COMPUTER SYSTEMS LABORATORY

N

STANFORD UNIVERSITY STANFORD CA 943054055

UFORT

A Fortran-to-Universal-Pcode Translator

(FIXFOR-2)

CSL Technical Report No. 168

Stanford University

January 30, 1980
13:06

Frederick Chow
Peter Nye
Cio Wiederhoid

RS
:‘ké‘ 7 4.5
5 e i:_“\
£ Z= %
< ! /‘ 1K%Y
E G]
BN,
R AN AT
\w <3 e .'.’

T

TABLE OF CONTENTS

Section

1

2.

w

o o

\l

Introduction
1.1 Objectives and constraints
1.2 Conclusion

User's Guide

2.1 Statements

2.2 Program format

2.3 Data types and constants
2.3.1 Data types
23.2 Constants

2.4 Arrays and storage management

2.5 Initializing variables
2.5.1 Loops in variabie lists in DATA statements
25.2 Generd initialization rules
2.5.3 Initidization by character strings

2.5.3.1 Examples

2.6 Subprograms

2.7 Subprogram names as parameters

2.8 Multiple entries to subprograms

2.9 User options. the SET statement

2.10 Input/Output
2. 10. | File handling
2.10.2 The READ and WRITE statements
2.10.3 The PRINT statement

2.1 1 Miscellaneous

Overall Organization
3.1 Structural scheme
3.2 Error handling

Lexer

4.1 Summary

4.2 Lexeme types

4.3 Reading in a statement
4.4 Scanning the statement

Statement Classifier

Main block
6.1 Main procedure
6.2 Procedure BLOCK

Symbol Tables
7.1 The structure of the tables
7.2 The associated routines

22

23
23
23

25
25
25

i TABLE Of CONTENTS -

Section Page
7.3 The main symbol table 26
7.4 The label number table 21
7.5 The common table 28
7.6 The external name table 29
7.7 The standard function table 30
8. Processing of Declarations 31
8.1 Representation of types 31
8.2 Type-specific declarations 32
8.3 Dimension declaration 32
84 Implicit declaration 32
8.5 Common declaration 33
8.6 Equivalence declaration 33
8.7 External Declaration 34
9. Initidization of Variables 35
9.1 The initialization list 3
9.2 The DATA statement 36
9.3 Procedure FORMVARLIST 37
9.4 Procedure FILL_ADDRESS_INITIALIST 38
9.5 Procedure VARINITIALIZATION 38
10. Storage A llocation Structure 40
10.1 Pascal representation 41
11. Storage Allocation 42
11.1 Preprocessing equivalence groups 42
1 1.2 Allocating space for common areas 43
11.3 Allocating space for non-common variables 43
12. U-Code generating routines 44
13. Temporary storage management 46
14. Loading and storing variables A8
14.1 Example of indirect load and store 49
15. Expression Evaluation 50
15.1 Syntax 50
15.2 Processing identifiers 51
15.3 Type checking and error recovery insde ARITH 52
15.4 Example 52

15.5 The assignment statement 53

TABLE Of CONTENTS

Section

16.

17.

"18.

19.

20.

21.

22.

23.

Complex Number Arithmetic

16.1 Addition and subtraction

16.2 Multiplication

16.3 Division

16.4 Complex-valued functions

Subroutine and Function Statements
17.1 Initialization of a segment block
17.2 Processing dummy arguments
17.3 Subroutine statement

17.4 Function statement

175 Code generation

176 Example

Multiple Entry Subprograms

18.1 The multiple procedures

18.2 Global storage of parameter addresses
18.3 The data structure

18.4 Processing multiple entry subprograms
18.5 Example

Subroutine and Function Calls
19.1 Processing parameters in calis
19.2 Function cdl

19.3 Subroutine call

19.4 Standard function cals

Statement Functions

DO Loop

211 Do-loop initialization
212 Do-loop termination
213 Do-loop example

GOTO Statements and Statement Labels
22.1 Unconditional GOTO
22.2 Computed GOTO
22.2.1 Example
22.3 Assigned GOTO
22.3.1 Example

The Arithmetic IF and Logical IF Statements
23.1 Logica IF
23.2 Arithmetic IF

ili -

Page

54
o4
o4
55
56

57

57
5s
5s
58
59

60
60
60
61
62
62

64
64
64
64
65

67

iv

TABLE OF CONTENTS

Section

24,

25.

26.

27.

The PRINT Statement
24.1 Example

FORMAT Statement Processing
25.1 The FORMAT statement
25.2 Initidlization of formats

Read and Write Statements

26.1 Run-time /O routines
26.1.1 Initialization of I/O routines
26.1.2 Initidization of single I/O statement
26.1.3 Data transmission
26.1.4 Termination
26.1.5 Rewind

26.2 Compiler routines

26.3 Code generated

The Fortran 1/O Run-time Package

27.1 Structure of the I/O package

27.2 Processing the FORMAT string

27.3 1/0 management

27.4 Intern a-ex tern al correspondence of data values
27.5 Output conversions of data values

27.6 Input conversion of data values

References

Acknowledgement

This work was performed as part of the software development’ effort at Stanford
University, under a subcontract from Lawrence Livermore Laboratory to the Computer
Science Department, Principal Investigator Professor Gio Wiederhold, Contract No. LLL
PO 9083403. The S-I hardware and software development has been supported by the
Department of the Navy via Office of Naval Research Order Numbers N00014-76-F-0023,
NO000{4-77-F-0023, and NO00014-78-F-0023 to the University of California Lawrence
Livermore Laboratory (which is operated for the U. S. Department of Energy under
Contract No. W-7405-Eng-48), from the Computations Group of the Stanford Linear
Accelerator Center (supported by the U. S. Department of Energy under Contract No. EY-
76-C-03-05 i 5), and from the Stanford Artificial Intelligence Laboratory (which receives
support from the Defense Advanced Research Projects Agency and the National Science
Foundation).

The UFORT compiler is a direct derivative of the earlier PCFORT compiler written by
Fernando Castaneda, Frederick Chow, Peter Nye, Daniel Sleator and Gio Wiederhold [CCN79].
The changes were implemented by Frederick Chow, who also assumes responsibility for this
document. We are no longer maintaining the PCFORT version.

We aso wouid like to acknowledge the invauable assistance of Erik Gilbert, Curt Widdoes,
and David Fuchs during the course of the development from PCFORT to UFORT.

$ 1 3-

1. Introduction

The Fortran compiler described in this document, UFORT, was written specifically to serve
in a Pascal environment [JeW78], using the Universal P-Code as an intermediate pseudo-
machine [NA J75). The need for implementation of Fortran these days is due to the great volume
of existing Fortran programs, rather than to a desire to have this language available to develop
new programs. We have hence implemented the full, but traditional Fortran standard [ANS64,
ANS66], rather than the recently adopted augmented Fortran standard [ANS76]. All aspects of
Fortran which are commonly used in large scientific programs are available, including such
features as SUBROUTINES, labelled commoN, and coMPLEX arithmetic. In addition, a few common
extensions, such as integers of different lengths and assignment of strings to variables, have been
added.

1.1 Objectives and constraints

The foremost objective in the design of this compiler is the generation of correct code.
Effects of this objective are a clean approach to the design of the compiler, the use of Pascal as
the implementation language, and the use of a simple one-pass compiling technique. The one-
pass approach has led to two additionai constraints on the source language: variable declarations,
if given, must precede all executable statements within each program unit, and keywords must be
separated from variable identifiers by blanks. These constraints are commonly followed by
programmers, but are not part of the standard. A pass over Fortran source code with a text
editor can easily correct failures to obey that constraint, since these changes do not affect the
semantics of Fortran programs in any way. We feel of course that such constraints are a
reasonable part of any programming environment we wish to support. UFORT does not depend
on reserved words in its method to recognize keywords and is hence extensible to additional
statement types. Candidates for additions are severa file manipulation statements, now used by
existing compilers and defined in [ANS76], and other features to support rea-time operations
and aspects of parallel processing.

The structure of the compiler is derived from a Fortran compiler, written in Fortran, which
was used for student programming from 1963 to 1967 at UC Berkeley (Student) on an IBM 7094
system. A derivative of that compiler is the PL/JACME compiler [BRW#68], a compiler for a
subset of PL/!, also written in Fortran, with strong support for on-line laboratory operations.
Writing the new compiler in Pascal has alowed formalization of modular concepts used in the
earlier compiler {WiB70). The availability of recursion has caused us to switch to the use of
recursive descent as the method for compiling arithmetic instructions, a method which copes weil
with some of the problems of Fortran syntax.

The compiler, while attempting to generate good U-Code, does no explicit optimization of
the generated code. Recognition of common subexpressions, for instance, wrli require at least an
additional pass in a compiler. Current research in the Pascal/P-Code project at UCSD is leading
to such an optimizer operating on U-Code [SPT79). The compiler aso makes only very genera
assumptions about the register structure in the underlying machine. It is the function of a U-
Code compiler (e.g. SOPA ([Zei80]) or a U-Code interpreter (e.g. UASMINT (Bsh79)) to carry
out the requested U-machine actions in a manner which utilizes the underlying hardware
effectively.

The origina P-Code generated is a direct derivative from the original work of associates of
N. Wirth at the ETH [NA J75), and documented by us in an S-1 project documentation note

4 Introduction § 1.1

[GiW77]. This was later adapted to the Universal P-Code defined by the UCSD Optimizer
Project {PSi79). In our case the U-Code is compiled into machine-code for the S| processor
[FiZ78), a very high speed machine with a 36-bit-word architecture, which aso supports 72-bit
double-word, 18-bit half-word, and 9-bit quarter-word or byte operations. We hence expect 4
bytes per word; that is 360-style alphabetic variables. This aspect does not affect the UFORT
compiler itself, but 1s of maor concern when transporting Fortran application programs, which
manipulate characters, between computers, since Fortran standards have ignored the issue of
character-to-word relationships.

The associated run-time package is of course sensitive to the machine architecture. The
dependencies are easy to manage since this package is written in Pascal. The U-Code generated
from the run-time by our Pascal compiler can be combined with the U-Code from UFORT
before being interpreted, or the run-time U-Code can be trandated to machine code and loaded
for execution together with the machine code translated from Fortran programs via UFORT.
The run-time package is hence easily changed or augmented by more Pascal-written routines.
This approach also makes available to Pascal programs the FORMAT conversion routines
implemented within the Fortran run-time package.

The two components which make up UFORT, the compiler and the run-time package, are
of course constrained due to the facilities provided by the Pascal U-Code environment. The most
serious of these 1s no doubt the unavailability of direct access to files. We plan to extend our
system with direct files supporting variable length records, and at that time both Fortran and
Pascal will be augmented to support these features [A Ke801.

Another aspect of the U-Code environment is that it does not sufficiently provide for the
separate compilation of routines. UFORT wiil hence accept a complete set of program units (the
main program, any BLOCK DATA program, ail SUBROUTINEs and FUNCTIONs together) and generate
a single block of executable U-Code. After translation to S-1 machine code the resulting
relocatable ingtructions can be combined with other program units through the use of a linking
loader (KeW 791.

1.2 Conclusion

The UFORT Fortran compiler is a building block within a Pascal and U-Code
environment, which can take care of existing needs for the continued use of Fortran coded
algorithms. By bringing Fortran into this environment, a dichotomy of programming approaches
can be avoided, and a more consistent approach to computing can resullt.

The next section specifies the Fortran source statements recognized by UFORT, together
with the differences from the standard. The remainder of this document describes the
implementation in sufficient detail to serve ongoing maintenance and extension needs.

52 5.

2. Users Guide

This section describes the limitations and extensions of UFORT Fortran in comparison
with standard Fortran compilers, and especialy in comparision with the full Fortran ‘66 Standard
CANS66].

2.1 Statements
The following Fortran statement types have been Implemented:
Declaration statements:

DIMENSION
COMMON
EQUIVALENCE
IMPLICIT
EXTERNAL
LOGICAL -
INTEGER
COMPLEX
REAL

DOUBLE PRECISION
DATA

Executable statements:

The assignment statement
ASSIGN

IF (logical and arithmetic)
GOTO (unconditional, computed, and assigned)
CALL

RETURN

PRINT

STOP

00

READ

WRITE

REWIND or OPEN

Other statements:

The statement function declaration
FORMAT

FUNCT | ON

SUBROUTINE

BLOCK DATA

SET

CONT I NUE

END

ENTRY

Not implemented:

END FILE
BACKSPACE
PAUSE

6 User'sGuide §22

2.2 Program format
Some restrictions on program format are imposed by UFORT:

Source text format;

Identifiers, including keywords, must be separated by delimiters. For example, "D0381 =1, 3"
is illegdl; it should be "00 30 | =1, 3". Similarly, "COMMONA,B" should be “ COMMON A,B". Blanks
are not alowed within identifiers, keywords and real constants. Blanks within dotted keywords,
however, are dlowed (eg. . TR U E. 7).

The usual convention of specifying a quote embedded within a quoted literal using two
consecutive quotes is followed.

Blank lines are dlowed. A line cannot contain more than one statement.

Position of declaration statements:

All declaration statements, including pDATA statements, must appear before the first
executable statement in a program unit. Statement functions must appear after the declarative
statements and before the first executable statement. The only restriction regarding the order
among the declaration statements is that the type and dimension declaration of a variable must

precede its initialization specification.
FORMAT statements may appear either with the declarative or the executable statements.

if an impLicIT Statement is used, it must be the very first statement in the program unit.

Variable names:

Fortran keywords and standard and intrinsic function names can be used as variable names,
except the keyword FORMAT. Also, the name of a common block or an ENTRY statement in the
same program unit can be the same as a variabie name. However, the same name cannot be used
in a single program unit as both a variable name and a standard, intrinsic, or user-defined
subprogram name. |If a name is longer than 6 characters, the extra characters are ignored and a

warning is given.

FORM AT specifications:

Commas are not mandatory in FORMAT specifications if they cause no ambiguity, For
example,

{X3XX’ONE’ X/X2 (4HFOURF8.516))
and {X,3X,X,"ONE’ , X, /, X, 2 (4HFOUR,F8.5,16})
are equivalent.

If a FORMAT specification is to be kept in an array, any embedded quote that occurs in the
FORMAT has to be replicated when stored in the array. Another level of replication might be
required in specifying the quote in the program text. In the following example, the FORMAT co
output the word “DON’T” is stored in the array FSTR:

§22 User's Guide . 7-

INTEGER FSTR*2(S) / (**DON'"""T"*)"/

Statement labels:

Only executable statements and FORMAT statements can be assigned labels.
2.3 Data types and constants

2.3.1 Data types

Variables and functions may be of type INTEGER, REAL, COMPLEX, or LOGICAL. The
standard naming conventions are used co determine if a variable or function is of type integer or
real (names starting with letters from | co N denoting integers), but they may aso be explicitly
declared. The naming conventions may also be overridden through the use of an IMPLICIT

Statement.
The following precisions are possible:
LOGICAL: quarter word, half word, single word (default) and double word;
inTecer: (uarter word, half word, single word (default) and double word;
REAL: half word, single word (default) and double word;
COMPLEX: two single words (default) and two double words.
Precisions are specified in quarter words, as in IBM Fortran:

INTEGER*1AAA

LOG | CALx8 BBB

COMPLEX CCC

COMPLEXx16 FUNCTION DOD
DOUBLE PRECISION EEE
REAL%8 EEE

Automatic conversion occurs whenever necessary between and among any precisions of the
integer, real and complex types. Real numbers are converted to integers by truncation.
Conversion to complex number is done by adding a zero imaginary part. When a complex
number is converted to real or integer, its imaginary part is discarded.

Integer variables used as the control variable of a bo statement, for storing a label or for
storing a device number for use in a READ, WRITE or REWIND statement must be of single

precision.

2.3.2 Constants

The upper limits allowed for integer values are 255 for quarter-word integers, 13 1071 for
half-word integers, 34359738367 for full-word integers and 73786976294838206463 for double-
word integers. The lower limits are | less then the negatives of these numbers. The upper and
lower limits for reals are 1.70141 1843E+38 and 1.469368010E-39 respectively, for all precisions.

8 User's Guide { 232

Complex numbers consist of a left parenthesis, a real expresson, a comma, another real
expression, and a right parenthesis. Thus {.3xX,SIN(Y}} is a lega complex number.

2.4 Arrays and storage management

Array subscri pts:

Array subscripts may consist of any legal integer expression. Up to seven dimensions are
alowed.

Bound checking for array subscripts, if turned on, is done separately for the subscript of
each dimension.

Array bound checking at compile time is done for arrays that appear in common and
EQUIVALENCE declarations, and for the ones that are initialized. These arrays cannot have

ad justable dimensions.

The specification of array elements in DATA and EQUIVALENCE statements with only one
dimension for arrays of severa dimensions is accepted. For example, for an array dimensioned as
A (3,3), the array element A(2,3) may be specified as A(8).

Arrays with adjustable dimension:

No restriction is made on the value of an actual argument that represents the bound of an
array in the argument list of a subprogram. l.e. no check is made that the value is within the
declared bound of the actual array parameter. When an array subscript is beyond the range of
the actual array, no assumption should be made as to the referenced value. (The same applies in
the case of arrays with constant bounds when the bound declared for the actual array parameter
differs from that declared for the forma array parameter, or when their dimensions are different.)

In the subprogram, bound checking (if turned on) for an array with adjustable dimension is
made against the current value of the argument used in the dimension declaration. Change to the
value of this dummy argument is alowed in the subprogram. If the actual argument is an
uninitialized integer variable, no assumption should be made as to the declared bound in the

subprogram.

COMMON _declarations;

There are two special areas which are used for the common variables, one is used for the
blank common area and the other is for the rest of the common areas. The blank common may be
of any different length in each program unit, as specified in [ANS76]. The COMMON declaration
of any labelled common may not require a storage area larger than the amount specified in the
first declaration of the common, as in the following example:

§24 User'sG uide 9.

wrong: right:
COMMON /X/ A COMMON /X/ A, DUMMY
DIMENSION A{28) DIMENSION A (28}, DuMMy (18)
ENO END
SUBROUTINE R SUBROUTINE R
COMMON /X/ B COMMON /X/ B
DIMENSION B (38) DIMENSION B({38)
END END

Alternatively, it is possible to use the CSIZ switch that fixes a minimum size for the
common areas. If the length occupied by a common area in its first declaration is smaller than
that specified in any of its later declarations, the switch should be set to the space needed for the
larger one.

Storage allocation:

No assumption should be made about the location of one variable or array in relation to
anot her outside a common area.

Additional quarter-words are inserted as necessary to align half-words on half-word
boundaries, single-words on single-word boundaries and double-words on double-word

boundaries. Thus, a quarter-word variable followed by a single-word variable in a common area
would require two full words of storage.

2.5 Init ializing variables

Variables can be initialized in both pata and type declaration statements. The type
declaration statement with initiaiitations and pata statement are formed as follows:

typexs axs; (kll /"1/' bxss (k2) /xz/, e, 2*53(k3)/x3/
DATA alky), . . . ,dlkg)/xy/,elkg), v, hikg)/xo/, .
where
type iS INTEGER, REAL, LOGICAL, DOUBLE PRECISION or COMPLEX;

x81,%sp,... are optional, each s representing one of the permissible length specifications
for its associated type;

a,b,...,z are variable or array names;

(ky), (ko) , ... give dimension information for arrays in declaration statements and

subscript information for array elements in DATA statements. In a declaration statement, this
always specifies the entire array. If absent for an array in a DATA statement, short form
specification for the entire array is impiied;

X1, %2, . are constants or lists of constants. /xy/, /x5/, /x3/ ... are optiona 1n a
declarative statement, and are used to specify initial values for single preceding variables and

10 User'sGuide §25

array names. In a patA' statement, they are not optional, and specify initial values for the
preceding list of variables, array elements or array names;

2.5.1 Loops in variable lists in DATA statements

Nested loops are alowed in specifying variable lists in a DATA statements. The form of
these loops is similar to that used in the READ and WRITE statements. Syntactically, each variable
or array element in &he above specification "(a(k,)", eg., can be replaced by a pair of parantheses
enclosing a list of variables or array elements. The loops can be nested to any arbitrary depth.
The general form of the loops is.

DATA ((..., i-ll.mi.nl),(. .o ,j-lz,mz,nz),. C k=|3.m3,n3).. . /xl/,. .
where

i, j»k are control variables. Their appearances imply that they can be used in specifying
subscripts among the array elements which occur anywhere inside the loop. The control variables
have no relation to any other regular variable with the same name in the program, and they do
not obey the implicit typing since they must be integers. If a control variable name occurs more
than once in a single nesting of loops, the one in the level nearest its occurrence in a subscript is

effective when the subscript is inside the ranges of both loops;

'{s 1oy .., mlmy, ... and ny, np, ... specify lower bounds, upper bounds and
step amounts respectively for the loops. The appearance of the step amount is optional.

2.5.2 General initialization rules

1. The type of initialization iS determined by the type of the constant specified, and not by
the type of the variable being initialized. Only the size of the variable affects the initialization.

2. The initialization of arrays is done in storage order. In a declarative statement, each list
of constants must correspond in number to the preceding variable or array. In a DATA statement,
the correspondence is to the total number of variables and array elements specified in the
preceding list, taking account of loop iterations if any. If extra constants are given, they are
ignored. If not enough constants are given, the extra variables or array elements are not
initidized. In both cases, warnings are given. A complex variabie is taken as two reai variables,
and they correspond to two initialization constants. The parentheses in specifying a complex

constant are optional.

3. A replication factor can be used to specify how many times the constant following tt:*
asterisk is to be repeated in the initializing process. The syntax is:

<rep>%<val>

where <rep> is the replication factor and <val> is the constant value. (E.g. 5%3.2 means that the
constant vaiue 3.2 is going to be used 5 times.)

4. Function names or subprogram parameters cannot be initialized.

5. Arrays must be dimensioned before initialization in a DATA statement or in a type

§252 User's Guide 1]~

declaration statement. Also, any type declaration for a variable in a pata Statement must appear
before the pata statement. *

6. If the initidizatron of a variable or location is specified more than once, only the last
initialization is effective.

2.5.3 Initialization by character strings

The initialization of variables by character strings, in DATA statements or type declaration
statements, follows these rules:

1. One character will be stored per quarter-word. A full word has hence the capacity to
hold four characters, half- and double-words hold 2 and 8 characters respectively. An array has
a capacity which is the product of its size and the capacity of its elements.

2. If the string is larger than the capacity of the variable being initialized, only the initial
characters of the string are used and the rest are discarded.

3. If the number of characters in the string is smaller than the capacity of the variable then
the string is padded with NULL (binary zeroes).

4. Character strings may be preceded by a replication factor, followed by an asterisk. The
replication factor increases the number of string elements, not their length.

5. An array, or the two halves of a complex variable, may be filled with successive
characters from the string. If an element is incomplete, 1t will be filled with NULL. If successive
elements are not reached they remain uninitialized.

Characterscan also be assigned to variables using an assignment statement.

2.5.3.1 Examples

Initialization statement:

INTEGER M/'ABCD’/, A(2)/’ ABCOEFGH’/

OIMENSION C(3), D(3), E(8), F(3)

DATA 0(2),0(3),C/*AB’, CD’, 'ABCDEFGHI’/

DATA E/’ONEISMORE’, ' TWO', ' THREE’, 'FOUR','FIVE", "SIX', 'SEVEN'/
DATA F/3%' MOM*/

Initidizations performed:

VARIABLE VALUE

M ‘ABCD’

A(1l) tABCD'

A(2) "EFGH'

bD(1) unintialized
D(2) 'AB'

D(3) D’

C(1) 'ABCD'

C(2) 'EFGH'

C(3) “

12 ‘User’'sGuide § 2531

E(1) ‘ONEL !

E(2) ‘TWO' ;eariier, E(2) contained *SMORE' but this was
overwritten with the next element in the list

E(3) ‘THRE'

E(4) ‘FOUR’

E(5) ‘FIVE’

E(6) ‘SIX’

E(7) ‘SEVE'

E(8) ‘N’ ;no more elements in list, thus not overwritten

F(1) ‘MOM

F(2) ‘MOM’

F(3) ‘MOM’

2.6 Subprograms
The restrictions with regard to subprograms are:
Functions:

A statement function must have at least one argument. A function with no parameter must
be declared EXTERNAL in each program unit in which it is referenced. Otherwise, the function

name is taken as a variable name.

Parameters to Subprograms:

All parameters are passed by reference, including array elements used as arguments. Thus
their values can be atered as the result of a subprogram call.

External Subprograms:

Currently, al program units used in a program are compiled at the same time as the main
program; separately compiled subroutines or functions have not yet been Implemented.

2.7 Subprogram names as parameiers

Subprogram names can be passed as parameters in a call to another subprogram, and they
can be passed onwards in another call in the subprogram to which they have been passed. If a
subprogram name (or a parameter representing a subprogram name) to be passed as parameter
has not been called explicitly previously in that program unit, it must have been declared
EXTERNAL This rule is for ensuring that the compiler can diagnose that the actual parameter is a

subprogram name.

A format parameter representing a subprogram name cannot be used also as a variable
inside a program unit. However, the same parameter can be used to represent more than one
functions or subroutines in different calls, and they can have varying number of call parameters.

Statement functions cannot be passed as parameters, but a statement function can have
subprogram name parameters.

§2.8 User's Guide [3.

2.8 Multiple entries to subprograms

Multiple entry subprograms, though not part of the standards, are supported in the way
they are usualy used. The keyword ENTRY has to be placed as the last symbol in the regular
subprogram heading (SUBROUTINE Or FUNCTION statement) to indicate the presence of ENTRY
statements in the subprogram.

The entry Statements, which indicate possible entry points to the subprogram, must only be
in the executable part of the subprogram. An ENTRY name has no connection with any other
possible identical local name in that program unit. An ENTRY statement IS regarded as the
declaration of a new program unit to the test of the Fortran program, and they can be called there
as if they were unique program units. If the ENTRY statement belongs to a function subprogram,
the ENTRY name is automatically made a function of the same type. The ENTRY hame must not be
typed explicitly in any way, even if its type is not the same as that implied by its name.

Parameters can be used for ENTRY statements. Any ENTRY parameter used must appear the
first time as a parameter either in the subprogram heading or an ENTRY statement, except that it
can possibly be typed or declared EXTERNAL 1n the declaration part of the program unit.

An ENTRY statement has no effect on the normal flow of control in the program unit if it is
not called directly.

In the following example of a multiple entry subroutine, a call to the subroutine SETVAL
determines the variable whose value is to be used in assignment in any subsequent call to the
en try ASSIGN:

SUBROUT | NE SETVAL (P1) ENTRY
RETURN

ENTRY ASSIGN (P2)

P2 = P1

RETURN

END

2.9 User options: the SET statement

Options are specified using the SET statement. Option names are identified by the first 4
letters only. More than 1 option can be specified in a SET statement by using commas. E.g. “ SET
GENC = T,ASTR = F’. T turns options on, and F turns them off.

Here are the options implemented in UFORT. Options related to U-Code trandators or
interpretors are not included here:

BCHK - When T, execution time bound checking on array subscripts is turned on. Defau It is
F.

GENComment - \When F, no U-Code comment is written on the U-Code file. Default is T.
The roc ingtruction in U-Code is regarded as comment in this case.

€s1z - The argument is a number. It specifies the minimum size in number of words to be
alocated to the common areas that appear for the first time in the next commoN statement.
[t is reset to O at the end of each commoN statement and at the beginning of each program
unit.

14 User'sGuide § 29 -

TPRM - The argument is a number. It gives how many parameters should be passed in
registers. Default is 10. Maximum is 15.

2.10 Input/Output

2.10.1 File handling
UFORT uses Pascal run-time routines for input and output on the character level.

Pascal treats all 1/0 as being to files of characters. Fortran device numbers O through 5 are
giveninternal representations of FILEO, FILE1, FILE2, FILES. Provisions exist for extending the
number of devices to above 5. The mapping between these pseudo-files and actual devices or
disk files is done at execution time, usualy by a direct prompt at the terminal. E.g.

FILE1? DATAL
FILE23 QUT1
FILE3? TTY:

A file is opened immediately after the prompt is answered. This may occur at the
beginning of the program or at the first appearence of a READ or WRITE statement using the
device number of the file, depending on the Pascal run-time used. (For the S, these are
specified in {[GWa78) and the current [HiN80]) Files are always closed only at the end of the

program.

Random access within files is not alowed; files must be written to or read from starting at
the beginning of the file. The first time in a program a file is written to, its previous contents are
destroyed, and the file pointer is reset to point to the beginning of the file. A file may be both
read from and written to in the same program, but each successive change of mode causes the file
pointer to be reset to point to the beginning of the fiie. The file pointer may be explicitly reset to
point to the beginning of the file with the Fortran statement REWIND. In the current run-time, a
change of mode or a REWIND will aiso cause another prompt for the name of the file. 0PEN is an

alternative name for REWIND.

The BACKsPACE and END FILE statements are not implemented.

2.10.2 The READ and WRITE statements

The standard READ, wriTE and FORMAT statements use Fortran run-time routines. Both
formatted and unformatted reads and writes are handled. Unformatted writes use fields of fixed
widths according to the types of the variables being output. In unformatted input, the input file
is always scanned until the next non-biank character in the input file is found. Blanks are taken
as ddimiters, and they do not have to be present if there is no ambiguity. Comma should not be
used as delimiters. Each unformatted READ or WRITE statement starts on the next line.

The maximum length of an input or output line is 256 characters. Any output to beyond
the 256th character will automatically cause an extra new line to be written. An input line long s
than 256 characters is processed as a single line but anything beyond the 256th character 1s
treated as blanks. If an input line is shorter than that specified in the format specification, an

error message is given.

§2.10.2 User'sCuide 15..

Any internally representable character can be output via an A-formatted field. The writing
of control characters like the carriage-return or line-feed to an A-formatted fiedld may cause the
form of the output line to depart from that specified in the format specification.

The execution error messages of the READ and wRrITE statements go to file ouTpuT.

2.10.3 The PRINT statement

Apart from the READ, WRI TE and FORMAT statements, the PRI NT statement, which makes use
of Pascal run-time routines, and acts somewhat like a Pascal WRI TE statement, allows the
bypassing of the Fortran run-times in performing output operations. It prints integers, reals,
booleans, string constants, or compiex numbers, or any legal expressions containing these items.

Normally, a carriage-return line-feed will be printed at the end of the line. This may be
suppressed by adding a semicolon.

A fidd width may be added to any item. This indicates the maximum length of the item
to be printed. Enough blanks will be added to make the item always have that length. The
default field widths are 14 for integers and reals, and the actual length of the string for strings.

Output always goes to the Pascal standard file ouTtpuT.

Here are some examples:

PRINT ‘THE ANSWER IS, X%2 result: THE ANSWER IS 4.8

PRINT “THE ANSWER IS™ result: THE ANSWER IS 4.0

PAINT Xx2

PRINT ‘THE ANSWERIS’:128,X%x2:18 result: THE ANSWER IS 4.8
COMPLEX%8 X result: THE ANSWER IS 2.0 8.0
PRINT ‘THE ANSWER IS’, X%x(2.,8.):18

PRINT:2 THE ANSWER [S’, X%x2 result: THE ANSWER IS 4.0

2.11 Miscellaneous
DO _statement:

An integer expression may be used as the lower bound, upper bound or step amount. The control
variable must not be an array element. The default step size is 1. Negative step sizes are alowed.

In the case that the upper bound or step size is an integer variable, if a change is made to
the value of the variable during execution of the loop, the upper bound or step size is changed
accordingly.

Jumping into the range of a DO loop (including the terminal statement) from outside the DO
range is dlowed. The control variable assumes the value it has at the time of the jump. If the
control variable is not initialized, no assumption should be made as to the value of the variable.

A DO loop cannot be closed by a FORMAT statement.

16 User'sG uide § 211

Use of inte ger variables as {abel variables:

No distinction is made between integer variables and label variables. Le. the usage of an
integer variable is not restricted with regard to whether it has assumed its vatue by regular
integer assignments or by the ASSIGN statement for statement labels. An array element can be used
for the variable.

Bitwise operations on variables:

The bitwise .AND., .OR. and .NoT. operations on integer, real and complex vaues are allowed.
The operands are checked for type compatibility as in the case of other arithmetic operations.

Intrinsic and standard functions:

When the intrinsic and standard functions are used, their types are not affected by implicit
or explicit typings.

§3 17-

3. Overall Organization

3.1 Structural scheme

UFORT’s processing of an input user program is driven by its main procedure and
procedure BLock, which invoke the various modules either directly or indirectly. The
organization of UFORT is based on these modules. It is structured according to the reiationships
among the various modules. Despite its length (about 9000 lines), UFORT is easily understood
once its structure is reveaed.

When the compiler processes a given program statement, it either generates code from it or
remembers the information given in the program text by building some internal structure, which
invariably is a linked list of a particular type. A module in UFORT satisfies at least one of the
following conditions:

1 It scans and processes a type of statement in the user program.

2. It scans and processes a specific construct which occurs in more than one type of statement.
These are:
(a) the arithmetic expression processor,
(b) the procedures for loading and storing variables,
(c) the procedure to process function calls,
(d) the procedures to process initiaization specifications.

3. It processes an internal structure, and possibly generates code from it. These are:
(@ the procedure to close either a po loop or aloop in an /O statement,
(b) the storage allocation procedure,
(c) the variable initidization code-generating procedure.
(d) the procedures to generate code related to multiple entry procedures.

4. It manages an interna table:
(a) the symbol table routines,
(b) the standard function table routines,
{c) the temporary storage management routines.

5. It is a pre-processing procedure for each input statement:
() the lexer,
(b) the statement classifier.

Apart from these are the error and warning routines, the code-generating routines, the
type-checking routines and a number of genera utility procedures. Some of these utilities scan
and process specific constructs.

(a) procedure GETHTYPE - processes an explicit type specification. E.g. LOGI CAL.

(b) procedure GETTYPE - processes the "x" modification of a type specification. E.g. "x 4".

(c) procedure cetcoorpINATE - processes the subscript specification of an array element in
a DATA or EQUIVALENCE Statement. E.g. “A{1,3)".

(d) procedure ISARRAY - processes the dimension specification in the declaration of an
array, which occurs in the piMENSION, comMoN and type declaration statements. E.g.
"BUI,4)"

18 Overall Organization § 32

3.2 Error handling

UFORT aways checks the validity of a program construct before it operates on it. In this
way, it safeguards itself from execution errors during compilation. It distinguishes between two
kinds of errors:

1. Errors discovered while scanning a program statement: UFORT will stop processing the
statement at the point where the error is discovered. The error message is output with ?* printed
under the word that causes the error. At most one error message will thus be output for a single
statement. In some cases, UFORT will try to generate extra dummy U-Code to make the code
aready generated for the statement acceptable by the U-Code trandator. UFORT will continue
to parse and generate code for the rest of the statements in the user program.

2. Errors discovered while processing an interna structure of the compiler: For this type of
error (called SPECIAL__ERROR in the compiler), the error message is printed with a name that tells
from where the error originates. The recovery procedure may involve deleting the trouble-
causing element or atering its contents to make it compatible with the rest of the program. Such
actions are invisible to the user.

To enable the features of 1, the statement processing procedures in the compiler aways use
the global lexeme pointer LX¢ as index while scanning a statement. The error routine will print
‘?" under the word that Lxc points to. Since different parts of a statement are usually processed
by different procedures, the unifying rule used is that each procedure is entered with Lxc pointing
to the firs& lexeme it processes and exits with LXc pointing to the one after the last lexeme it
Processes.

Warnings are output when errors are discovered in the program which UFORT thinks will
not drastically affect the normal execution of the rest of the user program. Regardless of when 1t
is discovered, only a name will be printed with the message. The position where the warning IS
printed in relation to the program statements in the listing file serves as another clue to the user
in some cases. Recovery actions may also be taken by UFORT. The resulting behaviour of the
program is easily predictable by the user.

UFORT aways prefers warning instances to error instances. l.e. for each user error,
UFORT classifies it as an error instance only if it cannot make it a warning instance.

$4 19.

4. Lexer

4.1 Summary

The purpose of the lexer is to split the input program up into nice pieces, lexemes, which
are easier to deal with than characters.

Each time the lexer is called it reads the next Fortran statement from the source file. moves
it character by character into an array called LEXSTRING, stores the Fortran statement label in
LABNO, generates the sequence of lexemes contained in this statement, and puts the lexemes into an
aray cdled LExeme. Comments are skipped, and al lines of the source file are copied to the
listing file. The length of the string is stored in LEXSTRLENGTH, the number of lexemes in
LEXCOUNT, the number associated to the first line of the statement in LINENUMBER, and the last
line in LINENO.

If an error occurs in the lexer, LExcouNnT is set to 0.

Each element of the array Lexeme is a record with three pieces of information:
1. LEXEME.T: The type of the lexeme.

9. LEXEME.F: The index in LEXSTRING of the first character of this lexeme.

3. LEXEME.L: The index of the last character of this lexeme.

For example, if the identifier COMMON occurs in columns 7 to 12 and it is the first lexeme of
the statement (the label is not counted as a lexeme), then the entries in LEXEME will be

LEXEME[1].T = IDENTIFIER
LEXEME[1].F = 7
LEXEME[1].L =12

4.2 Lexemc types

A lexeme is defined to be one of the following items:

name description

PLUS + sign

MINUS =sign

STAR 2

SLASH /

EXPONENT At

LPAREN (

RPAREN)

EQUALS .

COMMA ’

LE,LT,GE,GT .LE.,.LT.,.GE.,.GT.

EQ.NE .EQ.,.NE.

ANOOP , OROP .ANO., .OR.

NOTOP .NOT.

REALCON a Fortranreal constant (not including preceding sign)
OPCON double precision const (not including preceding sign)
INTEGERCON an integer constant (not including sign)

S TR I NGCON quoted or Hollerith constant

TRUECON .true.

FALSECON false.

IDENTIF IER a sequence of characters, the first of which must be a

letter and the rest may be letters or numbers

20 Lexer §42

EXPLMARK
VUOTMARK
NUMS IGN
por

DOLS IGN
PERCENT
AMPE RSANO
COLON
SEMICOLON
LESSS IGH
BIGGERSIGN
QUESMARK
ATSYM
LSQBRACKET
RSQBRACKET
BACKSLASH
CARET

EOS end of statement
NON none of the above

DI Y, m—

* SV NV N .

4.3 Reading in a statement

When Lexer is called, LExsTRING is cleared by putting In blanks. It then invokes the
procedure GETSTATEMENT to load the characters of the next statement into LEXSTRING. It assumes
that the first six characters of the next line are aready in the array covitos. If the first letter is
"C", then the line 1s a comment line. coLiTos is printed in the listing file and the comment itself
is read into the listing file (procedure skIPLINE). The variable LINENO is used to keep track of the
number of lines that are read in.

As soon as a non-comment line is read in (this may be a blank ling), the global variable
LINENUMBER, which always contains the line number of the first line of the current statement, IS
set to LINENG, If the end of file has been reached, this is indicated by setting LEXSTRLENGTH to 0.
coL1To8 is copied to both the listing file and LExsTRING. The rest of the statement is read in,
putting each character in both the listing file and LEXSTRING, until the end of the statement is
encountered. If comment lines occur, they are skipped over as previoudly. Continuation lines are
recognized and appended. To determine this, GETSTATEMENT must always look ahead to the next
6 characters of the next line. Thus at the end of GETSTATEMENT, the first 6 characters of the next
non-comment line will be in cor1tos. Each line is padded with blanks so that it aways is 72 plus
amultiple of 66 characters in length. After a statement is read in, LEXSTRLENGTH Will contain the
number of characters in LEXSTRING. At this point, LEXSTRING is aiso written to the U-Code file by
procedure PRINT-LEXSTRING.

After LEXER calls GETSTATEMENT, it checks to see if the statement returned consists only of
blanks. If it does, it calls GETSTATEMENT again. In this way, blank lines are allowed. Next, it
checks to see if the first 6 characters of LEXSTRING contain a label. If it does, this label 1S
converted to an integer and stored in the global variable LaBNG,

4.4 Scanning the statement

Next, the array LEXEME is filled with lexemes that are recognized through a case statement
based on the first characters of the lexemes inside a wHILE loop that traverses the LEXSTRING
array. The procedure NEXTCHAR IS generally used to get the next character. But since it skips
blanks, it is not used in processing identifiers, numbers and keywords.

§4.4 Lexer 21~

If the first character of the lexeme is a regular Fortran character other than a letter, digit,
single quote or dot, then the lexeme type is set to that character. (In the case of an asterisk, the
next character must be checked to see if it is a double asterisk.)

If it is a digit, then the procedure skIPDIGITSTRING finds the last digit. If the digit string IS
followed by an H, then the lexeme is a Hollerith string. If it is followed by a dot, then 1t may be
either a rea or an integer followed by a dot-word (as in “33. EQ. X"). The procedure FINDWORD is
called to get the character string if it is a dot-word. (If this is the case, it results in two lexemes
being processed in a single pass. the integer and the dot-word). If the dot is not followed by a
letter, DIGITSTRING s called again to find the last digit of the fraction of the real number, and then
FINDEXPONENT to get the exponent If the first digit string is followed by neither a dot nor an H,
then the lexeme is an integer.

If the first character is a dot, then the lexeme is either a dot-word or a real (again,
FINDWORD and FINDEXPONENT are used).

If the first character is a single quote, then the lexeme is a string. When an embedded
quote occurs in a string constant, one of the two quotes is deleted and the string content to the left
is shifted right by one position. This is because after LEXER, the compiler will use the information
in the array LEXEME to determine the extent of the string constant.

If the first character is a letter, then the lexeme is an identifier, and characters are skipped
until the next non-alphanumeric letter is read in. The identifier FORMAT is recognized as a
reserved word and it is processed as a special case. The FORMAT specification, including both
surrounding parentheses, is processed as a string constant. Consequently, the name FOBMAT
cannot be used as the name of a variable.

Blanks are skipped everywhere, except in identifiers, numbers and key words.

The syntax for lexemes is described below using Wirth's variant of BNF:

lexeme = special-symbol | dot-word | number | Hollerith |

identifier.
SpeCIal-Symbol - ll+l' "_l.] I|*" | "/ll I Il(l' [ll)" l |l=ll ! N**ll
'l’“ l Il!ll ’ LAN] I ll#" ‘ lls" ’ "zll ‘ "&OI " : n |
H;" l IQ<I| ‘ ">H I ﬂ?ﬂ l Ilall I n [" . I']" ll/” '

n?n

d ot-uord =".,LE."]"LT."|".GE."|".GT."|".NE."|".EQ."|
".ANB." [".OR."|“*NOT.” | ".FALSE."] ".TRUE.".

number = mantissa [exponent].

mantissa = digit-string "." [digit-string] |"." digit-string.
digit-string =digit {digi t}.

exponent = ("O" | "E") ("+" |"-"]digit-string.

Holieri th =« digit-string "H" (character) | "'" {character)

identifier =letter (letter|digit]}.

22 §5
6. Statement Classifier

Once a statement has been read in by LEXER, it is determined to be one of the following types
by procedure cuLassiFy:

STATEMENT-CLASS = {XNONE ,XARITH, XASSIGN,XLOGICALIF ,XARITHIF XGOTO,
XCALL ,XRETURN XEND ,XPRINT XBLOCKOATA XFORMAT XSET,XOPEN,
XCONTINUE ,XSTOP ,XPAUSE ,XDO,XREAD ,XWRITE ,XREWIND,
XBACKSPACE ,XENDF ILE ,XEXTERNALFUNC ,XSUBROUTINE ,XENTRY,

XD IMENSION, XCOMMON XEQUIVALENCE XIMPLICIT,
XEXTERNAL ,XLOGICAL , XINTEGER,XCOMPLEX, XREAL , XDOUBLE,
XOATA , XINTERNALFUNC);

CcLASSIFY first checks to see if the statement is an assignment statement or statement function
declaration, since keywords such as DO and Goro are legal variable names. If the statement is of

the form:
identifier = anything
or
identifier (anything) = anything

then it is one of the two. In the second case, if the symbol is a dimensioned array (al oimension
statements must occur before all statement function declarations), then the statement is an

assignment statement; otherwise it is a statement function declaration.

If the statement is not an assignment statement or a statement function, then the first lexeme
of the statement is compared with al keywords of the same length. Normally, the statement type
is determined right there. The oniy exceptions are:

For inTEGER, REAL, COMPLEX, Or LOGICAL, the next lexeme is checked to see if it is the
identifier runction, and the lexeme further down an identifier, since FUNCTION can be used as
the name of a variable.

For pousLe, the next lexeme is checked to make sure it is the identifier PRECISION.
For BLOCK, the next lexeme is checked to make sure it is DATA

For IF, cLAssIFY determines whether the statement is an arithmetic or logical IF. An IF
statement is an arithmetic IF if it is of the form

IF (anything) number anything

Otherwisg, it is a logical IF. (While scanning between the parentheses, both in this case and while
checking to see if the statement is an assignment statement, it is necessary to keep track of the
number of left and right parentheses in order to alow for nested parentheses.)

If the current statement already has error discovered in LEXER, it wilt be classified as XNONE.
When cLAssIFY finds any erroneous construct, it will also classify the current statement as XNONE
CLASSIFY outputs no error message.

§16 23..

6. Main block

The processing of an input user program is controlled by the main procedure and
procedure BLock The control structures of these two procedures are as follows:

6.1 Main procedure
1. Cdl INITCOMPILER to initialize everything.
2. Cadll BLOCK to process the main program unit.

3. While there are more subprograms do
(a) call FUNC STMT, SUBR__STMT or BLKDATASTMT t0 process the heading of the next

program unit;
(b) call BLock to process body of program unit.

4. Call VARINITIALIZATION t0 generate the code to initialize the variables that should be
initialized and to load FORMAT specifications into memory.

5. Generate the bodies of the level | to 3 dummy U-Code procedures.

6.2 Procedure BLOCK

1. (a) Call LEXER to get the first statement of the current program unit;
(b) Cdll cLAssIFY to determine the statement type.

2. If first statement is the IMPLICIT statement,
(8) call IMPLDECL to process it;
(b) call LEXER to get the next statement;
() cdl cLassIFy to determine the statement type.

3. While there are more declaration statements, rorMat OF set Statements do
(@) call the appropriate routine to process it;
(b) call LEXER to get the next statement;
() cal cLassIFy to determine the statement type.

4. Call STORAGE__ALLOCATION to dlocate storage for the variables that have been declared.

5. Call FILL__ADDRESS_ INITIALIST t0 copy these addresses into the list of variabies to be
initialized.

6. While there are statement function declarations, FORMAT or SET statements do
(@) call STMT__FUNCTION, FORMAT__STMT Or SET__STMT;

(b) call Lexer tO get the next statement;
(¢) cdl cLassIFY to determine the statement type.
7. Generate code for the head of the U-Code procedure for the current program unit.

8. Initiaizethelist of temporary locationsto NIL.

24 Main block § 6.2

9. While statement is an executable statement, FORMAT or SET Statement do:
(b) if there is a Fortran label, enter it in the label table if it is not there aready and generate
code for a U-Code label by calling ENTERLABEL;
(c) call the routine to process the statement;
(d) if we are not about to process a statement within a logical 1F statement then do
(1) if we have been processing an IF statement, then generate the U-Code label to be
jumped to if the condition is false;
(2) if there is a Fortran label and it is the end for a do-loop, then generate the
appropriate code;
(3) call LEXER to get the next statement;
(4) call cLAssIFY to determine the statement type;

10. (a) Process the enp Statement;

(b) call LEXER to get the next statement;

(c) call CLASSIFY to determine the statement type.
1. Check if any do-loop is till open.

12. Check the label and symbol tables and issue warnings if any label or variable have been
used only on the left-hand-side or only on the right-hand-side.

13. Generate code for the end of the U-Code procedure for the current program unit.

§7 25

7. Symbol Tables

7.1 The structure of the tables
There are five symbol tables in UFORT:

1. The main symbol table keeps track of variables, subprogram and entry names, intrinsic and
standard function names and rormat labels used within a single program unit (main program
or subprogram).

2. The label table keeps track of Fortran labels within a single program unit.
3. The common name table keeps track of common areas.

4. The external name table keeps track of subprogram and entry names throughout ail the
program units.

5. The standard function table contains the names of all standard functions.

Each of these tables is made up of records which form a binary tree. The symbols are
ordered lexicographicdly in the tree. The heads of the tables are pointed to by pointers stored in
the global variables SYMHEAD, LABELHEAD, COMHEAD, EXTHEAD, and HEADSTDTABLE.

The main symbol table and the label table are cleared at the beginning of each new
program unit. The other three are cleared only once, at the beginning of compilation. The
storage used by the cleared entries is automatically reclaimed through the garbage collection
facility in & he Pascal in which UFORT is written.

7.2 The associated routines

The standard function table is set up at compiler initidlization time and has a routine,
IN__STNDFUNCTABLE, that searches it. The other four each has a main routine that searches the
table for a given entry and inserts it in if it s not aready there, and then adds any information to
the symboi table that is not contradictory to the information it aready has about these symbals.
This structure is convenient in a one-pass Fortran compiler, because the information for a symbol
is typicaly scattered al over the program.

The four main routines, called FsymBoL, FLABELNO, FCOMNAME, and FEXTNAME, are Very
similar in structure, and have similar subsidiary routines which they call, For example, the
routines CLEARSYMBOL, CLEARLABELNO, CLEARCOMNAME, and CLEAREXTNAME all initialize new
records for insertion into the respective table. The following description of how procedure
FsymBoL works, therefore, is applicable to the other three routines.

When rsymBoL is called, it calls procedure BuiLDsYMBOL with a name and a pointer to the
head of the table as parameters. BUILDSYMBOL, which uses procedure symLOOK, searches for an
entry in the table with that name. If it does not find the symboal, it will create a new record and
procedure cLEArsYMBOL will be called to set the fields of the record to their default values.
FsYMBOL then inserts all the information about this symbol that was passed to it as parameters,
checking for contradictions with the information it already has. It is assumed that contradiction
does not exist among the call parameters in a single call.

26 Symbol Tables § 72

The four symbol table routines FsYMBOL, FLABELNO, FCOMNAME and FEXTNAME can be used
for 3 different purposes. (a) to retrieve the pointer to the symbol table entry, (b) to assert
information about the symbol as given in the parameters in the call, and (c) to test the properties
of the symbol against the values given in the parameters in the call. Each of the routines depart
from (c) somewhat, and the details are given in their sections following.

7.3 The main symbol table

The main symbol table stores information about the characteristics of the identifiers used in
a block, the most important of which are their addresses. It also stores the FORmaT labeis. A
space in memory for saving the address of the FORMAT string is alocated for each FORMAT label
(see Section 25).

It uses records of type symBoL:

DIM = RECORD CASE INTEGER OF (* array dimension @)
0:(CONSDIM:INTEGER); (*constant *)
1:{VARDIM:4SYMBOL); (* variabte *)

END ;

F UNCTYPE = (NOTEXTERNAL ,EXTERNAL ,EXTSUBR,EXTFUNC,STMTFUNC,
INTRINSTDEXT,PARAMPROC) ;

SYMBOL = PACKED RECORD
LSON,RSON: +5YMBOL ; (* POINTERS TO SONS *)
NAME : THENAME ; ('« SYMBOL NAME, 6 CHARACTERS LONG *)
STYPE :POINTDEFTYPE; (* THE TYPE OF THE VARIABLE; IT SHOULD
8E SET TO NONE IF SUBROUTINE NAME *})
WHEREDEF INED: INTEGER; (* PROGRAM LINE NUMBER IN WHICH
VARIABLE APPEARS THE FIRST TIME *)

LEVEL, {* ADDRESS ING LEVEL FOR THE VARIABLE *)
ADDRESS : INTEGER; (* -1 IF NOT YET ESTABLISHED. *)

MTYPE : CHAR ; ('« CHARACTER FOR THE MEMORY TYPE *)
USED-LHS, (* TRUE IF VARIABLE WAS GIVEN A VALUE,

NOT USED FOR EXTERNL, EXTSUSBR,
INTRINSTDEXT, PARAMPROC, EXTFUNC,
EXCEPT WHEN A FUNCTION VARIABLE @)
USED_RHS, (' TRUE IF VARIABLE™S VALUE WAS USED,
NOT USED FOR INTRINSTDEXT,
FORMATLABEL &)
S-DUMMY, (* TRUE IF DUMMY ARGUMENT e)
S-EXPLICIT: BOOLEAN; (e« TRUE IF TYPE EXPLICITLY DECLARED *)
CASE S_FUNCSUBR: FUNCTYPE OF (* NOTEXTERNAL IF NOT EXPLICITLY ASSERTED *)
INTRINSTOEXT: (PTRSTO: #STOFUNCTABLE); (* POINTER TO STANDARD FUNCTION
TABLE IF STARDARD FUNCTION NAME *)

STMTFUNC: (SEGMENNUM, (* SEGMENT NUMBER OF ITS U-CODE PROC BLOCK @)
NUMOFARG: INTEGER);

NOTEXTERNAL: (S1_EQUIVALENCE, (* TRUE IF EQUIVALENCED *)
S2_EQUIVALENCE, (* USED TO INDICATE IF AN EQUIV.

VARIABLE HAS BEEN PROCESSED IN
STORAGE ALLOCATION TO CHECK
EOUIVALENCING TWICE *)

S-COMMON, (* TRUE IF COMMON VARIABLE *)

INITIALIZED: BOOLEAN; {(* TRUE IF VARIABLE INITIALIZED.
FALSE OTHERWISE *)

(* FOLLOWING FIELDS DO NOT HAVE CORRESPONDING PARAMETER IN

PROCEDURE FSYMBOL *)

NUM_ELEMENTS: INTEGER; (* ONE IF SCALAR; ELSE NUMBER OF
ELEMENTS IN ARRAY, ZERO IF
ADJUSTABLE DIMENSION *)

PTRCOM: tCOMNAME ; {* POINTER TO THE COMNAME TABLE,
USED ONLY IF COMMON SYMBOL *)

ARRY:POINTARRY_INFO); {* POINTER TO TABLE Of DIMENSIONS,
NULL IF NOT AM ARRAY t)

END;

§73 Sym bol Tables 27

ARRY_INFO = PACKED RECORO
DIMENSION: INTEGER; (* THIS MUST NOT BE 0 *)
(* FOLLOWING 2 ARRAYS USED ONLY UP TO
‘OIMENSION” *)
DIMEN:ARRAY[1. .MAXDIM] OF DIM;(* EITHER THE CONSTANT
OIMENSION OR THE POINTER TO THE SYMBOL
TABLE ENTRY IF VARIABLE OIMENSION *)
S_CON:ARRAY[1..MAXDIM] Of BOOLEAN; {* TRUE IF THE ITH
OIMENSION IS CONSTANT *)
NUM_CONST_DIMS, (* THE FIRST 'N_C_0' OF S-CON ARE TRUE *)
FIRST-OFFSET: INTEGER; {* CORRECTION FOR ‘COMPUTE OFFSET” %)
END;

Its main procedure, FSYMBOL, has parameters that correspond to the record fields whose
contents are checked inside this procedure.

PROCEDURE FSYMBOL{VAR SPTR:POINTSYMBOL; (* RETURNS ALWAYS A POINTER TO THE
ENTRY IN THE SYMBOL TABLE *)

SYMNAME : THENAME ;

SYMTYPE :DATATYPE; {* NONE IF NO INFO IS SENT *)

SYMWHEREDEF INED: INTEGER; (* THIS WILL CONTAIN THE PROGRAM
LINE NUMBER BEING PROCESSED @)

SYMFUNCSUBR:FUNCTYPE; (* NOTEXTERNAL IF NO INFO, THE
PROPER FUNCTYPE OTHERWISE *)

SYMCOMMON ,

SYMDUMMY,

SYMEQUIVALENCE,

SYMLHS,

SYMRHS |

SYMINITIALIZED:BOOLEAN); (* FALSE IF NO INFO OR FALSE *)

Most of the entries in this symbol table assume an implicit value if no information is
asserted. When it is necessary to check that an entry is having a certain value, it is possible to
accomplish the check by asserting the entry to that value using the corresponding parameter in
the call to FsYMBoL, Note that in this case, if the entry is having the implicit value, it will be
changed to the asserted value, which is undesirable in some cases. When the check is for the
entry to have the implicit value, this does not work, since the implicit value in the call parameter
specifies no action. Thus, it is necessary sometimes to retrieve the pointer and then make the
comparison explicitly.

If STORAGE__ALLOCATION has already been called, i.e. when processing the executable part
of a program unit, FsymBoL alocates space for new variables not previoudy declared using
procedure siMPLE-STORAGE If no allocation is desired (e.g. when testing that a statement

function name has not previously been declared as a variable), BuiLDsymBoL should be used to
retrieve the pointer rather than FSYMBOL,

Fidd s-ExpLICIT is set to true whenever sTYPE has been asserted in a call. FSYMBOL will
automatically infer a symbol to be EXTFUNC if it is both typed and declared EXTERNAL

See Section 15.2 regarding the s__FUNCSUBR field.

7.4 The label number table

Both statement labels and FORMAT labels are entered into this table. For each statement
|abel, it aso stores the U-Code label associated with it. This association is fixed the first time the
Fortran label occurs in the program unit, when the new table entry is created. The position of the

28 Symbol Tables § 74

label in the statement, i.e. whether 1t is on the left-hand side (100 X=1") or the right-hand
side ("GOTO 188"), is kept in the table.

The label number table is made up of records of type LABELNO:

LABELTYPE = (LNONE,ISFORMAT,ISSTMT);

LABELNQ = PACKED RECORD

NAME, (* FORTRAH LABEL *)
PLABEL:INTEGER; (* PCOOE LABEL NUMBER ASSOCIATED *)
LSON,RSON: tLABELNO;
"IS-ON-RHS,
IS_ON_LHS :BOOLEAN; (* TRUE IF THIS LABEL NUMBER HAS OCCURRED
ON RIGHT/LEFT HAND SIDE OF STATEMENT')
LTYPE : LABELTYPE; (* TELLS WHETHER A FORMAT OR STATEMENT

LABEL . NONE WHEN FIRST CREATED *)
END;

and is accessed by the routine FLABELNO:

PROCEDURE FLABELNO (VAR LPOINTER:POINTLABELNO;
NUMBER: INTEGER; (* FORTRAN LABEL *)
L IS-ON-RHS,
L IS_ON_LHS: BOOLEAN; (* FALSE IF NO INFO OR FALSE *)
LABTYPE: LABELTYPE); (* TYPE OF LABEL, MUST BE ASSERTED *)

Places where FLABELNO s called are procedures ENTERLABEL called by BLock, compLuJP and
COMPLFJP used in the GoTo and arithmetic IF statement processors, the po statement processor and
the READ/WRITE statement processor.

7.5 The common table

T he common name table (CoMNAME) simply stores the names of the common areas thus far
defined and some information about them. It is made up of records of type COMNAME:

COMNAME s PACKEO RECORO

LEVEL, (* PSEUDO LEVEL NUMBER FOR THIS COMMON
AREA %)

LENGTH ,STADOR: INTEGER; (* LENGTH OF THE COMMON BLOCK IN OUARTER
WORDS AND STARTING ADORESS *)

PTRCOMLIST:#COMLIST; (® POINTER TO THE LINKED LIST Of COMMON
ELEMENTS IN THIS AREA *)

LSON ,RSON : *COMNAME ;

NAME : THE NAME ; (* NAME OF THE COMMON AREA #)

END;

and accessed by the routine FCOMNAME during storage allocation:

PROCEDURE FCOMNAME (VAR CPOINTER:POINTCOMNAME; CONAME : THENAME);

LEVEL is initialized inside cLearcoMNAME, immediately after the entry is created.
PTRCOMLIST, which points to a linked list of variables, is built when processing the declarations of
the corresponding COMMON area. At the beginning of each program unit, the field PTRCOMLIST of
ail entries is set to NIL.

When an entry is first created for a common area name, LENGTH is set to the value given by

-

175 Symboi Tables 29

global variable comMoNsiz, This variable has a default value O, and is set by the option csiz.
At the end of processing a commoN statement, this variable is reset to 0. When space Is alocated
the first time for a common area, if the actua alocated area is greater than that specified in
tenctH, this field is changed to the larger vaue. Otherwise, the amount of space alocated is
equa to the value of LENGTH. Thereafter, its value is fixed.

STADDR, initially set to -1, indicates whether a memory block has been alocated to the
common area in a previous program unit. If yes, it gives the start address of this block.

FCOMNAME is called only in the common statement processing procedure. It only returns the
pointer to the common table entry. During storage allocation, the entries are accessed by
traversing the tree.

7.6 The external name table

The externa name table keeps track of the existence and calls of the various subprograms.
An entry in the external name table implies the existence of a subprogram with that name. A
symbol can be in the extname table and in the symBoL table at the same time, when the external
subprogram name is referenced in the program unit, or there is an internal variable or statement
function name which happens to have the same name as another subprogram. When processing
a subprogram, the subprogram name is also in both tables, and in the case of function
subprograms, the name is used internaly as a function variabie.

An identifier declared EXTERNAL is not necessarily entered in the externa name table. (See
Section 8.7.)

A symbol is inserted in the external table when it is called, defined or passed as a
subprogram name parameter. This occurs in (a) procedure USERFUNC, which processes calls, (b)
the FUNCTION statement processor, (c) the SUBROUTINE statement processor, (d) the ENTRY statement
processor and (€) procedure PROCESS__ ARGUMENTS,

The table is made up of records of type EXTNAME:

EXTNAME = PACKED RECORD
LSON,RSON: tEXTNAME ;
NUHBER : INTEGER; (* SEGMENT NUMBER ASSOCIATED TO THIS
SEGMENT NAME ENTRY *)
XFUNCSUBR: FUNCTWE; (* MUST BE ONE OF EXTFUNC. EXTSUBR,
NOTEXTERNAL o)

TYPEEXPL ICIT, (* TRUE IF EXPLICIT TYPE IN SUBPROGRAM
HEADING @)

IS-DEFINED, (* A SUBPROGRAM BLOCK EXISTS FOR IT *}

IS-CALLED, (o INVOKED AT LEAST ONCE *)

IS_PASSED: BOOLEAN; (* HAS BEEN PASSE0 AS PARAHETER *)
STYPE :POINTDEFTYPE; (* THE TYPE Of THE FUNCTION; IF
SUBROUTINE, THIS FIELD NOT USED *)
NAME : THE NAME ;
NUMOFARS: INTEGER; {* NUMBER OF ARGUMENTS; -1 IF NO INFO *)
END;

and accessed by the routine FEXTNAME:

PROCEDURE FEXTNAME (VAR EPOINTER:POINTEXTNAME ;
EXNAME : THENAME ;
EXTYPEEXPLICIT: BOOLEAN;{* TRUE IF EXPLICIT TYPE IN
SUBPROGRAM HEADING *)
EXTYPE : OATATWE ; {* NONE IF NO INFO *)

30 Symbol Tables §7.6

EXFUNCSUBR: FUNCTYPE; {*NOTEXTERNAL IF NOINFO*)
EXDEFINED,
EXCALLED: BOOLEAN); (* FALSE IF NO INFO *)

NUMBER is filled automatically inside CLEAREXTNAME immediately after the external name
table is created, in such a way that each external program unit is associated with a different
segment number.

FEXTNAME is designed both for asserting and checking. This is because it is not sure when
the mode is assertion and when it is checking, since the position of a subprogram bears no
relationship to where its calls originate. FEXTNAME checks the sTYPE and XFUNCSUBR fields if the
external symbol is either previously called or defined. Otherwise, it goes ahead to assert sTYPE
and XFUNCSUBR to the values given in the parameters.

When FEXTNAME is called from (a), parameter EXTYPE is to be the sTYPE Value of the
symbols entry in the symbol table, even if its type is implicit, since the type in the externa table is
fixed after the first cafl.

When FEXTNAME is called from (b) or (c), parameter EXTYPEEXPLICIT indicates whether
typing is explicit in the FUNCTION statement. This is needed because FEXTNAME is called once
again before processing the first statement, or after processing the IMpPLICIT Statement if present as
the first statement in the subprogram. This call is from procedure BLocK. The pointer is
retrieved. If the TyPeEEXPLICIT field is false, then if the subprogram has been called, check is
made against the now known implicit type. Otherwise, the implicit type is assigned.

7.7 The standard function table

The standard function table is initiaized by the procedure FILL__STDNNCTABLE It iS made
up of the following type of record:

STOFUNCTABLE = RECORD
NAME : THENAME ;
NUMBER: INTEGER; (* EACH PROCEDURE HAS A DIFFERENT
NUMBER,USED WHEN THE FUNCTION
IS CALLED *)
LSON,RSON:45STDFUNCTABLE;
END;

It is searched by the function IN__STDFUNCTABLE:

FUNCTION IN_STOFUNCTABLE(NAME : THENAME ; VAR STOPTR:POINTSTOFUNCTABLE) :BOOLEAN;

§18 31

8. Processing of Declarations

When a variable occurs in a declaration, an entry for that variable is made in the symbol
table by calling procedure Fsymsoi, and the information given in the declaration is filled in. An
error message is issued if that symbol already has some contradictory information. The address of
the variable is not determined at that time, because when a declaration is scanned, not al the
information about the variables is known. The assignment of an address to the variable declared
occurs in procedure STORAGE__ALLOCATION (see Section 11).

8.1 Representation of types

The numerous data types which the compiler recognizes are represented in records defined
as follows:

DATACLASS = { INTEGERCLASS, REALCLASS, COMPLEXCLASS, LOGICALCLASS,
STRINGCLASS, OTHERCLASS);

POINTDEFTYPE = ¢DEFTYPE;

DEFTYPE s RECORD
SIZE: INTEGER;
GENTYPE: CHAR;
CASE CLASS: DATACLASS OF
COMPLEXCLASS : (COMPPART : *DEFTYPE) ;
END ;

The different data types are represented by pointers to their own individually-defined
records. The pointer variables are named after the type names, and they are globaly defined and
initialized in procedure INITCOMPILER (See Section 6). This structure allows easy access to the size,
U-Code type and class of each data type. In the case of the types for complex numbers, an
additional pointer field in this record points to the type of the rea and imaginary component
parts.

The data types used in the compiler are:

LOGICAL1, LOGICAL2, LOGICAL4, LOGICALS - for booleans;
INT 1, INT2, INT4, INT8 - fOr integers;

RE1, RE2, RE4, RE8 - for real numbers;

comp4, COMP8 - for complex numbers;

STRING - for string constants;

FORMATLABEL - for labels of FORMAT statements;

none - for the data type of subroutines;

POINTER - for addresses (the U-Code type A);

SINGCHAR - for a single character (U-Code type ¢

32 Processing of Declarations § 8.1

PRoC -~ for procedures (the U-Code type P);

SINGSET, DOUBSET ~ for the U-Code set types.

8.2 Type-specific declarations

Procedure TYPEDECL scans and processes this kind of declaration. Variables are inserted in
the symbol table with the information specified by the declaration.

First, it obtains the type for the variable, based on the type of the declaration. It then scans
forward and obtains its size modified by "x" if one 1s specified. The variable is inserted in the
symbol table and a pointer to the symbol table entry is passed to procedure 1SARRAY. This
procedure is responsible for obtaining the dimension information for creating the record that
stores this information and putting its pointer in the symbol table entry of the variable.

If the variable is initialized, procedure varinit is responsible for the steps involved. This
procedure builds alist of the variables to be initialized. (See Section 9.)

VARINIT is entered with Lxc (the global pointer to the lexeme array) pointing to the lexeme
with the first initialization value. The initialization list is extended at the end by calling
EXTEND__LIST a number of times according to the number of elements in the variable declared.
Procedure FiLL__VALUES is then caled which traverses the list of the initiaization values in the
statement and enters them into the fields of the nodes just created. In this process, it calls
procedure INSERT-VALUE.

Procedures ExTEnp-LisT, FILL-VALUES and INSERT__VALUE are also used in processing the
DATA Statement. See Section 9.2.

8.3 Dimension declaration

Procedure pivenoect scans and processes the Fortran DIMENSION statement. The symbol
table entries for the variables are updated with the dimensron information, It uses procedure
ISARRAY to obtain the dimension information as in type-specific declarations.

8.4 Implicit declaration

Procedure IMPLIDECL scans an IMPLICIT statement. Array IMPLIARRAY IS filled with the
specified implied types. meuibec. can be entered only when processing the first statement in a
program unit.

This procedure gets the implied types and size modifications, and inserts them in
IMPLIARRAY for the list of letters specified, using procedure LETTERLIST. If an imPLICIT Statement
occurs in a subprogram, the dummy arguments are affected plus the function name if it is a
function subprogram. Therefore, once all the declarations are scanned, the symbol table entry is
traversed in order to change the standard Fortran implied types for the dummy arguments and
function names, using procedure cranceoerauLTs. These are the only valid symbols in the
symbol table at that time because the impLICIT statement must be the first statement in a program
unit.

§ab Processing of Declarations 33_

8.5 Common declaration

Procedure comDECL scans and processes a common declaration, The common name table is
built inside this procedure and linked-lists of the common variables in each common area are
constructed. This list is formed with coMLIST records that have the following format:

COMLIST = RECORD STPTR:4#SYMBOL; (* POINTER TO SYMBOL TABLE ENTRY OF
COMMON ELEMENT *)
NEXT: $COML IST,;
END;

The root of the list of common variables for each common area is stored in the field
PTRCOMLIST Of its entry in the common name table.

For each common area, compecL first gets its name and inserts it in the common name
table. If it is aready in the table, it obtains the last entry in the common variable list for that
area. Using this pointer, the declared variables in this area are inserted in the order they are
declared. These variables are aso entered in the main symbol table, if necessary, along with the
information that they are in a common area fields (s-common is set to TRUE, and PTRCOM is
set to point to the correct entry in the common table).

Any dimension information of a variable in a common declaration is treated as dimension
declaration, and this information is obtained with procedure ISARRAY.

Information about the length and starting address of the common aress is not inserted here
but in procedure STORAGE-aLLocaTion, Where the addresses for the common variables are
assigned. The reason for this is that a variable may be dimensioned in a later statement, so there
is no way to be sure how much space it will take until al the declarations have been processed.

The blank common area is called “M M M " internally in the compiler. The spaces
between the M’s make it impossible for any user to use this name as a name for one of its
common areas.

8.6 Equivalence declaration

Procedure EQuUIVALDECL scans and processes EQUIVALENCE declarations. This procedure
builds the list of equivalence groups and it also builds the circular lists of equivalenced variables
that form the equivalence groups.

The list of equivalence groups is formed with EQGROUP records and the lists of
equivalenced variables are formed with EQLIST records.

EQGROUP s PACKED RECORD
LOW, HIGH: INTEGER; (* STORE THE LOWER AND HIGHER BOUNDS
OF THE EQUIVALENCE GROUP *)
LEADER:*EQLIST; (e POINTS TO FIRST ELEMENT IN LIST OF
EQUIVALENCE VARIABLES THAT FORM 6ROUP *}

NEXT : $€QGROUP ; (* POINTS TO NEXT GROUP *)

ALLOCATED, {* TRUE IF THE 6ROUP HAS ALREADY BEEN
ALLOCATED IN MEMORY @

HAS_INIT, (* HAS ONE VARIABLE INITIALIZED *)

HAS_COMMON :BOOLEAN; (* TRUE WHEN THIS GROUP HAS
A COMMON ELEMENT. *)

END;

EQLIST = RECORD STPTR: #SYMBOL; .

34 Processing of Declarations §8.6

(e POINT TO SYMBOL TABLE ENTRY OF EQUIVALENCEQ VAR. *)
DIMENSION:ARRAY[1., .MAXOIM] OF INTEGER;
(* USED TO STORE THE COORDINATES OF ARRAY ELEMENT
EQU IVALENCED *)
OFFSET:INTEGER;
(* OFFSET OF THE ELEMENT WITH RESPECT TO THE LEADER OF
THE LIST *)
NEXT: ¢EQLIST;
(* NEXT IN THE LIST *)
END ;
(* THIS LIST IS USED TO STORE THE VARIABLES THAT ARE EQUIVALENCED
IN ONE’ EQUIVALENCE GROUP *)

For each equivalence group, procedure EQUIVALDECL calls procedure EQUIVARLIST. This
procedure gets the names of the variables that form the group, inserts them in the symbol table, if
required, setting field s1__equivaience to TRUE, and inserts them in the circular list that form
the equivalence group. If the variable equivalenced is an element of an array, its coordinates are
also obtained. All this is done inside procedure EQUIVARLIST,

With the equivalence groups declared, a list is formed using the global variable EQUIVHEAD
that points to the head of the list and TAILEQGROUP that points to the most recently declared

equivalence group at the tail.

Since the coordinates for array elements are remembered instead of being processed
immediately, dimension declaration of a variable can occur after its equivaLence statement.

8.7 External Declaration

Procedure extoecL scans and processes an external declaration. The information that a
variable is external 1s entered in the symbol table only, since the effect of the external declaration
is restricted to inside its program unit. The externa table is updated later in the call to the
external symbol, when the existence of a program unit of that name is implied. Information is not
entered in the externa table if the variable externadled is a dummy argument.

§9 35

9. Initialization of Variables

In most Fortran compilers, initializations are handled by setting up the binary load file so
that the locations which are specified by the variables to be initialized are loaded with the initial
values at the time the program is loaded. It is not possible to do this in U-Code, since storage IS
alocated on the stack only when the corresponding procedure is entered; instead, a series of
explicit loads and stores must be executed at the beginning of the program.

The initidization of variables consists of three stages. First, a list of the variables to be
initialized is formed during the processing of type-specific declarations (Section 8.2) and DATA
statements. Next, the addresses of the variables to be initiaized are saved in the LEVEL and
ADDRESS fields of the record entries in the initidization list when procedure
FILL__ADDRESS__INITIALIST |S called after storage allocation for the current program unit has
occurred. Finally, code are generated for the initializations at the end of compilation by calling
procedure VARINITIALIZATION.

9.1 The initialization list

This linked list containing the variable addresses to be initialized and their initialization
values is formed using the INITIALIST record with the following structure:

INITIALIST = PACKED RECORD
SYMTABPTR : #SYMBOL; (* POINTER TO SYMBOL TABLE ENTRY

OF VARIABLE TO BE INITIALIZED *)
LOCSI2E: INTEGER; (* SIZE OF INITIALIZED LOCATION;
FOR COMPLEX, S IZE OF EACH HALF e)
NEXT:*INITIALIST; (* NEXT NODE *)
LEVEL, (* LEVEL OF THE VARIABLE *)
ADDRESS : INTEGER; (* LOCATION TO BE INITIALIZED.
EVEN IF ARRAY ELEMENT *)
AMOUNT:DIGIT_STRING; (* STRING WITH THE VALUE
TO BE INITIALIZED *)
CONTINUING:BOOLEAN; (* TRUE IF THIS IS A CONTINUUM Of
THE PREVIOUS NODE, USED IN
INITIALIZATION WITH STRINGS *)
CASE AMOUNTYPE : LEXTYPE OF (% LEXTYPE OF THE STRING VALUE %)
STRINGCON:
(STRLEN : INTEGER) {(* | F INTIALI ZAT ION WITH STRING,
LENGTH OF THE STRING CONSTANT %)
INTEGERCON ,REALCON,DPCON:
(NEGATIVE :BOOLEAN); (* TRUE IF CONSTANT IS -VE %)
END ;

The same initidization list is used for al the program units in a program, lengthening as
more initidlizations are specified. The addresses have to be saved in this list because the symbol
tabies of al previous program units are no longer available when the initialization code is being
emitted in procedure VARINITIALIZATION.

One entry is created for a simple variable. Complex vartables are inserted in the list of
initraiized variables as two reais; the real part and then the Imaginary part. Arrays have an entry
for each element of the array, and the displacement in actua memory locations of each of its
elements with respect to the start address of the array 1S given in the ADDRESS field of its
INITIALIST record entry. The real address for the elements initialized 1s not entered until procedure
FILL__ADDRESS__INITIALIST iS called after storage alocation has occurred. This will just add the
address in the symbol table to what is aready in the ADDRESS field in an INITIALIST entry. Types

36 Initidlization of Variables §9.1

of the initialized variables and dimensions of the arrays whose elements are being initialized must
have been completely defined before the initialization specifications.

9.2 The DATA statement

Procedure paTa- sTMr scans and processes a DATA statement and builds the list of the
variables to be initialized.

A DATA statement is composed of the alternate appearances of a variable list followed by the
initialization constants enclosed by the slashes. Procedure FORM__VAR_ LIST processes a variable
list and adds nodes to the initialization list for the variables to be initialized. Procedure
FILL- VALUES then processes the upcoming list of constants and updates the list with the initial
values in the nodes for the variables just inserted. Variable FIRST-IN-LIST is returned from
FormvARLIST pointing to the first element of the group just inserted and is used by FILL-VALUES
to teli where to start entering the initializatron values.

Here is a more detailed description of the procedures used:

Procedure ForwARLI sT gets and inserts the names of the variables to be initialized into the
symbol table, indicating that they are being initidized by setting the field inimiALizep to TRUE. It
then creates the entries in the initialization list for these variables by calling procedure
EXTEND-LIST.

Since the variable list can consist of arbitrarily nested loops, FORMVARLIST uses special data
structures and an recursive algorithm to process the variable list. These are presented in the next
section.

Procedure exteno-uist does the actua building of the initiaization list. The information
inserted by this routine consists of a pointer to the symbol table entry for the element being
initialized, its displacement in memory with respect to the beginning of the array, which is O for a
smple variabie, the size of the location and the flag conTINUING Which is used to indicate if the
current location is a continuation of the location in the previous node, as in the succeeding
elements in the initiadlization of whole arrays and the second halves of complex variables.

Procedure FI LL- VALUES updates the list of variables in the initializatron list with the
corresponding initial values. FIRsT-in-List points to the first element of the list that needs an
initialization value and PO NT- TO- LI ST is used to traverse the list of INITIALIST records while
saving the values in the AMOUNT field. For each initializatron value, this procedure gets the
number of times the value is repeated. insert VALUE is then caled this number of times. Fieids
NEGATIVE and STRLEN of INITIALIST are Set directly in FILL-VALUES depending on the type of the
constan t. For string constants, INSERT__VALUE is caled as many times as required depending on

the length of the string, and depending on the flag conti nui NG,

Procedure insert-vaLue completes the information in the INITIALIST record entry by
filling in the lexeme type and the initialization values expressed as an array of characters.

The procedures EXTEND-LI ST, FILL-VALUES and INSERT__VALUE are also used in
processing initializations in type-specific declaration statements.

§93 Initialization of Variables 37.

9.3 Procedure FORMVARLIST

In order to handle arbitrarily nested loops in a variable list in the pATA statement, this
procedure uses two phases to process a variable list. The first phase, represented by procedure
CONSTRUCT, builds a list recursively according to the loop structure in the variabie list. The
second phase, represented by procedure EXTEND, traverses the list just created recursively and, in
the process, expands the nested loops into linear counts of initializations being added at the end

of the global initialization list.

The list constructed is made up of two kinds of records, which represent respectively an
glement in avariable list and a loop. The structures of these two records are as fol lows:

(e« NOOES THAT FORM A LIST OF VARIABLES, ANY OF WHICH CAN INSTEAD BE
ANOTHER LEVEL Of AN IMPLIED LOOP, IN WHICH CASE ISLOOP IS TRUE @)

VARREC = RECORD
NEXT: *VARREC; {(* NEXT IN LIST %)
CASE ISLOQP: BCOLEAN OF
TRUE: (NEXTLEVEL: POINTLEVELREC); (* POINT TO THE NOOE
THAT REPRESENTS THE NESTED LEVEL *)

FALSE: (SPTR: POINTSYMBOL;
NUMSUBS: INTEGER; (* # 0f SUBSCRIPTS *)
SUBSINFO: ARRYSUBSCRIPTS);

END;

(* NOOE TO REPRESENT A LEVEL OF IMPLIED LOOP. VARLIST POINTS TO THE
LIST OF VARIABLES (OR AOOITIONAL NESTED LOOPS) THAT BELONGS TO THIS
LEVEL. PREVIOUS POINTS TO THE NQDE OF THE LEVEL INSIDE WHICH THIS
LOOP IS NESTED. CONTROLVAR KEEPS THE NAME OF THE CONTROL VARIABLE
OF THIS LOOP. CURRENTVAL IS USED TO STEPS FROM STARTVAL TO
ENDVAL INSIDE PROCEDURE CONSTRUCT. @)

LEVELREC = RECORO

VARLIST: POINTVARREC;

CONTROLVAR: THENAME;

STARTVAL ,ENOVAL ,STEPVAL ,CURRENTVAL: INTEGER;
PREVIOUS : *LEVELREC ;

END;

The recursive algorithm to process a variable list is then as follows:

Formuyarlist:
1. Call consTrRuCT to scan and build the list representation for the variable list.

2. Cal extenp to do the extensions to the initidization list according to the structure just
created.

Construct:

1. While not end of variable list,
(a) Create a VARREC node.
(b) If next item iS @ loOp, current NOde is a loop. Create a LEVELREC node pointed to from
the VARREC node.
(1) Enter the loop information to the LEVELREC node.
(2 Cal construct to scan and build the list representation for the variable list pointed to
from the LEVELREC node.
(c) Else next item is a variable. Enter the variable information together with any subscript
specification in the VARREC node.
(d) Append the VARREC node to the end of the list being built.

38 Initialization of Variables 59.3

Extend:

1. For each node in the varrec list do:
(@ If current VARREC node is a loop, get to the LEVELREC node.
(1) Initialize CURRENTVAL O STARTVAL,
(2) While CURRENTVAL < STEPVAL,
a. Cal exteno using the variable list of this loop.
b. Increment CURRENTVAL by the amount given by STEPVAL,

(b) Else current varrec node is a variable. Do the extension to the initidization list for this
variable, array dement or whole array. If any subscript is an identifier, the value of the
subscript is given by the curRRENTVAL field of the LEVELREC node in which the subscript
identifier is the control variable.

9.4 Procedure FILL ADDHES_§_INITIALIST

This procedure finds the address of a variable once storage has been alocated to it and
enters the address in its INITIALIST entry, The procedure is called after storace-aLLocaTion has
been called, which occurs after processing the last declarative statement and before the first
statement function or executable statement in a program unit.

Global variable NEXTININIT is used to remember the record entry of the last variable
initialized for the previous program unit. Ail the entries in INITIALIST after that entry are

traversed and the corresponding addresses are entered.

The displacement information, stored in field ADDRESS, is computed by adding the value
already in the appress fidld of INITIALIST and the address stored in the symbol table entry for the
variable. This 1S because the distance of an array element from the start address of the array was
previoudy stored here. If it is a simple variable, this ApDRESS field would have previously stored
0. Field LEVEL is obtained directly from the LEVeL field in the symboi table entry. After these
two pieces of information are obtained, the pointer to the symbol table entry is set to NIL, so that
when the symbol table 1s cleared at the end of the current program unit, no pointer points to its
entries and the space used by the symbol table can be reclaimed for other uses.

At the end, NEXTININIT is updated to point to the fast element of the initiaization list that
corresponds to the last variable initialized in the most recently compiled program unit.

9.5 Procedure VARINITIALIZATION

This procedure is called by the main procedure after ail the program units are compiled. It
generates code for the initiadization of variables and the loading of FORMAT specifications into
memory at execution time, the latter being done by calling procedure INIT__FORMATS (see Section

25.2).

The code for the initiaiization of variables is placed inside a specia U-Code procedure,
created for the compiler, called sinixx. A call to procedure $iNixx is always executed before
anything dse in the compiled U-Code program.

The head of the special procedure $INIXX is generated by calling procedure
BLKCODE__GENERATION. Then, code for the body of procedure $INIXX is generated. This consists
of a series of toc-str U-Code instructions that load the constant values on the stack and store

§95 Initialization of Variables 39-

them into the variables locations in memory. String constants are loaded into variable addresses
using the LcA-LDA-moV sequence of U-Code instructions.

40 §10
10. Storage Allocation Structure

In U-Code, as in P-Code, there are a number of static levels, each of which may have one
or more procedures associated with it. Each procedure owns a set of local variables. When a
procedure is entered, space for its variables is allocated. On exit, the space is dedllocated. Thus,
the values of al the local variables of a procedure are undefined when that procedure is entered.

In common Fortran implementation, however, al of the variables of each subroutrne are
own variables; that is, their values remain the same between the end of one invocation of a
subroutine and the beginning of the next. Hence, space for ail of these variables must have been
allocated at the beginning of program execution, even though some of them may only be accessed
when certain subroutines are entered. In U-Code terms, this means that ail variables in a Fortran
program must be on some level that is lower than or the same as the level of the main program.

If both the common and regular variables are on the same leve, the address of any variable
following those declared to be in a common area cannot be definitely determined until the size of
that common area is known. To solve this problem, the size of each common area, except the
biank common, is restricted to the space that it occupies the first time it is declared in a program
unit. The fixed space can be explicitly set using the csiz option. The size of the blank common
area is unrestricted by assigning to it its own storage level. A storage level is assigned to the rest
of the common aress.

Anocther level is assigned for the storage of the local variables of the program units. In
addition, space is dlocated in this level for storing (a) the results of expressions, constants or
subprogram names when they are arguments in subprogram calls, (b) format strings and (c)
parameter addresses for parameters to multiple entry subprograms.

The levels in the U-Code generated by UFORT are distributed as follows:

Level 1 -~ non-common variables (dummy procedure)

Level 2 - ail other common areas (dummy procedure)

Level 3 — the blank common area (dummy procedure)
Level 4 -- main block and subprograms

Level 5 -- ail statement functions

The storage for parameter addresses and return values in subprograms and statement
functions, together with any temporary location used by the compiler inside their procedures, is
alocated in their respective level 4 or 5 stack frames.

Level 5 is used for statement functions because they can only be called from the level 4
subprograms in which they are defined.

U-Code does not require that procedures be in any specific order. Thus, the code for the
procedures in levels 1 to 3, which includes how much storage is needed for these procedures, could
come after the code for levels 4 through 5. The executions of these three procedures involve only
the calls to the procedure of the next higher level.

Here is a Pascal representation of the idea:

§10.1 Storage Allocation Structure

1 0.7 Pascal representation

program FORVARS;
var i: array [1..18] of integer; (x variables in the blank common x)

procedure GENCOMMON;
var n: array [l .1680881 of integer:
{x variables in all other commons x)

procedure BLANKCOMMON;
var k: real;
(x all variables not in COMMON areas stored here x)

procedure USERSUBROUTINE;
function STATEMENTFUNCTION (real X):

begin
STATEMENTFUNCTION : = 2%X;
end:

begin {x USERSUBRGUTINE x)

k :=2.8;(xnormal variable)

i (1] :=8; (x variable in blank common x}
end:

begin (% Fortran main prog x)

k := B; (x mormal variable x)
USERSUBROUTINE ;

i{l] :+«8;(xin blank common x)
jll} := 0; {x in common 1 x)
end:

begin {(%* dummy for general common area x)
BLANKCOMMON
end:

beg i n {x dummy for b | ank common area x)
GENCGMMON,;
end.

41-

42 §11
11. Storage Allocation

In the storage alocation process, each variable is assigned a level number and an offset.
Procedure storace-aLLocaTion assigns memory locations to the variables declared during the
declaration part of a block. The procedure is called after al declarations have been processed and
before any statement function declaration or executable statement occurs. Any other variable that
appears later in the program without having been previously declared is allocated through
procedure SIMPLE__STORAGE, Wwhich is called by FsymBoL. The storage allocation for dummy
arguments in subroutines, functions and ENTRY statements are performed in the parameter
processing procedures. (See Section 17.2.) The storage allocation for temporaries
generated by UFORT is done in the temporary storage management routines. (See Section
13)

The storage aready alocated in the different levels are monitored by displacement variables
which indicate at the same time the next address available for assignment. The global variable
DISPLACEMENT and DISPL GENCOMMON are used for the levels of the non-common variables and
general common areas respectively. Variable MAXDISPL_ BLANKCOMMON indicates the highest
address so far alocated in the level for blank common variables. Every time a space for a
variable is needed, the corresponding displacement variable is adjusted, if necessary, to lie on a
half, single or double word boundary according to the size of the variable. Its value is then
stored in the field ADDRESs of the symbol table. It is then incremented by the proper amount.

The alocation of space is done in a specific order:

I. Common variables and variables equivalenced to common areas. The common areas are
alocated in lexicographical order. Inside each area, the variables are alocated in the order in
which they were declared as part of the common area. The variables equivalenced to one in the
common area are alocated according to the desired equivalence relation.

2. Equivalenced variables with no common element in the equivalence group.
3. All other variables, in lexicographical order.

All common areas, equivalenced variables within a common area and other equivaenced
variables begin at a double-word boundary. For the rest of the variables, quarter-word variables
begin at the next quarter-word boundary, haf-word variables at the next half-word boundary,
single-word variables at the next single-word boundary and double- and quadruple-word
(complex) variables at the next double-word boundary.

Common variables are passed t0 procedure STORAGE__ALLOCATI ON in the form of a list {see
Section 7). The list of variables in a common area is pointed to from the PTRcOMLIST field of its
common hame table entry. The equivaienced variables are represented as a global list of
equivalence groups (see Section 7).

Here is a more complete description of how storage alocation is done:

7 1. t Preprocessing equivalence groups

Before any space is alocated, the offsets of the eq uivalenced variables with respect to the
leader of the group (the first variable declared in the group) is computed This is done in

§11.1 Storage Allocation 43

procedure EQUIV_ orrses. It alSO merges two equivalence groups if a variable is equivalenced in
both of them, checking for any index conflict in aray elements (eg. “EQUIVALENCE
(A(3),B(2)), (A(2),B(3),C)"). The agorithm used in the computation of the offsets is as
described in [Gri7 1).

Procedure MERGE is called by EQuiv_oFFsETS if a variable is equivalenced two times. First,
it finds the two entries of the variable in the list of equivalence groups. If the variable appears
two times in the same equivaence group, the second one is deleted. If the variable appears in two
different groups, the first group is deleted and appended to the beginning of the second one. In
this second group, the variables that have aready been processed at the moment the double
equivalence is found have their offsats adjusted in accordance to the new leader of the group.
The doubly equivalenced variable is skipped in the second list and the variables not yet processed
will still be at the end of the enlarged group being processed.

1 1.2 Allocating space for common areas

Once al the offsets for the equivalenced variables have been computed and all necessary
mergings have been performed, space for the common variables is alocated. The address where
the common area begins is given in the sTADDR field in the common name table. It is -1 if no
space has been allocated for that area in any previoudy compiled program unit, and in this case,
STADDR s set to the next available address in the general common area. |f space has already been
allocated for the common area, sTADDR gives the address where the area was previoudly allocated,
For the blank common variables, alocation always starts with the first address in the level for the
blank common area.

If a common variable is adso equivalenced, procedure CHECK_ extension 1s called. This
checks for invalid extensions to the left of a common area due to the equivalence, and then
assigns addresses to the variables in the equivalence group by calling procedure
ALLOC__COMMON__ AND__EQUIV. After space is alocated for all the common variables of an area,
extensions to the right of the common area are checked. See Section 7.5 regarding how the initial
length of a common area is determined.

7 1.3 Allocating space for non-common variables
Once space has been allocated for all the common variables, the list of equivalence groups

is traversed and space is assigned to those groups not yet processed. Finally, the symbol table I1s
traversed in alphabetical order and space for al remaining variables is allocated.

44 §12

12. U-Code generating routines

Almost al code that is written in the U-Code file is generated by one of the U-Code
generating routines. There are a few cases in which U-Code is written directly using WRITELN.

The U-Code generating routines are made to cope with the syntax of U-Code instructron
types. The three routines GeN, GEN2 and GEN3 cover most of the general U-Code instructions.
The rest of the routines generate special U-Code instructions or groups of instructions.

The parameters to the U-Code generating routines convey the field contents of the
instruction to be generated. The most common fields are the U-Code operand type, memory type,
block number, address and location size. The U-Code operand type together with the location
s1ze is conveyed by a single type parameter, of type POINTDEFTYPE (See Section 8.1). The compiler
processes addresses in units of half-words. Currently bit addresses are used, so that al address
parameters have to be multiplied by the constant BYTELEN (the number of bits per byte) before
written out. Since the symboi table keeps only the level information of the variables, the block
number is given as the parameter by indexing into the global array SEGLEN using the level as
index. The array secLev is updated whenever a new U-Code block is entered.

The Lbc ingtruction is generated by a number of different procedures distinguished by the
forms in which the constants are passed to the procedures:

GENLOADNUM - the congtant is to be taken directly from the Fortran statement kept in the array
LEXSTRING, The pointer to the lexeme is passed.

GENLDC - the constant is passed as a string of 20 characters which can contain any possible double
precision number.

GENLOADINT, GENLOADBOOL, GENLOADCHAR - the constant is passed in integer, boolean and
character forms respectively.

GENOREAL - the constant is always the floating point zero.

Other U-Code generating routines are:
GENLOADSTRING - given a pointer to a string lexeme, generates code to load that lexeme.
GENLABEL - prints a U-Code label definition, eg. "L15 LAB”.

GENDEF, GENCLAB, GENLDA, GENXJP, GENCSP, GENMST, GENCUP, GENEND, GENLDP, GENENT -
generates the given instruction.

GENSEGCODE - generates the dummy blocks (see Section 10).

GENLEXES - generates the LEX instruction at the beginning of each U-Code block according to the
global array secGLEv.

The following two procedures are caled from the above U-Code generating procedures:

PRINTLABEL - prints a U-Code label, e.g. "L15".

512 U-Code generating routines 45.

PRI NTNAME - prints the name of a program unit in -U-Code form, e.g. "PEPEBBG3". The
maximum iength of the name is 5 letters. The maximum segment number is 999. Each
procedure has its own segment number. The global variable sEGNUMBER aways contains the
segment number that was last allotted.

46 §13

13. Temporary storage management

Temporary locations are used in UFORT in a number of places. They are made available
for reuse whenever possible New temporary locations are generated only if the existing ones are
not free. Temporary locations are used in the foilowing cases:

1L In processing complex number arithmetic.

2. In different cases connected with complex numbers. the assrgnment to a complex variable
with an indirect address, the relational and bitwise operations on complex operands and
the printing of a complex number by the PRI NT statement processor.

3. In processing the assigned GOTO statement.
4. In processing the arithmetic |F statement.
5. In processing READ and waite Of whole arrays.

6. In DO statements when the final value or step value is an expression (the temporary
locations for these cannot be reused).

7. In connection with type coercions and error recovery inside ARITH.
8. In generating in-line code for some intrinsic or standard functions.

Temporary locations are alocated in the level of the program unit being compiled, and thus
they exist only while the program unit is being executed. UFORT distinguishes between two
memory types in U-Code: type R (registers) and type M (main memory). It assumes that each U-
Code procedure has a number of registers available for its local storage. The constant MAXREGS
defines this number. In addition, the constant MAXPREGS defines the maximum number of
registers that can be alocated to the parameters of a program unit. Temporary locations are
allccated in type M memory only after no more R memory is available. Since some temporary
locations are used in connection with loops, and temporary locations are reused whenever possible,
this scheme contributes to greater efficiency when the U-Code are executed.

The two temporary storage management procedures are GETTEMP and RELTEMP. GeTTeEwP
gets a temporary location and returns its level, address and memory type. reLTewe IS cailed to
specify an alocated temporary location being now available for reuse somewhere else as a
temporary storage location.

The temporary locations are kept in a linked list pointed to by global variable
TEMPLOCHEAD. In the beginning, the list contains no node. The list is lengthened as more and
more temporary locations are allocated. The order of each node in the list corresponds to the
order in which they are alocated. The structure of each node is.

TEMPLOCNOOE = RECORD

Loc,
SIZE: INTEGER;
MTYPE: CHAR;

FREE: BOOLEAN;
NEXT: ¢TEMPLOCNODE;
END;

§13 Temporary storage management 47

GETTEMP first searches the list to see if there is a temporary location of the appropriate size
that has aready been clamed as a temporary location but is now free. The search starts from the
beginning of the list, so that any type R memory location is found first. If there is none, it claims
a new one by incrementing the displacement variable of the appropriate level and memory type
by an amount which is the size of the location needed plus any extra it needs to assure that the
location starts on a single-word boundary. The new node to remember this temporary location is
added to the list.

RELTEMP merely searches through the list until it finds the specified location, then sets FREE
to TRUE.

TEMPLOCHEAD s reset to NIL before the start of a new program unit or statement function,
since the temporary locations previously allocated no longer apply.

48 § 14

14. Loading and storing variables

The procedures used to generate code to load and store. variables are LOAD__VAR,
LOAD__VAR__ADDR, LoaD- ARrAY- ELEMENT aNd STORE__VAR. To load the value of a variable,

LoAD__VAR is cadled. To store a value in a variable, sTore VAR is called, then the value is loaded
(usually by ariTH) and then STOREVAR is called. Complex variables are handled differently inside
LOADVAR and storevar as each variable requires the loading or storing to be performed twice.

Variables are accessed differently as to whether it is a regular variable, a variable passed as
a parameter or an array element. For the last two cases, it is necessary to access the variables
indirectly by loading the address on the stack first, and then doing a load or store Indirect. The
loading of the address is done by LOAD__ VAR__ADDR.

LOAD__VAR__ADDR |s passed a pointer to the symbol table for the variable in question. If
the variable is not an array variabie, it loads its address. If the variable is an array, it loads its
address, and then calls LOAD- ARRAY- ELEMENT, which reads the subscripts and generates code to

calculate the offset.

The offset of an array element is computed by a loop which iterates according to the
number of subscripts specified. For an array A of dimensions (bl , b9, . . ., by), the offset for the

element A(fl-iQ- ..., ip)isgiven by:
il—|+(i2—|+(i3— 1+(.. .(in_l—l+(in—l)*bn_l)*. . .)*bs)*bz)*bl

If the first m dimensions of the array have constant bounds, the above agorithm can be
made more efficient by accumulating the decrements-by-l of the ‘2nd to (m+1)th subscripts into
one single Offset adjustment. As an illustration, suppose the array A above has al constant
dimensions. Then the offset computation can be compressed into:

i +(io+(igw.. . (in_+igkby (2. . . Jxba)kbo)kb | - (. (b + Dby _o+ k..)+ 1)xb + 1)

The last adjustment term is computed during compile time when processing the dimension
declaration of the array.

In the following example, the array has both constant and variable dimensions.

§141

Loading and storing variables

14.1 Example of indirect load and store

Fortran:

U-Code:

SUBROUTIHE X (1)
DIMENSION J(3,4,1)

J(2,

3,5) = |

RETURN

END

X0000076 EMT P 4 76 1 0

LEX
LEX
LEX

PSTR A

LDA
LOC
LDC
LDC
LDC
MPY
ADO
LDC
MPY
ADO
DEC

LOO

1

72

73

76 0 36

1 504 0 ;1oad address of array J

PSR X R)
BwwwXTDWNPR

506

»orwr

iup to here, load address of J(2,3.,4)
R 76 0 36 ;load address stored at address of

1LO0 J 0 36 ;load content of address just loaded
ISTR J 0 36 ;store value at address 2nd on stack

RET
RET
DEF
DEF
END

;this is from the RETURN statement
;this is always generated

R 36

M 72

X0000076

49’

50 §15
15. Expression Evaluation

Expression evaluation is done by recursive descent. Although this is somewhat less efficient
than using operator precedence, it 1s cleaner and makes it easier to deal with parentheses.

Expression evaluation procedures are divided into logical expression procedures and
arithmetic expression procedures. Logical expressions are expressions involving logical operators,
such as . AND.. They may include arithmetic expressions if relational operators, such as . £Q.,
occur inside the logical expression. Arithmetic expressions are constants, variables, function calls
or other arithmetic expressions connected by arithmetic operators. If the logical operators .AND.,
OR. and .NOT. are used in arithmetic expressions, the respective bitwise operations on the
operands are implied.

Since the type of an expression may not be known until after the expression has been
compiled, as in the case of an expression which is the parameter in a function call, the
compilation is always started by caling the highest level logical expression procedure, called
ARITH. ARITH expects the global lexeme pointer LXC to be pornting to the beginning of the
expression when it is caled, and leaves it pointing to the lexeme after the expression. All the
intermediate parsing procedures return the data type of the parts of the expression which they
parse to their next higher level calling procedure, and ARITH returns the data type that will be left
on the top of the stack when the whole expression is evaiuated.

Bitwise operations are done in U-Code using the set operations, with .0OR. corresponding to
set union (UNI) and . AND. corresponding to set Intersection (INT). The . NOT. operation IS
handled using the set difference operation (piF) between a full word of I's and the .NOT.
operand.

15.1 Syntax

The syntax for expressions is as follows:
logical-expression ::= logical-term (".0R." logical_term}
logical-term ::= logical-factor {".AND." logical_factorl
logical-factor ::= {".NOT."} relational-expression
relational-expression ::= ar i th-expr re I-operator ar i th-expr
rel_operator ::= ".LE." | ".LT." | “.GE." | ".GT."™ | ".NE." | ".EQ." |

wEET] e e
ari th-expr ::= term {addop term)

term : : = {addopl factor {mul top factor}
factor ::={primaryl {"sxx" primaryl
addop : : = "+" | "-"

mul top @ @ = "x" | "/"

primary ::="("ar i th-expr "}" | integer-constant | real-constnat |
complex-constant | logical-constant | variable | array-element |

§15.1 Expression Evauation 51

function-call
complex-constant ::= " (" arith_expr "," arith-expr ")"

logical-constant ::= ".TRUE." | ".FALSE."

I 5.2 Processing identifiers

When ARITH encounters an identifier, it must determine whether it is a variable, a call to a
stand ard function, a call to a user-defined function or a call using a function dummy argument.

There are two procedures for processing function calls; STANDARDFUNC, which processes calls
to intrinsic and standard external functions, and USERFUNC, which processes calls to statement
. functions and external functions. For the latter, refer to Section 19.

One of the fields of every record in the symbol table is s__FUNCSUBR. It has one of the
following values:

FUNCTYPE = (NOTEXTERNAL ,EXTERNAL,EXTSUBR , EXTFUNC ,STMTFUNC, INTRINSTDEXT,
PARAHPROC)

How a symbol functions in the program is determined by its FUNCTY PE attribute:

NOTEXTERNAL denotes that the identifier isa variable or array name, or the value for this field
has not yet been asserted;

EXTERNAL means the identifier has been declared in an EXTERNAL statement but cannot yet be
classified as EXTSUBR, extruxc or PARAMPROC;

EXTSUBR, ExTFUNC, sSTMIFUNG, INTRINSTDEXT, PARAMPROC denote an external procedure. an
external function, a statement function, an intrinsic or standard function and a procedure
parameter respectively.

Thisisthe way ARITH processes symbais.
1. Look it up in symbol table. This means that if the symbol is not aready there, it is entered,
with, among other things, the s_FUNCSUBR field set to NOTEXTERNAL If it has appeared in this
program unit before, then s__FUNCSUBR will aready contain the needed information.
2. If we dready know it is a user function, then call USERFUNC.
3. Elseif we already know it isanintrinsic or standard function, then call STANDARDFUNC.

4. Else if next lexeme is not a left parenthesis or it has been dimensioned, then it must be a
simple variable or array element; call LOAD__VAR (see Section 14).

5. Else if it is a dummy argument, it must be a function parameter; call procedure USERFUNC to
process the call.

5. Else if it isin the standard function table, set s__FuNcsuBm to INTRINSTDEXT to indicate that it
isastandard function and call STANDARDFUNC.

52 Expression Evauation § 15.2

7. Else it must be a user-defined subprogram; set S__FUNCSUBR to EXTFUNC to indicate this, then
enter it in the EXTERNAL table and call USERFUNC.

15.3 Type checking and error recovery inside ARITH

UFORT conducts full type-checking and always emits explicit conversion code whenever
type coercions are required. This eliminates the need to look out for implicit type conversions in

any trandator or interpretor of U-Code generated from UFORT.

The checks for type compatibility involving expressions are done using the procedures
MATCHTYPE or FITTYPE, which are caled on different occasions. MATCHTYPE is used when the
types of two values are to be matched, performing coercion on one of them if necessary.
Coercions are always done in the direction of integer vaues to rea vaues to complex vaues. For
example, if one of the values Is a rea and the other is a complex, the rea vaue is converted to its
corresponding complex number, and not the other way round.

FITTYPE is used when the type of a value is to be fitted to a desired result type, as in the
case of an assignment to a variabie. In this case, any coercion performed will be the conversion of

the value to the result type.

An additional procedure, MATCHSIZE, is called from both MATCHTYPE and FITTYPE. it is for
checking the correspondence of sizes after the types have been matched. If size incompatibility
occurs, the cvT or cvrz ingructions will be generated for size coercions, with warnings output at
the same time.

UFORT aways attempts to generate correct U-Code even if an error occurs. In the case of
an arithmetic expression, the fix-up of the generated U-Code and exit from the nested parsing
procedures are effected in the following manner. Each parsing procedure assumes no error occurs
in the procedures which it cals for parsing its subexpressions, and if it discovers an error itsalf, it
will finish parsing at the earliest possibility, generating any dummy instructions which it Is
expected to generate in normal processing. Thus, a call to ARITH will always finish with a single
result on top of the stack. Since the globa error message routine only outputs one error message
for each statement, the error message output is appropriately that from the parsing procedure that
first discovers an error.

15.4 Example

Fortran: IF (3.2 « I .EQ. 5.1 o * 3) GOTO 233
U-Code :
LDC R 36 3.2
Loo J M1 504 36 ;Yoad value of variable 1
CVT R J ;T1oat value of |
MPY R
MST 4
LDC R 36 5.1
PAR R MO O 36
LbC J 36 3
PAR J MO 036
CUP R 52 RIEXP952 2 | ;call exponentiation library function
EQU R
FJP L1001

uJp 11002

§15.5 Expression Evaluation 53

16.5 The assignment statement
The assignment statement works as follows:

It first looks up the symbol in the symbol table and calls LoAD__vAR__ADDR to load the
address on the stack, if necessary. It sets the globa iexeme pointer, LXC, to point to the lexeme
after the equa sign. It then calls ARITH to evaluate the expression, followed by ASSIGNVALUE to do
the assignment.

ASSIGNVALUE checks whether the expression is a string or not. If not, STOREVAR s called
(see Section 14). Otherwise, it calls STORESTRING,

STORESTRING s used to store a s&ring into any kind of variabte. It generates code to load
the string into the address indicated using the Mov instruction. If the string is larger than the
size of the variable, the extra characters are Ignored. If the string is shorter, the variable is
padded with the null character.

(X4

54 §16

16. Complex Number Arithmetic

Complex numbers are loaded on the U-Code stack as two real values, with the real part
second and the imaginary part on top on the stack. Since there is no U-Code instructions that
takes a pair of stack values as an operand, an operation on complex numbers consists of
composite U-Code instructions. The swp and pup instructions are used extensively. Storing
values into temporary locations and loading them back later are necessary.

Each complex number operation finishes with the complex result on top of the stack. If the
complex result is to be combined again with another complex operand, greater efficiency can be
achieved if one part of the previous complex result is ieft in its temporary location. But this then
involves greater complexity in the processing algorithm, and so is not pursued.

The methods implemented use the least number of temporary locations and also the least
number of toad and store instructions, athough they certainly do not generate the ieast number of
U-Code instructions or try to minimize the height of the U-Code stack.

In the following, the methods for complex number arithmetic are illustrated with examples.
Note that some manipulations on the first operand are performed on seeing the operator and
before processing the second operand. In the description, the two complex operands will be
referred to as (X 1,Y 1) and (X2,Y2) respectively.

16.1 Addition and subtraction

Fortran: c=Cl *c2
U-Code:
LOO R M 1 576 36 ;1oad XI
LOO R M 1 612 36 ;load Y1
SWP R R ;swap X1 and Yl
LOO R M 1 648 36 ;load X2
LOO R M 1 684 36 ;1oad Y2
STR R M 74 72 36 ;store Y2 temporarily
ADD R X1 + x2
SWP R R ;swap Y1 and (XI + X2)
LOO R M 74 72 36 ; load Y2 back
ADD R Y1+ Y2
STR R M 1 540 36 ;store (Y1 + Y2)
STR R M 1 504 36 ;store (X1 + X2)

Subtraction is similar, and is not repeated.

16.2 Multiplication

Fortran: c=Cl *C2

U-Code :
LOO R M 1 576 36 ;1oad XI
LO0O R M 1 612 36 ;load Y1
SWP R R ;swap Xl and Y1
NSTR R M 74 72 36 ;store XI temporarily
SWP R R ;swap Yl and Xl
pur R ;dupl icate Y1
LOO R M 74 72 36 ;10ad Xl back
LOO R M 1 648 36 ;load X2
LOD R M | 664 36 ;load Y2

R

STR M 74 108 36 ;store Y2 temporarily

$116.2

NSTR R
MPY
SUP
LOO
MPY
sus
SWP
LOO
MPY
STR
SwpP
LOO
MPY
LOO
ADO
STR
STR

voOoxn oo oo Povoo P

16.3 Division

Fortrsn:

U-Code:

LOO R
LOO R
SWP R
NSTR R
Swp
OuP
LOO
L0O
LOO
STR
NSTR
MPY
Swp
LOO
MPY
ADO
LOO
SQR
LOO
SQR
ADD
NSTR
DIV
SwP
LOO
MPY
STR
Swp
LOO
MPY
NE6
LOO
ADD
LOO
olv
STR
STR

:UJD;UIU:UJD:U:UJD;UJD;UIU;U:UIUJU:UIUJU:U:U:UIU;U:UIUJD;U;UIUJU;U

XX X =X

M

x>

TXTIXX =

=TXIXXXX

x>

2T X x>

74

74

74

74

74

74

72 36

108 36

72 36

72 36

108 36

72 36

1 540 36
1 504 36

c2

1 576 36
1 612 36

74

74

72 36

72 36

1 648 36
1 684 36

74
74

74

74

74

74

74

74

74

74

74

108 36
72 36

108 38

72 36

108 36

144 36

72 36
72 36

108 36

72 36

144 36

1 540 36
1 504 36

Complex Number Arithmetic

;store X2 temporarily

(X1 * x2

;swap Yl and (X1 * X2)

;10ad Y2 back

Yl * Y2

(X1 2 x2) - (Yl o« Y2)

;swap Yl and ((XI o X2) - (Y1 & Y2))
;1oad X2 back

JYl * x2

;store (Y1 * X2) temporarily

;swap X1 and ((XI * X2) - (Y1 * Y2))
;Yoad Y2 back

JX1 * Y2

;load (Y1 * X2) back

(X1 e Y2) + (Y1 * X2)

;store imaginary part of result
;store real part of result

;load Xl

;load Y1

;swap Xl and Y1

;store Xl temporarily

.swap Y1 and XI

;duplicate Y1

:Yoad back XI

;load X2

;load Y2

;store Y2 temporarily

;store X2 temporarily

(X1 % x2

;swap Y1 and (XI * X2)

;1oad Y2 back

;Y1 2 Y2

(X1 * X2) + (Y1 *Y2)

;10ad X2 back

(X222

:load Y2 back

;Y2r22

;X2%%2 + Y2%%2

;store (X2%%2 + Y2**2) temporarily
UIXT 2 X2) + (Y12 Y2)) / (X2%*2 + Y2%%2)
;$wap Y1 and rea part of final result
;1oad X2 back

;Y1 % %2

;store (Y1 * X2) temporarily

;swap Xl and real part of final result
;load Y2 back

:Xl o Y2

- (X1 % Y2)

;1oad (Y1l ¢ X2) back

(Y1 2 x2) « (XI o Y2)

;load (X2%2%2 + Y2%**2) back

d{YL # x2) - (XI *Y2)) / (X2%22 + Y2**2)
;store imaginary part of final result
;store real part of final result

55

56 Complex Number Arithmetic §16.4

16.4 Complex-valued functions

Since U-Code does not have multiple return values for functions, complex-valued functions
in Fortran are compiled into U-Code functions that return the addresses of their complex results.
The responsibility of loading the complex result of a function on the stack then rests on the cailee.
The following illustrates how a callee does the cal to a complex-valued function:

Fortran: C = CFUNC(C1)
U-Code:
MST 4
LDA M 1 576 72 ;1oad address of CI
PAR A M OO 36
CUP A 76 CFUNCO76 | 1 ;call to complex-valued function
OUP A ;duplicate address returned
ILOO R 0 36 ;load real part
SWP R A
ILOD R 36 36 ;load imaginary part
STR R M 1 540 36 ;store imaginary part

STR R M 1 504 36 .store real part

§17 57
17. Subroutine and Function Statements

Procedures susr__ sTMT and FUNC__STMT process the subroutine and function statements.
Both of them initiate a new program unit by caling procedure I NI TBLOCK The global flag
IN__SUBR__FUNC is set to TRUE whenever the compiler is processing a subprogram, and the
global pointer SEGPTR points to the symbol table entry of the subprogram name. All the
parameters of a function or a subroutine are passed by reference, thus each is alocated 4 quarter-
words of storage (the space required for an address).

Whenever an identifier used as a variable is encountered in the executable part of a
program unit, its sTYPE field in the symbol table entry is checked, and either the FUNCTYPE field
iS NOTEXTERNAL or the symbol table entry is identical to that pointed to by SEGPTR, in which case
it is the function variable. An identifier not satisfying these conditions cannot be used as a
variable in that program unit.

The fields ADDRESS, S-EXPLICI T, USED-RHS and USED-LHsS of the symbol table entry of a
subroutine are not used. Its STYPE field has to be set to NONE so that its use as a variable does
not pass the above test. The used and defined information for functions and subroutines is kept
in the external table instead.

17. 1 Initialization of a segment block

The initidization of the global variables when a new block is found is done by procedure
INITBLOCK. This procedure performs the following steps:

1. It clears the symboi and label tables, the list of equivalenced variabies and the list of po's
that are till open.

2. It restores the standard default values for variables not declared by modifying
IMPLIARRAY.

3. In the common table, it sets the fieid pTrRcoMLIsT for each area to NIL, since the compiler
is ready to build a new list of common variables for the common area in the next program unit.
comMoNsIZ, the variable in charge of the stz option, is also reset to 0.

4. It sets to FALSE the global variables AFTER__ STORAGE- ALLOCATI ON, which indicates if
the storage allocation of the variables declared in the program unit has occurred, and
HAS- RETURN, which indicates if a RETURN statement for the program unit has been encountered.

5. It reinitializes the displacement pointers for the level of the program unit.

6. It initializes the global variabie 1¥pEST, tO indicate that no logical IF statement is being
processed.

17.2 Processing dummy arguments

Procedure pumwy- processi NG Scans the parameters of a subroutine or a function.
alocating space for them and inserting their names, levels (always 4), addresses, and an indication
that they are dummy arguments in the symbol table.

58 Subroutine and Function Statements § 172 .

In allocating space for the dummy arguments in the level of the program unit, two memory
types, type R (registers) and M (main memory) are available. The maximum number of type R
memory available for parameters is set by the constant MAXPREGS. If the number of dummy
arguments exceeds MAXPREGS, the remaining parameters are alocated in type M memory. Unused
space of type R within the range specified by MAXPREGS is available for use as temporary
locations. The constant MAXPREGS is never greater than MAXREGS (See Section 13).

Eight quarter words of type M memory are aways reserved starting at address O for the
return value of a U-Code procedure.

Dummy arguments to muitipie entry subprograms are processed in a different way. See
Section 18.

17.3 Subroutine statement

After the call to INITBLOCK, routine SUBR__STMT inserts the subprogram name in the symbol
table with type noxe and level 4. The symbol table is updated by a call to FEXTNAME. Then it
calls the procedure to process the dummy arguments.

1 7.4 Function statement

Procedure FUNC__STMT calls INITBLOCK to initialize a new block, gets the type of the
function if this is specificaly indicated, gets its size modification if specified, inserts the function
name in the symbol table indicating its type, size and address (level 4, displacement 0), and
processes its dummy arguments by calling procedure DUMWY- PROCESSI NG,

The return value of complex functions are not returned in displacement 0 of the type M
memory at level 4 because 2 separate values have to be returned. Instead, space is alocated for it
after the space reserved for the function parameters on the level of the function, in type M
memory. The address of this space is the return value of the function, and so an indirect reference
is needed in order to access the complex returned value of the function. For this reason, such
functions are declared internally as being of type address.

7 7.5 Code generation

Code for the head of the new program wunit is generated in procedure
BLKCODE__GENERATION. This procedure is called by global procedure BLOCK after all the
declarations of the program unit have been processed. This is necessary because al the code for
the statement functions must be generated before the code for the head of the program unit IS
generated.

§117.6

17.6 Example

Subroutine and Function Statements 59~

Fortran: INTEGER FUNCTION X(1)

y1oad constant 2
;1oad address stored at address of |
;fetch content of this address

X =22 *]
RETURN
END
U-Code:
X0000076 ENT 3 4 76 11
LEx 1 1
LEX 272
LEX 373
PSTR A R 76 0 36
Loc J 36 2
LOO A R 76 0 36
ILOD J 0 36
MPY J

STR J M 76 0 36
PLOD J M 76 0 36
RET

PLOD J M 76 0 36
RET

OEF R 36

OEF M 72

END X0000076

;compute 2% |
;store at address 0 for the return value

;return generated due to the RETURN statement
.return generated at the end of all program blocks

stype R storage
;type M storage

60 §18
18. Multiple Entry Subprograms

Multiple entry subprograms in Fortran provide two features to the Fortran user: (a) a
program unit can be entered not just at the beginning of the program block, but at any defined
entry point in the program unit; (b) since a cal to an entry point involves only the dummy
arguments of that entry point, the parameters to the program unit can be set during different
cals, remaining intact in the instances that the program unit is not active.

Since multiple entry facilities do not exist in U-Code, UFORT handles the above features
by special means. Some restrictions are imposed to enabie UFORT to preserve its one-pass
characteristics { See Section 2.8).

18.1 The multiple procedures

A multiple entry subprogram in Fortran is compiled into a number of U-Code procedures,
one for each entry point (inciudmg the normal entry point at the beginning of the program unit),
plus an extra one which represents the body of the program unit. This will be called the
multientry procedure while the former ones wrii be caled entry procedures. Ail these procedures
are at the leve for program units (level 4).

The entry procedures bear the names of their respective entry statement names, and their
parameters are those of their entry statements. Each of these procedures calls the multientry
procedure with a single parameter giving it the entry point to branch to.

The multientry procedure always has only the single branch parameter as its dummy
argument. It contains the complete code for the body of the multiple entry subprogram, with U-
Code labels at the places of the entry statements. In addition, there is a jump table containing
jumps to the labels of the various entry points. On entrance to the multientry procedure, the
branch parameter is used to determine the jump to the correct entry point.

Since each entry statement has its own U-Code procedure, a call to an entry statement 1S
just an ordinary procedure call to the corresponding entry procedure. Therefore, calls to entries
are processed in the same way as ordinary calls.

Because UFORT is one-pass, it does not know about the entry points of a muitiple entry
subprogram until after the whole program unrt is processed. Thus, it has to retain the
information about the entry procedures and then generates the U-Code for them after the
program unit is processed. Also, the jump table has to be put at the end of the muitientry
procedure since the humber of entries is not known until that point.

The entry point identifiers are entered in the externa name table, since they are regarded
as user-defined subprograms to the rest of the program.

18.2 Global storage of parameter addresses

In order to preserve the identities of actual parameters during the time that the procedure 1S
not active, the parameter addresses are stored in space specially alocated for the muitiple entry
subprogram dummy arguments in the global storage level (level 1). During processing of the body
of the program unit, the symbol tabie entries of the dummy arguments indicate these addresses.

§18.2 Multiple Entry Subprograms 81~

The addresses of actual parameters are transmitted to the entry procedures in calls to entry
points. The entry procedures keep the call parameters in their own storage level (level 4). Before
caling the multientry procedure, the entry procedures copy the addresses of the actual parameters
to the locations in the global storage level, and in the multientry procedure, the parameters are
accessed only through the addresses as stored in the global locations. Each dummy argument has
a unigue location in the global level, even if it appears in more than one parameter lists,
including that of the subprogram heading. If a dummy argument is not involved in a call, the
content of its global location is not affected.

Because a dummy argument and a local variabie is accessed in different ways, UFORT has
to distinguish between these two types of variables when processing them. Thus, it IS necessary to
forbid the appearance of a dummy argument in the program unit before its appearance in a
dummy argument list.

18.3 The data structure

The data structure used in processing multiple entry subprograms is solely for the purpose
of retaining information for use in generating the jump table and the U-Code entry procedures
after the body of the program unit has been compiled. The record types used are defined as
follows:

(* THIS RECORD REPRESENTS AM ENTRY POINT FOR A MULTIENTRY PROCEDURE.
ONE IS CREATED FOR THE MULTIENTRY SUBPROGRAM HEADING AND EACH ENTRY
STATEMENT IN THAT SUBPROGRAM, IN THE OROER OFf THEIR APPEARANCES. THIS
IS USED FOR GENERATING THE ENTRY JUMP TABLE AT THE END OF THE MULTIENTRY
UCOOE PROCEDURE AND EACH CALLED UCOOE PROCEOURE FOR EACH ENTRY POINT. *)
ENTRYREC = RECORD
EXTPTR: POINTEXTNAME; (* POINTS TO ENTRY IN EXTERNAL TABLE @)

NUMARG , (* # Of PARAMETERS FOR THIS ENTRY POINT *)
ENTRYLABEL, (* THE UCOOE LABEL THAT MARKS THE ENTRY
POINT IN THE MULTIENTRY PROCEDURE *)
ENTRYPOS : INTEGER; (* THE POSITION IN THE MULTIENTRY
SUBPROGRAM RELATIVE TO OTHER ENTRY
STATEMENTS. IF SUBPROGRAM HEADING,
IT IS 0. *)

HEAOENTADOR: POINTENTADOR; {* THE LIST OF PARAMETER ADDRESSES *)
NEXT: ¢ENTRYREC;
ENO;

(* THIS IS USED FOR FORMING A LIST THAT KEEP THE GLOBAL ADORESSES ASSIGNED
FOR ENTRY PARAMETERS, | N THE ORDER OF THEIR APPEARANCES IN THE
MULTIENTRY SUBPROGRAM HEADING OR ENTRY STATEMENT. THIS LIST IS POINTED
TO FROM THE ENTRYREC RECORO THAT REPRESENTS EACH ENTRY POINT. THE
PURPOSE Of THIS LIST IS TO GENERATE THE COOE THAT COPIES AOORESSES OF
ACTUAL PARAMETERS TO THEIR G6LOBAL ASSIGNED LOCATIONS IN THE UCOOE
PROCEDURE FOR EACH ENTRY POINT. @)

ENTAOOR = RECORD

ADDR: INTEGER;
NEXT: $ENTADOR;
ENO;

The global pointer HEADENTRYLIST points to the list of the ENTRYREC records when
processing a muitiple entry subprogram. HEADENTRYLI ST is reset to NIL at the start of each
program unit.

62 Multiple Entry Subprograms § 184

18.4 Processing multiple entry subprograms

Procedure ENTRYPROCESSI NG processes an entry point definition. It is caled from the
SUBROUTI NE, FUNCTI ON Or ENTRY statement processors, the former two cases being the beginning
of the multiple entry subprogram. Its job is to form an enTryrec node and fill in the
information. The ENTRYREC node is then appended to the list pointed to by HEADENTRYLI ST. No
code is generated. The dummy argument list is then processed. The list of ENTADDR nodes
formed is attached to the eNnTRYREC node. If a dummy argument appears for the first time, a
location in the global leve is allocated for it.

Procedure ENTRYSTMT processes an entry statement. Apart from calling entryProcessi N,
it generates the U-Code label on site that marks the entry point represented by the ENTRY
statement in the multientry procedure.

Since the jump table for the multientry procedure is at the end of the procedure, a usp 1s
aways issued as the first instruction of this procedure. This jump directs the branch to the code
of the jump table.

The code related to the jump table is generated by procedure GENENTJUMPS, cadled from
procedure BLOCK Preceeding the Jump table is the code to load the branch parameter and an xJP
instruction which directs the jump with reference to the jump table. The Jump table is emitted
by traversing the list of entries pointed to by HEADENTRYLIST.

The code for the entry procedures is generated by procedure GENENTPROCS, called at the
end of procedure BLOCK One procedure is generated for each node in the list of entries. After
the procedure heading, a series of Lo strR is generated for the parameters to that procedure, for
copying addresses to global locations. Then follows the code to call the multientry procedure with
an integer parameter that conveys the entry point. For functions, the call will result in a value
returned, and additional code to take in the value and in turn return it is emitted.

18.5 Example

The following example illustrates how a multiple entry function is compiled.

Fortran:
FUNCTION SETVAL (P1l) ENTRY
SETVAL=P]
RETURN
ENTRY ASSIGN (P2)
p2 = Pl
RETURN
END

U-Code:
SETVAO77 ENT R4 77 11 ;the multientry procedure
LEX 1 1
LEX 2 72
LEX 3 73
PSTR A R 77 0 36 ;receive the branch parameter
uJp L1002 ;Jump to branch code
L1001 LAB O ;1abel for normal entry point
LOO A M 1 576 36 ;parameter Pl kept at level 1
ILOD R 0 36
STR R M 77 0 36
PLOO R M 77 0 36
RET
L1003 LAB O ;1abel for the ENTRY statement
LOO A M 1 612 36

§185

LOO A M 1 576 36

ILOO R O 36

ISTR R 0 36

PLOD RM 77 0 36

RET
L1002 LAB O

LOO JR 77 0 36

XJP J L1004 L1005 0 1
L1004 CLAB 2

ulp L1001

uJp L1003
L1005 LA8 O
PLOD R M 77 0 36
RET

DEF R 36

OEF M 72

END SETVAO77
SETVAO76 ENT R 4 76 11

LEX 1 1
LEX 272
LEX 373

PSTR A R 76 0 36
LOO A R 76 0 36
STR A M 1 576 36

MST 4

Loc J 36 0

PAR J M 00 36

CUP R 77 SETVAO77 11
STR R M 76 0 36

PLOO R M 76 0 36

RET

OEF R 36

OEF M 72

END SETVAO76
ASS1G078 ENT R 4 78 11

LEX 1 1

LEX 272

LEX 373

PSTR A R 78 0 36
LOO A R 78 0 36
STR A M 1 612 36
MST 4

Loc 4 36 1

PAR J M O O 36
CuP R 77 SETVAO77 1 1
STR R M 78 0 36
PLOD R M 78 0 36
RET

OEF R 36

OEF M 72

END ASS16078

Multiple Entry Subprograms 63_

;1abel for the branch code
;1oad branch parameter

;Jump table

;entry procedure for FUNCTION statement

;receive parameter P}

;load and store address for Pl
s in level 1

;call the multientry procedure

;receive value returned
,return value received

;entry procedure for ENTRY statement

,receive parameter P2

;1oad and store address for P2
sy in level 2

;call the multientry procedure

;receive value returned
;return value received

64 § 19

19. Subroutine and Function Calls

Calls to user-defined or standard or intrinsic functions occur in an expression, and calls to
subroutines occur in a CALL statement. Procedure USERFUNC processes calls to user-defined
functions or subroutines. Calls to standard or Intrinsic functions are processed by procedure
STANDARD- FUNC. The ways in which these calls are processed are described below.

19.1 Processing parameters in calls

Dummy arguments of subroutines and functions are allocated addresses in their own stack
frames. All parameters in Fortran are passed by reference. During execution of a subroutine or
function, these addresses contain the addresses of the actual parameters. The actua stering of the
addresses of the actual parameters into these locations during procedure invocations are done by
the PSTR ingtructions at the beginning of a U-Code procedure. In U-Code, the addresses to be
passed are put on the stack with the PAR instruction to indicate that they are parameters, and then
the procedure is called.

The arguments in a cal to a user-defined function or subroutine are processed in procedure
PROCESS- ARGUMENTS. The way an address is passed to the caled subprogram depends on the
form of the actual parameter. For a simple variable, array name or an array element, its address
is passed. For a constant, an expression or a string, a location in the globa (level 1) memory IS
allocated to store the fina value, and the address of this location IS passed. For subprogram
names, a double-word is alocated in the global memory in which the level and address of the U-
Code procedure (generated using the LDP instruction) is stored, and the address of the double
word is passed. For a dummy argument as parameter, which includes a subprogram name
argument to be passed on, the address as stored in the parameter location 1S passed.

7 9.2 Function call

Procedure UsERFUNC is used to scan and process the arguments of a function or subroutine
call and to generate the code that actually does the call.

This procedure counts the arguments with procedure cOUNT- ARGMENTS, generates an MST
U-Code ingtruction that indicates the beginning and size of the stack for the call, processes the
arguments with procedure PROCESS- ARGUMENTS, and generates the code for the call. The segment
number for the CUP instruction is obtained from field seGMENNUM of the symbol table for call to
a statement function and from the field NUMBER of the externa table for call to a subroutine or
an external function. Procedure USERFUNC updates the external table when an external

subprogram is called.

19.3 Subroutine call

Procedure CALL- sTATement Scans and processes a subroutine call. It gets and Inserts the
name of the subroutine into the symbol table. The data type for the subroutine is set to NONE
explicitly after its insertion in the table, because otherwise FSymMBOL would insert the default
Fortran type instead of NONE with the subroutine name. Procedure USERFUNC is then called.

§19.4 Subroutine and Function Calls

19.4 Standard function calls
Standard function calls are implemented tn three ways:
1. By adirect cal to an equivaent U-Code standard function (csP instruction).
2. By generating in-line code.
3. Byacall to afunction in the Fortran run-time package (CUP instruction).

A list of the functions and how they are implemented follows:

DESCRIPTION NAME ARGS RESULT U-CODE
absolute value ABS real real ABR
1AB int int ABI1
DABS doubl doubl ABR

(mod) CABS complx real intine
truncation AINT real real CUP
INT real int CUP
IDINT doubl int CUP

mod AMOD real real inline
MOD int int MOD

DMOD doubl doubl inline
max AMAXO int real CUP
AMAX1 real real CUP
MAX0 int int CuP

MAX1 real int CUP
DMAX1 doubl doubl CUP

min AMINO int real CUP

AMIN1 real real CuP

MINO int int CuUP

MIN1 real int CuP

DMIN1 doubl doubl Cup

int to real FLOAT int real CVT

real to int IFIX real int CVT

transfer sign SIGN real real CUP

ISIGN int int Cup

DSIGN doubl doubl CUP

positive diff DIM real real CuP

(0 if al<a2) IDIM int int CuP

doubl to real SNGL doubl real CVT
complex to real REAL complx real inline
complex imag AIMAG complx real inline

to real

real to doubl DBLE real double CVT
real to complx CMPLX real complx inline
conjugate CONJG complx complx inline
exponenti a7 EXP real real CSP EXP
DEXP doubl doubl CSP EXP

CEXP complx complx CUP
natural log ALOG real real CSP LOG

DLOG doubl doubl CSP LOG
CLOG complx complx CUP

common 1 og ALOG10 real real Cup
DLOGLO doubl doubl CUP
sin SIN real real CSP SIN

DSIN doubl doubl CSP SIN
CSIN complx complx CUP

66

cos

tanh
(1I8M)
square root

arctan

arctan (al/a2)

Subroutine and Function Calls

cos
DCOS
€cos
TANH
DTANH
SQRT
DSQRT
CSQRT
ATAN
DTAN
ATAN2
DTAN2

real
doubl
complx
real
doubl
real
doubl
complx
real
doubl
real
doubl

real
doubl
complx
real
doubl
real
doubl
complx
real
doubl
real
doubl

Csp
csp
CuP
CupP
CupP
CSP
T
CuP
CSP
CSP
CupP
CupP

Ccos
Ccos

SQT
SQT

TAN
TAN

§ 19.4

§ 20 67_
20. Statement Functions

Procedure sTMT__FUNCTION scans and processes a statement function. The dummy
arguments of a statement function are local to it. They have to be present in the symbol table
when processing the function definition, and they must disappear after the declaration Is
processed. if their names are the same as other variable names used in that program unit, they
must be recovered in the symbol table. In order to do this, it is necessary to save the symboal table
entries the dummy arguments replace. This is done by forming a list of records called
DUMMY-LIST. The fields saved in these records are those in the symbol table that can possibly be
altered while processing the statement function definition.

Procedure STMT-FUNCTION gets and inserts the name of the statement function in the
symbol table with LEVEL field set to 5, and ADDRESS field set to 0. It processes the dummy
arguments by calling procedure bummy - ARGUMENTS, which inserts them in the symbol table and
records the old contents in the DUMMY-LIST records pointed to by HEAD- Duvwy. The dummy
arguments are alocated addresses at level 5 in the same way as dummy arguments for program
units are dlocated at level 4.

A segment number is assigned to the statement function segment and code is generated for
the head of the segment by calling procedure BLKCODE__GENERATION, Then procedure
ASSIGNVALUE, which is aso used in processing the assignment statement, is called to evaluate the
expresston and store the result of the expression in the space reserved for the statement function
name at level 5. In this process, temporary locations may be generated and, if so, they will be
alocated in the level of the statement function.

Finally, code is generated for the return of the statement function, and the dummy
arguments of the function are erased from the symbol table by calling procedure ERASE__DUMMYS,
which aso recovers the old contents in the symbol tabie from the DUMMY-LIST records.

68 §21

21.p0 Loop

A DO statement causes code to be generated at two different places at the positions
corresponding to the DO statement and at the Fortran label that marks the end of the range of the
DO loop. In the former, code is generated for the initialization of the index variable of the loop,
as well as for the final value and step amount if they are expressions, and a U-Code labd is
emitted to mark the beginning of the loop. In the latter, code is generated to increment the index
variable by the step amount, to check if it exceeds the final value, and to branch back to the label
that initiates the loop if it does not exceed the final value.

A list of opened do-loops is built to control code generation for do-loops. This works in
the form of a stack to keep track of the nesting of do-loops. Each time a new DO statement is
processed, an entry is created for it in the stack. CURRENTDO is a global variable that points to the
record of the most recently opened do-loop at the top end of the stack. There is a dummy entry
that marks the bottom of the stack.

The end of the range of a do-loop is determined as follows. When a new label number 1s
defined, this is checked against the end label number of the innermost DO. If it matches, then the
innermost DO is terminated, and the same check is continued for the next outer DO. This process
terminates when the current label number is not the same as the label number of the po in the
top po stack. The label is then checked against the end label numbers of all the remaining, outer
po's. If there is any match, indicating an illegal nesting of do-loops, an error is reported. Also, at
the end of a program unit, if the bottom marker is not at the top of the DO stack, which indicates
one or more do-loops have not been terminated, an error message is generated.

The Do stack is formed with the DOENTRY record of the form:

DOENTRY = RECORD

PREVIOUS : ¢DOENTRY; (* POINTS TO NOOE OF PREVIOUS
NESTEO 00 *)

CONTROLVAR : #SYMBOL: {* POINTS TO SYMBOL TABLE ENTRY OF
CONTROL VARIABLE *)

STMTLABEL, (* FORTRAN LABEL THAT ENDS THE
THE RANGE OF THE LOOP *)

PCOOELABEL : INTEGER; (* PCOOE LABEL INSERTED WHERE
THE DO-LOOP BEGINS o)

STEPKINO,

UPPERKINO : OOKINO;

EXPLEVEL, (* IF EXP. THE LEVEL OF THE TEMP
LOCATION USED *)

STEPAMOUNT, (* IF CONST KIND THEN CONST VALUE *)

UPPERAMOUNT : INTEGER; {* IF EXP KIND THEN TEMP LOC *}

STEPMTYPE

UPPERMTYPE : CHAR; (o MEM TYPE OF THE TEMP LOC USED *)

STEPVAR, UPPERVAR : POINTSYMBOL; (* FOR VAR KIND *)
END;

The DO loop routines are also used in processing implied loops in the READ and WRITE
statements.

2 1.1 Do-loop initialization

Procedure postatenent scans and processes a DO statement. It pushes an entry in the Do
stack, gets the Fortran label that terminates the range of the do-loop and inserts it in the en try

§21.1 DO Loop 69

just created, processes the control part of the do-loop by caling procedure DO CONTROL and
generates a U-Code label indicating the beginning of the do-loop.

In procedure Po__CONTROL, the control variable IS located and inserted in the symbol table.
Code Is generated for the computation of its initial value and storage in the variable’'s memory
location. The values or addresses of the final and increment values are saved in the most recently
crested DOENTRY record. If either of these is an expression, then the address is that of a newly
allocated temporary location. This type of temporary is never released, since jumping out of and
back into do-loops is supported.

The initial value, step amount and final value can be arbitrary expressions, which will be
coerced to integers. The evaluation of these expressions happens only once, before the loop is
entered, so a change in any of the variables that make up the expressions will not affect the
number of times the loop is iterated. If, however, the step or final value is a simple integer
variable, then changing it will affect the number of times the loop 1s executed. The default value
of the increment amount is 1 if none is specified.

2 t .2 Do-loop termination

Procedure CLOSEDO generates code for the termination of a do-loop. It is called by
procedure BLOCK each time a Fortran label IS found in the source code and the stack of active poO’s
is not down to the bottom mark. It checks if the label just found corresponds to the Fortran label
that terminates the range of a do-loop, stored in the top entry of the bo stack. If it does, code IS
generated to increment the control variable and test for the termination of the loop. Once code
for the current DO is generated, the previous entry in the stack becomes the new CURRENT and it is
checked if the label in LABNO also indicates the end of its range. If it does, code is also generated
for its termmation. This is repeated until the label in LABNO is not the end of the range of the
current top DO record. Then, the rest of the DO records are checked, and any that should be
terminated by LABNO causes an error message which indicates bad DO nesting.

This procedure aso checks the kind of the statement that terminates the loop and gives an
error if it is one of the following: RETURN, PAUSE, STOP, DO, Goto, arithmetic 1F and ENTRY.

The generation of code for the termination of the loop is done in procedure
GENCODE __FOR- DO.

2 1.3 Do-loop example

Fortran:
DO 10 I=3,(J+3),2
code
10 CONTINUE
7 STOP
END
U-Code:
Loc J 36 3

STR JMI150436 ;store initial value of control variable

LOO J M 1 540 36

LoC J 36 3

ADD J ;evaluate loop termination value

STR J M 74 72 36 ;store termination value in a temporary location
L1002 LAB O ;1abel to mark beginning of DO loop

DO Loop §21.3

code for statements inside 1oo0p

L1001 LA8 O ;label to mark tnd of the range of the DO loop
Loo J M 1 504 36 ;load value of control variable

INC J 2 sincrement it

STR J M 1 504 36 ;update the control variable

Loo J M 1 504 36 ;load control variable back

LOO J M 74 72 36 ;load loop termination value

GRT ¥ ,compare them

FJP L1002 sjump back if still smaller

§22 71
22. GOTO Statements and Statement Labels

ForvaT - Statement labels are entered both in the label table and the symbol table. All other
labels are inserted only in the label table. The first ume a label occurs, a U-Code label is
assigned to it and inserted in the labdl table.

The check as to whether a statement label referenced is defined or not can be made only at
the end of a program unit, since the left- and right-hand-side occurrences are processed
independently. Procedure LABEL__LHS_CHECK IS called at the end of every program unit to
search through the label table. For each label used only on the RHS but not on the LHS, a
warning is given and the U-Code labdl is generated at the end of the code for the program unit
with traps. Jumps to the undefined statement labels during execution will then cause a halt.

The three kinds of GoTo statements are processed as follows:

22.1 Unconditional GOTO

A simple WP ingtruction is made to the corresponding U-Code labd.

22.2 Computed GOTO

This compiles into the XJP instruction, which corresponds to the CASE statement of Pascal.
First, code to load the branch variable is generated by caling procedure LoAD__vAR, which takes
care of cases that the variable is simple, dummy or is an array element. The XJP instruction 1s
then generated, with the branch table immediately following. This contains a list of uJ?’s for the
statement labels.

22.2.1 Example

Fortran: Goto (10,20,30),!

U-Code:
LOO Jd M 1 SO4 36 ;1oad variable 1
XJP J LIOOI L1002 1 3 ;Jump according to table
L1001 CLAB 3 ;jump table of length 3
uJp L1003 ;Jump to statement 10
uar L1004 ;Jump to statement 20
(UN]3] L1005 ;Jjump to statement 30
L1002 LA8 O ;end of jump table

cdl to execution error routines

22.3 Assigned GOTO

Because U-Code labels referenced in U-Code jump instructions must be label names, code
for this Fortran statement 1S somewhat Inefficient.

There are two ways this statement could be compiled into U-Code. The first IS to use the
XJP ingtruction, which 1s like transforming the assigned GoTo statement into the corresponding
computed GoTo. The second method, which is the one used, does not use XJp, and generates

72 GOTO Statements and Statement Labels § 223

denser U-Code. The label variable is multiply loaded and its vaue compared one by one with
each statement label in the list until equality is found. Then the corresponding jump is made.

If the label variable is a simple variable, the multiple loading is done by calls of LOADVAR.
If it is an array element, the subscript expression must be evaluated only once. Thus, LOADVAR s
called only once, and the value loaded is saved in a temporary location. The value stored in this
location 1s then multiply loaded.

22.3.1 Example

Fortran: coto J,(10,20,30)
U-Code:
L0O0O J M 1 5%4 36 ;load label variable]
LDC 3 36 10 ;1oad constant 10
NEQ J ,compare
FJP L1001 ;1f equal, jump to statement 10
LOO J M 1 504 36 ;1oad J back
Lbc J 36 20 ;lead constant 20
NEQ J ;compare
FJP L1002 ;if equal, jump to statement 20
LOO J M 1 504 36 ;1oad J back
LDC J 36 30 ;load constant 30
NEQ J ,compare

FJP L1003 ;1f equal, jump to statement 30

-

§23 73

23. The Arithmetic IF and Logical IF Statements

23.1 Logical IF

The logica IF is the only type of Fortran statement that is compound. The compilation is
separated into two parts. The first part (procedure LOGICALIF) processes the logical expression
enclosed by the parentheses. Procedure LocicaLexpr s called which will generate the U-Code
that evaluates the IF condition and puts the result on top of the stack. The outermost pair of
parentheses is not checked here since they have been checked inside procedure cLAssIFY. The
global variabie | FDEST serves as a flag to indicate whether current processing is inside a logica IF
statement. it is initialized to -1 in procedure iNiTBLOCK When a logical | F statement is
encountered, it is set to the number of the U-Code label which will be generated a& the end of the
whole | F statement. Code is generated to jump to this label if the IF condition is false.

The second part is compiled as an independent Fortran statement, the only difference being
that IFDEST is set, and consequently a new statement is not read in from the source file. A check
is made if the type of the statement is among those alowed as the second part of a logica IF
statement. After the second part of the logica IF Is complied, the U-Code iabei IFDEST is
generated and IFDEST is reset to -1.

Note that because the second part is processed as an independent statement, other statement
processing procedures cannot assume that the iexemes for the statement start at position 1.

23.2 Arithmetic IF

The arithmetic expression in the first part of this I F statement is processed by calling
procedure ARITH, which will generate the U-Code to evauate the arithmetic expression and put
the result on top of the stack. Again, the outer pair of parentheses is not checked since they are
checked inside CLASSI FY.

Note that because of the tAree-way branch, two tests have to be made of the value on top of
the stack. Since the value disappears after a test, code is first generated to store the top-of-stack
value in a temporary location. Then follows code to make the tests and do the jumps. The form

of the U-Code generated is:

Fortran: IF (J+3) 10,20,30
U-Coda:
LOO J M 1 504 36 ;1oad varlablr J
LDC 3 36 3 ;1oad constant 3
ADO J ;compute (J+3)
NSTR J M 74 72 36 1save result
tbc J 36 0
GEQ J ;compare result with o
FJP Lio0l ;jump to statement 10 if <0
toc J 36 0
LOD J M 74 72 36 ;1oad result back
NEQ J ;compare result with 0 again
FJP L1002 ;jump to statement 20 if =2 O

WP L1003 ;otherwise, jump to statement 30

74

24. The PRINT Statement

The syntax of this statement is based on the way the Pascal standard output routines are
called, so the processing of this statement is done in a straightforward manner.

After generating the call co the Pascal output initiaization routine, a loop is entered which
iterates for the list of output Items. in each iteration, artH is first called to leave the expression
on top of the stack. The following lexemes are scanned co check for any specification of output
field width. The corresponding Pascal output routine is then called according to the type of the

expression evaluated: string, integer, boolean, reai or complex.

24.1 Example

Fortran: PRINT 'X=',65:1,'Ca',(3.,2.)

U-Code:
LDA
CSP
LCA
LocC
LoC
CSP
LoC
Loc
CSP
LCA
LoC
LoC
CSP
LoC
LDC
STR
LoC
LoC
CSP
LOO
LDC
LoC
cse
CSP
cse

M 11179
A SIO0 11
M18 'X='
J 36 2
J 36 2
A WRS 41
J 36 5
J 36 1
AWRI 31
M 18 'Cs’
J 36 2
J 36 2
A WRS 41
R 36 3.0
R 36 2.0
R M 7472 36
J 36 14
J 36 9
AWRR 41
R M 7472 36
J 36 14
J 36 9
A WRR 41
A WLN 11
PEIO 10

;1oad address of file OUTPUT

swrite 'Xs!

;write integer §

;write 'Cs’

;store imaginary part temporarily

,write real part
;1oad back Imagrnary part

,write imaginary part

§125 75,
2 5. FORMAT Statement Processing

FoRWAT Statements are processed in two stages. First, the FORMAT statement is scanned and
the information for the FORMAT statement IS entered in a created FORMILI ST record. The list of
these records about the FORMAT statements in the various program units is pointed to by the
global variable HEADFORMTLST. The structure of the FORMTLIST record is:

FORMTLIST = RECORO
PTRFMTSTR: tFORMTSTR;{* POINTER TO THE FORMAT STRING LIST *)

NEXT:#FORMTLIST;
AOORESS,
LEVEL : INTEGER; (* ADDRESS WHERE FORMAT STRING | S STORED @)

END;

The FORMAT string specification is also saved in a list formed with records called FORMTSTR
with the structure:

FORMATSTRING . PACKED ARRAY [1..MAXCHARINLCA] OF CHAR;

FORMTSTR = RECORD
STR:FORMATSTRING; (* FORMAT STRING *)
NEXT:$FORMTSTR;

END;

The purpose of this second list is to save space. Only increments of MAXCHARINLCA units Of
storage need be allocated by the complier. The constant MAXCHARINLCA defines the limit on the
length of the literal alowed in the U-Code Lca Ingtruction. Currently, it is 64. Thus, another
advantage of this scheme is that the characters on each record can be loaded by a single Lca
instruction.

25.1 The FORMAT statement

Procedure rorwar- st scans and processes a FORMAT statement. It gets the label of the
FORMAT statement in character form and inserts it into the symbol table indicating that it 1S a
FORMAT label. An address is aliocated to the FORVAT label which hoids the address of the location
where the FORVAT string specification is stored.

A new entry in the list of formats, FORMTLIST, is created and the following information IS
obtained and inserted: (a) the address and level assigned to the FORVAT label and (b) the pomter
to the FORMAT string specification list.

The FORMAT string specification is copied into the FORMSTR list character by character. Any
unused space in the last FORMTSTR record is cleared to blanks.

25.2 Initialization of formats

Procedure INIT__FORMATS is used to generate code for &he loading of the FORMAT string
specifications 1nto memory at execution time. This procedure is called by procedure
VARINITIALIZATION which is in charge of the initialization of variables for the compiler. (See

Section 9.5.)

76 FORMAT Statement Processing § 252 -

For each FORMTLIST record, procedure INIT__FORMATS generates a series of LCA- LDA- MOV

instructions according to the length of the FormTsTR list. By the sequences of the three
instructions, the segments of each FORMAT string stored in the FORMISTR records are moved to be
adjacent to each other in ablock starting at address DISPLACEMENT, level 3. The LDA-STR

instructions then follow which stores the address where the FORVMAT string begins at the address of
the FORVAT labdl.

§26 -

26. Read and Write Statements

26.1 Run-time //0 routines

Fortran alows lists and loops within the BEAD and WRITE statements. In order to manage
the fairly complex variable sequences, the implementation uses multiple calls to system routines
listed below:

26.1 .1 Initialization of /0 routines

The run-time routines require initialization at the start of execution of any Fortran
program. Therefore, a call to

FILEIB31

is aways generated at the beginning of a Fortran program. This initidizes the file table which
describes the status of each file or device. All of them are assumed to be closed. The file for the
output of execution error messages is opened. An error flag for the 1/O run-time routines is
initialized.

26.1.2 Initiaiization of single 1/O statement

One call to an initialization routine before executing each READ/WRITE statement is
required before any data transmission call can be made.

READIB28
WR1 T1825

Parameters: integer device number and address of FORMAT string.

The device (or file, as the case may be) is opened if not already opened in the
corresponding mode. In output, the cursor to the I/O buffer is initidlized. In input, the first line
is read into the I/O buffer. If the FORMAT pointer is not NIL (unformatted 1/O), the variables for
processing the FORMAT string are initialized.

26.1.3 Data transmission

Each call transmits one value, using one entry from the FORMAT description. These calls
may be embedded in lwps within the calling program, such leops being invisible to the I/O
routines.

READY839
WRI TV027

Parameters: address of data value,
size of data value in bytes and _
coded type of data value (O integer,1 real,2 logical).

These routines scan the FORMAT string untii the next 1/0O field is found, and service the

78 Read and Write Statements § 26.1.3

FORMAT string’s contents as it scans past them. The value is transmitted according to the field
description (which also implies the type of the data value), taking into account the size of the
variable given as the 2nd parameter. If I/O is unformatted, then the 3rd parameter (type) is
taken into account to determine the desired conversion.

26.1.4 Termination

These calls finish the transmission for each READ WRI TE statement, release buffers and
return an error code. Any further I/O has to begin with initialization calls.

READT823
WRI TT026

Parameter: address of indicator.

The FORMAT string is scanned until the end or the next 1/O field if it occurs first. In
output, the 1/0 buffer is written out. The indicator is a quarter-word in the global memory and
is set to one of the following:

0. 1 /0 perceived correct
1. I/0 error detected
2. I/O0 end of file detected

26.1.5 Rewind
Lastly, a callto

REWIN032
Parameter: file number

is generated at a rewNDp or oren statement in the Fortran source program: This causes a reset if
the file has been reset before, or a rewrite if the file has been rewritten before. Otherwise, no
operation is performed. This enables the user to start at the beginning of the file again for the
same operation on the file.

26.2 Compiler routines

Procedure 10 STATEMENT Scans and processes the READ/ WRI TE statements. Parameter
READI NG to this procedure indicates the kind of I/O statement, being TRUE for a READ statemen t
and FALSE for a wrITE Statement.

The genera form for the 1/0O statements is :

READ (DEVICE,FORMAT) | i st
READ (DEYICE) | ist 1 if unformatted

where i i stis alist of variables that may only include simple variable names, array names and
array elements. OEVICE s the device number and FORMAT may be a FORMAT statement label or an
array name.

-

§26.2 Read and Write Statements 79°

For the 1/O of arays, when no control variable is explicitly established, two temporary
locations are obtained. These temporary locations, pointed to by variables MAXPRINTARRAY and
CONPRI NTARRAY, store the upper bound (number of elements in the array) and index respectively
for the array.

Procedure 10__STATEMENT gQets &he device number and the FORVAT specification (either a
FORMAT statement label or an array name), and generates the code to call the run-time routines for
the initialization of the 1/O of the current statement, the code for data transmission of the
variables {by calling procedure LI ST- PROCESsING) and the code to call the routines for the
termination of the 1/O for the statement.

Procedure LI ST- PROCESSI NG processes the variables in an /O statement. It is caled by
procedure 10__STATEMENT the first time, and by itself recursively when an implied po or another
list of variables surrounded by parentheses is found in the list being processed. Parameter
IN-DO- | MPLI ED indicates if the list of variables being processed belongs to an implied DO or is
just a list of variables surrounded by parentheses.

L sT- PrRocessl NG tooks at each element of the list. if it is a simple variable, array element
or an array, procedure VARNAME is called. If it is an implied po, which is detected by procedure
CHECK- DO- | MPLI ED, procedure po__| MPLIED 1s called to processit. If it is a simple list, procedure
LI ST- PROCESSI NG IS called recursively to process this inner list, with 1 N-DO- 1 MPLI ED set to false.

Procedure VARNAME generates the code for the [/O of a simple variable, array element or a
complete array. For the simple variable or array element, the parameters to the system routine that
does the data transmission are loaded and then a call to it is generated. For the complete array, a
specia loop in U-Code is generated. This loop is preceded by, in their order, the code to compute
the number of elements of the array and store it in MAXPRINTARRAY, the code to initialize
CONPRINTARRAY, the indexing location, to 0 and a U-Code label to mark the beginning of the
loop. Inside the loop 1s the code to load the parameters for the system routine and a call to it. The
address of each element of the array is computed by loading the initial address of the array and
then indexing it with the value at CONPRI NTARRAY. At the end of the loop is the code which
increments the index and tests its value against that in MAXPRINTARRAY for loop termination
condition.

Procedure po-IMPLIED processes an implied po. First, it processes the control part of the
do-loop using procedure DO__CONTROL; then it generates the code for the list of variables in the
Implied po by caling procedure LIST__PROCESSI NG with the parameter | N-DO- | MPLIED ser to true;
after this it generates the code to close the do-loop using procedure cLosepo. Each implied DO has
associated a dummy Fortran label {above 100000 to avoid any possible duplication with an
existing Fortran label) that is used by the cLosepo routine. These dummy labels are not Inserted
into the label table.

26.3 Code generated

Fortran: INTEGER C(3,3),P(5)
1)

READ (4,8) (C.{P(1),I=N.M,1))
U-Code:
MST 4 ;initialiation:
LoC J 36 4 ;10ad device number
PAR Jtl 0 O 36
LOO A M 1 1008 36 ;1oad address of FORMAT string
PAR A M 1 1008 36
CUP P 28 READ1028 2 0 ;call initialization routine

LdC J 36 9 ;1/0 of array c

80

STR d M 74 72 36

L0C
STR
1.1001
MST
LDA
Loo
IXA
PAR
LoC
PAR
Loc
PAR
Cup
LOO
INC
STR
LOO
LOO
GEQ
FJpP

LOO
STR
L1002
MST
LDA
LOO
OEC
IXA
PAR
Loc
PAR
LoC
PAR
Cup
LOO

INC
STR
LOO
LOO
GRT
FJpP

MST
LDA
PAR
Cup

code to check value of
trap execution

J 36 0
J M 74 108 36

LAB O
4

M 15040
J M 74 108 36
J 36
A M OO 36
J 36 4
M 00 36
36 0
M 0O 36
30 READVO30
M 74 108 36

1

M 74 108 36
M 74 108 36
M 74 72 36

L Calu Gt LT we

L1001

J M1 1152 36
J M 1 1116 36
LAB 0

828 180

1
1 1116 36

w— ==X >

6

M 0 0 36

36 4

M0 036

36 0

M0 O 36
30 REAOVO30
1 1116 36

1 1116 36
1 1116 36
1 1188 36

Lot Lot wa e
E Y

L1002

1 396 36
0

4
M
M 0 36

29 REAQTO29

A
P

If

30

30

10

Read and Write Statements §26.3

;store sire of af array C in MAXPRINTARRAY

in COMPRINTARRAY
loop

;load initial value
;label for beginning of generated

;1oad address of array element:

;1oad size of data value
;load coded type

;call data transmission routine

;1oad control variable from CONPRINTARRAY
vincrement it

;update it

;1oad it back

;1oad final value from MAXPRINTARRAY
,compare

;jump back if smaller

;implied 00 loop:

.save initial value in control variable

;1oad address of current element of P

;1oad size of data value

;load coded type

data transmission routine
;10ad control variable
;increment control variable
;update control variable

;10ad back control variable
;load termination value
,compare

;jump back if not reached

;call

11/0 termination:
;load address of indicator
;call to I/O termination routine

indi cator returned and

in error

§27 81
27. The Fortran I/0O Run-time Package

The Fortran I/O run-time routines are used for the execution of READ and wri TE
statements. These routines are written in Pascal and make use of the lowest level Pascal 1/0 run-

time routines.

The 1/O routines require the double precision facility in Pascal to properly process the 1/0
of doubie precision variables in Fortran. When this facility is not available, double precision I/O
may be processed only up to the accuracy alowed by single precision. The 1/O requirements of
guarter- and half-word variables are completely handled.

The 1/O routines are stored in loader format along with the intrinsic and standard function
run-time routines, and linked to the main program by the linker for execution.

27.7 Structure of the //0 package

The separate parts that make up the 1/O run-time package are listed with their procedures
in the order as they appear in the program:

1. error procedure - Thisoutputs I/O execution error messages and Sets error flags:
(a) procedure ERROR.

2. routines to handle the operations of the 1/O buffer:
(a) procedure CALLNEWOUTLINE;
(b) procedure NEWOUTLINE;
These write out the buffer as the next line in the output file.
{c) procedure CALLNEW NLI NE;
(d) procedure NEWINLINE;
These input the next line in the input file into the buffer.
(e) procedure PUTCHAR - This puts the next output character to the I/O buffer;
(f) procedure GETCHAR - This gets the next input character in the 1/0O buffer.

3. procedures tg process the Forwar String:
(a) procedure NEXTFIELD - When caled, it will scan the format string starting from where it
was hefore, processing what it encounters until it gets to the next 1/O field. The

specifications of the field are returned.

4. procedures for output conversions of data values:
(a) procedure PRIFIELD - prints an integer in an |-formatted field;
(b) procedure PRFFIELD - prints a real number in an F-formatted field;
(c) procedure PREFIELD - prints a real number in an E-formatted field;
(d) procedure PRGFIELD - prints a real number 1n an G-formatted field;
(e) procedure PRLFIELD - prints a boolean in an L-formatted field;
(f) procedure PRAFIELD - prints the contents of a variable in an A-formatted field.

5. procedures for formatted input conversions of data values:
(a) procedure REIFIELD - reads in an integer in an I-formatted field;
(b) procedure reereriELD - reads in a red number in an E-, F- or G-formatted field, the
effect being defined as identical;
(c) procedure RELFIELD - reads in a boolean from an L-formatted field;
(d) procedure REAFIELD - reads in the characters in an A-formatted field to a variable.

82 The Fortran 1/O Run-time Package § 271

6. procedures for unformatted input conversions of data values:
(a) procedure urinmineuT - Scans and inputs an integer;
(b) procedure UNFREALINPUT - scans and inputs a real number;
(c) procedure UNFBOOLINPUT - scans and inputs a booiean.

7. procedures called externally:

(a) procedure WRITINI (U-Code nameis READI 026);
(b) procedure WRITTRM (UR | TI823);

() procedure WRI TVAL (WRITV@25);

(d) procedure READINI(READI826);

(e) procedure READTRM (READT827);

(f) procedure READVAL (READY828);

(g) procedure FILEINI (FILEI823)

(h) procedure REWND (REWINB39).

In writvaL and ReaDVAL, for formatted 1/O, 3 NEXTFIELD is first called, followed by the
appropriate procedure in 4 or 5. For unformatted I/O, in WRI TVAL, the standard field width is
assigned and the appropriate procedure in 4 (a), (c) and (e) is caled. In READVAL, the appropriate
procedure in 6 is called.

Note that the procedures in 4, 5 or 6 treat the transmitted data value in double-word size.
WRI TVAL will do the necessary shifting for data values of smaller sizes before calling 4 READVAL
will do the necessary shifting after calling 5 or 6. PRAFIELD and REAFIELD, however, are
exceptions since the number of transmitted characters is different for variables of different sizes
(four characters per single-word, 9 bits for each character). These two procedures are caled from
WRITVAL and READVAL with an extra parameter that gives the size information of the variable.

27.2 Processing the FORMAT string

The entities allowed in a rorwat string are: numbers, Hoilerith string, literal string
(enclosed in quotes), comma, slash, X, the left and right parentheses, P, and the field specifications
for I, E, F, G, L, A fidlds. Items enclosed in parentheses form a group. The number of groups in
the same level is not limited, but only three levels of grouping are allowed, including the
outermost group which is the FORMAT string itself.

Procedure NEXTFIELD is in the form of a loop which scans and processes one of the above
entities each round. Two booleans COMMAED and couNTED keep track of the syntactic
information in checking for syntax errors. The comma is not mandatory in the FORMAT string in
cases where its absence causes no ambiguity.

Variables GpcounTt2 and GpcounNT3 keep track of the current position of the cursor within
groups. When GpcounT3 is 0, the cursor is not within a 3rd level group. When the cursor is
within a 3rd level group, GPCOUNT3 indicates the number of times it still has to scan across that
group. It is decremented each time the end of the 3rd level group is reached. The same holds for
GPCOUNT2 and 2nd level group. GPBEGIN1, GPBEGIN2 and GPBEGIN3 give the starting position of

the current groups of the respective levels.

When the scanning has reached the end of the FORVAT string but still has yet to look for
the next 1/O fieid, back-up is made to the beginning of the last 2nd level group. For this
purpose, LASTGPPOS and LASTGPREP will hold the starting position of the last 2nd level group (or
the 1st level group - the rormAT string itself, if no 2nd level group exists) and its repetition
factor.

-

§27.2 The Fortran 1/O Run-time Package 83.

To prevent Nexrrieco from looking for a field indefinitely when in fact no field exists
from its back-up point to the end of the FORMAT string, the boolean variable FI ELDFOUND is used.
Whenever the end of the FORVAT string is reached, there will be back-up only if FIELDFOUND is
true. FIELDFOUND is set false when scanning the beginning of the FORMAT string and at the
beginning of every 2nd-level group that can possibly be the back-up position for the FORMAT
string. It is set to true whenever a field is found.

At the end of the I/O statement (when procedure WRITTRM Or READTRM s called),
NEXTFIELD has to be called the last time to bring the scan to the next I/O field or the end of the
FORMAT string. Here, FIELDFOUND is first set to be false before calling NEXTFIELD so that no
backing up is done at the end of the FORMAT string.

2 7.3 1/0O management

An 1/O buffer of fixed length (currently 256 characters) is maintained. This stores the next
output line being built, or the next input line from the input file. In output, the buffer is written
to the output file when a new output line is specified. In input, the next line from the input file
is read to the buffer when the next input line is specified.

The length of the output or input line is variable. If the output line exceeds the length of
the 1/O buffer, a next output line 1s automatically created to accomodate the extra characters. if
the input line exceeds the length of the I/O buffer, the input line still assumes its length, but the
characters to the right of the line limit that cannot be accomodated within the buffer are ail taken
to be the blank character.

27.4 Internal-external correspondence of data values

In standard Fortran, the type of conversion in formatted 1/Q is determined by the field type
in the FORMAT s&ring, and not according to the type of the variable in the READ or WRITE
statement. The same content (bit pattern) of the location in I/O is to be treated as different types
of data values according to the field types specified. (This is necessary since, for instance, no
string variable exists but the character type field (A-field) does exist.) The Fortran user has to
make sure that his variables in formatted 1/O have the right corresponding field type in the
FORMAT string for the correct values to be transmitted.

In the implementation, the data type
IOCOC = recorp

CASE INTEGER OF
0: (INTVAL: [INTEGER);
1: (REALVAL: REAL);
2: (CHARVAL: ARRAY[1..4] OF CHAR);
3: (BOOLVAL: BOOLEAN)
END;

alows the decoding of the content of a memory location as different types of data values. The
above default is implemented by making a variable of this type as the reference parameter for the
/O variable in the externally called procedures READVAL and WRITVAL After caling NEXTFIELD,
the type of conversion is known from the field type, and the corresponding conversion procedure
is called using the suitable variant field as the parameter.

84 The Fortran I/O Run-time Package § 274 -

The size of the variable (one of the parameters in READVAL and WRITVAL) is taken account
of by shifting the value prior to output conversion or after input conversion. In formatted 1/O,
the form of the input or output field has no correspondence to the variable size. In output, E~
field and D-field differ only with respect to whether E or D indicates the exponent. In input, D or
E makes no di:ference in indicating the exponent.

27.5 Output conversions of data values

Ail output conversions can be treated as formatted, unformatted output being simply
formatted output with standard field sizes for the different types. The standard field sizes are
those that allow the full content of the variable location to be displayed. Thus, they vary with the
size of the variable.

In al output conversions, variable 10BUFCURS aways points to the left boundary of the
output field. Another variable wi indexes across the width of rhe field. The FOR loop is aways
used, and w1 is the control variable.

Here are details for the output conversion of real numbers:

The real number is first normalized to >= 0.1 and < 1.0, the power being accumulated in the
integer variable E. Rounding is performed at the appropriate place by adding 0.5 to the
appropriate power of ten to the digit after the least significant printed digit. Truncation then
does the desired rounding.

For conversion to character form, the normalized mantissa is multiplied by 10 xx 11 (given
MAXINT = 34359738367 has | | digits) if < .34359738367, and by 10 xx [0 otherwise, to convert to
an in teger. This arrangement is made to preserve as much accuracy as possible. The output
characters are then made from this integer. This integer only gives the significant digits. The
position of the decima point is monitored by E, taking into account the exponent to be printed.
Thus, even if the output mantissa has more than ii digits before the decimal, the less significant
digits are made ail zero.

The algorithm for output conversion of E-field (similar for F-field with slight
modifications) is: (w, b and s are the field descriptors)

1 IF (8 > (Ww-0-5)) OR (QUTREAL < 8) AND (8 < (W-0O-6)) OR
(S > (W-0-5)) OR (OUTREAL < 8) AND (S < (W-0-6))
THEN print '’ across field
(field not large enough)

2. ELSE IF (DUTREAL < MINREAL) AND {OUTREAL > -MINREAL)
THEN print zero
(MINREAL is the smallest magnitude of real number alioued.
Note that this is different from the smallest representable
rea | number, which has the louwest power but uithout the
mantissa normalized.)

3. ELSE (a) get sign if negative
{b) normalize DUTREAL to >= 8.1 and < 1.0, and
accumulate the power in variable E
{c) 1 F ((S+0b= B) AND ((S+D) <= 18) (Here, 10 is
largest number of significant digits stored in

a uord of memory)
THEN OUTREAL : = CUTREAL + 8.5 x 10 xx (-(5+0))
(Do round i ng. {5+0) is the number of significant

§27.5 The Fortran 1/O Run-time Package 85~

digits printed.)
{d) IF DUTREAL > 1.0 (increase to > 1.0 due to rounding)
THEN BEGIN QUTREAL : = QUTREAL / 10;
E :=E+1END
{e} I F OUTREAL < .34359738367
THEN CURTRUNC: = TRUNC (QUTREAL x {18 xx 11))
ELSE CURTRUNC : = TRUNC (OUTREAL % (18 %xx 13))
{f) output digits from CURTRUNC, the decimal point being

governed by S.
(g E:= E - S;
print the exponent according to E.

27.6 Input conversion of data values

In unformatted input conversion, the input file is scanned line by line until the next non-
blank character is found, and decoding starts from this position. Blanks and end-of-line separate

input entities.

In formatted input conversion, variable 10BurcuRs always points to the left boundary of the
input field. Variable w1 indexes across the width of the field. For integer and real inputs,
blanks in a field imply O. For rea input, presence of '.’ overrides the implicit decimal place
indicated by 0 in the field specification. Presence of the exponent overrides the effect of the scale
factor S. Effects of D-, E-, F- and C-formatted fields are defined as identical 1n real input.

The loop that processes the input characters (with one character look-ahead) is always of
the form:

WHILE (BUFFER[W1] IN [set of looked-for char]) AND
(Wl is within boundary) 0O

BEGIN
process this character
Wl := Wl + 1

END;

where boundary refers to the field boundary (or the decimal boundary within the field) in
formatted input and line boundary in unformatted input.

This arrangement requires that the input buffer be declared one unit longer to prevent out-
of-bounds error of the buffer index. Another possible arrangement (not used) which does not
entail this extra declaration requires an extra flag and less straightforward structure:

DONE := FALSE;
WHILE NOT DONE DO
IF BUFFERW1] IN [set of looked-for charl
THEN BEGIN
process this character
Wl = W1+ 1
IF Wl not within boundary
THEN DONE : = TRUE;
END

ELSE DONE : = TRUE:

Input digits are aways decoded into an integer variable, even if the digits belong to the
mantissa of a real number.

86 The Fortran 1/O Run-time Package § 276

To check for overflow error and to ensure that any representable integer can be input, the
scheme used is. (Given MAXINT = 34359738367)

KEEPNUM : = 0;
WHILE (NXTCHAR in {'8'..'3']1) DO
BEGIN
IF (KEEPNUM > 3435973836) OR
((ININT = 3435973836) AND (NXTCHAR IN {'8', '3'1))
THEN over f | ow-error
ELSE KEEPNUM : = KEEPNUM x 10 + (ORO(NXTCHAR) - DRD('8°});
get NXTCHAR
END:

In reading real numbers, the input is decoded into the integer variable KeePNuM which
keeps the mantissa and integer variable E which keeps the exponent such that KEEPNUM xx E
gives the correct real value. In this case, too many digits in the mantissa should not cause
overflow if still representable as a rea number. Here, the decoding part of the wHILE loop that
processes the digits in the mantissa is.

IF (KEEPNUM > 3435973836) OR
((KEEPNUM = 3435973836) AND (NXTCHAR IN [*8',°39']))
THENE :=E + 1
ELSE KEEPNUM := KEEPNUM x 10 + (ORD(NXTCHAR) - ORD(’8°)};

(If current digit is after the decimal, then increment of £ above is not necessary.)

In practice, the IF condition above can be replaced by just IF (KEEPNUM >= 3435973836)
for greater efficiency without much loss of accuracy.

References

[AKe80] J. Allchin and A. Keller: FLASH: A Language-independent, Portable File System, S-I
project document, Jan 1980.

[ANS64] American Standard Assoctation, X3.4.3: Fortran vs. Basic Fortran, Comm. of the ACM, Vol.
7, No. 10, October 1964, pp. 591-625.

[ANSss] ANsI: USA Standard Fortran, USA Standards Institute, USAS X3.9-1966, New York 1966.

[ANS71 J Americal National Standards Committee X3J3: Clarification of Fortran standards - second
report, Comm. of the ACM, Vol. 14, No. 10, October 1971, pp. 628-642.

[ANS76] American National Standards Committee X3J3: Draft Proposed ANS Fortran, Sigplan
Notices, Voi. 11, No. 3, March 1376,(254 pages).

[Brweés] Gary Y. Breitbard and Gto Wlederhoid: PL{ACME: An incremental Compiler for a Subset of
PL/I1, information Processing 1968 (Proceedings of the 1968 IFIPS Conference, Edinburgh), North
Holland, 1969, pages 358-363.

[Bsh78] Randy Bush: UASMINT: A U-Code Assembler and Interpreter, S-l1 project document,
June 1979.

[cCN78] F. Castaneda, F. Chow, P. Nye, D. Sleator and G. Wiederhold: PCFORT - A Fortran to P-
Code Translator, CSL Technical Report 160, Stanford University, Jan 1979.

[F1Z78] Jim Finnel and Polle T. Zellweger: The S- 1 Multi-processor, OSL Technical Note 142,
Stanford University, June 1978.

[Giw?77] Erik J. Gilbert and David W. Wail: P-Code Intermediate Assembly Language. S-l project
document PAIL-3, 18JUL77.

[GNR79] Phillip Geering, Peter Nye, Armando Rodriguez and Arthur Samuel: S~ | U~Code: A Universal
P-Code for the S- 1 Profect, S-1 project document PAIL-6, August 1979.

[GwWa78] Erik J. Gilbert and David W. Wall: Specification for Run-time Support for Pascal. S-I
project document PRUN-0, 20MAR78.

[Gri71] David Gries: Compiler Construction for Digital Computers. John Wiley and Sons, 197 1, pp.
304-3 12.

[HiN80] Bruce Hitson and Peter Nye: Run-time Specification for a Pascal U-Code System, S-I
project document PRUN-1, Dec 1979.

[Jew?5] K. Jensen, and N. Wirth: Pascal User Manual and Report, Springer Verlag, New York,
1975.

[KeWw?79] Arthur Keller and Gio Wiederhold: S-i intermediate Loader Format and S- | Linker, S-I
project document LDI-8 & SLIM-O, Dec 1979.

[NAJ75] K. Nori, U. Amman, K. Jensen, et al.. Pascal P Compiler /mplementation Notes, ETH Zurich,
1975.

[orgee] Elliott I. Organick: A Fortran /¥ Primer, Addison-Wesiey, 1966, p.48.

88 Ref erences §-

{Psi78] Daniel R. Perkins and Richard L. Sites: Univeral P-Code Definition, version [0.3], UCSD/CS-
78/037, July 1979.

[sPT78] Richard L. Sites, Daniel R. Perkins, J. Richard Tinling and John B. Collings: Machine-
independent Pascal Optimizer Project: Final Report, UCSD/CS-79/038, Nov 1979.

[WiB70] Gio Wiederhold and Gary Breitbard: A Method for increasing The Modularity of Large
System, IEEE Computer, Vol. 3, no. 2, March-April 1970, page 30.

[Z=180] Polle Zellweger: S— | Code Generator and Optimizer, S-l project document SOPADOPE-2, Jan
80.

