
Treex::PML::Factory::ANON (BEGIN) 4,635 0.7
Scalar::Util::weaken 4,234 0.6
Total – 10 most frequent 498,835 75.4
Total 661,347 100.0

Table 2.13: Most frequently called subroutines in original TrEd – start of TrEd

Subroutine Exclusive time [ms] % of total time

Tk::update 576.0 12.1
Tk::DoOneEvent 502.0 10.6
TrEd::Macros::preprocess 481.0 10.1
TrEd::Macros::CORE:match 203.0 4.3
TrEd::Macros::initialize macros 165.0 3.5
Treex::PML::Instance::Reader::ANON 93.8 2.0
Treex::PML::Instance::Reader::ANON 92.8 2.0
TredMacro:: import 88.3 1.9
utf8::SWASHNEW 62.1 1.3
Tk::END 51.8 1.1
Total – 10 most longest 2315.8 48.9
Total 4740.0 100.0

Table 2.14: Subroutines taking longest time to execute in original TrEd – start
of TrEd

31

2.3.3 Browsing in TrEd

To simulate real work in TrEd, we have created a scenario of browsing through
two sample files and inspecting 50 trees one after another. This scenario uses Tk
timers to invoke functions in TrEd to perform specified actions. First, we visit 5
nodes in each of 25 trees in the first file, then we go back 20 times, but staying at
the same depth in the tree. Afterwards, next file in file list is opened and another
25 trees are visited, setting current node to 5 first nodes of each tree.

Most of the work in this scenario is done by Tk::TreeView and TrEd::Macros

modules. The first one takes care of redrawing the trees, the second runs all
the hooks and extension code from PDT 2.0 extension. The average running
time of this model situation was 67.58 seconds. The average number of execut-
ed statements was 21, 200, 350 and the average number of subroutine calls was
6, 657, 664.6. These numbers are not interesting per se, but we will compare them
with results of refactored TrEd in Chapter 5.

32

3. Design of TrEd

TrEd is a complex graphical editor of tree-like structures. It supports many
formats of data input and output, various styles of displaying trees and it is
highly customizable to allow for convenient work with numerous tree formats.

This chapter presents an overview of data flow paths in TrEd, what steps
are needed to initialize the it, how it works with files, filelists, macros, hooks and
stylesheets. To emphasize the internal structure of TrEd, we chose to describe the
names of the packages and modules as they appear in TrEd after the refactoring.
Many of the modules had been part of main namespace before were extracted
and separated.

3.1 Overview

The overall view of interaction between modules and the flow of input data can
be seen in Figure 3.1. It should be emphasized that the main tred package
communicates with almost all other modules. Drawing all the arrows on the
diagram would make it less readable, therefore we decided to leave them out.
On the top of the diagram we can see the input files. TrEd can open either
standalone files directly using TrEd::File module, or request opening a filelist
through TrEd::ManageFilelists module. This module does not open files, it
just works with filelists themselves. If the main TrEd application wants to open a
file from a loaded filelist, it asks TrEd::Filelist::Navigation module to go to
desired file number (or name). The TrEd::Filelist::Navigation module then
asks the TrEd::File module to open requested file. At this point, both ways of
file opening meet at one point – the open file subroutine. This subroutine then
checks whether an autosave recovery version of currently opened file does not exist
and asks TrEd::FileLock module whether the file is locked. TrEd::File module
then creates Treex::PML::Document object, which is handed over to the currently
focused TrEd::Window object. TrEd::Window class uses TrEd::TreeView object
to render the tree according to stylesheet chosen either automatically or by user
request.

TrEd uses hooks mechanism to run code on various occasions, e.g. when a file
is opened or closed, when a node is moved, etc. One of the hooks (guess context-

hook) is run every time a file is opened to switch to proper context or annotation
mode. The context or annotation mode is in fact the name of Perl namespace in
which the macros and hooks are evaluated. New annotation modes are created
by new macros and extensions.

The macros and extensions are usually invoked by an event triggered by the
user – when a key combination is pressed or if the macro is invoked from TrEd
main menu. Macros should communicate with TrEd by using TrEd::MacroAPI

methods. They can add new functionality by specifying new key bindings and
We can also see minor modes in the bottom of the Figure 3.1. Minor modes

specify their own minor hooks, which may be run before or after another hook is
run. They are declared, activated or deactivated using TrEd::MinorModes pack-
age. In the upper right corner we can spot TrEd::Undo module, which uses the
Data::Snapshot package to save current data snapshot for performing undo op-

33

eration later and save this data to temporary storage of Treex::PML::Document
object (see also Section 3.7).

3.2 Libraries

TrEd uses many CPAN modules which extend its functionality. The most impor-
tant of them are:� Tk – toolkit for creating graphic user interface of TrEd� PDF::API2 – provides support for printing trees as PDF documents� Treex::PML – provides API for manipulating linguistically annotated tree-

banks� XML::LibXML and XML::LibXSLT – provides an interface to libxml2 and
XML parsers� Compress::Raw::Zlib, Compress::Raw::Bzip2, IO::Compress::Gzip,
Archive::Zip – adds support for reading and writing compressed files

3.3 TrEd start-up

The initialization of TrEd is a fairly complex task and it is not a good idea to alter
the order of steps during this phase. Here we support a brief overview of steps
needed to initialize TrEd before starting main entry point of TrEd – startMain

function.

1. Command line arguments are handled by Getopt::Long module. The full
list of these can be found in [8].

2. New variable, $libDir, is prepended to @INC array. It is set to TRED-
HOME environment variable, if the environment variable is defined. These
default locations are tested otherwise (relative to TrEd’s script directory):

(a) /tredlib

(b) ../lib/tredlib

(c) ../lib/tred

3. HOME environment variable is set on Windows platform.

4. Encoding for STDOUT & STDERR is set to utf-8.

5. Runtime user configuration file is located, the configuration is initialized
with values read from the configuration file (see also Section 3.8)

6. Recent files are initialized according to configuration

7. Filelists from configuration file are opened (see also Section 3.5)

34

Figure 3.1: TrEd’s modules interaction

35

8. A command to another TrEd instance is passed, if another instance of TrEd
is running and TrEd has been started with -C start up switch

9. File which contains the process id of currently started TrEd process is writ-
ten into .tred.d directory

10. Treex::PML is initialized

11. Stylesheet paths are initialized (see also Section 3.11)

12. Directory with documentation and help files is found

13. Symbol TRED is defined for extensions that may still use it (and, possibly,
other symbols specified by command line argument)

14. Callbacks called when tree, node, or current node is changed are set

15. Backends for opening various file types are initialized (in TrEd and in Tre-
ex::PML library)Section

16. Locale and appropriate charset are set according to configuration options
and utf support

17. Standard filelists are opened (see also Section 3.5)

18. startMain function is called

The initialization and building of graphic user interface (GUI) continues in
startMain function. All the steps which require Tk objects (e.g. MainWindow)
take place here, as they are created at the beginning of this function. Overview
of the initialization steps follows.

1. Tk::MainWindow object is created, workarounds for some Tk-specific be-
haviors are applied.

2. TrEd::UserAgent, an LWP::UserAgent subclass which provides a GUI Tk-
based dialog for asking for credentials is created and handed over to Treex::PML::IO

3. Default widget appearance options are set

4. Extensions are prepared, their resource paths are initialized

5. Default stylesheets are loaded

6. Bookmarks are initialized with last action from the configuration file

7. Initial macro context is set (the default is TredMacro)

8. Window geometry and fonts are prepared

9. New TrEd::Window object is created, Tk canvas for this object is created
(no 7 on Figure 3.2)

10. Main menu is created (no 1 on Figure 3.2)

36

(a) Recent files menu is populated with items

(b) Bookmarks menu is populated

11. Context menu is created (no 3 on Figure 3.2)

12. Value line is created (no 5 on Figure 3.2)

13. Status line is created (no 8 on Figure 3.2)

14. Canvas scale and Minor modes menu are created (numbers 10 and 9 on
Figure 3.2, respectively)

15. Toolbar buttons and stylesheet menu are created (numbers 2 and 4 on
Figure 3.2, respectively)

16. Macros from extensions are evaluated

17. initialize bindings hook is run

18. Menus are updated

19. init hook is run

20. Selected stylesheet is applied

21. Side panel is shown, if the user enabled it (numbers 6 on Figure 3.2)

22. Signal handlers are initialized

23. Default (or user-chosen) filelist is loaded

24. start hook is run

25. Macro specified on command line is run, if there was any specified by an
argument

26. Main menu bindings are created

27. Tk MainLoop is started.

After the initialization, TrEd is ready for user input. Graphic user interface
is show to the user, as we can see on Figure 3.2. This interface consists of several
basic elements, from top to bottom they are: the main menu and contexts menu
(numbers 1 and 3 on Figure 3.2), toolbar and stylesheets menu (numbers 2 and
4), value line (no 5), side panel (no 6), tree view (no 7), status line (no 8), minor
modes menu (no 9) and finally scale slider (no 10). The functionality of these UI
elements is covered in [8].

37

Figure 3.2: TrEd’s user interface

3.4 TrEd::File

This package provides basic file opening operations for TrEd – open, close, save
files, etc. A file is opened by using open file or open standalone file func-
tions. Both these functions are based on load file function, which performs the
actual opening of specified files. This function also creates a Treex::PML::Document
object, which is then stored within TrEd::Window as the currently opened file.
The Treex::PML::Document objects represent a document containing a set of
trees that can be accessed via this object. The transformation of file into the tree-
like structure is carried out by Treex::PML library, which uses multiple backends
(subclasses of Treex::PML::Backend) to support manipulation with various file
types, even compressed or network resources. The Treex::PML::Documents can
be accompanied by meta data of two types – persistent which are saved when the
file is closed and temporary non-persistent data for application purposes.

For the purposes of this module, persistent data which contain information
about related files are of great importance. Files loaded by Treex::PML library
needs an XML schema to be opened appropriately. The schema could contain
information about files related to specific Treex::PML::Document. These files
are loaded by the open file function in this module by default. The relationship
between opened files is stored as their non-persistent meta information. Files
loaded automatically on behalf of another file are secondary to file which caused
them to be loaded. The file, which initiated the loading of related files, on the
other hand, is a primary file to all the related files. These relationships can be
found out by calling appropriate functions in this module (get secondary files,
get primary files and their recursive variants).

38

The non-persistent information in Treex::PML::Document is also used to
store undo information about the file. For more information about undo func-
tionality, see the documentation of TrEd::Undo module (Subsection 3.7).

When the file is opened, a status is returned. This status is a hash reference,
which contains information about whether the opening went without any errors
or the error messages and warnings emitted during opening of the file. These
statuses are “merged” when multiple files are opened at once to inform about the
whole opening operation.

TrEd also uses the autosave mechanism. It saves all the opened files every
5 minutes (by default, time interval can be changed in configuration). During
opening a file, the open file function checks whether any autosave file exists and
if it does, it asks the user whether he wants to recover the file from autosaved
copy.

Another mechanism to protect from file losses used by TrEd is file locking.
Every time a file is opened, a file lock is created. Then, the lock is unlocked
during the closing of each file. The locking of files is an important feature which
prevents from inconsistencies in files, e.g. it should protect users from overwriting
each other’s changes made during editing the same file concurrently. The locking
mechanism is described in documentation of TrEd::LockFile module (see also
Subsection 3.6).

3.5 Filelists

Filelists are just plain text files that optionally contain the name of the filelist on
their first line and then one file name on each line. During start-up, filelists are
loaded from these locations:

1. .tred.d/filelists/ directory under user’s home directory

2. custom paths added by extensions

3. locations specified by configuration file

3.5.1 Filelist

Filelist class allows creating objects which represent TrEd’s filelists.
Filelist consists of its name on the first line followed by any number of files,

each file on one line. Filelist can also contain patterns for the glob function, which
are expanded when the file list is being loaded.

If filelist contains relative file names, files are searched relative to the path
where the filelist is stored.

This class supports two types of list items: patterns and files. If a filelist
contains a pattern that represents 10 files, then list() function returns just the
pattern, while files() function returns a list of filenames which match afore-
mentioned pattern.

Filelists also supports specifying position in a file exactly by appending a suffix
at the end of a file name. The suffixes can be of these forms:� ##123.4 – points to 4th node in tree number 123

39

� #a123 – points to first node with id #a123 in the file� ##123.#a123 – points to first node with id #a123 in tree number 123� #123.4 – points to 4th node in tree, whose root’s form equals to #123

They are supported by open file function in TrEd::File module (Section 3.4).
Filelist class utilizes lazy loading of filelists. load() method marks file to

be loaded later and exits. Filelist is then loaded when it is needed, i.e. when any
of the functions needs to work with the list.

Filelists are created, saved, modified and accessed using the Filelist class
(by using functions new, add, rename, remove, save). For a complete list of
subroutines, see the documentation of Filelist class.

Functions which provide navigation in filelists are grouped in module TrEd::
Filelist::Navigation. Probably the most important of the functions is go to-

file function which changes the current file from the filelist, opens the desired
new file from filelist and updates associated GUI elements. This function is used
in all the other file list navigation subroutines: next file, prev file, etc. For
more details about subroutines of this module, see the documentation.

The last module which takes care of most of filelist-related operations from
GUI is TrEd::ManageFilelists. It loads filelist specified in configuration files
and standard filelists (stored in .tred.d/filelists directory) during TrEd start-
up, creates and fills menus for filelists and provides user interface for creating,
saving, loading, activating, editing and removing filelists.

3.5.2 TrEd::Bookmarks

Bookmarks are just a special kind of filelists in TrEd. Their difference from
filelists is that all the files specified in the bookmark filelist also have the exact
position appended to the file name.

The TrEd::Bookmarks module also adds support for bookmarking last spot
of action in TrEd via calling last action bookmark subroutine. It is called
whenever an attribute of a node is changed, when hooks and macros with undo
support1 are evaluated or when the node release event is triggered.

3.6 TrEd::FileLock

The importance of the locking mechanism was briefly mentioned in Section 3.4.
Locks in TrEd are implemented by using lock files. Lock file is a file with the
same name as original (locked) file, only suffix .lock is appended to its name.
Basic information about the lock is written into the lock file: the owner of the
lock, the time when the file has been locked, hostname of the computer, process
id and the time of the last modifiaction of the locked file. During the open-
ing of file in TrEd::File module, the same information is also written to the
non-persistent meta data area of locked Treex::PML::Document (using function
set fs lock info) for later comparison with the .lock file.

1see also Section 3.14 for more information about macros and hooks and Section 3.7 for more
information about undo feature

40

Subroutine set lock locks file given to it as an argument (just creates the lock
without asking). More appropriate way of locking a file is by using lock file

subroutine, which also check locks before it writes its own lock. If the lock file
already exists, it also prompts the user with a GUI dialog, where he can decide
whether he wants to steal the lock, open file ignoring locks, or cancel the opening
operation.

The lock file, if it was successfully created, can be read by function read lock,
which just reads the information stored in the .lock file.

The lock file can be checked for consistency with our lock information stored in
memory by check lock subroutine. This subroutine can differentiate 12 possible
situations2, which are analyzed during saving files in TrEd::File package and
during creating new lock file in this module. The user is then prompted whether
he wants to save the file and ignore locks, etc.

Locking does not happen for these protocols3: “ntred” and protocols specified
by TrEd::Config::noLockProto configuration variable.

If a file requested for opening is already locked, the lock can be stolen from
the original owner, ignored or the opening of file could be cancelled.

3.7 TrEd::Undo

The support for undoing and redoing changes made on trees in TrEd is provided
by TrEd::Undo module. There are 9 types of undo operations4, that differ in the
type and amount of data they store on the undo stack.

The default undo type is UNDO DISPLAYED TREES. Some of the undo
types stores only a reference to current node (UNDO ACTIVE NODE), while
others whole list of trees (UNDO DATA AND TREE ORDER). The preparation
of the undo stack frame to be pushed to undo stack is carried out by prepare undo

subroutine. It uses Data::Snapshot module to create the snapshot of the data
that need to be stored recursively. The undo stack frame is the pushed to undo
stack by save undo subroutine. The undo stack is stored in non-persistent meta
data in Treex::PML::Document object. The undo and redo operations are then
performed by undo and re do subroutines, which restore saved data from un-
do stack frames (with help of restore operation from Data::Snapshot module),
update the undo stack and GUI.

All the situations when undo information is stored are documented in Ap-
pendix B.

3.8 TrEd::Config

TrEd is a highly configurable program. It stores its settings in .tredrc file in
the user’s home directory. The search paths for the configuration file as well as
the format for this file and all the supported options are thoroughly documented
in [8].

2for a complete list, see Appendix A
3protocol of file can be found out by asking Treex::PML::IO::get protocol subroutine
4for a complete list of undo types, see Appendix B

41

By default, TrEd::Config module exports all the variables read from the
configuration file (or initialized with their default values) and thus makes them
accessible to everybody who includes this module. This behaviour may change in
the future and fast accessors can be used to interact with configuration options
in a more transparent way.

3.9 Converting

TrEd supports various input and output character encodings. These settings are
configurable by editing TrEd’s configuration file or command line switches can be
used to set input and output encodings. Support for Perl version older than 5.8 is
also available. If the Encode module is not present, standard perl tr/// operator
is used to convert between supported encodings5. TrEd also supports rendering
of Arabic texts with support of TrEd::ArabicRemix and TrEd::ConvertArab

modules.
An old conversion interface provided by TrEd::CPConvert module is still

available, since it is used in PDT-vallex and PDT15 obsolete extensions.
TrEd also supports loading and execution of macros and extensions written in

possibly any encoding. Because every file could have different character encoding,
extra care must be taken when loading these files into TrEd.

3.10 Annotation Modes

The annotation mode or contexts are sets of related macros which serve to similar
purpose. For every window there is one active annotation mode, which affects
the current key bindings, menu bindings and hooks. The user can switch the
annotation modes by using the Annotation modes menu in upper right corner of
TrEd (no 3 on figure 3.2).

3.11 TrEd::Stylesheet

The purpose of stylesheets in TrEd is mainly to specify, which information should
be printed for every node and every edge of the tree and to alter the appearance
of trees depending on the data they contain. The patterns from stylesheets are
precompiled in TrEd::TreeView, thus it is not necessary to compile the pat-
terns for every node or edge of the tree.This code cache is entirely managed by
TrEd::TreeView. Extensive documentation about the format of stylesheets can
be found in [8].

3.12 TrEd::Window

The TrEd::Window is a class which holds information about currently displayed
file, tree number, currently active node, active annotation mode and stylesheet.

5iso-8859-2, ascii, iso-8859-1, windows-1250, windows-1256 and iso-8859-6 are supported if
there is no Encode module available

42

Probably the most important part of this class is the TrEd::TreeView class,
which draws trees on the canvas.

3.13 Binding System

TrEd uses binding system provided by Tk library and supported by TrEd::Macros
module. When a key or a combination of keys are pressed, eval macro function is
called which then calls resolve event function. This function tries to find a key
binding for current annotation mode (or context) via TrEd::Macros keyBindings

hash. If it does not succeed, it looks for binding in TredMacro context and among
default bindings defined in TrEd::Binding::Default package6. The key bindings
are one of the two main ways to invoke user macros. They can be, however, be
used to invoke any action in TrEd. The standard way of creating bindings in
macros were to use preprocessor directive #bind, e.g.:

#bind my macro to key Ctr l+A

After the refactoring, these can be substituted by calling textttBind() or
TrEd::Macros::bind macro() functions.

3.14 Macro System

Historically, macros in TrEd were created for the users to add new functionality
to main compiled program easily. As TrEd grew larger, more macros were added
around its source code to support various optional features. Macros in TrEd
are de facto Perl files, but they can use some special directives, inspired by C
preprocessor, to include other macros in their own source code, bind functions to
TrEd’s events, etc. Their capabilities are documented in great detail in TrEd’s
user documentation [8]. In the next subsections we describe two types of macros
– ordinary macros and hooks and we will also describe packages of macros called
extensions.

3.14.1 Macros

Macros in TrEd are ordinary text files which contain a piece of valid Perl source
code. Except for the Perl code, they can also contain preprocessor directives like
#include, #ifndef, etc. The macros extend TrEd’s functionality and allows user
to add powerful extensions which enhance the TrEd program. In this section, the
main principles of coping with macros are described.

When loading macros, the first concern is that TrEd has to be able to locate
user-defined macros. As many other resources in TrEd, macros are searched
relative to TREDLIB environment variable, too. By default, macros are looked
for in directory tree under tredlib/contrib, they were included autmatically
by macro contrib.mac, which included all other contrib.mac files present in
subdirectories of contrib directory. This is no longer true in refactored TrEd, since

6The default bindings are described in [8]

43

the macros were moved to main TrEd codebase and transformed into standard
Perl routines, namespaces and logical constructs.

The default macro file, tred.def, implemented public API for all the macros,
hooks and extensions. This API was further expanded by various other macros
(node groups macro, ntred macro, minor modes macros, etc.). This API is de-
scribed thoroughly in [8]. These macro files were turned into these packages:� TrEd::MacroAPI::Default,� TrEd::MacroAPI::Extended,� TrEd::NodeGroups and� TrEd::NtredMak.

The standard minor modes were changed to these modules:� TrEd::MinorMode::Move Nodes Freely,� TrEd::MinorMode::Show Neighbouring Sentences and� TrEd::MinorMode::Show Neighbouring Trees

If it was possible, this code was placed in its own namespace (sometimes it
was not possible because it would require rewriting extensions which was not
desirable), the rest of the code was put into TredMacro namespace, which is the
default context or annotation mode in TrEd.

After this change, the support for running macros is still present in TrEd,
only some of the standard macros were turned into standard Perl packages. This
would allow the extensions to be transformed into standard Perl packages later7.

The main problem with macro files was their usage of “C-preprocessor-like”
directives (#include, #ifdef, #endif) where standard Perl could be used. Some
directives can be replaced easily by calling appropriate functions from API (e.g.
#bind, #insert, with some limitations also #encoding, for explanation of their
meaning, see [8]). This approach increased the complexity not only of TrEd
maintenance, but also the complexity of creating user macros.

Macros are usually just Perl packages, their package name activated as binding-
context8 is called “context” or “annotation mode” in TrEd. Depending on the
currently active context, some actions in TrEd are performed with the specified
prefix, or in specified Perl namespace.

TrEd::Macro package is the most important package for macro evaluation.
When macros or extensions request a key to be bound, or new menu item to be
added, these information are added to %keyBindings and %menuBindings hashes,
under the key which equals to their context name in this package. The package
also stores currently defined symbols by using #define directive. All of these
data structures holding important information about macros can be easily edited
and accessed via subroutines in TrEd::Macro package.

7for more information about the transformation of macros into Perl packages, see also Sec-
tion 5.1

8the package name is turned to TrEd context by using #binding-context MyPackage di-
rective, see [8] for details

44

The macros are loaded by read macros subroutine at the start up of TrEd
(see also 3.3). In the original TrEd, this function loaded all the default macros
(tred.def, tred.mac, contrib.mac, etc.). In refactored TrEd, only extensions’
macros are loaded this way. The loading mechanism, however, remains the same:
all the files are read into a big array of lines of code, these are then preprocessed
to support all the directives described in [8].

Macros could be invoked in two basic ways:

1. When the key binding associated with macro has been triggered,

2. Via the main menu.

The binding system is described more thoroughly in Section 3.13.
All the macros are invoked by calling do eval macro subroutine. This sub-

routine also takes care of initialization of macros, if it has not been done yet. The
initialization means that all the loaded macros are evaluated for the first time to
be accessible in future evals.

Before the macro is run, actual position in TrEd is bookmarked9, these macro
variables are set: this, root, libDir, FileNotSaved, forceFileSaved, Redraw10.
These are then accessible in all macros and extensions.

The macro is then evaluated. During the execution, it can change the current
node, tree or edit file displayed in TrEd. All this changes are reflected in TrEd and
displayed tree can be redrawn according to macro instructions after the macro
has returned.

Reloading of macros needs some extra attention, because it uses the Perl
internals in a quite unusual way.

3.14.2 Hooks

Hooks are special kind of macros that are executed on specific occasions in TrEd,
e.g. when new file is opened or closed, when the tree is redrawn, etc. List of all
hooks with their parameters and occasions when they are called is described in
great detail in [8].

Hooks differ from macros in the following aspects [8]:� User cannot choose a name for a hook; on the contrary, hook is recognized
as a macro having a special name identifying it as being a certain hook.� Sometimes parameters are passed to hooks.� No modifications of the tree or current node are reflected after the hook
returns, i.e. the tree is not redrawn, changes to $this variable are not
reflected. If necessary, a hook must provide this functionality itself.� Unlike macros, hooks are not expected to modify the tree unless they ex-
plicitly state that, typically by calling ChangingFile(1).

9see also Section 3.5.2
10The meaning and possible values of all the variables accessible in macros and extensions

are documented in detail in [8].

45

Some hooks use undo operation, list of them can be found in Appendix C.
When a hook with undo is run, the actual position in TrEd is bookmarked,

libDir, FileNotSaved and forceFileSaved variables are made available for the
hook. After the hook is run, no redrawing or changing current position happens.

3.14.3 Extensions

TrEd’s extensions are used to pack macros, PML schemas, libraries, stylesheets
and other resources together to be easily installable by TrEd users via the Ex-
tensions manager.

During TrEd’s start-up, paths to all extension, stylesheets and libraries packed
with extensions is initialized by TrEd::Extensions::prepare extensions. The
macros, which are part of extensions are loaded along with other macros during
TrEd’s start-up (see Section 3.3).

3.14.4 Minor Modes

Minor modes are small pieces of Perl code, which specify and declare additional
hooks – minor pre-hooks and minor post-hooks – which can be associated to
virtually any other hook to run before or after it. This way, the minor hooks
provide additional functionality regardless of currently selected annotation mode.

The standard minor modes for TrEd includes these three modes:� Move nodes freely, which allows moving nodes and whole trees around� Show neighboring sentence, which displays sentences before and after the
current sentence in the value line� Show neighboring trees, which displays neighboring trees in the tree view
of current window

Minor modes have been transformed from macros to ordinary Perl modules
during refactoring, they does not use macro directives any more.

Minor modes can also add special hooks that can be run before and af-
ter the regular hooks. They are called minor prehooks and minor posthooks.
Every time a minor mode is created, these hooks are stored in TrEd’s main
hash called $grp. For example the Show neighboring trees minor mode regis-
ters current node change hook, node style hook and get nodelist hook post
hooks, which means that every time one of the named hooks is run, the post hook
defined in this minor mode is run afterwards. Since minor modes are de facto
just TrEd macros, they can be defined by extensions and user macros.

46

4. Coding style

#!/usr/bin/perl APPEAL: listen (please, please); open yourself,
wide; join (you, me), connect (us,together), tell me. do something if
distressed; @dawn, dance; @evening, sing; read (books,$poems,stories)
until peaceful; study if able; write me if-you-please; sort your feelings,
reset goals, seek (friends, family, anyone); do*not*die (like this) if
sin abounds; keys (hidden), open (locks, doors), tell secrets; do not,
I-beg-you, close them, yet. accept (yourself, changes), bind (grief,
despair); require truth, goodness if-you-will, each moment; select (al-
ways), length(of-days) # listen (a perl poem) # Sharon Hopkins

Computer programs can be written in many ways and have the same effect,
and there is a wide range between beautiful well-documented code and winners
of program obfuscation contests. Coding style matters even more in languages
like Perl, whose slogan says “There is more than one way to do it” [10] and in
which even syntactically correct poems could be written1. If everybody used his
own style of writing Perl scripts, Perl programs consisting of these scripts would
be very difficult to manage, read and maintain by other programmers. According
to [11], 80% of software’s cost goes to maintenance, so the software should be
optimized so it can be easy to read and maintain rather than easy to write.

TrEd started as a small project used for visualization dependency trees in
year 2000. It was written by Petr Pajas. Since not only personal style evolves,
but Perl evolved, too, TrEd’s sources “maps” all these changes in its source
codes. Perl version 5.6 was released in March 2000, so it was very fresh and
TrEd was written mainly with Perl 5.5 and 5.4 in mind. Since then, unicode
support was added and improved several times, new IO implementation was added
(perldoc-58-delta), new features were added (e.g.: UNIVERSAL::DOES), regular
expression subsystem was revised (perldoc-5100-delta), etc. TrEd was updated
for newer Perl version and now supports Perl versions from 5.8 up.

Because of this long evolution, various styles were used when writing TrEd’s
code. Unifying all these styles is crucial for further TrEd’s development and main-
tenance. Coding style chosen for refactored TrEd is derived from style guidelines
and hints from [2].

Perl Best Practices ([2]) is a book which contains many useful tips how to
write efficient, maintainable and robust code. Since every programmer writes code
according to his experience with languages he learned, coding style is usually a
set of coding habits more than anything else and many programmers code just
by instinct. When implementing algorithms, they choose the minimal approach:
use short names of variables like x, n or temp, use default variable $ and global
variables instead of passing a function parameter, use the one loop they are used
to, etc. Therefore, a unified set of well-thought coding style rules is vital for every
program

Set of rules and coding guidelines provides a common mental framework for
all the programmers that develop and maintain the program and allows for easier
communication and cooperation among team members.

1see the quotation above

47

Brief overview of adapted rules and explanation, which were adopted and why
follows.

4.1 Code Layout

Code layout is a basic medium, in which all other coding practices happen. These
rules were adopted to unify coding style in the whole TrEd’s source code, which
is a necessary step when working on bigger projects, especially if more people are
involved and everyone uses his own Perl dialect. When developers choose a coding
style, it does not really matter, what will it look like exactly. It is important for
the rules to be well-thought and consistent. Programmers should stick to the
chosen code layout, so they get used to it and could easily understand code and
navigate through the code base. The following hints, tips and rules are based on
[2]

4.1.1 Bracketing

What to do
Use Kerninghan & Ritchie bracketing style. Place opening brace at the end

of control construct, start block of code on the next line and indent it. Finally
put closing bracket on a separate line and use the same level of indentation as for
the opening control construct.

Why
The reason for this rule is that it minimizes the number of empty lines without

any loss of readability. This approach saves one line of code for each control
structure if you compare it with putting a bracket on separate line and finding
the beginning of the control structure is equally simple as if bracket is put on a
separate line.

What about TrEd
This rule was more or less obeyed in original TrEd’s source code.

4.1.2 Keywords

What to do
Separate control keywords from the following opening bracket.
Why
Control structures, as their name suggest, control the flow of the program, it

is therefore important for them to be visible and stand out in the code.
What about TrEd
This rule was obeyed in original TrEd’s source code.

4.1.3 Subroutines and Variables

What to do
Don’t separate subroutine or variable names from the following opening brack-

et.
Why

48

This rule is essential for the previous to work. One can easily distinguish
control construct from a function call visually by using or not using a whitespace
to separate the keyword/function name from the opening bracket.

What about TrEd
This rule was obeyed in original TrEd’s source code, except for some subrou-

tines prototypes.

4.1.4 Builtins

What to do
Don’t use unnecessary parentheses for builtins and “honorary” builtins.
Why
Calling built-in functions without brackets enhances readability of code. It is

also easier to distinguish between built in functions and user-defined functions.
[2] also encourages not to use parentheses with functions imported from Perl’s
core packages, which ought to be part of the language, but isn’t.

What about TrEd
This rule was not obeyed in original TrEd’s source code. Sometimes the

parentheses were used, sometimes not, without any specific pattern.

4.1.5 Keys and Indices

What to do
Separate complex keys or indices from their surrounding brackets.
Why
Enhanced readability and less code density.
What about TrEd
Since this rule is not specific which array indices and hash keys are complex, it

is up to the feeling of the reader, whether the keys and indices stand out enough.

4.1.6 Operators

What to do
Use whitespace to help binary operators stand out from their operands. Don’t

use whitespace with unary operators. Treat named unary operators such as sin,
cos as built-in functions (see 4.1.4).

Why
Enhanced readability and less code density.
What about TrEd
This rule was not obeyed in TrEd at all. Binary operators were usually glued

together with surrounding expressions and variables.

4.1.7 Semicolons

What to do
Place a semicolon after every statement. Don’t place a semicolon after the

single statement in map and grep blocks.
Why

49

Although this advice may seem trivial, not placing a semicolon after the last
statement of the block2 can cause compilation problems and subtle bugs. After
adding another line of code after the “last” line, these two lines becomes one
statement which can be hard to spot.

What about TrEd
This rule was obeyed in TrEd.

4.1.8 Commas

What to do
Place a comma after every value in a multi-line list.
Why
The reasoning is similar to 4.1.7. Avoid trivial mistakes.
What about TrEd
This rule was not obeyed in TrEd. Sometimes trailing comma was used,

sometimes not.

4.1.9 Line Lengths

What to do
Use 78-column lines.
Why
Old terminals can usually display 80 characters per line, 2 characters is a

small safety net.
What about TrEd
This rule was not obeyed in TrEd, lines longer than 100 columns are not rare,

even lines with more than 200 columns exist. By shortening the line length to 78
columns using perltidy script, the number of lines of code, however, increased.

4.1.10 Indentation

What to do
Use four-column indentation levels.
Why
The research cited by [2] showed that using four column lines is the best

compromise between not wasting horizontal space and comprehensibility of the
program.

What about TrEd
TrEd used two-column indentation and mixed spaces with tabs.

4.1.11 Tabs

What to do
Indent with spaces, not tabs.
Why

2In Perl, semicolons separate, not terminate statements, so the semicolon after the last
statement is not obligatory

50

Tabs can behave differently in different text editors. They actual indentation
would then vary depending on your editor’s settings. The problems also arise
when code is copied and pasted elsewhere. Thus, spaces are the only reliable
choice for indentation.

What about TrEd
TrEd mixed spaces with tabs, usually odd indentation levels used tabs, while

even indentation levels used spaces.

4.1.12 Blocks

What to do
Never place two statements on the same line. Not even for map and grep

blocks.
Why
Two or more statements on one line reduces the readability and comprehen-

sibility of both statements. Vertical space is already saved by advice 4.1.1.
What about TrEd
TrEd’s source code occasionally used multiple statements on one line.

4.1.13 Chunking

What to do
Code in paragraphs. Each paragraph should contain statements to accomplish

one task. Put a one-line comment above each such paragraph summarizing its
purpose to enhance maintainability.

Why
According to psychological research cited by [2], humans can only focus on

only a few pieces of information at once. Coding in paragraphs allows humans
to increase the size of program that fits into short-term memory by enlarging the
basic unit, basic piece of information from a line of code to a single paragraph.

What about TrEd
This rule was not obeyed in TrEd.

4.1.14 Elses

What to do
Don’t cuddle an else.
Why
Misaligned, cuddled version of else is harder to spot, thus not cuddling it

enhances readability of if-else control structure. This way the else branch is
more vertically and horizontally distinct which improves the identifiability of the
keyword.

What about TrEd
TrEd used cuddled version of else in its source code consistently.

4.1.15 Vertical Alignment

What to do

51

Align corresponding items vertically.
Why
Using tables when initializing non-scalar variables, initializing more scalar

variables that relates to the same concept or assigning to hash enhances readabil-
ity of code.

What about TrEd
TrEd’s source code did not obey this rule.

4.1.16 Breaking Long Lines

What to do
Break long expressions before an operator. Indent next lines with the same

level as the start of expression to which they belong. Put terminating semicolon
on separate line. But only do that for the last expression, in other cases, see
4.1.17

Why
Operator at the beginning of line is unusual and thus it is a signal to the

reader to be cautious. Putting the information up front makes it easier to spot.
Important things like control keywords and operators should be kept on the left
side of line[2].

What about TrEd
TrEd’s source code usually did the contrary, i.e. puts the operator at the end

of line.

4.1.17 Non-terminal Expressions

What to do
Factor out long expressions in the middle of statements.
Why
Enhanced readability and smaller amount of information per line.
What about TrEd
This approach was not common in TrEd at all. Ternaries and other long

expressions were frequently used as subroutines’ arguments, inline anonymous
subroutines with tens lines of code were part of data structures and function
calls.

4.1.18 Breaking by Precedence

What to do
Always break a long expression at the operator of the lowest possible prece-

dence.
Why
Not doing so can easily confuse the reader who could then misunderstand the

performed computation.
What about TrEd
TrEd did not obey this rule.

52

4.1.19 Assignments

What to do
Break long assignments before the assignment operator.
Why
Reasoning is the same as for 4.1.16. For the assignment, it is however probably

better to split the expression before the assignment. If the right side of assignment
is still too long, use aforementioned advices.

What about TrEd
TrEd did not obey this rule, assignment operator was usually at the end of

line.

4.1.20 Ternaries

What to do
Format cascaded ternary operators in columns. Break a series of ternary

operators before every colon, aligning the colons with the operator preceding the
first conditional.

my $dialog_title = $opts_ref−>{only_upgrades} ? 'Update Extens ions '
: $opts_ref−>{install } ? ' I n s t a l l New Extens ions '
: 'Manage Extens ions '
;

Why
The conditional expressions forms a column as well as the possible results or

values. This enhances readability and extensibility of ternary operator a lot.
What about TrEd
TrEd did not obey this rule, ternaries were usually on one line only.

4.1.21 Lists

What to do
Parenthesize long lists. Treat comma in multi-line lists as value terminator,

not value separator. Put opening parenthesis on the same line as the beginning
of the statement, indent list elements and put closing parenthesis on separate line
at the same indentation level as the preceding statement.

Why
It is important to visually distinguish multi-line lists initialization from other

language constructs (especially because comma has different meaning in scalar
context, so it can be easily confused).

What about TrEd
TrEd did obey this rule regarding the use of parenthesis, the indentation,

however, differs.

4.1.22 Automated Layout

What to do
Enforce your chosen layout style mechanically. Use perltidy.
Why

53

Since people are not perfect at tedious tasks, use computer to format code for
you (at least whenever it is possible).

What about TrEd
TrEd used Emacs as a formatting tool. However, this approach caused mixing

of spaces and tabs, which is not desirable.

4.2 Naming Conventions

Since Perl borrows syntactic (and also semantic) parts of the language from other
languages, e.g. C, awk [10], the naming conventions for Perl also comes from
these languages. Therefore, it is more common for Perl programs to use similar
naming conventions as C programs than to use naming conventions as Java or
C# programs.

The reasons for introducing naming conventions are roughly the same as for
agreeing on consistent code layout (see 4.1). Good naming convention reduces
the effort to read and understand programs [4].

There are two aspects of consistent naming of variables and subroutines:
syntactic and semantic. The syntactic rules tells us that if we choose to use$noun adjective name for variables, we should use the same pattern for all of
them. We should not mix using underscores with using CamelCase notation. At
least rules for treating multi-word variables and abbreviations should be drawn
up. The semantic rules should tell us to use names that reflect the purpose of
the variables and functions and not to use function names like process data or
variable names like $tmp, $x, $y, $foo, etc.
4.2.1 Identifiers

What to do
Use grammatical templates when forming identifiers, e.g.� namespace -> Noun::Adjective;� variable -> [adjective]*noun,� lookup variable -> [adjective]* noun preposition etc.

Reserve one word variable names for variables used only in one block. Try to be
specific when creating names.

Why
The hierarchical naming of namespaces helps them being organized (not for

Perl itself, but for human readers of the source code). The more specific are
the names of the variables, the more easily a mistake can be detected. Specific
variable names helps people understand the source code.

What about TrEd
TrEd source code contained a mixture of using underscores and CamelCase

notation for both the variables and functions. No grammatical templates were
used.

54

4.2.2 Booleans

What to do
Name booleans after their associated test.
Why
This naming convention makes reading the code more natural and self-explaining

at the same time.
What about TrEd
TrEd did not obey this rule for booleans. Usually default behaviors of boolean

context and complicated expressions are used more than test-named functions in
conditions.

4.2.3 Reference Variables

What to do
Mark variables that store references with a ref suffix.
Why
A common mistake in Perl is to use reference to array or hash as if it was not

a reference, but the dereferenced array or hash. Using ref with all the references
makes it easy to spot the mistake when the reference is misused.

What about TrEd
TrEd did not obey this at all.

4.2.4 Arrays and Hashes

What to do
Name arrays in the plural and hashes in the singular.
Why
The source code can be read naturally. Hash elements are usually accessed

individually while arrays are usually processed in loops, grep and map functions.
What about TrEd
TrEd’s source code contained both arrays and hashes with names in singular

and plural.

4.2.5 Underscores

What to do
Use underscores to separate words in multiword identifiers.
Why
Spaces and hyphens are not allowed as identifiers. Alternative CamelCase

does not scale well to using all capital letters with constants.
What about TrEd
TrEd source code contained a mixture of using underscores and CamelCase

notation for both the variables and functions.

4.2.6 Capitalization

What to do

55

Distinguish different program components by case. Use lowercase letters only
for names of subroutines, methods and variables. Use mixed-case for class names
and namespaces. Use uppercase for constants

Why
The visual distinction helps with semantic distinction of the code chunks.

Enhances understandability of source code.
What about TrEd
Since TrEd sometimes used CamelCase names for variables, this rule was not

obeyed either. Uppercase was usually used for constants.

4.2.7 Abbreviation

What to do
Abbreviate it by retaining the start of each word. Leave the trailing s for

plural.
Why
Other approaches like leaving out the vowels is usually more difficult to deci-

pher.
What about TrEd
TrEd’s source code usually obeys this rule.

4.2.8 Ambiguous Abbreviations

What to do
Abbreviate only when the meaning remains unambiguous.
Why
Otherwise the code can be read in more semantically distinct ways, which

introduces confusion.
What about TrEd
Since no special attention was paid when naming variables, names like grp

or msg were not rare. Ambiguous abbreviations of variables, e.g. filename

abbreviated to f or protocol to proto were common.

4.2.9 Ambiguous Names

What to do
Avoid using inherently ambiguous words in names.
Why
Introduces source code which is open to multiple interpretations. Can be,

however, hard to spot by the writer of the original code.
What about TrEd
Names like $last tree or $no secondary were quite frequent.

4.2.10 Utility Subroutines

What to do
Prefix “for internal use only” subroutines with an underscore.
Why

56

This rule conforms to the syntactic “heritage” of C language. Subroutines
that are never be exported, because they are used to simplify or augment imple-
mentation of a module or class. Since these subroutines are visually distinct, one
can easily see when it was used outside the package it was defined and automatic
code analysis tools can warn against such uses of “private” functions.

What about TrEd
TrEd did use this convention, but not thoroughly. For example subroutine

that sorts strings according to number of underscores was named u sort().

4.3 Values and Expressions

4.3.1 String Delimiters

What to do
Use interpolating string delimiters only for strings that actually interpolate.

For a sequences of strings on following lines choose one delimiter and use it for
all of them.

Why
Following this rule avoids unintentional interpolations and prevents unneces-

sary errors.
What about TrEd
In TrEd’s source code interpolating string delimiters were used for non inter-

polating strings, too.

4.3.2 Empty Strings

What to do
Don’t use "" or ’’ for an empty string. Use q{}.
Why
It is a visually non-ambiguous way use an empty string.
What about TrEd
TrEd usually used interpolating quotes.

4.3.3 Single-Character Strings

What to do
Don’t write one-character strings in visually ambiguous ways. Use q{ } for a

single space and interpolated tab for tabulators ("\t").
Why
Reduce ambiguity and subtle errors.
What about TrEd
TrEd’s source code used both variants of quotes for single-space strings.

4.3.4 Escaped Characters

What to do
Use named character escapes instead of numeric escapes.
Why

57

Using named special characters makes the code more readable.
What about TrEd
Numeric escapes were used only for some of the Arabic character classes in

regular expressions.

4.3.5 Constants

What to do
Use named constants, but don’t use constant, use Readonly module instead.
Why
Using numeric constants in code is confusing and cryptic, making less obvious

what the code is trying to do. Naming constants improves the level of abstraction
and the readability of the code. Constants created by use constant does not
interpolate in strings, they are treated as barewords anywhere a string is expected
(which can introduce subtle bugs) and they can not be created at runtime or
lexically scoped. Instead, they are created at compile time and they are package
scoped.

What about TrEd
Using raw numbers was fairly common practice in TrEd’s source code, as well

as using constant pragma.

4.3.6 Leading Zeros

What to do
Don’t pad decimal numbers with leading zeros. If you intend to use octal

numbers, use built-id oct() function.
Why
Any integer that begins with zero is treated as an octal number in Perl.

Using zero padding for octal numbers makes the code less self-explaining and
more difficult to maintain.

What about TrEd
Numbers with leading zeros were used for changing permission for files in

TrEd.

4.3.7 Long Numbers

What to do
Use underscores to improve the readability of long numbers.
Why
Using optical grouping of “thousands” improves readability of numbers and it

is much easier to check them for correct number of zeros, e.g. it is much harder to
count the number of zeros in 100000000000 than it is in the same number with
underscores: 100 000 000 000.

What about TrEd
No long numbers were used in TrEd’s source code.

58

4.3.8 Multi-line strings

What to do
Lay out multi-line strings over multiple lines. Use concatenation instead of

implicit newlines.
Why
Implicit newlines usually break indentation level of code, which is always a bad

practice. Splitting strings on newline when dealing with long strings is usually
the most natural way for the reader to read the string.

What about TrEd
TrEd’s source code usually obeys this rule.

4.3.9 Here Documents

What to do
Use a heredoc when a multi-line string exceeds two lines.
Why
It is not efficient for the programmer, nor easy to read for the maintainer to

use the concatenation approach with strings longer than several lines.
What about TrEd
In TrEd, longer strings, such as documentation or help information within

code were usually written as heredoc.

4.3.10 Heredoc Indentation

What to do
Use a “theredoc” when a heredoc would compromise your indentation. Put

heredoc in a Readonly constant or a subroutine if it needs to interpolate variables.
Why
This approach improves the readability of the program. If the heredoc is put

into a subroutine, only a small part of the code will loose clear indentation.
What about TrEd
TrEd’s sources did not obey this rule, heredoc was usually in the middle of

the code.

4.3.11 Heredoc Terminators

What to do
Make every heredoc terminator a single uppercase identifier with a standard

prefix.
Why
Using a terminator that stands out in the code makes heredoc less tough to

understand and read. Standard prefix for the terminator, such as “END ”, makes
it more obvious after the heredoc when compared to using different terminator
each time.

What about TrEd
EOF or similar abbreviations were used to terminate heredoc.

59

4.3.12 Heredoc Quoters

What to do
When introducing a heredoc, quote the terminator.
Why
Since heredoc is not used very often, according to [2], default interpolation

behaviour without quotes is not familiar to most Perl programmers. Using the
same conventions as for strings makes the code more understandable and the
intent of the programmer is more clear.

What about TrEd
TrEd’s source code contains approximately one third of the heredoc termina-

tors without quotes.

4.3.13 Barewords

What to do
Don’t use barewords.
Why
In Perl, a bareword is name that has no other interpretation in the grammar

(such as subroutines or file handles). These will be treated as if it were a quoted
string [10]. Thus, introducing a new unrelated function or file handle can change
the semantics for a bareword with the same name. Barewords are error-prone
and should be avoided.

What about TrEd
TrEd’s source code did not use barewords often.

4.3.14 Fat Commas

What to do
Reserve => for key-value or name-value pairs when creating hashes, constants

or passing named arguments to functions.
Why
Using “fat comma” instead of regular comma reinforces the connection be-

tween the name/key and value pair. This improves the logical structure of the
code and thus also its the readability.

What about TrEd
Fat commas were used in TrEd’s source code for creating name-value and

key-value pairs.

4.3.15 Thin Commas

What to do
Don’t use commas to sequence statements.
Why
There are two roles of commas in Perl. In scalar context it evaluates its

left argument in void context, throws that value away, then evaluates its right
argument in scalar context and returns that value. In list context, a comma is
just the list argument separator, and inserts both its arguments into the LIST.

60

It does not throw any values away [10]. To avoid confusion and problems, it is
useful to use comma only as a list separator.

If a sequence of statements needs to be treated as a single statement, use do

block.
What about TrEd
Thin commas were rarely used in TrEd as a sequencing operator.

4.3.16 Low-Precedence Operators

What to do
Don’t mix high- and low-precedence booleans. Avoid and and not and reserve

or for specifying fallback for builtins.
Why
Logical operators in Perl can be written in C-fashion, i.e. &&, ||, ! or

in English words (and, or, not). The C-style operators have, however, higher
precedence than the more verbose English operators. To avoid confusion and a
source of potential problems when these two types of operators are mixed, avoid
using both types in the same expression. To increase the comprehensibility, use
C-style operators.

It is also not clear, whether the change of precedence was intentional or it
is a bug. Logical “and” has higher precedence than “or”. But if you use ||

operator, its precedence is higher than the precedence of and operator, which can
be confusing. The code snippet below illustrates this problem:

whi le ($A and ! $B and ! $C | | $D)
{

. . .
}

If we use brackets to indicate the precedence explicitly, the original evaluation
works like this: $A && !$B && (!$C || $D). If we would use operators only of
one type, the expression would mean ($A && !$B && !$C) || $D.

What about TrEd
TrEd’s source code used and mixed these operators fairly often. Some of the

bugs in original TrEd were caused by this approach.

4.3.17 Lists

What to do
Parenthesize every raw list.
Why
Since the precedence of comma is even lower than the precedence of assign-

ment, one can easily create sequence of commands instead of creating a list. It is
thus safer to use parenthesis when creating lists.

What about TrEd
TrEd followed this rule.

4.3.18 List Membership

What to do

61

Use table-lookup to test for membership in lists of strings; use any() for
membership of lists of anything else.

Why
Function any() from CPAN module List::MoreUtils is similar to grep, but

it returns as soon as its test block succeeds, which can save time when searching
through lists linearly (although the worst time for the operation remains the
same). Hashes are ideal for lookups, because the complexity of looking up a key
in hash is much lower than searching through a list of values.

What about TrEd
TrEd used grep function for linear search quite often. Sometimes also first()

function from List::Util or own implementation of the same function were used.
Hashes were used for testing membership.

4.4 Variables

4.4.1 Lexical Variables

What to do
Avoid using non-lexical variables.
Why
Using non-lexical variables is similar to using global variables. They can

be changed from any package and change the behaviour of the whole program.
Global variables create a link between otherwise unrelated pieces of code in a way
that all these code pieces can subtly interact with each other using non-lexical
variables. You can be never sure if some other routine you call does not change
the value of the variable and makes your program to fail.

What about TrEd
TrEd used many non-lexical variables. In the process of the refactoring we

tried to get rid of as many of these as possible.

4.4.2 Package Variables

What to do
Don’t use package variables in your own development. Lexical variables are a

much better choice. And if they need to be accessed outside the package, provide
a separate subroutine to do that.

Why
When using package variables for saving the state of the module, you can

be never sure that other code that uses the package/module won’t corrupt its
internal state. Using lexical variables and appropriate accessor methods is a safer
choice.

What about TrEd
TrEd used package variables in its source code.

4.4.3 Localization

What to do
If you’re forced to modify a package variable, localize it.

62

Why
Using local forces the package variable change to be effective only in the

current scope, thus it does not affect the rest of the program and all other uses
of the package. This helps with maintainability of the program.

What about TrEd
TrEd’s source code localized package variables frequently, but not always.

4.4.4 Initialization

What to do
Initialize any variable you localize. Even if you specifically want localized

variable to be undefined, it’s better to say so explicitly.
Why
Using a local operator on a global variable gives it a temporary value each time

local is executed. When the program reaches the end of that dynamic scope, this
temporary value is discarded and the original value restored [10]. But whenever
a variable is localized, its value is reset to undef [2]. It is therefore necessary to
initialize its value even desired value for the localized global variable should be
undefined to make the intention of the programmer clearer.

What about TrEd
TrEd’s source code leaves at least half of the localized variables uninitialized.

4.4.5 Punctuation Variables

What to do
use English for the less familiar punctuation variables.
Why
Since punctuation variables can not be avoided completely, at least the less

common ones should be named explicitly by using the English module. This
makes the code less error-prone and improves readability of it greatly.

What about TrEd
English module was not used in TrEd.

4.4.6 Localizing Punctuation Variables

What to do
If you’re forced to modify a punctuation variable, localize it.
Why
Since all punctuation variables are global, the reason for localizing them is the

same as for 4.4.3. Following this rule helps with maintainability of the program
because it is much harder to affect other packages and subroutines if the global
variables are localized.

What about TrEd
Punctuation variables were not modified in TrEd’s core.

4.4.7 Match Variables

What to do

63

Don’t use the regex match variables: use English qw(-no match vars);.
Use Regexp::MatchContext CPAN module instead of using standard match vari-
ables.

Why
Not following this rule causes every regular expression to remember the pre-

match, match and post-match substrings which slows down matching using regu-
lar expression in the whole program (since the $’ and $& variables are global and
affect all the program). Regexp::MatchContext enables the program to use pre-
match and post-match without the performance penalty imposed by the standard
match variables.

What about TrEd
Neither English module was used in TrEd, nor special match variables.

4.4.8 Dollar-Underscore

What to do
Beware of any modification via $.
Why$ is often an alias for other variable and used frequently without being named

explicitly. Therefore, it is very easy to introduce subtle bugs by changing $;
What about TrEd
TrEd’s source code usually obeys this rule.

4.4.9 Array Indices

What to do
Use negative indices when counting from the end of an array.
Why
It is clearer and less repetitive not to use $#array or @array in scalar context

to count array indices from the end. Negative indices provides a cleaner notation.
What about TrEd
In TrEd, unnecessary final index variable was used occasionally.

4.4.10 Slicing

What to do
Take advantage of hash and array slicing, but avoid array slices with negative

range for indices.
Why
Array and hash slices are more natural and intuitive than mindless repetition.

Using slices also creates code that is more extensible and less error-prone, since
any repetition and copy-and-paste during programming is a potential problem.

What about TrEd
TrEd’s source code used array and hash slices quite frequently (when appro-

priate).

64

4.4.11 Slice Layout

What to do
Use a tabular layout for slices, but only until both of the lists are shorter than

one line.
Why
Following this rule enhances readability of the code.
What about TrEd
This rule was no obeyed in TrEd’s source code, but it is useful only for a small

amount of code.

4.4.12 Slice Factoring

What to do
Factor large key or index lists out of their slices.

Readonly my %CORRESPONDING => (
age => 1 ,
comments => 6 ,
fraction => 8 ,
hair => 9 ,
height => 2 ,
name => 0 ,
occupation => 5 ,
office => 11 ,
shoe_size => 4 ,
started => 7 ,
title => 10 ,
weight => 3 ,

) ;

@staff_member_details [va lues %CORRESPONDING]
= @personnel_record{ keys %CORRESPONDING } ;

(Example from [2]).
Why
This approach is easily comprehensible, readable and scales well. It is also

easy to maintain.
What about TrEd
TrEd did not use this approach.

4.5 Control Structures

4.5.1 If Blocks

What to do
Use block if, not postfix if.
Why
Block if structure stand out in the source code much more than postfix if.

Postfix if also does not scale well, if the number of consequent statements in-
creases.

What about TrEd
Almost half of the if control structures in TrEd used postfix notations.

65

4.5.2 Postfix Selectors

What to do
As an exception to rule 4.5.1, reserve postfix if for flow-of-control statements

(return, next, last, croak, redo, goto, die, and throw).
Why
The fact, that these commands may interrupt the control flow, it is important

for them to be as visible as possible and to appear as left as possible [2].
What about TrEd
As for rule 4.5.1, postfix if was used in TrEd frequently, not only for flow-of-

control statements. There does not seem to be a specific pattern or rule when
postfix if and when block if was used in TrEd’s source code.

4.5.3 Other Postfix Modifiers

What to do
Don’t use postfix unless, for, while, or until.
Why
Postfix modifiers are harder to maintain, less clear and understandable and

does not scale well.
What about TrEd
TrEd’s source code used postfix modifiers frequently.

4.5.4 Negative Control Statements

What to do
Don’t use unless or until at all.
Why
Positive control statements are more familiar and comprehensible to most

of the developers. Negative control statements does not scale well – when the
condition contains two or more elements or if the condition is negative itself.

What about TrEd
unless was used frequently in TrEd’s source code, until very rarely (ap-

peared only twice).

4.5.5 C-style Loops

What to do
Avoid C-style for statements.
Why
Using while or foreach loop makes the code easier to comprehend and main-

tain [2].
What about TrEd
TrEd’s source code contained only a few C-style for loops, there were 17 of

them in main tred file.

66

4.5.6 Unnecessary Subscripting

What to do
Avoid subscripting arrays or hashes within loops.
Why
Iterating through indices and then repeating array access in loop is not only

less effective, it is also more error-prone and harder to maintain (due to copy-
and-paste and off-by-one errors).

What about TrEd
Since C-style loops are rare in TrEd’s source code, unnecessary subscripting

is not common, too.

4.5.7 Necessary Subscripting

What to do
Never subscript more than once in a loop.
Why
Repeating the same array or hash lookups are computationally expensive and

increase maintenance cost if the code should change in the future.
What about TrEd
TrEd’s source code usually obeys this rule.

4.5.8 Iterator Variables

What to do
Use named lexical variables as explicit for loop iterators.
Why
Using the $ variable and taking advantage of its default usage by some of

Perl functions makes the code less readable and comprehensible. Therefore the
maintainability of the code also suffers, since the name of $ is not very descriptive
and it can be misunderstood and misused easily in a more complicated context.

What about TrEd
Implicit loop iterator variable was used quite frequently in TrEd’s source code.

4.5.9 Non-Lexical Loop Iterators

What to do
Always declare a for loop iterator variable with my.
Why
Perl always uses private lexical variable for the scope of the loop, even if its

name is the same as other variable above the loop in the same scope. Not using
my keyword explicitly can be confusing and misleading.

What about TrEd
my keyword was usually used when declaring for loops in TrEd’s source code.

4.5.10 List Generation

What to do
Use map instead of for when generating new lists from old.

67

Why
map is computationally cheaper than using push repeatedly and more readable

than preallocating desired array size. It is usually also easier to understand
because it is more high-order function.

What about TrEd
map function is used frequently in TrEd’s source code, not only for generating

new lists, but sometimes also for list transformations (see also 4.5.12).

4.5.11 List Selection

What to do
Use grep and first instead of for when searching for values in a list.
Why
Using first is more effective than for loop, grep is well known to UNIX world

programmers, it is shorter, thus easily readable.
What about TrEd
grep is used very frequently for selecting values from lists in TrEd.

4.5.12 List Transformation

What to do
Use for instead of map when transforming a list in place.
Why
map allocates new storage for the transformed list while for loop can use the

storage that is already allocated.
What about TrEd
TrEd’s source code contains approximately one third of the heredoc termina-

tors without quotes.

4.5.13 Complex Mappings

What to do
Use a subroutine call to factor out complex list transformations.
Why
Long list of instructions in map’s block is hard to read and understand. Using

separate function is more scalable and comprehensible.
What about TrEd
In TrEd’s source code complex mappings were used quite frequently. At least

30 of them were used in the main tred file.

4.5.14 List Processing Side Effects

What to do
Never modify $ in a list functions (grep, map, first, etc.).
Why
It is not usual for map and grep functions to alter the original list. Since$ in these functions holds alias, not a copy of a list element, it can be easily

modified unintentionally by all the functions that takes $ silently as their default
argument.

68

What about TrEd
Modifying $ in TrEd’s source code could be a potential source of problems

in statements where hash keys could be created in tests like in:

grep {$_−>{treeNo } == $tree_no }
There are several cases where the $ is altered by calling another function or

substitute s/// operator in TrEd’s source code.

4.5.15 Multipart Selections

What to do
Avoid cascades of if-elsif-elsif-else statements wherever possible.
Why
Code with cascading if statements is poorly readable because it very easily

spans across several pages of source code. It is also not effective to execute, if the
common cases are not listed first.

What about TrEd
Cascading if statements are quite common in TrEd’s source code, more than

3 elsifs appears almost 30 times in the source code.

4.5.16 Value Swithces

What to do
Use table look-up in preference to cascaded equality tests.
Why
This solution is cleaner and more effective than cascading if chain if the course

of actions is chosen by testing one variable against a number of predefined values.
What about TrEd
Tests in TrEd are usually more complex, therefore it is not very feasible to

use this approach.

4.5.17 Tabular Ternaries

What to do
When producing a value, use tabular ternaries.
Why
If a single value is produced in a chain of cascading if statements, it is better

written as (multiple) tabular ternary operator. This scales well and is easily
readable. The computational efficiency is, however, the same as when using
cascading if statements.

What about TrEd
Tabular ternaries were sometimes used in TrEd’s source code to produce val-

ues.

4.5.18 do-while Loops

What to do
Don’t use do...while loops.

69

Why
Postfix loop construct are harder to read (see also 4.5.2) and less scalable.

Moreover, in Perl, you can’t use redo, next and last commands within a do...while
loop, because it is not really a loop, but rather a modified do block.

What about TrEd
Numbers with leading zeros were used for changing permission for files in

TrEd.

4.5.19 Linear Coding

What to do
Reject as many iterations as possible, as early as possible.
Why
This approach usually improves comprehensibility and readability of code and

is, by definition, more effective.
What about TrEd
TrEd usually uses this approach quite thoroughly.

4.5.20 Distributed Control

What to do
Don’t contort loop structures just to consolidate control.
Why
Sophisticated conditional tests that are usually accompanied by several flag

variables are difficult to understand. If the loop control is distributed inside the
loop when appropriate.

What about TrEd
TrEd uses many difficult conditions and flags, not only for conditions, but

also for loop structures.

4.5.21 Redoing

What to do
Use for and redo instead of an irregularly counted while.
Why
Using for and redo loops reduces the risk of off-by-one errors and forgetting

to increment iteration variable. Actually, there is usually no need for an iteration
variable when using these loops. redo can be used if the loop needs irregular
counting.

What about TrEd
Many while loops were used in Perl.

4.5.22 Loop Labels

What to do
Label every loop that is exited explicitly, and use the label with every next,

last, or redo.
Why

70

Enhances readability and comprehension, maintainer finds particular loop
faster. It is also particularly useful when more nested loops are added throughout
the application’s lifetime.

What about TrEd
Loop labels were used only when it was necessary because of using loop control

statements (next, last and redo).

4.6 Documentation

In the programming world there is a well known saying3: “Any code of your
own that you haven’t looked at for six or more months, might as well have been
written by someone else”. Good documentation is very important for maintaining
programs. Without a specification what a code is supposed to do, the maintainer
is left only with what the code really does and has to wonder if that is really what
it is supposed to do. Unfortunately, TrEd’s documentation is very sparse and
mostly user-oriented. No technical or algorithmic documentation was available.
One of the aims of this thesis is to document TrEd’s functionality. Therefore a
set of standard documentation boilerplates was created to document its source
code. These boilerplates and other documentation-related rules are presented in
this section.

4.6.1 Types of Documentation

What to do
Distinguish user documentation from technical documentation. Put user doc-

umentation in the “public” sections of your code’s Plain Old Documentation
(POD), relegate the technical documentation to “non-public” places. Don’t put
implementation details in user documentation.

Why
Users usually don’t read the code of the application, only developers do. These

two types of documentation should be separated.
What about TrEd
Technical documentation was present only for public API for TrEd and bTrEd

macros. TrEd, bTrEd and other Perl source code contained very little docu-
mentation (sometimes only unedited standard POD boilerplate). However, the
Treex::PML library which is now a separate CPAN package, is documented very
well.

4.6.2 Boilerplates

What to do
Create standard POD templates for modules and applications.
Why
Coherent and standard way of documentation helps the readers to understand

it and known structure makes it easier to navigate through the documentation.
What about TrEd

3also called Eagleson’s Law

71

TrEd used a short standard boilerplate, but it was usually not edited and filled,
if it was present in the file. New boilerplate, as suggested by [2] was adopted for
creating TrEd’s documentation:

=head1 NAME

<Module : : Name> − <One−line description of module ' s purpose>

=head1 VERSION

This documentation r e f e r s to
<Module : : Name>
ve r s i on 0 . 0 . 1 .

=head1 SYNOPSIS

use <Module : : Name>;

Br i e f but working code example (s) here showing the most common usage (s)

=head1 DESCRIPTION

A f u l l d e s c r i p t i o n o f the module and i t s f e a t u r e s .
May i nc l ude numerous sub s e c t i on s (i . e . , =head2 , =head3 , e tc .) .

=head1 SUBROUTINES/METHODS

A separate s e c t i o n l i s t i n g the pub l i c components o f the module ' s interface .
These normally consist of either subroutines that may be exported , or methods

that may be called on objects belonging to the classes that the module provides←֓
.

Name the section accordingly .

In an object−oriented module , this section should begin with a sentence of the

form ”An ob j e c t o f t h i s c l a s s r ep r e s en t s . . . ” , to give the reader a high−level
context to help them understand the methods that are subsequently described .

=head1 DIAGNOSTICS

A list of every error and warning message that the module can generate

(even the ones that will ”never happen ”) , with a full explanation of each
problem , one or more likely causes , and any suggested remedies .

=head1 CONFIGURATION AND ENVIRONMENT

A full explanation of any configuration system (s) used by the module ,
including the names and locations of any configuration files , and the

meaning of any environment variables or properties that can be set . These

descriptions must also include details of any configuration language used .

=head1 DEPENDENCIES

A list of all the other modules that this module relies upon , including any

restrictions on versions , and an indication of whether these required modules ←֓
are

part of the standard Perl distribution , part of the module ' s d i s t r i bu t i on ,
or must be i n s t a l l e d s epa r a t e l y .

=head1 INCOMPATIBILITIES

72

A l i s t o f any modules that t h i s module cannot be used in con junct i on with .
This may be due to name c o n f l i c t s i n the i n t e r f a c e , or competi t ion f o r
system or program resour ces , or due to i n t e r n a l l im i t a t i o n s o f Per l .

=head1 BUGS AND LIMITATIONS

A l i s t o f known problems with the module , together with some i nd i c a t i o n o f
whether they are l i k e l y to be f i x ed in an upcoming r e l e a s e .

Also a l i s t o f r e s t r i c t i o n s on the f e a t u r e s the module does provide :
data types that cannot be handled , performance i s s u e s and the c i r cumstances
in which they may a r i s e , p r a c t i c a l l im i t a t i o n s on the s i z e o f data set s ,
s p e c i a l c a s e s that are not (yet) handled , e tc .

The i n i t i a l template u sua l l y j u s t has :

There are no known bugs in t h i s module .
P l ease r epor t problems to
<Maintainer name(s)> (<contact address>)
Patches are welcome .

=head1 AUTHOR

<Author name(s)> (< contact address>)

=head1 LICENCE AND COPYRIGHT

Copyright (c) <year> <copyr i ght holder>
(< contact address>) . A l l r i g h t s r es e rved .

f o l l owed by whatever l i c e n c e you wish to r e l e a s e i t under .

4.6.3 Extended Boilerplates

What to do
Extend and customize your standard POD templates.
Why
If the policy of company requires other information in the documentation, e.g.

examples, frequently asked questions, add them to standard boilerplate.
What about TrEd
TrEd takes the conservative approach and uses only the standard sections (see

4.6.2).

4.6.4 Location

What to do
Put user documentation in source files instead of separate .pod files.
Why
Separate files are more difficult to maintain and it is possible that they get

lost somewhere along the way to the user. Placing documentation in the source
file makes it always available.

What about TrEd
TrEd’s POD is usually situated at the end of source code.

73

4.6.5 Contiguity

What to do
Keep all user documentation in a single place within your source file. Don’t

interleave POD sections between chunks of source code.
Why
To keep both the structure of user documentation and code as clear and com-

prehensible as possible, it is usually a good idea not to interleave documentation
between the code.

What about TrEd
The approach in documented API file tred.def was to interleave documen-

tation between the chunks of code. Refactored TrEd’s source code contains
technical-specific details of documentation near the code, POD documentation
at the end of each file.

4.6.6 Position

What to do
Place POD as close as possible to the end of the file.
Why
Anyone looking at the source code is probably interested in the source code

itself, not a documentation. Also the Perl compiler is usually more efficient if it
doesn’t have to skip the documentation at the beginning of each file.

What about TrEd
TrEd’s source code contained POD at the end of file.

4.6.7 Technical Documentation

What to do
Subdivide your technical documentation appropriately. Use separate .pod

files for design documents, change logs, etc.
Why
If the user wants to read how to use a module or subroutine, and he is not in-

terested in implementation details, it is better not to overwhelm him. If someone
is interested in the implementation, he looks in the source code and finds link to
other POD files easily.

What about TrEd
TrEd contains a mix of user and technical documentation in separate xml file.

4.6.8 Comments

What to do
Use block templates for major comments. A templated block comment should

be used to document each component4 of a module or application.
Why
Block template is usually much easier and faster to grasp if it is in structured

form than free text. Coherent documentation also greatly improves the speed of
orientation in it.

4a subroutine, method, package and the main code of an application

74

What about TrEd
TrEd contained very little technical documentation before refactoring. A stan-

dard template which was chosen to document subroutines follows:

##
Usage : f i l e s chema ($ f s f i l e)
Purpose : Return schema from f i l e ' s metadata
Returns : Schema f o r $ f s f i l e
Parameters : Treex : :PML: : Document r e f $ f s f i l e −− the f i l e whose schema
we are sear ch ing f o r
Throws : no except i on
Comments : Should r eturn the same value as c a l l i n g $ f s f i l e −>schema ()
(accord ing to Treex : :PML doc)
See Also : Treex : :PML: : Document : : metaData () ,
Treex : :PML: : Document : : schema ()

4.6.9 Algorithmic Documentation

What to do
Use full-line comments to explain the algorithm. Code in paragraphs (see

also 4.1.13) and prefix each paragraph with a single-line comment. Unpacking
subroutines arguments and return statement don’t need a commentary.

Why
Code written in commented paragraphs is easy to read and comprehend. It

can be also a good sign for subroutine complexity: whenever a comment above
the paragraph is more than one line long, the paragraph should maybe be split
or extracted into separate subroutine.

What about TrEd
TrEd’s source code didn’t follow this rule.

4.6.10 Elucidating Documentation

What to do
Use end-of-line comments to point out subtleties and oddities.
Why
Using special variable and subroutine names derived from a jargon or oth-

er very specific language area can be hard to read and understand without an
explanation.

What about TrEd
TrEd’s source code contains names from linguistic area, but does not usually

contain any end-of-line comments.

4.6.11 Defense Documentation

What to do
Comment anything that has puzzled or tricked you.
Why
If something tricked you once, it will probably puzzle you again in the future.

Therefore it is wise to comment that puzzling piece of code.
What about TrEd

75

TrEd contains only a very little commentary, even in puzzling and tricky areas
of code.

4.6.12 Indicative Documentation

What to do
Consider whether it’s better to rewrite than to comment.
Why
Sometimes it is better to write simpler code than to document the sophisti-

cated one. The decision depends, of course, on the programmer. This tip is also
mentioned in [3] and 2.1.22.

What about TrEd
Since this is rather a refactoring tip than a documentation rule, it is not

measurable.

4.6.13 Discursive Documentation

What to do
Use “invisible” POD sections for longer technical discussions. Keep it as close

to the code as possible.
Why
Don’t burden the user with implementation details and the algorithms used

in the source code.
What about TrEd
TrEd’s source didn’t contain technical discussions and documentation.

4.6.14 Proofreading

What to do
Check the spelling, syntax, and sanity of your documentation.
Why
To communicate effectively, documentation shouldn’t contain spelling errors,

obscure syntactic constructions. It should be clear, short and comprehensible. As
one of my professors like to say: “Write technical documentation as if you were
writing it to your clever colleague, who doesn’t know about the problem you’re
trying to solve. Write users’ documentation as if you were writing it to a total
ignorant who doesn’t care about your program”5.

What about TrEd
The Perl::Critic module is used in refactored TrEd to check spelling, orig-

inal TrEd did not use any of these tools

4.7 Built-in Functions

The most common functions used in Perl programs are functions which are part
of the Perl language itself. It is thus very important to use them in a correct and
efficient way. This chapter, inspired by [2], gives some advice about using these
functions.

5RNDr. Rudolf Kryl

76

4.7.1 Sorting

What to do
Don’t recompute sort keys inside a sort.
Why
Doing expensive computations inside the block of a sort is inefficient. Since

the implementation of sort uses merge sort algorithm, the block after the func-
tion will be called O(N.logN) times6.

What about TrEd
Hash or array look-ups are the only more complex operations used in sort

function in TrEd.

4.7.2 Reversing Lists

What to do
Use reverse to reverse a list, reverse sort to sort a list in descending order.
Why
Using reverse sort is more comprehensible than sort { $b cmp $a } and

it can also be more effective, because Perl recognizes and optimizes this sequence
of built-ins [2].

What about TrEd
Reversed sorting was accomplished only once using the non-preferred way in

TrEd’s source code.

4.7.3 Reversing Scalars

What to do
Use scalar reverse to reverse a scalar.
Why
Be explicit about reversing a string by forcing a scalar context with scalar

keyword.
What about TrEd
TrEd’s source code does not use string reverse.

4.7.4 Fixed-Width Data

What to do
Use unpack to extract fixed-width fields.
Why
unpack is usually much faster than using substr or regular expressions. It

scales well and supports extracting string chunks in arbitrary order.
What about TrEd
TrEd does not work with fixed-width fields.

6where N is a number of sorted elements

77

4.7.5 Separated Data

What to do
Use split to extract simple variable-width fields.
Why
The most effective way of dealing with variable-length data separated by a

specific pattern is to use split function [2].
What about TrEd
TrEd used split function to parse configuration file or stylesheets (when

appropriate).

4.7.6 Variable-Width Data

What to do
Use Text::CSV XS or Text::CSV::Simple to extract complex variable-width

fields.
Why
There is no need to reinvent a wheel, if a well tested highly configurable

module already exists. Writing own bug-free parser that handles various types of
quotes and escape sequences can be difficult.

What about TrEd
TrEd used its own parser for configuration files.

4.7.7 String Evaluations

What to do
Avoid string eval.
Why
String eval starts compiler every time it is called, it is therefore expensive,

especially in loops. The second large drawback is that string eval doesn’t provide
compile-time checking. Module Sub::Install can be used for creating subrou-
tines generated according to user input.

What about TrEd
TrEd used string eval to run macros and extensions. This mechanism was

also used to catch exceptions in code that may fail. This is, however, necessary
for running macros, hooks and extensions.

4.7.8 Automating Sorts

What to do
Consider building your sorting routines with Sort::Maker.
Why
Don’t reinvent the wheel, if you need various sort functions, use module

Sort::Maker which is tested and optimized.
What about TrEd
TrEd does not use this module. Sorting in TrEd is usually done using built-in

sort function which is sufficient for its needs.

78

4.7.9 Substrings

What to do
Use 4-arg substr instead of lvalue substr.
Why
Assigning value to a function can be less comprehensible, because it’s not very

common (even in Perl). Using substr with 4 arguments is also faster because no
intermediate string representation has to be created.

What about TrEd
Lvalue substr is never used in TrEd’s source code.

4.7.10 Hash Values

What to do
Make appropriate use of lvalue values.
Why
Using lvalue values for assigning new values to hash is more efficient in loops,

because no hash look-up is needed. This approach can be, however, only used
with Perl compilers newer than 5.6.

What about TrEd
This approach is not used in TrEd because it supports older Perl compilers.

4.7.11 Globbing

What to do
Use glob, not <...>.
Why
Most people associate <...> with Perl’s I/O system. Using glob function is

more comprehensible and less error-prone.
What about TrEd
TrEd uses glob function to expand file names.

4.7.12 Sleeping

What to do
Avoid a raw select for non-integer sleeps.
Why
Using a side-effect of a function with other purpose just for that side-effect is

bad practice for both understandability and maintainability of the program. Use
Time::HiRes module, if it is possible.

What about TrEd
TrEd does not use sleeping.

4.7.13 Mapping and Grepping

What to do
Always use a block with a map and grep.
Why

79

Using block versions of these built-ins make the transformation/filter stand
out more clearly. It is also less error-prone and more scalable.

What about TrEd
TrEd’s source code contains function-type call of grep and map quite often

4.7.14 Utilities

What to do
Use the “non-builtin builtins”, i.e. subroutines from Scalar::Util, List::Util,

and List::MoreUtils modules: blessed, refaddr, reftype, readonly, tainted,
openhandle, weaken, is weak, first, max, maxstr, min, minstr, shuffle, reduce,
uniq, etc.

Why
Althought calling a subroutine can be in some cases more computationally

expensive, it’s cleaner, more scalable and readable solution.
What about TrEd
TrEd’s source code usually takes advantage of these subroutines. Subroutines

from List::Util were reimplemented because of name mangling of $a and $b
variables in macro contexts. Subroutine uniq was implemented redundantly in
several packages.

4.8 Subroutines

Subroutines are the smallest units of program modularity and abstraction. This
section inspired by [2] lays out 12 rules how to use them effectively.

4.8.1 Call syntax

What to do
Call subroutines with parentheses but without a leading &.
Why
Calling subroutines with parentheses makes it easy to distinguish them from

built-in subroutines and avoid confusion when calling multiple subroutines. This
approach improves readability and comprehensibility of the code. Using & to call
a function may be confusing, because, depending on the context, it can also be
considered a bitwise and operator. Moreover, if the function is called without
arguments, the default argument passed to the function is not $, but @ , which
can be confusing

What about TrEd
Subroutines in TrEd were called with leading & quite often to achieve auto-

matic passing of all the arguments of the original function to the called function.
This is avoided in new code.

4.8.2 Homonyms

What to do
Don’t give subroutines the same names as built-in functions.
Why

80

Perl uses two classes of built-in functions – those more privileged, more built-
in, which are called even if there is a subroutine with the same name in current
scope – and those less privileged that can be overriden by subroutines in current
scope. This confusing behaviour can easily become a maintenance nightmare.

What about TrEd
Some of the modules use names which are colliding with standard Perl func-

tions, e.g. module TrEd::Convert uses colliding names of subroutines.

4.8.3 Argument List

What to do
Always unpack @ first. Use one line single list assignment or a series of shifts

if the arguments need to be checked/sanitized.
Why
Directly using arguments as $ [n] is slightly more efficient, but is not self-

documenting. The code is therefore less comprehensible. What is more, elements
of @ are aliases to original arguments and their value can be unintentionally
changed.

What about TrEd
Function arguments were usually unpacked on the very first lines of subrou-

tines. Only in specific cases where @ was just passed to another function or
numbered arguments were used for efficiency reasons.

4.8.4 Named Arguments

What to do
Use a hash of named arguments for any subroutine that has more than three

parameters.
Why
For humans it is usually easier to remember names than to remember specific

order of arguments to function. The advantage of using hash rather than raw list
is that errors in the hash of named arguments will be usually reported at compile
time in the caller’s context, while errors in raw list will be usually reported at
run time in the calee’s context.

What about TrEd
TrEd subroutines that use many parameters didn’t use hash of named argu-

ments. Refactored TrEd introduced this approach for functions with more than
4 arguments.

4.8.5 Missing Arguments

What to do
Use definedness or existence to test for missing arguments. Don’t use simple

boolean test, i.e. if !$argument1.
Why
Simple boolean test fails if the subroutine’s argument is 0 or empty string,

which is usually not what is meant. Better approach is to use defined and test
whether the number of arguments is in desired interval.

81

What about TrEd
TrEd used boolean test (not only) for subroutines’ arguments frequently.

4.8.6 Default Argument Values

What to do
Resolve any default argument values as soon as @ is unpacked.
Why
It is more clear and comprehensible to prepare the arguments with their de-

fault values before using them in the subroutine.
What about TrEd
TrEd’s source code usually follows this rule.

4.8.7 Scalar Return Values

What to do
Always return scalar in scalar returns.
Why
If a function that should return only scalar value could return a list or a scalar

variable depending on the context, using explicit return scalar to force scalar
context can help avoid introducing subtle bugs.

What about TrEd
TrEd’s source code follows this rule.

4.8.8 Contextual Return Values

What to do
Make list-returning subroutines return the “obvious” value in scalar context.

Ask the users of the subroutines which one the obvious value is. Usually, for
homogenous lists it is the count of the items in the list. For heterogenous lists
the “obvious” value is the most significant value or a serialization of all the list
items. Finally, an iterative list-returning subroutine should return the result of
one iteration in the scalar context.

Why
Using the behaviour that is expected from the subroutine is beneficiary for

the author and the user of the subroutine.
What about TrEd
TrEd’s source code sometimes used this approach, but most of the functions

were considered to be called only in one specific context.

4.8.9 Multi-Contextual Return Values

What to do
When there is no “obvious” scalar context return value, consider Contextual::Return

instead.
Why
When there is a need to return different values from a subroutine in scalar

context (e.g. string vs boolean context), Contextual::Return CPAN module

82

can be used to achieve more fine-grained context resolution. In some cases this
approach can help to clean API, on the other hand, using more properly named
subroutines might be a solution as well.

What about TrEd
TrEd’s source code doesn’t use Contextual::Return module and doesn’t need

to resolve context with such details.

4.8.10 Prototypes

What to do
Don’t use subroutine prototypes.
Why
Subroutine prototypes use different rules for passing arguments to subroutine.

Since the caller has to remember which subroutines are prototyped, it’s easy to
make a mistake. Maintenance of this code is therefore more difficult and there is
usually a good alternative to using prototyped subroutine.

What about TrEd
TrEd sometimes uses subroutine prototypes, especially in macros and in TrEd::MinMax

module, whose functions should work as a replacement for some of List::Util
functions.

4.8.11 Implicit Returns

What to do
Always return via an explicit return.
Why
The return value of a function without an explicit return is the last value

evaluated in the subroutine. The return value can be the return value of the last
boolean expression in a loop or conditional statement. It can difficult to track
down, which statement would be the last one in every of the possible subroutine’s
paths. The code is much more predictable and easily maintainable when explicit
return is used.

What about TrEd
TrEd used functions without explicit return values frequently (about 500 sub-

routines).

4.8.12 Returning Failure

What to do
Use a bare return to return failure. Don’t use return undef.
Why
If a function returns undef explicitly and it is called in list context, the sub-

sequent boolean test on the return value returns true, because a list with one
element – an undefined value – is evaluated to true in boolean context, which can
introduce subtle bugs. Bare return returns undef in scalar context and empty
list in list context, which is evaluated in boolean context as usually expected.

What about TrEd

83

TrEd returned undef explicitly quite frequently, mote than 70 subroutines did
it this way. This rule is obeyed in refactored TrEd and explicit return undef

were changed to bare returns.

4.9 Input and Output

Input and output (I/O or IO) are usually the slowest parts of the computer
systems, being the bottleneck for many programs. It is therefore very useful to
know how to optimize these operations in Perl.

TrEd uses for most of its input and output Treex::PML library, which also
takes care of (de)compression of input and output files. However, besides the
input linguistic files, many configuration files, macros and stylesheets are used in
TrEd. The rules in this section were followed to make TrEd’s IO operations more
clear, maintainable and less buggy.

4.9.1 Filehandles

What to do
Don’t use bareword filehandles.
Why
Bareword filehandle is a kind of package variable, therefore it is shared by

all the subroutines that use the same bareword. Even worse situation arise when
another function reads a different file with the same filehandle name – the previous
file is closed and the filehandle is then associated with the new file.

Another problem with bareword filehandle is that if it collides with function
name, it fail silently. open function and angle brackets used for reading input file
don’t treat barewords the same way. This situation can lead to unexpected bugs
that are difficult to find.

What about TrEd
TrEd follows this rule.

4.9.2 Indirect Filehandles

What to do
Use indirect filehandles.
Why
Indirect filehandle is a lexical variable which is always a better choice com-

pared to package variable (see also 4.4.1 and 4.4.2). The worst thing that might
happen is that the previous variable with the same name will be hidden, but if
use warnings is used, a programmer is warned about this situation.

What about TrEd
TrEd almost always follows this rule. One exception is when using sysopen

call in TrEd::Cipher package, the other was in TrEd::Config package, where it
wasn’t necessary and, therefore, it was eliminated.

4.9.3 Localizing Filehandles

What to do

84

If you have to use a package filehandle, localize it first. When referring to the
symbol table entry, use asterisk to make the use explicit.

Why
Using local has nearly all the advantages of using lexical variables, except

that localized variable can be seen in deeper scopes. For other advantages of
lexical filehandles, see previous rule (4.9.2).

What about TrEd
TrEd used localized filehandles only several times.

4.9.4 Opening Cleanly

What to do
Use either the IO::File module or the three-argument form of open.
Why
The behaviour of the two-argument open can be altered if name of the file

contains angle brackets. The opening mode can’t be changed by file name if
three-argument open or IO::File module is used for IO.

What about TrEd
Two-argument open was used several times7 in TrEd.

4.9.5 Error Checking

What to do
Never open, close, or print to a file without checking the outcome.
Why
These three IO operations usually fail most frequently. Use low precedence

or as suggested in 4.3.16.
What about TrEd
The return value of open was usually checked in TrEd (only 3 ignored return

values), but return values of close and print functions were usually ignored (37
and 290 times, respectively).

4.9.6 Cleanup

What to do
Close filehandles explicitly, and as soon as possible.
Why
Files are shared resource and it’s always a good idea to release shared re-

sources as soon as possible. Perl internal resources such as file buffers can be
released sooner, too. Moreover, the number of filehandles is usually limited, so
it’s recommended not to leave the filehandles open for a long time.

What about TrEd
TrEd usually follows these rules, however, according to Perl::Critic’s de-

fault settings, this rule was broken 17 times.

78 times

85

4.9.7 Input Loops

What to do
Use while (<>), not for (<>).
Why
Using for (<>) evaluates the IO operator in list context, which means the

whole file is read into an internal list at once and then processed iteratively in the
for loop. This way of processing files is very memory inefficient if just a sequential
access to the file is needed.

This approach also can’t be used interactively because the for loop does not
start until the end of file has been encountered.

What about TrEd
TrEd obeys this rule.

4.9.8 Line-Based Input

What to do
Prefer line-based I/O to slurping.
Why
Slurping – reading the file at once to a variable – is generally less scalable and

slower than reading the file one line at a time and it should be used only when
it’s really necessary.

What about TrEd
TrEd slurps only small files such as configuration files. For other IO it uses

Treex::PML CPAN module.

4.9.9 Simple Slurping

What to do
Slurp a filehandle with a do block for purity, e.g.

my $slurped_file = do { l o c a l $ / ; <$in> } ;

Why
This approach first set record separator ($/) to undef locally and then reads

the whole file as a single line. This approach is faster and scales better than using
join function with empty string or concatenating iteratively.

What about TrEd
TrEd used only angle brackets to do simple slurping.

4.9.10 Power Slurping

What to do
Slurp a stream with Perl6::Slurp for power and simplicity.
Why
Using a function from a CPAN module may be more appropriate (it is a

cleaner and more comprehensible approach), although some sources[12] indicate
that this module might have some problems with handling UTF-8 properly.

What about TrEd

86

TrEd doesn’t use Perl6::Slurp CPAN module.

4.9.11 Standard Input

What to do
Avoid using *STDIN, unless you really mean it.
Why
The STDIN can be, depending on the situation, input and output redirection

from another process, attached to various file descriptors. It is thus safer to use
*ARGV, which allows users to specify input files on the command line or by using
pipes/redirection.

What about TrEd
TrEd obeys this rule.

4.9.12 Printing to Filehandles

What to do
Always put filehandles in braces within any print statement.
Why
Helps with readability because it distinguishes the file handle argument from

the rest of the arguments.
What about TrEd
TrEd does not follow this rule. There are more than 250 occurrences of file-

handle without braces within print statement.

4.9.13 Simple Prompting

What to do
Always prompt for interactive input.
Why
Interactive programs should tell the user that they expect some kind of input

to perform the tasks they are designed to, not just wait silently.
What about TrEd
TrEd is an interactive program, but it uses GUI, so it uses a different approach

to user interaction.

4.9.14 Interactivity

What to do
Don’t reinvent the standard test for interactivity. Use IO::Interactive mod-

ule instead.
Why
Don’t reinvent the wheel, especially if it is complicated to develop and main-

tain.
What about TrEd
TrEd does not use IO::Interactive module, it uses GUI built with Tk frame-

work.

87

4.9.15 Power Prompting

What to do
Use the IO::Prompt module for prompting.
Why
Use already existing module if you need to prompt for input on the command

line frequently. It is a well-thought feature-rich abstraction for prompting the
user.

What about TrEd
As stated above, TrEd uses GUI, bTrEd is a batch program that does not use

interactive features. Module IO::Prompt is thus not used.

4.9.16 Progress Indicators

What to do
Always convey the progress of long non-interactive operations within interac-

tive applications.
Why
The indicators of progress for lengthy operations is needed for any interactive

application so that user is informed when he can interact with the application
again.

What about TrEd
TrEd uses the facilities of Tk framework (usually progress bars) when working

interactively in GUI.

4.9.17 Automatic Progress Indicators

What to do
Consider using the Smart::Comments module to automate your progress in-

dicators.
Why
Although it can be useful to turn specially-crafted comments into (automati-

cally generated) progress indicators, some sources[12] warns against usage of this
module, because it is a source filter which are considered to do more harm than
good[12].

What about TrEd
TrEd does not use Smart::Comments or other source filters.

4.9.18 Autoflushing

What to do
Avoid a raw select when setting autoflushes.
Why
One-argument select affects the default filehandle for all the subsequent

print calls globally, therefore it is a good practice to avoid it completely. For
flushing automatically, using autoflush() function from IO::Handle module is
preferred.

What about TrEd

88

TrEd does not use select function at all. Autoflush was turned on by using
special variable ($|) only in scripts used for TrEd releasing.

89

5. TrEd Refactoring

Now when we have performed basic static and dynamic analysis of TrEd’s code
base in Chapter 2, familiarized ourselves with TrEd’s implementation in Chapter
3, and laid out rules and coding standards for the program and evaluated ad-
herence of original TrEd to these rules, we can describe changes made in TrEd’s
source code.

After identification of the problematic areas in TrEd and quantitative expres-
sion of code smells described earlier in Chapter 2, we present the comparison of
various metrics used to measure the quality of code and the extent of refactoring
which has been done on TrEd’s code base.

The main goals of TrEd’s refactoring were to improve the quality of TrEd’s
source code. Of course, no exact measure of software quality exists, but generally,
our efforts have been spread among these areas:

1. Adopt a set of rules and hints to make the source code consistent.

2. Document as much of the source code as possible.

3. Make the source code modular, especially TrEd’s main package.

4. Create a test suite to cover as much of the code as possible.

5. Fix bugs found in the process of refactoring.

Adopting a set of reasonable rules for the source code is always essential,
and these rules are needed even more if many people are involved in the project.
Since TrEd supports extensions and user macros, writing each piece of code using
different style would be very undesirable. Common coding style helps in faster
orientation in source code and improves readability of code for everyone.

Documenting the source code is very important for its future maintenance. It
is very hard to check the correctness of a function, if there is no specification what
the function should do. We then only have to guess what it is probably supposed
to do by examining what it really does (and we might still wonder, whether some
specific behaviour, which seems exotic to us, is intended or it is a bug).

The TrEd’s main package, as mentioned earlier, was more than 13,000 lines
long and contained almost 500 functions. We can consider it to be a sort of a
God object antipattern1 occurrence. Making code modular makes it not only
more maintainable and easier to understand, but it is also essential for creating
a test suite. Having 500 subroutines intertwined in one file, which communicate
by modifying almost 80 global variables makes the module almost untestable.

Creating a testing suite is probably the only way how to make development
of a complex program sustainable. Testing suite is not an ultimate tool for
creating bug-free software, but it can greatly increase the quality of a program.
Good testing suite makes adding new features and refactoring easier, since the
developers can be sure that exercised parts of the program remain functional.

1if a significant part of a program’s functionality is coded into a single “all-knowing” object,
which maintains most of the information about the entire program and manipulate all the data,
it becomes an all-encompassing God object

90

5.1 Conceptual Changes

Probably the strongest code smell in original TrEd was the main tred file, as
mentioned earlier. The subroutines within this file were categorized according
to data they manipulate and whenever possible, they were moved to a distinct
package along with the data they access and modify. Some functions were split
or extracted to separate their concerns (as mentioned earlier, almost 200 subrou-
tines were created this way), some were merged together and the duplicates were
removed. These changes are visualized in Figure 5.1. While the sizes of the boxes
or their positions are not significant, the widths of the arrows indicate the number
of moved subroutines. The thicker the arrow, the more subroutines were moved
in that direction. The thick arrow pointing from main package to TrEd::File

package represents 18 subroutines and even thicker arrow to the group of dialogs
represents 31 subroutines. On the other hand, sometimes only 1 subroutine was
moved, e.g. from package main to TrEd::Macros or TrEd::Extensions. In total,
235 subroutines and variables were moved between packages; 193 of the subrou-
tines and variables were moved from the main package to some other packages.
One package was deleted, 50 new Perl packages was created.

Complete list of moved functions and created packages can be found in Ap-
pendix D.

Another significant change that was already mentioned in Section 3.14.1 is
the transformation of macros to standard Perl packages. Since all the extensions
use TrEd’s macro system, it was not possible to remove the macros complete-
ly. However, the default macros (tred.def and tred.mac) and all the macros
from the contrib directory, which are not used by extensions (node groups.mak,
ntred.mak and minor mode macros – move nodes freely.mak, show neighboring-

sentences.mak, show neighboring trees.mak) have been turned into Perl pack-
ages.

The default macros, which contained the API for extensions and other macros
have become TrEd::MacroAPI::Default and TrEd::MacroAPI::Extended pack-
ages. The directives used by macros should be replaced by function calls. For
some of them, API subroutines already exist, for the rest, TrEd::Macros subrou-
tines can be used.� #bind → Bind() or TrEd::Macros::bind macro()� #unbind → UnbindBuiltin() or TrEd::Macros::unbind key()� #insert → TrEd::Macros::add to menu()� #remove-menu → TrEd::Macros::remove from menu()� #binding-context → TrEd::Macros::set current binding contexts()� #define → TrEd::Macros::define symbo()� #ifdef, #elsif, #endif → TrEd::Macros::is defined(), standard Perl

condition statements and scopes� #key-binding-adopt → TrEd::Macros::copy key bindings

91

Figure 5.1: Code flow diagram of TrEd refactoring

92

� #menu-binding-adopt → TrEd::Macros::copy menu bindings

Replacing #include and #ifinclude macro directives requires more changes
in extensions and macros using this directive. We believe that libraries used
by extensions should be packed along with them and then they can be used by
standard Perl means, i.e. use or require package (e.g. PML Tree Query already
uses this approach for Tree Query:: modules). Libraries used by more extensions
should become part of TrEd code base or they can be packed as another extension
which other extensions would depend on (extensions already support the feature
of installing other dependent extensions with them).

For #encoding macro directive, no replacement exists yet. The libraries used
by macros can use use encoding Perl pragma, but the encoding of macro itself
has to be defined somehow. Without the specification of encoding, TrEd would
not know, how to handle input text.

5.2 Static Analysis

Similarly to Chapter 2, we performed static and dynamic analysis of refactored
TrEd and compared the results with original TrEd. First, we focus on overall
code characteristics.

5.2.1 Code Metrics

As we can see in Table 5.1, the number of TrEd core files remained the same,
while the number of lines of code has been reduced by 28% and the number of
subroutines has been reduced by 33%. The number of methods in TrEd’s main
Perl file tred changed from 356 to 214. All this subroutines were moved to
packages and modules. As we can see, the number of modules almost doubled,
as well as the amount of code they contain. We can also observe that number of
macros was halved. This is because macros in TrEd’s core were transformed into
regular Perl packages.

We can see that total number of files increased from 79 to 116. New files were
created for modules extracted from tred file, but some files were also deleted,
e.g. Tk::EditableCanvas class which was not used by any of TrEd’s components.

Table 5.1 also tells us that approximately 5 thousand lines of inline docu-
mentation and 10 thousand lines of Plain Old Documentation were written or
generated. To keep the statistics clean, we should, however, mention, that doc-
umentation of subroutines overlaps. POD was generated from subroutines’ in
place documentation automatically.

The last interesting figure in Table 5.1 is the increase in number of subrou-
tines. Since no new functionality was added, this accounts for 198 extracted
routines from larger subroutines to make the code more readable, modular and
maintainable.

The increase in number of lines of code in TrEd (this is counted simply by
counting new lines in each file) is not only caused by the documentation, but it
is also a result of using perltidy script with screen width set to 78 characters.
This cause many long lines to be split into few shorter ones. As a side effect of

93

Files Lines of code Lines of # Lines of POD Subroutines

Original TrEd
Core files 4 18,199 844 1,476 426
Modules 53 22,826 1,208 2,105 686
Macros 22 9,582 458 2,553 375

Total 79 50,607 2,510 6,134 1,487

Refactored TrEd
Core files 4 13,003 1,048 1,476 285
Modules 102 58,773 5,938 14,635 1,310
Macros 10 3,582 266 360 63

Total 116 75,358 7,252 16,471 1,658

Table 5.1: TrEd code metrics overview – comparison

LOC/file sub/file lo#/LOC loPOD/file loPOD/LOC

Original TrEd
Core files 4549.8 106.5 0.046 369.0 0.081
Modules 430.7 12.9 0.053 39.7 0.092
Macros 435.5 17.0 0.048 116.0 0.266

Total 5,416.0 136.5 0.147 524.8 0.440

Refactored TrEd
Core files 3250.8 71.3 0.081 369.0 0.114
Modules 576.2 12.8 0.101 143.5 0.249
Macros 358.2 6.3 0.074 36.0 0.101

Total 4,185.2 90.4 0.256 548.5 0.463

Table 5.2: TrEd code metrics overview – relative comparison

this layout settings, the code is less dense, since fewer operations per line of code
happen.

The comparison of relative code metric statistics can be seen in Table 5.2.
Even though the number of source files increased, the relative amount of POD
documentation per file increased, too, and the number of # comments per line of
code doubled. The average number of subroutines in file dropped from 136 to 90.
The average length of TrEd’s Perl file decreased by 22 % (even though refactored
TrEd’s source code is more often accompanied by documentation).

Because the code in extensions was not refactored, we leave their figures out.
Static analysis of extensions’ code can be found in Section 2.2.2.

Boxplots in Figures 5.2 and 5.3 show that the overall distribution of cyclomatic
complexity of subroutines has not been affected much by refactorings done during
our work on the thesis. The length of subroutines increased mainly due to using
shorter length of line and added documentation. The longest code sequences are
present outside of subroutines in btred and ntred files (i.e. the initialization of
these programs).

Subroutines with the highest cyclomatic complexity in refactored TrEd are
listed in Table 5.3. If we compare them with most complex subroutines in original
TrEd (listed in Table 5.4), we can see that the complexity of these subroutines has

94

Original Refactored

0
10

20
30

40
50

TrEd Subroutines’ complexity

C
om

pl
ex

ity

Figure 5.2: TrEd’s source code – subroutines’ complexity comparison

Original Refactored

0
10

20
30

40
50

TrEd Subroutines’ length

Le
ng

th

Figure 5.3: TrEd’s source code – subroutines’ length comparison

95

Subroutine name Source File Complexity

start server btred 326
redraw TrEd/TreeView.pm 265
print trees TrEd/Print.pm 203
draw canvas Tk/Canvas/SVG.pm 162
draw canvas Tk/Canvas/PDF.pm 159
add member Tk/TrEdNodeEdit.pm 137
recalculate positions TrEd/TreeView.pm 112
preprocess TrEd/Macros.pm 92
Popup Tk/Balloon.pm 90
open file TrEd/File.pm 86

Table 5.3: The most complex subroutines in refactored TrEd

Subroutine name Source File Complexity

startMain btred 384
redraw TrEd/TreeView.pm 260
populate extension pane TrEd/Extensions.pm 250
print trees TrEd/Print.pm 203
draw canvas Tk/Canvas/SVG.pm 162
startMain tred 160
draw canvas Tk/Canvas/PDF.pm 159
set config TrEd/Config.pm 149
add member Tk/TrEdNodeEdit.pm 137
openFile tred 135

Table 5.4: The most complex subroutines in original TrEd

been reduced in average by 37 points. As these are still very complex subroutines,
their further refactoring is subject to future work.

5.2.2 Perl::Critic

Warnings emitted by Perl::Critic source code analysis tool tells us, how much
TrEd adheres to new coding style described in Chapter 4. Because many subrou-
tines moved between the categories we described earlier in Chapter 2, we can not
directly compare the numbers of code violations in TrEd’s core or modules. The
Table 5.5 is therefore only of limited value and may be used for future purposes,
if the refactoring of TrEd would continue.

We can, however, compare the number and type of violations in the whole
codebase of TrEd. In Table 5.6 we can find comparison of number of violations
in TrEd before and after refactoring, ordered by severity of the warnings. The
number of most severe violations was reduced by almost 42 %, from 324 to 189.
Also, the number of violations of severity 4 was reduced by almost 20 %. In
general, more than 1,600 violations were fixed, which means that the number of
all violations was cut down by 10 % and the number of violations per line of code
dropped by 38 % to 0.19.

Not all of the violations can be, however, avoided. Using string evals or dis-

96

1 2 3 4 5 total violations per loc

Core 1,359 1,450 620 232 39 3,700 0.28
Modules 2,999 4,474 1,538 972 136 10,119 0.17
Macros 71 128 64 52 14 329 0.09
Total 4,429 6,065 2,222 1,256 189 14,148 0.19

Table 5.5: Code violations by severity in refactored TrEd

1 2 3 4 5 total violations
per loc

Before refactoring 5,090 6,458 2,329 1,562 324 15,763 0.31
After refactoring 4,429 6,065 2,222 1,256 189 14,148 0.19

Table 5.6: Comparison of code violations by severity in TrEd

abling strict pragma were necessary in some parts of code. Some of the violations
are difficult to fix, e.g. using regular expressions with recommended flags would
need to reconsider every regular expression in TrEd, because adding these flags
changes the semantics of regular expressions.

The most common violations of Perl::Critic rules with severity level above 3
can be seen in Table 5.7.

5.3 Dynamic Analysis

Performing a dynamic analysis of TrEd and bTrEd before and after refactoring is
necessary, because we have to be sure that refactoring did not affect the overall
TrEd performance in a negative way. Therefore, we performed the same tests on
refactored TrEd as we did with original TrEd (see Section 2.3).

We chose to examine three model situations for purposes of dynamic analysis:

1. simple bTrEd script,

2. start-up of TrEd,

3. browsing PML trees in TrEd.

These three model situations are described in further detail in Chapter 2.
Let’s have a look at the results of running the programs under aforementioned
circumstances.

5.3.1 bTrEd Evaluation

The average time of running the script in refactored bTrEd was 10.98 seconds,
while the average time of original bTrEd was 11.46 seconds. The performance
improvement is not statistically significant, since the 95 % confidence intervals
of the runtimes overlap. Most of the work in this script is done by Treex::PML

library; the order and number of calls of subroutines is almost identical to the
Tables 2.11 and 2.12. The small improvement in refactored bTrEd is probably

97

Policy name Count Severity

RegularExpressions::RequireExtendedFormatting 813 3
Subroutines::RequireFinalReturn 577 4
Variables::ProhibitPackageVars 496 3
Subroutines::RequireArgUnpacking 278 4
Variables::ProhibitReusedNames 156 3
ErrorHandling::RequireCheckingReturnValue-
OfEval

124 3

ValuesAndExpressions::ProhibitMixedBoolean-
Operators

116 4

ControlStructures::ProhibitDeepNests 85 3
ErrorHandling::RequireCarping 75 3
Subroutines::ProhibitExcessComplexity 69 3
Subroutines::ProhibitSubroutinePrototypes 44 5
NamingConventions::ProhibitAmbiguousNames 43 3
TestingAndDebugging::RequireUseWarnings 41 4
BuiltinFunctions::RequireBlockMap 39 4
ControlStructures::ProhibitCascadingIfElse 38 3
ControlStructures::ProhibitNegativeExpressions-
InUnlessAndUntilConditions

36 3

Subroutines::ProtectPrivateSubs 36 3
Variables::RequireLocalizedPunctuationVars 35 4
BuiltinFunctions::ProhibitStringyEval 30 5
TestingAndDebugging::RequireUseStrict 30 5
BuiltinFunctions::ProhibitComplexMappings 30 3

Table 5.7: Most common Perl::Critic warnings for refactored TrEd

98

Subroutine Call count % of all sub calls

TrEd::Macros::CORE:match 272,719 50.5
TredMacro::CORE:match 16,590 3.1
TredMacro::CORE:subst 16,563 3.1
utf8::CORE:match 15,553 2.9
Encode:: utf8 off 14,059 2.6
TrEd::Macros::CORE:readline 13,912 2.6
Carp::CORE:substcont 6,123 1.1
XML::LibXML::Node::DESTROY 5,000 0.9
Treex::PML::Factory:: ANON (BEGIN) 4,635 0.9
Scalar::Util::weaken 4,234 0.8
Total – 10 most frequent 369,388 68.4
Total 539,896 100.0

Table 5.8: Most frequently called subroutines in refactored TrEd – start of TrEd

caused by a smaller amount of macro code that needs to be evaluated during the
start-up phase of bTrEd. This caused fewer calls to regular expression match-
ing operator (reduced from 393,900 calls to 269,837 calls), Encode:: utf8 off

subroutine (from 20,644 calls to 13,986 calls) or readline subroutine.

5.3.2 TrEd Start

The change of start-up time of TrEd could be affected by two factors. First, we
have split the initialization into several smaller subroutines, so there could be
a little overhead of calling them if we compare it with sequential initialization.
Second, the amount of code evaluated as macros shrank, therefore there are fewer
calls to readline function or regular expression matching operator. Both these
factors have, however, little impact on the performance of TrEd in this test. Even
though the number of TrEd::Macros::CORE:match calls dropped by 32 %, the
difference between the start-up times is not statistically significant. The average
start-up time of TrEd before refactoring was 4.80 seconds and after refactoring it
was 4.64 seconds. Most of the time during the initialization was spent initializing
macros and reading input file into memory by Treex::PML library.

5.3.3 Browsing in TrEd

After the refactoring and some small optimizations of TrEd::TreeView mod-
ule, we can compare the number of calls of subroutines and statements in TrEd
before and after the refactoring. The number of executed statements lowered
from 21, 200, 350 to 14, 913, 680 and the number of subroutine calls dropped from
6, 657, 664 down to 4, 617, 669. Putting the most frequent options in an often
called subroutine at the top of an “if” clause decreased the number of calls to
UNIVERSAL::isa from 1, 115, 769 to 466, 563. The situation with UNIVERSAL::DOES-

::does function is very similar, as we can see from the comparison Table 5.10.
The number of presented attributes is the same regardless of TrEd version, which
is an indication that the number of drawn elements was the same in both versions

99

Subroutine Exclusive time [ms] % of total time

Tk::DoOneEvent 501.0 14.7
Tk::update 408.0 11.9
TrEd::Macros::preprocess 368.0 10.8
TrEd::Macros::CORE:match 162.0 4.7
TrEd::Macros::initialize macros 118.0 3.4
TredMacro:: import 95.2 2.8
utf8::SWASHNEW 51.7 1.5
Tk::configure 38.2 1.1
Exporter::import 34.2 1.0
Tk::destroy 32.6 1.0
Total – 10 most longest 1808.9 39.0
Total 4640.0 100.0

Table 5.9: Subroutines taking longest time to execute in refactored TrEd – start
of TrEd

Subroutine Call count before Call count after

UNIVERSAL::isa 1,115,769 466,563
UNIVERSAL::DOES::does 993,025 337,852
UNIVERSAL::DOES xsub 883,632 234,273
TrEd::Macros::CORE:match 492,594 373,945
TrEd::TreeView:: present attribute 166,515 166,515

Table 5.10: Most frequently called subroutines during browsing of trees – com-
parison

of TrEd.

5.4 Testing

Creating a test suite for TrEd was one of the goals of this diploma thesis. Standard
Perl utilities used for writing tests – Test::More and Test::Exception – were
used for creating tests. For the purposes of evaluation to what extent the code
is exercised by the tests, Devel::Cover module was used. All these modules are
available on CPAN. The tests we created cover these TrEd modules :� Filelist� TrEd::ArabicRemix� TrEd::Window::TreeBasics� TrEd::Binding::Default� TrEd::Cipher� TrEd::Config

100

� TrEd::Convert� TrEd::ConvertArab� TrEd::CPConvert� TrEd::TrEd::Error::Message� TrEd::TrEd::Extensions� TrEd::FileLock� TrEd::Macros� TrEd::MinMax� TrEd::Stylesheet� TrEd::Utils� TrEd::Utils

If we consider all the TrEd modules, which are reachable from test files
(that is 43 out of 102 TrEd’s modules), the test coverage, as measured by the
Devel::Cover tool is 69.2 %, which means, that almost 70 % of subroutines in
these modules have been called by tests. More than 1,300 tests for 250 subroutines
have been written for TrEd.

We encountered several problems connected with testing TrEd. Fowler in his
book about refactoring [3] strongly encourages to use tests during refactoring.
That is certainly true for small-steps refactorings he describes. The problem
with creating tests for TrEd’s refactoring is that there wasn’t any documentation
available, which would tell us, what is the purpose of the code in subroutines.
We had to guess it by the implementation of the subroutine itself and by its
connection to other parts of the program. To create test for such subroutine,
we had to map all the edge cases and odd results subroutine may return, in
case some other part of code would rely on this behaviour. Creating tests by
looking at the implementation of the tested piece of code is called white box
testing. The disadvantage of white box testing is that you actually don’t test
whether the function returns what it is supposed to, but you rather test the
actual implementation of this process.

The other interesting problem lies in the fact that in Perl, there is no encap-
sulation. In fact, all the subroutines in all created packages are public. Therefore
you usually don’t test only the public interface of your package, because every-
thing is public. Moreover, if you want to refactor private subroutine and follow
the advices of [3], you should be able to test your “private” subroutines as well.

Probably the most practical problem is the problem of complex subroutines,
with very high cyclomatic complexity. Because of many conditions, input param-
eters and flags, side effects and changes in global variables, these are practically
untestable. Now if we want to refactor a subroutine, we should write tests for
it, but the tests are almost impossible to write, if we don’t refactor it first. In
these situations, we usually chose to refactor carefully and later, when the smaller
extracted subroutines become stabilized, we write tests for them.

101

The last problem we tried to solve is how to test the GUI elements. Since the
test suite has to be automatic, no user intervention should be needed in order
to run the tests. User choices in simple dialogs can be emulated by generating
events in Tk, but testing the results of drawing trees and other elements of GUI
is more difficult. The area of GUI testing is rather complex and it is beyond the
scope of the thesis.

102

6. Future Work

TrEd is a complex program with many sophisticated features. The complete
refactoring is, unfortunately, beyond the scope of this master thesis. TrEd, and
especially its core and API for extensions and macros, would certainly benefit
from more tests. The test written during the refactoring cover approximately one
fifth of all the subroutines in TrEd. Not all of the rest of the subroutines are,
however, easily testable, because some of them require user interaction or further
refactoring. Creating an extensive testing suite and framework for testing on
various platforms and Perl versions would greatly improve the quality of TrEd.

Further refactorings could also improve the separation of levels of abstraction
in the source code. Some modules (e.g. TrEd::File) take care of all the aspects of
opening file from the data model (creating the underlying Treex::PML::Document
objects) to some features of presentation domain (creating dialogs and prompts
when the user input or intervention is needed). Especially bTrEd could benefit
from the separation of concerns. If there would be a common subset of operations
needed to be done both in TrEd and bTrEd for tasks like opening a file or loading
macros, a new layer representing only the data model, without the dependency
on GUI elements and Tk library could be introduced.

Taking the modulation of TrEd even further could allow changing the drawing
algorithm of trees, making them more flexible or interactive.

The conceptual change in the way extensions work could also improve the
overall design of the application. A base class for all the extensions could be
created. The extensions could then be implemented as subclasses of the base
class. They could override the general behaviour with specific implementations
or simply extend the functionality of the base class.

In longer run, TrEd could be rewritten using objects, e.g. relatively new, but
popular Moose object system.

Standardization of the release process, either by transforming TrEd into CPAN
package, or by creating distribution-specific packages would make the installation
procedure less error-prone and dangerous for the user. The possibility of breaking
the target system by overwriting system libraries would be considerably reduced.

TrEd would also benefit from a standardized debugging system which would
allow users to send relevant error reports, in case something breaks while working
with the program.

103

7. Conclusion

The main goal of this thesis was refactoring of Tree Editor TrEd. The most
important requirements were to increase modularity, maintainability and improve
the understandability of the program. To quantify these concerns, a thorough
analysis of source code and TrEd’s behaviour has been made. We have seen that
even though most of TrEd’s source code was well-behaved, there were some acrid
areas which needed special attention. One of these areas was the main package
of TrEd itself, which was more than 13,000 lines long and contained more than
350 subroutines. To improve modularity, 50 new Perl packages were created by
extracting existing subroutines from other packages and grouping them together
by their concerns. More than 230 subroutines and related data structures were
moved between packages. To demonstrate the increase of modularity and avoid
future regressions in code base, more than 1,300 test cases were created. To
improve the understandability of TrEd, approximately 15,000 lines of Plain Old
Documentation was written.

Automatic tools were employed to analyze the code base of TrEd. The number
of most severe violations of rules from [2] was reduced by 42 %. The cyclomatic
complexity of most complex subroutines in TrEd was reduced by 20 % on average.

These numbers, of course, does not automatically mean that the quality of
TrEd’s source code has improved and the internal structure of TrEd is clearer.
However, we believe, that the reorganization made the program easier to com-
prehend, which would allow faster pace of implementing new features and reduce
the time needed for debugging in the future. We think, that the test suite writ-
ten for TrEd can prove very valuable in the future, because an automatic testing
environment for TrEd is expected soon.

Since TrEd was the main annotation tool for Prague Dependency Treebank
and Prague Arabic Treebank, and is going to be included in future releases of
Prague Czech-English Dependency Treebank, and possibly other treebanks as
well, the quality requirements are high and we hope this thesis proves to be a
useful step in TrEd’s development.

104

References

[1] Bunce, T. Devel::NYTProf Documentation [online]. c2010, Revised De-
cember 1, 2010 [cit. 2011-07-27]. URL: <http://search.cpan.org/dist/Devel-
NYTProf/>.

[2] Conway, Damian. Perl Best Practices. 1st ed. Sebastopol: O’Reilly Media,
Inc., 2005. ISBN: 0-596-00173-8.

[3] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Kent
Beck, John Brant, William Opdyke, Don Roberts. 1st ed. Boston: Addison-
Wesley, 1999. ISBN: 0-201-48567-2

[4] Jones, Derek M. Operand names influence operator precedence decisions
(part 1 of 2) [online]. c2008, Revised November 24, 2009 [cit. 2011-05-15]
URL: <http://www.knosof.co.uk/cbook/accu07.html>.

[5] Lippert, Martin. Refactoring in Large Software Projects. Stephen Roock.
1st ed. Chichester: John Wiley & Sons Ltd., 2006. ISBN: 0-470-85892-3.

[6] McCabe, Thomas J. A Complexity Measure. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. SE-2, NO.4, DECEMBER 1976

[7] McConnell, Steven C. Code Complete. 2nd ed. Redmond: Microsoft Press,
2004. ISBN: 0-735-61967-0.

[8] Pajas, P. TrEd Documentation [online]. c2011, Revised July 7, 2011 [cit.
2011-07-28]. URL: <http://ufal.mff.cuni.cz/ pajas/tred/ar01-toc.html/>.

[9] Pajas, P. Treex::PML Documentation [online]. c2010, Revised May 24, 2011
[cit. 2011-07-26]. URL: <http://search.cpan.org/dist/Treex-PML/>.

[10] Wall, Larry. Programming Perl. Tom Christiansen & Jon Orwant. 3rd ed.
Sebastopol: O’Reilly & Associates, Inc., 2000. ISBN: 0-596-00027-8.

[11] Code Conventions for the Java�Programming Language [on-
line]. c1995, Revised April 20, 1999 [cit. 2011-05-22]. URL:
<http://www.oracle.com/technetwork/java/codeconvtoc-136057.html>.

[12] PBP Module Recommendation Commentary [online].
c2008, Revised October 24, 2010 [cit. 2011-06-09]. URL:
<https://www.socialtext.net/perl5/pbp module recommendation commentary>.

105

List of Tables

2.1 TrEd code overview . 16
2.2 TrEd code overview – relative . 16
2.3 TrEd’s core code overview . 19
2.4 Longest subroutines in TrEd’s core 19
2.5 TrEd’s modules code overview 20
2.6 Longest subroutines in TrEd’s modules 20
2.7 TrEd’s macros code overview . 21
2.8 TrEd extensions code metrics overview 23
2.9 Most common Perl::Critic warnings for TrEd 25
2.10 Code violations by severity in original TrEd 25
2.11 Dynamic analysis of bTrEd: Call counts for subroutines 30
2.12 Dynamic analysis of bTrEd: Time spent in subroutines 30
2.13 Dynamic analysis of TrEd I: Call counts for subroutines 31
2.14 Dynamic analysis of TrEd I: Time spent in subroutines 31

5.1 TrEd code metrics overview – comparison 94
5.2 TrEd code metrics overview – relative comparison 94
5.3 The most complex subroutines in refactored TrEd 96
5.4 The most complex subroutines in original TrEd 96
5.5 Code violations by severity in refactored TrEd 97
5.6 Comparison of code violations by severity in TrEd 97
5.7 Most common Perl::Critic warnings for refactored TrEd 98
5.8 Dynamic analysis of refactored TrEd: Call counts for subroutines 99
5.9 Dynamic analysis of refactored TrEd: Time spent in subroutines . 100
5.10 Comparison of dynamic analysis of browsing trees 100

D.1 TrEd code flow overview . 111
D.2 TrEd code flow overview . 112
D.3 TrEd code flow overview . 113

106

Appendices

107

A. TrEd::FileLock

Possible outcomes of check lock function – the file (and associated lock) could
be: � opened by us ignoring the original lock, but later locked again� opened by us ignoring the original lock and later changed by the lock owner� opened by us ignoring the original lock, by a user who still owns the lock,

but has not saved the file since� stolen and changed (previously locked by someone else)� stolen, but not yet changed (previously locked by someone else)� changed by another program� ours� locked by someone else� opened by us ignoring a lock by another user, who released the lock, but
the file has changed since� opened by us ignoring a lock by another user, who released the lock without
making any changes� changed by another program and our lock was removed� originally locked by us, but the lock was stolen from us by an unknown user

108

B. TrEd::Undo

The complete list of undo types used in TrEd::Undo module:� UNDO ACTIVE NODE� UNDO ACTIVE ROOT� UNDO DATA AND TREE ORDER� UNDO TREE ORDER� UNDO DISPLAYED TREES� UNDO CURRENT TREE AND TREE ORDER� UNDO ACTIVE ROOT AND TREE ORDER� UNDO DATA� UNDO CURRENT TREE

Situations when the undo is performed and what type of undo frame is stored
on the undo stack:� create new node via main menu: UNDO ACTIVE NODE� remove active node via main menu: UNDO ACTIVE ROOT� insert new tree after the current tree via main menu: UNDO TREE ORDER� insert new tree before the current tree via main menu: UNDO TREE ORDER� move current tree backward via main menu: UNDO TREE ORDER� move current tree forward via main menu: UNDO TREE ORDER� remove whole current tree via main menu:

UNDO CURRENT TREE AND TREE ORDER� edit attributes via TrEd::Dialog::EditAttributes: UNDO DATA� SaveUndo subroutine in TrEd::MacroAPI::Default: user-driven� make current node the root via main menu:
UNDO ACTIVE ROOT AND TREE ORDER� (with undo variant of) hook evaluation: UNDO DISPLAYED TREES� (with undo variant of) macro evaluation: UNDO DISPLAYED TREES� node release event: UNDO DISPLAYED TREES

109

C. TrEd::Macros

Hooks which use saving state by employing undo functions:� node doubleclick hook� node click hook� node motion hook� node release hook� text doubleclick hook� text click hook� line click hook

110

D. TrEd Refactoring

List of all functions which changed their location in TrEd during refactoring:

Name before Package before Package after Name after

uniq main Utils uniq

%backend map main TrEd::Config %backend map

@open types main TrEd::Config @open types

%save types main TrEd::Config %save types

%vertical key arrow map main TrEd::Config %vertical key arrow map

%context override binding main TrEd::Binding::Default %context override binding

%default binding main TrEd::Binding::Default %default binding

createCmdLineFilelists main TrEd::ManageFilelists createCmdLineFilelists

createBookmarksFilelist main TrEd::Bookmarks create bookmarks filelist

resolve default binding main TrEd::Binding::Default ine...

default binding main TrEd::Binding::Default run binding

change default binding main TrEd::Binding::Default change binding

get default binding main TrEd::Binding::Default get binding

get open filename main TrEd::Dialog::File::Open get open filename

bookmarkFilelist main TrEd::Bookmarks bookmark filelist

lastFileNo main TrEd::Window last file no

currentFileNo main TrEd::Window current file no

update sidepanel filelist view main TrEd::Filelist::View update

update a filelist view main TrEd::Filelist::View update a filelist view

filelistFullFileName main TrEd::Filelist::Navigation filelist full filename

filelistFullFileName main TrEd::Filelist::Navigation filelist full filename

nextOrPrevFile main TrEd::Filelist::Navigation next or prev file

nextRealFile main TrEd::Filelist::Navigation next real file

prevRealFile main TrEd::Filelist::Navigation prev real file

nextFile main TrEd::Filelist::Navigation next file

prevFile main TrEd::Filelist::Navigation prev file

tieNextFile main TrEd::Filelist::Navigation tie next file

tiePrevFile main TrEd::Filelist::Navigation tie prev file

tieGotoFile main TrEd::Filelist::Navigation tie go to file

setWindowFile main TrEd::Window set current file

resumeFile main TrEd::File resume file

isFocused main TrEd::Window is focused

initAppData main TrEd::File init app data

setFSLockInfo main TrEd::FileLock set fs lock info

setLock main TrEd::FileLock set lock

readLock main TrEd::FileLock read lock

removeLock main TrEd::FileLock remove lock

checkLock main TrEd::FileLock check lock

closeFile main TrEd::File close file

textDialog main TrEd::Dialog::Text create dialog

userQuery main TrEd::Query::User new query

addToRecent main TrEd::RecentFiles add file

getNodeNo main TrEd::Window::TreeBasics get node no

bookmarkThis main TrEd::Bookmarks actual position

addBookmark main TrEd::Bookmarks bookmark actual position

lastActionBookmark main TrEd::Bookmarks last action bookmark

updateBookmarks main TrEd::Bookmarks update bookmarks

createFilelistsMenu main TrEd::ManageFilelists createFilelistsMenu

makeNewFilelist main TrEd::ManageFilelists makeNewFilelist

updateTitle main main update title and buttons

newFileFromCurrent main TrEd::File new file from current

openStandaloneFile main TrEd::File open standalone file

reloadFile main TrEd::File reload file

new status main TrEd::File new status

loadFile main TrEd::File load file

merge status main TrEd::File merge status

openFile main TrEd::File open file

lockFile main TrEd::FileLock lock file

lockOpenFile main TrEd::FileLock lock open file

openSecondaryFiles main TrEd::File open secondary files

saveFile main TrEd::File save file

get value line main TrEd::ValueLine get value line

set value line main TrEd::ValueLine set value line

update status info main TrEd::StatusLine update status

u sort main TrEd::MinMax underscore sort

update context list main TrEd::Menu::Context update context list

update macro menus main TrEd::Menu::Macro update macro menus

Table D.1: TrEd code flow overview

111

Name before Package before Package after Name after

updateCurrentContextMenu main TrEd::Menu::Macro updateCurrentContextMenu

update macrolist view main TrEd::List::Macros update view

update attribute view main TrEd::SidePanel update attribute view

toggle attribute view hide empty main TrEd::SidePanel toggle attribute view hide empty

update status line main TrEd::StatusLine update status line

set status line main TrEd::StatusLine set status line

update value line main TrEd::ValueLine update

get nodes win main TrEd::Window get nodes

selectFilelistNoUpdate main TrEd::ManageFilelists selectFilelistNoUpdate

selectFilelist main TrEd::ManageFilelists selectFilelist

findFilelist main TrEd::ManageFilelists find filelist

addFilelist main TrEd::ManageFilelists add filelist

looseFilePositionInFilelist main Filelist loose position of file y

switchFilelist main TrEd::Dialog::Filelist switch filelist

createFilelistBrowseEntry main TrEd::Dialog::Filelist createFilelistBrowseEntry

getFilelistLinePosition main TrEd::Dialog::Filelist getFilelistLinePosition

insertToFilelist main TrEd::ManageFilelists insertToFilelist

removeFromFilelist main TrEd::ManageFilelists removeFromFilelist

createNewFilelist main TrEd::ManageFilelists createNewFilelist

addNewFilelist main TrEd::ManageFilelists add new filelist

deleteFilelist main TrEd::ManageFilelists deleteFilelist

filelistEntryPath main TrEd::ManageFilelists filelistEntryPath

feedHListWithFilelist main TrEd::Dialog::Filelist feedHListWithFilelist

selectFilelistDialog main TrEd::ManageFilelists selectFilelistDialog

bookmarkToFilelistDialog main TrEd::ManageFilelists bookmarkToFilelistDialog

removeFilelistsDialog main TrEd::ManageFilelists removeFilelistsDialog

loadFilelist main TrEd::ManageFilelists loadFilelist

filelistDialog main TrEd::Dialog::Filelist create dialog

generateSortedMacroTable main TrEd::List::Macros sorted macro table

macrolistCreateItems main TrEd::List::Macros create items

createMacroList main TrEd::List::Macros create list

macrolistDialog main TrEd::Dialog::MacroList create dialog

copyTreesDialog main TrEd::Dialog::CopyTrees create dialog

initTTFonts main TrEd::Dialog::Print initTTFonts

updatePrintDialogState main TrEd::Dialog::Print updatePrintDialogState

fix combo box return main TrEd::Dialog::Print fix combo box return

fix combo box main TrEd::Dialog::Print fix combo box

printDialog main TrEd::Dialog::Print printDialog

savePrintConfig main TrEd::Dialog::Print savePrintConfig

getWindowPatterns main TrEd::Window get patterns

getWindowHint main TrEd::Window get hint

getWindowContextRE main TrEd::Window get context RE

update value line current main TrEd::ValueLine update current

cascadeMenus main TrEd::Menu::Macro cascadeMenus

keyBind main TrEd::Binding::Default normalize key

startMain main main create split windows

startMain main main populate recent files menu

startMain main main create toolbar buttons

startMain main main create stylesheet menu

startMain main main create value line subframe

newUserToolbar main TrEd::Toolbar::User::Manager create new user toolbar

updateToolbarMenu main TrEd::Toolbar::User::Manager updateToolbarMenu

toggleUserToolbar main TrEd::Toolbar::User toggle user toolbar

hideUserToolbar main TrEd::Toolbar::User hide

showUserToolbar main TrEd::Toolbar::User show

userToolbarVisible main TrEd::Toolbar::User visible

getUserToolbar main TrEd::Toolbar::User get user toolbar

removeUserToolbar main removed removed

getConfigFromFile main TrEd::Config get config from file

saveRuntimeConfig main TrEd::Config save runtime config

updateRuntimeConfig main TrEd::Config update runtime config

RepeatedShowDialog main TrEd::Dialog::FocusFix repeated show dialog

ShowDialog main TrEd::Dialog::FocusFix show dialog

fileDialog main TrEd::Dialog::File::Open show dialog

urlDialog main TrEd::Dialog::URL create dialog

askSaveReferences main TrEd::File ask save references

saveFileAs main TrEd::File save file as

doSaveFileAs main TrEd::File do save file as

renameFileInFilelist main Filelist rename file

askSaveFiles main TrEd::File ask save files and close

closeAllFiles main TrEd::File close all files

askSaveFile main TrEd::File ask save file

saveConfig main TrEd::Config save config

editConfig main TrEd::Dialog::EditConfig show dialog

QueryString main TrEd::Query::String new query

Query main TrEd::Query::Simple new query

listQuery main TrEd::Query::List new query

getApplicableContexts main main get allowed contexts

deleteStylesheet main TrEd::Stylesheet delete stylesheet

selectValuesDialog main TrEd::Dialog::SelectValues create dialog

reloadSentenceView main TrEd::View::Sentence reload view

sentViewSelectAll main TrEd::View::Sentence select all sentences

sentViewSelectNone main TrEd::View::Sentence select none

sentViewGetSelection main TrEd::View::Sentence get selection

sentViewToggleCollapse main TrEd::View::Sentence toggle collapse

Table D.2: TrEd code flow overview

112

Name before Package before Package after Name after

viewSentences main TrEd::View::Sentence show sentences

viewSentencesDialog main TrEd::View::Sentence show sentences dialog

openSimpleHtml main TrEd::HTML::Simple open

closeSimpleHtml main TrEd::HTML::Simple close

dumpSentView main TrEd::View::Sentence dump view

populateSentencesDialog main TrEd::View::Sentence populate dialog

editFilePropertiesDialog main TrEd::Dialog::FileProperties create dialog

editAttrsDialog schema main TrEd::Dialog::EditAttributes dialog schema

editAttrsDialog main TrEd::Dialog::EditAttributes create dialog

format tred pod main TrEd::Dialog::EditStylesheet format tred pod

tred pod add tags main TrEd::Dialog::EditStylesheet tred pod add tags

sytylesheetInsertAttr main TrEd::Dialog::EditStylesheet sytylesheetInsertAttr

editStylesheetDialog main TrEd::Dialog::EditStylesheet show dialog

findNodeDialog main TrEd::Dialog::FindNode findNodeDialog

redraw win main TrEd::Window redraw

ensureCurrentIsDisplayed main TrEd::Window ensureCurrentIsDisplayed

treeIsVertical main TrEd::Window::TreeBasics tree is vertical

treeIsReversed main TrEd::Window::TreeBasics tree is reversed

redraw win main TrEd::Window redraw

centerToXY main main center to coords

examineEvent main TrEd::Dialog::ExamineBindings examineEvent

examineBindingsDialog main TrEd::Dialog::ExamineBindings create dialog

findMacroDescription main TrEd::Macros findMacroDescription

prepare undo main TrEd::Undo prepare undo

prepare redo main TrEd::Undo prepare redo

save undo main TrEd::Undo save undo

re do main TrEd::Undo re do

undo main TrEd::Undo undo

resetUndoStatus main TrEd::Undo reset undo status

declareMinorMode main TrEd::MinorModes declare minor mode

enableMinorMode main TrEd::MinorModes enable minor mode

disableMinorMode main TrEd::MinorModes disable minor mode

toggleMinorMode main TrEd::MinorModes toggle minor mode

minor ctxt abbrev main TrEd::MinorModes minor ctxt abbrev

configure minor mode main TrEd::MinorModes configure minor mode

update minor modes main TrEd::MinorModes update minor modes

update minor mode menu main TrEd::MinorModes update minor mode menu

valueLineClick main TrEd::ValueLine click

prepareExtensions main TrEd::Extensions prepare extensions

loadStdFilelists main TrEd::ManageFilelists loadStdFilelists

saveStdFilelist main TrEd::ManageFilelists saveStdFilelist

uniq TrEd::Basics TrEd::Utils uniq

gotoTree TrEd::Basics TrEd::Window::TreeBasics go to tree

nextTree TrEd::Basics TrEd::Window::TreeBasics next tree

prevTree TrEd::Basics TrEd::Window::TreeBasics prev tree

newTree TrEd::Basics TrEd::Window::TreeBasics new tree

newTreeAfter TrEd::Basics TrEd::Window::TreeBasics new tree after

pruneTree TrEd::Basics TrEd::Window::TreeBasics prune tree

moveTree TrEd::Basics TrEd::Window::TreeBasics move tree

makeRoot TrEd::Basics TrEd::Window::TreeBasics make root

newNode TrEd::Basics TrEd::Window::TreeBasics new node

pruneNode TrEd::Basics TrEd::Window::TreeBasics prune node

setCurrent TrEd::Basics TrEd::Window::TreeBasics set current

errorMessage TrEd::Basics TrEd::Error::Message error message

messageBox TrEd::Basics TrEd::Error::Message message box

absolutize path TrEd::Basics TrEd::File absolutize path

absolutize TrEd::Basics TrEd::File absolutize

fileSchema TrEd::Basics TrEd::File **removed

getSecondaryFiles TrEd::Basics TrEd::File get secondary files

getSecondaryFilesRecursively TrEd::Basics TrEd::File get secondary files recursively

getPrimaryFiles TrEd::Basics TrEd::File get primary files

getPrimaryFilesRecursively TrEd::Basics TrEd::File get primary files recursively

inst version TrEd::Extensions TrEd::File moved to get module version

setExtension TrEd::Extensions TrEd::File update extensions list

@stylesheetPaths TrEd::Utils TrEd::Stylesheet stylesheet paths$defaultStylesheetPath TrEd::Utils TrEd::Stylesheet default stylesheet path

loadStyleSheets TrEd::Utils TrEd::Stylesheet load stylesheets

initStylesheetPaths TrEd::Utils TrEd::Stylesheet init stylesheet paths

readStyleSheets TrEd::Utils TrEd::Stylesheet read stylesheets

readStyleSheetsNew TrEd::Stylesheet TrEd::Stylesheet read stylesheets new

readStyleSheetsOld TrEd::Stylesheet TrEd::Stylesheet read stylesheets old

saveStyleSheets TrEd::Utils TrEd::Stylesheet save stylesheets

removeStylesheetFile TrEd::Utils TrEd::Stylesheet remove stylesheet file

readStyleSheetFile TrEd::Utils TrEd::Stylesheet read stylesheet file

saveStyleSheetFile TrEd::Utils TrEd::Stylesheet save stylesheet file

getStylesheetPatterns TrEd::Utils TrEd::Stylesheet get stylesheet patterns

setStylesheetPatterns TrEd::Utils TrEd::Stylesheet set stylesheet patterns

updateStylesheetMenu TrEd::Utils TrEd::Menu::Stylesheet update

getStylesheetMenuList TrEd::Utils TrEd::Stylesheet get menu list

applyWindowStylesheet TrEd::Utils TrEd::Window apply stylesheet

splitPatterns TrEd::Utils TrEd::Stylesheet split patterns

apply initial config main removed

set config main main apply initial config

dirname TrEd::Convert TrEd::File dirname

filename TrEd::Convert TrEd::File filename

everything Tk::EditableCanvas removed -

Table D.3: TrEd code flow overview

113

E. Contents of The Attached CD

The attached CD contains TrEd in its original version, before refactoring and the
refactored version.

The original version is present in directory tred original and contains in-
staller for windows, packages for linux and Mac OS X and an automatic install
script for these platforms.

Windows installer:� tred wininst 1.4639 small.exe

Linux and MacOS installers:� install tred.bash – the installation script� tred-current.tar.gz – package with TrEd version 1.4639� tred-dep-unix.tar.gz – dependencies of TrEd

The refactored TrEd is present in directory tred refactored. It contains
two installer for Windows platform, two packages for linux and Mac OS X and
an automatic installer script for these platforms. Please be aware that the instal-
lation script downloads fresh packages from the website, the packages for UNIX
platforms has to be installed manually.

Windows installers:� tred-installer.exe – TrEd and its dependencies� tred-installer-perl-included.exe – TrEd, its dependencies and Straw-
berry Perl 5.12

Linux and MacOS installers:� install tred.bash – the installation script� tred-current.tar.gz� tred-dep-unix.tar.gz

114

F. How To Make a Release of
TrEd

A standard UNIX make utility is used to release TrEd. The first, necessary step
is to check out a copy of svn:
svn co https://svn.ms.mff.cuni.cz/svn/TrEd refactored/.

Then a configuration file admin/env.sh needs to be edited. The configurable
options are placed at the top of the file:� INSTALL BASE – the directory, under which TrEd is installed during the

release� WWW – path to temporary local copy of www directory� REMOTE WWW – path to remote www directory, where the TrEd and its doc-
umentation would be uploaded� PROJECT DIR – TrEd directory (the directory, from which the Makefile is
executed)� LOG – path to a log file used for logging of svn checkouts during the release

A makefile uses a set of shell scripts to manage the process of releasing TrEd.
All the scripts can be invoked individually, but they may, however, have some
dependencies. It is therefore strongly encouraged to use the Makefile instead of
running the scripts individually.

The process of releasing TrEd consists of the following steps:

1. new version of TrEd is installed in the directory specified by INSTALL BASE

2. new version of Treex::PML library is prepared

3. dependencies of TrEd are downloaded and and build

4. extension packages are build

5. TrEd is uploaded to REMOTE WWW

115

	Introduction
	Code Analysis
	Code smells
	Duplicated Code
	Long Subroutines
	Large Class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Switch (Case) Statements
	Parallel Inheritance Hierarchies
	Lazy Class
	Speculative Generality
	Temporary Field
	Message Chains
	Middle Man
	Inappropriate Intimacy
	Alternative Classes with Different Interfaces
	Incomplete Library Class
	Data Class
	Refused Bequest
	Comments

	Static code analysis
	Overview
	Code Metrics
	Perl::Critic
	CCFinderX

	Dynamic Code Analysis
	bTrEd Evaluation
	TrEd Start
	Browsing in TrEd

	Design of TrEd
	Overview
	Libraries
	TrEd start-up
	TrEd::File
	Filelists
	Filelist
	TrEd::Bookmarks

	TrEd::FileLock
	TrEd::Undo
	TrEd::Config
	Converting
	Annotation Modes
	TrEd::Stylesheet
	TrEd::Window
	Binding System
	Macro System
	Macros
	Hooks
	Extensions
	Minor Modes

	Coding style
	Code Layout
	Bracketing
	Keywords
	Subroutines and Variables
	Builtins
	Keys and Indices
	Operators
	Semicolons
	Commas
	Line Lengths
	Indentation
	Tabs
	Blocks
	Chunking
	Elses
	Vertical Alignment
	Breaking Long Lines
	Non-terminal Expressions
	Breaking by Precedence
	Assignments
	Ternaries
	Lists
	Automated Layout

	Naming Conventions
	Identifiers
	Booleans
	Reference Variables
	Arrays and Hashes
	Underscores
	Capitalization
	Abbreviation
	Ambiguous Abbreviations
	Ambiguous Names
	Utility Subroutines

	Values and Expressions
	String Delimiters
	Empty Strings
	Single-Character Strings
	Escaped Characters
	Constants
	Leading Zeros
	Long Numbers
	Multi-line strings
	Here Documents
	Heredoc Indentation
	Heredoc Terminators
	Heredoc Quoters
	Barewords
	Fat Commas
	Thin Commas
	Low-Precedence Operators
	Lists
	List Membership

	Variables
	Lexical Variables
	Package Variables
	Localization
	Initialization
	Punctuation Variables
	Localizing Punctuation Variables
	Match Variables
	Dollar-Underscore
	Array Indices
	Slicing
	Slice Layout
	Slice Factoring

	Control Structures
	If Blocks
	Postfix Selectors
	Other Postfix Modifiers
	Negative Control Statements
	C-style Loops
	Unnecessary Subscripting
	Necessary Subscripting
	Iterator Variables
	Non-Lexical Loop Iterators
	List Generation
	List Selection
	List Transformation
	Complex Mappings
	List Processing Side Effects
	Multipart Selections
	Value Swithces
	Tabular Ternaries
	do-while Loops
	Linear Coding
	Distributed Control
	Redoing
	Loop Labels

	Documentation
	Types of Documentation
	Boilerplates
	Extended Boilerplates
	Location
	Contiguity
	Position
	Technical Documentation
	Comments
	Algorithmic Documentation
	Elucidating Documentation
	Defense Documentation
	Indicative Documentation
	Discursive Documentation
	Proofreading

	Built-in Functions
	Sorting
	Reversing Lists
	Reversing Scalars
	Fixed-Width Data
	Separated Data
	Variable-Width Data
	String Evaluations
	Automating Sorts
	Substrings
	Hash Values
	Globbing
	Sleeping
	Mapping and Grepping
	Utilities

	Subroutines
	Call syntax
	Homonyms
	Argument List
	Named Arguments
	Missing Arguments
	Default Argument Values
	Scalar Return Values
	Contextual Return Values
	Multi-Contextual Return Values
	Prototypes
	Implicit Returns
	Returning Failure

	Input and Output
	Filehandles
	Indirect Filehandles
	Localizing Filehandles
	Opening Cleanly
	Error Checking
	Cleanup
	Input Loops
	Line-Based Input
	Simple Slurping
	Power Slurping
	Standard Input
	Printing to Filehandles
	Simple Prompting
	Interactivity
	Power Prompting
	Progress Indicators
	Automatic Progress Indicators
	Autoflushing

	TrEd Refactoring
	Conceptual Changes
	Static Analysis
	Code Metrics
	Perl::Critic

	Dynamic Analysis
	bTrEd Evaluation
	TrEd Start
	Browsing in TrEd

	Testing

	Future Work
	Conclusion
	References
	List Of Tables
	Appendices
	TrEd::FileLock
	TrEd::Undo
	TrEd::Macros
	TrEd Refactoring
	Contents of The Attached CD
	How To Make a Release of TrEd

