
Grant Agreement N° FP7-318484

Copyright © 2015 by the MODAClouds consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement n° 318484 (MODAClouds).

Title: Data synchronisation layer

Authors: Marco Scavuzzo (POLIMI), Elisabetta Di Nitto (POLIMI), Jacek
Dominiak (CA)

Editor: Elisabetta Di Nitto (POLIMI)

Reviewers: Marcos ALMEIDA (Softeam), Peter MATTHEWS (CA)

Identifier: Deliverable # D6.7

Nature: Prototype

Version: 1.0

Date: 02/04/2015

Status: Final

Diss. level: Public

Executive Summary

In this deliverable we release the MODAClouds components to support migration within two important
classes of NoSQL, that is, graph and columnar. This document accompanies the software components
and supports the reader in the steps toward their installation and usage.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D6.7

Final Version 1.0, Dated 02/04/2015 2

Members of the MODAClouds consortium:

Politecnico di Milano Italy

StiftelsenSintef Norway

Institutul E-Austria Timisoara Romania

Imperial College of Science, Technology and Medicine United Kingdom

SOFTEAM France

Siemens srl Romania

BOC Information Systems GMBH Austria

Flexiant Limited United Kingdom

ATOS Spain S.A. Spain

CA Technologies Development Spain S.A. Spain

Published MODAClouds documents
These documents are all available from the project website located at http://www.modaclouds.eu/

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 31/03/2015 3

Contents	

1.	
 INTRODUCTION	
 ..	
 5	

1.1	
 CONTEXT	
 AND	
 OBJECTIVES	
 ..	
 5	

1.2	
 STRUCTURE	
 OF	
 THE	
 DOCUMENT	
 ...	
 5	

2	
 DATA	
 MIGRATION	
 FOR	
 GRAPH	
 NOSQL	
 DATABASES	
 ...	
 7	

2.1	
 OVERVIEW	
 ON	
 GRAPH	
 DATABASES	
 ...	
 7	

2.2	
 SHORT	
 DESCRIPTION	
 OF	
 THE	
 MIGRATION	
 APPROACH	
 ...	
 7	

3	
 DATA	
 MIGRATION	
 AND	
 SYNCHRONIZATION	
 FOR	
 COLUMN-­‐BASED	
 NOSQL	
 DATABASES	
 9	

3.1	
 OVERVIEW	
 ON	
 COLUMN-­‐BASED	
 NOSQL	
 DATABASES	
 ...	
 9	

3.2	
 SHORT	
 DESCRIPTION	
 OF	
 HEGIRA4CLOUDS	
 APPROACH	
 ..	
 9	

3.3	
 META-­‐MODEL	
 ..	
 10	

3.4	
 ARCHITECTURE	
 ...	
 11	

3.5	
 INTEGRATION	
 WITH	
 THE	
 CPIM	
 LIBRARY	
 ...	
 12	

4	
 SUMMARY	
 OF	
 ACHIEVEMENTS	
 ...	
 13	

5	
 CONCLUSION	
 ...	
 14	

BIBLIOGRAPHY	
 ...	
 15	

APPENDIX	
 A	
 DATA	
 MIGRATION	
 FOR	
 NOSQL	
 GRAPH	
 DATABASES	
 ...	
 16	

1	
 DETAILS	
 ABOUT	
 IMPLEMENTATION/APIS	
 ..	
 16	

2	
 INSTALLATION	
 MANUAL	
 ..	
 18	

3	
 USER	
 MANUAL	
 ..	
 19	

4	
 HOW	
 TO	
 EXECUTE	
 A	
 MIGRATION	
 FROM	
 ARANGODB	
 TO	
 NEO4J	
 AND	
 TITAN	
 TAKING	

VENUES4CLOUDS	
 DATASET	
 AS	
 AN	
 EXAMPLE	
 ...	
 20	

5	
 HOW	
 TO	
 EXTEND	
 THE	
 FRAMEWORK	
 TO	
 SUPPORT	
 OTHER	
 GRAPH	
 DATABASES	
 	
 20	

APPENDIX	
 B	
 DATA	
 MIGRATION	
 AND	
 SYNCHRONISATION	
 FOR	
 NOSQL	
 COLUMNAR	

DATABASES	
 (HEGIRA	
 4CLOUDS)	
 ..	
 22	

1	
 HEGIRA	
 4CLOUDS	
 APIS	
 ...	
 22	

1.1	
 HEGIRA-­‐API	
 ..	
 22	

1.2	
 HEGIRA-­‐COMPONENTS	
 ...	
 22	

1.3	
 HEGIRA-­‐CLSUBSCRIBER	
 ...	
 22	

2	
 INSTALLATION	
 MANUAL	
 ..	
 23	

2.1	
 HEGIRA-­‐API	
 INSTALLATION	
 AND	
 CONFIGURATION	
 ...	
 23	

2.2	
 HEGIRA-­‐COMPONENTS	
 INSTALLATION	
 AND	
 CONFIGURATION	
 ..	
 23	

2.3	
 HEGIRA-­‐CLSUBSCRIBER	
 INSTALLATION	
 AND	
 CONFIGURATION	
 ..	
 23	

3	
 USER	
 MANUAL	
 ..	
 24	

3.1	
 HOW	
 TO	
 RUN	
 THE	
 SYSTEM	
 ..	
 24	

4	
 HOW	
 TO	
 EXECUTE	
 DATA	
 MIGRATION	
 AND	
 SYNCHRONIZATION	
 FROM	
 GAE	

DATASTORE	
 TO	
 AZURE	
 TABLES	
 ..	
 25	

5	
 HOW	
 TO	
 EXTEND	
 THE	
 FRAMEWORK	
 TO	
 SUPPORT	
 OTHER	
 COLUMNAR	
 DATABASES	
 ..	
 26	

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 4

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 5

1. Introduction

1.1 Context and objectives
MODAClouds supports migration of applications from a cloud to another to ensure high availability
and ability to react to a sudden decrease of Quality of Service (QoS) in the original cloud. If the
application is exploiting some Data Base Management System (DBMS) installed or made available as
a service in the original cloud, an important issue to be considered during migration is the transfer of
data from this DBMS into a new one, typically installed or made available into the target cloud (see
D3.1.4).
While commercial migration tools are available for relational DBMS, the situation of NoSQL is still
“greenfield”. In this context, DBMS often offer an incompatible data model that makes migration a
difficult task.
In this deliverable we release the MODAClouds components to support migration within two
important classes of NoSQL, that is, graph and columnar. Graph databases are very useful when we
need to keep track of the relationships between various concepts and we need to be able to browse the
database by navigating such relationships. Columnar databases have been developed several years ago
to support data analytics and have been adopted and transformed in the NoSQL context to handle very
large quantities of data by distributing them in different nodes.
The component to support migration between graph databases has been developing by relying on the
featured offered by “blueprints” (https://github.com/tinkerpop/blueprints/). This component supports
the connection and interaction with graph databases. The resulting migration component has been
validated by migrating the data stored in Venues 4Clouds among three different graph databases,
ArangoDB (https://www.arangodb.com), Neo4j (http://neo4j.com) and Titan
(http://thinkaurelius.github.io/titan/).
The component to support migration between columnar databases is called Hegira4Clouds and
supports also synchronization of different replicas. Thanks to this feature, the application can continue
operating on data even during migration, as the actions it performs are propagated to all replicas in a
seamless way. While the correctness and performance of the migration approach has been carefully
validated as reported in D6.6, at the time of writing the synchronization part has been just completed
and will be validated in the next months leading to further documentation that will be linked from the
tool repository on github (http://deib-polimi.github.io/hegira-api/).

Within the context of the MODAClouds platform, the process of data migration (and synchronization
in the case of columnar databases) can be started either manually by a system operator, or
automatically by Models@Runtime, as part of an adaptation policy (see D6.5.3). The integration
issues to be tackled are described in D3.4.1. A complete development of such integration will be the
focus of this last part of the project. The main issue to be considered is time. The migration process
typically takes a significant amount of time, which increases with the size of the dataset to be
migrated. This means that data migration cannot be activated at the time the application should be
moved to a new cloud, but the need for migration has to be foreseen well in advance and data
migration has to be performed as a background activity before the application actually starts its
execution in the new cloud.

1.2 Structure of the document
This document accompanies the software components and supports the reader in the steps toward their
installation and usage. At first, the document presents an overview of the classes of databases
supported for data migration and describes the general approach adopted by the components to
actually perform data migration (Section 2 and Section 3). Section 4 resumes the main achievements.
Finally, the appendices provide details on the achievements and point to the tool repositories and wikis
for further, up-to-date information. In particular, the component for migrating graph databases is

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 6

presented in Appendix A, while Hegira4Clouds is presented in Appendix B. Both appendixes are
organized as follows:

• They describe the APIs of each component (Sections A.1 and B.1).
• They provide guidelines for installation (Sections A.2 and B.2) and usage of the components

(Sections A.3 and B.3), by describing also an example of migration and discussing on how to
extend the migration components to incorporate new databases.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 7

2 Data migration for graph NoSQL databases

2.1 Overview on graph databases
Over the last few years we see a paradigm shift in the way data is consumed. With the ever-increasing
need to store but not always consume, different types of data, a new approach has been developed in
order to accommodate new type of irregular data. This approach to the data store, commonly known as
Not Only SQL or NoSQL, has allowed storing schema-less data, which can be easily scaled in a not
replicable but rather concurrent fashion. One type of such databases is graph databases.
Graph databases allow you to store entities, commonly referred to as nodes, and relationships between
these entities called edges. Node, in an essence, is an instance of an object in the application with
specific properties. Edges, which also have properties, but with reinforced “from node” and “to node”
properties to describe node references have directional significance. Nodes are organized by
relationships, which allow you to find interesting patterns between the nodes. The organization of the
graph lets the data to be stored once and then interpreted in different ways based on relationships and
it’s properties.
Usually, when we store a graph-like structure in RDBMS, it's for a single type of relationship ("who is
my manager" is a common example). In relational databases we model the graph beforehand based on
the Traversal we want. If the Traversal changes, the data will have to change.
In graph databases, traversing the joins or relationships is very fast. Traversing persisted relationships
is generally faster than calculating them for every query.
Nodes can have different types of relationships between them, allowing you to both represent
relationships between the domain entities and to have secondary relationships for things like category,
path, time-trees, quad-trees for spatial indexing, or linked lists for sorted access.
Relationships are first-class citizens in graph databases. Most of the value of graph databases is
derived from the relationships. Using edges properties, we can add intelligence to the relationship—
for example, what is the distance between the nodes, or what aspects are shared between the nodes as
if modelled from the graph perspective, the search can begin from the nodes inner relation level rather
than by analysing all the document properties.
There are more and more graph databases available, such as Neo4J and Titan. The need for a graph-
based approach is now recognized even by the traditional vendors that are incorporating such feature
in their main offer. The most prominent example is Oracle with its Oracle Spatial and Graph
implementation.

2.2 Short description of the migration approach
The approach for the data migration within the graph databases is a fairly complex task as the
technology of graph databases is not a mature subject; therefore one commonly accepted standard for
data representation has yet to be emerged. There are however libraries, which provide abstraction layer
on top of the data storage which provide the common mechanisms and interfaces to store and retrieve
the dataset without consideration of underlying data storage system. One of the most common set of
tools that allow for the common communication interface is “blueprints” by thinkerpop1.
Blueprints is a collection of interfaces, implementations, ouplementations, and test suites for the
property graph data model. An ouplementation2 is a software layer that transforms a graph-based
model into a different format Blueprints is analogous to the JDBC, but for graph databases. As such, it
provides a common set of interfaces to allow developers to plug-and-play their graph database

1 https://github.com/tinkerpop/blueprints/
2 http://www.tinkerpop.com/docs/wikidocs/blueprints/2.1.0/Ouplementations.html

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 8

backend3. Using blueprints, we were able to extract the data from the graph databases and
accommodate transformation mechanisms in order to save the data to the new set of graph
technologies.
The data migration tool set allows predefining the schema with searchable attributes, which can be
used in order to transform or rebuild the graph in the new data schema, all of which are in detail
described within the next chapter.

3 https://github.com/tinkerpop/blueprints/wiki

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 9

3 Data migration and synchronization for
column-based NoSQL databases

3.1 Overview on column-based NoSQL databases
Column-based NoSQL databases owe their name to the data model proposed by Google BigTable
paper [Chang et al. 2006]. Data are stored inside structures named Columns, which in turn are
contained inside Column Families, and are indexed by Key. Data is typically sharded both horizontally
and vertically, by means of column families; this implies that tuples are split across several database
replicas, with a much higher granularity with respect to any other kind of database.
Columnar databases are interesting in a cloud context for the following reasons:

• They are typically released in two fashions: database as a Service (DaaS) – e.g. Google
Datastore, Microsoft Tables (Hybrid solutions, not completely columnar) – and standalone –
e.g. Cassandra, HBase, etc.

• They are useful to store semi-structured data designed to scale to a very large size. In fact,
given their partitioning strategy, they are typically used for managing Big Data that can be
partitioned both horizontally and vertically.

• Thanks to projection on columns, only the data really needed are retrieved, thus maximizing
the throughput.

• Some columnar NoSQL databases guarantee strong consistency under particular conditions,
but, in general, they handle data in an eventually consistent way.
Usually queries may filter on key values or column name (projection), but some of these
databases permit to declare secondary indexes in order to filter queries by means of an
arbitrary column value.

• Finally, some columnar share also architectural characteristics, such as the use of Memtables
and SSTables, a multi-dimensional map to index properties, column families – in order to
group columns of the same type – and timestamp – to maintain data up-to-date and perform
versioning.

3.2 Short description of Hegira4Clouds approach
Hegira4Clouds bases the migration approach on an intermediate metamodel that defines the typical
characteristics of column-based NoSQL databases. When there is a need to migrate data from a certain
source to a certain target, data from the source are transformed by Source Reading Components
(SRC), into the intermediate metamodel and queued to be sent to the Target Writing Threads (TWT).
These read from the queue, transform the data into the format required by the target databases and
store them. The metamodel is built in such a way that the approach preserves the following databases
characteristic properties: a) secondary indexes, b) different data types and c) consistency policies.
Moreover, Hegira4Clouds is able to synchronize the data between two databases, both during and after
the data migration process, without any application down time. In order to do this, the API used to
program the application should be able to interact with Hegira4Clouds in the event of data
synchronization. For this reason, Hegira4Clouds synchronization approach works in cooperation with
the CPIM library that supports the execution of CRUD (Create, Read, Update, Delete) operations on
the involved databases.
In the following subsections we provide an overview of Hegira4Clouds metamodel and of its
architecture.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 10

3.3 Meta-model
By analyzing various types of columnar databases it is evident that their data model derives from the
one proposed in the BigTable paper. Thus, our intermediate Metamodel is based on the BigTable data
model and it is enriched to take into account specific aspects of some columnar databases, most
notably, different consistency policies, different data types and secondary indexes. To the best of our
knowledge, there are no other approaches that allow migration between NoSQL databases and that
preserve strong consistency, i.e., the guarantee that all users of the database see data in the same state,
as well as secondary indexes, i.e., additional way of efficiently access data, besides the typical primary
keys.

Fig. 2 – Hegira 4Clouds Metamodel

The metamodel is shown in Figure 2. Entities are the equivalent of tuples in a relational database and
are characterized by Entity Keys that are used to univocally identify and index them.
Different from a tuple in a relational database, an entity can contain an arbitrary number of properties,
which can vary from entity to entity.
Properties are the basic unit for storing data. A Property contains the single Value characterizing the
datum to be persisted, along with its Name; furthermore, it provides an explicit way to declare the
datum value Type and if that property should be Indexable or not.
A Column is a way of grouping similar properties belonging to different entities. As stated in the
Google BigTable paper, Column Families are just groupings of different related Columns. Moreover,
Column Families are disjoint, i.e. a Column may belong to just one Column Family at a time. In some
databases, Column Families are used to guarantee the locality for data stored in it. Since one of the
main characteristics of NoSQL databases is to store sparse data, Column Families may contain diverse
number of Columns for every Entity.
Some databases support strong consistency by simply letting users model data in constructs that are
specific for each database. For instance, Google Datastore uses ancestor paths, whereas Azure Tables
uses a combination of Partition Key and Table Name.
For this reason, the Metamodel provides the concept of Partition Group. Entities inside the same
Partition Group are guaranteed to be stored in the destination database, in such a way that strong

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 11

consistency (if supported) will be applicable to them on every operation performed by the destination
database.

3.4 Architecture
The architecture of Hegira4Clouds is shown in Figure 3.

Fig. 3 – Hegira 4Clouds Architecture

From the bottom of the Figure, SRCs are the Source Reading Components that are in charge of
reading data from the Source DB, translating them into the Metamodel, and storing them into the
Metamodel queue. There is always a single SRC active, but, for fault tolerance reasons, a second one
is kept ready to start according to the Active/Passive pattern.
On the other side of the figure we have TWC, that is, the Target Writing Component, which can
contain multiple threads (the TWTs) that acquire data from the Metamodel queue, translate them and
write them into the target database.
The REST API offers to the users the primitives to start and to monitor a migration and
synchronization process and it exploits the Credentials DB to support authentication of users into the
source and target databases to be used. The Service Queue is used to queue all commands external
users can send through the REST API (e.g., migration or synchronization commands). These
commands are then received by the SRC and TWC that can start their task.
Two different behaviors have to be distinguished: a) Offline data migration. b) Online data migration,
with synchronization support.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 12

Offline data migration has been discussed in details in D6.6. Here we introduce the modifications that
allowed us to achieve online data migration with synchronization support.
When the migration starts, the SRC divides the dataset into chunks that are migrated independently
one from the other (partitioned data migration). The chunk size is not fixed, that is, it can vary at
migration time, and the user can decide it; once the chunk size is set and the migration task started, it
is not possible to change the size, until a next data migration task. The list of chunks is stored in the
Lock Manager together with their migration status. At the beginning a chunk is in the state “not
migrated”. It passes to “under migration” when the SRC starts transferring it and then to “migrated”
when the TWC terminates its writing on the target database. Keeping track of this information, the
Lock Manager is able to manage the synchronization of data replicas when an application performs a
write/update/delete operation. More specifically, such operations are not performed anymore directly
on the databases involved in the migration, but they are stored in the commit log. From this they are
extracted the commit log subscribers.
The commit log subscribers are specific for each database involved in the migration and
synchronization process. Once operations are extracted from the commit log they are executed
according to the following approach:
• If the operation is concerning an entity that is part of a chunk that has not been migrated yet, then

the operation is performed directly only on the source database.
• If the operation is concerning an entity that is part of a chunk that has been already migrated, then

the operation is performed both on the source and target database.
• If the operation is concerning an entity that is part of a chunk that is under migration, the operation

is blocked till the end of the chunk migration and is then performed according to point 2.
The commit log guarantees that further operations on the respective database concerning the same
entity are executed in the same sequence they enter in the commit log. The approach above, together
with the serial application of the operations, guarantees that the data will be consistent among the
source and target databases.
Synchronization works correctly (i.e., is consistent) provided that the application using the database
does not try to write directly on the database, but exploits the features offered by the Commit Log to
manage write/update/delete operations and interacts with the Lock Manager to acquire a unique ID,
generated in a sequential order, to be assigned to each entity.

3.5 Integration with the CPIM library
To avoid application developers having the burden of interacting with Commit Log and Lock
Manager, and to guarantee that the semantics of the application, with respect to the database layer,
remains unchanged, we have implemented, as part of the CPIM library, a software layer that manages
this. So, the application developer only uses the JPA-based API offered by the library and does not see
all issues related to the execution of the various types of queries. More details on the CPIM library can
be found on D4.4.2 [Arcidiacono et al. 2015] and D4.3.3 [Abhervé et al 2015].

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 13

4 Summary of achievements

Objectives Achievements

Development of a new offline data
migration tool for supporting graph-
based NoSQL databases.

The tool uses the basic concepts of graphs (i.e., edges and
nodes) to define a common model, which is used to map data
between different graph databases.
The usage of a standard de-facto stack for graph based NoSQL
databases (blueprints) allows the tool to support the most used
graph-based NoSQL databases.

Increase fault-tolerance when
migrating data across columnar
NoSQL databases.

Data migration is a task that can typically last for several hours,
thus it is likely that the system can incur in unpredictable faults
caused, for example, by network partitions or other types of
faults. As described in D6.6, the migration system was already
able to tolerate faults while writing data on the target database,
thus preventing data losses or inconsistency.
Thanks to a preventive virtual division of the source database
into chunks, the migration system is now also capable of
tolerating faults while reading from the source database, thus
avoiding reading the same data again, after a fault has occurred.
This functionality significantly reduces both the total migration
time and the costs, in the event of a fault.

Adding support for data
synchronization and online data
migration for columnar NoSQL
databases.

Thanks to the virtual division of the source data into chunks,
and the orchestration between the system components, Hegira
4Clouds is now able to provide data migration and
synchronization when the cloud application is running, thus
avoiding any application downtime due to the migration
process.
Cloud applications wanting to exploit synchronization need to
send insertion and modification queries to a globally distributed
commit log managed by the synchronization system. The
commit log is a type of queue which guarantees the ordering of
the stored messages, and, together with the synchronization
system, allows to consistently and losslessly synchronize data
between source and target databases. Encapsulating the
interaction with the commit log, within the CPIM library (as
described in D4.4.2), allows all applications built by exploiting
such library to disregard completely the way data
synchronization occurs.
Hegira 4Cloud guarantees that the source and target databases
will be eventually consistent at the end of the migration task,
and that data will be kept synchronized at any point in time.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 14

5 Conclusion

This document describes the MODAClouds tools for data migration and synchronization. The tools
per se have been finalized. More work is required to i) validate their correctness and performance, ii)
to integrate then within the whole MODAClouds platform in order to support the entire process of
application migration from one cloud to the other, and iii) to experiment with them in one of the
MODAClouds case studies.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 15

Bibliography

[Chang et al. 2006] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed storage system for structured data,” in
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation -
Volume 7, ser. OSDI ’06. USENIX Association, 2006, pp. 15–15.

[Arcidiacono et al. 2015] Fabio Arcidiacono, Elisabetta Di Nitto, Marco Scavuzzo, Michele Ciavotta,
MODACloudML package on data partition and replication - Initial version, MODAClouds deliverable
D4.4.2, January 2015.

[Abhervé et al 2015] Antonin Abhervé, Marcos Almeida, Nicolas Ferry, Stepan Seycek, Elisabetta Di
Nitto, MODACloudML IDE – Final Version, MODAClouds deliverable D4.3.3, March 2015.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 16

Appendix A Data migration for NoSQL graph
databases

1 Details about implementation/APIs

Data Save module, which is the tool which we are presenting within this deliverable, is designed to
consume standard input in JSON format. This allows us to accommodate not only export from almost
any graph database, as all of them shall provide such capabilities, but with minimal effort, allow to
“graphiphy” other types of dataset, not necessarily coming from the graph databases.
Our intention was to provide a tool, which is universal enough to allow migration across different
types of datasets, but structured enough to allow the user to build up nodes and its relations as
predefined in the input.
Data Save module is also able to update existing graph structures if specification of the schema input
is defined to do so.
As the DSS for the MODAClouds project was designed on top of ArangoDB4 database, most of the
testing was performed using this default back end. The currently supported graph database backbends
are ArangoDB, Neo4j5 and Titan6 and each of these may require different configuration parameters.

As of the input JSON fed to the module should consist of two main sections:

1. Edges – which defines the relations between newly created or existing nodes

2. Vertices – which defines the nodes of the graph

Within the input we’ve introduced the “searchable” attributes, which allows the user to specify which
attributes should be use in order to determine the connection or in order to decide if the input should
be carried as input or update execution. Double underscore “_” sign prior to the attribute name
identifies these searchable attributes.
The responsibilities of the data location and the allowance of the data migration are assumed to be out
of scope of the implementation and it is carried as specified in the service level agreement or contract
between the parties involved.

In case of edges, which describe the node relationship, there are 2 non-optional searchable parameters
in order to ensure correctness of the schema. Those are:
• __from – which describe the attributes and values of the node from which the edge should be

created

• __to – which describe the attributes and values of the node to which the edge will be
connected

Furthermore, not specifying the searchable attributes on the nodes [vertices], will be treated as a input,
which is the case described within the scope of this document.
Example of the input:
{	

	
 	
 	
 	
 "edges":	
 [

	
 	
 	
 	
 	
 	
 	
 	
 {	

4 https://www.arangodb.com
5 http://neo4j.com
6 http://thinkaurelius.github.io/titan/

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 17

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "__from":	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "name":	
 "A",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "value":	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 },	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "__to":	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "name":	
 "B",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "value":	
 2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 },	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "label":	
 "CONNECTED_TO"	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
],	

	
 	
 	
 	
 "vertices":	
 [

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "import_id":	
 1,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "name":	
 "A",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "value":	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 },	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "import_id":	
 2,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "name":	
 "B",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "value":	
 2	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
]	

}	

Vertices
Each vertex is represented by a set of key/values following the graph property model specification.
Keys starting with __ “double underscore string” are meant to indicate an update action has to be
carried out on that particular document. For instance:
{
 "import_id": 1,
 "name": "A",
 "__value": 2
}

This example would try an update on field value (setting its property value to value 2) for a vertex,
which would be retrieved from a lookup by name field (if multiple vertices match this query, an error
is returned and changes are rolled back), ensuring that lookup criteria match exactly one vertex e.g.
query by some unique field). On the other hand, the following example would mean an insert action:
{
 "import_id": 1,
 "name": "A",
 "value": 2
}

All vertices must have an import_id property, which represents the vertex identifier. This identifier
will therefore have to be stored as vertex property, since not all graph databases manage document
identifiers in the same way (for instance, Neo4j does not allow to specify a vertex/edge identifier but
uses an auto-increment approach).

Edges
Similar logic applies to edges objects with two concrete particularities, __from / __to and label fields.
For instance, the following example would indicate an insert action has to be carried out:
{

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 18

 "property": "C",
 "__from": {
 "import_id": 1
 },
 "__to": {
 "import_id": 2
 },
 "label": "CONNECTED_TO"
}

__from and __to fields are set of key/values which are used to uniquely identify two vertices and
create a relationship between them with a certain label. Hence, this label value must be also specified
(depending on the Blueprints implementation, it can be an empty string but we encourage you to use
meaningful values).
In the example above, we would query first two vertices (one with import_id equal to 1 and the other
one with import_id equal to 2 and create a new edge between them with a label called
"CONNECTED_TO". For updates, any field other than __from, __to and label can be marked properly
(in this case, property property would be updated):
{
 "__property": "newC",
 "__from": {
 "name": "A"
 },
 "__to": {
 "name": "B"
 },
 "label": "CONNECTED_TO"
}

As required by the Description of Work, this section details the requirements and the architecture of
the IDE and of its sub-components. This is an update of the requirements presented in D4.3.1 and
updates in D4.3.2. For more information on the requirements to be fulfilled by the IDE, please refer to
the final version of the requirements repository (D3.1.4).

2 Installation manual

There are two main methods to install and use the tool. One is to download our predefined release
compiled to run on unix based systems, which includes BSD and Linux distributions. Second one, is to
compile the tool from source on the desired platform:

From source

System requirements:
Please keep in mind that in order to compile this program from source, you need to have your
environment ready for Scala development. Scala can be downloaded from http://www.scala-
lang.org/download
Steps:

1. Clone the repository with git clone git@github.com:CA-Labs/dss-data-save.git

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 19

2. Navigate to the cloned repository and execute sbt command in the repository root folder

3. Execute pack task

4. Type exit to come back to your standard shell

Precompiled release

System requirements:
Please keep in mind that release assumes that you have Java JRE installed in your system. Java RE can
be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html
Steps:

- Download the latest release from https://github.com/CA-Labs/dss-data-save/releases/

- Once extracted you can execute the CLI ./bin/dss-data-save with necessary arguments.

3 User Manual

The Data Save module expects the JSON input from stdin and requires two options:
• -d or --db: the backend used for the data graph storage. Current supported options are

arangodb, neo4j and titan.

• -p or --properties: the absolute path to the file containing the concrete underlying graph
database options in a key/value fashion.

As for the graph database properties, they should follow vendors specification. The distinction
between the required and optional options are set as per database implementation and can be found
within the documentation of the blueprints package
Here is an extract of the common pattern specification of the options:

• Required options will always start with blueprints.{backend}.{requiredProperty} where
{backend} is the chosen underlying graph database, and {requiredProperty} is a required
property for such database.

• Optional options will always start with blueprints.{backend}.conf where {backend} is the
chosen underlying graph database and `{optionalProperty} is an optional property for such
database.

The following list specifies which properties are mandatory and which ones are optional for each
offered and currently supported graph database:

1. ArangoDB:

1.2. Required (blueprints.arangodb.*): host, port, db, name, verticesCollection, edgesCollction

1.3. Optional (blueprints.arangodb.conf.*): At this point, no further optional properties are
supported.

2. Neo4j:

1.2. Required (blueprints.neo4j.*): directory

1.3. Optional (blueprints.neo4j.conf.*): see custom under
(https://github.com/tinkerpop/blueprints/wiki/Neo4j-Implementation)

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 20

3. Titan

A. Required (blueprints.titan.*): storage.backend, storage.directory

B. Optional (blueprints.titan.conf.*): see custom under
(https://github.com/thinkaurelius/titan/wiki/Graph-Configuration)

Once extracted you can execute the CLI ./bin/dss-data-save with necessary arguments.

4 How to execute a migration from ArangoDB
to neo4j and titan taking Venues4Clouds
dataset as an example

In this example, we will present the process of migrating the ArangoDB dataset to Neo4j graph
database preserving the graph structure across the data stores.

1. Dump the database to be migrated using vendors database tools.

arangodump --server.database ds

2. Prepare input data by aligning import data with import model

cat dump/*.data.json > import.json
sed -i -- ‘s/_key/import_id/g’ import.json

3. Prepare the neo4j property file

cat > neo4j.props << EOF
blueprints.neo4j.directory::/Users/test/data-migration
EOF

4. Run the migration of the data
cat import.json | dss-data-save -d neo4j -p neo4j.props

It is important to note at this stage that the shown example describes one of many ways to migrate the
data. The data-save module can accommodate any of the streamed standard input which allows on the
fly migrations, either application to application or application to application over network without
need for intermediate file. The only requirement in this case is the need of the output to follow the
established structure described in the fist chapter of this appendix.

5 How to extend the framework to support
other graph databases

We have accommodated two possible approaches to the possibility of extending the module with
additional databases.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 21

• If the source graph database accommodates the blueprints framework, the only extension
needed is the set of property file defined within the scope of the supported blueprints graph
implementations.

• If the source database does not supporting blueprints, the only constraint applied is the
availability of the JSON export tool. From our initial research, we could assure that the tools
are widely available or can be developed with minimal development effort with variety of
available libraries across various programing languages.

In case of custom development, the export can assure the needed model, shortening the migration
steps to single execution point as the Data Save module can be embedded as a library in all JVM based
languages. As for the others programing types of implementations concerning non-JVM based types of
programing languages, consuming the input as stdin allows the tool to consume the input from almost
any source. The only requirement imposed is the need of following the model of the input the data-
save tool requires in order to successfully build up graph structures.

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 22

Appendix B Data migration and synchronisation
for NoSQL columnar databases (Hegira 4Clouds)

1 Hegira 4Clouds APIs

As stated in previous Section, Hegira 4Cloud is made of different components each of which exposes
different interfaces to the end user or to the other components.
In this section, we describe the interfaces exposed by each component.

1.1 hegira-api
This component is the entry point for Hegira 4Clouds system, it exposes a set of REST 7 interfaces for
accessing a set of resources through a fixed set of operations, thus to interact with the system.
These REST APIs are available at the address: http://deib-polimi.github.io/hegira-api/.

The REST resources expose a data model that is supported by a set of client-side libraries (in different
programming languages) that are made available on the files and libraries page.

There is also a WADL document describing the REST API, which is intended to simplify the reuse of
the offered web services.

All endpoints act on a common set of data. The data can be represented with different media (i.e.
"MIME") types, depending on the endpoint that consumes and/or produces the data. The data can be
described by XML Schema, which definitively describes the XML representation of the data, but is
also useful for describing the other formats of the data, such as JSON.

The page Data Model describes the data using terms based on XML Schema. Data can be grouped by
namespace, with a schema document describing the elements and types of the namespace. Generally
speaking, types define the structure of the data and elements are instances of a type. For example,
elements are usually produced by (or consumed by) a REST endpoint, and the structure of each
element is described by its type.

1.2 hegira-components
This component is the core of Hegira 4Clouds migration system. In fact, it allows to launch both the
Source Reading Component (SRC) and the Target Writing Component (TWC).
It is possible to interact with it by means of the command line interface (CLI).
The interfaces exposed by the component are described in its repository README file, available at
the address: https://github.com/deib-polimi/hegira-components.

1.3 hegira-CLsubscriber
This component is the core of Hegira 4Clouds synchronization system. In fact, it allows to launch the
commit-log subscriber both for the source and target databases.
It is possible to interact with it by means of the command line interface (CLI).

7 http://en.wikipedia.org/wiki/Representational_state_transfer

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 23

The interfaces exposed by the component are described in its repository README file, available at
the address: https://github.com/deib-polimi/hegira-CLsubscriber.

2 Installation manual

In this section we show how each of the components, described in previous Section, should be
installed. In order to successfully install and deploy the components, we assume the following
software have already been installed, configured and, if necessary, started:

• JDK 1.7 or greater, on all the machines that are going to be used to install Hegira 4Clouds
components.

• Apache Tomcat 7 or greater, only on the machine hosting hegira-api component.
• Apache Maven 3.2.2 or greater, on the machine that will compile the source code into

binaries.
• RabbitMQ 3.3.6 or greater.
• Apache ZooKeeper 3.4.6 or greater.
• Apache Kafka 0.8.2 or greater, together with Hadoop 2.10

Disclaimer: fault-tolerance guarantees described in previous deliverables depend also on the fact that
RabbitMQ, Apache Kafka and Apache ZooKeeper have been properly configured and deployed. The
minimum deployment required consists in at least three replicas, per each component. The specific
details to set each component replication factor can be found in the specific component
documentation8.

2.1 hegira-api installation and configuration
Hegira-api component can be downloaded from the Git repository at the following address:
https://github.com/deib-polimi/hegira-api/.
The README file in the repository contains the information necessary to build the application.
Once built, an Application Server, e.g. Tomcat, should execute the component.
The instructions to deploy the component on Apache Tomcat are available in the README on the
repository.

2.2 hegira-components installation and configuration
Hegira-components can be downloaded from the Git repository at the following address:
https://github.com/deib-polimi/hegira-components.
The README file in the repository contains the information necessary to build and execute the
application.

2.3 hegira-CLsubscriber installation and configuration
hegira-Clsubscriber can be downloaded from the Git repository at the following address:
https://github.com/deib-polimi/hegira-CLsubscriber.
The README file in the repository contains the information necessary to build and execute the
application.

8http://kafka.apache.org/documentation.html#brokerconfigs
http://www.rabbitmq.com/distributed.html
http://zookeeper.apache.org/doc/r3.4.6/zookeeperAdmin.html#sc_zkMulitServerSetup

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 24

3 User manual

3.1 How to run the system
As previously seen, Hegira 4Clouds is mainly composed of 3 components, one (hegira-api) which
exposes a set of interfaces to interact with the whole system, another one (hegira-components)
provides the data migration capabilities and one (hegira-CLsubscriber) which allows the two databases
to stay in synch during and after a data-migration task.

Assumption 1: in order to perform data synchronization tasks the application utilizing the source
database must have persisted data on it only by means of the CPIM library (described in Deliverable
D4.4.2). The reason for this restriction, as explained in Section 3.5, is to simplify the work of
designers who do not have to take care of the management of Hegira4Clouds Commit Log during
synchronization.
Assumption 2: in order to correctly retrieve data after a data migration task, since the target database
may not support all of the data-types used by the source database, it is advisable to use the CPIM
library because the library guarantees that all data can be read back even if the original data-type is not
supported by the target database.

Each component can be started independently from the other, in the same or in different machines.
However, empirical tests have suggested that the optimal configuration setup consists in placing, when
possible, the migration components in the same data-centre of the target database. In case this is not
possible, the migration might be slow down because of larger network latency.

System deployment
1. Rest API deployment: the instruction to deploy hegira-api component are reported at

https://github.com/deib-polimi/hegira-api#deploy
2. Migration system deployment: the instructions to run the migration components are reported at

https://github.com/deib-polimi/hegira-components#usage.
In particular, the executable should be run two times, once for the source and once for the target
database.

3. Synchronization system deployment: the instructions to run the synchronization components are
reported at https://github.com/deib-polimi/hegira-CLsubscriber#usage.

In particular, the executable should be run two times, once for the source and once for the target
database.

System start-up
The system can be instructed to perform just a data migration task (without any further
synchronization) or it can start performing data migration and synchronize all further writes on both
databases. In order to do so, hegira-api component exposes two different resources (switchOver and
switchOverPartitioned), which are documented at: http://deib-polimi.github.io/hegira-
api/resource_API.html.

Once one of the two resources has been called, Hegira 4Clouds starts to migrate data.

Disclaimer: In case only data migration has been chosen, none of the applications should write data
on the source and target databases during the migration task; doing otherwise would affect data
consistency. Instead, in case also data synchronization has been chosen, applications can continue to
read and write data only by means of the CPIM library; in this case, during the data migration task,
the application should take into account a possibly higher consistency delay, with respect to the one
the source database provided, due to the synchronization system. That is, the applications should

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 25

expect to read stale data, in some limited cases, for a slightly higher period of time with respect to
previous read operations (when the migration and synchronization tasks were not started yet). The two
databases will eventually be consistent at the end of the migration task.

4 How to execute data migration and
synchronization from GAE Datastore to
Azure Tables

In this Section we show two examples of usage:
1. Simple, offline data-migration between Google AppEngine Datastore and Azure Tables.
2. Online data-migration and synchronization between Google AppEngine Datastore and Azure

Tables.
In both examples, we suppose the following:

• The component hegira-api has been deployed on a Tomcat application server, reachable at the
following address: http://10.0.0.1:8080

• A RabbitMQ broker is reachable through the following address 10.0.0.2
• An instance of Apache ZooKeeper is listening on the following address 10.0.0.3:2181
• An Apache Kafka broker is reachable at 10.0.0.4:9092
• All Hegira 4Clouds components have been compiled and configured with the above information

and the proper credentials to access the databases.

Offline data-migration example

We begin by starting hegira-components under SRC mode:

Then, we execute hegira-components under TWC mode:

At the end, we issue the following POST request to hegira-api component:

The above request tells Hegira 4Clouds to perform offline data migration from GAE Datastore
(source=DATASTORE) to Azure Tables (target=TABLES), using 32 threads that write in parallel on

java –jar hegira-components –t SRC –q 10.0.0.2

java –jar hegira-components –t TWC –q 10.0.0.2

http://10.0.0.1:8080/hegira-
api/switchover?source=DATASTORE&target=TABLES&threads=32

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 26

Azure Tables. Credentials, as well as databases endpoints, for accessing the respective database are
stored in the credentials file contained by hegira-components.
hegira-api component will respond with a Status object which acknowledges that the offline migration
has begun.

Online data-migration and synchronization example

The hegira-components can be started in the same way shown in the previous example.

Then, the hegira-CLsubscriber can be started, at first in src mode and after in dst mode, passing the
source and target database, respectively, as well as ZooKeeper address and port:

At the end, we issue the following POST request to hegira-api component:

The above request tells Hegira 4Clouds to migrate and synchronize data from GAE Datastore to Azure
Tables, using 32 threads that write in parallel on Azure Tables; the migration is performed in a
partitioned way (see the explanation in Section 3.4), with a chunk size equal to 102 entities.

hegira-api component will respond with a Status object which acknowledges that the online migration
has begun.

5 How to extend the framework to support
other columnar databases

In order to extend Hegira 4Clouds to support a new database, several changes need to be done on each
component.

In particular, since hegira-api component should be aware of all the supported databases, it needs to be
modified as described in the wiki: https://github.com/deib-polimi/hegira-api/wiki/Extension.

The main extension point is the application hegira-components, here the developer should add an
adapter to properly communicate with the new database, together with two translators, one, which

java –jar hegira-CLsubscriber –m src –d DATASTORE –z
10.0.0.3:2181

java –jar hegira-CLsubscriber –m dst –d TABLES –z 10.0.0.3:2181

http://10.0.0.1:8080/hegira-
api/switchoverPartitioned?source=DATASTORE&target=TABLES&threa
ds=32&vdpSize=2

MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
Deliverable # D4.3.3

Final Version 1.0, Dated 02/04/2015 27

converts the data from the new database data-model to the intermediate meta-model, and another
which converts the data from the intermediate meta-model towards the new database data-model
(more details on this are provided on D.6.6). This extension is covered more in details in the wiki:
https://github.com/deib-polimi/hegira-components/wiki/Extension. Moreover, the relative JavaDoc
can be found at the following address: http://deib-polimi.github.io/hegira-components/.

Extending the hegira-CLsubscriber component to support a new database consists in copying the
adapter and the transformers, contained in the hegira-components application and performing the
changes described in the wiki page: https://github.com/deib-polimi/hegira-
CLsubscriber/wiki/Extension.

