a2 United States Patent

US008428981B2

(10) Patent No.: US 8,428,981 B2

Lietal. (45) Date of Patent: Apr. 23,2013
SRS Il S 20030262130 AL* 112005 Mohan 707102
AUTOMATICALLY MAINTAINING THE 2008/0104092 AL* 52008 Cummins oo 707/101
CONSISTENCY OF AN INFORMATION
SYSTEM OTHER PUBLICATIONS
. . . Webpage entitled “IBM ILOG”, accessed from the Internet at <http://
(75) Inventors: Peisong Li, Shanghai (CN); Peng Gao, www.ilog.com>, Nov. 29, 2012.
Shanghai (CN); Ligang Cheng, Webpage entitled “Drools—JBoss Community”, accessed from the
Shanghai (CN); Mu Yu, Shanghai (CN) Internet at <http://www.jboss.ort/drools/>, Nov. 29, 2012.
(73) Assignee: SAP AG, Walldorf (DE) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this ~ Primary Examiner — Nga B. Nguyen
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
U.S.C. 154(b) by 1541 days. Glovsky and Popeo, P.C.
(21) Appl. No.: 11/637,523 (57) ABSTRACT
. An Enterprise Resource Planning (ERP) system maintains a
(22) Filed: Dec. 11, 2006 pluralityrgf business elements. Efcgl of tl)le }l;usiness elements
(65) Prior Publication Data represents a business function that may or may not be needed
depending on a customer’s business requirement. A scoping
US 2008/0140475 Al Jun. 12, 2008 process is a process which determines what business ele-
ments are required according to the customer’s business
(51) Int.CL requirement and the relationships exist among some of the
G06Q 30/00 (2006.01) business elements. The ERP system provides an automatic
(52) US.CL business configuration subsystem. The automatic business
USPC ... 705/7; 705/34; 705/35; 705/36; 707/101; configuration subsystem maintains a set of rules. Each of the
707/102; 707/103 rules representing a relationship between two business ele-
(58) Field of Classification Search 705/7,34, ments maintained at the ERP system. The automatic business
705/35,36; 707/101, 102, 103 configuration subsystem automatically determines which
See application file for complete search history. business elements are required and need to be implemented
based on the set of rules. The automatic business configura-
(56) References Cited tion subsystem may also automatically determine whether

U.S. PATENT DOCUMENTS

5,878,431 A * 3/1999 Potterveld etal. 707/103 R
2003/0216938 Al* 11/2003 Shour ... 705/2
Client 12 Client 12
Client-side Client-side
ERP ERP
application application

Enterprise Resource Planning (ERP) System 11
Interface Module 106 —‘
Auts Confi i (ABCS)
105
- e \j Etements
Package iness| e 101
102 Topic Business
103 Option
104

statuses of the business elements are consistent with each
other in view of the rules.

15 Claims, 13 Drawing Sheets

Interface Module
108

C i (ABCS) 105

Workspace Module 205

Business Configuration Logic
Module 204

R | |
Framework (CMF) 208

Parsistence
208
Module 207

U.S. Patent Apr. 23,2013 Sheet 1 of 13 US 8,428,981 B2

Client 12 Client 12
Client-side Client-side
ERP ERP
application application
14 14

Enterprise Resource Planning (ERP) System 11

Interface Module 106

A

A
Automatic Business Configuration Subsystem (ABCS)

105

i

' Business

. Elements
Business 101
Package Business —_
102 Topic Business
103 Option
104

Fig. 1

U.S. Patent Apr. 23,2013 Sheet 2 of 13 US 8,428,981 B2

Interface Module
A 106

Automatic Business Configuration Subsystem (ABCS) 105

Workspace Module 205

A

A

Business Configuration Logic
Module 204

4
Deduction Framework 203

4
Rule Base Module 202

4
Rule Semantics Module 201

Persistence
206

y

Consistency Maintenance Rebuilder Module 207
Framework (CMF) 208

FIG. 2

US 8,428,981 B2

Sheet 3 of 13

Apr. 23,2013

U.S. Patent

eg oOld

aNGT

TETTE S BUENTETE

0313313530 413S

W3 WaLP)S P2 (asag-ag-0]

Q3123138 4713S

IURWRIFIG-PR=e5-97-0 |

WBNIENS - XN OBEH-95F-0/
W WIS -0 PC-ag-0!

U3 NEIS-2ouanbasu09

nresArhgz- e Y0 HnRsAIv - noy

nnsaldvg-10

031337138 10N S| S¢FLILY oA
Q310371385 S| refFueR-itowss

uolsse) dxg-A1Enb g

oS evdue-ApEabg QNG OB avdue-puy

WU YLK oAy e Doy

uvissadx4-puy

LSS OXF-0
UOESONT-P Uy

UoIssaIdx]-P uogIpuoy

JUBNRER-103I95-5F-01 NIHL Losswdg-1euogpuoy J|

JUBNANES-0HBSHT-DF-0f NIH 1 JWSNNGS-|ELOZIPL O]
41 IS5 13 swewsgessgosies-eg-of NIHL vofs avdhg-revcgpuoy 4|

UM U Y
-83-0/ 5717 WANHERF09I85-95-0/ NTH | LOSSwokT-p20000L0) 4|

WANINRT-3 0 ANEI V0N MIH L MOESITT-AELCRIDAON d|

uoionpoly

c0€

3Ny sneANEI2]

3Ny IUjBISUDD

pEULER 2 0} SWEN

L0€

U.S. Patent

Apr. 23,2013 Sheet 4 of 13

309

/ 305
Business Topi Dot g

303
Constraint
" hide detsils in parailel
306 j
P / e - e ,
/] IF BFA S.r!es OtderIthgerneM !-., JEL ECTED AND BEA Procuraent Minagement 15 SELECTED
307 [l‘ OR F BF2 A-.:.oanmmnagement IS SELECTED
, i Repo:tmg IS DESELECTED(D) //"’—‘ 308
i
i
' . IF BPA Sales Qvder Minagement /5 NOT SELECTED DR 574 Procuramert Nhnagement IS NOT SELECTED
{7 AND iF 824 Accoum Ifanagement 15 MOT SELECTED 309
i1 AND IF BPA Vender hvoice IS SELECTED
304
I Constraint Details 314 315
311 [BPA Sales Order Managemerﬂ i@j __/_ 313
312 AU [— RPA Prararement Management @ i:,}SS_FLEC_‘I’,FD / 31 3
/’] AND T i3 [ISSELECTED
311 J 1 or } RPA Arrnurd Managamend ﬁ E‘,}%SE,-ECIEQ
0 AND | & ssEecTED ni v
1 oor - ¥ CB30LCeTeD: uny)
O a0 | o) ,ls SELECTED:7u,7]
1 Lang su.g:cn:o,) 2.
1 LELSEIF
I [BPA Vender invoice o [ZSSELECTED:
| AND | T5 [SSEECTED. ..
L1 oR [E [IS SELECTED 7y
0 aw | L@ L I8 SELECTED eon J

FIG. 3b

US 8,428,981 B2

U.S. Patent Apr. 23,2013 Sheet 5 of 13 US 8,428,981 B2

Business Element Business Element
401 401
GetSinkRules 405
RuleSet 402 RuleSet 402
SinkRules SinkRules
403 403
SourceRules SourceRules
404 404

GetSourceRules
406

FIG. 4

U.S. Patent Apr. 23

,2013 Sheet 6 of 13 US 8,428,981 B2

CentralRuleBase

301

RUleBase/s()/

505

SessionRule
Base 503

Session 504

FIG. 5

AN

\%se 502

05

SessionRule
Base 503

Session 504

U.S. Patent Apr. 23,2013 Sheet 7 of 13 US 8,428,981 B2

Deduction Framework 203

Default Value Handler 601

Relationship Handler 602

Status Determination Module
603

Explanation Determination
Module 604

FIG. 6

U.S. Patent Apr. 23,2013 Sheet 8 of 13 US 8,428,981 B2

Consistency Maintenance Framework (CMF) 208

Preprocessing Module 701

Solution Generator 702

FIG. 7

U.S. Patent Apr. 23,2013 Sheet 9 of 13 US 8,428,981 B2

801

Create and initialize a scoping
process

/

Receive a request from a client-
> side ERP application and
determine what the request is

J

/ 803 / 804
Y y

Process the scoping request Process the explanation request

FIG. 8

U.S. Patent Apr. 23,2013 Sheet 10 of 13 US 8,428,981 B2

901

Create a workspace object and
pass control to the workspace
object

902

Create a business configuration
logic object and pass control to it

903

Read initial facts from the
persistence

904

Determine status of other business
F|G 98 elements based on the initial facts

- L L L

y

e

US 8,428,981 B2

Sheet 11 of 13

Apr. 23,2013

U.S. Patent

€76

(443

1C6

26 Old

Aoeq
suoneue|dxa spuas pue Juaws|e
sSsouIsng ay) 4O SNJejs Juaing
8y} jo (s)iojeuibuo sy) sulwislaQg

y}Jomawel} uonoNpap ay) Jo anpoLu
uoljeulwialap uoneue|dxa sy} sjjed
pue jusawsaje ssauisng ay} Ayusp|

}senbai uoneuejdxs ue anlB08Yy

€16

ZLe

L6

46 Old

sa|nl
JUBAS|al UO paseq Joe) paussse
8y} Jo seouanbasuod sy aulwis)ag

»}Jomauiel} uoonpap
([e0 pue JoB) PSLISSSE UB SAI909Y

)senbal Buidoos e anieoay

U.S. Patent Apr. 23,2013 Sheet 12 of 13 US 8,428,981 B2

1001
Receiving a set of nodes and a set J

of nogoods

A

1002
o Resoclving contradictions within the

set of nodes

A4
Creating a set, NG, including all

nogoods that are subsets of the set

1003

oG

Sorting the nodes in descending
order according to K value, if two
nodes tie with K value, sorting them
in ascending order according to N
value

y

Change the top node to its opposite 1008
node

I

of nodes 1006
1004
Return the current node set as
Yes—» .

solution

No

+ 1005

For each node, counting the K \j
value and the N value of the node
Y 1007 Fig. 10

US 8,428,981 B2

Sheet 13 of 13

Apr. 23,2013

U.S. Patent

L1 Bid
80L1 2041 9011
Jaydepy yiomiaN 1aydepy abeloyg abelo)g ssep
€oLL H
LOLL
POl (s)10ss8001d

wajsAg Bunesado

2oL 1 Aowspy

US 8,428,981 B2

1
METHOD AND SYSTEM FOR
AUTOMATICALLY MAINTAINING THE
CONSISTENCY OF AN INFORMATION
SYSTEM

COPYRIGHT NOTICES

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

At least one embodiment of the present invention pertains
to Information systems, and more particularly, to automati-
cally configuring an information system.

BACKGROUND

As Enterprise Resource Planning (ERP) methodology has
become more popular, software applications have emerged to
help business managers implement ERP in business activities
such as inventory control, order tracking, customer service,
finance and human resources, etc.

Business Configuration of an ERP system requires com-
prehensive knowledge of the ERP system and its capabilities.
Specifically, dependencies among different functions of the
ERP system and their configurations are required in order to
determine what functions need to be implemented and what
system behaviour must be configured. For example, if a cus-
tomer chooses to implement the “Sales Order Management™
function, the customer must also implement the “Basic Sales
Order” and “Pricing” functions if the “Sales Order Manage-
ment” function depends on the “Basic Sales Order” function
and the “Pricing” function. Failure to implement these func-
tions means that the customer cannot run “Sales Order Man-
agement” function.

In conventional ERP systems, a scoping process (i.c., the
task of determining what business functions of an ERP sys-
tem are required according to a customer’s business require-
ment) is handled manually by experienced, highly qualified
consultants by analyzing the business requirement, determin-
ing a business solution, and implementing the business solu-
tion by configuring the ERP system. The more complicated
the business system is, the more difficult to implement the
business solution in a purely manual fashion.

SUMMARY OF THE INVENTION

The present invention includes a method for automatically
configuring an Enterprise Resource Planning (ERP) system.
The method includes maintaining a plurality of business ele-
ments at an Enterprise Resource Planning (ERP) system. The
method further includes automatically determining whether
statuses of the plurality of business elements are consistent
with each other.

Other aspects of the invention will be apparent from the
accompanying figures and from the detailed description
which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present invention are
illustrated by way of example and not limitation in the figures

20

25

30

35

40

45

50

55

60

65

2

of'the accompanying drawings, in which like references indi-
cate similar elements and in which:

FIG. 1 illustrates a network environment in which an
embodiment of the invention may be implemented;

FIG. 2 illustrates an example of an architecture of an Auto-
matic Business Configuration Subsystem (ABCS);

FIG. 3a illustrates an example of a set of rule grammars
according to one embodiment;

FIG. 34 illustrates an example of a Graphic User Interface
(GUI) through which a user may input a rule into an ERP
system according to one embodiment;

FIG. 4 is ablock diagram illustrating an instance of the rule
base module in memory according to one embodiment;

FIG. 5 illustrates a mechanism to reduce a memory size
consumed by multiple instances of the rule base module for
supporting multiple users/developers according to one
embodiment;

FIG. 6 illustrates an example of an architecture of a deduc-
tion framework according to one embodiment;

FIG. 7 illustrates an example of an architecture of the
Consistency Maintenance Framework (DMF) according to
one embodiment;

FIG. 8 is a flow diagram illustrating an example of a scop-
ing process according to one embodiment;

FIG. 9a is a flow diagram illustrating a scoping process
according to an alternative embodiment;

FIG. 95 is a flow diagram illustrating a scoping process
according to another embodiment;

FIG. 9c is a flow diagram illustrating a scoping process
according to another embodiment;

FIG. 10 s a flow diagram illustrating a process of a solution
generator according to one embodiment; and

FIG. 11 is a block diagram showing an example of a pro-
cessing system.

DETAILED DESCRIPTION

A method and system for automatically configuring an
Enterprise Resource Planning (ERP) system are described.
References in this specification to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature,
structure or characteristic being described is included in at
least one embodiment of the present invention. Occurrences
of such phrases in this specification do not necessarily all
refer to the same embodiment.

1. Enterprise Resource Planning System

FIG. 1 illustrates a network environment in which an
embodiment of the invention may be implemented. As
shown, an Enterprise Resource Planning (ERP) system 11 is
communicatively coupled to a number of clients 12 via an
interconnect 13. The interconnect 13 may be essentially any
type of computer network, such as a local area network
(LAN), a wide area network (WAN), metropolitan area net-
work (MAN) or the Internet, and may implement the Internet
Protocol (IP). Each of the clients 12 runs a client-side ERP
application 14. Such an application may be, for example, a
web-based application that allows a user to login to the ERP
system 11 and to work on a business configuration project. A
user may communicate with the ERP system 11 by submit-
ting commands and receiving results or instructions through
an interface provided by the client-side ERP application 14.
In one embodiment, such an interface is a Graphic User
Interface (GUI).

The ERP system 11 provides a set of business elements
101. Each business element 101 may be a business package
102, a business topic 103, or a business option 104. A business
package 102 may include a set of business topics 103. A

US 8,428,981 B2

3

business topic 103 may include a set of business options 104.
For example, an ERP system may provide “Sales Order Man-
agement” business package. The “Sales Order Management”
business package may include business topics such as “Sales
Order Quotation”, “Pricing”, and “Product Configuration”,
etc. The business topic “Pricing” may include business
options such as “Standard Pricing”, “Seasonal Goods”, etc.

As a result of a business requirement, the function of a
business element may depend on the function of another
business element. In that case, a dependency relationship
exists between the two business elements. In known prior art
ERP systems, a user needs to manually determine what busi-
ness elements need to be selected and implemented based on
business requirements and dependency relations among these
business elements. The present invention includes an ERP
system which may automatically determine what business
elements need to be selected and implemented based on the
business requirement and dependency relations among these
business elements.

In one embodiment, the ERP system 11 may include an
automatic business configuration subsystem (ABCS) 105.
The ABCS 105 models the dependency relations as rules. A
rule dictates whether particular business elements require or
exclude other business elements. Here, the status of a busi-
ness element includes two aspects. The first aspect is the
business element’s selection status. The value of a selection
status may be “selected” or “deselected”. The second aspect
is the business element’s changeability status. The value of a
changeability status may be “changeable” or “nonchange-
able”. If a business element’s selection status is “selected”,
functions related to the business element need to be imple-
mented during the configuration process. If a business
element’s selection status is “deselected”, functions related to
the business element are not needed. If a business element’s
changeability status is “changeable”, a user or a process may
change the business element’s selection status. Otherwise,
the selection status of the business element cannot be
changed.

Initially, some particular business elements are selected,
either by default of by a user’s manual selection (via an
interface, for example). These initial statuses of some busi-
ness elements are called initial facts. Based on the initial facts
and rules, the ABCS 105 automatically determines what other
business elements need to be selected and implemented so
that the resulting system is functionally complete with respect
to the business requirement. The determinations are sent back
to the client-side ERP application 14, which displays each
corresponding business elements in a mode according to the
determination in a GUI. For example, if a business element’s
status is determined to be “selected”, the business element is
displayed by the client-side ERP application 14 in a mode
telling a user that the business element is currently selected.
The user may manipulate the GUI of the client-side ERP
application 14 by selecting or deselecting a business element,
therefore triggers the ABCS 105 to determine the conse-
quences of the change of status of the user selected business
element. A consequence may be, for example, a change of
status of another business element. The consequences are sent
back to the client-side ERP application 14 for updating the
GUI. Note that some or all of the components as shown in
FIG. 1 may be implemented in software, hardware, or a com-
bination of both.

2. Automatic Business Configuration Subsystem

FIG. 2 illustrates an example of an architecture of an auto-
matic business configuration subsystem (ABCS) according to
one embodiment. As shown, the ABCS 105 includes a rule
semantics module 201. The rule semantics module 201 pro-

20

25

30

35

40

45

50

55

60

65

4

vides syntax and semantics checks to rules. In one embodi-
ment, a user may input rules into the ERP system 11 via the
client-side ERP application 14. The rule semantics module
201 parses the rules, transforms the rules into a unified for-
mat, and stores the rules into the persistence 206. When called
by the rule base module 202 (introduced below), the rule
semantics module 201 retrieves these rules from the persis-
tence 206 and transforms them into in-core rule objects. Here,
the term “in-core” means in a main memory of a processing
system. The rule semantics module 201 also does redundant
and collision checks for the rules stored in the persistence
206. Redundant checks prevent redundant rules in the persis-
tence. Collision checks detect conflicting rules and recursive
rules.

The ABCS 105 further includes a rule base module 202.
After rules are encapsulated as in-core objects by the rule
semantics module 201, the rule base module 202 organizes
these objects so that they may be easily accessed or searched
by other components.

The deduction framework 203 is the module which handles
all different relationships in a scoping process. These rela-
tionships may include, but not limited to constraint, pre-
selection, prerequisite, etc. The deduction framework 203
may also handle change determination and changeability
determination. Change determination refers to determining
whether a particular business element’s status should be
changed, for example, from “selected” to “deselected”.
Changeability determination refers to determining whether a
particular business element’s status may currently be
changed, for example, from “selected” to “deselected”.

The deduction framework 203 triggers the change deter-
mination and/or changeability determination functions in
response to receiving an asserted fact. An asserted fact refers
to a status change of a business element caused by a user’s
selection or deselection of the business element via the client-
side ERP application 14. Note that a fact may also be asserted
by a process. The deduction framework 203 matches the
asserted fact with the conditions of available rules to deter-
mine the consequences. A consequence may be, for example,
another business element’s status must be changed because of
the asserted fact. For example, assuming a rule is specified as
“IF X is selected ANDY is selected THEN M is selected”.
Assuming further that X’s current status is “selected”, and Y’s
status has just been changed into “selected” because a user
manually selected Y, for example, from a GUI of a client-side
ERP application 14. Therefore, M’s current status should be
“selected” because of the condition of the above rule becomes
true.

Because the above reasoning is from a rule’s condition to
the rule’s consequence, it is called forward chaining. Based
on the determined consequences, the deduction framework
203 updates the status of each of the affected business ele-
ments.

The deduction framework 203 also provides the function of
explanation determination. Explanation determination deter-
mines and provides reasons of a particular business element’s
current status, e.g., “selected” or “deselected”. For example,
ifarule is defined as “IF A is selected THEN B is deselected”,
then if business element B’s current status is “deselected”,
one of the possible reasons could be that business element A’s
current status is “selected”. As shown in the example, the
reasoning is from the consequence to the condition of a rule,
thus, it is called backward chaining.

As shown, the ABCS 105 also includes a business configu-
ration logic module 204. The business configuration logic
module 204 controls the progress of a scoping process.

US 8,428,981 B2

5

The workspace module 205 provides the functionality of
maintaining an in-core data structure storing statuses of at
least some of the ERP system 11’s business elements during
a scoping process. The workspace module 205 also provides
session and memory management. Session management
enables the ERP system 11 to handle multiple scoping pro-
cesses initiated by multiple users. Memory management pro-
vides the function of allocation/deallocation of memory
blocks, storing data from a workspace instance into the per-
sistence 206, and reading data from the persistence 206 into a
workspace instance. For example, after a status of a business
element is changed by the deduction framework 203, the
workspace module 205 may update the status of the business
element stored in the persistence 206.

The ABCS 105 may include a rebuilder module 207. At a
certain point of a user’s scoping process, the rebuilder module
207 provides the function to enable the user to save the current
scoping process as image data in the persistence 206 or a
different database. Later, upon the user’s request, the
rebuilder module 207 may rebuild the scoping process into
memory from the image data saved in the persistence 206 so
that the user may continue the scoping process from the point
where it is saved.

The Consistency Maintenance Framework (CMF) module
208 detects inconsistencies of some business elements’ sta-
tuses and provides solutions to solve these inconsistencies.
An inconsistency may be caused by different reasons. For
example, after a business element’s status is fixed, a rule is
changed. A consequence of the change is that the business
element’s status must be changed. Thus, the rule change
causes a collision (i.e., an inconsistency). Another example,
when two developers are working on different aspect of a
same scoping project, their workspaces need to be merged
into a final workspace. An assumption is that both of their
works are based on a same set of rules. However, during the
merge, a same business element may have two different sta-
tuses. Thus, the merge causes a collision.

In one embodiment, the CMF module 208 receives a set of
rules and statuses of a set of business elements. The CMF
module 208 automatically detects all of the collisions and
proposes solutions of solving the collisions. Note that some or
all ofthe components shown in FIG. 2 may be implemented in
software, hardware, or a combination of the both.

2.1 Rule Semantics Module

The rule semantics module 201 provides syntax and
semantics checks to various types of rules. The rule semantics
module 201 parses these rules, transforms them into and
stores them into the persistence 206. When called by the rule
base module 202, the rule semantics module 201 retrieves
these rules from the persistence 206 and transforms them into
in-core objects.

Rules are associated with business elements, and a rule can
change the status of the associated business element. The rule
semantics module 201 parses a rule according to rule gram-
mars predefined. Rule grammars are presented using gram-
mar productions. FIG. 3qa illustrates an example of a set of
rule grammars according to one embodiment. Each grammar
production defines a non-terminal symbol and the possible
expansions of that non-terminal symbol into sequences of
non-terminal or terminal symbols. In grammar productions,
non-terminal symbols are shown in italic, type, and terminal
symbols are shown in a bold font. As shown, column 301 lists
the names to be defined and column 302 lists the correspond-
ing definitions. For example, constraint rule is defined as

20

25

30

35

40

45

50

55

60

65

IF Conditional-Expression THEN Consequence-Statement

IF Conditional-Expression THEN To-Be-Select-Statement ELSE
To-Be-Deselect-Statement

IF Conditional-Expression THEN To-Be-Select-Statement ELSE
IF Conditional-Statement THEN

To-Be-Deselect-Statement.

In one embodiment, the rule grammars are specified by a user
via an interface. These specified grammars may be stored in a
database (the persistence 206, for example). When the system
is initialized, these specified grammars are read from the
database and presented as in-core grammar objects. The rule
semantics module 201 uses these in-core grammar objects to
parse a rule.

In one embodiment, a user may input rules into the ERP
system 11 via the client-side ERP application 14. The rule
semantics module 201 parses the rules, transforms the rules
into a unified format, and stores the rules into the persistence
206. FIG. 35 illustrates an example of a Graphic User Inter-
face (GUI) through which a user may input a rule into an ERP
system such as system 11. As shown, the GUI has a brief
section 303 and a detailed section 304. The title 305 of the
brief section 303 indicates the business element with which
the current GUI is concerned. The brief section 303 provides
a button 306 for adding a new rule for the business element
and a button 307 for removing a rule already created for the
business element. The dropdown list 308 allows a user to
choose a consequence of a rule, and the GUI component 309
shows the condition of the rule. A user may check the check-
box 310 shown in front of the dropdown list 308 and click on
the remove button 307 to remove the rule. A user may also
click on the dropdown list 308 to highlight the rule to display
it in the detailed section 304.

The detailed section 304 displays the rule selected in the
brief section 303. The detailed section 304 displays the
selected rule in multiple rule sections 313, each section 313
representing a singular condition. Additionally, the detailed
section 304 provides a button 311 for adding a new rule
section 313 and a button 312 to remove a selected existing
rule section 313. Within each rule section 313, there is a GUI
component 314 allowing a user to select another business
element and a dropdown list 315 to select a status for the
selected another business element. There is also a check box
316 within the rule section 313. A user may check the check
box 316 for removal. Note that GUI as shown in FIG. 35 is
described for illustration purposes only. Other configuration
or layouts may also be applied.

2.2 Rule Base Module

As introduced above, the rule base module 202 (shown in
FIG. 2) organizes all rules as objects in memory for quick
access. FIG. 4 is a block diagram illustrating an instance of
the rule base module in memory according to one embodi-
ment. As shown, each business element 401 is associated with
a RuleSet object 402. If an element 401 is a rule’s condition,
then the rule is the element’s sink rule. If the element 401 is a
rule’s consequence, then the rule is the element’s source rule.
Thus, the RuleSet object 402 may include a SinkRules object
403 containing a set of the element’s sink rules and a
SourceRules object 404 containing a set of the element’s
source rules. Other components can get an element’s sink
rules and/or source rules by calling the getSinkRules inter-
face 405 and/or the getSourceRules interface 406 with the
element’s ID.

FIG. 5 illustrates a mechanism to reduce a memory size
consumed by multiple instances of the rule base module for

US 8,428,981 B2

7

supporting multiple users/developers according to one
embodiment. As shown, each session 504 has a RuleBase
object 502. Each RuleBase object 502 has a SessionRuleBase
object 503 and a reference 505 referring to a CentralRuleBase
object 501. The CentralRuleBase object 501 is shared by
more than one sessions 504. In one embodiment, each of the
references 505 is a pointer pointing to the shared Central-
RuleBase object 501. SessionRuleBase 503 is independent
from the CentralRuleBase 501 and is only available for the
particular working memory instance 503.

Because CentralRuleBase object 501 is shared in memory,
more than one user can do operations on it at the same time.
When any user wants to read from or write to the Central-
RuleBase object 501, the user should check whether the Cen-
tralRuleBase object 501 is locked by any other user. If the
CentralRuleBase object 501 is locked by another user, the
user should wait until the CentralRuleBase object 501 is
unlocked.

2.3 Deduction Framework

The deduction framework 203 is the module which handles
all different relationships in a scoping process. FIG. 6 illus-
trates an example of an architecture of a deduction framework
according to one embodiment. As shown, the deduction
framework 203 includes a default value handler 601, a rela-
tionship handler 602, a status determination module 603, and
an explanation determination module 604.

The default value handler 601 manages default values for
business elements. Default value defines the initial value (i.e.,
“selected” or “deselected”) of a business element. Default
value is often set for high level business elements (business
packages, for example). In general, the default value of all
business elements is “deselected”. A user can optionally
define a rule to set the default value to be “selected”.

In an embodiment, defaults are effective only if there is no
other value source setting the status of a business element. For
example, assuming business topic “Pricing” is selected, but
no business option of “Pricing” has been selected yet. In this
case the system evaluates the default rules of the business
options of “Pricing” and selects one or more business options.
Value source is defined as the source that causes the change of
a business element’s status. In one embodiment, a value
source may be Constraint, Manual Selection, Pre-selection,
Default, and Prerequisite. In many cases, a business
element’s status change may be caused by more than one
value sources. The priority of these value sources from high to
low in resolving a confliction may be Constraint, Manual
Selection, Pre-selection, Default, and Prerequisite. Defaults
can be overwritten by Constraints, Pre-selection, and Manual
Selection.

The relationship handler 602 handles various relationships
among business elements. These relationships may be a pre-
requisite relationship, a pre-selection relationship, a con-
straint, etc. Prerequisite is a bottom-up relationship between
business elements according to the hierarchy. Prerequisite
means, if a child business element is selected then its direct
parent business element is selected automatically and if a
parent business element is deselected then all its child busi-
ness elements are deselected.

If a system selects a business element automatically
because of prerequisite then this business element inherits the
value source of'its child-node. Prerequisites are always effec-
tive and can not be overruled by other value sources.

Constraints represent the dependency relationships that
exist among various business elements. There are “to-be-
selected” and “to-be-deselected” constraints. Constraints are

20

25

30

35

40

45

50

55

60

65

8

implemented by rules. There is only one constraint rule for
one business element by using “ELSE” or “ELSE IF” state-
ment.

The status determination module 603 determines a busi-
ness element’s actual status based on the value set by various
different value sources and the priorities associated with these
sources. In one embodiment, the priority from high to low in
resolving a confliction may be constraint, manual selection,
pre-selection, default, and prerequisite. A value set by a
higher priority value source overrides a value set by a lower
priority value source. For example, if a Constraint rule set a
business element’s value as “deselected”, while a Manual
Input set the business element’s value as “selected”, the actual
status of the business element is “deselected”. As aresult, if a
constraint sets a business element’s status, the business
element’s status will be unchangeable, until the constraint is
removed. In one embodiment, if there is a constraint setting a
business option to be “deselected”, the relevant business
option will be invisible until the constraint is removed.

The explanation determination module 604 determines the
originator of a business element’s current status. Originator is
a business element which is the initial cause of an associated
business element’s status. By modifying the originator’s sta-
tus, the constraint can be removed from the associated busi-
ness element. Thus, the explanation determination module
604 provides a developer not only an explanation of why the
associated business element has the current status but also a
solution of unlock the status of the associated business ele-
ment. For example, if there are two business elements X and
Y, and the rule is that “IF X is selected THEN'Y is selected.”
Initially, both X and Y are not selected but changeable.
Assuming X is selected, the result will be Y is selected and Y
is not changeable. In this example, a user might want to
deselect Y, but this operation is not possible because of Y’s
changeability is “No”. However, the user may choose to list
all of Y’s originator(s). The originator in this case is X. The
user may deselect X so that Y’s status may be changeable. It
is possible to have multiple originators for one business ele-
ment. The explanation determination module 604 can find out
all the originators and the paths leading to the business
element’s current status.

2.4 Consistency Maintenance Framework (CMF)

As introduced above, the Consistency Maintenance
Framework (CMF) module 208 detects inconsistencies of
some business elements’ statuses and provides solutions to
solve these inconsistencies. FIG. 7 illustrates an example of
an architecture of the Consistency Maintenance Framework
(DMF) according to one embodiment. As shown, the CMF
208 includes a preprocessing module 701 and a solution
generator 702.

The preprocessing module 701 receives a set of rules and a
set of business elements. The preprocessing module 701 cre-
ates data elements that may be processed by the solution
generator 702 based on these rules and business elements.
Among these business elements, some business elements’
statuses are ascertained. In other words, these business ele-
ments’ statuses have been verified or confirmed to be correct.
Such statuses are called ascertained statuses and may be used
as the basis to detect inconsistency.

In one embodiment, the preprocessing module 701 creates
a data element called node for each business element. A node
is a fact with defined value of true or false. For example, if
business element A’s status is “selected”, a node A=1 (“1”
representing true) is created, assuming “selected” status is
true. The preprocessing module 701 processes all of the busi-
ness elements of an ERP system and creates a set to include all
of the nodes created. Such a set is called the universal node

US 8,428,981 B2

9

set. For example, assuming there are four business elements,
A, B, C,and D. Further assuming A’s status is “selected”, B’s
status is “selected”, C’s status is “deselected” and D’s status
is “deselected”. Then, the universal node set would be {A=1,
B=1, C=0, D=0}.

The preprocessing module 701 creates a set of nogoods
based on a set of rules. A nogood is a set of nodes, which
cannot exist simultaneously (or be coexistent). For example,
if a rule is specified as “IF A is selected THEN B is selected”.
Based on the rule, a nogood {A=1, B=0} is created, meaning
that the situation, in which A is selected, B is deselected,
should not occur. If a nogood is a subset of the universal node
set, then it means that the universal node set is not consistent.
As a result, the statuses of the business elements of an ERP
system are inconsistent, either.

In one embodiment, the preprocessing module 701 is
implemented as an Assumption-based Truth Maintenance
System (ATMS). However, a person of ordinary skill in the art
would appreciate that other Truth Maintenance System
(TMS) may also be used in implementing the preprocessing
module 701.

The solution generator 702 receives these data elements
from the preprocessing module 701, determines whether the
statuses of the business elements are consistent with each
other, and finds a solution to solve any inconsistency if any. In
one embodiment, the goal of the solution generator 702 is to
find a solution which requires changing the least number of
business elements’ statuses. Thus, the solution generator 702
needs to find the business element, whose status together with
other business element(s)’s status(es) violate the most num-
ber of rules. For example, assuming business element A’s
status is “selected” and B’s status is “deselected”, A and B’s
statuses violate the rule “IF A is selected THEN B is
selected”. The solution generator 702 then changes the busi-
ness element’s status so that statuses of all business elements
are becoming less inconsistent. The solution generator 702
reiterates the above steps until the statuses of all business
elements do not violate any of the rules.

In one embodiment, the solution generator 702 also pro-
vides user friendly explanations for a developer to help the
developer solve the inconsistencies more quickly.

3. Processing Flows

FIG. 8 is a flow diagram illustrating an example of a scop-
ing process according to one embodiment. Note that process
of FIG. 8 may be performed by processing logic which may
include software, hardware, or a combination of both. At
block 801, a new scoping process is created and initialized. A
scoping process may be created by a user via a GUI of the
client-side ERP application 14. For example, the GUI may
provide a button or a menu option allowing a user to new a
scoping process.

Atblock 802, the ABCS 105 of the ERP system 11 receives
arequest from the client-side ERP application 14. The ABCS
105 determines what the request is. If the request is a scoping
request, the flow goes to block 803. If the request is for an
explanation of a business element’s current status, the flow
goes to block 804.

Atblock 803, the ABCS 105 processes the scoping request.
A scoping request may be triggered by a user asserting a fact.
A fact may be asserted when a user choose to select or dese-
lect a business element, such as a business option, via a GUI
of the client-side ERP application 14. After the scoping
request is processed, the flow goes back to block 802 to wait
for a new request.

At block 804, the ABCS 105 receives an explanation
request regarding a business element’s current status. An
explanation request may be triggered by a user choosing a

20

25

30

35

40

45

50

55

60

65

10

business element and clicking a button or a menu option for
explanation of the chosen business element’s current status
via a GUI of the client-side ERP application 14. The ABCS
105 determines the originator(s) of the business element’s
current status and sends the information to the client-side
ERP application 14. After the explanation request is pro-
cessed, the flow goes back to block 802 to wait for a new
request.

FIG. 9a is a flow diagram illustrating a scoping process
according to an alternative embodiment. For example, pro-
cess of FIG. 9 may be performed as a part of block 801 of FIG.
8. Atblock 901, the ABCS 105 creates a workspace object (an
instance of the workspace module 205) for the particular user
and gives the control to the workspace object. The workspace
object organizes the session and memory space of the current
scoping process initiated and controlled by the particular user.
It also provides an interface through which the client-side
ERP application 14 can communicate and/or control with the
scoping process.

At block 902, the workspace object creates a business
configuration logic object (an instance of the business con-
figuration logic module 204) and transfers control to it. As
discussed above, the business configuration logic module 204
implements the logic of controlling a scoping process. After
the business configuration logic object receives control from
the workspace object, it creates a rule base object (an instance
of'the rule base module 202) and initializes it. In one embodi-
ment, the rule base module 202 provides the function of
creating a CentralRuleBase object which organizes all rules
that are shared across multiple user sessions, and a Session-
RuleBase object which is specific to a particular user session.
The CentralRuleBase object is created and initialized only
one time. During the CentralRuleBase object’s initialization,
the CentralRuleBase object creates an instance of the rule
semantics module 201, which reads rules from the persistence
206 and encapsulates them as in-core rule objects. In the
beginning, the SessionRuleBase object does not contain any
user session specific rules. However, with the progress of a
scoping process, user session specific rules will be read from
the persistence 206 via an instance of the rule semantics
module 201.

At block 903, the business configuration logic object reads
initial facts from the persistence 206. In one embodiment,
initial facts are default values of some of the ERP system 1/°s
business elements. After receiving the initial facts, the busi-
ness configuration logic object calls an instance of the deduc-
tion framework module 203 to determine the statuses of other
business elements.

At block 904, the instance of the deduction framework
module 203 determines other business elements’ statuses
based on the initial facts. These statuses are sent back to the
client-side ERP application 14. If a business element’s status
is “selected”, the client-side ERP application 14 will display
the business element as selected. If a business element’s
status is “deselected”, the client-side ERP application 14 will
display it as deselected. If a business element’s changeability
is “No” (meaning the business element’s status cannot be
changed at the moment), the client-side ERP application 14
will either hide it or display it in a mode a user cannot select
or deselect it.

FIG. 95 is a flow diagram illustrating a scoping process
according to another embodiment. For example, the process
of FIG. 95 may be performed as a part of block 803 of FIG. 8.
Atblock 911, a scoping request is received by the ABCS 105.
In one embodiment, the ABCS 105 receives the scoping
request via a workspace object binding with a client-side ERP
application 14. A user may select or deselect a particular

US 8,428,981 B2

11

business element via a GUI provided by the client-side ERP
application and triggers a scoping request. The scoping
request may include an asserted fact. Alternatively, the
asserted fact may be sent to the ABCS 105 separately from the
scoping request.

At block 912, the business configuration logic object cre-
ated during initialization receives the asserted fact from the
workspace object and calls an instance of the deduction
framework module 203.

At block 913, the instance of the deduction framework
module 203 determines the consequences of the asserted fact.
A consequence may be, for example, a change of status of a
business element. Then, these consequences are sent back to
the client-side ERP application 14.

FIG. 9c¢ is a flow diagram illustrating a scoping process
according to another embodiment. For example, the process
of FIG. 95 may be performed as a part of block 804 of FIG. 8.
At block 921, the ABCS 105 receives an explanation request
regarding a business element. At block 922, the business
configuration logic object created during initialization
receives the explanation request and the identity of the busi-
ness element. The business configuration logic object calls
the instance of the deduction framework module 203. At
block 923, the instance of the deduction framework module
203 determines the originators of the current status of the
business element, composes explanations, and sends the
explanations back to the client-side ERP application 14.

FIG.10is a flow diagram illustrating a process of a solution
generator according to one embodiment. For example, the
process may be performed by processing logic as shown in
FIG. 7. As discussed above, the goal of the solution generator
702 is to find a solution which requires changing the least
number of business elements’ statuses. Thus, the solution
generator 702 needs to find the business element, whose
status together with other business element(s)’s status(es)
violate the most number of rules. The solution generator 702
then changes the business element’s status so that statuses of
all business elements are becoming less inconsistent. The
solution generator 702 reiterates the above steps until the
statuses of all business elements do not violate any of the
rules.

It is assumed that the preprocessing module 701 has
already created a universal node set based on statuses of a set
of'business elements and created a set of nogoods based on all
the rules. For example, assuming an ERP system has three
business elements A, B, and C, and the ERP system has three
rules restricting the three elements: “IF A is selected THEN B
is selected”, “IF B is selected THEN C is selected”, and “IF A
is deselected THEN B is deselected”. Further assuming the
default statuses of A, B, and C are respectively “selected”,
“deselected”, and “deselected”. Thus, the universal node set
is {A=1, B=0, C=0}. The set of nogoods are {A=1, B=0},
{B=1, C=0}, {A=0, B=1}, and {A=1, C=0}. This example is
continued as the process of FIG. 10 is further illustrated
below.

At block 1001, the solution generator 702 receives the
universal node set and the set of nogoods.

At block 1002, the solution generator 702 resolves all
contradictions within the node set. A contradiction may occur
if a node is not allowed. For example, if “business element A
must be selected” is an ascertained fact, then node A=0 must
be changed to node A=1.

Atblock 1003, the solution generator 702 creates a set, NG,
including all nogoods that are subsets of the universal node
set. Continuing the example above, because nogoods {A=1,
B=0}, {A=1, C=0} are subsets of the universal node set
{A=1, B=0, C=0}, NG is {{A=1, B=0}, {A=1, C=0}}.

20

25

30

35

40

45

50

55

60

65

12

At block 1004, the solution generator 702 determines
whether the NG set is Null, meaning no nogood is a subset of
the universal node set. If the NG set is Null, at block 1005, a
K value and an H value of each node of the universal node set
are counted. The K value is the number of times a node
appears in the NG set. The H value is the number of times the
opposite node of the node appears in the whole set of
nogoods. A node and its opposite node have opposite values
regarding a same business element. For example, node A=1"s
opposite node is A=0. In the above example, the K values for
A, B, and C respectively are 2, 1, and 1. The H value for A, B,
and C respectively are 0, 2, and 0.

However, if the NG set is Null, at block 1006, the current
universal node set is returned as the solution.

Atblock 1007, the solution generator 702 sorts the nodes in
descending order according to K value. If two nodes tie with
their K value, the solution generator 702 sorts them in ascend-
ing order according to their N value. In the above example, the
result of the sort is A, C, B.

At block 1008, the solution generator 702 replaces the top
node in the universal node set with its opposite node. After
block 1008, the process goes back to block 1002. In the above
example, A=0 replaces A=1 in the universal node set {A=1,
B=0,C=0}. Thus, the universal node set becomes { A=0, B=0,
C=0}. During the second round process, the NG set is Null.
Then, the universal node set { A=0, B=0, C=0} is returned as
a solution.

FIG. 11 is a block diagram showing an example of a data
processing system that may be used with one embodiment of
the invention. The hardware architecture may apply to both
the clients 12 and/or the ERP system 11 of FIG. 1. Certain
standard and well-known components which are not germane
to the present invention are not shown. The processing system
includes one or more processors 1101 coupled to a bus system
1103.

The bus system 1103 in FIG. 3 is an abstraction that rep-
resents any one or more separate physical buses and/or point-
to-point connections, connected by appropriate bridges,
adapters and/or controllers. The bus system 1103, therefore,
may include, for example, a system bus, a Peripheral Com-
ponent Interconnect (PCI) bus, a HyperTransport or industry
standard architecture (ISA) bus, a small computer system
interface (SCSI) bus, a universal serial bus (USB), or an
Institute of Electrical and Electronics Engineers (IEEE) stan-
dard 1394 bus (sometimes referred to as “Firewire”). The
processors 1101 are the central processing units (CPUs) of
the processing system and, thus, control the overall operation
of the processing system. In certain embodiments, the pro-
cessors 1101 accomplish this by executing software stored in
memory 1102. A processor 1101 may be, or may include, one
or more programmable general-purpose or special-purpose
microprocessors, digital signal processors (DSPs), program-
mable controllers, application specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs), program-
mable logic devices (PLDs), or the like, or a combination of
such devices.

The processing system also includes memory 1102
coupled to the bus system 43. The memory 1102 represents
any form of random access memory (RAM), read-only
memory (ROM), flash memory, or a combination thereof.
Memory 1102 stores, among other things, the operating sys-
tem 1104 of processing system.

Also connected to the processors 1101 through the bus
system 1103 are a mass storage device 1106, a storage adapter
1107, and a network adapter 1108. Mass storage device 1106
may be or include any conventional medium for storing large
quantities of data in a non-volatile manner, such as one or

US 8,428,981 B2

13

more disks. The storage adapter 1107 allows the processing
system to access a storage subsystem and may be, for
example, a Fibre Channel adapter or a SCSI adapter. The
network adapter 1108 provides the processing system with
the ability to communicate with remote devices over a net-
work and may be, for example, an Ethernet adapter or a Fibre
Channel adapter.

Memory 1102 and mass storage device 1106 store software
instructions and/or data, which may include instructions and/
or data used to implement the techniques introduced here.

Thus, a method and system for automatically configuring
an Enterprise Resource Planning (ERP) system have been
described.

Portions of what was described above may be implemented
with logic circuitry such as a dedicated logic circuit or with a
microcontroller or other form of processing core that executes
program code instructions. Thus processes taught by the dis-
cussion above may be performed with program code such as
machine-executable instructions that cause a machine that
executes these instructions to perform certain functions. In
this context, a “machine” may be a machine that converts
intermediate form (or “abstract™) instructions into processor
specific instructions (e.g., an abstract execution environment
such as a “virtual machine” (e.g., a Java Virtual Machine), an
interpreter, a Common Language Runtime, a high-level lan-
guage virtual machine, etc.)), and/or, electronic circuitry dis-
posed on a semiconductor chip (e.g., “logic circuitry” imple-
mented with transistors) designed to execute instructions
such as a general-purpose processor and/or a special-purpose
processor. Processes taught by the discussion above may also
be performed by (in the alternative to a machine or in com-
bination with a machine) electronic circuitry designed to
perform the processes (or a portion thereof) without the
execution of program code.

It is believed that processes taught by the discussion above
may also be described in source level program code in various
object-orientated or non-object-orientated computer pro-
gramming languages (e.g., Java, C#, VB, Python, C, C++, J#,
APL, Cobol, ABAP, Fortran, Pascal, Perl, etc.) supported by
various software development frameworks (e.g., Microsoft
Corporation’s NET, Mono, Java, Oracle Corporation’s
Fusion, etc.). The source level program code may be con-
verted into an intermediate form of program code (such as
Java byte code, Microsoft Intermediate Language, etc.) thatis
understandable to an abstract execution environment (e.g., a
Java Virtual Machine, a Common Language Runtime, a high-
level language virtual machine, an interpreter, etc.), or amore
specific form of program code that is targeted for a specific
processor.

An article of manufacture may be used to store program
code. An article of manufacture that stores program code may
be embodied as, but is not limited to, one or more memories
(e.g., one or more flash memories, random access memories
(static, dynamic or other)), optical disks, CD-ROMs, DVD
ROMs, EPROMs, EEPROMs, magnetic or optical cards or
other type of machine-readable media suitable for storing
electronic instructions. Program code may also be down-
loaded from a remote computer (e.g., a server) to a requesting
computer (e.g., aclient) by way of data signals embodied in a
propagation medium (e.g., via a communication link (e.g., a
network connection)).

“Logic”, as is used herein, may include, for example, soft-
ware, hardware and/or combinations of hardware and soft-
ware.

Although the present invention has been described with
reference to specific exemplary embodiments, it will be rec-
ognized that the invention is not limited to the embodiments

20

25

30

35

40

45

50

55

14

described, but can be practiced with modification and alter-
ation within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive sense.

What is claimed is:
1. A method comprising:
maintaining a plurality of business elements, each of the
plurality of business eclements being assigned with at
least one of a plurality of statuses comprising a selection
status and a changeability status, wherein at least one of
the plurality of business elements comprise at least one
business package, wherein the at least one business
package comprises at least one business option;

maintaining a plurality of rules, wherein each of the plu-
rality of rules specifies at least one of a plurality of
semantic relationships between at least two of the plu-
rality of business elements;
determining whether the at least one of the plurality of
statuses of the plurality of business elements are consis-
tent with each other based on the at least one of the
plurality of semantic relationships among the plurality
of business elements and whether the at least one of the
plurality of statuses of the plurality of business elements
violate at least one of the plurality of rules; and

generating a solution to solve an inconsistency, when the at
least one of the plurality of statuses of the plurality of
business elements are inconsistent,

wherein at least one of the maintaining the plurality of

business elements, the maintaining the plurality of rules,
the determining, and the generating are implemented on
at least one processor.

2. The method of claim 1, wherein automatically generat-
ing a solution to solve the inconsistency comprises:

identifying a business element from the plurality of busi-

ness elements, the business element’s status violating a
predetermined number of rules of the plurality of rules;
and
changing the business element’s status.
3. The method of claim 2, wherein a business element’s
status is considered as violating a rule if the business
element’s status together with at least one other business
element’s status contradict with the rule.
4. The method of claim 1, wherein the status is either a
“selected” status or a “deselected” status.
5. A non-transitory machine-readable medium having
instructions, when executed, cause a machine to perform a
method, the method comprising:
maintaining a plurality of business elements, each of the
plurality of business eclements being assigned with at
least one of a plurality of statuses comprising a selection
status and a changeability status, wherein at least one of
the plurality of business elements comprises at least one
business package, wherein the at least one business
package comprising at least one business option;

maintaining a plurality of rules, wherein each of the plu-
rality of rules specifies at least one of a plurality of
semantic relationships between at least two of the plu-
rality of business elements;

determining whether the at least one of the plurality of

statuses of the plurality of business elements are consis-
tent with each other based on the at least one of the
plurality semantic relationships among the plurality of
business elements and whether the at least one of the
plurality of statuses of the plurality of business elements
violate at least one of the plurality of rules; and

US 8,428,981 B2

15

generating a solution to solve an inconsistency, when the at
least one of the plurality of statuses of the plurality of
business elements are inconsistent.
6. The non-transitory machine-readable medium of claim
5, wherein automatically generating a solution to solve the
inconsistency comprises:
identifying a business element from the plurality of busi-
ness elements, the business element’s status violating a
predetermined number of rules of the plurality of rules;
and
changing the business element’s status.
7. The non-transitory machine-readable medium of claim
6, wherein a business element’s status is considered as vio-
lating a rule if the business element’s status together with at
least one other business element’s status contradict with the
rule.
8. The non-transitory machine-readable medium of claim
5, wherein the selection status comprises a selected status or
a deselected status.
9. A system comprising:
at least one processor; and
at least one memory, which when executed by the at least
one processor provides operations comprising:
maintaining a plurality of business elements, each of the
plurality of business eclements being assigned with at
least one of a plurality of statuses comprising a selection
status and a changeability status, wherein at least one of
the plurality of business elements comprise at least one
business package, wherein the at least one business
package comprises at least one business option;
maintaining a plurality of rules, wherein each of the plu-
rality of rules specifies at least one of a plurality of
semantic relationships between at least two of the plu-
rality of business elements;
determining whether the at least one of the plurality of
statuses of the plurality of business elements are consis-
tent with each other based on the at least one of the
plurality of semantic relationships among the plurality

20

25

30

35

16

of business elements and whether the at least one of the
plurality of statuses of the plurality of business elements
violate at least one of the plurality of rules; and

generating a solution to solve an inconsistency, when the at
least one of the plurality of statuses of the plurality of
business elements are inconsistent.

10. The system of claim 9, wherein the mass storage device
further maintains a plurality of rules, wherein each of the
plurality of rules specifies a relationship between at least two
of the plurality of business elements.

11. The system of claim 10, wherein determining whether
statuses of the plurality of business elements are consistent
with each other comprises determining whether the plurality
of'statuses of the plurality of business elements violate at least
one of the plurality of rules.

12. The system of claim 10, wherein automatically gener-
ating a solution to solve the inconsistency comprises:

identifying a business element from the plurality of busi-

ness elements, the business element’s status violating a
predetermined number of rules of the plurality of rules;
and

changing the business element’s status.

13. The system of claim 12, wherein a business element’s
status is considered as violating a rule if the business
element’s status together with at least one other business
element’s status contradict with the rule.

14. The processing system of claim 9, wherein the selection
status comprises a selected status or a deselected status.

15. The method of claim 1, wherein the generating further
comprises:

determining, at a solution generator of a enterprise

resource planning system, the solution to solve the
inconsistency based on changing the at least one of the
plurality of statuses of a least number of the plurality of
business elements, and wherein the at least one proces-
sor comprises the enterprise resource planning system.

#* #* #* #* #*

