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1. Introduction

The Fortran  compiler described in this document, UFORT, was written specifically to serve
in a Pascal environment [JeW781,  using the Universal P-Code as an intermediate pseudo-
machine [NA 5751. The need for implementation of Fortran these days is due to the great volume
of existing Fortran programs, rather than to a desire to have this language available to develop
new programs. We have hence implemented the full, but traditional Fortran standard IANS64,
ANS663,  rather than the recently adopted augmented Fortran standard [ANS76J.  All aspects of
Fortran which are commonly used in large scientific programs are available, including such
features as SUBROUTINES, labelled COMMON, and COMPLEX  arithmetic. In addition, a few common
extensions, such as integers of different lengths and assignment of strings to variabies,  have been
added.

1.1 Objectives and constraints

The foremost objective in the design of this compiler is the generation of correct code.
Effects of this objective are a clean approach to the design of the compiler, the use of Pascal as
the implementation language, and the use of a simple one-pass compiling technique. The one-
pass approach has led to two additionai constraints on the source language: variable declarations,
if given, must precede all executable statements within each program unit, and keywords must be
separated from variable identifiers by blanks. These constraints are commonly followed by
programmers, but are not part of the standard. A pass over Fortran source code with a text
editor can easily correct failures to obey that constraint, since these changes do not affect the
semantics of Fortran programs in any way. We feel of course that such constraints are a
reasonable part of any programming environment we wish to support. UFORT does not depend
on reserved words in its method to recognize keywords and is hence extensible to addltronal
statement types. Candidates for additions are several file manipulation statements, now used by
existing compilers and defined in EANS763, and other features to support real-time operations
and aspects of parallel processing.

The structure of the compiler is derived from a Fortran compiler, written in Fortran, which
was used for student programming from 1963 to 1967 at UC Berkeley (Student) on an IBM 7094
system. A derivative of that compiler is the PL/ACME  compiler IBRW683, a compiler for a
subset of PL/l, also written in Fortran, with strong support for on-line laboratory operations.
Writing the new compiler in Pascal has allowed formalization of modular concepts used in the
earlier compiler [WiB701.  The availability of recursion has caused us to switch to the use of
recursive descent as the method for compiling arithmetic instructions, a method which copes weil
with some of the pmblems of Fortran syntax.

The compiier, while attempting to generate good U-Code, does no explicit optimization of
the generated code. Recognition of common subexpressions, for instance, wrli require at least an
additional pass in a compiler. Current research in the Pascal/P-Code project at UCSD is leading
to such an optimizer operating on U-Code [SPT79]. The compiler also makes only very general
assumptions about the register structure in the underlying machine. It is the function of a U-
Code compiler (e.g. SOPA [Zel80]) or a U-Code interpreter (e.g. UASMINT [Bsh793)  to carry
out the requested U-machine actions in a manner which utilizes the underlying hardware
effectively.

The original P-Code generated is a direct der
N. Wirth at the ETH (NAJ751 and documented

,ivative
by us
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[GiWf71. This was later adapted to the Universal P-Code defined by the UCSD Optimizer
Project [PSi79].  In our case the U-Code is compiled into machine-code for the S-l processor
[FiZ781, a very high speed machine with a 36-bit-word architecture, which also supports X-bit
double-word, l&bit half-word, and 9-bit quarter-word or byte operations. We hence expect 4
bytes per word; that is 360-style atphabetic variables. This aspect does not affect the UFORT
compiier itself, but IS of major concern when transporting Fortran application programs, which
manipulate characters, between computers, since Fortran  standards have ignored the issue of
character-to-word relationships.

The associated run-time package is of course sensitive to the machine architecture. The
dependencies are easy to manage since this package is written in Pascal. The U-Code generated
from the run-time by our Pascai compiler can be combined with the U-Code from UFORT
before being interpreted, or the run-time U-Code can be translated to machine code and loaded
for execution together with the machine code translated from Fortran programs via UFORT.
The run-time package is hence easily changed or augmented by more Pascal-written routines.
This approach also makes available to Pascal programs the FORMAT conversion routines
implemented within the Fortran run-time package.

The two cumponents which make up UFORT, the compiler and the run-time package, are
of course constrained due to the facilities provided by the Pascal U-Code environment. The most
serious of these 1s no doubt the unavailability of direct access to files. We plan to extend our
system with direct files supporting variable length records, and at that time both Fortran and
Pascal will be augmented to support these features (AKe801.

Another aspect of the U-Code environment is that it does not sufficiently provide for the
separate compilation of routines. UFORT wiil hence accept a complete set of program units (the
main program, any BLOCK DATA program, ail SUBROUTINES and FUNCTIONS together) and generate
a single biock of executable U-Code. After transIation to S-l machine code the resulting
relocatable instructions can be combmed with other program units through the use of a linking
loader CKeW 791.

1.2 Conclusion

The UFORT Fortran compiler is a building block within a Pascal and U-Code
environment, which can take care of existing needs for the continued use of Fortran  coded
algorithms. By bringing Fortran into this environment, a dichotomy of programming approaches
can be avoided, and a more consistent approach to computing can result.

The next section specifies the Fortran source statements recognized by UFORT, together
with the differences from the standard. The remainder of this document describes the
implementation in sufficient detail to serve ongoing maintenance and extension needs.
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2. User’s Guide

This section describes the limitations and extensions of UFORT Fortran  in comparison
with standard Fortran compilers, and especially in comparision  with the full Fortran  ‘66 Standard
CA NS661.

2 . 1  Sta tements

The following Fortran statement types have been Implemented:

Declaration statements:

DIMENSION
COMMON
EQUIVALENCE
IMPLICIT
EXTERNAL
L O G I C A L  s
INTEGER
COMPLEX
REAL
DOUBLE PRECISION
DATA

Executable statements:

The ass ignment  s ta tement
ASSIGN
I F  ( l o g i c a l  a n d  a r i t h m e t i c )
GOT0 (uncondi t iona l ,  computed,  and ass igned)
CALL
RETURN
PRINT
STOP
0 0
READ
WRITE
REWIND or OPEN

Other statements:

T h e  s t a t e m e n t  f u n c t i o n  d e c l a r a t i o n
FORMAT
FUNCT I ON
SUBROUTINE
BLOCK OATA
SET
CONT I NUE
EN0
ENTRY

Not implemented:

END FILE
BACKSPACE
PAUSE



6
.

User’s G u ide 5 2.2

2.2 Program formaf

Some restrictions on program format are imposed by UFORT:

Source text format:

Identifiers, including keywords, must be separated by delimiters. For example, “DU3~1 =I, 3”
is illegal; it should be “00 30 I =l, 3”. Similarly, “COMMONA,B”  should be “COMMON A,B”. Blanks
are n&t allowed within identifiers, keywords and real constants. Blanks within
however, are allowed (e.g. *. TR U E, “).

The usual convention of specifying a quote embedded within a quoted
consecutive quotes is followed.

Blank lines are allowed. A line cannot contain more than one statement.

dotted keywords,

literal using two

Position of declaration statements:

All declaration statements, including DATA statements, must appear before the first
executable statement in a program unit. Statement functions must appear after the declarative
statements and before the first executable statement. The only restriction regarding the order
among the declaration statements is that the type and dimension declaration of a variable must
precede its initialization specification.

5

FORMAT  statements may appear either with the declarative or the executable statements.

if an IMPLXCIT statement is used, it must be the very first statement in the program unit.

Variable names:

Fortran keywords and standard and intrinsic function names can be used as variable names,
except the keyword FORMAT. Also, the name of a common block or an ENTRY  statement in the
same program unit can be the same as a variabie name. However, the same name cannot be used
in a single program unit as both a variable name and a standard, intrinsic, or user-defined
subprogram name. If a name is longer than 6 characters, the extra characters are ignored and a
warning is given.

FORM  AT sfiecifications:

Commas are not mandatory in FORMAT specifications if they cause no ambiguity, For
example,

and (X,3X,X,‘ONE’,X,/,X,2(4HFOUR,F8,5,I6))

are equivalent.

If a FORMAT specification is to be kept in an array, any embedded quote that occurs in the
FoRMAT has to be replicated when stored in the array.
required in specifying the quote in the program text.

Another  level of replication might be

output the word “DON’T” is stored in the array FSTR:
In the following example, the FORMAT co
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INTEGER FSTRxZ(51  /‘(“DON”“T”)‘/

Statement Iabcls:

Only executable statements and FORMAT statements can be assigned labels.

2.3 Data types and constants

2.3.1 Data types

Variables and functions may be of type INTEGER, REAL, COMPLEX, or LOGICAL. The
standard naming conventions are used CO determine if a variable or function is of type integer or
real (names starting with letters from I CO N denoting integers), but they may also be explrcitly
declared. The naming conventions may also be overridden through the use of an IMPLiCIT
statement.

The following precisions are possible:

LOGICAL: quarter word, half word, single word (default) and double word;

INTEGER: quarter word, half word, single word (default) and double word;

REAL: half word, single word (default) and double word;

COMPLEX: two single words (default) and two double words.

Precisions are specified in quarter words, as in IBM Fortran:

I NTEGERd  AAA
LOG I CAL&i BBB
COMPLEX CCC
COMPLEX*16 FUNCTION 000
DOUBLE PRECISION EEE
REAL& EEE

Automatic conversion occurs whenever necessary between and among any precisions of the
integer, real and complex types. Real numbers are converted to integers by truncation.
Conversion to complex number is done by adding a zero imaginary part. When a complex
number is converted to real or integer, its imaginary part is discarded.

Integer variables used as the control variable of a DO statement, for storing a label or for
storing a device number for use in a READ, WRITE or REWIND statement must be of sirigk *
precision.

2.3.2 Constants

The upper limits allowed for integer values are 255 for quarter-word integers, 13 1071 for
half-word integers, 34359738367 for full-word integers and 73786976294838206463 for double-
word integers. The lower limits are 1 less then the negatives of these numbers. The upper and
lower limits for reals are I.70141 1843E+38  and 1.469368010E-39  respectively, for all precrsrons.
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Complex numbers consist of a left parenthesis, a real expression, a comma, another real
expression, and a right parenthesis. Thus (.3*X,SIN(YH  is a legal complex number.

2.4 Arrays and storage management

Arrav subscti +tJ:

Array subscripts may consist of any legal integer expression. Up to seven dimensions are
allowed.

Bound checking for array subscripts, if turned on, is done separately for the subscript of
each dimension.

Array bound checking at compile time is done for arrays that appear in COMMON and
ECltJlV~ENoE declarations, and for the ones that are initialized. These arrays cannot have
ad justable dimensions.

The specification of array elements in DATA and EQUIVALENCE statements with only one
dimension for arrays of several dimensrons is accepted. For example, for an array dimensioned as
A (3,3), the array element A(2,3) may be specified as A(8).

Arravs  with adiustabh  dimension:

No restriction is made on the value of an actual argument that represents the bound of an
array in the argument list of a subprogram. I.e. no check is made that the value is withm the
declared bound of the actual array parameter. When an array subscript is beyond the range of
the actual array, no assumption should be made as to the referenced value. (The same applies in
the case of arrays with constant bounds when the bound declared for the actual array parameter
differs from that declared for the formal array parameter, or when their dimensions are different.)

In the subprogram, bound checking (if turned on) for an array with adjustable dimension 1s
made against the current value of the argument used in the dimension declaration. Change to the
value of this dummy argument is allowed in the subprogram. If the actual argument is an
uninitialized integer variable, no assumption should be made as to the declared bound m the
subprogram.

COMMON declarations:

There are two special areas which are used for the common variables, one is used for the
blank common area and the other is for the rest of the common areas. The blank common may be
of any different length in each program unit, as specified in [ANS761.  The COMMON declaratton
of any labelled common may not require a storage area larger than the amount specified in the
first d-laration  of the common, as in the following example:
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wrong: right:

COMMON /X/ A COMMON /X/ A,DUMMY
DIMENSION A(201 DIMENSION A (201,  OUMMY (10)
EN0 ENO

SUBROUTINE R SUBROUTINE R
COMMON /X/ B COMMON /Xl 6
DIMENSION B(30) DIMENSION t3(30)
END END

Alternatively, it is possible to use the CSIZ switch that fixes a mlnimum  size for the
common areas. If the length occupied by a common area in its first declaration is smaller than
that specified in any of its later declarations, the switch should be set to the space needed for the
larger one.

Storage allocation:

No assumption shou Id be
anot her outside a common area.

made about the location of one variable Of array in relation to

Additional quarter-words are inserted as necessary to align half-words on half-word
boundaries, single-words on single-word boundaries and double-words on double-word
boundaries. Thus, a quarter-word variable followed by a single-word variable in a common area
wouid require two full words of storage.

2.5 /nit ializing variables

Variables can be initialized in both DATA and type declaration statements.
declaration statement with initiaiitations and DATA statement are formed as follows:

The type

type*s  arsl  (kl) /xl/, brsz (k$ /x2/, . . . , zxs3 (k$ /x3/

DATA a(k$, .  .  . ,d(k~l/xl/,e(kgl, ,., ,h(kg)/x$, .  .  .

where

type is INTEGER, REAL, LOGICAL, DOUBLE PRECISION or COMPLEX;

*91,*32,... are optional, each s representing one of the permissible length specifications
for its associated type;

ad v***. z are variable or array names;

(kl) , (k$ , . . . give dimension information for arrays in declaration statements and
subscript information for array elements in DATA statements. In a declaration statement, this
always specifies the entire array. If absent for an array in a DATA statement, short form
specification for the entire array is impiied;

x1,x2* l *� are constants or lists of constants. /xl/, /x2/,  /x3/ . . . are optional rn a
declarative statement, and are used to specify initial values for single preceding variables and
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array names. In a DATA' statement, they are not optional, and specify initial values for the
preceding list of variables, array elements or array names;

2.5.1 Loops in variable lists in DATA statements

Nested loops are allowed in specifying variable lists in a DATA statements. The form of
these loops is similar to that used in the WAD and WRfTE statements. Syntactically, each variable
or array element in &he above specification “(a(h1  I”, e.g., can be replaced by a pair of parantheses
enclosing a list of variables or array elements. The loops can be nested to any arbitrary depth.
The general form of the loops is:

DATA (( ..* ,  i=il,ml,nl))( .  .  .  ,j=+,m2,n2)t .  .  .  ,  k=l3,m3,n$,  .  .  .  /xl/, .  .  .

where

i. j, k are control variables. Their appearances imply that they can be used in specifying
subscripts among the array elements which occur anywhere inside the loop. The control variables
have no relation to any other regular variable with the same name in the program, and they do
not obey the implicit typing since they must be integers. If a control variable name occurs more
than once in a single nesting of loops, the one in the level nearest its occurrence in a subscript is
effective when the subscript is inside the ranges of both loops;

119 12, . . . , ml, m2, . . . and “1, “2, . . . specify lower bounds, upper bounds and
step amounts respectively for the loops. The appearance of the step amount is optional.

2.6.2  General initialization rules

I. The type of initiaitzation is determined by the type of the constant specified, and not by
the type of the variable being initialized. Only the size of the variable affects the initialization.

2. The initialization of arrays is done in storage order. In a declarative statement, each list
of constants must correspond in number to the preceding variable or array. In a DATA statement,
the correspondence is tu the totai number of variables and array elements specified In the
preceding list, taking account of loop iterations if any.
ignored. If not enough constants are given,

If extra constants are given, they are

initialized. In both cases, warnings are given.
the extra variabies or array elements are not

A complex variabie is taken as two reai variables,
and they correspond to two initialization constants. The parentheses in specifying a complex
constant are optional.

3. A replication factor can be used to specify how many times the constant following ~11:
asterisk is to be repeated in the initializing process. The syntax is:

<rep>*r<val>

where <rep> is the replication factor and <val> is the constant value. (E.g. W3.2 means that the
constant vaiue 3.2 is going to be used 5 times.)

4. Function names or subprogram parameters cannot be initialized.

5. Arrays must be dimensioned before initialization in a DATA statement or in a type
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deciaration statement. Also, any type declaration for a variable in a DATA statement must appear
before the DATA statement. ’

6. If the initializatron of a variable or location is specified more than once, only the last
initialization is effective.

2.5.3 Initialization by character strings

The initialization of variables by character strings, in DATA statements or type deciaratlon
statements, follows these rules:

1. One character will be stored per quarter-word. A full word has hence the capacity to
hold four characters, half- and double-words hold 2 and 8 characters’respectively. An array has
a capacity which is the product of its size and the capacity of its elements.

2. If the string is larger than the capacity of the variable being initialized, only the inltlal
characters of the string are used and the rest are discarded.

3. If the number of characters in the string is smaller than the capacity of the variable then
the string is padded with NULL (binary zeroes).

4. Character strings may be preceded by a replication factor, followed by an asterisk. The
replication  factor increases the number of string elements, not their length.

5. An array, or the two halves of a complex variable, may be filled with successive
characters from the string. If an element is incomplete, It will be filled with NULL. If successive
elements are not reached they remain uninitialized.

Characters can also be assigned to variables using an assignment statement.

2.5.3.1 Examples

Initialization statement:

I N T E G E R  M/‘Al3CD’/, AW/‘ABCOEFGH’/
OIMENSION C(3), O(3), E(8), F(3)
OATA 0~2~,D~3~,C/‘A8’,‘CD’,‘ABCOEFGHI’/
DATA E/‘ONEISMORE’,‘TWO’,‘T~EE’,‘FOUR’,’FIVE’,’SIX’,‘SEVEN’/
DATA F/3** MOM’ /

Initializations performed:

VARIABLE VALUE

AU)
D(1)
D(2)
D(3)
W)
C(2)
(73)

‘ABCD’
‘ABCD’
‘EFGH’
unintialked
‘AB’
‘CD’
‘ABCD’
‘EFGH’
‘I’
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E(3)
E(4)

E[65]
E(7)
UN

‘ONE1 ’
‘TWO’ ;earlier, E(2) contained ‘SMORE’ but this was

overwritten with the next element in the list
‘THRE’
‘FOUR’
‘FIVE’
‘SIX’
‘SEVE’
‘N’ ;no more elements in list,  thus not overwritten

F(1) ‘MOM ’
WI ‘MOM’
F(3) ‘MOM’

2.6 Subprograms

The restrictions with regard to subprograms are:

Functions:

A statement function must have at least one argument. A function
be deciared EXTERNAL in each program unit in which it is referenced.
name is taken as a variable name.

Parameters to Sub$rograms:

with no parameter must
Otherwise, the function

All parameters are passed by reference, including array elements used as arguments. Thus
their values can be altered as the result of a subprogram call.

External Subfitopramr:

Currently, all program units used in a program are compiled at the same time
program; separately compiled subroutines ot functions have not yet been Implemented.

as the maln

2.7 Subprogram name8 as paramefers

Subprogram names can be passed as parameters in a call to another subprogram, and they
can be passed onwards in another call in the subprogram to which they have been passed. If a
subprogram name (or a parameter representing a subprogram name) to be passed as parameter
has not been called explicitly previously in that program unit, it must have been declared
EXTERNAL  This rule is for ensuring that the compiler can diagnose that the actual parameter is a
subprogram name.

A format parameter representing a subprogram name cannot be used also as a variable
inside a program unit. However, the same parameter can be used to represent more than one
functions or subroutines in different calls, and they can have varying number of call parameters.

Statement functions cannot be passed as parameters, but a statement function can have
subprogram name parameters.
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2.8 Multiple entries to subprograms

Multiple entry subprograms, though not part of the standards, are supported in the way
they are usually used. The keyword ENTRY has to be placed as the last symbol in the regular
subprogram heading (SUBROUTINE or FUNCTION statement) to indicate the presence of ENTRY
statements in the subprogram.

The ENTRY statements, which indicate possible entry points to the subprogram, must only be
in the executable part of the subprogram. An ENTRY name has no connection with any other
possible identical local name in that program unit. An ENTRY statement IS regarded as the
deciaratlon of a new program unit to the test of the Fortran  program, and they can be called there
as if they were unique program units. If the ENTRY statement belongs to a function subprogram,
the ENTRY name is automatically made a function of the same type. The ENTRY name must not be
typed explicitly in any way, even if its type is not the same as that implied by its name.

Parameters can be used for ENTRY statements. Any ENTRY parameter used must appear the
first time as a parameter either in the subprogram heading or an ENTRY  statement, except that it
can possibly be typed or declared EXTERNAL In the declaration part of the program unit.

An ENTRY statement has no effect on the normal flow of controi in the program unit if rt is
not called directly.

In the following example of a multiple entry subroutine, a call to the subroutine SETVAL
determines the variable whose value is to be used in assignment in any subsequent call to the
en try ASSIGN:

SUBROUT  I NE SETVAL (Pl I ENTRY
RETURN
ENTRY ASSIGN (P2)
P2 = Pl
RETURN
END

2.9 User options8 the SET statement

Options are specified using the SET statement. Option names are identified by the first 4
letters only. More than 1 option can be specified in a SET statement by using commas. E.g. “SET
GENC = T, ASTR - F”. T turns options on, and F turns them off.

Here are the options implemented in UFORT. Options related to U-Code translators or
interpreters are not included here

BCHK - When
F.

-L execution time bound checking on array subscripts is turned on. Defau It is

GENCommcnt  - When F, no U-Code comment is written on the U-Code file. Default is T.
The LOC instruction in U-Code is regarded as comment in this case.

CSIZ - The argument is a number. It specifies the minimum size in number of words to be
allocated to the common areas that appear for the first time in the next COMMON statement.
It is reset to 0 at the end of each COMMON statement and at the beginning of each program
unit.
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TPRM - The argument is a number. 1t gives how many parameters should be passed in
registers. Default is 10. Maximum is 15.

2.10 Input /Output

2.10.1 File handling

UFORT uses Pascal run-time routines for input and output on the character level.

Pascal treats all I/O as being to files of characters. Fortran device numbers 0 through 5 are
given internal reprt?SentationS  of FILEO, FILEl, FfLE2,  . . . . FILES. Provisions exist for extending the
number of devices to above 5. The mapping between these pseudo-files and actual devices or
disk files is done at execution time, usually by a direct prompt at the terminal. E.g.

FILEI?  DATA1
FILE23 OUT1 .
FiLE3?  TTY:

A file is opened immediately after the prompt is answered. This may occur at the
beginning of the program or at the first appearence  of a READ or WRITE statement using the
device number of the file, depending on the Pascal run-time used. (For the S-l, these are

specified in [GWa781 and the current [HiN80].) Files are always closed only at the end of the
program.

Random acces within files is not allowed; files must be written to or read from starting at
the beginning of the file. The first time in a program a file is written to, its previous contents are
destroyed, and the file pointer is reset to point to the beginnmg of the file. A file may be both
read from and written to in the same program, but each successive change of mode causes the file
pointer to be reset to point to the beginning of the fiie. The file pointer may be explicitly reset to
point to the beginning of the file with the Fortran  statement REWIND. In the current run-time, a
change of mode or a REWIND will also cause another prompt for the name of the file. OPEN is an
alternative name for REWIND.

The BACKSPACE and END FILE statements are not implemented.

2.10.2 The READ and WRITE statements

The standard READ, WRITE and FORMAT statements use Fortran run-time routines. Both
formatted and unformatted reads and writes are handled. Unformatted writes use fields of fixed
widths according to the types of the variables being output. In unformatted input, the input file
is always scanned until the next noq-blank  character in the input file is found. Blanks are taken
as delimiters, and they do not have to be present if there is no ambiguity. Comma should not be
used as delimiters. Each unformatted READ or WRITE statement starts on the next line.

The maxlmum  length of an input or output line is 256 characters. Any output to beyond
the 256th character will automatically cause an extra new line to be written. An input line Img,~.;
than 256 characters is processed as a single line but anything beyond the 256th character IS
treated as blanks. If an input line is shorter than that specified in the format specification,  an
error message is given.
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Any internally representable character can be output via an A-formatted field. The writing
of control characters like the carriage-return or line-feed to an A-formatted field may cause the
form of the output line to depart from that specified in the format specification.

The execution error messages of the READ and WRITE statements go to file OUTPUT.

2.10.3 The PRINT statement

Apart from the READ, WRITE and FORMAT statements, the PRINT statement, which makes use
of Pascal run-time routines, and acts somewhat like a Pascal WRITE statement, allows the
bypassing of the Fortran run-times in performing output operations. It prints integers, reals,
booleans, string constants, or compiex numbers, or any legal expressions containing these items.

Normally, a carriage-return line-feed will be printed at the end of the line. This may be
suppressed by adding a semicolon.

A field width may be added to any item. This indicates the maximum length of the item
to be printed. Enough blanks will be added to make the item always have that length. The
default field widths are 14 for integers and reals, and the actual length of the string for strings.

Output always goes to the Pascal standard file OUTPUT.

Here are some examples:

PRINT ‘THE ANSWER IS’, X*2

PRINT ‘THE ANSWER IS’:
PAINT X*2

result: THE ANSLJER IS 4.8

result: THE ANSWER IS 4.0

PRINT ‘THE ANSWER IS’120, XsZtl0 result: THE ANSWER IS 4.0

COMPLEX*8  x resul t :  T H E  ANSUER IS  2 .0 8 . 0
PRINT ‘THE ANSWER IS’, X*(2.,8.):18

PRINT:2 ‘THE ANSWER 1%Xx2 result: THE ANSWER IS 4.0

2.11 Mlsccllaneous

DO statement:

An integer expression may be used as the lower bound, upper bound or step amount. The control
variable must not be an array element. The default step size is 1. Negative step sizes are allowed.

In the case that the upper bound or step size is an integer variable, if a change is made to
the value of the variable during execution of the Ioop, the upper bound or step size is changed
accordingly.

Jumping into the range of a DO loop (including the terminal statement) from outside the DO
range is allowed. The control variable assumes the value it has at the time of the jump. If the
control variable is not initialized, no assumption should be made as to the value of the variable.

A DO loop cannot be closed by a FORMAT statement.
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Use of inte  per variables as label variables:

No distinction is made between integer variables and label variables. Le. the usage of an
integer variable is not restricted with regard to whether it has assumed its value by regular
integer assignments or by the ASSIGN statement for statement labels. An array element can be used
for the variable.

Bitwise ofieralions  on variables:

T h e
The bitwise #AND., .OR.  and .NOT. operations on integer, real and complex values are allowed.

operands are checked for type compatibility as in the case of other arithmetic operations.

intrinsic and standard functions:

When the intrinsic and standard functions are used, their types are not affected by impliclt
or explicit typings.
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3. Overall Organization

3.1 Structural scheme

UFORT’s  processing of an input user program is driven by its main procedure and
procedure BLOCK, which invoke the various modules either directly or indirectly. T h e
organization of UFORT is based on these modules. It is structured according to the relatlonshlps
among the various modules. Despite its length (about 9000 lines), UFORT is easily understood
once its structure is revealed.

When the compiler processes a given program statement, it either generates code from it or
remembers the information given in the program text by building some internal structure, which
invariably is a linked list of a particular type. A module in UFORT satisfies at least one of the
following conditions:

1. It scans and processes a type of statement in the user program.

2. It scans and processes a specific construct which occurs in more than one type of statement.
These are:
(a) the arithmetic expression processor,
(b) the procedures for loading and storing variables,
(c) the procedure to process function calls,
(d) the procedures to process initialization specifications.

3. It processes an internal structure, and possibly generates code from it. These are:
(a) the procedure to close either a DO loop or a loop in an I/O statement,
(b) the storage allocation procedure,
(c) the variable initialization code-generating procedure.
(d) the procedures to generate code related to multiple entry procedures.

4. It manages an internal table:
(a) the symbol table routines,
(b) the standard function table routines,
(c) the temporary storage management routines.

5. It is a pre-processing procedure for each input statement:
(a) the lexer,
(b) the statement ciassifier.

Apart from these are the error and warning routines, the code-generating routines, the
type-checking routines and a number of general utility procedures. Some of these utilities scan
and process specific constructs:

(a) procedure GETHTYPE - processes an explicit type specification. E.g. LOG1 CAL.
(b) procedure GETTYPE  - processes the “tn modification of a type specification. E.g. ‘** 4”.
(c) procedure GETCOORDINATE  - processes the subscript specification of an array element In

a DATA or EQUIVALENCE statement. E.g. “A (I,31 “,
(d) procedure ISARRAY - processes the dimension specification in the declaration of an

array, which occurs in the DIMENSION, COMMON and type declaration statements. E.g.
WI ,4)“.
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3.2 Error handling

UFORT always checks the validity of a program construct before it operates on it. In this
way, it safeguards itself from execution errors during comptlation. It distinguishes between two
kinds of errors:

1. Errors discovered while scanning a program statement: UFORT will stop processing the
statement at the point where the error is discovered. The error message is output with ‘?’ printed
under the word that causes the error. At most one error message will thus be output for a single
statement. In some cases, UFORT will try to generate extra dummy U-Code to make the code
already generated for the statement acceptable by the U-Code translator. UFORT will continue
to parse and generate code for the rest of the statements in the user program.

,

2. Errors discovered while processing an internal structure of the compiler: For this type of
error (called SPECIAL-ERROR  in the compiler), the error message is printed with a name that tells
from where the error originates. The recovery procedure may involve deleting the trouble-
causing element or altering its contents to make it compatible with the rest of the program. Such
actions are invisible to the user.

To enable the features of 1, the statement processing procedures in the compiler always use
the global lexeme pointer LXC as index while scanning a statement. The error routine will print
‘?’ under the word that LXC points to. Since different parts of a statement are usually processed
by different procedures, the unifying rule used is that each procedure is entered with LX pointing
to the firs& lexeme it processes and exits with LXC pointing to the one after the last lexeme It
processes.

Warnings are output when errors are discovered in the program which UFORT thinks will
not drastically affect the normal execution of the rest of the user program. Regardless of when it-

is discovered, only a name will be printed with the message. The position where the warning IS
printed in relation to the program statements in the listing file serves as another clue to the user
in some cases. Recovery actions may also be taken by UFORT. The resulting behaviour of the
program is easily predictable by the user.

UFORT always prefers warning instances to error instances. I.e. for each user error,
UFORT classifies it as an error instance only if it cannot make it a warning instance.



4. Lexer

4.1 Summary

The purpose of the lexer is to split the input program up into nice pieces, lexemeJ, which
are easier to deal with than characters.

Each time the lexer is called it reads the next Fortran statement from the source file. moves
it character by character into an array called LEXSTaING, stores the Fortran statement label in
LABNO,  generates the sequence of lexemes contained in this statement, and puts the lexemes into an
array called LEXEME. Comments are skipped, and all lines of the source file are copied to the
listing file. The length of the string is stored in LEXSTRLENGTH, the number of lexemes in
LEXCOUNT,  the number associated to the first line of the statement in LINENUMBER, and the last
line in LINENO.

If an error occurs in the lexer, LEXCOUNT is set to 0.

Each element of the array LEXEME is a record with three pieces of information:

1. LEXEME.T:  The type of the lexeme.
2. LEXEME.F:  The index in LEXSTAING  of the first character of this lexeme.
3. LEXEMEA  The index of the last character of this lexeme.

For example, if the identifier COMMON occurs in columns 7 to 12 and it is the first lexeme of
the statement (the label is not counted as a lexeme), then the entries in LEXEME wrll be

LEXEME[ 13. T = IDENTIFIER
LEXEME[l].F = 7
LEXEMEC 1 J. L = 12

4.2 Lexemc types

A lexeme is defined to be one of the following items:

n a m e d e s c r i p t i o n

PLUS +  s i g n
MINUS - s i g n
STAR
fLA!ai ;
EXPONENT nn
LPAREN (
RPAREN 1
EOUALS .
COMMA
LE.LT,GE.GT TLE.,.LT.,.GE...GT.
EV,NE .EO.,.NE.
ANOOP , OROP . A N O . ,  . O R .
NOTOP .NOT.
REALCON a  Fortran  r e a l  c o n s t a n t  ( n o t  i n c l u d i n g  p r e c e d i n g  s i g n )
OPCON d o u b l e  p r e c i s i o n  const  ( n o t  i n c l u d i n g  p r e c e d i n g  s i g n )
INTEGERCON a n  i n t e g e r  c o n s t a n t  ( n o t  i n c l u d i n g  s i g n )
5 TR I NGCON q u o t e d  o r  Hollerith  c o n s t a n t
TRUECON .trut.
FALSECON .false.
IOENTIF  IER a  s e q u e n c e  o f  c h a r a c t e r s ,  t h e  f i r s t  o f  w h i c h  m u s t  b e  a

l e t t e r  a n d  t h e  r e s t  m a y  b e  l e t t e r s  o r  nunbcrs
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EXPLMARK !
VUOTMARK I

MUMS  IGN #
DOT
OOLS  IGN i
PERCENT x
AMPE RSANO 6
COLON
SEMICOLON ;
LESSS  IGH <
BIGGERSIGN >
OUESMARK 7
ATSY?l
LSQBRACKET
RSVeRACKET z
BACKSLASH \
CARET +
EOS end  o f  s t a t e m e n t
NON n o n e  o f  t h e  a b o v e

4.3 Reading in a statement

When LEXER is called, LEXSTRING is cleared by putting In blanks. It then invokes the
procedure GETSTATEMENT to load the characters of the next statement into LEXSTRING. It assumes
that the first six characters of the next line are already in the array COLlT06. If the first letter is
“C”, then the line 1s a comment line. COLIT06  is printed in the listing file and the comment itself
is read into the listing file (procedure SKIPLINE).  The variable LINEN0 is used to keep track of the
number of lines that are read in.

l

As soon as a non-comment line is read in (this may be a blank line), the global variable
LINENUMBER, which always contains the line number of the first line of the current statement, IS
set to LINENO.  If the end of file has been reached, this is indicated by setting LEXSTRLENGTH to 0.
COLlT06  is copied to both the listing file and LEXSTRING. The rest of the statement is read in,
putting each character in both the listing file and LEXSTRING, until the end of the statement IS
encountered. If comment lines occur, they are skipped over as previously. Continuation lines are
recognized and appended. To determine this, GETSTATEMENT must always look ahead to the next
6 characters of the next line. Thus at the end of GETSTATEMENT, the first 6 characters of the next
non-comment line will be in CotlT06.  Each line is padded with blanks so that it always is 72 plus
a multiple of 66 characters in length. After a statement is read in, LEXSTRLENGTH will contain  the
number of characters in LEXSTRING. At this point, LEXSTRING is aiso written to the U-Code file by
procedure PRINT-LEXSTRING.

After LEXER caiis GETSTATEMENT, it checks to see if the statement returned consists only of
blanks. If it does, it calls GETSTATEMENT again. In this way, blank lines are allowed. Next, IC
checks to see if the first 6 characters of LEXSTRING  contain a label. If it does, this label IS
converted to an integer and stored in the global variable LABNO.

4.4 Scanning the statement

Next, the array LEXEME is filled with lexemes that are recognized through a case statement
based on the first characters of the lexemes inside a WHILE loop that traverses the LEXSTRING
array. The procedure NEXTCHAR  IS generally used to get the next character. But since it skips
blanks, it is not used in processing identifiers,  numbers and keywords.
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If the first character of the lexeme is a regular Fortran character other than a letter, dlglt.
single quote or dot, then the lexeme type is set to that character. (In the case of an asterisk, the
next character must be checked to see if it is a double asterisk.)

If it is a digit, then the procedure SKIPDIGITSTRING  finds the last digit. If the digit string IS
followed by an Ii, then the lexeme is a Hollerith string. If it is followed by a dot, then It may be
either a real or an integer followed by a dot-word (as in “33. EQ. X”). The procedure FINDWORD  is
called to get the character string if it is a dot-word. (If this is the case, it results in two lexemes
being processed in a single pass: the integer and the dot-word). If the dot is not followed by a
letter, DIGITSTRING  is called again to find the last digit of the fraction of the real number, and then
FINDEXPONENT to get the exponent If the first digit string is followed by neither a dot nor an I-I,
then the lexeme is an integer.

If the first character is a dot, then the lexeme is either a dot-word or a real (again,
FINDWORD and FINDEXPONENT are used).

If the first character is a single quote, then the lexeme is a string. When an embedded
quote occurs in a string constant, one of the two quotes is deleted and the string content to the left
is shifted right by one position. This is because after LEXER, the compiler will use the informatlon
in the array LEXEME  to determine the extent of the string constant.

If the first character is a letter, then the lexeme is an identifier, and characters are skipped
until the next non-alphanumeric letter is read in. The identifier FORMAT is recognized as a
reserved word and it is processed as a special case. The FORMAT specification, including both
surrounding parentheses, is processed as a string constant. Consequentiy,  t h e  name  FonlMAT
cannot be used as the name of a variable.

Blanks are skipped everywhere, except in identifiers, numbers and key words.

The syntax for lexemes is described below using Wirth’s variant of BNF:

l e x e m e  = spec iai-symbol 1 dot-word 1 number 1 H o l l e r i t h 1
i den t i f i e r .

special-symbo “Mc” 1
/ II : II I

1 l’/n 1

d o t - u o r d  - “.LE.” 1 “.LT.” 1 “.GE.” I “.GT.”  1 “.NE.” 1 “.EQ.” 1
“.AND.” I “.OR.” 1 “ ‘N O T . ”  J YFALSE.” J “.TRUE.“.

number - mant i ssa  [exponentl.

man t i 958 - d i g i t - s t r i n g  I’.” [ d i g i t - s t r i n g ]  I “.’ d i g i t - s t r i n g .

digi t - s t r i n g  = d i g i t  {digi tl.

e x p o n e n t  - (“0” 1 “E”) I’+” I “-“I digi t - s t r i n g .

HOI i e r i  t h = digi t - s t r i n g “H’ ( c h a r a c t e r )  I “‘” { c h a r a c t e r )  ““I.

i d e n t i f i e r - l e t t e r  (letterldigi t1.
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6. Statement Classifier

by
Once a statement has been read in by LEXER, it is determined to be one of the following types
procedure CLASSIFY :

STATEMENT-CLASS = (XNONE,XARITH,XASSfGN,XLOGICALIF,XARITHIF,XGOTO,
XCALC,XRETURN.XEND,XPRINT,XBLOCKOATA,XFOR~AT,XSET,XOPEN,
XCONTINUE,XSTOP,XPAUSE.XDO,XREAD,XWRITE,XREWINll,
XBACKSPACE,XENDFILE,XEXTERNALFUNC,XSUBROUTINE,XENTRY,

XDIhlENSION,XCOMMON,XEQUIVAlENCE,XIMPLICIT,
XEXTERNAL,XLOGICAL,XINTEGER.XCOMPLEX,XREAL,XDOU~LE,
XOATA,XINTERNALFUNC);

CLASSIFY first checks to see if the statement is an assignment statement or statement function
declaration, since keywords such as DO and GOT0 are legal variable names. If the statement is of
the form:

i d e n t i f i e r - a n y t h i n g

o r

i d e n t i f i e r  ( a n y t h i n g )  - a n y t h i n g

then it is one of the two. In the second case, if the symbol is a dimensioned array (all DIMENSION

statements must occur before all statement function declarations), then the statement is an
assignment statement; otherwise it is a statement function declaration.

If the statement is not an assignment statement or a statement function, then the first lexeme
of the statement is compared with all keywords of the same length. Normally, the statement type
is determined right there. The oniy exceptions are:

For INTEGER , REAL , COMPLEX, or LOGICAL,  the next lexeme is checked to see if it is the
identifier FUNCTION, and the lexeme further down an identifier, since FUNCTION can be used as
the name of a variable.

For DOUBLE, the next lexeme is checked to make sure it is the identifier PRECISION.

For BLOCY the next lexeme is checked to make sure it is DATA

For IF, CLASSIFY determines whether the statement is an arithmetic or logical IF. An IF
statement is an arithmetic IF if it is of the form

IF ( a n y t h i n g )  n u m b e r  a n y t h i n g

Otherwise, it is a logical IF. (While scanning between the parentheses, both in this case and while
checking to see if the statement is an assignment statement, it is necessary to keep track of the
number of left and right parentheses in order to allow for nested parentheses.)

If the current statement already has error discovered in LEXER,  it wilt be classified as XNONE.
When CLMXFY finds any erroneous construct, it wiil also classify the current statement as XNONE,
CLASSIFY  outputs no error message.
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6. Main block

The processing of an input user program is controlled by the main procedure and
procedure BLOCK The control structures of these two procedures are as follows:

6.1 Main procedure

1. Call INITCOMPILER  to initialize everything.

2. Call BLOCK  to process the main program unit.

3. While there are more subprograms do
(a> cal l  FUNC  STMT,  SUBR-STMT  or  BLKDATASTMT  to process the heading of the next

program unit;
(b) call BLOCK to process body of program unrt.

4. Call VARINITWJZATION  to generate the code to initialize the variables that should be
initialized and to load FORMAT specifications into memory.

5. Generate the bodies of the level I to 3 dummy U-Code procedures.

6.2 Procedure BLOCK

i. (a) Call LEXER to get the first statement of the current program unit;
(b) Call CLASSIFY to determine the statement type.

2. If first statement is the IMPLICIT statement,
(a) call IMPLDECL to process it;
(b) call LEXERt o get the next statement;
(c) call CLASSIFY to determine the statement type.

3. While there are more declaration statements, FORMAT or SET statements do
(a) call the appropriate routine to process it;
(b) call LEXER to get the next statement;
(c) call CLASSIFY to determine the statement type.

4. Call STORAGE~ALLOCATION  to allocate storage for the variables that have been declared.

5. Call FILL-ADDRESS-INITIALIST  to copy these addresses into the list of variabies to be
initialized.

6. While there are statement function declarations, FORMAT or SET statements do
(a) call STMT-FUNCTION,FORMAT~STMT  or SET-STMT;
(b) call LEXER to get the next statement;
(c) call CLASSIFY to determine the statement type.

7. Generate code for the head of the U-Code procedure for the current program unit.

8. Initialize the list of temporary locations to NIL.
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9. While statement is an executable statement, FORMAT or SET statement do:
(b) if there is a Fortran label, enter it in the label table if it is not there already and generate

code for a U-Code label by calling ENTERLABEL;
(c) call the routine to process the statement;
(d) if we are not about to process a statement within a logical IF statement then do

(1) if we have been processing an IF statement, then generate the U-Code label to be
jumped to if the condition is false;

(2) if there is a Fortran label and it is the end for a do-loop, then generate the
appropriate code;

(3) call LEXER  to get the next statement;
(4) caii CLASSIFY to determine the statement type;

10. (a) Process the END statement;
(b) call LEXER  to get the next statement;
(c) call CLASSIFY to determine the statement type.

I 1. Check If any do-loop is still open.

12. Check the label and symbol tables and issue warnings if any label or variable have been
used only on the left-hand-side or only on the right-hand-side.

13. Generate code for the end of the U-Code procedure for the current program unit.
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7. Symbol Tables

7.1 The structure of the tables

There are five symbol tables in UFORT:

I

1. The main symbol table keeps track of variables, subprogram and entry names, Intrinsic  and
standard function names and FORMAT labels used within a single program unit (main program
or subprogram).

2. The label table keeps track of Fortran labels within a single program unit.

3. The common name table keeps track of common areas.

4. The external name table keeps track of subprogram and entry names throughout ail the
program units.

5. The stun&d  function table contains the names of all standard functions.

Each of these tables is made up of records which form a binary tree. The symbols are
ordered lexicographically m the tree. The heads of the tables are pointed to by pointers stored In
the global variables SYMHEAD,LABELHEAD,COMHEAD,EXTHEAD,  and HEADSTDTABLE.

The main symbol table and the label table are cleared at the beginning of each new
program unit. The other three are cleared only once, at the beginning of compliarlon.  The
storage used by the cleared entries is automatically reclaimed through the garbage coiiectlon
facility in &he Pascai in which UFORT is written.

7.2 The associated routines

The standard funcrion table is set up at compiler initialization time and has a routine,
IN-STNDFUNCTABLE,  that searches it. The other four each has a main routine that searches the
table for a given entry and inserts it in if it IS not already there, and then adds any informatlon to
the symboi table that is not contradictory to the information it already has about these symbols.
This structure is convenient in a one-pass Fortran  compiler, because the information for a symbol
is typically scattered all over the program.

The four main routines, called FSYMBOL, FLABELNO,  FCOMNAME,  and FEXTNAME, are very
similar in structure, and have simliar subsidiary routines which they call, For example, the
routines CLEARSYMBOL, CLEARLABELNO,  CLEARCOMNAME,  and CLEAREXTNAME  ail initialize new
records for insertion into the respective table. The following description of how procedure
FSYMBOL works, therefore, is applicable to the other three routines.

When FSYMBOL is called, it calls procedure BUILDSYMBOL with a name and a pointer to the
head of the table as parameters. BUILDSYMBOL, which uses procedure SYMLOOK, searches for an
entry in the table with that name. If it does not find the symbol, it will create a new record and
procedure CLEARSYMBOL  will be called to set the fields of the record to their default values.
FSYMBOL then inserts all the mformation  about this symbol that was passed to It as parameters,
checking for contradictions with the information it already has. It is assumed that contradlctron
does not exist among the call parameters in a single caif.
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The four symbol table routines FSYMBOL, FLABELNO, FCOMNAME  and FEXTNAME  can be used
for 3 different purposes: (a) to retrieve the pointer to the symbol table entry, (b) to assert
informatlon about the symbol as given in the parameters in the call, and (c) to test the propertles
of the symbol agamst the values given in the parameters in the call. Each of the routines depart
from (c) somewhat, and the details are given in their sections following.

7.3 The main symbol table

The main symbol table stores information about the characteristics of the identtflers  used In
a block, the most important of which are their addresses. It also stores the FORMAT labeis. A
space in memory for saving the address of the FORMAT string is allocated for each FORWiT label
(see Section 25).

It uses records of type SYMBOL:

DIM = RECORD CASE INTEGER OF (* ar ray  d imens ion  l )
O:(CONSDIM:INTEGER);  (@ c o n s t a n t  *)
l:(VARDIfl:tSYMBOL);  (* vardable  *)

END ;

F UNCTYPE = ( NOTEXTERNAL
INTRINSTOEX

,EXTERNAL,EXTSUBR,EXTFUnC
T,PARAMPROC);

,STMTFUNC,

SWlBOL = PACKED RECORD
LSON,RSON:fSY?%OL; (” P O I N T E R S  T O  S O N S  ‘)
NAME : THENAME  ; ( l SYMBOL NAME, 6 CHARACTERS LONG * )
STYPE :POINTDEFTYPE; (* T H E  T Y P E  O F  T H E  V A R I A B L E ;  I T  S H O U L D

0E SET TO NONE IF  SUBROUTINE NAME ‘)
WHEREDEFINED:INTEGER;  (* P R O G R A M  CINE  NUM8ER  I N  W H I C H

V A R I A B L E  A P P E A R S  T H E  F I R S T  T I M E  ‘)
L E V E L , (’ ADORESS  I N G  L E V E L  F O R  T H E  V A R I A B L E  * )
ADDRESS:INTEGER; (’ -1  I F  N O T  Y E T  E S T A B L I S H E D .  *)
MTYPE : CHAR ; ( l CHARACTER FOR THE l’!EMORY  TYPE ’ )
U S E D - L H S , (* T R U E  I F  V A R I A B L E  W A S  G I V E N  A  V A L U E ,

N O T  U S E D  F O R  EXTERNL,  EXTSUBR,
INTRINSTDEXT,  PARAMPROC,  EXTFUNC,
EXCEPT WHEN A FUNCTION VARIABLE l )

USED-RHS, (* T R U E  I F  V A R I A B L E ’S  V A L U E  WAS  USED,
NOT USED FOR INTRINSTDEXT,
FORMATLABEL  l )

S-DUMMY, (* TRUE IF DUMMY ARGUMENT l )
S - E X P L I C I T :  B O O L E A N ; (  l TRUE IF  TYPE EXPLICITLY DECLARED h )

C A S E  S-FUNCSUBR:  F U N C T Y P E  O F  (* N O T E X T E R N A L  I F  N O T  E X P L I C I T L Y  A S S E R T E D  ‘)
INTRINSTDEXT:(PTRSTD:~STDFUNCTABLE);  (’ P O I N T E R  T O  STANDARO  F U N C T I O N

T A B L E  I F  STARDARO  F U N C T I O N  N A M E  ‘)
STMTFUNC: (SEGMENNUM, (* SEGMENT NUMBER OF ITS U-CODE PROC BLOCK l )

NUMOFARG:  INTEGER) ;
NoTExTERNAL:  (S~J~QUIVALENCE, (* T R U E  I F  EOUIVALENCED  e )

S2-EQUIVALENCE, (’ U S E D  T O  INOICATE  I F  A N  EQUIV.
VARIABLE HAS 8EEN  PROCESSED IN
STORAGE ALLOCATION TO CHECK
EOUIVALENCING TWICE *)

S-COMMON, (  * TRUE IF  COMMON VARIABLE ’ )
I N I T I A L I Z E D :  BWLEAM;  (* T R U E  I F  V A R I A B L E  I N I T I A L I Z E D .

FALSE OTHERWISE *)
(’ FOLLOWING FIELOS  DO NOT HAVE CORRESPONOING  PARAMETER IN

PROCEDURE FSWIHOL  ‘)
NUM-ELEIIENTS:  I N T E G E R ;  (* O N E  I F  S C A L A R ;  E L S E  N U M B E R  O F

ELEMENTS IN ARRAY,  ZERO IF
A D J U S T A B L E  OIMEHSION  ‘)

PTRCOM:+COMNAME; (^ POINTER TO THE COMNAME TABLE,
USED ONLY IF  COMMON SY?lBOL  *)

ARRY: POIHTARRYJHFO); (* P O I N T E R  T O  tABi-E  O f  OIMENSIONS,
NULL IF  NOT AM ARRAY ’ )

END;
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ARRY-INFO  - PACKED RECORO
D I M E N S I O N :  I N T E G E R ; (* T H I S  MUST N O T  B E  0  ‘)

(’ FOLLOWING 2  ARRAYS USED ONLY UP TO
‘O I M E N S I O N ’ ‘)

OIMEN:ARRA~l..flAXOIM]  O F  OIM;(*  E I T H E R  T H E  C O N S T A N T
OIMENSION OR THE POINTER TO THE SYMBOL
T A B L E  E N T R Y  I F  V A R I A B L E  O I M E N S I O N  ‘)

S-CON:ARRA~l..WAXOIM]  O f  B O O L E A N ;  (* T R U E  I F  T H E  I T H
OIMENSION IS  CONSTANT *)

NUM~CONST~O  IfIS, (* T H E  F I R S T  ‘N-C-0’ O F  S - C O N  A R E  T R U E  ^)
F I R S T - O F F S E T :  I N T E G E R ;  (’ C O R R E C T I O N  F O R  ‘C O M P U T E  O F F S E T ’ ‘)

END;

Its main procedure, FSYMBOL,  has parameters that correspond to the record fields whose
contents are checked inside this procedure.

PROCEOURE  FSY?lBOL(VAR  SPTR:POINTSYMBOL;  (*

SYWNAME  : THENAME  ;
SYMTYPE  :OATATYF’E  ; (’
SYWHEREOEFINEO:INTEGER;  (^

SYMFUNCSUBR:FUNCTYT-‘E;  (*

SYMCOMMON ,
smOUMMY)
SYMEQUIVALENCE,
SYMLHS,
SWIRHS  ,
S~INITIALIZED:BOOlEAN);  (’

RETURNS ALWAYS A POINTER TO THE
E N T R Y  I N  T H E  fY?‘lBOL  T A B L E  “)

N O N E  I F  N O  I N F O  I S  S E N T  “)
T H I S  W I L L  C O N T A I N  T H E  PROGRAn
LINE NUMBER BEING PROCESSED l )
NOTEXTERNAL IF  NO INFO,  THE
PROPER FUNCTYPE OTHERWISE “)

F A L S E  I F  N O  I N F O  O R  F A L S E  *)

Most of the entries in this symbol table assume an implicit value if no information is
asserted. When it is necessary to check that an entry is having a certain value, It is possible to
accomplish the check by asserting the entry to that value using the corresponding parameter in
the call to FSYMBOL.  Note that in this case, if the entry is having the implicit value, it wlli be
changed to the asserted value, which is undesirable in some cases. When the check is for the
entry to have the impiicit value, this does not work, since the implicit value in the call parameter
specifies no action. Thus, it is necessary sometimes to retrieve the pointer and then make the
comparison explicitly.

If STORAGE~ALLOCATION  has already been called, i.e. when processing the executable part
of a program unit, FSYMBOL allocates space for new variables not previously declared using
procedure SIMPLE- STORAGE If no allocation is desired (e.g. when testing that a statement
function name has not previously been declared as a variable), BUILDSYMBOL should be used to
retrieve the pointer rather than PSYMBOL.

Field S-EXPLICIT is set to true whenever STYPE has been asserted in a call. FSYMBOL  wll\
automatically infer a symbol to be EXTFUNC if it is both typed and declared EXTERNAL

See Section 15.2 regarding the S-FUNCSUBR  field.

7.4 The label number table

Both statement labels and FORMAT labels are entered into this table. For each statement
label, it also stores the U-Code label associated with it. This association is fixed the first time the
Fortran label occurs in the program unit, when the new table entry is created. The position of the
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label in the statement, i.e. whether It is on the left-hand side (“100 X-1”) or the right-hand
side (“GOT0  ISS”), is kept in the table.

The label number table is made up of records of type LABELNQ

L A B E L T Y P E  = (LNONEJSF~RMATJSSTHT);

LABELNO  = PACKED RECORD
NAME, ( *  F O R T R A H  L A B E L  ")
P L A B E L : I N T E G E R ; (* PCOOE LABEL NUMBER ASSOCIATED ')
LSON,RSON:tLABELNO;

* I S - O N - R H S ,
IS-ON-LHS:BOOLEAN; (* TRUE IF  THIS LABEL NUMBER HAS OCCURRED

O N  R I G H T / L E F T  H A N D  SIDE  O F  S T A T E M E N T ' )
LTYPE :  LA8ELTYPE  ; ('  TELLS WHETHER A FORMAT OR STATEMENT

LABEL s NONE WHEN FSRST  CREATED ‘)
END  ;

and is accessed by the routine FLABELNQ.

P R O C E D U R E  F L A B E L N O  ( V A R  LPOINTER:POINTLABELNO;
NUM8ER:INTEGER; ('  F O R T R A N  L A B E L  ‘)
L I S - O N - R H S ,
L IS-ON-LHS:  BOOLEAN; (* F A L S E  IF N O  I N F O  O R  F A L S E  *)
LABTYPE:  L A B E L T Y P E ) ;  (* T Y P E  O F  L A B E L ,  M U S T  B E  ASSERTEO  ‘)

Places where FLAEEzNO is called are procedures ENTERLABEL called by BLOC&  COMPLUJP and
COMPLFJP  used in the GOTO and arithmetic IF statement processors, the DO statement processor and
the READ/WRITE  statement processor.

7.5 The common tab/e

T he common name table (COMNAME) simply stores the names of the common areas thus far
defined and some information about them. It is made up of records of type COMNAME:

COMNAME = PACKEO RECORO
L E V E L , (* PSEUDO LEVEL NUMBER FOR THIS COMMON

A R E A  ‘)
LENGTH,STAOOR:INTEGER;  (’ LENGTH OF THE COMMON BLOCK IN  OUARTER

WORDS AND STARTING AOORESS  *)
PTRCOMLIST:W3’lLIST; ('  P O I N T E R  T O  T H E  L I N K E D  L I S T  O f  C O M M O N

E L E M E N T S  I N  T H I S  A R E A  *)
LSON .RSON  : tCOMNAHE  ;
NAME : THE NAME ; ( ’ NAME OF THE COMMON AREA ’ )

END;

and accessed by the routine FCOMNAME during storage allocatIon:

PROCEDURE FCOMNAME (VAR CPOINTER:POINTCOMWAME;  CONAME:THENAME);

LEVEL  is initialized inside CLEARCOMNAME,  immediately after the entry is created.
PTRCOMLIST, which points to a linked list of variables, is built when processing the declarations of
the corresponding COMMON  area. At the begmnmg of each program unit, the field PTRCOMLIST  of
ail entries is set to NIL.

When an entry is first created for a common area name, LENGTH is set to the value given by
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global variable COMMONSI& This variable has a default value 0, and is set by the optlon  CSIZ.
At the end of processing a COMMON statement, this variable is reset to 0. When space IS allocated
the first time for a common area, if the actual allocated area is greater than that speclfled  in
LENGTH, this field is changed to the larger value. Otherwise, the amount of space allocated is
equal to the value of LENGTH  Thereafter, its value is fixed.

STADDR,  initially set to -1, indicates whether a memory block has been allocated to the
common area in a previous program unit. If yes, it gives the start address of this block.

FCOMNAME  is called only in the common statement processing procedure. It only returns the
pointer to the common table entry. During storage allocation, the entries are accessed by
traversing the tree.

7.6 The external name table

The external name table keeps track of the existence and calls of the various subprograms.
An entry in the external name table implies the existence of a subprogram with that name. A
symbol can be in the EXTNAME table and In the SYMBOL table at the same time, when the external
subprogram name is referenced in the program unit, or there is an internal variable or statement
function name which happens to have the same name as another subprogram. When processing
a subprogram, the subprogram name is also in both tables, and in the case of function
subprograms, the name is used internally as a function variabie.

An identifier declared EXTERNAL is not necessarily entered in the external name table. (See
Section 8.7.)

A symbol is inserted in the external table when it is called, defined or passed as a
subprogram name parameter. This occurs in (a) procedure USERFUNC, which processes calls, (b)
the FUNCTION statement processor, (c) the SUBROUTINE statement processor, (d) the ENTRY statement
processor and (e) procedure PROCESS~ARG~MENTS.

The table is made up of records of type EXTNAME:

EXTNAME = P A C K E D

END;

RECORD
LSON,  RSON : +EXTHAWE  ;
N U H B E R  :  I N T E G E R ; (’ SEGHEHT  NUMBER ASSOCIATED TO THIS

SEGMENT NAME ENTRY ^)
X F U N C S U B R :  F U N C T W E ;  (’ M U S T  B E  O N E  O F  E X T F U N C .  EXTSUBR.

NOTEXTERNAL l )
TWEEXPt  ICIT, (’ T R U E  I F  E X P L I C I T  T Y P E  I N  SUBPROGRAn

HEADING l )
I S - D E F I N E D , (” A SUBPROGRAM BLOCK EXISTS FOR IT ^)
I S - C A L L E D , ( l INVOKED AT LEAST ONCE fi )
IS-PASSEO:  B O O L E A N ; (* HAS BEEN PASSE0 AS PARAHETER ‘)
STWE:POINTDEFTWE;  (* T H E  TYPE O f  T H E  F U N C T I O N ;  I F

S U B R O U T I N E ,  THIS  F I E L D  N O T  USED  “)
NAHE:THENAHE;
NUHOFARG:  I N T E G E R ; (’ MJH8ER  O F  ARGUHENTS;  - 1  I F  N O  I N F O  *)

and accessed by the routine FEXTNAME

PROCEOURE  FEXTNAME  ( V A R  EPO~NfER:POIHfEXTNA~E;
EXNAHE:THENAHE;
E X T Y P E E X P L I C I T :  BOOLEAN;(’  T R U E  I F  E X P L I C I T  T Y P E  I N

SUBPROGRAM HEADING *)
EXTYPE  : OATATWE ; (* NONE IF  NO INFO ‘)
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EXFIJNCSUBR:  FIJNCTYPE; (' NOTEXTERNAL IF NO INFO ')
E X D E F I N E D ,
E X C A L L E D :  B O O L E A N ) ; (* F A L S E  I F  N O  I N F O  * )

NUMBER is filled automatically inside CLEAREXTNAME  immediately after the external name
table is created, in such a way that each external program unit is associated with a different
segment number.

FEXTNAME  is designed both for asserting and checking. This is because it is not sure when
the mode is assertion and when it is checking, since the position of a subprogram bears no
relationship to where its calls originate. FEXTNAME checks the STYPE and XFUNCSUBR fields If the
external symbol is either previously called or defined. Otherwise, it goes ahead to assert STYPE
and XFUNCSUBR to the values given in the parameters.

When FEXTNAME is called from (a), parameter EXTYPE  is to be the STYPE  Value of the
symbol’s entry In the symbol table, even if its type is implicit, since the type in the external table is
fixed after the first catl.

When FEXTNAME  is called from (b) or (c), parameter EXTYPEEXPLICIT  indicates whether
typing is explicit in the FUNCTION statement. This is needed because FEXTNAME is called once
again before processing the first statement, or after processing the IMPIJCIT  statement if present as
the first statement in the subprogram. This call is from procedure BLOCK  The pointer is
retrieved. If the TYPEEXPLICIT field is false, then if the subprogram has been called, check is
made against the now known implicit type. Otherwise, the implicit type is assigned.

7.7 The standard function table

The standard function table is initialized by the procedure FILL-STDNNCTABLE It is made
up of the following type of record:

STOFUNCTABLE  * RECORD
NAME : THENAME  ;
NUMBER:  INTEGER; (* EACH PROCEDURE HAS A DIFFEREMT

NUMBER,USED  WHEN THE FUNCTION
I S  C A L L E D  ‘)

LfOH,RSON:  +STDFUNCTABLE;
END ;

It is searched by the function IN-STDPUNCTABLE:

F U N C T I O N  IN~STDFUWCTABLE(f4AHE:THENAME;VAR  STDfTR:POINTSTDFUNCTA8LE):8OOLEAH;
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8. Processing of Declarations

When a variable occurs in a declaration,  an entry for that variable is made in the symbol
table by calling procedure FSYMBOL,  and the information given in the declaration is filled In. An
error message is issued if that symbol already has some contradictory information. The address of
the variable is not determined at that time, because when a declaration is scanned, not all the
information about the variables is known. The assignment of an address to the variable declared
occurs in procedure STORAGE- ALLOCATION (see Section 11).

8.1 Representation of types

The numerous data types which the compiler recognizes are represented in records defined
as follows:

D A T A C L A S S  = (INTEGERCLASS,  REALCLASS,  CO~~PLEXCLASS,  L~~ALCLA~S,
STRINGCLASS,  OTHERCLASS) ;

P O I N T D E F T Y P E  = +DEFTYPE;

OEFTYPE  = R E C O R D
SIZE: INTEGER;
GEHTYPE:  C H A R ;
CASE CLASS:  DATACLASS OF
COtlPLEXCLASS  : (COMPPART : +DEFTYPE)  ;

END ;

The different data types are represented by pointers to their own individually-defined
records. The pointer variables are named after the type names, and they are globally defined and
initialized in procedure INITCOMPILER (see Section 6). This structure allows easy access to the size,
U-Code type and class of each data type. In the case of the types for complex numbers, an
additional pointer field in this record points to the type of the real and imaginary component
pt-ts.

The data types used in the compiler are:

LOGICAU,  Lo~IcxL2,  LoGxcAL4, LOGICAL8 - for booleans;

INT 1, INT2, INT4, INT8 - for integers;

REl, RE2, RE4, RE8 - for real numbers;

COMPQ,  COMP8 - for complex numbers;

STRING - for string constants;

FORMATLABEL  - for labels of FORMAT statements;

NONE - for the data type of subroutines;

POINTER - for addresses (the U-Code type A);

SINGCHAR  - for a single character (U-Code type C);
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PROC  - for procedures (the U-Code type P>;

SZNGSET,  DOUBSET  - for the U-Code set types.

8.2 Type-specif ic  declarat ions

Procedure TYPEDECL  scans and processes this kind of declaration. Variables are inserted in
the symbol table with the information specified by the declaration.

First, it obtains the type for the variable, based on the type of the declaration. It then scans
forward and obtains its size modified by “x” if one IS specified. The variable is inserted in the
symbol table and a pointer to the symbol table entry is passed to procedure ISAJWAY.  This
procedure is responsible for obtaining the dimension information for creating the record that
stores this information and putting its pointer in the symbol table entry of the variable.

If the vari able is initialized, procedure VARINIT is responsible for
procedure builds a list of the varrables  to be initialized.I (See Section 9.)

the steps involved. This

VARINIT is entered with LXC (the gtobal  pointer to the Iexeme array) pointing to the lexeme
with the first initialization value. The mitialitation list is extended at the end by callmg
EXTEND-LIST  a number of times according to the number of elements in the variable declared.
Procedure FILLJQLUES  is then called which traverses the list of the initialization values in the
statement and enters them into the fields of the nodes just created. In this process, it calls
procedure INSERT-VALUE.

Procedures EXTEND-LIST, FILL-VALUES and iNSERT_VALUE  are also used in processing the
DATA statement. See Section 9.2.

8.3 Dimension declaration

Procedure DIMENDECL scans and processes the Fortran DIMENSION statement. The symbol
table entries for the variables are updated with the dimensron information, It uses procedure
ISARRAY to obtain the dimension information as in type-specific declarations.

8 . 4  lmpllcit deciaration

Procedure IMPLIDECL  scans an IMPLICIT statement. Array UWWA.l?RAY is filled with the
specified implied types. IMPLIDECL can be entered only when processing the first statement In a
program unit.

This procedure gets the implied types and size modificatrons, and inserts them in
lMPLLARRAY for the list of letters specified, using procedure LETTERLIST. If an IMPLICIT statement
occurs in a subprogram, the dummy arguments are affected plus the function name If it is a
function subprogram. Therefore, once all the declarations are scanned, the symbol table entry JS
traversed in order to change the standard Fortran  implied types for the dummy arguments and
function names, using procedure CHANGEDEFAULTS . These are the only valid symbols in the
symbol table at that time because the IMPLICIT statement must be the first statement in a program
unit.
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8.5 Common declaration

Procedure COMDECL scans and processes a common declaration, The common name table is
Ml& inside this procedure and linked-lists of the common variables in each common area are
constructed. This list is formed with COMLIST  records that have the following format:

coMLIsl  = RECORO STPTR:+SYMBOL; (’ P O I N T E R  T O  SYMBOL  T A B L E  E N T R Y  O F
COMMON ELEMENT ^)

NEXT: KOHL  IST;
END;

The root of the list of common variables for each common area is stored in the field
PTRCOMLIST  of its entry in the common name table.

For each common area, COMDECL first gets its name and inserts it in the common name
table. If it is already in the table, it obtains the last entry in the common variable list for that
area. Using this pointer, the declared variables in this area are inserted in the order they are
declared. These variables are also entered in the main symbol table, if necessary, along with the
information that they are in a common area fields (S-COMMON is set to TRUE, and PTRCOM is
set to point to the correct entry in the common table).

Any dimension information of a variable in a common declaration is treated as dimension
declaration, and this information is obtained with procedure ISARRAY.

Information about the length and starting address of the common areas is not inserted here
but in procedure STORAGE-ALLOCATION, where the addresses for the common variables are
assigned. The reason for this is that a variable may be dimensioned in a later statement, so there
is no way to be sure how much space it will take until all the declarations have been processed.

The blank common area is called “M M M ” internally in the compiler. The spaces
between the M’s make it impossible for any user to use this name as a name for one of Its
common areas.

8.6 Equivalence declaration

Procedure EQUIVALDECL scans and processes EQUIVALENCE declarations. This procedure
builds the list of equivalence groups and it also builds the circular lists of equivalenced varrables
that form the equivalence groups.

The list of equivalence groups is formed with EQGROUP  records and the lists of
equivalenced variables are formed with EQLIST  records.

EQGROUP = PACKED RECORD
LOW,HIGH:INTEGER;  (’ STORE THE LOWER AN0 HIGHER BOUNDS

OF THE EOUIVALENCE  GROUP * )
LEAOER:+EOLIfT; (  l POINTS TO F IRST ELEMENT IN  L IST OF

EQUIVALENCE VARIABLES THAT FORM 6ROUP “)
NEXT : tEQGROUP  ; ( * POINTS TO NEXT GROUP n )
ALLOCATED, (’ T R U E  I F  T H E  6 R O U P  HAS ALREAUY  B E E N

ALLOCATED IN MEMORY l )
HAS-INIT, (” H A S  O N E  VARIA8LE  I N I T I A L I Z E D  “)
HAS-COMMON:QOOLEAN;  (’ TRUE WHEN THIS GROUP HAS

A COMMON ELEMENT. ‘)
END;

EOLIST  = R E C O R D  S T P T R :  tSyMBOL;  .
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(  l POINT  TO SY?lBOl. TABLE ENTRY OF EQUIVALENCE0 VAR.  ’ )
DIMENSION:ARRAY[l..MAXDIM)  O F  I N T E G E R ;

(* USED TO STORE THE COORDINATES OF ARRAY ELEtlENt
EQU  IVALENCED  * )

0FFSET:INTEGER;
(^ O F F S E T  O F  T H E  ELEMEHT  UITH  RESPECT TO THE LEADER OF

T H E  L I S T  * )
NEXT: +EQL  IST;

(* N E X T  I N  T H E  L I S T  ’ )
END ;

(* T H I S  L I S T  I S  U S E D  T O  S T O R E  T H E  VARIA0LES  T H A T  A R E  EQUIVALENCED
IN ONE’ EQUIVALENCE GROUP *)

For each equivalence group, procedure EQUIVALDECL  calls procedure EQUIVARLIST. This
procedure gets the names of the variables that form the group, inserts them in the symbol table, if
required, setting field SI- EQUIVALENCE to TRUE, and inserts them in the circular list that form
the equivalence group. If the variable equivalenced is an element of an array, Its coordinates are
also obtained. All this is done inside procedure EQUIVARLIST.

With the equivalence groups declared, a list is formed using the global variable EQUIVHEAD
that points to the head of the list and TAILMGROUP  that points to the most recently declared
equivalence group at the tail.

Since the coordinates for array elements are remembered instead of being processed
immediately, dimension declaration of a variable can occur after its EQUIVALENCE statemen 1.

8.7 External  Declarat ion

Procedure EXTDECL scans and processes an external declaration. The information that a
variable is external 1s entered in the symbol table only, since the effect of the external declaration
is restricted to inside its program unit. The external table is updated later in the call to the
external symbol, when the existence of a program unit of that name is implied. Information is not
entered in the external table if the variable externalled is a dummy argument.

.
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9. Initialization of Variables

In most Fortran compilers, initializations are handled by setting up the btnary  load file so
that the locations which are specified by the variables to be lnltiallzed are loaded with the lnltlal
values at the time the program is loaded. It is not possible to do this in U-Code, since storage IS
allocated on the stack only when the corresponding procedure is entered; instead, a series of
explicit loads and stores must be executed at the beginnmg of the program.

The initialization of variables consists of three stages. First, a list of the variables to be
initialized is formed during the processmg of type-specific declarations (Section 8.2) and DATA
statements. Next, the addresses of the variables to be initialized are saved in the LEVEL and
ADDRESS fields of the record entries in the initialization list when procedure
FILL~ADDRESS~INITIALIST  is called after storage allocation for the current program unit has
occurred. Finally, code are generated for the initializations at the end of compilation by callrng
procedure VARINITIALIZATION.

9.1 The initialization list

This linked list containing the variable addresses to be initialized and their initialization
values is formed using the INITLALIST  record with the followmg structure:

I N I T I A L I S T  = P A C K E D  R E C O R D
SYMTABPTR  : +SY?l8OL;

LOCSItE:INTEGER;

NEXT:fINITIALIST;
LEVEL,
ADDRESS:INTEGER;

CONTINUIN6:8OOLEAW;

CASE AMOUNTW’E  : LEXTYPE OF
STRINGCON:

(STRLEN :  INTEGER)  ;

INTEGERCON,REALCON,DPCON:
(NEGATIvE:B~~LEAN);

END ;

(’
tn

(’

POINTER TO SYMBOL TABLE ENTRY
O F  VARIA0LE  T O  B E  I N I T I A L I Z E D  *)
S I Z E  O F  I N I T I A L I Z E D  L O C A T I O N ;
FOR COMPLEX, 5 IZE OF EACH HALF l )
NEXT NODE ^)
L E V E L  O F  T H E  V A R I A B L E  ‘)
L O C A T I O N  T O  B E  I N I T I A L I Z E D .
E V E N  IF A R R A Y  ELEMENT  *)
STRING WITH THE VALUE
T O  B E  I N I T I A L I Z E D  ‘)
T R U E  I F  T H I S  I S  A  C O N T I N U U M  O f
THE PREVIOUS NODE,  USED IN
INITIAl.IZATION  W I T H  S T R I N G S  ‘)
LEXTYPE OF THE STRING VALUE *)

I F  IN1
LENGTH

TIAI.
O F

I ZAT ION
THE STRI

W I T H  S T R I N G
NG CONSTANT

(* T R U E  I F  C O N S T A N T  I S  -VE 8 )

‘9

The same initialization list is used for all the program units in a program, lengthening as
more initializations are specified. The addresses have to be saved in this list because the symbol
tabies of all previous program units are no longer available when the initialization code is being
emltted in procedure VARINITIALiZATION

One entry is created for a simple variable. Complex vartables are inserted in the list of
initraiized vartables as two reais: the real part and then the Imaginary part. Arrays have an entry
for each element of the array, and the displacement in actual memory locations of each of its
elements with respect to the start address of the array IS given in the ADDRESS field of 1~s
INITIALIST record entry. The real address for the elements initialized IS not entered until procedure
FILL-ADDRESS-INITLWST  is called after storage allocation has occurred. This will just add the
address in the symbol table to what is already in the ADDRWS  field In an INITIALIST  entry. Types
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of the initialized variables and dimensions of the arrays whose elements are being lnitlailzed  must
have been completely defined before the initrailzation specifications.

9.2 The DATA statement

Procedure DATA-STMT scans and processes a DATA statement and builds the list of the
variables to be initialized.

A DATA statement is composed of the alternate appearances of a variable list followed by the
initialization constants enclosed by the slashes. Procedure FORM-VAR-LIST  processes a variable
list and adds nodes to the initialization list for the variables to be initialized. Procedure
FILL-VALUES then processes the upcoming list of constants and updates the list with the initial
values in the nodes for the variables just inserted. Variable FIRST-IN-LIST is returned from
FORMVARLIST pomting  to the first element of the group just inserted and is used by FILL-VALUES
to teli where to start entering the initializatron values.

Here is a more detailed description of the procedures used:

Procedure FORMVARLIST gets and inserts the names of the variables to be initialized into the
symbol table, indicatrng  that they are being initialized by setting the field INITIALIZED to TRUE. It
then creates the entries in the initialization list for these variables by calling procedure
EXTEND-LIST.

Since the variable list can consist of arbitrarily nested loops, FORMVARLIST uses special data
structures and an recursive algorithm to process the variable list. These are presented in the next
section.

Procedure EXTEND-LIST does the actual building of the initialization list. The information
inserted by this routine consists of a pointer to the symbol table entry for the element berng
initialized, its displacement in memory with respect to the beginning of the array, which is 0 for a
simple variabie, the size of the location and the flag CONTINUING which is used to indicate if the
current location is a continuation of the locatron in the previous node, as in the succeeding
elements in the initialization of whole arrays and the second halves of complex variables.

Procedure FILL-VALUES updates the list of variables in the initializatron list with the
corresponding initial values. FIRST-IN-LIST pomts to the first element of the list that needs an
initialization value and POINT-TO-LIST is used to traverse the list of INITLALIST  records while
saving the values in the AMOUNT field. For each initializatron value, this procedure gets the
number of times the value is repeated. INSERT VALUE is then called this number of times. Fieids
NEGATIVE and STRLEN of INITIALIST  are set directly in FILL-VALUES depending on the type of the
constan  1. For string constants, INSERT-VALUE is called as many times as required dependmg on
the length of the string, and depending on the flag CONTINUING.

Procedure INSERT -VALUE  completes the information in the INITIALIST record entry by
filling in the lexeme type and the initialization values expressed as an array of characters.

The procedures EXTEND-LIST, FILL-VALUES and INSERTJh4LUE are also used in
processing initializations in type-specific declaration statements.
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9.3  Procedure FORMVARLIST

In order to handle arbitrarily nested loops in a variable list in the DATA statement, this
procedure uses two phases to process a variable list. The first phase, represented by procedure
CONSTRUCT, builds a list recursively according to the loop structure in the variabie list. The
second phase, represented by procedure EXTEND, traverses the list just created recursively and, in
the process, expands the nested loops into linear counts of initializations being added at the end
of the global initlaiization list.

The list constructed is made up of two kinds of records, which represent respecti
element in a va.riabie list and a loop. The structures of these two records are as fol lows:

vely an

(  l NOOES THAT FORM A L IST  OF VARIABLES,  ANY OF WHICH CAN INSTEAO  BE
ANOTHER LEVEL Of AN IMPLIED LOOP, IN WHICH CASE ISLOUP  IS TRUE l )

VARREC = RECORD
N E X T :  +VARREC; (’ N E X T  I N  L I S T  ‘)
C A S E  ISLOOP:  BCOLEAN  O F
TRUE:  ( NEXTLEVEL: POINTLEVELREC);  (’ P O I N T  T O  T H E  N O O E

THAT REPRESENTS THE NESTED LEVEL “)
F A L S E :  ( S P T R :  POINTSYMBOL;

NUMSUBS:  I N T E G E R ; (’ I O f  S U B S C R I P T S  ‘)
SUBSINFO:  A R R Y S U B S C R I P T S ) ;

EN0 ;

(” N O O E  T O  R E P R E S E N T  A  L E V E L  O F  I M P L I E D  L O O P .  V A R L I S T  P O I N T S  T O  T H E
L I S T  O F  V A R I A B L E S  ( O R  A O O I T I O N A L  N E S T E D  L O O P S )  T H A T  B E L O N G S  T O  T H I S
L E V E L . P R E V I O U S  P O I N T S  T O  T H E  NODE  O F  T H E  L E V E L  I N S I D E  W H I C H  T H I S
L O O P  I S  N E S T E D . CONTROLVAR KEEPS THE NAME OF THE CONTROL VARiA0LE
O F  T H I S  L O O P . CURRENTVAL IS USE0  TO STEPS FROM STARTVAL TO
ENOVAL  INSIDE PROCEDURE CONSTRUCT. l )

LEVELREC = RECORO
V A R L I S T :  P O I N T V A R R E C ;
C O N T R O L V A R :  THENAME;
STARTVAL,ENOVAL,STEPVAL,CURRENTVAL:  I N T E G E R ;
PREVIOUS :  tLEVELREC  ;

END;

The recursive algorithm to process a variable list is then as follows:

Formvarlist:

1. Call CONSTRUCT to scan and build the list representation for the variable list.

2. Call EXTEND to do the extensions to the initialization list according to the structure just
created.

Construct:

1. While not end of variable list,
(a) Create a VARREC  node.
(b) If next i tem is a loop, current node is a loop. Create a LEVELREC node pointed to from

the VARREC  node .

( 1) Enter the loop information to the LEVELREC  node.
(2) Call CONSTRUCT to scan and build the list representation for the variable list pointed to

from the LEVELREC node.
(c) Else next item is a variable. Enter the variable information together with any subscrlpt

specification in the VARREC node.
(d) Append the VARREC  node to the end of the list being built.
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Extend:

1. For each node in the VARREC list do:
(a) If current VARREC  node is a loop, get to the LEVELREC  node.

(1)Initiaiite CURRENTVAL to STARTVAL.
(2) While CURRENTVALl  STEPVAL,

a. Call EXTEND using the variable list of this loop.
b. Increment CURRENTVAL  by the amount given by STEPVAL

(b) Else current VARREC node is a variable. Do the extension to the initialization list for this
variable, array element or whole array. If any subscript is an identifier, the value of the
subscript is given by the CURRENTVAL  field of the LEVELREC node in which the subscript
identifier is the control variable.

9 . 4  P r o c e d u r e  F I L L  iDDRESS  INtTtALtST- -

This procedure finds the address of a variable once storage has been allocated to it and
enters the address in its INXTLALIST  entry, The procedure is called after STORAGE-ALLOCATION has
been called, which occurs after processing the last declarative statement and before the frrst
statement function or executable statement in a program unit.

Global variable NEXTININIT  is used to remember the record entry of the last variable
initialized for the previous program unit. Ail the entries in INITIALIST  after that entry are
traversed and the corresponding addresses are entered.

The displacement information, stored in field ADDRWS, is computed by adding the value
already in the ADDRESS field of INITLWST  and the address stored in the symbol table entry for the
variable. This IS because the distance of an array element from the start address of the array was
previously stored here. If it is a simple variable, this ADDRESS  field would have previously stored
0. Field LEVEL is obtained directly from the LEVEL field in the symboi table entry. After these
two pieces of information are obtained, the pointer to the symbol table entry is set to NIL, so that
when the symbol table IS cleared at the end of the current program unit, no pointer points to its
entries and the space used by the symbol table can be reclaimed for other uses.

At the end, NEXTININIT is updated to point to the last element of the initialization list that
corresponds to the last variable initialized in the most recently compiled program unit.

9.5  Procedure VARtNtTtALtZATtON

This procedure is called by the main procedure after ail the program units are compiled. It
generates code for the initialization of variables and the loading of FORMAT specifications into
memory at execution time, the latter being done by caiiing procedure INIT-FORMATS  (see Section
25.2).

The code for the initiaiization of variables is placed inside a special U-Code procedure,
created for the compiler, called $INIXX. A call to procedure $INIXX is always executed before
anything else in the compiled U-Code program.

The head of  the  specia l  procedure  $INIXX i s  generated by cal l ing procedure
BLKCODE-GENERATION.  Then, code for the body of procedure $INIXX is generated. This consists
of a series of LDC-STR U-Code instructions that load the constant values on the stack and store
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them into the variables’ locations in memory. String constants are loaded into variable addresses
using the LCA-IDA-MOV  sequence of U-Code instructions.
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10. Storage Allocation Structure

In U-Code, as in P-Code, there are a number of static ievels, each of which may have one
or more procedures associated with it. Each procedure owns a set of local variables. When a
procedure is entered, space for its variables is allocated. On exit, the space is deallocated. Thus,
the values of all the local variables of a procedure are undefined when that procedure is entered.

In common Forttan  implementation, however, ail of the variables of each subroutrne are
own variables; that is, their values remain the same between the end of one mvocation  of a
subroutine  and the beginning of the next. Hence, space for ail of these variables must have been
allocated at the beginning of program execution, even though some of them may only be accessed
when certain subroutines are entered. In U-Code terms, this means that ail variables in a Fortran
program must be on some level that is lower than or the same as the level of the main program.

If both the common and regular variables are on the same level, the address of any variable
following those declared to be in a common area cannot be definitely determined until the size of
that common area is known. To solve this problem, the size of each common area, except the
biank common, is restricted to the space that it occupies the first time it is declared in a program
unit. The fixed space can be explicitly set using the CSIZ option. The size of the blank common
area is unrestricted by assigning to it its own storage level. A storage level is assigned to the rest
of the common areas.

Another level is assigned for the storage of the local variables of the program units. In
addition, space is allocated in this level for storing (a) the results of expressions, constants or
subprogram names when they are arguments in subprogram calls, (b) format strings and (c>
parameter addresses for parameters to multiple entry subprograms.

The levels in the U-Code generated by UFORT are distributed as follows:

Level 1 - non-common variables (dummy procedure)

Level 2 - ail other common areas (dummy procedure)

Levei 3 - the blank common area (dummy procedure)

Level 4 -- main block and subprograms

Level 5 -- ail statement functions

The storage for parameter addresses and return values in subprograms and statement
functions, together with any temporary location used by the compiler inside their procedures, is
allocated in their respective level 4 or 5 stack frames.

Level 5 is used for statement functions
subprograms in which they are defined.

because they can only be called from the level 4

U-Code does not require that procedures be in any specific order. Thus, the code for the
procedures in levels 1 to 3, which includes how much storage is needed for these procedures, could
come after the code for levels 4 through 5. The executions of these three procedures involve only
the calls to the procedure of the next higher level.

Here is a Pascal representation of the idea:
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7 0.7 Pascal representation

program FORVARS;
v a r  i : a r r a y  [1..101 o f  i n t e g e r ; (* v a r i a b l e s  i n  t h e  b l a n k  c o m m o n  *k)

p r o c e d u r e  GENCOMMON;
v a r  n :  a r r a y  Ci.  .I0001 o f  i n t e g e r :

(* v a r i a b l e s  i n  a l l  o t h e r  c o m m o n s  x)

procedure BLANKCOMMON;
v a r  k :  r e a l ;

(U a l l  v a r i a b l e s  n o t  i n  C O M M O N  a r e a s  s t o r e d  h e r e  *c)

procedure USERSUBROUTINE;

function STATEMENTFUNCTION (real Xl:

b e g i n
STATEMENTFUNCTION  : = 2*X;
end:

begin ix USERSUBRGUTINE *)
k := 2.8; (x n o r m a l  v a r i a b l e  NC:)
i tll := 0; (AC  v a r i a b l e  i n  b l a n k  c o m m o n  *)
end:

b e g i n  (* Fortran  m a i n  p r o g  x)
v a r i a b l e  *I

i 113 :- 8; (* i n  b l a n k  c o m m o n  *I
j tll := 0; (* in common 1 *I
end:

begin  1* dummy for  genera l  common area  x1
BLANKCOMilON;
end:

beg i n !* dummy for b I ank common area u)
GENCGMMON;
end .
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I I. Storage Allocation

In the storage allocation process, each variable is assigned a level number and an offset.
Procedure STORAGE-ALLOCATION assigns memory locations to the variables declared during the
declaration part of a block. The procedure is called after all declarations have been processed and
before any statement function declaration or executable statement occurs. Any other variable that
appears later in the program without having been previously declared is allocated through
procedure SIMPLE- STORAGE, which is called by FSYMBOL. The storage allocation for dummy
arguments in subroutines, functions and ENTRY statements are performed in the parameter
processing procedures. (See Section 17.2.) The storage allocation for temporaries
generated by UFORT is done in the temporary storage management routines. (See Sectron
13.)

The storage already allocated in the different levels are monitored by displacement variables
which indicate at the same time the next address available for assignment. The global variable
DISPLACEMENT and DISPL  GENCOMMON  are used for the levels of the non-common variables and
general common areas respectively. Variable WDISPL-BLANKCOMMON  indicates the highest
address so far allocated in the level for blank common variables. Every time a space for a
variable is needed, the corresponding displacement variable is adjusted, if necessary, to he on a
half, single or double word boundary according to the size of the variable. Its value is then
stored in the field ADDRESS of the symbol table. It is then incremented by the proper amount.

The allocation of space is done in a specific order:

1. Common variables and variables equivalenced to common areas. The common areas are
allocated in lexicographicai  order. Inside each area, the variables are allocated in the order in
which they were declared as part of the common area. The variables equivalenced to one in the
common area are allocated according to the desired equivalence relation.

2. Equivalenced  variables with no common element in the equivalence group.

3. All other variables, in lexicographical order.

All common areas, equivalenced variables within a common area and other equivalenced
variables begin at a double-word boundary. For the rest of the variables, quarter-word variables
begin at the next quarter-word boundary, half-word variables  at the next half-word boundary,
single-word variables at the next smgle-word boundary and double- and quadruple-word
(complex) variables at the next double-word boundary.

Common variables are passed to procedure STORAGE-ALLOCATION in the form of a list {see
Section 7). The list of variables in a common area is pointed to from the PTRCOMLIST  field of its
common name table entry. The equivaienced variables are represented as a global list of
equivalence groups (see Section 7).

Here is a more complete description of how storage allocation is done:

I I. t Preprocessing equivalence groups

leader
Before any space is allocated, the offsets of th e eq uivalenced variables
of the group (the first variable declared in the group) is computed

W‘ith respect to I he
This is done In
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procedure EQUIV- OFFSETS. It also merges two equivalence groups if a varrable is equivalenced In
both of them, checking for any index conflict in array elements (e.g. “EQUIVALENCE
(A (3) , B (2) ) , (A (2) ,B (3) ,C)“).  The algorithm used in the computation of the offsets is as
described in (Gri7 11.

Procedure MERGE  is called by EWIV-OFFSETS  if a variable is equivalenced two times. First,
it finds the two entries of the variable in the list of equrvalence  groups. If the variable appears
two times in the same equivalence group, the second one is deleted. If the variable appears in two
different groups, the first group is deleted and appended to the beginning of the second one. In
this second group, the variables that have already been processed at the moment the double
equivalence is found have their offsets adjusted in accordance to the new leader of the group.
The doubly equivalenced variable is skipped in the second list and the variables not yet processed
will still be at the end of the enlarged group being processed.

1 1.2 Allocating space for common areas

Once all the offsets for the equivalenced variables have been computed and all necessary
mergings have been performed, space for the common variables is allocated. The address where
the common area begins is given in the STADDR  field in the common name table. It is -1 if no
space has been allocated for that area in any previously compiled program unit, and in this case,
STADDR  is set to the next available address in the general common area. If space has already been
allocated for the common area, STADDR gives the address where the area was previously allocated,
For the blank common variables, allocation always starts with the first address in the level for the
blank common area.

If a common variable is also equivalenced, procedure CHECK- EXTENSION  IS called. This
checks for invalid extensions to the left of a common area due to the equivalence, and then
assigns addresses to the variables in the equivalence group by calling procedure
ALLoC-COMMON-AND-EQUIV.  After space is allocated for all the common variables of an area,
extensions to the right of the common area are checked. See Section 7.5 regarding how the rnrtral
length of a common area is determined.

1 1.3 Allocating space for non-common variables

Once space has been allocated for all the common variables, the list of equivalence groups
is traversed and space is assigned to those groups not yet processed. Finally, the symbol table IS
traversed in alphabeticai  order and space for all remaining variables is allocated.
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12. U-Code generating routines

Almost all code that is written in the U-Code file is generated by one of the U-Code
generating routrnes. There are a few cases in which U-Code is written directly using WRITELN.

The U-Code generating routines are made to cope with the syntax of U-Code instructron
types. The three routines GEN, GENZ  and GEN3  cover most of the general U-Code instructions.
The rest of the routines generate special U-Code instructions or groups of instructions.

The parameters to the U-Code generatlng routines convey the field contents of the
instruction to be generated. The most common fields are the U-Code operand type, memory type,
block number, address and location size. The U-Code operand type together with the location
sate is conveyed by a single type parameter, of type POINTDEFTYPE (see Section 8.1). The compiler
processes addresses in units of half-words. Currently bit addresses are used, so that all address
parameters have to be multiplied by the constant BYTELEN (the number of bits per byte) before
written out. Since the symboi table keeps only the level information of the variables, the block
number is given as the parameter by indexing into the global array SEGLEN  using the level as
index. The array SEGLEV is updated whenever a new U-Code block is entered.

The LDC  instruction is generated by a number of different procedures distinguished by the
forms in which the constants are passed to the procedures:

GENLOADNUM - the constant is to be taken directly from the Fortran statement kept in the array
LEXSTRING.  The pointer to the lexeme is passed.

GENLDC - the constant is passed as a string of 20 characters which can contain any possible double
precision number.

GENLOADINT,  GENLOADBOOL, GENLOADCHAR  - the constant is passed in integer, boolean and
character forms respectiveiy.

GENOREAL  - the constant is always the floating point zero.

Other U-Code generating routines are:

GENLOADSTRING  - given a pointer to a string lexeme, generates code to load that lexeme.

GENLABEL- prints a U-Code label definition, e.g. 115 LAB”.

GENDEF, GENCIAB,  GENLDA, GENXJP, GENCSP, GENMST, GENCUP, GENEND, GENLDP, GENENT -
generates the given instruction.

GENSEGCODE - generates the dummy blocks (see Section 10).

GENLEXES - generates the LEX instruction at the beginning of each U-Code block according to the
global array SEGLEV.

The following two procedures are called from the above U-Code generating procedures:

PRINTIABEL - prints a U-Code label, e.g. “L15”.
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PRINTNAME - prints the name of a program unit in ,U-Code form, e.g. “PEPE0003”.  The
maximum iength of the name is 5 letters. The maximum segment number is 999. Each
procedure has its own segment number. The global variable SEGNUMBER always contains the
segment number that was last allotted.
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1.3. Temporary storage management

Temporary locations are used in UFORT in a number of places. They are made available
for reuse whenever possible. New temporary locations are generated only if the existing ones are
not free. Temporary locations are used in the foilowing cases:

1. In processing complex number arithmetic.

2. In different cases connected with complex numbers: the assrgnment to a complex variable
with an indirect address, the relational and bitwise operations on complex operands and
the printing of a complex number by the PRINT statement processor.

3. In processing the assigned GOTO statement.

4. In processing the arithmetic IF statement.

5. In processing READ and WRITE of whole arrays.

6. In DO statements when the final value or step value is an expression (the temporary
locations for these cannot be reused).

7. In connection with type coercions and error recovery inside ARITK

8. In generating in-line code for some intrinsic or standard functions.

Temporary locations are allocated in the level of the program unit being compiled, and thus
they exist only while the program unit is being executed. UFORT distinguishes between two
memory types in U-Code: type R (registers) and type M (main memory). It assumes that each U-
Code procedure has a number of registers available for its local storage. The constant MAXREGS
defines this number. In addition, the constant MAXPREGS defines the maximum number of
registers that can be allocated to the parameters of a program unit. Temporary locations are
allccated  in type M memory only after no more R memory is available. Since some temporary
locations are used in connection with loops, and temporary locations are reused whenever possible,
this scheme contributes to greater efficiency when the U-Code are executed.

The two temporary storage management procedures are GETTEMP and RELTEMP. GETTEMP

gets a temporary location and returns its level, address and memory type. RELTEMP is calied to
specify an allocated temporary location being now available for reuse somewhere else as a
temporary storage location.

The temporary locations are kept in a linked list pointed to by global variable
TEMPLOCHEAD. In the beginning, the list contains no node. The list is lengthened as more and
more temporary locations are allocated. The order of each node in the list corresponds to the
order in which they are allocated. The structure of each node is:

TEMPLOCNOOE = RECORD
LOC ,
SIZE: INTEGER;
MTYPE: CHAR;
FREE: BOOLEAN;
NEXT: tTEMPLOCNOOE;

END;
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GETTEMP first searches the list to see if there is a temporary location of the appropriate size
that has already been claimed as a temporary location but is now free. The search starts from the
beginning of the list, so that any type R memory location is found first. If there is none, it claims
a new one by incrementing the displacement variable of the appropriate level and memory type
by an amount which is the size of the location needed plus any extra it needs to assure that the
location starts on a single-word boundary. The new node to remember this temporary iocatlon is
added to the list.

RELTEMP merely searches through the list until it finds the specified location, then sets FREE
to TRUE.

TEMPLOCHEAD is reset to NIL before the start of a new program unit or statement function,
since the temporary locations previously allocated no longer apply.
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14. Loading and storing variables

The procedures used to generate code to load and store. variables are LO;U)-VAR,
LOAD-VAR ADDR, LOAD-ARRAY-ELEMENT and STOREJAR. To load the value of a variable,
LOAD VA.R< called. To store a value in a variable, STORE VAR is called, then the value is loaded
(usuany by ARITH) and then STOREVAR is called. Complex variables are handled drfferently  inside
LOADVAR and STOREVAR as each variable requires the loading or storing to be performed twice.

Variables are accessed differently as to whether it is a regular variable, a variable passed as
a parameter or an array element. For the last two cases, it is necessary to access the varrables
indirectly by loadmg the address on the stack first, and then doing a load or store Indirect. The
loading of the address is done by LOAD-VAR-ADDR.

LOAD-VAR-ADDR is passed a pointer to the symbol table for the variable in question. If
the variable is not an array variabie, it loads its address. If the variable is an array, lt loads Its
address, and then calls LOAD-ARRAY-ELEMENT, which reads the subscripts and generates code to
calculate the offset.

The offset of an array element is computed by a loop which iterates accordrng to the
number of subscripts specified. For an array A of dimenstons (bl , b2, . . . , b,), the offset for the
element A(i I, ‘2, . . . , in> is given by:

i I- 1 +(i2- 1 +(ig- 1+( . . . (in- l- I+(+ l)*bn- l)* . . . )*b3)*b$*b 1

If the first m dimensions of the array have constant bounds, the above algorithm can be
made more efficient by accumulating the decrements-by-l of the ‘2nd to (m+i)th subscripts into
one Single Offset adjustment. As an illustratron, suppose the array A above has all constant
dimensions.  Then the offset computation  can be compressed into:

i 1 +(++(ip.  . . (in-  i+i,*b,,  I)*.  . . )*fy)*b*)*b  1 - (((. . * ((6,- I+ l)*Q+ I)* * * * )+ 1 )*b I+ 1)

The last adjustment term is computed during compile tlme when processing the dimension
declaration of the array.

In the following example, the array has both constant and variable dimensions.
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14.1 Example of indirect load and store

Fortran: SUBROUTIHE X (I)
DIMENSION J(3.4.1)
J(2.3.5) = I
RETURN
EN0

U-Code:
X0000076 EMT P 4 76 1 0
LEX 1 1
LEX 2 72
LEX 3 73
PSTR A R 76 0 36
LDA M 1 504 0 ;load address of array 3
LOC J 36 2
LDC 3 36 3
LDC 3 36 5
LDC 3 36 4
MPY J
ADO J
LDC J 36 3
MPY J
ADO J
DEC J 16
IXA J 36 ;up to here, load address of J(2,3,4)
LOO A R 76 0 36 ;load address stored at address of I
IL00 J 0 36 ;load content of addreat just loaded
ISTR J 0 36 ;storr velua at address 2nd on stack
RET ;this is from the RETURN Jtatament
RET ;this is always generated
DEF R 36
DEF M 72
END X0000076

49’
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5 15

15. Expression Evaluation

Expression evaluation is done by recursive descent. Although this is somewhat less efficient
than using operator precedence, it 1s cleaner and makes it easier to deal with parentheses.

Expression evaluation procedures are divided into logical expresslon  procedures and
arithmetic expression procedures. Logical expressions are expressions involving loglcal operators,
such as . AND.. They may Include arithmetic expressions if relational operators, such as . EQ.,
occur inside the logical expression. Arithmetic expressions are constants, variables, function  calls
or other arithmetic expressions connected by arithmetic operators. If the logical operators .ARO.,
.OR. and .NOT. are used in arithmetic expressions, the respective bitwise operations on the
operands are implied.

Since the type of an expression may not be known until after the expression has been
compiled, as in the case of an expression which is the parameter in a function call, the
compilation is always started by calling the highest level logical expression procedure, called
ARITH. ARITH expects the global lexeme pomter LXC to be pornting to the beginning of the
expression when it is called, and leaves it pointing to the lexeme after the expression. All the
intermediate parsing procedures return the data type of the parts of the expression which they
parse to their next higher level calling procedure, and ARITH returns the data type that ~111 be left
on the top of the stack when the whole expression is evaiuated.

Bitwise operations are done in U-Code using the set operations, with .OR. corresponding to
set union (UNI) and . ANO. corresponding to set Intersection (INT).  The . NOT. operation IS
handled using the set difference operation (DIF) between a full word of l’s and the .NOT.
operand.

15.1 Syntax

The syntax for expressions is as follows:

l o g i c a l - e x p r e s s i o n  ::= log i ca l - t e rm  (“.OR.” logicai-term)

l o g i c a l - t e r m  ::= l o g i c a l - f a c t o r  ~“.AND.”  logical-factor1

l o g i c a l - f a c t o r  ::= t”.NOT.“1 re la t iona l -express ion

r e l a t i o n a l - e x p r e s s i o n  ::= ar i th-expr re I-operator ar i th-expr

reI_operator ::= “.LE.” 1 “.LT.” 1 “.GE.” 1 “.GT.” 1 “.NE.” I “.EQ.” 1I, I, 1< n > n 1 II ,I-

a r i  t h - e x p r  ::a term [addop term)

t e r m  :  : = (addopl factor (muI top factor}

f a c t o r  ::= (primary)

addop : : = “+‘I  1 ‘I-”

mul top : : = I’*” I ‘I/”

{“*cm” pr i maryl

p r i m a r y  ::= ” (I’ ar i th-expr “1” I i n t e g e r - c o n s t a n t  1 r e a l - c o n s t n a t  1
c o m p l e x - c o n s t a n t  1 l o g i c a l - c o n s t a n t  ] v a r i a b l e  1 a r ray -e lement  I
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function-call

c o m p l e x - c o n s t a n t  ::= “1” arith-expr  “,” a r i t h - e x p r  “I”

l o g i c a l - c o n s t a n t  ::= “.TRUE.” 1 “.FALSE.”

I 5.2 Processing identifiers

stand
When ARITH  encounters an identifier, it must determine wh ether it is a variable, a call to a

ard function, a call to a u ser-defined function or a call using a function dummy argument.

There are two procedures for processing function calls: STANDARDFUNC, which processes calls
to intrinsic and standard external functions, and USERFUNC, which processes calls to statement

. functions and external functions. For the latter, refer to Sectlon 19.

One of the fields of every record in the symbol table is S-FUNCSUBR. It has one of the
following values:

FUNCTYPE * (NOTEXTERNAL
PARAHPROC ) ;

,EXTERNAL,EXTSUBR , EXTFUNC ,STMTFUNC, INTRINSTDEXT,

How a symbol functions in the program is determined by its FUNCTYPE attribute:

NOTEXTERNAL  denotes that the identifier
has not yet been asserted;

is a variable or array name, or the value for this field

EXTERNAL means the identifier has been declared in an EXTERNAL statement but cannot yet be
classified as EXTSUBR,  EXTFUNC or PARAMPRCK;

EXTSUBR, EXTFUNC, STMTFUNC, INTRINSTDEXT,  PARAMPROC  denote an external procedure. an
external function, a statement function, an intrinsrc or standard function and a procedure
parameter respectively.

This is the way ARITH processes symbois:

1. Look ie up in symbol table. This means that if the symbol is not already there, it is entered,
with, among other things, the S-FUNCSUBR field set to NOTEXTERNAL If it has appeared in this
program unit before, then S-FUNCSUBR will already contain the needed information.

2. If we already know it is a user function, then call USERFUNC.

3. Else if we already know it is an intrinsic or standard function, then call STANDARDFUNC.

4. Else if next lexeme is not a left parenthesis or it has been dimensioned, then it must be a
simple variable or array element; call LOAD-VAR  (see Section 14).

5. Else if it is a dummy argument, it must be a function parameter; call procedure USERFUNC to
process the call.

5. Else if it is in the standard function table, set S-FUNCSUBR  to INTRINSTDEXT to indicate that it
is a standard function and call STANDARDFUNC.
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7. Else it must be a user-defined subprogram; set S-FUNCSUBR to EXTFUNC to indicate this, then
enter it in the EXTERNAL table and call USERFUNC

15.3 Type checking and error recovery inside ARITH

UFORT conducts full type-checking and always emits explicit conversion code whenever
type coercions are required. This eliminates the need to look out for rmpiicit type conversions In
any translator or interpretor of U-Code generated from UFORT.

The checks for type compatibility involving expressions are done usmg the procedures
MATCHTYPE or FITTYPE, which are called on different occasions. MATCHTYPE is used when the
types of two values are to be matched, performing coercion on one of them if necessary.
Coercions are always done in the direction of integer values to real values to complex values. For
example, if one of the values IS a real and the other is a complex, the real value is converted to its
corresponding complex number, and not the other way round.

FITTYPE is used when the type of a value is to be fitted to a desired result type, as in the
case of an assignment to a variabie. In this case, any coercion performed WIII be the conversion  of
the value to the result type.

An additional procedure, MATCHSIZE, is called from both MATCHTYPE and FITTYPE. it is for
checking the correspondence of sizes after the types have been matched. If size incompatibrllty
occurs, the CVT or CVT2 instructions will be generated for size coercions, with warnings output at
the same time.

UFORT always attempts to generate correct U-Code even if an error occurs. In the case of
an arithmetic expression, the fix-up of the generated U-Code and exit from the nested parsing
procedures are effected in the following manner. Each parsing procedure assumes no error occurs
in the procedures which it calls for parsing its subexpressions, and if it discovers an error itself, It
will finish parslng  at the earliest possibility, generating any dummy instructions which it IS
expected to generate in normal processing. Thus, a call to ARiTH will always finish with a single
result on top of the stack. Since the global error message routine only outputs one error message
for each statement, the error message output is appropriately that from the parsing procedure that
first discovers an error.

1 5 . 4  E x a m p l e

Fortran: IF (3.2 l I .EO. 5.1 l * 3) GOT0 233

U-Code :
LDC R 36 3.2
LOO J M 1 504 36 ;?osd value of variable I
CVT R 3 ;float  value of I
MPY R
MST 4
LDC R 36 5.1
PAR R M 0 0 36
LDC J 36 3
PAR J M 0 0 36
CUP R 52 RIEXP052 2 1 ;call cxponcntlstion  library function
EOU R
FJP LlOOl
UJP L1002



8 15.5 Expression Evaluation 53

76.5  The assignment statement

The assignment statement works as follows:

It first looks up the symbol in the symbol table and calls LOAD-VAR-ADDR  to load the
address on the stack, if necessary. It sets the global iexeme pointer, LXC, to point to the lexeme
after the equal sign. It then calls ARITH to evaluate the expression, foilowed by ASSIGNVALUE to do
the assignment.

ASSIGNVALUE checks whether the expression is a string or not. If not, STOREVAR IS called
(see Section 14). Otherwise, it calls STORESTRING.

STORESTRING  is used to store a s&ring into any kind of variabte. It generates code to load
the string into the address indicated using the MOV instruction. If the string is larger than the
size of the variable, the extra characters are Ignored. If the string is shorter, the variable is
padded with the null character.
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16. Complex Number Arithmetic

516 c

Complex numbers are loaded on the U-Code stack as two real values, with the real part
second and the imaginary part on top on the stack. Since there is no U-Code instructions that
takes a pair of stack values as an operand, an operation on complex numbers consists of
composite U-Code instructions. The SWP and DUP instructions are used extensively. Storing
values into temporary locations and loading them back later are necessary.

Each complex number operation finishes with the complex result on top of the stack. If the
complex result is to be combined agaln with another complex operand, greater efficiency can be
achieved if one part of the previous complex result is ieft in its temporary location. But this then
involves greater complexity in the processing algorithm, and so is not pursued.

The methods implemented use the least number of temporary locations and also the least
number of toad and store instructions, although they certainly do not generate the ieast number of
U-Code instructions or try to minimize the height of the U-Code stack.

In the following, the methods for complex number arithmetic are illustrated with examples.
Note that some manipulations on the first operand are performed on seeing the operator and
before processing the second operand. In the description, the two complex operands will be
referred to as (X 1,Y 1) and (X2,Y2)  respectively.

16.1 Addition and subtraction

Fortran: c = Cl * c2

U-Code:
LOO R M 1 576 36 ;load X l
LOO R M 1 612 36 ;load Yl
SWP R R ;swap Xl and Yl
LOO R M 1 648 36 ;load X2
LOO R H 1 684 36 ;load Y2
STR R H 74 72 36 ;store Y2 temporarily
A00 R ;Xl + x2
SWP R R ;swap Yl and (Xl + X2)
LOO R H 74 72 36 ; load Y2 back
A00 R ;Yl + Y2
STR R H 1 540 36 ;store  (Yl + Y2)
STR R H 1 504 36 ;store (Xl + X2)

Subtraction is similar, and is not repeated.

16.2 Multipl ication

Fortran: c - Cl * ct

U-Code :
LOO R M 1 576 36
LOO R M 1 612 36
SWP R R
NSTR R H 74 72 36
SWP R R
OUP R
LOO R fl 74 72 36
LOO R M 1 648 36
LOD R H 1 664 36
STR R H 74 108 36

;load Xl
;load Yl
;swap Xl and Yl
;store  Xl temporarily
;swap Yl and Xl
;dupl icate Yl
;load Xl back
;load X2
;load  Y2
;stors  Y2 temporarily
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NSTR R fl 74 72 36
MPY R
SUP R R
LOO R M 74 108 36
WY R
SUB R
SUP R R
LOO R M 74 72 36
MPY R
STR R M 74 72 36
SUP R R
LOO R M 74 108 36
MPY R
LOO R M 74 72 36
ADO R
STR R tl 1 540 36
STR R M 1 504 36

16.3 Division

Fortrsn:

U-Code:

C = Cl / ct

LOO R M 1 576 36
LOO R M 1 612 36
SUP R R
NSTR R H 74 72 36
SUP R R
OUP R
LOO R H 74 72 36
Lb0 R M 1 648 36
LOO R M 1 684 36
STR R M 74 108 36
NSTR R M 74 72 36
MPY R
SUP R R
LOO R M 74 108 38
MPY R
A00 R
LOO R M 74 72 36
SQR R
LOO R H 74 108 36
SQR R
A00 R
NSTR R M 74 144 36
DIV R
SUP R R
LOO R M 74 72 36
MPY R
STR R M 74 72 36
SUP R R
LOO R M 74 108  36
MPY R
NE6 R
LOO R M 74 72 36
ADD R
LOO R M 74 144 36
OIV R
STR R M 1 540 36
STR R H 1 504 36

Complex Number Arithmetic

;storc X2 temporarily
;Xl * x2
;swep Yl and (Xl * X2)
;load Y2 back
;Yl * Y2
;(Xl  * x2) - (Yl l Y2)
;swap Yl and ((Xl l X2) - (Yl l Yt))
;load X2 back
;Yl * x2
;store (Yl * X2) temporarily
;swap Xl and ((Xl * X2) - (Yl * Y2))
;load Y2 back
;Xl * Y2
;load (Yl * X2) back
;(Xl l Y2) + (Yl * X2)
;store imaginary part of result
;store real part of result

;load Xl
;load Yl
;swap Xl and Yl
;storc Xl temporarily
;swap Yl and Xl
;duplicate Yl
;load back Xl
;load X2
;load Y2
;store Y2 temporarily
;stora X2 temporarily
;Xl * x2
;swap Yl and (Xl * X2)
;load Y2 back
;Yl * Y2
;(Xl * X2) + (Yl * Y2)
;load X2 back
; x2.*2
;load Y2 back
;Y2*‘2
;x2**2  + Y2’“2
;stora (X2**2 + Y2**2) temporarily
;((Xl * X 2 )  +  (Yl * Y2)) / (X29*2  + vt**t)
;swap Yl and real part of final result
;load X2 back
;Yl * x2
;store (Yl 8 X2) temporarily
;swap Xl and real part of final reSUlt
;load Y2 back
;Xl l Y2
;- (Xl * Y2)
;lOad (Y1 l X2) back
;(Yl * x2) - (Xl l Y2)
;load (X2**2 + Y2**2) back
;((Yl * x2) - (Xl * Y2)) / (x2**2  + Y2**2)
;store imaginary part of final result
;storr  real part of final rrsult

55
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16.4 Complex-valued functions

Since U-Code does not have multiple return values for functions, complex-valued functions
in Fortran are compiled into U-Code functions that return the addresses of their complex results.
The responsibility of loading the complex result of a function on the stack then rests on the callee.
The following illustrates how a cailee does the call to a complex-valued function:

Fortran:

U-Code:

C = CFUNC(C1)

MST 4
LOA M 1 576 72 ;load address of Cl
PAR A H 0 0 36
CUP A 76 CFUNC076 1 1 ;call to complex-valued function
OUP A ;duplicatt address returned
IL00 R 0 36 ;load real part
SUP R A
IL00 R 36 36 ;load imaginary part
STR R fl 1 540 36 ;store imaginary part
STR R M 1 504 36 ;storc real part



17. Subroutine and Function Statements

Procedures SUBR-STMT and FUNC-STMT process the subroutine and function statements.
Both of them initiate a new program unit by calling procedure INITBLOCK The global flag
IN-SUBR-FUNC  is set to TRUE whenever the compiler is processing a subprogram, and the
global pointer SEGPTR points to the symbol table entry of the subprogram name. All the
parameters of a function or a subroutine are passed by reference, thus each is allocated 4 quarter-
words of storage (the space required for an address).

Whenever an identifier used as a variable is encountered in the executable part of a
program unit, its STYPE field in the symbol table entry is checked, and either the FUNCTYPE field
is NOTEXTERNAL or the symbol table entry is identical to that pointed to by SEGPTR, in which case
it is the function variable. An identifier not satisfying these conditions cannot be used as a
variable in that program unit.

The fields ADDRESS, S-EXPLICIT, USED-RHS and USED-LHS of the symbol table entry of a
subroutine are not used. Its STYPE field has to be set to NONE so that its use as a variable does
not pass the above test. The used and &fined information for functions and subroutines IS kept
in the external table instead.

17. I lnitiallzation of a segment block

The initialization of the global variables when a new block is found is done by procedure
INITBLOCK  This procedure performs the following steps:

1. It clears the symboi and label tables, the list of equivalenced variabies and the list of DO’s
that are still open.

2. It restores the standard default values for variables not declared by modifying
IMPLXARRAY.

3. In the common table, it sets the fieid PTRCOMLIST for each area to NIL, since the compiler
is ready to build a new list of common variables  for the common area in the next program unrt.
COMMONSTZ, the variable in charge of the CSIZ option, is also reset to 0.

4. It sets to FALSE the global variables AFTER- STORAGE-ALLOCATION, which indicates rf
the storage allocation of the variables declared in the program unit has occurred, and
HAS-RETURN, which indicates if a RETURN statement for the program unit has been encountered.

5. It reinitializes the displacement pointers for the level of the program unit.

6. It initializes the global variabie IFDEST, to indicate that no logical IF statement is being
processed.

17.2 Processing dummy arguments

Procedure DUMMY-PROCESSING scans the parameters of a subroutine or a function.
allocating space for them and inserting their names, levels (always 4), addresses, and an indlcatlon
that they are dummy arguments in the symbol table.
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In allocating space for the dummy arguments in the level of the program unit, two memory
types, type R (registers) and M (main memory) are available. The maximum number of type R
memory available for parameters is set by the constant MAXPREGS. If the number of dummy
arguments exceeds MAXPREGS,  the remaining parameters are allocated in type M memory. Unused
space of type R within the range specified by MAXPREGS is available for use as temporary
locations. The constant MAXPREGS is never greater than MAXREGS (See Section 13).

Eight quarter words of type M memory are always reserved starting at address 0 for the
return value of a U-Code procedure.

Dummy arguments to muitipie entry subprograms are processed in a different way. See
Section 18.

17.3 Subroutine statement

After the call to INITBLoCY routine SUBR-STMT inserts the subprogram name in the symbol
table with type NONE and level 4. The symbol table is updated by a call to FEXTNAMG Then it
calls the procedure to process the dummy arguments.

7 7.4 Function statement

Procedure FUNC-STMT calls INTTBLOCK to initialize a new block, gets the type of the
function if this is specifically indicated, gets its size modification if specified, inserts the function
name in the symbol table indicating its type, size and address (level 4, displacement O), and
processes its dummy arguments by calling procedure DUMMY-PROCESSING.

The return value of complex functions are not returned in displacement 0 of the type M
memory at level 4 because 2 separate values have to be returned. Instead, space is allocated for it
after the space reserved for the function parameters on the level of the function, m type M
memory. The address of this space is the return value of the function, and so an indirect reference
is needed in order to access the complex returned value of the function. For this reason, such
functions are declared internally as being of type a&~.

7 7.5 Code generation

Code for the head of the new program unit is generated in procedure
BLKCODE-GENERATION.  This procedure is called by global procedure BLOCK after all the
declarations of the program unit have been processed. This is necessary because all the code for
the statement functions must be generated before the code for the head of the program unit IS
generated.
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17.6 Example

Fortran; INTEGER FUNCTION X(1)
x=2*1
RETURN
END

U-Code:
X0000076 ENT 3 4
LEX 1 1
LEX 2 72
LEX 3 73
PSTR A R 76 0 36
LOC  J 36 2
LOO A R 76 0 36
IL00 3 0 36
MPY J
STR 3 M 76 0 36
PLO0  J M 76 0 36
RET
PLO0 J H 76 0 36
RET
OEF R 36
DEF H 72
EN0 X0000076

76 1 1

;load constant 2
;load address stored at address of 1
;fctch content of this address
;compute 2* I
;store at address 0 for the return value

;return  generated due to the RETURN statement

;return generated at the end of all program blocks
;type R storage
;type H storage

59-
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18. Multiple Entry Subprograms

.

Multiple entry subprograms in Fortran  provide two features to the Fortran  user: (a) a
program unit can be entered not just at the beginning of the program block, but at any defined
entry point in the program unit; (b) since a call to an entry point involves only the dummy
arguments of that entry point, the parameters to the program unit can be set during different
calls, remaining intact In the instances that the program unit is not active.

Since multlpie entry facilities do not exrst in U-Code, UFORT handles the above features
by speclai means. Some restrictions are imposed to enabie UFORT to preserve its one-pass
characteristics {See Section 2.8).

18.1 The multiple procedures

A multiple entry subprogram in Fortran is compiled into a number of U-Code procedures,
one for each entry point (inciudmg the normal entry point at the beginning of the program unrt),
plus an extra one which represents the body of the program unit. This will be called the
multientry  procedure while the former ones wrii be called enfry procedures. Ail these procedures
are at the level for program units (level 4).

The entry procedures bear the names of therr respective entry statement names, and their
parameters are those of their entry statements. Each of these procedures calls the multientry
procedure with a single parameter grving it the entry point to branch to.

The multientry procedure always has only the single branch parameter as its dummy
argument. It contains the complete code for the body of the multiple entry subprogram, wrth U-
Code labels at the places of the entry statements. In addition, there is a jump table containing
jumps to the labels of the various entry points. On entrance to the muitlentry procedure, the
branch parameter is used to determlne the jump to the correct entry point.

Since each entry statement has its own U-Code procedure, a call to an entry statement IS
just an ordinary procedure call to the corresponding entry procedure. Therefore, calls to entrles
are processed in the same way as ordinary calls.

Because UFORT is one-pass, it does not know about the entry points of a multlple  entry
subprogram until after the whole program unrt is processed. Thus, it has to retain  the
information about the entry procedures and then generates the U-Code for them after the
program unit is processed. Also, the jump table has to be put at the end of the multientry
procedure since the number of entries is not known until that point.

The entry point identifiers are entered in the external name table, since they are regarded
as user-defined subprograms to the rest of the program.

18.2 Global storage of parameter addresses

fn order to preserve the identities of actual parameters during the time that the procedure IS
not active, the parameter addresses are stored in space specially allocated for the multlple  entry
subprogram dummy arguments in the global storage level (level 1). During processing of the body
of the program unit, the symbol tabie entries of the dummy arguments indicate these addresses.
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The addresses of actual parameters are transmitted to the entry procedures In calls to entry
points. The entry procedures keep the call parameters in their own storage level (level 4). Before
calling the multientry procedure, the entry procedures copy the addresses of the actual parameters
to the locations in the global storage level, and in the multientry procedure, the parameters are
accessed only through the addresses as stored in the global locations. Each dummy argument has
a unique location in the global level, even if it appears in more than one parameter Ilsts,
including that of the subprogram heading. If a dummy argument is not involved in a call, the
content of its global location is not affected.

Because a dummy argument and a local variabie is accessed in different ways, UFORT has
to distinguish between these two types of variables when processing them. Thus, it IS necessary to
forbid the appearance of a dummy argument in the program unit before its appearance in a
dummy argument list.

18.3 The data structure

The data structure used in processing multiple entry subprograms is solely for the purpose
of retaining information for use in generating the jump table and the U-Code entry procedures
after the body of the program unit has been compiled. The record types used are defined as
fo.liows:

(” THIS RECORD REPRESENTS AM ENTRY POINT FOR A MULTIENTRY PROCEDURE.
ONE IS CREATED FOR THE HULTIENTRY SUBPROGRAM HEADING AND EACH ENTRY
STATEMENT IN THAT SUBPROGRAM, IN THE OROER Of THEIR APPEARANCES. THIS
IS USED FOR GENERATING THE ENTRY JUMP TABLE AT THE EN0 OF THE MULTIENTRY
UCOOE PROCEDURE AND EACH CALLED UCOOE PROCEOURE FOR EACH ENTRY POINT. *)

ENTRYREC - RECORD
EXTPTR: POINTEXTNAME;  (’ POINTS TO ENTRY IN EXTERNAL TA8tE l )
NUMARG, (’ # Of PARAMETERS FOR THIS ENTRY POINT ‘)
ENTRYLABEL, (' THE UCOOE LABEL THAT MARKS THE ENTRY

POINT IN THE MULTIENTRY PROCEDURE ^)
ENTRYPOS:  INTEGER; (” THE POSITION IN THE MULTIENTRY

SUBPROGRAM RELATIVE TO OTHER ENTRY
STATEMENTS. IF SUBPROGRAM HEADING,
IT IS 0. *)

HEAOENTADOR: POINTENTADOR; (* THE LIST OF PARAMETER ADDRESSES ')
NEXT: FENTRYREC;

ENO;

(* THIS IS USED FOR FORMING A LIST THAT KEEP THE GLOBAL AOORESSES ASSIGNED
FOR ENTRY PARAMETERS, IN THE ORDER OF THEIR APPEARANCES IN THE
MULTIENTRY SUBPROGRAM HEADING OR ENTRY STATEMENT. THIS LIST IS POINTED
TO FROM THE ENTRYREC RECORO THAT REPRESENTS EACH ENTRY POINT. THE
PURPOSE Of THIS LIST IS TO GENERATE THE COOE THAT COPIES AOORESSES OF
ACTUAL PARAMETERS TO THEIR 6LOBAl. ASSIGNED LOCATIONS IN THE UCOOE
PROCEDURE FOR EACH ENTRY POINT. l )

ENTAOOR = RECORD
ADDR: INTEGER;
NEXT: +ENTAOOR;

ENO;

The global pointer HEADENTRYLIST points to the list of the ENTRYREC records when
processing a muitlpie entry subprogram. HEADENTRYLIST is reset to NIL at the start of each
program unit.
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18.4 Processing multiple entry subprograms

Procedure ENTRYPROCESSING processes an entry point definition. It is called from the
SUBROUTINE, FUNCTION or ENTRY statement processors, the former two cases being the beglnning
of the multiple entry subprogram. Its job is to form an ENTRYREC node and fill in the
information. The ENTRYREC node is then appended to the list pointed to by HEADENTRYLIST. No
code is generated. The dummy argument list is then processed. The list of ENTADDR nodes
formed is attached to the ENTRYREC node. If a dummy argument appears for the first time, a
location in the global level is allocated for It.

Procedure ENTRYSTMT processes an ENTRY statement. Apart from calling ENTRYPROCESSING,
it generates the U-Code label on site that marks the entry point represented by the ENTRY
statement in the multientry procedure.

Since the jump table for the multientry procedure is at the end of the procedure, a UJP IS

always issued as the first instruction of this procedure. This ju,mp directs the branch to the code
of the jump table.

The code related to the jump table is generated by procedure GENENTJUMPS,  called from
procedure BLOCK Preceeding  the Jump table is the code to load the branch parameter and an XJP
instruction which directs the jump with reference to the jump table. The Jump table is emitted
by traversing the list of entries pointed to by HEADENTRYLIST.

The code for the entry procedures is generated by procedure GENENTPROCS, called at the
end of procedure BLOCK One procedure is generated for each node in the list of entries. After
the procedure heading, a series of LOD-STR is generated for the parameters to that procedure, for
copying addresses to global locations. Then follows the code to call the multientry procedure with
an integer parameter that conveys the entry point. For functions, the call will result In a value
returned, and additional code to take in the value and in turn return it is emitted.

1 8 . 5  E x a m p l e

The following example illustrates how a multiple entry function is complled.

Fortran:
FUNCTION SETVAL (Pl) ENTRY
SETVAL=Pl
RETURN
ENTRY ASSIGN (P2)
P2 = Pl
RETURN
END

U-Code:
SETVA077 ENT
LEX 1 1

R4 77 11 ;the multientry procedure

LEX 2 72
LEX 3 73
PSTR A R 77 0 36
UJP LlOO2

LlOOl LAB 0
LOO A M 1 576 36
IL00 R 0 36
STR R M 77 0 36
PLO0 R M 77 0 36
RET

L1003 LAB 0
LOO A M 1 612 36

;raceive  the branch paremeter
;~ump to branch code
;label for normal entry point
;parametcr Pl kept at level 1

;label for the ENTRY statement
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LOO A M 1 576 36
IL00 R 0 36
ISTR R 0 36
PLO0 R M 77 0 36
RET

L1002 LAB 0
LOO J R 77 0 36
XJP J L1004  LlOOS 0 1

L1004 CLAB 2
UJP LlOOl
UJP L1003

LlOO5 LA8 0
PLO0 R M 77 0 36
RET
OEF R 36
OEF M 72
EN0 SETVA077

SETVA076 EMT R 4 76 1 1
LEX 1 1
LEX 2 72
LEX 3 73
PSTR A R 76 0 36
LOO A R 76 0 36
STR A M 1 576 36
MST 4
LOC J 36 0
PAR J M 0 0 36
CUP R 77 SETVA077 1 1
STR R M 76 0 36
PLO0 R M 76 0 36
RET
OEF R 36
OEF M 72
END SETVA076

ASSIGO78 EMT R 4 78 1 1
LEX 1 1
LEX 2 72
LEX 3 73
PSTR A R 78 0 36
LOO A R 78 0 36
STR A M 1 612 36
MST 4
LOC .J 36 1
PAR J M 0 0 36
CUP R 77 SETVA077 1 1
STR R M 78 0 36
PLO0 R M 78 0 36
RET
OEF R 36
OEF M 72
EN0 ASS16078

;label for the branch code
;load branch parameter

;jump table

;antry procedure for FUNCTION statement

;reccive  parameter Pl
;load and store address for Pl
m in level 1t
;call the multientry procedure

;recaive  value returned
;return  value received

;entry procedure for ENTRY statement

;receive  parameter P2
;load and store address for P2
- in level 20
;call the multientry procedure

;rcceive  value returned
;taturn  value received
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19. Subroutine and Function Calls

Calls to user-defined or standard or intrinsic functions occur in an expression, and calls to
subroutines occur in a CALL statement. Procedure USERFUNC  processes calls to user-defined
functions or subroutines. Calls to standard or Intrinsic functions are processed by procedure
STANDARD-FUNC. The ways in which these calls are processed are described below.

19.1 Processing parameters in calls

Dummy arguments of subroutines and functions are allocated addresses in their own stack
frames. All parameters in Fortran are passed by reference. During execution of a subroutine or
function, these addresses contain the addresses of the actual parameters. The actual stormg of the
addresses of the actual parameters into these locations during procedure invocations are done by
the PSTR instructions at the beginning of a U-Code procedure. In U-Code, the addresses to be
passed are put on the stack with the PAR instruction to indicate that they are parameters, and then
the procedure is called.

The arguments in a call to a user-defined function or subroutine are processed in procedure
PROCESS-ARGUMENTS. The way an address is passed to the called subprogram depends on the
form of the actual parameter. For a simple varlabie,  array name or an array element, its address
is passed. For a constant, an expresslon or a string, a location in the global (level 1) memory IS
allocated to store the final value, and the address of this location IS passed. For subprogram
names, a double-word is allocated in the global memory in which the level and address of the U-
Code procedure (generated using the LDP instruction) is stored, and the address of the double
word is passed. For a dummy argument as parameter, which includes a subprogram name
argument to be passed on, the address as stored in the parameter location IS passed.

7 9.2 Function call

Procedure USERFUNC is used to scan and process the arguments of a function or subroutme
call and to generate the code that actually does the call.

This procedure counts the arguments with procedure COUNT-ARGUMENTS, generates an MST
U-Code instruction that indicates the beginning and size of the stack for the call, processes the
arguments with procedure PROCESS-ARGUMENTS, and generates the code for the call. The segment
number for the CUP instructlon is obtained from field SEGMENNUM  of the symbol table for call to
a statement function and from the field NUMBER of the external table for call to a subroutine or
an external function. Procedure USERFUW updates the external table when an external
subprogram is called.

19.3 Subroutine call

Procedure CALL-STATEMENT scans and processes a subroutine call. It gets and Inserts the
name of the subroutine into the symbol table. The data type for the subroutine is set to NONE
explicitly after its insertion in the table, because otherwise FSYMBOL would insert the default
Fortran type instead of NONE with the subroutine name. Procedure USERFUNC is then called.
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19.4 Standard function calls

Standard function calls are implemented In three ways:

I. By a direct call to an equivalent U-Code standard function (CSP instruction).

2. By generatlng  in-line code.

3. By a call to a function in the Fortran run-time package (CUP instruction).

A list of the functions and how they are implemented follows:

DESCRIPTION NAME ARGS RESULT U-CODE
--------w-- -w-w -s-w ---w-- ----we

absolute value ABS
IAB
DABS

(mod) CABS
truncation AINT

INT
IDINT

mod AMOD
MOD
DMOD

max AMAXO
AMAXl
MAX0
MAX1
DMAXl

min AMINO
AMINl
MINO
MINl
DMINl

int to real FLOAT
real to int IFIX
transfer sign SIGN

ISIGN
DSIGN

positive diff DIM
( 0  i f  al<aZ) IDIM

doubl to real SNGL
complex to real REAL
complex imag AIMAG

to real
real to doubl DBLE
real to complx CMPLX
conjugate CONJG
exponenti a7 EXP

DEXP
CEXP

natural log ALOG
DLOG
CLOG

common 1 og ALOGlO
DLOGlO

sin SIN
DSIN
CSIN

real real
int int
doubl doubl
complx real
real real
real int
doubl int
real real
int int
doubl doubl
int real
real real
int int
real int
doubl doubl
int real
real real
int int
real int
doubl doubl
int real
real int
real real
int int
doubl doubl
real real
int int
doubl real
complx real
complx real

real double CVT
real complx inline
complx complx inline
rea 1 real CSP EXP
doubl doubl CSP EXP
complx complx CUP
real real CSP LOG
doubl doubl CSP LOG
complx complx CUP
real real CUP
doubl doubl CUP
real real CSP SIN
doubl doubl CSP SIN
complx complx CUP

ABR
ABI
ABR
inline
CUP
CUP
CUP
in1 ine
MOD
inline
CUP
CUP
CUP
CUP
CUP
CUP
CUP
CUP
CUP
CUP
CVT
CVT
CUP
CUP
CUP
CUP
CUP
CVT
inline
inline

65- "
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cos cos
DCOS
ccos

tanh TANH
(IBM) DTANH

square root SQRT
DSQRT
CSQRT

arctan ATAN
DTAN

arctan (al/a2) ATANZ
DTAN2

real
doubl
complx
real
doubl
real
doubl
complx
real
doubl
real

doubl

real CSP cos
doubl CSP cos
complx CUP
real CUP
doubl CUP
real CSP SQT
doubl CSP SQT
complx CUP
real CSP TAN
doubl CSP TAN
real CUP
doubl CUP

fj 19.4
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20. Statement Functions

Procedure STMT-FUNCTION  scans and processes a statement function. The dummy
arguments of a statement function are local to it. They have to be present in the symbol table
when processing the function definition, and they must drsappear after the declaration IS
processed. if their names are the same as other vartable names used in that program unit, they
must be recovered in the symbol table. In order to do this, it is necessary to save the symbol table
entries the dummy arguments replace. This is done by forming a list of records called
DUMMY-LIST. The fields saved in these records are those in the symbol table that can possibly be
altered while processing the statement function definition.

Procedure STMT-FUNCTION gets and inserts the name of the statement function in the
symbol table with LEVEL field set to 5, and ADDRESS field set to 0. It processes the dummy
arguments by calling procedure D U M M Y -ARGUMENTS, which inserts them in the symbol table and
records the old contents in the DUMMY-LIST records pointed to by HEAD-DUMMY. The dummy
arguments are allocated addresses at level 5 in the same way as dummy arguments for program
units are allocated at level 4.

A segment number is assigned to the statement function segment and code is generated for
the head of the segment by calling procedure BLKCODE-GENERATION. Then procedure
ASSIGNVALUE, which is also used in processing the assignment statement, is called to evaluate the
expresston and store the result of the expression in the space reserved for the statement function
name at level 5. In this process, temporary locations may be generated and, if so, they wrll be
allocated in the level of the statement function.

Finally, code is generated for the return of the statement function, and the dummy
arguments of the function are erased from the symbol table by calling procedure ERASE-DWMMYS,
which also recovers the old contents in the symbol tabie from the DUMMY-LIST records. L
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21. D O  Loop

A DO statement causes code to be generated at two different places at the positions
corresponding to the DO statement and at the Fortran  label that marks the end of the range of the
DO loop. In the former, code is generated for the initialization of the index variable of the loop,
as well as for the final value and step amount if they are expressions, and a U-Code label is
emitted to mark the beginning of the loop. In the latter, code is generated to increment the index
variable by the step amount, to check if it exceeds the final value, and to branch back to the label
that initiates the loop if it does not exceed the final value.

A list of opened do-loops is built to control code generation for do-loops. This works in
the form of a stack to keep track of the nesting of do-loops. Each time a new DO statement is
processed, an entry is created for it in the stack. CURRENTDO is a global variable that points to the
record of the most recently opened do-loop at the top end of the stack. There is a dummy entry
that marks the bottom of the stack.

The end of the range of a do-loop is determined as follows. When a new label number IS
defined, this is checked against the end label number of the innermost DO. If it matches, then the
innermost DO is terminated, and the same check is continued for the next outer DO. This process
terminates when the current label number is not the same as the label number of the Do in the
top Do stack. The label is then checked against the end label numbers of all the remaining, outer
DO's. If there is any match, indicating an illegal nesting of do-loops, an error is reported. Also, at
the end of a program unit, if the bottom marker is not at the top of the Do stack, which indicates
one or more do-loops have not been terminated, an error message is generated.

The DO stack is formed with the DOENTRY record of the form:

OOENTRY = RECORD
PREVIOUS : +OOENTRY; ( * POINTS TO NOOE OF PREVIOUS

NESTEO 00 “)
CONTROLVAR : +SvMBOC; (’ POINTS TO SYMBOL TABLE ENTRY OF

CONTROL VARIABLE *)
STMTLABEL, (* FORTRAN LABEL THAT ENDS THE

THE RANGE OF THE LOOP *)
PCOOELABEL : INTEGER; (” PCOOE LABEL INSERTED WHERE

THE DO-LOOP BEGINS l )
STEPKINO,
UPPERKINO : OOKINO;
EXPLEVEL, (* IF EXP. THE LEVEL OF THE TEMP

LOCATION USE0 ‘)
STEPAMOUNT, (* If CONST KINU THEN CONS1 VALUE * )
UPPERAMOUWT  : INTEGER; (* IF EXP KIN0 THEN TEMP LOC ‘}
STEPMTYPE ,
UPPERMTYPE : CHAR; ( l HEM TYPE OF THE TEMP LOC USED ’ )
STEPVAR, UPPERVAR : POINTSWIBOC;  (’ FOR VAR KIN0 ‘)

END;

The DO loop routines are also used in processing implied loops in the READ  and WRXTE
statements.

2 1.1 Do-loop initialization

Procedure DOSTATEMENT scans and processes a DO statement. It pushes an entry in the Do
stack, gets the Fortran  label that terminates the range of the do-loop and inserts it in the en try
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just created, processes the control part of the do-loop by calling procedure DO-CONTROL and
generates a U-Code label indicating the beglnning of the do-loop.

In procedure DO-CONTROL, the control variable IS located and inserted in the symbol table.
Code IS generated for the computation of Its initial value and storage In the variable’s memory
location. The values or addresses of the final and increment values are saved in the most recently
created DOENTRY record. If either of these is an expresslon, then the address is that of a newly
allocated temporary location. This type of temporary is never released, since jumping out of and
back into do-loops is supported.

The initial value, step amount and final value can be arbitrary expressions, which will be
coerced to integers. The evaluation of these expressions happens only once, before the loop is
entered, so a change in any of the variables that make up the expressions will not affect the
number of times the loop is iterated. If, however, the step or final value is a simple integer
variable, then changing it will affect the number of times the loop 1s executed. The default value
of the increment amount is 1 if none is specified.

2 t .2 Do-loop termination

Procedure CLOSED0 generates code for the termlnatlon  of a do-loop. It is called by
procedure BLOCK each time a Fortran  label IS found In the source code and the stack of active DO’s
is not down to the bottom mark. It checks If the label just found corresponds to the Fortran label
that terminates the range of a do-loop, stored In the top entry of the DO stack. If it does, code IS
generated to increment the control variable and test for the termination of the loop. Once code
for the current DO is generated, the previous entry in the stack becomes the new CURRENT and It IS
checked if the label in LABNO also mdlcates the end of its range. If It does, code is also generated
for Its termmation. This is repeated until the label in LABNO is not the end of the range of the
current top DO record. Then, the rest of the DO records are checked, and any that should be
terminated by LABNO causes an error message which indicates bad DO nesting.

This procedure also checks the kind of the statement that terminates the loop and gives an
error if it is one of the following: RETURN, PAUSE, STOP, DO, GOTO, arithmetic IF and ENTRY. "

The generation of  code for  the  termination  of  the  loop is  done in  procedure
GENCODE FOR-DO.-

2 1.3 Do-loop example

Fortran:
00 10 1=3,(J+3),2

. . .
code

10
7

C&INUE
STOP
EN0

U-Code:
l.DC J 36 3
S T R  J M l 5 0 4 3 6 ;store initial value of control variable
LOO J M 1 540 36
LDC 3 36 3
ADD 3 ;evaluate loop termlnetion value
STR J 111 74 72 36 ;storc tcrmlnatlon value in a temporary location

LlOO2 LAB 0 ;lsbel to mark bep~nnlng of DO loop
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code for statements inside 1000

Lick LA8 0 ;labcl to mark tnd of the range of tht DO loop
LOO J M 1 504 36 ;load value of control variable
INC J 2 ;increment 1t
STR J M 1 504 36 ;update the control variable
LOO J M 1 504 36 ;load control variable back
LOO J M 74 72 36 ;load loop termination value
GRT 3 ;comparc them
FJP LlOO2 ;jmp back if still smaller

DO Loop § 21.3
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22. GOT0 Statcmcnts and Statement Labels

FORMAT statement labels are entered both in the label table and the symbol table. All other
labels are inserted only in the label table. The first time a label occurs, a U-Code label is
assigned to it and inserted in the label table.

The check as to whether a statement label referenced is defined or not can be made only at
the end of a program unit, since the left- and right-hand-side occurrences are processed
independently. Procedure LABEL-LHS-CHECK  IS called at the end of every program unit to
search through the label table. For each label used only on the RHS but not on the LHS, a
warning is given and the U-Code label is generated at the end of the code for the program unit
with traps. Jumps to the undefined statement labels during execution will then cause a halt.

The three kinds of GOT0 statements are processed as follows:

22.1 Unconditional GOT0

A simple UJP instruction is made to the corresponding U-Code label.

22.2 Computed GOT0

This compiles into the XJP instruction, which corresponds to the CASE statement of Pascal.
First, code to load the branch variable is generated by calling procedure LOAD-VW which takes
care of cases that the variable is simple, dummy or is an array element. The XJP instruction IS
then generated, with the branch table immediately following. This contains a list of UJP's for the
statement labels.

22.2.1 Example

Fortran: GOT0 (10,20,30),1

U-Code:
LOO J M 1 SO4 36 ;load variable I
XJP J LlOOl L1002  1 3 ;Jump according to table

LlOOl CLAB 3 ;jump table of length 3
UJP LlOO3 ;~ump to statement 10
UJP L1004 ;~utnp to 5tatement 20
UJP L1005 ;~ump to statement 30

LlOO2 LA8 0 ;end of jump table

call to execution error routines

22.3 Assigned GOT0

Because U-Code labels referenced in U-Code jump instructrons must be label names, code
for this Fortran  statement IS somewhat Inefficient.

There are two ways this statement could be complled into U-Code. The first IS to use the
XJP instruction, which IS like transforming the assigned GOT0 statement into the corresponding
computed GOTO. The second method, which is the one used, does not use XJP, and generates
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denser U-Code. The label variable is multiply loaded and its value compared one by one with
each statement label in the list until equality is found. Then the correspondrng jump is made.

If the label variable is a simple variable, the multiple loading is done by calls of LOADVAR
If it is an array element, the subscript expression must be evaluated only once. Thus, LOADVAR IS
called only once, and the value loaded is saved in a temporary location. The value stored in this
location IS then multiply loaded.

22.3.1 Example

Fortren: GOT0 5,(10,20,30)

U-Code:
LOO J M 1 04 36
LDC 3 36 10
NEV J
FJP LlOOl
LOO J M 1 504 36
LDC J 36 20
NEV J
FJP LlOO2
LOO J M 1 504 36
LDC J 36 30
NEV J
FJP L1003

;load label variable J
;load constant 10
;comparc
;if equal, jump to statement 10
;load J back
;load constant 20
;compare
;if equal, jump to statement 20
;load J back
;load constant 30
;cofnparr
;if equal, jump to statement 30
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23. The Arithmetic IF and Logical IF Statements

23.1 Logical IF

The logical IF is the only type of Fortran  statement that is compound. The compilation is
separated into two parts. The first part (procedure LOGICAL@ processes the logical expression
enclosed by the parentheses. Procedure LOGICALEXPR is called which will generate the U-Code
that evaluates the IF condition and puts the result on top of the stack. The outermost pair of
parentheses is not checked here since they have been checked inside procedure CLASSIFY.  The
global variabie IFDEST serves as a flag to indicate whether current processing is instde a logical IF
statement. it is initialized to -1 in procedure INITBLOCK When a ioglcai IF statement is
encountered, it is set to the number of the U-Code label which will be generated a& the end of the
whole IF statement. Code is generated to jump to this label if the IF condition is false.

The second part is compiled as an independent Fortran statement, the only difference being
that IFDEST is set, and consequently a new statement is not read in from the source file. A check
is made if the type of the statement is among those allowed as the second part of a logical IF
statement. After the second part of the logical IF IS complied, the U-Code iabei IFDEST is
generated and IFDEST is reset to -1.

Note that because the second part is processed as an independent statement, other statement
processing procedures cannot assume that the iexemes for the statement start at positron  1.

23.2 Arithmetic IF

The arithmetic expression in the first part of this IF statement is processed by calhng
procedure ABITH, which will generate the U-Code to evaluate the arithmetrc expression and put
the result on top of the stack. Again, the outer pair of parentheses is not checked since they are
checked insrde CLASSIFY.

Note that because of the three-way branch, two tests have to be made of the value on top of
the stack. Since the value disappears after a test, code is first generated to store the top-of-stack
value in a temporary location. Then follows code to make the test and do the jumps. The form
of the U-Code generated is:

. Fortran: IF (3+3) 10,20,30

U-Coda:
LOO J M 1 504
LDC 3 36 3
ADO 3
NSTR 3 M 74 72
LDC 3 36 0
GE0 J
FJP LlOOl
LDC J 36 0
LOO J b! 74 72
NEV J
FJP L1002
UJP LlOO3

36

36

;load varlablr J
;load constant 3
;compute (J+3)
;savc result

; compare result wi th 0
;jump to statement 10 lf < 0

36 ;load result back
;comprre  result with 0 again
;jump to statement 20 if = 0
;othcrwisc,  ~tmtp to statement 30
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24. The PRINT Statement

The syntax of this statement is based on the way the Pascal standard output routines are
called, so the processing of this statement is done in a straightforward manner.

After generating the call CO the Pascal output initialization routine, a loop is entered which
iterates for the list of output Items. in each iteration, ARITH is first called to leave the expressron
on top of the stack. The following lexemes are scanned CO check for any specification of output
field width. The corresponding Pascal output routine is then called according to the type of the
expression evaluated: string, integer, boolean, reai or complex.

24 .1  Example

Fortran: P R I N T  ‘X9’, 5:1,  ‘C=‘, (3.,2.)

U-Code:
;load address of file OUTPUT

;writa

LDA M 1 117 9
CSP ASS0 11
LCA M 1 8  ‘XI’
LDC J 36 2
LOC J 36 2
CSP A WRS 4 1
LOC J 36 5
LDC J 36 1
CSP A WRI 3 1
LCA M 18 ‘C=’
LDC J 36 2
LOC J 36 2
CSP A WRS 4 1
LOC R 36 3.0
LDC R 36 2.0
STR R M 74 72 36
LOC J 36 14
LOC J 36 9
CSP A WRR 4 1
LOO R M 74 72 36
LDC J 36 14
LOC J 36 9
CSP A WRR 4 1
CSP A WLN 1 1
CSP PEIO 1 0

’ XI ’

;write integer 5

;writc  'C='

;atore imaginary part temporarily

;writc  r e a l  p a r t
;load  back lmagrnary part

;writa  imaginary part
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2 5. FOFWIAT Statement Processing

FORMAT statements are processed in two stages. First, the FOR&MT siatement is scanned and
the information for the FORMAT statement IS entered in a created FORMTLIST record. The list of
these records about the FORMAT statements in the various program units is pomted to by the
global variable HUDFORMTLST. The structure of the FORMTLIST  record is:

FORtlTi.IST = RECORO
PTRFMTSTR:~FORMTSTR;(* POINTER TO THE FORMAT STRING LIST ">
NEXT:~FORHTLIST;
AOORESS,
LEVEl.:INTEGER;  (* ADDRESS WHERE FORMAT STRING IS STORED l )

END;

The FORMAT string specification is also saved in a list formed with records called FORMTSTR
with the structure:

FORMATSTRING . PACKED ARRAY [l..MAXCHARI#LCAJ  OF CHAR;

FORMTSTR = RECORD
STR:FORHATSTRING; (* FORMAT STRING ')
NEXT:+FORMTSTR;

END;

The purpose of this second list is to save space. Only increments of MAXCHARINLCA  unltS of
storage need be allocated by the complier. The constant MAXCHARINLCA  defines the limit on the
length of the literal allowed in the U-Code LCA Instruction. Currently, it is 64. Thus, another
advantage of this scheme is that the characters on each record can be loaded by a single LCA
instructlon.

25.1 The FORMAT statement

Procedure FORMAT-STMT scans and processes a FORMAT statement. It gets the label of the
FORMAT statement in character form and inserts it into the symbol table mdicatmg  that It IS a
FORMAT label. An address is aliocated  to the FORMAT label which hoids the address of the iocaclon
where the FORMAT string specification is stored.

A new entry in the list of formats, FORMTLIST, is created and the following information IS
obtained and inserted: (a) the address and level asslgned  to the FORMAT label and (b) the pointer
to the FORMAT string specification list. n

The FORMAT string specification is copled into the FORMSTR list character by character. Any
unused space in the last FORMTSTR record 1s cleared to blanks.

25.2 Initialization of formats

Procedure INIT-FORWTS  is used to generate code for &he loading of the FORMAT string
specifications Into memory at execution time. This procedure is called by procedure
VARINITLALIZATION  which IS in charge of the inltialitation of variables for the compiler. (See
Section 9.5.)
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For each FORMTLIST  record, procedure INIT-FORMATS generates a series of LCA-LDA-MOV
instructions according to the length of the FORMTSTR list. By the sequences of the three
instructions, the segments of each FORMAT string stored in the FORMTSTR records are moved to be
adjacent to each other in a block starting at address DISPLACEMENT, level 3. The LDA-STR
instructions then follow which stores the address where the FORMAT string begins at the address of
the FORMAT label.
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26. Read and Write Statements

26.1 Run-time I/O routines

77- -

Fortran  allows lists and loops within the READ  and WRITE statements. In order to manage
the fairly complex variable sequences, the implementation uses multiple calls to system routines
listed below:

26.1 .l Initialization of I/O routines

The run-time routines require initialization at the start of execution of any Fortran
program. Therefore, a call to

FILE1031

is always generated at the beginning of a Fortran program. This initializes the file table which
describes the status of each file or device. All of them are assumed to be closed. The file for the
output of execution error messages is opened. An error flag for the I/O run-time routines is
initialized.

26.1.2 lnitiaiization of single l/O statement

One call to an initialization routine before executing each READ/WRITE statement is
required before any data transmission call can be made.

REAOI028
WRI TIE3

Parameters: integer device number and address of FORMAT string.

The device (or file, as the case may be) is opened if not already opened in the
corresponding mode. In output, the cursor to the I/O buffer is initialized. In input, the first line
is read Into the I/O buffer. If the FORMAT pointer is not NIL (unformatted I/O), the variables for
processing the FORMAT string are inltialited.

26.1.3 Data transmission

Each call transmits one value, using one entry from the FORMAT description. These calls
may be embedded in lwps within the calling program, such loops being inwsible to the I/O
routines.

REAOVB38
WRI TV027

Parameters: address of data value,
size of data value in bytes and
coded type of data value (0 integer,1 real,2 logical).

.

These routines scan the FORMAT string untii the next I/O field is found, and service the
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FORMAT string’s contents as it scans past them. The value is transmitted according to the field
description (which also implies the type of the data value), taking into account the size of the
variable given as the 2nd parameter. If I/O is unformatted, then the 3rd parameter (type) is
taken into account to determine the desired conversion.

26.1.4 Termination

These calls finish the lransmisslon for each READ/WRITE statement, release buffers and
return an error code. Any further I/O has to begin with initiahzation calls.

READT029
WRI TT026

Parameter: address of indicator.

The F?RMAT  string is scanned until the end or the next I/O field if it occurs frrst. In
output, the I/O buffer is written out. The indicator is a quarter-word in the global memory and
is set to one of the following:

0. I  /O perceived correct
1 .  I/O er ro r  de tec ted
2 .  I /O  end  o f  f i l e  de tec ted

26.1.5 Rewind

Lastly, a call to

REWIN032

Parameter: file number

is generated at a REWIND or OPEN statement in the Fortran  source program: This causes a reset If
the file has been reset before, or a rewrite if the file has been rewritten before. Otherwise, no
operation is performed. This enables the user to start at the beginning of the file again for the
same operation on the file.

26.2 Compiler routines

Procedure IO-STATEMENT scans and processes the READ/WRITE statements. Parameter
READING to this procedure indicates the kind of I/O statement, being TRUE for a READ slatemen t
and FALSE for a WRITE statement.

The general form for the I/O statements is :

READ (DEVICE,FORMAT)  I i st

READ KIEVICE) I ist ; if unformatted

where i i s t is a list of variables that may only include simple variable names, array names and
array elements. OEVICE 1s the device number and FORMAT may be a FORMAT  statement label or an
array name.
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For the I/O of arrays, when no control variable is expiicitly established, two temporary
locations are obtained. These temporary locations, pointed to by variables MPRINTARRAY and
CONPRINTARRAY, store the upper bound (number of elements in the array) and index respectively
for the array.

Procedure IO-STATEMETJT  gets &he device number and the FORMAT specification (either a
FORMAT statement label or an array name), and generates the code to call the run-time routines for
the initialization of the I/O of the current statement, the code for data transmission  of the
variables {by calling procedure LIST-PROCWSING) and the code to call the routines  for the
termination of the I/O for the statement.

Procedure LIST-PROCESSING processes the variables in an I/O statement. It is called by
procedure 10~STATEMENT the first time, and by itself recursively when an implred DO or another
list of variables surrounded by parentheses is found in the list being processed. Parameter
IN-DO-IMPLIED lndlcates if the list of variables being processed belongs to an implied DO or is
just a list of variables surrounded by parentheses.

LIST-PROCESSING tooks at each element of the list. if it is a simple variable, array element
or an array, procedure VARNAME  is called. If it is an implied Do, which is detected by procedure
CHECK-DO-IMPLIED, procedure DO-IMPLIED IS called to process it. If it is a simple list, procedure
LIST-PROCESSING IS called recursively to process this inner list, with IN-DO-IMPLIED set to false.

Procedure VARNAME  generates the code for the I/O of a simple variable, array element or a
complete array. For the simple variable or array element, the parameters to the system routine that
does the data transmission are loaded and then a call to it is generated. For the complete array, a
special loop in U-Code is generated. This loop is preceded by, in their order, the code to compute
the number of elements of the array and store it in MAXPRINTARRAY,  the code to lnitlalize
CONPRINTARRAY, the indexing location, to 0 and a U-Code label to mark the beglnnlng of the
loop. Inside the loop 1s the code to load the parameters for the system routine and a call to it. The
address of each element of the array is computed by loading the initial address of the array and
then indexing it with the value at CONPRINTARRAY. At the end of the loop is the code which
increments the index and tests its value against that in MAXPRINTARRAY  for loop termlnatlon
condition.

Procedure DO-IMPLIED processes an implied DO. First, it processes the control part of the
do-loop using procedure DO-CONTROL; then it generates the code for the list of variables  In the
Implied DO by calling procedure LIST-PROCESSING with the parameter IN-DO-IMPLIED ser to true;
after this it generates the code to close the do-loop using procedure CLOSEDO. Each implied DO has
associated a dummy Fortran label {above 100000 to avoid any possible duplication  with an
existing Fortran  labet) that is used by the CLOSED0 routine. These dummy labels are not Inserted
into the label table.

26.3 Code generated

Fortrsn: INTEGER C(3,3),P(5)
READ (4,8) (C.(P(I),I=N.H,l))

U-Code:
MST 4 ;initiallation:
LOC J 36 4 ;load device number
PAR J tl 0 0 36
LOO A M 1 1008 36 ;load address of FORHAT string
PAR A M 1 1008 36
CUP P 28 READ1028 2 0 ;call init*alirrtion  routine

LOC 3 36 9 ;I/0 of rrray c
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STR J M 74 72 36 ;storc sire of al array C in MAXPRINTARRAY
CDC J 36 0
STR J M 74 108 36 ;load initial value in COtlPRINTARRAY

I.1001 LAB 0 ;label for beginning of generated loop
MST 4
LDA M 1 504 0 ;load address of array element:
LOO J M 74 108 36
IXA J 36
PAR A M 0 0 36
LDC J 36 4 ;load size of data value
PAR 3 M 0 0 36
LDC 3 36 0 ;load coded type
PAR J M 0 0 36
CUP P 30 READV030 3 0 ;call data transmlsslon  routine
LOO J M 74 108 36 ;load control variable from CONPRINTARRAY
INC Jl ;increment It
STR J M 74 108 36 ;update  it
LOO J M 74 108 36 ;load it back
LOO J M 74 72 36 ;load final value from MAXPRINTARRAY
GE0 J ;compare
FJP LlOOl ;jump back lf smaller

LOO J M 1 1152 36
STR J M 1 1116 36

LlOOZ LAB 0
MST 4
LDA H 1 828 180
LOO J M 1 1116 36
OEC 3 1
IXA J 36
PAR A M 0 0 36
LOC 3 36 4
PAR J M 0 0 36
LOC J 36 0
PAR 3 M 0 0 36
CUP P 30 REAOV030
LOO 3 M 1 1116 36
INC Jl
STR J M 1 1116 36
LOO J M 1 1116 36
LOO 3 M 1 1188 36
GRT J
FJP L1002

;implied 00 loop:
;save  initial value in control variable

;load address of current element of P

;load size of data value

;load coded type

3 0 ;call data transmission routine
;load control variable
;increment control variable
;update  control variable
;load back control vardabla
;load termination value
;compare
;jump back if not reached

MST 4 ;I/0 termination:
LDA M 1 396 36 ;load address of indicator
PAR A M 0 0 36
CUP P 29 REAOT029 1 0 ;call to I/O termination routine

code to check value of indi
trap execution If in error

returned
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27. The Fortran I/O Run-time Package

The Fortran I/O run-time routines are used for the execution of READ  and WRITE
statements. These routmes  are written in Pascal and make use of the lowest level Pascal I/O run-
time routines.

The I/O routines require the double precision facility in Pascal to properly process the I/O
of doubie precision variables in Fortran. When this facility is not available, double precision I/O
may be processed only up to the accuracy allowed by smgle precision. The I/O requirements of
quarter- and half-word variables are completely handled.

The I/O routines are stored In loader format along with the intrinsic and standard function
run-time routines, and linked to the main program by the linker for execution.

27.7 Structure of the l/O package

The separate parts that make up the I/O run-time package are listed with their procedures
in the order as they appear in the program:

1. error procedure - This outputs I/O execution error messages and sets error flags:
(a) procedure ERROR.

2. routines to handle the operations of the I/O buffer:
(a) procedure CXLLNEWOUTLINE;
(b) procedure NEWOUTLINE;

These write out the buffer as the next line in the output file.
cc) procedure CALLNEWINLINE;
(d) procedure NEWINLINE;

These input the next line in the input file into the buffer.
(e) procedure PUTCHAR - This puts the next output character to the I/O buffer;
(f) procedure GETCHAR - This gets the next input character in the I/O buffer.

3. procedures to. process the FORMAT string:
(a) procedure NEXTFIELD - When called, it ~111 scan the format string starting from where It

was before, processing what it encounters until It gets to the next I/O field. The
specifications of the field are returned.

4. procedures for output conversions of data values:
(a) procedure PRIFIELD - prmts  an integer in an I-formatted field;
(b) procedure PRFFIELD - prints a real number in an F-formatted field;
(c> procedure PREFIELD - prints a real number in an E-formatted field;
(d) procedure PRGF’IELD  - prints a real number In an G-formatted field;
(e)
(f)

procedure PRLFIELD - prints a boolean in an L-formatted field;
procedure FWWELD - prints the contents of a variable in an A-formatted field.

5. procedures for formatted input conversions of data values:
(a) procedure REIFIELD - reads In an integer in an I-formatted field;
(b) procedure REEFGFIELD - reads in a real number m an E-, F- or G-formatted field, the

effect being defined as identical;
(c) procedure RELFIELD - reads in a boolean from an L-formatted field;
(d) procedure RWIELD - reads in the characters in an A-formatted field to a variable.
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6. procedures for unformatted input conversions of data values:
(a> procedure UNFINTINPUT - scans and inputs an integer;
(b) procedure UNFREALINPUT - scans and inputs a real number;
(C) procedure UNFBOOLINPUT - scans and inputs a booiean.

7. procedures called externally:
-(a) procedure WRITINI (C-Code name is READ1  026);
W procedure WRITTRM (WR I T 1023);
Cc) procedure WRITVAL (WRITv02Sk
(d) procedure READINI (READ 1026);
(4 procedure READTRM (REAOT027h
w procedure READVAL (READV028);
k) procedure FILEINI (F 1 LE 1029);
(h) procedure REWIND (REWIN030).

In WRITVAL and READVAL, for formatted I/O, 3 NEXTFIELD is first called, followed by the
appropriate procedure in 4 or 5. For unformatted I/O, in WRITVAL, the standard field width is
assigned and the appropriate procedure in 4 (a), (c) and (e) is called. In READVfi,  the appropriate
procedure in 6 is called.

Note that the procedures in 4, 5 or 6 treat the transmitted data value in double-word size.
WRITVAL will do the necessary shifting for data values of smaller sizes before calling 4 READVAL
will do the necessary shifting after calling 5 or 6. PRAFIELD and REAFIELD, however, are
exceptions since the number of transmitted characters is different for variables of different sizes
(four characters per single-word, 9 bits  for each character). These two procedures are called from
WRITVAL and READVAL with an extra parameter that gives the size information of the variable.

27.2 Processing the FORMAT string

The entities allowed in a FORMAT string are: numbers, Hoilerith string, literal string
(enclosed in quotes), comma, slash, X, the left and right parentheses, P, and the field specifications
for I, E, F, G, L, A fields. Items enclosed in parentheses form a poup. The number of groups in
the same level is not limrted, but only three leveis of grouping are allowed, including the
outermost group which is the FORMAT string itself.

Procedure NEXTFIELD  is in the form of a loop which scans and processes one of the above
entities each round. Two booleans COMMAED  and COUNTED keep track of the syntactic
information in checking for syntax errors. The comma is not mandatory in the FORMAT string in
cases where its absence causes no ambiguity.

Variables GPCOUNTZ:  and GPCOUNTS keep track of the current position of the cursor within
groups. When GPCOUNT3  is 0, the cursor is not within a 3rd level group. When the cursor is
within a 3rd level group, GPCOUNT3 indicates the number of times it still has to scan across that
group. It is decremented each time the end of the 3rd level group is reached. The same holds for
GPCOUNTB  and 2nd level group. GPBEGINl, GPBEGINE and GPBEGIN3 give the starting  position of
the current groups of the respective levels.

When the scanning has reached the end of the FORMAT string but still has yet to look for
the next I/O fieid, back-up is made to the beginning of the last 2nd level group. For this
purpose, LASTGPPOS  and LASTGPREP will hold the starting position of the last 2nd level group (or
the 1st level group - the FORMAT string itself, if no 2nd level group exists) and its repetrtion
factor.
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To prevent NEXTFIELD from looking for a field indefinitely when in fact no field exists
from its back-up point to the end of the FORMAT string, the boolean variable FIELDFOUND is used.
Whenever the end of the FORMAT string is reached, there will be back-up only if FIELDFOUND is
true. FIELDFOUND is set false when scanning the beginning of the FORMAT string and at the
beginning of every Znd-level  group that can possibly be the back-up position for the FORWT
string. it is set to true whenever a field is found.

At the end of the I/O statement (when procedure WRITTRM or REA.DTRM is called),
NEXTFIELD  has to be called the last time to bring the scan to the next I/O field or the end of the
FORMAT string. Here, FIELDFOUND is first set to be false before calling NEXTFIELD  so that no
backing up is done at the end of the FORMAT string.

2 7.3 I/O management

An I/O buffer of fixed length (currently 256 characters) is maintained. This stores the next
output line being built, or the next input line from the input file. In output, the buffer is written
to the output file when a new output line is specified. In input, the next line from the input file
is read to the buffer when the next input line is specified.

The length of the output or input line is variable. If the output line exceeds the length of
the I/O buffer, a next output line IS automatically created to accomodate  the extra characters. if
the input line exceeds the length of the I/O buffer, the input tine still assumes its length, but the
characters to the right of the line limit that cannot be accomodated within the buffer are ail taken
to be the blank character.

27.4 Internal-external correspondence of data values

In standard Fortran, the type of conversion in formatted I/O is determined by the field type
in the FORMAT s&ring, and not according to the type of the variable in the READ or WRITE
statement. The same content (bit pattern) of the location in I/O is to be treated as different types
of data values according to the field types specified. (This is necessary since, for instance, no
string variable exists but the character type field (A-field) does exist.) The Fortran  user has to
make sure that his variables in formatted I/O have the right corresponding field type in the
FORMAT string for the correct values to be transmitted.

In the implementation, the data type

IOCOC = RECORD
CASE INTEGER OF
0: (INTVAL: INTEGER);
1: (REALVAL: REAL);
2: (CHARVAL: ARRAY[l..4)  OF CHAR);
3: (BOOLYAL: BOOLEAN)

END;

allows the decoding of the content of a memory location as different types of data values. The
above default is implemented by making a variable of this type as the reference parameter for the
I/O variable in the externally called procedures READVAL and WRITVAt After calling NEXTFIELD,
the type of conversion is known from the field type, and the corresponding conversion  procedure
is called using the sultabie variant field as the parameter.
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The size of the variable (one of the parameters in READVAL and WRITVAL) is taken &count
of by shifting the value prior to output conversion or after input conversion. In formatted I/O,
the form of the input or output field has no correspondence to the variable size. In output, E-
field and D-field differ only with respect to whether E or II indicates the exponent. In Input,  0 or
E makes no dlrference in indicating the exponent.

27.5 Output conversions of data values

Ail output conversions can be treated as formatted, unformatted output being simply
formatted output with standard field sizes for the different types. The standard field sizes are
those that allow the full content of the variable location to be displayed. Thus, they vary with the
size of the variable.

In ail output conversions, variable IOBUFCURS always points to the left boundary of the
output field. Anocher  variable WI indexes across the width of rhe field. The FOR loop is always
used, and W1 is the control variable.

Here are details for the output conversion of real numbers:
.

.

The real number is first normalized to >= 0.1 and < 1.0, the power being accumulated in the
integer variable E. Rounding is performed at the appropriate place by adding 0.5 to the
appropriate power of ten to the diglt after the least significant printed digit. Truncation then
does the desired rounding.

For conversion to character form, the normalized mantissa is multiplied by 10 *:m 11 (given
MAXINT  = 34359738367 has I I digits) if < .34359738367,  and by 10 rlcx 10 otherwise, to convert to
an in ceger. This arrangement is made to preserve as much accuracy as possible. The output
characters are then made from this integer. This integer only gives the significant digits. The
position of the decimal point is monitored by E, taking into account the exponent to be printed.
Thus, even if the output mantissa has more than ii digits before the decimal, the less significant
digits are made ail zero.

The algorithm for output conversion of E-field (similar for F-field with slight
modifications) is: (W, D and S are the field descriptors)

1. IF (0 > (W-O-5) 1 OR (OUTREAL  < 8) AND (0 < (W-O-6) 1 OR
(S B (W-O-5)) OR (OUTREAL  < 0) AN0 fS < (W-O-6))

THEN print ‘x’ a c r o s s  f i e l d
( f ie ld not  large enough)

2. ELSE IF (OUTREAL < MINREAL) AN0 (OUTREAL > -MINREAL)
THEN print zero
(MINREAL is the smallest magnitude of real number alioued.
Note that this is  di f ferent  from the smallest  representable
rea i number, which has the louest power but uithout the
mantissa normal ized.)

3.  ELSE ia) g e t  s i g n  i f  n e g a t i v e
(b) normal ize OUTREAL to >= 8.1 and < 1.0,  and

accumulate the power in variable E
(cl I F  ((S+O)>= 01 AN0 ((S+O) <= 10) (Here, 10 is

largest  number of  signif icant  digi ts stored in
a uord of memory)

THEN OUTREAL : - GUTREAL + 8.5 * 10 w (-(WI1 1
(00 round i ng. iS+O) is  the number of  s igni f icant
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d ig i ts  p r in ted . )
(d) IF  OUTREAL > 1 . 0  ( i n c r e a s e  t o  > 1 . 0  d u e  t o  r o u n d i n g )

THEN BEGIN OUTREAL : = OUTREAL / 10;
E : = E + 1 END

fe) I F  OUTREAL < .34359738367
THEN CURTRUNC :- TRUNC(OUTREAL  * (10 w 11) 1
ELSE CURTRUNC : = TRUNC (OUTREAL * (10 ** 101)

ff) output digits from CURTRUNC, the decimal point being
governed by S.

tg) E := E - S;
print the exponent according to E.

27.6 Input conversion of data values

In unformatted input conversion, the input file is scanned line by line until the next non-
blank character is found, and decoding starts from this position. Blanks and end-of-line separate
input entities.

In formatted input conversion, variable IOBUFCURS always points to the left boundary of the
input field. Variable WI indexes across the width of the field. For integer and real inputs,
blanks in a field imply 0. For real input, presence of ‘.’ overrides the implicit decimal place
indicated by 0 in the field specification. Presence of the exponent overrldes the effect of the scale
factor S. Effects of D-, E-, F- and C-formatted fields are defined as identical In real input.

The loop that processes the input characters (with one character look-ahead) is always of
the form:

W H I L E  (BUFFERfWll I N  [set o f  l o o k e d - f o r  char1 1 AN0
(Wl is  within boundary)  OO

BEGIN
process this character
Wl := Wl + 1

END;

where boundary refers to the field boundary (or the decimal boundary within the field) rn
formatted input and hne boundary In unformatted input.

This arrangement requires that the input buffer be declared one unit longer to prevent out-
of-bounds error of the buffer index. Another possible arrangement (not used) which does not
entail this extra declaration requires an extra flag and less straightforward structure:

DONE := FALSE;
WHILE NOT DONE DO

IF BUFFER[Wll IN [ se t  o f  looked - fo r  chat-1
THEN BEGIN

process this character
Wl :- Wl + 1;
IF Wl not within boundary

THEN DONE := TRUE;
EN0

ELSE DONE := TRUE:

Input digits are always decoded into an integer variable, even if the dlgits belong to the
mantissa of a real number.
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To check for overflow error and to ensure that any representable integer can be input, the
scheme used is: (Given MAXINT = 34359738367)

KEEPNUM : = 0;
WHILE (NXTCHAR in 1’0’..‘9’1) DO

BEGIN
IF (KEEPNUM > 3435973836) OR

((ININT - 3435973836) AND (NXTCHAR IN 1’8’) ‘9’1))
THEN over f I ow-error
ELSE KEEPNUM :- KEEPNUM * 10 + (OAD(NXTCHAR)  - ORO(‘0’));

get NXTCHAR
END:

In reading real numbers, the input is decoded into the integer variable KEEPNUM which
keeps the mantissa and integer variable E which keeps the exponent such that XEEPNUM ** E
gives the correct real value. In this case, too many digits in the mantissa should not cause
overflow if still representable as a real number. Here, the decoding part of the WHILE loop that
processes the digits in the mantissa is:

IF (KEEPNUM > 3435973836) OR
( (KEEPNUM - 3435973836) AND (NXTCHAR IN (‘8’. ‘9’1))
THEN E := E + 1
ELSE KEEPNUM :- KEEPNUM x 10 + (ORO(NXTCHAR) - OR01’0’));

(If current digit is after the decimal, then increment of E above is not necessary.)

In practice, the IF condition above can be replaced by just IF (KEEPNUM >= 3435973836)
for greater efficiency without much loss of accuracy.
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