Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept 2017)

(©2011-17 DJ Greaves + S Singh

May 8, 2018

Preface

Kiwi was a collaborative project between the University afnibridge Computer Laboratory and
Microsoft Research Limited, headed by David Greaves (UoC&id Satnam Singh (MRL). From
2013 onwards, the Kiwi system was further developed at thapiter Laboratory and using a logic
synthesis library called HPR-L/S.

Kiwi is developing a methodology for algorithm acceleratiasing parallel programming and the
C# language. Specifically, Kiwi consists of a run-time lifgréor hardware FPGA execution of
algorithms expressed within C# and a compiler, KiwiC, thatwerts.NETbytecode into Verilog
RTL for further compilation forrPGaexecution. In the future, custom domain-specific front ends
that generateneTbytecode can be used.

The Kiwi technology has many potential uses, but some of ae
1. Kiwi-HPC: High-performance computing or scientific alecation.

2. ASIC hard-core generation for standard algorithms tret@be implemented in silicon, such
as MPEG compression.

3. Routing logic for software-defined networking.

4. Rapid transaction processing and hardware implementafiautomated trading algorithms.

Compared with existing high-level synthesis tools, Kiwidpports a wider subset of standard pro-
gramming language features. In particular, it supportstirdirhensional arrays, threading, file-
server 1/0, object management and limited recursion. Reldaof KiwiC supports static heap

(©2011-17 DJ Greaves + S Singh

management, where all memory structures are allocatechgtimtime and permanently allocated
to on-FPGA RAM or external DRAM. Release 2 of KiwiC, which Haesd some successful tests
already, supports arbitrary heap-allocation at run tintedioes not implement garbage collection.

The Kiwi performance predictor is an important design spagaoration tool. It enables HPC users
to explore the expected speed up of their application as tifynit, without having to wait for
multi-hour FPGA compilations in each development itematio

The Kiwi compiler, KiwiC, itself consists of about 22 kloah¢usand lines of code) of F# (FSharp)
code that is a front end to the HPR L/S logic synthesis libthat is composed of another 60 or so
klocs of F#. The code density for F#, like other dialects of MLperhaps (conservatively perhaps)
3 times higher than for common imperative languages like ,Gava and C#, so it is a significant
project.

Note that the PDF version of this document tends to be moregate than the HTML version.
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/manual/kiwic.pdf

Contents
0.1 Asymptotic Background Motivation for FPGA Computing 10
1 Download and License 10
1.1 Warranty o e 11
| Scientific Users’ Guide 12
2 Kiwi Substrate 12
2.1 Consoleand LCD stdoutl/Oand LEDGPIO 14
2.2 Run-time ExceptionHandler e 14
2.3 DRAM . . e e 14
2.4 Watchpoints and Start/Stop Control oL 14
25 Framestore 14
26 Profiling e 14
Il Installation and Easy Get Started 15
3 Get Started (Mono on Linux) 15
3.1 Getting A K-Distro Binary Distribution 16
3.2 Using A K-Distro Binary Distribution 16
Kiwi Scientific Acceleration Manual 2

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

[l Kiwi Supported Language Subset Limitations and Style Guide 19
4 General CSharp Language Features and Kiwi Coding Style 20
4.1 Supported TYPES e 20
4.2 Supported Constants and Variables 20
4.3 StringHandling 21
4.4 Supported Operators 21
45 SupportedClassFeatures e e 21
4.6 Supported /OwithKiwi 21
4.7 Data StructureswithKiwi 1/2 e 22
4.8 Data Structures with Kiwi 2/2 - more advanced and opaegomporary write up... . . 22
4.8.1 First Stage Processing (repack): wuu ... 22
4.9 Dynamic Storage Allocation L e 23
4.10 Pointer Arithmetic e e 24
411 Garbage Collection e e 24
4.12 Testing Execution Env: Whether | am running on the Wattiat, RTL SIM or theFPGAblades.
413 Clone e 26
4,14 Varargs e e e e e e 26
4.15 Delegates and Dynamic Free Variables 26
4.16 The ToString() Method e 27
4.17 Accessing Numerical Value of Pointer Variables 27
4.18 Accessing Simulation Time e e 28
4.19 Run-time Status Monitoring, Waypoints and Exceptiogd¢ing 28
420 ExitingThreads. e e 29
4.20.1 Null pointer, Array bounds, Overflow, Divide-By-2egind Similar Run-time Exception:s
4.20.2 Normal Thread and Program Exit 29
4.20.3 User-defined C# Exceptions, 29
4.20.4 Debug.Assertor Trace.Assert i 30
4.21 Pause Modes (within Sequencer HLSMode) 30
422 Unwound LOOPS o o i e e 32
4.23 More-complex implied state machines 32
4.24 Inner loop unwound while outer loop notunwound. 33
4.25 Entry Point With Parameters 33
5 Generate Loop Unwinding: Code Articulation Point 33
Kiwi Scientific Acceleration Manual 3

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

6 Supported Libraries Cross Reference 35
6.1 System.Collections.Generic. e 35
6.2 Standard System.Math Library 35
6.3 ParallelForLoop e 36
6.4 System.Random 36
6.5 Console.WriteLine and Console.Write 36
6.6 getManagedThreadld 37
6.7 System.BitConverter e 37
6.8 System.String.ToCharArray i i e e 37
6.9 System.lO.Path.Combine 37
6.10 TextWriter e 37
6.11 TextReader e 37
6.12 FileReader e e 38
6.13 FileWriter e e 38
6.14 Threading and Concurrency with Kiwi 38

6.14.1 SequentialConsistency e . 39
6.14.2 \olatile Declarations e 39

7 Kiwi C# Attributes Cross Reference 39

7.1 Kiwi.Remote() Attribute L. 40
7.1.1 Referentially Transparent and Mirrorable 42
7.1.2 Remote Method Overloading 42
7.1.3 Remote Method Performance, ... 43

7.2 Asynchronous Invokation e 43

7.3 FlagUnreachableCode 43

7.4 Hard and Soft Pause (Clock) Control 44

7.5 End Of Static Elaboration Marker - EndOfElaborate 44

7.6 Loop NoUnroll Manual Control ua... 45

7.7 Elaborate/Subsume Manual Control 45

7.8 Synchronous and/or Asynchronous RAM Mapping 46

7.9 Register Widths and Overflow Wrapping 0o ... 46

7.10 Net-level Inputand OutputPorts o 47

7.11 Wide Net-level Inputsand Outputs oo 47

7.12 ClockDomains o 48

7.13 REMOtE 49

Kiwi Scientific Acceleration Manual 4

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7.14 Elaboration Pragmas - Kiwi.KPragma 49
7.15 Assertion®ebug.Assert() 50
7.16 Assertions-TemporalLogic 51
7.17 RTLParameters e e 51
8 Memories in Kiwi 52
8.1 On-chip RAM (and ROM) Mirror, Widen and Stripe Directve 55
8.2 ROMs (read-only memories) and Look-Up Tables 55
8.3 Forced Off-chip/Outboard Memory Array Mapping 56
8.4 Off-chipload/store ports 56
8.4.1 HSIMPLE Offchip Interface & Protocol 58
8.4.2 HFAST Offchip Interface & Protocol 58
8.4.3 BVCI Offchip Interface & Protocol 60
8.5 AXland HFAST-to-AXImapping o ot it e 60
8.6 Off-chipaddresssize i 62
8.7 B-RAMInference 62
8.8 Dual-portBlock RAMS e 64
8.9 Othermulti-port RAMS e 64
9 Substrate Gateway 65
9.1 Consolel/O 65
9.2 FilesystemInterface e 65
9.3 Hardware Server e 66
10 Kiwi Performance Tuning 67
10.1 Kiwi Performance Predictoro 68
10.2 Phase Changes, Way Points and Loop Markers 69
10.3 Growth Parameter Assertions/Denotations 70
10.4 Debug, Single Step and Directorate Interface 70
11 Spatially-Aware Binder 72
12 Generated RTL 72
12.1 RAM Library Blocks 72
12.2 ALU LibraryBlocks e 72
13 Incremental Compilation and Black Boxes 73
Kiwi Scientific Acceleration Manual 5

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

13.1 IPIntegration via IP-XACT e 74
13.2 TheKiwi.Remote() Markup 75
13.3 Required Metalnfo e e 75
13.4 Instantiation Styles e 77
13.5 Subsystem Abend Syndrome Routing L e e e 78
14 Design Examples 79
14.1 A get-started example: 32-bitcounter. L. 79
IV Expert and Hardware-level User Guide 80
15 Kiwi Hard-Realtime Pipelined Accelerators 80
15.1 Pipelined AcceleratorExample 1 oo 81
16 Designing General/Reactive Hardware with Kiwi 82
16.1 Inputand Output Ports e 82
16.2 Register Widthsand Wrapping 82
16.3 How to write state machines... 83
16.3.1 Moore Machines 84
16.3.2 Mealy and combinational logic: 84
16.4 State Machines e 85
16.5 ClockDomains 85
17 SystemCSharp 86
V Kiwi Developers’ Guide and Compiler Internal Operation 87
18 KiwiC Internal Operation 87
18.1 Background: HPRI/LS Library (aka Orangepath) 90
18.2 DIC . . . 29
18.3 ASM 29
184 RTLand FSM 92
185 CMD . . . 92
18.6 Finite-State Machines e 92
18.7 CSP/OCCam 92
18.8 Internal Working of the KiwiC frontend recipe stage 93
Kiwi Scientific Acceleration Manual 6

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

VI Miscellaneous 96
19 FAQ and Bugs 96
VIl Orangepath Synthesis Engines 106
20 A* Live Path Interface Synthesiser 107
21 Transactor Synthesiser 107
22 Asynchronous Logic Synthesiser 107
23 SAT-based Logic Synthesiser 107
24 Bevelab: Synchronous FSM Synthesiser 107
24.1 Bevelab: Hard Pause Mode Internal Operation 110
24.2 Bevelab: Soft Pause Mode Internal Operation111
25 VSFG - Value State Flow Graph 111
26 PSL Synthesiser 111
27 Statechart Synthesiser 111
28 SSMG Synthesiser 111
29 Repack Recipe Stage 112
30 Restructure Recipe Stage 112
VIII Output and Analysis Recipe Stages 113
31 HPR Output Formats Supported 113
32 C++, SystemC and C# Output Generators 114
33 RTL Output Generator 114
34 |P-XACT Output Generator 115
34.1 Built-inreportwriters e 115
Kiwi Scientific Acceleration Manual 7

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

35 Arithmetic and RAM Leaf Cells 115
35.1 Fixed-point ALUS e 116
35.2 Floating-point ALUS e 117
35.3 Floating-point Convertors e e e 117
354 RAMandROM LeafCells i 118

IX HPRL/S (aka Orangepath) Facilities 118

36 FILES AND DIRECTORIES 118
36.1 Environment Variables and IncDir Search Paths118
36.2 ESPreSSO v v i i e e e e e e 119

37 Cone Refine 119

38 HPR Command Line Flags 119
38.1 Otheroutputformats 122
38.2 General Command LineFlags 122
38.3 HPRL/S (aka Orangepath) FAQ e o 123

39 HPR System Integrator 123
39.1 Memory Map Management (Link Editing) 127
39.2 Deadlock and Combinational Paths 127
39.3 Constructive Placement e 127
39.4 Multi-FPGAdesigns e 130
39.5 Muxand DemuxBlocks 130
39.6 Non-uniform Memory Access (NUMA) 131
39.7 Network OnChip (NoC) o e 132
39.8 BusDefinitions 133
39.9 Sewing Kit for MiscellaneousNets 133
39.10System Integrator Example Run L 133

40 Diosim Simulator 134
40.1 Simulation Control Command LineFlags 136

Kiwi Scientific Acceleration Manual 8

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Introduction

Kiwi is a compiler and library and infrastructure for hardeaaccelerator synthesis and general
support for high-performance scientific computing. Thepatits intended for execution of on FPGA
or in custom silicon on ASIC.

We aim to compile a fairly broad subset of ttencurrent C# language subject to some restrictions:

For Kiwi 1, the current version, we have the following aims:

o Works with the Linux/mono infrastructure but should alsakvon Windows.

e Program can freely instantiate classes but not at run timéixed number of instantiation
operations must be detectable at compile time.

e Array and heap structure sizes must all be statically detexinhe (i.e. at compile time).

e Program can use recursion but the maximum calling depth beistatically determined in
Kiwi 1.

e Stack and heap must have same shape at each run-time fies&tion-unwound loops. In
other words, every allocation made in the outer loop of ydgo@thm must be matched with

an equivalent, manifestly-implicit garbage generatioargwor explicitobj.Dispose() or
Kiwi.Dispose(Object obj) inthe same loop.

e Program can freely create new threads but creation sitisahadetermined too.

In Kiwi 2 we will relax the static restrictions and allow th&e of data structures in DRAM to be
determined at runtime. See
http://www.cl.cam.ac.uk/research/srg/han/hprls/gegrath/kiwic-demos/linkedlists.html

Kiwi 2, planned to be available in the middle of 2017, suppdhree major compilation modes.
These can be mixed in a single design, at a subsystem griayulath the new incremental compi-
lation support based on IP-XACT.

1. The Sequencer major mode is ‘classical HLS'. It will gettera custom datapath made up
of RAMs, ALUs and external DRAM connections and folds thegsean onto this structure
using some small number of clock cycles for each iteratiomefinner loops.

2. The Fully-Pipelined Accelerator major modd %) will run the whole subsystem every clock
tick, accepting new data every clock cycle, allbeit with sonumber of clock cycles latency
between a particular input appearing at the output.

3. The SoC Render major mode provides C# access te-aacT-driven wiring generator with
support for automatic glue logic insertion. The invoked sydtem is called HPR System
Integrator §39). This can target multi-FPGA designs and provides a cteanhanism to
wrap up third-party IP blocks, such as CAMs.

Kiwi Scientific Acceleration Manual 9
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

0.1 Asymptotic Background Motivation for FPGA Computing

The Von Neumann computer has hit a wall in terms of increaslogk frequency. It is widely
accepted that Parallel Computing is the most energy-dfticiey forward. The FPGA is intrinsi-
cally massively-parallel and can exploit the abundantstistar count of contemporary VLSI. Andre
DeHon points out that the Von Neumann architecture no loagdresses the correct problem: he
writes "Stored-program processors are about compactiiiss, the computation into the minimum
area possible”.

‘Stored-program processors are about compactness, fitimgomputation into the
minimum area possible. —Fundamental Underpinnings of Reconfigurable Comput-
ing Architecturesby Andre DeHon.

Why is computing on an FPGA becoming a good idea ? SpatioiBlgpabcessing uses less energy
than equivalent temporal processing (ie at higher clookshafor various reasons. David Greaves
gives nine:

1. Pollack’s rule states that energy use in a Von Neumann GBWsgwith square of its IPC. But
the FPGA with a static schedule moves the out-of-order @amth to compile time.

2. To clock CMOS at a higher frequency needs a higher voltagesnergy use has quadratic
growth with frequency.

3. Von Neumann SIMD extensions greatly amortise fetch arubde energy, but FPGA does
better, supporting precise custom word widths, so no wastk. a

4. FPGA can implement massively-fused accumulate ratlaer té-normalising after each sum-
mation.

5. Memory bandwidth: FPGA has always had superb on-chip mgbandwidth but latest gen-
eration FPGA exceeds CPU on DRAM bandwidth too.

6. FPGA using combinational logic uses zero energy re-coimgpsub-expressions whose sup-
port has not changed. And it has no overhead determiningh&héthas changed.

7. FPGA has zero conventional instruction fetch and decogegy and its controlling micro-
sequencer or predication energy can be close to zero.

8. Data locality can easily be exploited on FPGA — operandshatd closer to ALUs, giving
near-data-processing (but the FPGA overall size is x10gitaeger (x100 area) owing to
overhead of making it reconfigurable).

9. The massively-parallel premise of the FPGA is the corvemy forward, as indicated by
asymptotic limit studies [DeHon].

1 Download and License

Kiwi has been open source since early 2017 and is downloadpbthaps on completion of a web
form). The download page isttp://koo.corpus.cam.ac.uk/kiwic-download.

Kiwi Scientific Acceleration Manual 10
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

1.1 Warranty

Neither the authors nor their employers warrant that theilkSiygtem is correct, usable or nonin-
fringing. It is an academic prototype. We accept no resilitgi for direct or indirect loss or
consequential loss to the maximum amount allowable in UK law

Kiwi Scientific Acceleration Manual 11
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

User App 1 User App 2
Optional HDMI
Monitor Output
< Framestore DRAM Console Filesystem Network
FPGA
1 Interconne
Watchpoints StartStap Profiling D

00000 [*

—

Blade-level 1 1 FPGA

LED and LCD output ‘ ‘ ‘
(DRAM BANK) (DRAM BANK) Ethernet

Figure 1:Kiwi Substrate: Typical Structure of the Kiwi FPGA.

Part |
Scientific Users’ Guide

2 Kiwi Substrate

We use the terngubstrate to refer to an FPGA board or set of server blades that is/aeekd
with various standard parts of the Kiwi system. The most irtgrd substrate facilities are access to
DRAM memory, a disk filesystem and a console/debug chanresicBun/stop/error status output
to LEDs via GPIO is also provided.

The substrate is like an operating system on the FPGA. lt@tpponnection to more than one
application loaded in FGPA at once (cite farming paper).

There is some basic information on the Zynq substrate here:

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/zynq-pio-dma

Kiwi Scientific Acceleration Manual 12
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

ZYNQ HARD IP
s
U ZYNQ P/L FPGA KSUBS3_ZYNQ_TOPLEVEL
ARM-A9 ARM-A9
4 N
(0 @) |
VD
512KB NoC16 Ring _ |
L2 KSUBS3_AXI_PIO >
TARGET ABEND Your Another
SYNDROME DESIGN DESIGN
"""""" == (or from
PIO KiwiC)
XILINX | | e
THREE M_AXI_GPO »| AXI4 to AXI3 GPIO
IP -
AXI BUS M_AXI_GP1 LEDS
S_AXI_GP1
MATRIX [— B — .
_S_AXI_GPO § s :
SWITCHES |} : DMA hfast_aximaster :<
.................................... H KSUBS3 |NNERCORE
o - J
DRAM _
small cache

Vel
DRAM LEDs v o[

o Switches
3 ~ [¢)

AN L o"o0—

Figure 2:Kiwi Substrate: Structure of the Kiwi Ksubs3 Zynq Substrate.

oo%l\‘

Kiwi Scientific Acceleration Manual 13
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

2.1
2.2

2.3

2.4
2.5

2.6

(©2011-17 DJ Greaves + S Singh

Console and LCD stdout I/0O and LED GPIO

Run-time Exception Handler

Run-time exceptions include integer divide-by-zero anltipainter de-reference, array bounds fail
and runtime fail ofDebug.Assert (). Floating point overflow is normally handled by returning
IEEE Inf or NaN.

CIL bytecode has overflow trapping versions of the arithmefierators that raise exceptions. We
generate these from C# usirgecked keyword. Numeric casts can also be out of range, as in
(ushort)0x10000 (a CIL conv_ovf.u2 assembly instruction is used.) In the future KiwiC can
trap these overflows as run-time errors.

CIL bytecode has overflow trapping versions of the arithmefierators that raise exceptions. We
generate these from C# usirgecked keyword. Numeric casts can also be out of range, as in
(ushort)0x10000 (a CIL conv_ovf.u2 assembly instruction is used.) In the future KiwiC can
trap these overflows as run-time errors.

Convert exceptions for casting a value to an illegal valuthwéspect to the target type range, as
raised by theconv. ovf CLR instruction, ... please explain.

Array bounds checking can also give a run-time error.
TODO: explain here about a per-clock domain error net geedtay KiwiC as part of control wires.
The C#Try construct is partially implemented - it does not do anything C# exception handling

is supported at the moment.
DRAM

DRAM and Caches are describedsis.4.

Watchpoints and Start/Stop Control

Framestore

Having very high bandwidth for writes to the framestore israrinsic feature of FPGA computing.
The framestore can be part of the compute engine and usedfepkrformance visualisation. Or
it might just be used for a progress indicator - e.g. pergentd the job processed and final output.

Profiling

Certain basic block visit counts are collected and the tes$ed back to the performance counters...
Tick counter ... for tnowKiwi . tnow.

There is a simple version @fystem.Diagnostics.Stopwatch that is built trivially on top of the
Kiwi.tnow mechanisms. It has the methodeset, Start andStop . The current reading is via a
getter forStopwatch.ElapsedMilliseconds.

Kiwi Scientific Acceleration Manual 14
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Part Il
Installation and Easy Get Started

Kiwi is currently not as easy to use as it could be. You can findaaldin’ for the monodevelop

IDE on the following URL but it is currently not very useful @since it is really focussed on Kiwi
performance prediction which is immature. Currently it ésbif you craft dMakefile based on one

of the examples.

Monodevelop addinhttp://www.cl.cam.ac.uk/users/djgll/kiwi/kiwiaddins/KiwiScientific!

The Makefile will compile your application and optionallyrrthe application on your workstation
under mono or the Windows equivalent.

The Makefile will then invoke the Kiwi compiler to generate arNbg RTL file and combine this
with the provided substrate Verilog files for your FPGA tardeénally it will invoke the FPGA tool
suite to give a bitstream file to be loaded to the FPGA.

The means for loading to the FPGA is currently highly-platispecific. Each substrate should have
its own user guide.

3 Get Started (Mono on Linux)

Kiwi is available in source and precompiled binary form.

Requirements. You need a working dotnet environment (mono or Windows) oarymachine
including a C# compiler. It is also handy to have Modelsim @arus Verilog and Verilator and
SystemC.

Do not do this for Windows, but for linux set your shell envirment MONO variable

$ setenv MONO=mono

$

KiwiC/HPR is currently internally implemented in F# but yqust need a C# compiler to use the
precompiled distribution.

Kiwi binary form is normally supplied as a zip file that comtsifolders called lib, bin, doc and so

on. If you want the source for the compiler it is now public.

You will need the F# compiler to compile HPR and KiwiC from soel The source build should be
configured by editing the paths lrpr/Makefile.inc. Set the HPRLS shell variable to where the
source code sits and run ‘make’iwipro/kiwic/src to build the compiler.

If F# is not locally installed you will need to manually addlaeast the FSharpCore.dll to the Ki-

wiC/distro/lib folder. We do ship one you can move there. édtfise you may get 'type load’ and

'missing entry point’ errors.

FSharp can be simply obtained wibt-get install fsharp on some machines.

KiwiC uses the Mono.Cecil front end and hence the Mono.Q#tik required, either installed on
the machine or copied to the KiwiC/distro/lib folder.

Kiwi Scientific Acceleration Manual 15
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Note: on some versions of linux, applying the shell to the fibe without invoking mono invokes
wine. The wine Windows emulator munges the dot net O/S iatexftelling KiwiC that it is running
on Windows NT and interchanging slashes and backslashésisTiable not to work very smoothly
(although more robust programming inside KiwiC would helhis respect).

On a Windows box, to get started running KiwiC from the Winda@mmand line, create a folder in
your K-Distro folder, cwd to it and copy in a simple targekditiny . exe described ir3.2. Then,
in that folder run

..\1lib\kiwic.exe tiny.exe -vnl tiny.v

3.1 Getting A K-Distro Binary Distribution

When the Kiwi system is itself compiled, it generates a folthdted K-Distro. A user can download
this folder or can compile it themselves from the Kiwi soudigtribution.

The important components of K-Distro are a lib folder comitag all of the compiler dlls, a recipes
folder containing the recipe XML file and a support folder moningKiwi.d11l andKiwic.d1l.

3.2 Using A K-Distro Binary Distribution

The Kiwi compiler itself is invoked via a shellscript call&ic in the bin folder of the K-Distro.
It is usual to put that folder on your PATH. The shellscripeddittle other than apply mono to
../lib/kiwic.exe.

Place the Kiwi distribution somewhere on your filesystent.usecall that place PREFIX. For source
build this will be $HPRLS/kiwipro/kiwic/distro/1ib. To run KiwiC on linux you must execute
the KiwiC shell script

$ $(PREFIX)/bin/kiwic ... args ...

The shellscript just containsnono $(PREFIX)/lib/kiwic.exe
Windows users can invoke th&iwic.exe executable directly.

The arguments to KiwiC should either be portable assemidy guffix .dll or .exe) or option flags
prefixed with a minus sign. Generally you will supply the emntrdesign and KiwiC will automati-
cally load the Kiwi libraries it needs.

Two Kiwi libraries are commonly needed:

1. Kiwi.d11 - This defines the Kiwi attributes and other material implated in C# that should
be supplied both to C# compilations and to the KiwiC compfiterboth FP and WD.

2. Kiwic.d1ll - This defines additional or replacement implementatiorstayidardneTlibrary
functions for use by the KiwiC compiler and must nominallydupplied on the KiwiC com-
mand line. Generally, this isot needed for the first stage of a compilation when an applisatio
program in C# is converted to.®eThbinary (. exe or .d11) where that binary is either going
to be run on the workstation (mono/windows) or compiledHartby KiwiC. It should be
automatically found by KiwiC and so does not need to be alstueeimed on any command
line.

Kiwi Scientific Acceleration Manual 16
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

To enable the same RTL file to be synthesised for FPGA by vetalds and simulated
[RTL_SIM] but to have slightly different behaviour (e.g. w.r.tlS self test) it is handy to
define an external input to the Kiwi code that you tie low in RE._SIM testbench but strap
high in the FPGA substrate pad ring.

[Kiwi.InputBitPort ("FPGA")] static bool FPGA;

If you have these libraries in .cs form only, you will need tompile them to .dIl form using mcs or
similar. You will get some warnings about the ‘unsafe’ cogeytcontain.

You must manually include the referencektosi . d11 in the C# compilation step.

For the KiwiC compilation step, KiwiC will automatically aech for the above libraries and include
them in the compilation and this is equivalent to manualbfuding them on the KiwiC command
line.

To disable automatic search or redirect it to specific filsg, the command-line flag&iwic-d11l
and-kiwi-dl1l. Set these to the empty string to disable them or set thempedf& location, e.g.
-kiwic-dll=/usr/lib/kiwic/mykiwic.dll.

Note that anything specified via the command line can alspéeified in an XMLrecipe file, with
the command line taking precedence when specified both wawys.comes with a standard recipe
for accelerating scientific computing. You can modify thasget SystemC output or for privately
developed flows based on Kiwi.

Kiwi defines the terms WD, RTISIM and FP to define three, so-callexecution environments

1. WD — Rapid development of applications on the workstatigh werformance prediction.

2. RTL.SIM — Verilog simulation (verilator is fastest) in case oflkKC bugs and for perfor-
mance calibration when interacting with RTL models of othygstem components.

3. FPGA — high-performance execution on the FPGA.

CIL assemblies have the option for an EntryPoint method tddségnated. Having one of these is a
main difference between .exe and .dll files.

| can add an option to recognise the entrypoint as a root, d&erttds default failing all else, but,
for most cases, a different entry point is preferable fordifferent execution envs and we’d want to
reserve entrypoint for WD. This needs to be looked at espggd@l multi-FPGA designs.

TheKiwi.HardwareEntryPoint attribute can be attached to one or more static methods in the
input program. These denote so-called ‘client’ method® ddntrol-flow graph beneath such meth-
ods is converted to hardware. The command #ineot flag is another way of specifiying an entry
point. KiwiC does not default to using a static Main method.

TheHardwareEntryPoint attribute can take a pause mode as an argument. This willfundf, set
the starting pause mode for that entrypoint, and moreoearskd to set pipelined accelerator mode.

To obtain Verilog RTL output, KiwiC requires a source file rmand access to its libraries. So the
most basic Makefile is something like:

It might be helpful to pass constant values as argumentstélfrdwareEntryPoint but this is not
supported. Instead, write a C# shim that takes no argumadtpasses constants to a putative entry
point. (But see als§7.17.)

Kiwi Scientific Acceleration Manual 17
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

PREFIX=$ (HPRLS) /kiwipro/kiwic/distro
KLIBC=$ (PREFIX) /kiwipro/support/Kiwic.dll
KLIBO=$ (PREFIX) /kiwipro/support/Kiwi.dll
KIWIC=$(PREFIX) /kiwipro/bin/kiwic

all:
gmcs /target:library tiny.cs /r:$(KLIBO)
$(KIWIC) tiny.exe

Other useful options until recently: -vnl and -root:
$(KIWIC) tiny.exe -root "tiny;tiny.Main" -vnl tiny.v

Given that you have a file called tiny.exe to hand, this shoetdlt in a file callectiny.v in your
current directory.

To generate iny . exe one can do the following:

$ cat > tiny.cs
using System;
using KiwiSystem;

class tiny
{
[Kiwi.HardwareEntryPoint ()]
public static int Main (string [largv)
{
Console.WriteLine("Hello World");
return 1;
}
}

$ gmcs tiny.cs # or use mcs the mono C# compiler.

Should you need it, KiwiC will write a disassembly of the PEefib obj/ast.cil in the cur-
rent folder, enabled by recipe or command line flag ‘-kiwieedump=separately’ or ‘-kiwic-cil-
dumpl=combined’.

If you do not have the Kiwi.dll library to hand (e.g. input mC++ instead of C#) or have other
problems putting &ardwareEntryPoint attribute on a method then using theoot command
line flag is a good idea.

If you do not have the Kiwi.dll library to hand (e.g. input fmC++ instead of C#) or have other
problems putting &ardwareEntryPoint attribute on a method then using theoot command
line flag is an alternative.

Also, you can externally disassemble a .net CIL file usik@asm (which works better than the older
monodis) shell command. The commapeddump may also be useful.

Kiwi Scientific Acceleration Manual 18
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh
Part Il

Kiwi Supported Language Subset
Limitations and Style Guide

Kiwi aims to support a very broad subset of the C# languagesartik suitable for a wide variety
of High-Performance Computing (HPC) applications. Howetlee user is expected to write in a
parallel/concurrent style using threads to exploit thealp@lism available in the FPGA hardware.
However, conventional high-level synthesis (HLS) beneftisuld be realised even for a single-
threaded program.

This chapter will explain the synthesisable subset of C#psttpd by KiwiC, but currentlymuch
work is needed in this section of the manual ...

In general, for Kiwi 1, all recursion must be to a compile-imeterminable depth. The heap and
stack must have the same shape at each point of each itechtemery loop this is not unwound

at compile time. In other words, dynamic storage allocatssupported in KiwiC, provided it is
called only from constructors or once and for all on the mé&sdgo stems of) threads before they
enter an infinite loop. If called inside a non-unwound lody, heap must be the same shape at each
point on each iteration.

KiwiC implements a form of garbage collection called "augpibse’. This can currently (October
2016) be enabled withautodispose=enable. It will be turned on by default in the near future
when further escape analysis is completed. Currently iaties of a little too much and when that
memory is reused we have a nasty aliasing problem since tibrat was still live with other data.
This will crop up with linked-list and tree examples or whéne address of a field in a heap object
is taken.

When autodispose fails to free something (or is turned off) gan explicitly free such store with a
calltoobj.Dispose() orKiwi.Dispose(Object obj).

WRONG: Dynamic storage regions cannot currently be sharesees Kiwi threads. Currently,
KiwiC implements different heap spaces for each threagally ? If so this needs fixing ... TODO
... maybe they are only different AFTER a fork but resourdkxated before Thread.Start are ok.

Floating point is being provided for the standard 32 and B4BEE precisions, but FPGAs really
shine with custom precision floating point so we will add supgor that while maintaining bit-
accurate compatiblity between the execution environments

Atomic operations: Kiwi supports the CLR Enter, Exit and W&ills by mapping them on to the
hpr_testandset primitive supported by the rest of the toolcHaih The rest of this paragraph should
be in the ‘internal operation’ sectiorAlthough RTL target languages, such as Verilog, are highly-
concurrent, they do not have native support for mutexes.b&lelab recipe stage correctly supports
testandset calls implemented by its own threads, but Kivd€schot use these threads: instead it
makes a different HPR virtual machine for each thread ansketievoke bevelab once each instead
of once and for all with bevelab threads within that invo&ati Hence the the testandset primitives
dissappear inside bevelab. ... TODO explain further.

Kiwi Scientific Acceleration Manual 19
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4 General CSharp Language Features and Kiwi Coding Style

4.1 Supported Types

Kiwi supports custom integer widths for hardware applmasi alongside the standard integer widths
of dotnet 8, 16, 32 and 64.

Char is a tagged form of the 16-bit signed integer form.
Single and double-precision floating point are supported.

Enumerations are supported with custom code points. MSDOH e approved underyling types
for an enum are byte, sbyte, short, ushort, int, uint, lomgjlong, but Kiwi uses a suitable custom
width of any number of bits.

One-dimension arrays are supported natively by Kiwi simeg tare part of the dot net virtual ma-
chine. TheLength attribute does not always work at the moment since its implaation is fully
at compile time and it fails where this varies at a given dédl at run time. This can be fixed by the
user using a wrapper class as per the higher-dimensiorgisarr

Higher-dimensional arrays, including jagged arrays, em@émented in th&iwic. cs file as wrap-
pers around the native one-dimensional array. This is theesss for other dot net uses of higher-
dimensional arrays. In theory, the standard dot net verslidinese wrappers should work well with
Kiwi but we have not tried it. The Kiwi-supplied wrappers leavarious and properties and meth-
ods missing that should be available. Feel free to add thepaste the code from the standard
implementations.

Classes and structs are supported. These are differeneftomother in C# (unlike C++). Although
having much in common, C# treats structs and classessaiiffgr C# passes structs by value to
a method, meaning local modifications to contents do not cibtenoriginal instance. C# assigns
structs by value, so all fields in the destination are updbyetthe assigment, rather than the handle
just being redirected. Support for C# structs is being added

Static and dynamic instances of classes and structs woekeTfialso some support for static arrays,
as used in the C++ gcc4cil front end, but arrays are normaihachically-allocated in C#. Certain
restrictions regarding dynamic storage allocation andraatic garbage collection appl§i().

4.2 Supported Constants and Variables

Kiwi supports static, instance, local and formal parametgiables.

Variables may be classes or built-in primitive types anéysrof such variables. An array may
contain a class and a class may contain an array, to any gepth. Multi-dimensional arrays (as
opposed to jagged arrays) are supported with a little syintaagar in the C# compiler but mostly
via library class code provided in Kiwic.dll.

Signed and unsigned integer and floating point primitivéaldes are fully supported.

Kiwi Scientific Acceleration Manual 20
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4.3 String Handling

Verilog and SystemC have 8-bit chars but C# and dotnet havatlghars. KiwiC maps all 16-
bit chars to the closest 8-bit char. UTF-8 escapes couldydasisupported in this process but are
missing at the moment.

Strings are supported a little, but there is currently notiome concatenation or creation of new
strings, so all such string creation operations must beoedadd at KiwiC compile time and hence
be applied to constant strings.

4.4 Supported Operators

All standard arithmetic and logical operators are suppbrt8ome operators, especially floating-
point converts and floating-point arithmetic result in caments being instantiated from the cv-
gates.v library. Integer mod, divide and larger multipla&so result in ALU instantiation, unless
arguments are constant identity values or powers of twoataeasily converted to shifts. Divide
and multiply by a constant may result in adders being geeérat

4.5 Supported Class Features

Classes can be statically and dynamically allocated. @actstr code is executed.

Static classes have their constructor code called at certipik (although it is perhaps possible for
the lasoo stem to end partly through the last one one of th&he)same goes for dynamic classes
that are converted to static within the lasoo stem.

Class and array instance handles can be manipulated atrenKiwiC (repack stage) will allocate
a small integer for each one in each equivalence group whadlés are interchanged or shared.
KiwiC checks whether the null value requires a code pointichegroup. Run-time null dereference
errors will be reported in the abend code register at som pobn.

Many class and array handles are never changed (the groupdtasne member) and hence are
merely an artefact of the C# language. Such handles are isptinaway inside KiwiC and have
no run-time overhead. Class and array instance handlesecamahipulated at run time. KiwiC
(repack stage) will allocate a small integer for each oneathequivalence class where handles are
interchanged. KiwiC checks whether the null value requaresde point. Run-time null de-reference
errors will be reported in the abend code register at soma pobn.

4.6 Supported I/O with Kiwi

Kiwi supports a number of forms of 1/O:

e Net-level RTL-style I/O through peeking and poking of statariables that are shared with
the outside world is the most basic form of /0. Please§3et0.

e Methods can also be designated as remotely-callable. Caoioation between separately-
compiled hardware modules is then analogous to methodleetiléeen software components.
This is explained ir§7.1.

Kiwi Scientific Acceleration Manual 21
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

e Local console debugging style output. Principly this imed calling +verbConsole.WriteLine()+
and running the KiwiC output on an RTL simulator. On the FPGades, output to a logging
file is supported over the network. Also, certain real hamvwdevices on the substrate such
as LEDs, LCD panels and framestores have also been run mqsslly.

e Remote Console, Network and Filesystem I/O via the sulesgrateway. Seg9.2

4.7 Data Structures with Kiwi 1/2

To achieve high performance from any computer system thgranamer must think about their
data structures and have a basic knowledge of cache and DRARVIDur. Otherwise they will hit
memory bandwidth limitations with any algorithm that is tretly CPU bound.

As in most programming languages, C# variables and stregtare static or dynamic. Dynamic
variables are allocated on the heap or stack. All are coestad static form during compilation
using the version 1 Kiwi compiler. Support for truly dynamvriables will perhaps be added in a
future release.

Kiwi does not (currently) support taking the address of lo@aiables or static variables in fields
(except when pass by reference is being compiled). All goindnd object handles need to refer to
heap-allocated items.

It is helpful to define the following two terms for pointer i@bles. Pointers generally point to
dynamic data but their pattern of use falls into two clas¥és will call a static pointer one whose
value is initially set but which is then not changeddpnamic pointer is manipulated at run time.
Some dynamic pointers range over the vatudl. (As with all C# variables, such pointers can be
declared as static or instance in C# program files — this fgxnal to the current discussion.)

Every C# array and object is associated with at least onetgrobecause all arrays and objects
are created using a call to 'new’. Also, some valuetypes imecassociated with a pointer, either
by being passed-by-reference or by application of the asaper operator in unsafe code. The
KiwiC compiler will ‘subsume’ nearly all static pointers its front end constant propagation and
any remaining static pointers will be trimmed by later staigethe KiwiC compiler or in the vendor-
specificFPGA/ASIC tools applied to the output RTL.

KiwiC maps data structures to hardware resources in twaestdg the first stage (known as repack
§29), every C# form (that did not disappear entirely in thenfrend) is converted to either scalars of
some bit width or 1-D arrays (also known as vectors) of suelass. In the second stage (known
as restructurg§30), mapping to physical resource decisions are made asithwctors and scalars
to place in what type of component (flip-flops, unregister&AB!, registered SRAM, DP SRAM
or off-chip in DRAM) and which structural instance thereofuse. The first stage behaviour is
influenced mainly by C# programming style. Second stageviehiais controlled by heuristic rules
parametrised by command-line flags and recipe file values.

4.8 Data Structures with Kiwi 2/2 - more advanced and opaquedmporary write up...
4.8.1 First Stage Processing (repack):

Two-dimensional arrays are a good example to start withh@lgh there is syntactic sugar in C#
for 2-D arrays, with current C# compilers this is just regldavith operations supplied by a library

Kiwi Scientific Acceleration Manual 22
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

dil. The dotnet runtime and KiwiC support just 1-D arraysedlvectors. There are two possible

implementations of a 2-D array library: jagged and packe packed form subscript is computed
using a multiply of the first co-ordinate with the arity of teecond co-ordinate and then adding
on the second co-ordinate. The jagged form uses a vectoatid pbinters to vectors that contain

the data; the first co-ordinate is the subscript to the poirgetor and the second co-ordinate is the
subscript to the selected vector. We use the term jaggedctngrass their smooth form where all

data vectors are the same length.

KiwiC inlines the subscript computation for a packed arraytteough the programmer had inlined
such an expression in his C# code. Additionally, there ig onke vector created. Therefore packed
2-D arrays first become 1-D vectors. However, such vectagham subject to unpacking in first
stage operation. For instance, if all subscripts are cahstdues, the array is replaced with a set
of scalars. Of if the subscripts fall into clearly disjoirggions, the vector is split into multiple,
separately-addressed regions. Or if all the subscripts haommon factor or common offset then
these are divided and subtracted off respectively. Thisackipg into multiple vectors removes
structural hazards that would prevent parallelism.

For a jagged array, initially a number of separate vecteserated and a potentially large number
of multiplexing expressions (that appear as the ?: corisinuderilog RTL) are created to direct
reads to the correct vector. For writes, an equivalent diphenor is created to select the correct
vector for writing. (The pointer vector is normally staticchbecomes subsumed, but we will later
discuss what happens if the C# code writes to it, making iedyia.)

Implementation note: if a jagged array is created by alingaa large 1-D array and storing ref-
erences to offsets in that vector in the pointer array, itdssible to generate a structure that is
identical to the packed array. KiwiC happens to detect thisgpn and the behaviour would be as
per the packed array: however this style of programming tsatiowed in safe C#, but could be
encountered in unsafe code or other dotnet input form, say, C

If we create an array of objects do we expect the fields of thectdto be placed in vectors? Yes,
certainly if the object pointers are subsumed.

If we take the parfir example, there’s one initialise placerehempty flags are written from a non-
unwound loop and hence with dynamic subscript, but elsesvtinety are updated only with constant
subscripts and so should be simple scalar flags.

Kiwi on Loop Unwinding: Loop-carried dependencies in dataontrol form limit the amount of
parallelism that can be achieved with unwinding.

The hard cbg algorithm unwinds all loops without event calntfhe soft algorithm allocates cycles
based on greedy or searching strategies based on compdextgtructural hazards. Consider 1:
Hoisting of exit condition computation, or hoisting of datapendency computation: this should
preferably be applied? So the post-dependent tail of eaghdan be forked off

4.9 Dynamic Storage Allocation

For statically-allocated object instances, KiwiC packsnthinto flip-flops, B-RAM or DRAM ac-
cording to thresholds configured in the recipe or commarg lifihis includes objects and structs
allocated on the C# heap before the end of static elaboration

For dynamically-allocated instances, KiwiC cannot eatly how much memory may be needed
and so defaults to DRAM channel 0O if present. But we can switelmually between B-RAM and

Kiwi Scientific Acceleration Manual 23
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

DRAM for dynamic storage allocation using C# attributes.

We make the following interesting observatioBnce data structures are placed in DRAM there
is no real need to have their number statically determinedapile time: instead they can be
truely dynamically allocated at run timgdJ Greaves 2015). Indeed, if an application becomes
overly dependant on DRAM data then the FPGA advantage vshgpear and a Von Neumann
(e.g. x86) implemenation may likely have better perfornearut, there remains some good FPGA
mid ground where a lot of dynamic store is needed but wheradhess bandwidth required is not
excessive.

Kiwi.HeapManager

Physical memories used for dynamic storage require a faeesmanager. We can allocate a Heap-
Manager for each physical memory and the user can direcestg|to an appropriate instance. Typ-
ically there could be one for each separate DRAM bank and @nedith separate on-chip B-RAM.

Also, arrays with dynamic sizes ...

4.10 Pointer Arithmetic

handleArith pointer arithmetic
Kiwi.ObjectHandler<T>

The object handler provides backdoors to certain unsafe fadointer arithmetic that are banned
even in unsafe C# code. Implementation in CIL assembleravbelpossible but having hardcoded
support in the KiwiC compiler accessed via this object manégeasier.

4.11 Garbage Collection

With Kiwi 1, the stack and heap must have same shape at eadimrarteration of non-unwound
loops. In other words, every allocation made in the outeplobthe compiled program must be
matched with an equivalent dispose or garbage generatant avthe same loop.

Where a heap object is allocated inside a loop that is not dertipie, it will potentially consume
fresh memory on each iteration. There are two basic serasgxiated with such a condition: either
the fresh memory is useful, such as when adding items to adifikt datastructure, or else it is not
needed because the previous allocation is no longer livatendame heap space could be simply
reused. This second case is fully served by converting tic sthocation at compile time.

KiwiC V2 is implementing a more easy to use, run-time storatjecator, but without garbage
collection.

KiwiC V1 does not support genuine dynamic storage allocaitiside an execution-time loop. Bit

it provides two mechanisms to support dynamic to staticetdn where dynamic store is not really
needed. The first uses an explicit dispose and the secondmgeplicit dispose. Either way, when

the loop iterates, the active heap has shrunk and KiwiC msikesto reuse the previously allocated
heap record at the allocation site (call to C# new).

See the linked list example ... http://www.cl.cam.ac.e&éarch/srg/han/hprls/orangepath/kiwic-
demos/linkedlists.html

KiwiC V1 arrays - Array sizes must all be statically deteratite (i.e. at compile time).

Kiwi Scientific Acceleration Manual 24
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

System.BitConverter provides a typical use case thatwegoh lot of temporary byte arrays. The
F# compiler also uses a lot of temporary structures and thédhas a chance of compiling F#
bytecode by exploiting the implicit disposal approach.

Arrays in.NETdo not have @ispose () method. Instead an array can be disposed of ®iithi . Dispose<T>
This is a nop when running on mono/dotnet.

System.BitConverter returns char arrays when destructatiye types and the arrays returned by
BitConverter should be explicitly disposed of inside a nwwound loop if KiwiC is failing to spot
an implicit manifest garbage creating event, as reportéi thie an error like:

System.BitConverter returns char arrays when destructitige types. The arrays returned by Bit-
Converter should be explicitly disposed of inside a non-oumd loop if KiwiC is failing to spot an
implicit manifest garbage removal opportunity, as repibrtéth the an error like

KiwiC +++ Error exit: BitConverterTest.exe: constant_fold_meets
entry_point=5:: Bad form heap pointer for obj_alloc of type
CT_arr(CTL_net(false, 32, Signed, native), 8) post end of elaboration
point (or have already allocated a runtime variable sized object 7).
Unless you are geninuely making a dynamic linked list or tree, this
can generally be fixed using a manual call to Kiwi.Dispose() in your
source code at the point where your allocation could be safely
garbage collected.

Unless you are geninuely making a dynamic linked list or,ttiee failed implicit garbage collector
can generally be worked around using a manual callitai . Dispose () in your source code at the
point where your allocation could be safely garbage cadigct

new

For making trees and lists, see the linked list exampletp:/htww.cl.cam.ac.uk/research/srg/han/hprls/c
demos/linkedlists.html

... field-arrays and spatial locality

4.12 Testing Execution Env: Whether | am running on the Workstaion, RTL _SIM or the rrca

blades.
We need sometimes to achieve different behaviour, for dgibggand scaling reasons, in the three
execution environments.

1. For Workstation Development - WD - we can invoke
Kiwi.inHardware () and find that it returns false. Theiwi.d11 file returns false when run
as a normal dotnet program, but KiwiC has a hardcoded bypasanakes it hold (return
true).

2. For RTL.SIM check that inHardware returns false and that the
Kiwi.InputBitPort("FPGA")] static bool FPGA; returns false. You should tie this
net low in your simulator top-level instantiation.

3. Otherwise we are in FPGA. The Kiwi substrate for a hardWwa& should tie this net high in
the pad ring.

Kiwi Scientific Acceleration Manual 25

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4.13 Clone

4.14 Varargs

Call the functiorKiwi . inHardware () for this purpose. Since this is a compile-time constans it i
useful for removing development and debugging code fronfitte implementation. KiwiC will
ignore code that is insidief (false) { } constructs so write

if (!'Kiwi.inHardware()) { ... test/debug code ... }.

[KiwiSystem.Kiwi.HprPrimitiveFunction()]

public static bool inHardware()

{
return false; // This is the returned value when running on the workstation.
// An alternative overriding implementation is hardcoded inside KiwiC and will
//return ’true’ for FPGA and RTL simulation.

}

Clone of arrays and objects

not there yet ... The varargs support is also pretty trigidtplement inside KiwiC under the current
technique of fully inlining method calls during KiwiC comafion - it's just a matter of a few lines
of simple interpretative code in the elaborator...

4.15 Delegates and Dynamic Free Variables

Kiwi Dynamic Method Dispatch

Dynamic method dispatch is where which function body thé&t galled from a callsite is potentially
data-dependent. Computed function calls occur with aclioth function delegates and dynamic
object polymorphism.

In C++ there are restrictions that higher-order prograngnsronly possible within a class hierarchy.
This arises from the C compatibility issues where the highrder function passing does not have
to manage an object pointer. These issues are neatly wragpiedC# using delegates. An action
delegate has void return type whereas a function delegatesea value.

Kiwi supports the function and action delegates of C#.

KiwiC partitions dynamically-callable method bodies irtquivalence classes and gives each body
within a class an integer. These classes typically contaip a very few members each. It then
uses constant folding on the entire system control-flow lyi@pa general optimisation. This may
often turn a dynamic dispatch into a static dispatch, hemeset integers will not appear in the output
hardware unless truly dynamic dispatch is being used, ssigh a

Action<int, string> boz_green = delegate(int varl, string var2)
{ Console.WriteLine(" {1} {0} boz green", varl, var2);
s

Action<int, string> boz_red = delegate(int varl, string var2)

Kiwi Scientific Acceleration Manual 26
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

{ Console.WriteLine(" {1} {0} boz red", varl, var2);
};
for(int pp=0; pp<3; pp++)
{ Kiwi.Pause(); // Pause makes this loop unwind at run time.
boz_red(pp+100, "sitel");
boz_green(pp+200, "site2");
var x = boz_red; boz_red = boz_green; boz_green = x; //swap

}

C# 3.0 onwards supports proper closures. These are imptetherside the C# compiler and com-
pile fine under Kiwi provided the static allocation restigets are obeyed.

Test55 of the regression suite contains the following demo.

public static Func<int,int> GetAFunc()
{
var myVar = 1;
Func<int, int> inc = delegate(int varl)
{ myVar = myVar + 1;
return varl + myVar;
};
return inc;

}

[Kiwi.HardwareEntryPoint ()] static void Main()

{ var inc = GetAFunc();
Console.WriteLine(inc(5));
Console.WriteLine(inc(6));

3

This compiles and works fine. But, there is a Kiwi 1 resrictibat theGet AFunc call must be before
the end of static elaboration since this creates the cldkates allocated on the heap.

If no closure is needed, Action and Function delegates sfrfien no static allocation restriction.

4.16 The ToString() Method

Kiwi implements a basic version of the ToString method. It give output that is rather dependent
on which version of the compiler is being used, but it is bettan nothing. Enumerations print as
integers.

4.17 Accessing Numerical Value of Pointer Variables

IntPtr types.

Clearly, the addresses used on the FPGA have little rekttiprwhen run on the mono VM, but it
is possible to display class pointer value on the hardwatgsm. One method is to use the default
ToString method on an object handle. This will generate ait§pecific output.

Kiwi Scientific Acceleration Manual 27
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

For example

Console.WriteLine(" Ntestl4w lineO : pointer={0}", ha.ToString());
Console.WriteLine(" Ntestl4w linel : left={0}", ha.left);

Might give:

Ntestl4w lineO : pointer=Var(test14w/T401/Main/T401/Main/V_0%$stari$/testidw/
dc_cls%30008%4, &(CTL_record(testldw/dc_cls,...)), ...,)
Ntestl4w linel : left=32

Ah - this has printed the variable not its value!

4.18 Accessing Simulation Time

The Kiwi.dll library declares a static variable call&dlwi . tnow. During compilation reads of this
are replaced with references to the appropriate runtimenemésm for access to the current simula-
tion time. For instance, the following line

Console.WriteLine("Start compute CRC of result at {0}\n", Kiwi.tnow);
becomes
$display("Start compute CRC of result at %t\n", $time);

when output as Verilog RTL.

The substrate has a tick counter that is instantiated wienigused for FPGA execution and so the
RTL_SIM code is a now a shim and not a direct call to the non-syighbke$time infact... TODO
fix.

4.19 Run-time Status Monitoring, Waypoints and Exception Loging

The following text to be corrected and moved to debugging@eof manual please:

The user requires an indication of whether an FPGA card igedgtrunning an application. Nearly
all FPGA cards have LED outputs controlled by GPIO pins thatuseful for basic status monitor-
ing. Itis normal to connect an LED or two to indicate Kiwi adty and/or error, but most status
reporting is via the substrate gateway.

Some FPGAs have LCD or VGA framestore outputs that are alatively easy to use for monitor-
ing and results.

The sequencer index and waypoint for each thread can be egnmabnitored via the substrate
gateway. This provides ... abend syndrome register ...tlogad id, waypoint, pc value and abend
reason.

Kiwi Scientific Acceleration Manual 28
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4.20 Client versus Server Designs and Start Commands

An HLS run can generate a client or a server. A server is arlereder or AFU that will be used by a
client: it does nothing by itself. A client, on the other hasthrts work by itself, either straightaway
or when given a start command. A client can be software rignoima host that invokes accelerators
via the Kiwi Substrate, or it may be an HLS design that stadsfakiwi.HardwareEntryPoint
attribute.

A client that performs DMA into a host must be told the DMA aglsl before it starts.
TheksubsRunStop two-bit field is used to control hardware clients.

ksubsRunStop settings
0 O Assert synchronous reset
0 1 Normal running
1 0 Pause (deassert clock enable)
1 1 (reserved for single step)

[Kiwi.InputWordPort (‘ ‘ksubsRunStop’’)] static int ksubsRunStop could be polled from
C# as a potentially sensible design point. But we do not uae timstead, where the client is in-
stantiated by the substrate, its reset and clock enableésigpe connected to a hardware circuit that
interprets the run stop field and which can allow just onelsimpck cycle of progress in some
variants.

The Pause setting requires the client to have a clock enaplé.i The command line flag that
ensures clock enables are presenkiswife-directorate-style=advanced . The clock enable
is calledhpr_ext_run_enable. An AbendSyndrome register is also created in that modeckClo
enable is de-asserted when abending or exiting. ... say bynwh

4.21 Exiting Threads
4.21.1 Null pointer, Array bounds, Overflow, Divide-By-Zero and Similar Run-time Exceptions

The Kiwi substrate gateway will log the thread identifierywaint and sequencer index for threads
that finish or abort in an abend syndrome register. The useres@&rse-engineer these via the KiwiC
report file. An XML variant of that file for import into IDE nesdo be provided in the future.

It is possible to get a run-timeull pointer exception.

The CSharp language supports arithmetic both with overftpveried (as in C/C++) and checked.
It is possible to get a run-timehecked overflow exception. (But not yet supported in KwiC as of
January 2017.)

It is possible to get a run-timgivide-by-zero exception.

It is possible to get a run-tima&rray bounds exception.

It is possible to get a run-time exception.

(Floating point exceptions are normally handled with Ni@N propagation.)

Kiwi Scientific Acceleration Manual 29
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4.21.2 Normal Thread and Program Exit

For RTL.SIM execution of the KiwiC-generated RTL, it is sometimes\&nient to have the simu-
lator automatically exit when the program has completed.

NEW: We replace -kiwic-finish with -kiwife-directorate-émode

When the main thread of Kiwi program exits (return from Mathg generated code may include a
Verilog $finish statement if the (OLD FLAG-TODO EDIT THIS) fia'-kiwic-finish=enable"

is supplied on the command line or in the recipe file. The eaaivt is generated for C++ output.
Otherwise a new implicit state machine state is created matbuccessors and the thread sits in that
state forever. Hanging forever is the default behavioufddted threads.

The argument to the $finish statement, if present, is alsttemrio the abend syndrome register
when present (see directorate styles). RTL designs alpdslack-enable forced deasserted) when
a non-zero syndrome is stored.

For use with a standard execution substrate, having a $8tasbment in the generated design makes
no sense,

Environment.Exit(int syndrome) can also be invoked within C# to cause the same effect as
main thread return. The integer value is stored in the abgmdreme register and the RTL hardware
design halts until next reset.

(Pipelined accelerators cannot exit since they have noesegu §15 and are permanently ready to
compute.)

4.21.3 User-defined C# Exceptions

C# try-except blocks are supported as is exception handBig no exceptions can currently be
caught and all lead to either a compile-time or run-time aben

In other words, the contents of a €&tch block are ignored in the current KiwiC compiler.
The contents of a Cinally block are executed under Kiwi as nhormal.

The following fragment shows how to throw a runtime exceptilbat will cause execution to stop
with an abend syndrome readable by the director shim.

Please follow the coding conventions in table XXX and notd the specific error code 128 is not
an error and will not stop execution if thrown: it is the ddfaok code.

class myDemoExn: System.Exception

{

// Note KiwiC latches onto an integer field name in uncaught exceptions containir
int ecode = 129;

public int error_code //

{
set { ecode = value; }
}
}
Kiwi Scientific Acceleration Manual 30

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

class UncaughtExceptionTest

{
// Steer away from Kiwi-1 dynamic storage complexity by
// making the thrown exception a static.
static myDemoExn my_faulter = new myDemoExn() ;

public void runner(int roger)
{ for (int pp=0; pp<10;pp++)
{
Kiwi.Pause();
Console.WriteLine(" runner {0}", pp);
my_faulter.error_code = 101 + pp;
if (pp == 5) throw my_faulter;

4.21.4 Debug.Assert or Trace.Assert

System.Diagnostics.Debug.Assert(bool cond) and friends ...

We can raise a run-time assertion problem that is loggederatiend syndrome register with code
0x20.

There is a compile-time variant called - not reached - or sbme ...

4.22 Pause Modes (within Sequencer HLS Mode)

Kiwi supports several major HLS modes, but the default, sagar major HLS mode, generates a
sequencer for each thread. When creating a sequencer, thenofrstates can be fully automatic,
completely manual, or somewhere in between, accordingetpdlnse mode setting.

The mapping of logic operations to clock cycles is one of ttemtasks automated by high-level
synthesis tools, but sometimes manual control is also mkédientrol can be needed for compatibil-
ity with existing net-level protocols or as a means to mowedhsign along the latency/area Pareto
frontier.

KiwiC supports several approaches according to the pauske selected. Pause modes are listed
Table 1. The number of ALUs and RAM ports available also makdsg difference owing to
structural hazards. Fewer resources means more clocksayetsied.

The pause mode can, most simply, be set once and for all orothmand line with, for examples
-bevelab-bevelab-default-pause-mode=soft.

When in soft mode, theevelab-soft-pause-threshold parameter is one of the main guiding
metrics. But it has no effect on regions of the program coeapih hard-pause or other non-soft
modes.

Typical values for the soft pause threshold are intendecktm the range 0 to 100, with values of
100 or above leading to potentially very large, massivelyafiel designs, and with values around
15 or lower giving a design similar to the ‘maximal’ pause rmod

Kiwi Scientific Acceleration Manual 31
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

No | Name | Pauses are inserted at
auto ?
hard exactly where pause statements are explicitly inclugded
soft where needed to meet soft-pause-threshold
maximal | inserted at every semicolon
bblock | every basic block boundary

A WNPEFO

Table 1:Kiwi Pause Modes (within Sequencer Major HLS Mode)

The Kiwi.cs file defines an enumeration for locally changihg pause mode for the next part of a
thread’s trajectory.

enum PauseControl
{ autoPauseEnable, hardPauseEnable, softPauseEnable,
maximalPauseEnable, blockbPauseEnable };

The idea is that you can change it locally within various pafta thread’s control flow graph by
callingKiwi.PauseControlSet (mode) where the mode is a member of the PauseControl enumer-
ation. Also, this can be passed as an argument to a Kiwi.Raalsto set the mode for just that
pause. However, dynamic pause mode changing may not wohieahdment ... owing to minor
bugs.

For example, you can invok&i wi . PauseControlSet (Kiwi.PauseControl.softPauseEnable).

Nearly all net-level hardware protocols are intolerantlazk dilation. In other words, their seman-
tics are defined in terms of the number of clock cycles for Whicondition holds. A thread being
compiled by KiwiC to a sequencer defaults to bblock or sofiggacontrol, meaning that KiwiC is
free to stall the progress of a thread at any point, such as theeeds to use extra clock cycles
to overcome structural hazards. These two approachesa@mnatible. Therefore, for a region of
code where clock cycle allocation is important, KiwiC mustibstructed to use hard pause control.

The recipe file kiwic00.rcp sets the following as the defpalise mode now
<option> bevelab-bevelab-default-pause-mode bblock </option>

This is not suitable for net-level interfaces but does |eagiick compile of scientific code which is
what we are targeting at the moment.

For compiling net-level input and output, give Kiwikbevelab-bevelab-default-pause-mode=hard
as a command line option to override the recipe.

Maximal and blockb are considered just ‘debug’ modes whatses are inserted at every semicolon
and every basic block boundary respectively.

4.23 Unwound Loops

For a thread in hard-pause mode that executes loops withuseBacalls in them will, KiwiC will
attempt to unwind all of the work of that loop and perform igisingle run-time clock cycle. (There
are some exceptions to this, such as when there are undiecigabe aliases in array operations or

Kiwi Scientific Acceleration Manual 32
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

structural hazards on RAMSs but these are flagged as warnicgsmgpile time and run time hardware
monitors can also be generated that flag the error).

TODO: describe the way KiwiC resolves structural hazardeaoiable-latency if the user has spec-
ified hard pause mode. Currently, KiwiC essentially tadifiges and consumes any further clock
cycles it needs to do the work.

main_unwound_leader ()
{

q = 100;

for (int d=0; d<16; d++) Console.WriteLine("q={0}", q++);

while (true) { Kiwi.Pause(); Console.WriteLine("q={0}", q++); }
¥

The example maiunwoundleader will unwind the first loop at compile time and exectie first
16 print statements in the first clock tick and q will be loadéth 116 on the first clock tick.

4.24 More-complex implied state machines

main_complex_state_mc()
{
q=1;
while(true)
{
Kiwi.Pause(); q = 2;
for (int v=0; v<din; v++) { Kiwi.Pause(); q += v; }
Kiwi.Pause(); q = 1;
¥
}

The example maitomplexstatemc has a loop with run-time iteration count that is not unwbun
because it contains a Pause call. This is accepted by Kiw@veder, it could not be compiled
without the Pause statement in the inner loop because thgsbody is not idempotent. In soft-
pause mode the pause call would be automatically added biCKfwnissing.

4.25 Inner loop unwound while outer loop not unwound.

main_inner_unwound()
{
q=1;
while(true)
{
Kiwi.Pause(); q = 2;
for (int v=0; v<10; v++) { q <<= 1; }
Kiwi.Pause(); q = 1;
}
¥

In maininner.unwound the inner loop will be unwound at compile time beeaidhas constant
bounds and no Pause call in its body. (This unwind will be grankd in the bevelab recipe stage,
not KiwiC front end.)

Kiwi Scientific Acceleration Manual 33
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4.26 Entry Point With Parameters

A top-level entry point with formal parameters, such as

[Kiwi.HardwareEntryPoint ()]
main_withparam(int x)

{

)

is currently not allowed in normal sequencer mode, althandluture it would be reasonable for
these to be treated as additional inputs. This will be relasaon.

Top-level arguments are allowed in RP§Z (1) and Accelerator major HLS modéd b).
In Kiwi, roots may instead or also be specified using dot neibates similar tkiwi.Hardware.

When you want only a single thread to be compiled to hardwétereadd a Kiwi.Hardware attribute
or use a root command line flag. if you have both the resultastthio threads are started doing the
same operations in parallel. The currently fairly-simidigmplemention of offchip has no locks and
is not thread safe, so both threads may do operations onftttémhets at once.

Flag-root rootname specifies the root facet for the current run. A number of itearsbe listed,
separated by semicolons. The ones before the last one ameestor static and initialisation code
whereas the last one is treated as an entry point.

The-root command line flag is an alternative to the HardwareEntryRoserker. Supplying this
information on the command line is compatible with multipempilation appoaches where a given
source file needs to be processed in different ways on diffe@mpilation runs.

5 Generate Loop Unwinding: Code Articulation Point

The KiwiC front end unwinds certain loops such as those te&bmn storage allocation and fork
threads. The main behavioural elaborate stage of the Kiwi& dlso unwinds other loops. Because
of the behaviour of the former, the latter operates on a fistit¢e system and it makes its decisions
based on space and performance requirements typical iAldwghsynthesis flows. Therefore, the
loop unwinding performed in the KiwiC front end can be reg&d just to loops that perform struc-
tural elaboration. These are known ganerate loopsin Verilog and VHDL. It is a typical Kiwi
programming style to spawn threads and allocate arrays ted objects in such loops. Such elab-
oration that allocates new heap items, in Kiwi 1, must be dorke KiwiC front end since the rest
of the HPR recipe deals only with statically-allocated &hles.

Since threads both describe compile-time and run-timehehaa means is needed to distinguish
the two forms of loop. The approach adopted is that everyathie the source code is treated as
generally having éassoshape, consisting of code that is executed exactly onceeefdering any
non-unwound, potentially-infinite loop.

The front-end algorithm used selects an articulation pioithe control graph of a thread where all
loops before this point have been unwound and all code rééeladter that point has its control

graph preserved in the program output to the next stagerd-Bjillustrates the general pattern. The
articulation point is called thend of static elaborationpoint. The point selected is the first branch

Kiwi Scientific Acceleration Manual 34
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Start

Linear trajectory -

from generate

unwinds Basic Blocks

Runtime
infinite or exiting
loop

Articulation Point —a

Possible Exit

Possible Exit

Figure 3:Front End Control Flow after Unwind: Lasso Diagram.

target that is the subject of a conditional branch duringnéerpreted run of the thread or the entry

point to the last basic block encountered that does not coatkiwi.Pause() call.

The branch will be conditional either because it dependsoomesrun-time input data or because
it is after at least on&iwi.Pause() call. The semantics dfiwi.Pause() imply that all code

executed after the call are in a new run-time clock cycle. apptly-conditional branches may be
unconditional because of constant folding/propagatiainduthe interpreted run. This is the basis

of generate-style loop unwinding in the lasso stem.

Some programming styles require the heap changes shape tiner A simple example occurs
when an array or other object is allocated after the first tvaKiwi.Pause. We have found that
programmers quite often write in this style, perhaps netak intenionally, so it is useful if KiwiC

supports it.

main_runtime_malloc()

{

Kiwi.Pause();

int [] a = new Int[10];

for (int i=0; i<10; i++) alil = i;
while (true) { ... }

Provided the heap allocator internal state is modellederstime way as other variables, no further

special attention is required. In this fragment the heapashre compile-time constants.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

35

(©2011-17 DJ Greaves + S Singh

main_runtime_dyn_malloc()

{

Kiwi.Pause();
if (e)
{ int [] a = new Int[10];
for (int i=0; i<10; i++) al[i] = i;
}
while (true) { ... }

If the value of &’ in runtime_dyn_malloc is not a compile-time constant, KiwiC cannot comtilis
since there would be two possible shapes for the heap on it#ethe if statement. A solution is
to call a.Dispose() before exit, but KiwiC currently does sapport Dispose calls.

There’s also the matter of saved thread forks

Here the outer loop is non-unwound loop yet has a compile-tionstant value on each read if the
inner loop is unwound

while(true) // not unwound

{
for (int i=0;i<3;i++) fool[i].bar(f);

6 Supported Libraries Cross Reference

We have started documenting our library coverage in this@ec

6.1 System.Collections.Generic
Currently (August 2016), none of the standard collectigres; such as Dictionary, are provided in
the distro. They are now arriving ... Summer 2017.

6.2 Standard System.Math Library
Implementations of double-precision square-root, log, esine, cos and tan are all being added
Summer 2017 now that incremental compilation is working.edé components are in thigo0
library in Verilog RTL form with IP-XACT wrappers. You may substitute your own if you wish. A
single-precision set might be useful. Dotnet perhaps doekave them in single-precision form?

6.3 Parallel For Loop

// Execute N copies of f in parallel.
Parallel.For(0, N, i => £(i));

See ParForl example

Kiwi Scientific Acceleration Manual 36
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

The CSharp compiler maps Parallel.For to a call of Systenedding. Tasks.ParallelLoopResult.

An implementation of this in Kiwic.cs maps it via CSharp bdokrs to the Xfork Xjoin forms
supported by bevelab as part of the synthesisable HPR itngelanguage subset. They are turned
into XRTL by bevelab along with everything else. Note diogiamnot currently (3Q17) support
Fork and Join so a recipe that bypases bevelab on the waydiordiaill fail.

6.4 System.Random

For random number generation, for both WD and FP, pleas&1issSystem.Random instead of
System.Random.

KiwiSystem.Random dg = new KiwiSystem.Random();

This is currently an extra dll in userlib that you must mahuiclude but automatic inclusion based
on Kiwi.Remote is likely in the near future (eg. 4Q17), as pamy other library functions such as
SqRoot.

6.5 Console.WriteLine and Console.Write

The Write and WriteLine methods are the standard means fdimgyito the console in C# and Kiwi.
They can also print to open file descriptors. They emimawntf like functionality using numbered
parameters in braces.

Overloads are provided for used with up to four argumentgoBe this, the C# compiler allocates
a heap array, fills this in and passes it to WriteLine, aftercli requires garbage collection. This
should provide no problem for Kiwi's algorithm that conveeguch dynamic use to static use but if
there is a problem then please split a large WriteLine inteishsmaller ones with fewer than five
arguments (beyond the format string).

Argument formats supported are

1. {n} —display argnin base 10
2. {n:x} — display argn in base 16

Kiwi will convert console writes to Verilog'stdisplay and $write PLI calls with appropriate
munging of the format strings. These will come out during RTihulation of the generated design.
They can also be rendered on the substrate console during Ef&ution.

On important choice is whether this console output is preskfor the FPGA implementation. By
default it is, with the argument strings compiled to hardwand copied character by character over
the console port.

Sometimes two other behaviours are selectively wanted:

e Additional (quick/debugging) console display that is oobnverted to Verilog PLI calls. This
will display output during an RTL simulation of the FPGA (euging Modelsim) but will be
discarded by the vendor FPGA tools that convert KiwiC outpuEPGA bit streams.

Kiwi Scientific Acceleration Manual 37
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

o To disableall Console.Write and Console.WriteLine output by default fromEPGA console
such that these calls behave just like item 1 above.

To achieve item 1, do not call Console.Write or Console.WiiteL Instead call Kiwi.Write or
Kiwi.WriteLine.

To achieve item 2, alter the recipe file or add the followinghogand line argument to KiwiC

-kiwic-fpgaconsole-default=disable

6.6 getManagedThreadld
- returns an integer representing the current thread iiemtiid).

int tid = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Receiver process started. Tid={0}", tid);

// OLD Console.WriteLine("Receiver process started. Tid={0}", System.Threading

6.7 System.BitConverter

6.8 System.String. ToCharArray

- convert a string to an array of chars. Chars are 16 bits widiinet. They are tagged shorts and
do not behave quite the same as shorts for various outputrpti

6.9 System.lO.Path.Combine

- join a pair of file name paths - OS-specific. FileStream

6.10 TextWriter
6.11 TextReader

The TestReader ReadLine api is allowed to create garbage Hidi provided the outer loop frees
or garbages the returned string on every iteration. It maostfor example, store a handle on the
returned string in an array.

6.12 FileReader
6.13 FileWriter

6.14 Threading and Concurrency with Kiwi

One novel feature of Kiwi that sets it apart from other HLSteyss is its support for concurrency.

Kiwi Scientific Acceleration Manual 38
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Threads can be spawned in the static lasso stem but Kiwi ddesipport thread creation at runtime.
Kiwi supportsThread.Create () andThread.Start ().
To run a method of the current object on its own thread use likel¢his:

public static void IProc()

{
while (true) { ... }
}

Thread IProcThread = new Thread(new ThreadStart(IProc));
IProcThread.Start();

Or use delegates to pass arguments to a spawned threadgramigthod of perhaps another object:

Thread filterChannel = new Thread(delegate() { ZProc(1l, 2, 3); });
filterChannel.Start();

Exiting threads can be joined with code like this:

missing ...
Thread.Join(); // not tested currently.

Mutual exclusion is provided with the lock primitive of C#slargument must be the object handle
of any instance (not a static class).

The Monitor.Wait and Monitor.PulseAll are supported faeiprocess events.

lock (this)
{
while (lemptyflag) { /* Kiwi.NoUnroll(); */ Monitor.Wait(this); 7}
datum = v;
emptyflag = false;
Monitor.PulseAll(this);

The NoUnroll directive to KiwiC can decrease compilatianéi by avoiding unrolling exploration.

6.14.1 Sequential Consistency

KiwiC does not currently support fine-grained store ordgrilvhere a number of writes are gen-
erated in one major cycle (delimited by hard or soft paudestrites within that major cycle are
freely reordered by the restructure recipe stage to maxémimemory port throughput. However,

Kiwi Scientific Acceleration Manual 39
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

KiwiC already maintains ordering in PLI and other systenis;ado extending this preservation to
remotely-visible writes can easily be added in the nearéutu

Write buffers and copy-back caches may also be instantiattside the KiwiC-generated code in
uncore structures that are part of the substrate for a giR&Ablade. KiwiC has no control over
these.

We are writing a paper that explores this space.

C# provides theThread.MemoryBarrier () call to control memory read and write re-ordering
between threads... but in the meantime you have t&ise. Pause () to ensure write ordering.

6.14.2 \Volatile Declarations

Variables that are shared between threads may need to bedraskolatile. The normal semantics

are that memory fences are inferred from lock block bourdaaind other concurrency primitives

such as PulseAll. However, if shared variables are usedwitsuch fences they should be declared
as volatile. Otherwise a process spinning on a change wiityeanother thread may never see it
change.

The C# language does not support volatile declarationsroéggpes. You may get an error such as

//tinytest0.cs(16,26): error CS0677: ‘tinytestO.shared’: A volatile field
cannot be of the type ‘ulong’

To overcome this, you can try to use the Kiwi-provided cusimtatile attribute instead for now.
For instance:

[Kiwi.Volatile()]
static ulong shared_var;

This technique will not stop the C# compiler from optimisisgay a spin on a shared variable, but
the C# compiler may not do a lot of optimisation, based on diea ithat backend (jitting) runtimes

will implement all required optimisations. Ideally KiwiCarks out which variables need to be
volatile since all threads sharing a variable are compideRGA at once.

7 Kiwi C# Attributes Cross Reference

TheKiwiC compiler understands variougeTassembly language custom attributes that the user has
added to the source code. In this section we present thbudési available. These control thinks
such as I/0O net widths and assertions and to mark up I/O nelt®®ibed assertions that control
unwinding.

C# definitions of the attributes can be taken from the filepport/Kiwi. cs in the distribution.
The Kiwi attributes can be used by referencing their dll dgrihe C# compiler.

gmcs /target:library mytest.dll /r:Kiwi.dll

Kiwi Scientific Acceleration Manual 40
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Many attributes are copied into the resultinglL1 file by thegmcs compiler. Other code from such
libraries is not copied and must be supplied separately wi®&:iTo do this, list the libraries along
with the main executable on the KiwiC command line.

WARNING: THE ATTRIBUTE LIST IS CURRENTLY NOT STABLE AND THISLIST IS NOT
COMPLETE. For the most up-to-date listing, 3g&rls/kiwi/Kiwi.cs.

The C# language provides a mechanism for defining declartgiys, called attributes, that the pro-
grammer may place on certain entities in the source codedoifgpadditional information. An
attribute is specified by placing the name of the attribute|@sed in square brackets, in front of the
declaration of the entity to which it applies. We presentigieslecisions regarding attributes that
allow a C# program to be marked up for synthesis to hardwargyube KiwiC compiler that we
are developing [3]. This compiler accepts CIL (common imediate language) output from either
the .NETOr Mono C# compilers and generates Verilog RTL.

7.1 Kiwi.Remote() Attribute
Purposes:

1. RPC (Remote-Procedure Call) Interface Between Conmilgit
2. Addressing multi-FPGA accelerators.
3. Marking up given methods to be remotely callable.

4. Reducing complexity in classical HLS sequencers.

Object-oriented software sends threads between conguilamits to perform actions. Synthesis-
able Verilog and VHDL do not allow threads to be passed betvwssparately compiled circuits:
instead, additional I/O ports must be added to each circuittaen wired together at the top level.
Accordingly, we mark up methods that are to be called fromasgp compilations with a remote
attribute.

The argument t&iwi.Remote("...") is a string that contains a list of semicolon-separated-key/
value pairs. Keys avaliable include

e exernally-instantiated: true/false

e protocol: HSIMPLE, HFAST and perhaps others...

e overloaded true/false

e searchbymethod true/false

e posted true/false

e reftran: true/false

e mirrorable : true/false

[Kiwi.Remote ("protocol=HFAST1;externally-instantiated=true)]

public return_type entry_point(int al, bool a2, ...)
{...%

Kiwi Scientific Acceleration Manual 41
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

When an implemented or up-called method is marked as ‘Repmigrotocol is given and KiwiC
generates additional 1/0O terminals on the generated RTLithplement a stub for the call. The
originally implemented protocol, HSIMPLE, was asynchrosousing a four-phase handshake and
a wide bus that carries all of the arguments in parallel. Aaobus, of the reverse direction, conveys
the result where non-void. Further protocols can be addéldet@ompiler in future, but we would
like to instead lift them so they can be specified with assestin C# itself.

Over two runs, KiwiC will generate hardware both for the tiand the server as separate RTL files.
In more-realistic examples, there will be multiple filesttwone being the top-level that contains
client calls to some of the others which in turn make cliefisda others, with the leaf modules in
the design hierarchy being servers only.

Basic procedure:

1. Mark a static method (or several of them) on a class witlRibiote attribute.

2. Compile that class to ad11 file and compile that with KiwiC in a context where it is not
invoked (run). The code will not be run if there is Aivoot or HardwareEntryPoint defined
for this KiwiC invokation. For most non-trival cases, thdargrpoint may be in anotherd11
anyway, so avoiding running it is only an issue on toy exampléhe result is av and some
.xml. This resultingrTL will be the server — an implementation of the method. It iscdiéed
in some generated-XACT files whose name starts with AUTOMETA.

3. For this step, a full implementation of the method(s) i$ meeded (they can have empty
method bodies), but identical signatures must be presenéwbere in the .CIL code read
in for typechecking. Compile the class again (or a stub rétitre with null body) but this
time with a thread that invokes the method. KiwiC can eitleadrin thep-xacTfiles from a
previous run (on theb-ip-incdir search path) or else regenerate them from the encounted
implementation (stub or otherwise). The resultiig will be the client.

4. To use the result, combine the RTL from the two runs forainsimulation orFPGA build,
either manually or using HPR System Integrator.

5. (To package up the result for long-term library use, itéshaps best manually rename the
files without the ‘AUTOMETA prefix and perhaps the attribugguirrelling suffix. The prefix
denotes automatically generated files that are likely todgemerated, whereas without it
the files are intended for more-persistent deployment. Théixpis not put on thep-xACT
component definition file, just in those it references. Yoll have to similarly delete such
sub-strings from insidee-xAcT xml descriptions too, perhaps using ‘sed’.)

One can also envision leaf modules in the design hierarctiympaipcalls to parents, but this is not

currently implemented in Kiwi. Yes it is, sort of, via ‘extally-instantiated’” markup, where the
callee is outside the generated RTL module structurallag¥® explain further.

class testl10

{
static int limit = 10;
static int jvar;
// Note four-phase is old, predating HSIMPLE - we should now be
Kiwi Scientific Acceleration Manual 42

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

// using HFAST1 connection to NoC etc..
[Kiwi.Remote ("protocol=HFAST")]
public static int bumper (int delta)
{
jvar += delta;
return jvar;

}

[Kiwi.HardwareEntryPoint ()]
public static void Main()

{
Console.WriteLine(‘‘Test 10 Limit=’’ + limit);
for (jvar=1;jvar<=limit;jvar+=2)
{
Console.Write(jvar + ¢ “);
}
Console.WriteLine(‘‘ Test 10 finished.’’);
}

}

See test19 and test67 in the regression suite and the derhisdink

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/timestable-demo/rpc.html

7.1.1 Referentially Transparent and Mirrorable

The following two attributes are commonly used together nvhesimple library function such as
sqrt is declared.

The 'reftran=true’ designation is an assertion to the Kiwi toolchain that thetmod is referen-
tially transparent. This strictly means that the method ahays give the same result for the same
argument. To KiwiC it is an assertion that the method doedawe to be called if the result is not
needed and that calling it more times than would happen iltBeexecution environment.

The mirrorable=true’ designation is an assertion to the Kiwi toolchain that mitv@n one in-
stance of the called component can be deployed by the rasteugnd/or HPR System Integrator
parts of the tool chain.

7.1.2 Remote Method Overloading

As well as overrides, OO languages like C# support methodasaing. KiwiC supports method
overloading in general. Alternative definitions of an owaded method differ in terms of their arity
and argument types. They may also have method-generic &jables that can be instantiated with
different types.

Invokation of an overloaded method defined and called wilsimgle compilation is handled by the
lookup methods that match the C# types as normal. No unesghbethaviour needs to be considered.

But an issue related to method overloading arises with inergal compilation under KiwiC. The
problem is akin to the C++ linking problem with method oveds: a separate low-level identifier

Kiwi Scientific Acceleration Manual 43
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

is needed for each overloaded definition in the generateztbbpde. The solution is to squirrel the
arity and argument types into the name of the generatedtolsjecinstance, a separately-compiled
RTL module providing mathematical functions suctegst () andexp () will most likely provide
definitions for several precisions. Each definition needspaate name.

Where a method is to be remotely called and more than one dafimit it is to be provided. The
overloaded=true Setting must be added to tiewi.Remote () markup in both the actual defi-
nition of the method and any stub that is used as a proxy byadherc This causes the generated
method’s name to be extended with an argument type squliinelmodified name will be visible in
thelP-xACT metafiles and concrete outputs in RTL and SystemC etc..

Alternative overloads of the same method must be provideaccmmmon CIL assembly (a single .dll
file). (All parts of a C# partial class definition must be witlthe one assembly). Currently KiwiC
compiles all Remote marked overloads and puts them in the & file which will contain one
RTL module for tha assembly with disjoint terminals for thfedent methods. If not all of the
methods are used in a given application, which is typicdily tase, the unused variants will be
removed outside the Kiwi toolchain by subsequent RTL toalsg to their output terminals being
disconnected.

Note: methods of the same name in different classes haveaihigrarchic and flattened names and
are not affected by overloading considerations.

7.1.3 Remote Method Performance

7.2

7.3

Invoking a remote method in blocking style stalls the segeenf the calling thread. Parallelism
is thereby lost. Asynchronous dispatch uskigii .Remote () provides a non-blocking interface
but the result must be void at the moment. TODO: notes on liategy with the C# asynchronous
delegates andwait ...

Asynchronous Invokation

await keyword

C# now has thedwait keyword. We have done some experiments with support for.thighitepa-
per in preparation ...

Flag Unreachable Code

Kiwi.NeverReached("This code is not reached under KiwiC compilation.");

This call can be inserted in user code to create a compile-&mor if elaborated by KiwiC. If a
thread of control that is being expanded by KiwiC encountgisscall, it is a compile-time error.

For flagging invalid run-time problems, please $g&tem.Diagnostics.Debug.Assert within
Kiwi code.

Kiwi Scientific Acceleration Manual 44
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7.4 Hard and Soft Pause (Clock) Control

This section needs joining up with the repeated copy elsewhein this manual!

Many net-level hardware protocols are intolerant to clog&tin. In other words, their semantics
are defined in terms of the number of clock cycles for which ad@tmn holds. A thread being
compiled by KiwiC defaults to soft pause control (or othefaddt set in the recipe or command
line), meaning that KiwiC is free to stall the progress of i@#u at any point, such as when it needs
to use extra clock cycles to overcome structural hazardes&'ltwo approaches are incompatible.
Therefore, for a region of code where clock cycle allocatsimportant, KiwiC must be instructed
to use hard pause control.

TheKiwi.Pause () primitive may be called without an argument, when it will pataccording to
the current pause control mode of the calling thread. It ntsxylae called with the explicit argument
‘soft’ or ‘hard’.

The current pause control mode of the current thread can detegh by calling
‘Kiwi.SetPauseControl’.

When a thread call&iwi.SetPauseControl (hardPauseControl) its subsequent actions will
not be split over runtime clock cycles except at places wiieae thread makes explicit calls to
Kiwi.Pause() or makes a blocking primitive call.

The default schedulling mode for a thread can be restoreddiyng the thread calls
Kiwi.SetPauseControl (autoPauseControl).

Finally, blockb pause control places a clock pause at every basic blockanichal pause control
turns every statement into a separately-clocked operation
Kiwi.SetPauseControl (maximalPauseControl).

TheKiwi.Pause () primitive may be called with an argument that is an integeratieg a combi-
nation of built-in flags. This enables per-call-site ov#erdf the default pause mode.

7.5 End Of Static Elaboration Marker - EndOfElaborate

public static void EndOfElaborate()

{
// Every thread compiled by KiwiC has its control flow partitioned
// between compile time and run time. The division is the end
// of elaboration point.
// Although KiwiC will spot the end of elaboration point for itself,
// the user can make a manual call to this at the place where they
// think elaboration should end for confirmation.
// This will be just before the first Pause in hard-pause mode or
// undecidable name alias or sensitivity to a run-time input etc..

Kiwi Scientific Acceleration Manual 45
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7.6 Loop NoUnroll Manual Control

Put a call to Kiwi.NoUnroll (loopvar)’ in the body of a loop that is NOT to be unrolled by
KiwiC. Pass in the loop control variable.

If there is a KiwiC.Pause ()’ in the loop, that’s the default anyway, so the addition of@roll
makes no difference.

The number of unwinding steps attempted by the CIL front emdbe set with the-cil-uwind-budget
N’ command line flag. This is different from thebudget command line flag used by the FSM/RTL
generation phase.

Because a subsume attribute cannot be placed on a locdbleainaC#, an alternative syntax based
on dummy calls tanroll is provided.

public static void Unroll(int a)
{ // Use these unroll functions to instruct KiwiC to subsume a variable (or variables)

// during compilation. It should typically be used with loop variables:
//
// for (int cpos = 0; cpos < height; cpos++)
// { Kiwi.Unroll(cpos);
// R

/7Y

}

public static void Unroll(int a, int b)
{ // To subsume annotate two variables at once.

}

public static void Unroll(int a, int b, int c)
{ // To annotate three variables.
// To request subsumation of more than three variables note that
// calling Unroll(vl, v2) is the same as Unroll(vi + v2). I.e. the
// support of the expressions passed is flagged to be subsumed in total or
// at least in the currently enclosing loop.

7.7 Elaborate/Subsume Manual Control

OLD: Ignore this paragraph from 2015 onwards.
This manual control was used in early versions of KiwiC big hat been needed recently.

KiwiC implements an elaboration decision algorithm. It ides which variables to subsume at
compile time and which to elaborate into concrete varialslelse output RTL design.

The decisions it made can be examined by grepping for the terided’ in the obj/h1.log file.
The algorithm sometimes makes the wrong decision. Thisirghmproved on in future releases.

For variables that can take attributes in C# (i.e. not alialdes), it can be forced one way or the
other by instantiating one of the pair of attributBsaborate or Subsume.

For example, to force a variable to be elaborated, use:

[Kiwi.Elaborate()]
bool empty = true;

Examples of variables that cannot be attributed is the mdphdex variable used infareach loop,

Kiwi Scientific Acceleration Manual 46
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

or the explicit local defined insidefar loop using thefor (int i=...;... ; ...) syntax.

The force of an elab can also be made using-thecontrol command line option. For instance,
one might put-fecontrol ’elab=varl;elab=var2’

7.8 Synchronous and/or Asynchronous RAM Mapping

Seet8.

7.9 Register Widths and Overflow Wrapping

Integer variables of width 1, 8, 16, 32 and 64 bits are nativ€# and CIL but hardware designers
frequently use other widths. We support declaration ofstegs with width up to 64 bits that are not
a native width using ariwWidth’ attribute. For example, a five-bit register is defined akfos.

’ [Kiwi.HwWidth(5)] static byte fivebits;

When running the generated C# natively as a software progaarofgposed to compiling to hard-
ware), the width attribute is ignored and wrapping behavisigoverned by the underlying type,
which in the example is a byte. We took this approach, rathemn implementing a genuine imple-
mentation of specific-precision arithmetic by overloadavgry operator, as done in OSCI SystemC
[1], because it results in much more efficient simulatiag,Wwhen the C# program is run natively.

Although differences between simulation and synthesisacise, we expect static analysisdiwiC

to report the vast majority of differences likely to be enctaued in practice. Current development
of KiwiC is addressing finding the reachable state space, not onlyasdhese warnings can be
generated, but also so that efficient output RTL can be gttkrauch that tests that always hold (or
always fail) in the reachable state space are eliminated the code.

The following code produces a KiwiC compile-time error besmthe wrapping behaviour in hard-
ware and software is different.

[Kiwi.HwWidth(5)] byte fivebits;
void f()
{

fivebits = (byte) (fivebits + 1);
}

The cast of the rhs to a byte is needed by normal C# semantics.
Compiling this example gives an error:

KiwiC:assignment may wrap differently:
(widthclocks_fivebits{storage=8 }+1)&mask(7..0):
assign wrap condition test rw=8, lw=5, sw=8

Q. Can | pass constant expressions into my attributes, stKhva . HwWidth (), to make highly-
parameterisable code? When do the constant expressionafyetted? Can values set Wiawi .Rt1Parame:
be used within hardware width expressions attributes?

Kiwi Scientific Acceleration Manual a7
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7.10 Net-level Input and Output Ports

Input and Output Ports can arise and be defined in a numberys. wa

Net-level I/O ports are inferred from static variables ip-tmost class being compiled. These are
suitable for GPIO applications such as simple LED displayd push buttons etc.. The following
three examples show input and output port declarationsyentie first two have their input and
output have their width specified by the underlying type dmlast by an explicit width attribute.

[Kiwi.OutputBitPort("done")] static bool done;
[Kiwi.InputPort("serin")] static bool serialin;
[Kiwi.HwWidth(5)] [Kiwi.OutputPort("data_out")] static byte out5;

KiwiC can create obscure names if these I/O declarationsatri@ a top-level class. So, the contents
of the string are a friendly name used in output files.

For designers used to the VDHL concept of a bit vector, we alkov arrays of bools to be des-
ignated as I/O ports. This can generate more efficient ¢geulien a lot of bitwise operations are
performed on an 1/O port.

[Kiwi.OutputWordPort (11, 0, "dvi_d")] public static int[] dvi_d = new bool [12];
[Kiwi.OutputWordPort(11, 0, "dvi_i")] public static int[] dvi_i = new int [12];

Although it makes sense to denote bitwise outputs usingdamsl, this may require castings, so ints
are also allowed, but only the least significant bit will bel@port in Verilog output forms.

Currently we are extending the associated Kiwi library sat #ibstract data types can be used as
ports, containing a mixture of data and control wires of @asi directions. Rather than the final
direction attribute being added to each individual net ef plort, we expect to instantiate the same
abstract datatype on both the master and slave sides oftéréaire and use a master attribute, such
as forwards’ Oor ‘reverse’, to determine the detailed signal directions for the cagtginstance.

The following examples work

// four bit input port
[Kiwi.HwWidth(4)]
[Kiwi.InputPort("")] static byte din;

// six bit local var
[Kiwi.HwWidth(6)] static int j = 0;

A short-cut form for declaring input and output ports

[Kiwi.OutputIntPort("")]
public static int result;

[Kiwi.OutputWordPort (31, 0)]
public static int bitvec_result;

7.11 Wide Net-level Inputs and Outputs

The C# language supports primitive data word lengths up tnité4 Sometimes we require net-level
I/O busses that are wider than this. This can be achieveddghéing the net-level attribute markups
to arrays.

Kiwi Scientific Acceleration Manual 48
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Coding style ‘lostio’
Note: this style stopped working in about 2010 but is jushenade to work again (Dec 2016).

// Wide input and output, net-level I/0.
[Kiwi.InputWordPort("widein")]
static int [] widein = new int [8]; // 32 byte parallel input

[Kiwi.OutputWordPort ("wideout")]
static int [] wideout = new int [8]; // 32 byte parallel output

[Kiwi.HardwareEntryPoint ()]
public static void Dut()
{
for (int p=0; p<widein.Length; p++)

wideout [p] = widein[p];

Coding style using structs ... being fixed ...

public class WideWordDemo
{
// Demo of wide input and output words.
// You may want to overload your arithmetic operators to handle such constructs?

// Note: this is a C# struct, not a C# class. Structs behave like valuetypes.
public struct widenet
{
public ulong wordl, wordO;
¥

[Kiwi.OutputWordPort("normal")] public static ulong normal;

[Kiwi.OutputWordPort ("word128_in")] public static widenet word128_in;
[Kiwi.OutputWordPort ("word128_out")] public static widenet word128_out;

static void valuetype_test(widenet bof) // Structs are passed by value, but call-by-value still gives a loca
{

bof.word0 += 1; // Falls foul of operating on formals if passed by value?
}

7.12 Clock Domains

You do not need to worry about clock domains for general s$ifierwomputing: they are only a
concern for hardware interfacing to new devicéGwiC generates synchronous logic. By default
the output circuit has one clock domain and requires justroaster clock and reset input. The
allocation of work to clock cycles in the generated hardwdepends on the current ‘pause mode’
and thebevelab-soft-pause-threshold unwind budgetlescribed in [3] and the user’s call to
built-in functions such ax'iwi .Pause’.

Terminal nameslk andreset are automatically generated for the default clock domairchiange
the default names, or when more than one clock domain is as&dwi.ClockDom()’ attributes
is used to mark up a method, giving the clock and reset nets tsbd for activity generated by the
process loop of that method.

Kiwi Scientific Acceleration Manual 49
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

[Kiwi.ClockDom("clknetl", "resetneti")]
public static void Work1l()
{ while(true) { ... } }

A negative edge clock is generated if the third argumentdsiged"clockPolarity=neg".

Mechanisms for overring the default reset synchronicity elock enable guard will be supported
soon, using further colon-separated properties insidéhihg: argument.

Each thread, hardware entry point or remote-callable natias its own, so-called ‘directorate’ and
the clock domain properties are part of a directorate. Only directorate is allowed for a thread,
but that thread may call methods called from (shared withgiothreads: their bodies get in-lined in
the elaboration of the thread..

7.13 Remote

Object-oriented software sends threads between conguilamits to perform actions. Synthesis-
able Verilog and VHDL do not allow threads to be passed betvwssparately compiled circuits:
instead, additional I/O ports must be added to each circuittaen wired together at the top level.
Accordingly, we mark up methods that are to be called fromassp compilations with a remote
attribute.

[Kiwi.Remote("parallel:four-phase")]
public return_type entry_point(int al, bool a2, ...)
{...}

When an implemented or up-called method is markediascte’, a protocol is given (or implied)
andKiwiC generates additional 1/0 terminals on the generated RTLittglement a stub for the
call. The originally implemented protocol, HSIMPLE, wassiironous (using the current clock
domain - TODO explain how to wire up), using a four-phase lsha#le and a wide bus that carries
all of the arguments in parallel. Another bus, of the revetisection, conveys the result where
non-void. Further protocols have now been added to the dempi

A remote-marked method is either an entry point or a stub Herdurrent compilation. This is
inferred depending on whether it is called from other hamdvemtry points (roots).

Ifitis called, then itis treated as a stub and its body is igdo Call sites will initiate communication
on the external nets. The directions of the external netadh as to send arguments and receive
results (if any).

If it is not called from within the current compilation, thénis treated as a remote-callable entity.
The directions of the external nets is such as to receivenaggts and return results (if any).

In the regression suite, test19 is an old example and new gramalling to maths modules are
being added...

7.14 Elaboration Pragmas - Kiwi.KPragma

public static int KPragma(bool fatalFlag, string cmd_or_message)
public static int KPragma(bool fatalFlag, string cmd_or_message, int argO)

Kiwi Scientific Acceleration Manual 50
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

public static int KPragma(bool fatalFlag, string cmd_or_message, int arg0,

Kiwi.KPragma with first argument as Boolean true can be usambnditionally abend elaboration.
This behaves the same way $gstem.Diagnostics.Debug.Assert described ing7.15 except
that a user-defined error code can be passed in arg0.

Note, you may want to use Trace.Assert instead andtport MONO_TRACE_LISTENER=Console.Error’
With the Bool false, it is used to log user progress messagesglelaboration.

Kiwi.KPragma calls present in run-time loops can be emittizdintime using the Console.WriteLine
mechanisms (in the future - current release ignores themnuokglaboration).

Kiwi.KPragma calls with magic string values will be used tstruct the compiler, but no magic
words are currently implemented.

7.15 Assertion®ebug . Assert ()

Sometimes it is convenient to generate compile-time eopvgrnings. Othertimes we want to flag
a run-time abend, as p§2.2.

Typically you might want to direct flow of control differegtusing the functio&iwi . inHardware ()

and to abort the compilation if it has gone wrong. Call thectionKiwi . KPragma (true/false, ‘‘my mes
to generate compile time messages. If the first arg holdsdimpilation stops, otherwise this serves

as a warning message.

You can make use &fystem.Diagnostics.Debug. Assert within Kiwi code.

In KiwiC 1.0 you have to re-code dynamic arrays with statikesiand this is needed for all on-chip
arrays in Kiwi 2.0. The code below originally inspected thheStream Length attribute and created
a dynamic array. But it had to be modified for Kiwi 1.0 use afofes

int length = (int)fileStream.Length; // get file length - will be known at runti
System.Console.WriteLine("DNA file length is {0} bytes.", length);

const int max_length = 1000 * 1000 * 10; // Arrays need to be constant length for
System.Diagnostics.Debug.Assert(length <= max_length, "DNA file length exceeds st

buffer = new byte[max_length]; // create buffer to read the file
int count; // actual number of bytes read
int sum = 0; // total number of bytes read

// read until Read method returns O (end of the stream has been reached)
while ((count = fileStream.Read(buffer, sum, length - sum)) > 0)
{

sum += count; // sum is a buffer offset for next reading

}
System.Console.WriteLine("All read, length={0}", sum);

The C# compiler may/will ignore the Assert calls unless s@lagis passed ...

Kiwi Scientific Acceleration Manual 51
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7.16 Assertions - Temporal Logic

Universal assertions about a design can be expressed watinlairtation of a predicate method (i.e.
one that returns a bool) and a temporal logic quantifier emiedh an attribute. For instance, to
assert that whenever the following method is called, it vétlrn true, one can put

[Kiwi.AssertCTL("AG", "predl failed")]
public bool predl()
{ return (...); }

where the strinq\G is a computational tree logic (CTL) universal path quantifiad the second
argument is a message that can be printed should the asdeetidolated. Although the function
‘predl’ is not called by any C# codeiwiC generates an RTL monitor for the condition and
Verilog $display statements are executed should the assertion be violatetdr to nest one CTL
quantifier in another, the code of the former can simply ¢edllatter's method. Since this is rather
cumbersome for the commonly usgk andEX quantifiers that denote behaviour in the next state,
an alternative designation is provided by passing the pagelito a function calledKiwi.next’.

A second argument is an optional number of cycles to waitawlghg to one if not given. Other
temporal shorthands are provided By wi.rose’, ‘Kiwi.fell’, 'Kiwi.prev’, ‘Kiwi.until and
‘Kiwi.wunitl’. These all have the same meaning as in PSL.

We are currently exploring the use of assertions to des¢héecomplete protocol of an 1/O port.
Such a description, when compiled to a monitor, serves &#arface automatanTo automatically
synthesise glue logic between 1/O ports, the method of [A]lm&used, which implements all non-
blocking paths through the product of a pair of such interfagtomata.

7.17 RTL Parameters

Sometimes it is helpful to generate arL file from a single run of KiwiC that is to be instantiated
many times. Each time will use a different run of #fesAlogic synthesiser tools. It is handy to be
able to pass in a constant at the logic synthesis time thattrbgydifferent for each instance.

A good use-case example is when link editing a number of coremts into a single entity that
will use a shared memory bank. Each component wants itstdatages at a different address in
the memory bank. The HPR System Integrator computes basesséd and provides a parameter
overide for the KiwiC-generated logic.

Within C#, in order to read in a logic-synthesis constant we the KiwiRt1Paramter attribute as
in:

class RTLpramsi

{
[Kiwi.RtlParameter("rtl_prami", 1001)] public static int rtl_praml = 1001;
[Kiwi.RtlParameter("rtl_pram2")] public static int rtl_pram2;

}

Parameters of this nature should generally have the iype For well-formedRTL, those with default values
should preceed those without.

This leads finally to amRTL module with signature such as

Kiwi Scientific Acceleration Manual 52
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

module DUT #(parameter rtl_pram1=32’sd1001,
parameter rtl_pram2)
(input clk,
input reset,

L)

8 Memories in Kiwi

Arrays allocated by the C# code must be allocated hardwamirees. Small arrays are commonly
converted directly into Verilog array definitions that cdlapo on-chip RAMs using today’s FPGA
tools. There are a number of (adjustable) threshold vahatsselect what sort of RAM to target.
Larger arrays are placed off-chip by default. Arrays that@rly written at each location precisely
once with a constant value for each location are treatedaaksarly look-up tables (ROMS).

Sometimes there are multiple ports to a given memory spack/for bandwidth reasons. For in-
stance, on the Xilinx Zynq, it is common to use two high-perfance AXI bus connections to the
same DRAM bank. In addition, there can be multiple memonytradiers each with its owshannel
We prefer the term channel to the older term bank since bankrefers to an internal bank within
a DRAM chip that can have up to one row open in each bank. Kiwksdaot currently support
multiple channels.

Terminology summary: we use the following hierarchy of terta describe the off-chip memory
architecture: bit, lane, word, row, col, bank, rank, channe

Explanation: A word is addressed with a binary address. ®he ecol, bank and rank are all fields
in the address. Ordering between col and bank may vary. @t&potentially have disjoint address
spaces. Mapping the channel number into the address wanlthate spatial reuse and simply be
an extension of the rank. Within the word there are multipleek that are separately writable and
each lane has some number of bits. In today’s CPUs from Ingl&RM, the lane size is 8 (a byte
lane) and the word size is also 8, making it a 64-bit word. OG AP, where clock frequencies are
lower than DRAM speeds, word sizes of 512 can commonly be withda correspondingly larger
number of lanes.

In this documentation, we use the term ‘off-chip’ to denasaurces that are not instantiated by
KiwiC and which, instead, are provided by the substratefgat. In reality, the resources might
physically be on the same silicon chip as the FPGA progranteragic.

Each array with off-chip status is allocated a base addnemse of some number of off-chip memory
channels and accessed via one or more off-chip load/staote. po

Overall, these thresholds and attributes map each RAMrinstto a specific level in a four-level
memory technology hierarchy:

1. unstructured: no read or write busses are generateditliefault, sea-of-gates, any number
of concurrent reads and writes are possible without worer structural hazard)

2. combinational read, synchronous write register file (eslsl generated in same cycle as read
data consumed)

3. latency of 1 SSRAM (address generated one clock cyclededad data used)

Kiwi Scientific Acceleration Manual 53
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

FPGAs tools support RAMs in four general ways. The four wagsige increasingly]
better FPGA area use, but become more complex to read ared writ

1. Flip-flop register file: Each bit of RAM becomes a flip-flop. This does ot
limit the number of concurrent readers or writers.

2. Distributed RAM , also known ad.UT RAM : The look-up table (LUT) of
a typical FPGA is used normally for something like an arbjtrawo-output
function of five inputs. It is then actually a 32-word RAM oft®-words. The
can be used as RAM by many FPGAs. It is called distributed, IddElice
RAM.

3. Block RAM: As well as I/0, flip-flops and LUTSs, all modern FPGAs also pfo-
vide BRAMs (block RAMS) as a first-class programmable reseufypically
these are dual ported and 18 kilobit in size.

4. Off-chip RAM - SRAM or DRAM : Rather than storing data on the FPGA,
load/store ports (/O pins) are used to connect to extestahdard RAM parts
or memory resources.

The FPGA tools will generally automatically choose whictited first three forms in
the above list to infer for a given RTL array declaration. yieke into account the
size and use pattern. Important aspects of the use pattenvteather the output i
used in the same clock cycle as the address is generated armdmy different and
concurrent address patterns are used. The fouth RAM forratiautomatically gen-
erated by FPGA tools, but HLS tools such as KiwiC will deplognd the FPGA tools
will simply see logic that implements the protocol to operttie RAM or generate
AXI transactions destined for a complex memory subsystem.

Uy

Table 2:RAM forms supported by FPGAs.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

4. external memory interface for off-chip ZBT/QBI, DRAM, cached DRAM.

The number of ports is unlimited for type 1 (register file) ahd FPGA tools will typically imple-
ment such a register file if the number of operations per cbycke is more than one. This depends
on the number of subscription operators in the generated RELnumber of different address ex-
pressions in use and whether the tools can infer disjoistimtheir use.

For types 2 through 4, the number of ports is decided by Kiwi@ & generates that number of
read, write and address busses. By default, KiwiC uses origopoclock domain, but this can be
influenced in the future with PortsPerThread and Threads#eattributes.

In the current version of Kiwi, thees2-loadstore-port-count recipe setting configures the
number of load/store ports available per thread Also, ehobat that makes off-chip loads and
stores must have its own port since KiwiC does not automticestantiate the DRAM (HFAST)
arbiters: instead the substrate top-level needs to inatarthe arbiters when KiwiC generates more
DRAM ports than physically exist on the FPGA.

The three thresholds set in the command line or recipe tlstinduish between the four memory
types are :

1. res2-redfile-threshold: the number of locations below which to not instantiate any eb
structural SRAM or register file: instead raw flip-flops aredis

2. res2-combram-threshold; the threshold in terms of number of locations at which teotsta
instantiating synchronous, latency=1, structural SRAM,

3. res2-offchip-threshold: the threshold in terms of number of locations at which to nagrt
off-chip resource, such as TCM, ZBT or cached DRAM. The gizkyites will depend on the
word width of that array. Th&iwi.OutboardArray () attribute allows manual override.

In addition to comparing sizes against compilation thrégddhe user can add CSharp attributes to
instances to force a given technology choice on a per-RANsbas

The SynchSRAM(n) attribute indicates that an array is to be mapped to an gnieAM type that
may not be the default for its size. The argument is the nurabelock cycles of latency for read.
When the argument is omitted it defaults to unity - the stashgdatue for FPGA BRAM.

The CombSRAM(n) attribute indicates that an array is to be mapped to an gnieAM type that
may not be the default for its size. Only small RAMs are mapeckgister files or LUT RAM
with combinational (zero cycle) read, but this attributdl farce any sized RAM to be mapped that
way. Note that LUT RAM is very inefficient in FPGA area termsiashould be avoided for larger
structures of 32 words or more.

TODO: describe PortsPerThread and so on... these conttttpou RAMS and how the number
of external ports is configured.

Kiwi has a scheduller in its restructure phase that runs aipile time to sequence operations on
scarce resources such as complex ALUs and memory resoltieasupposedly implements run-
time arbitration for resources that are contended betwaeads, but the reality is currently differ-
ent. It follows three policies: 1. For 'on-chip’ RAMs like IBA B-RAM it allocates one port per
thread so, with Xilinx and Altera that support up to two partsy two threads can access an 'on-
chip’ B-RAM. 2. For ALUs it does not share them between theeadd starts the ALU budgeting
freshly for each thread, just as though the threads had kesarately compiled. 3. For ‘off-chip

Kiwi Scientific Acceleration Manual 55
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

RAM’ like DRAM, it generates one (more are possible via thencoand line) HFAST port per
thread. The user must currently manually instantiate enbithat mux this collection of ports onto
the DRAM banks that are available.

However, Kiwi does not care whether ‘off-chip’ resources actually off-chip and instead one can
use the off-chip technique to multiplex and arbitrate nplétithreads onto on-chip resources, such
as a large, manually instantiated B-RAM.

External instantiation is when a component that could lalfjicbe an instance within the current
module is instead instantiated outside the current mochdelze current module thereby gets addi-
tional 1/0 nets for connecting to the external instance. sehoets would normally just be local to
the current module.

8.1 On-chip RAM (and ROM) Mirror, Widen and Stripe Directives

To increase memory performance, three techniques areajlynavailable (these techniques may
not all be sensible for off-chip RAM resources). All of théserease the number of data bus wires
to RAMs, thereby increasing available throughput.

1. AKiwi.Mirror(n) directive applied to a C# array instructs KiwiC to make npl&icopies of
the RAM or ROM. This is most sensible for ROMs since all comita RAM must be updated
with every write.

2. A Kiwi.Widen(n) directive applied to a C# array instructs KiwiC to packvords into a
single location. This multiplies the data bus width by trastbr. For RAMs, a RAM with
laned writes may be needed. This will boost performance &haraligned group of words
is commonly read and written at once.

3. AKiwi.Stripe(n) directive applied to a C# array instructs KiwiC to allocatenultiple
RAMs or ROMs each of Ant" the size with every'™ word placed in each of them.

(In order to pack multiple user arrays into a single RAM on BRGA, additional directives are
needed. Not described here currently.)

8.2 ROMSs (read-only memories) and Look-Up Tables

Most FGPAs support ROMs. ROM inference is a variation on RARMience. Combination and reg-
istered ROMs are both commonly used, depending on size.Gwiil deploy ROMs with pipeline
latency of 1 when the size in addresses exceeds the size segbycombrom-threshold.

ROM inference in KiwiC can be turned off with flagepack-to-rom=disable in which case
RAMs are commonly generated and initialised with the ROMtents after the run-time reset. But,
when ROMs are present, they are manifest in the generatéldy&TL as arrays that have their
only write operations embodied in Verildgitial statements that install the fixed data.

ROMs can sometimes usefully be mirrored. Hi&ri.Mirror (4) attribute can be applied to indi-
vidual array instances to mirror them.

[Kiwi.Mirror(4)]

Kiwi Scientific Acceleration Manual 56
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

static readonly uint[] htab4d =
{ 0x51f4a750, 0x7e416553, Oxlal7adc3, 0x3a275e96,
. many more entries ...

};

Or else the command line flagepack-to-rom=4 can be added, which would replicate all ROMs
up to a factor of 4, but the additional copies would not be gateel if they cannot usefully be used.

8.3 Forced Off-chip/Outboard Memory Array Mapping

TheKiwi.OutboardArray() attribute forces that an array is to be mapped to a regiontefreal
memory instead of being allocated a private array (BRAM mgimside the current compilation.
Large arrays are placed off chip in this way by default withesing an attribute. (Large is deter-
mined by comparinges2-offchip-threshold). It is up to the substrate architect what sort of
memory to attach to the resulting port: it could range frompe large SRAM bank to multiple
DRAM banks with caches.

With a string argument provided, this controls the loaa/stmort name or DRAM bank name used.

OLD: The fullest version of this attribute takes two argumsera bank name and an offset in that
bank.

OLD: Pre performance profiling: In general, arrays can bepadpo a specific bank by giving the
bank name and leaving out the base address. KiwiC will thiecate the base addresses for each
memory to avoid overlaps. If no bank name is given, (unitkigi.OutboardArray()) then a
default of 'drambankQ’ is automatically supplied. Therefowithout using any attributes, all large
arrays are mapped into consecutive locations of a memogesgaled 'drambankO’.

TODO: profile-directed feedback will balance up the portthim future.

Using the special argument ‘-onchip-’ ti¥ewi.OutboardArray ("-onchip-") attribute forces
that an array is not offboard regardless of size. Clearlythay result in a design that is unsuitable
for the target technology.

8.4 Off-chip load/store ports

KiwiC generates load/store ports to access off-chip mem@@ff-chip means not instantiated by
KiwiC, so the addressed resource can be on the same die ity)edVith more load/store ports
in use, greater memory access bandwidth is available ANBRtgreopportunities for out-of-order
memory service exist.

The off-chip port architecture is defined in recipe/comméind settings. It is also written as a
report file in every KiwiC run. The Off-chip Memory Physicabi®s/Banks report looks something

like this:
Km—————————— o o fomm o fom— e o *
| Name | No Words | Awidth | Dwidth | Lanes | LaneWidth |
Km—————————— o o fmm fmm— o *
| loadstorl | 4194304 | 22 | 256 | 32 8 |
Kmmmmmmm— oo fomm fomm fomm oo *
Kiwi Scientific Acceleration Manual 57

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Total load/store port width = bits per lane * number of lanes.

Default -res2-loadstore-port-count=1
Number of LOADSTORE ports for automatic off-chipping of large RAMs.

res2-loadstore-port-lanes 32 LOADSTORE ports - number of write lanes.
res2-loadstore-lane-width 8 LOADSTORE lane width

When the number of lanes is 1 no lane write enables are usechanddamory is word addressed
always.

A suitable behavioural Verilog fragment to connect to themsimulation test purposes is available
as part of the distro in theams folder.

Typical DRAM controllers run much faster than the FPGA useyid and hence a wide word is
presented to the KiwiC-generated code of 256 bits or so.

The user’s wanted data width is either rounded up to somgentaultiple number of external words,
or some fraction of a word where the fraction is rounded up bmanding power of 2 number of
lanes.

The restructure log file will explain, somewhat crypticalipw each DRAM bank is being used with
a table that contains interleaved entries covering all #rekb (portnames). The lines in this report
can be decoded with experience: D16 means sixteen bits vieneans an array. etc..

0ff-chip Memory Map

K — Fmmm o Fmmm o *
| Resource | Base | Width | Length | Portname |
K—————— Fomm o pomm Fomm *
| D8US_AX/CC/SOL | 0x1312d02 | 32 | 0x989680 | drambankO |
| D16SS_AX/CC/SOL | 0x0 | 32 | 0x1312d02 | drambankO |
K — Fmmm o Fomm o *

Performance generally needs to be enhanced above thidnegabgl packing data sensibly into
DRAM words. Also, support of multiple in-flight requests ieferable for the highest performance.

The KiwiC-generated code should be connected to an extgnmalvided memory controller that
will often also also include some sort of cache.

Three off-chip protocols are supported BVCI, HSIMPLE andASH. HFAST is most commonly

used. BVCI allows multiple transactions to be in flight. AXInow being added shortly to KiwiC,

replacing BVCI, but there are also some AXI components instifgoort and subtrates library. In-
cluding an HFAST to AXI protocol bridge and AXI master andvelahims for the Zynq substrate
for CPU interaction and DRAM access.

When we say ‘off-chip’ we simply mean outside the generatedware circuit - the substrate con-
figuration may put various items on the same Physical chip.

KiwiC will shortly be enhanced to issue prefetch bus cyclefi-chip RAMs. These are appro-
priate for cached DRAM and sometimes appropriate for ureadaif-chip RAMs. They serve no
useful function for SRAM (static RAM), whether on-chip orf-ghip, owing to its uniform access
latency.

Kiwi Scientific Acceleration Manual 58
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

8.4.1 HSIMPLE Offchip Interface & Protocol

The implementation of HSIMPLE within KiwiC was a low perfoamce. It will be deleted soon as
we converge to AXI-like protocols for everything.

Low-performance HSIMPLE uses four-phase handshake andtmnisfers data once every four
clock cycles. It is more suitable for connecting to simpleiperals than DRAM. The following
nets will require connection to the synthesis output when@MRAM is in use with the default,
simple, 4/P HSIMPLE protocol.

output reg hs_dramObank_req,

input hs_dramObank_ack,

output reg hs_dramObank_rwbar,

output reg [255:0] hs_dramObank_wdata,
output reg [21:0] hs_dramObank_addr,
input [255:0] hs_dramObank_rdata,
output reg [31:0] hs_dramObank_lanes,

When the number of lanes is one, there are no lane outputs.

8.4.2 HFAST Offchip Interface & Protocol

HFASTL is our primary protocol for load/store ports to DRAM .has half-duplex and simplex
variants. Protocol adapators to AX14 and AXIl4-Lite are ie thistribution.

HFAST1 offers one cycle read latency and back-to-back diog1s, achieving 100 percent through-
put. It is ideal for front-side cache connections wheregidf is not used.

The signature for HFAST is typically as follows (the totaldth and number of lanes and address
bus width are all parameterisable).

output reg hfl_dramObank_OPREQ,

input hfl_dramObank_OPRDY, // Any posedge clk with overlap of opreq and opack starts a ne
input hfl_dramObank_ACK, // Ack acknowledges the last request is complete.
output reg hfl_dramObank_RWBAR, // 1l=read, O=write on request active clock edge.

output reg [255:0] hfl_dramObank_WDATA, // For write, data to be written, valid on request active cloc
output reg [21:0] hfl_dramObank_ADDR // Address, valid on request active clock edge.

input [255:0] hfl_dramObank_RDATA, // Read result, valid on ack cycle.

output reg [31:0] hfil_dramObank_LANES, // Byte lane qualifiers.

A half-duplex port has RWBAR. A storeport has no RDATA and adipart has no WDATA or
LANES. LANES are only present if there is more than one larreward. There is no full-duplex
port: instead one uses a pair of simplex ports.

IP-XACT definitions for all variants are in the Kiwi distriion. Their names follow a scheme such
asHFAST1_M_RONLY which denotes an outstanding transaction count of 1, magderinterface,
(simplex) write only.

When the number of lanes is 1 no lane write enables are usechanddmory is word addressed
always.

A DDRAM2 controller is available in the fil&iwi/rams/ddr2-models. This can be used for
high-level simulations. It instantiates tbeR_DRAM_BANK underneath itself.

Kiwi Scientific Acceleration Manual 59
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

A behavioural model of a DDRAM2 is available in the fiiéwi/rams/ddr2-models. It has sig-
nature:

// (C) 2010-14 DJ Greaves.

// Verilog RTL DDR2 behavioural model - fairly high level.

// The SIMM or DIMM (all the chips of the bank) is modelled with one RTL module.
module DDR_DRAM_BANK(

input clk, // DDR Clock - 800 MHz typically. We use one edge only and d
input reset, // Active high synchronous reset

input ddr_ras, // Active low row address strobe

input ddr_cas, // Active low col address strobe

input [log2_internal_banks-1:0] ddr_ibank,// Internal bank select

input ddr_rwbar,// On CAS: 1=read, O=write. On RAS l1=precharge, O=activate
input [2*dwidth-1:0] ddr_wdata, // The wdata and rdata busses are here twice their width
input [awidth-1:0] ddr_mux_addr, // Multiplexed address bus

input [2*dwidth/8-1:0] ddr_dm, // Lanes: Separate nets here for +ve and -ve edges instead
output reg [2*dwidth-1:0] ddr_rdata); // Read data bus.

parameter log2_dwidth = 5;

parameter dwidth = (1<<log2_dwidth); // Word width in bits - we actually have twice this to

// FOR DRAM style

// E.g. MT41K256M32-125 DDR3 @ 800 MHz/1.25ns RCD-RP-CL=11-11-11 Arch=32M x 32 bits x 8 banks = 8

parameter LOG2_ROW_SIZE = 15; // Log_2 number of words per RAS

parameter LOG2_COL_SIZE = 10; // Log_2 number of words per CAS

parameter PRECHARGE_LATENCY = 11;

parameter ACTIVATE_LATENCY = 11;

parameter CAS_LATENCY = 11;

parameter log2_internal_banks = 3;

parameter awidth = LOG2_ROW_SIZE; // Address width in bits - word addressed.

// DRAM burst size - can be dynamically encoded in high-order CAS address. Currently fixed at 32 by
With a 32 bit data bus (64 after doubling for DDR) this requires 4 clocks to transfer th

parameter burstSize = 4;

HFAST?2 is the same as HFAST1 but uses a two-cycle, fullylpipd read latency.
A simple cache is provided. Its signature is:

module cache256_hf1l
(input clk,
input reset, // synchronous, active high.

// Front-side interface

input fs_rwbar,
output reg [nolLanes*laneSize-1:0] fs_rdata,
input [noLanes*laneSize-1:0] fs_wdata,
input [addrSize-1:0] fs_wordAddr,
output fs_oprdy,
input fs_opreq,
output reg fs_ack,
input [noLanes-1:0] fs_lanes,

// Back-side interface

output reg bs_rwbar,
input [noLanes*laneSize-1:0] bs_rdata,
output reg [noLanes*laneSize-1:0] bs_wdata,
output reg [addrSize-1:0] bs_wordAddr,
Kiwi Scientific Acceleration Manual 60

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

(FPGA Programmable Logic (PL))
Kiwi-HLS-Generated
Hardware Accelerator S AXI ACP
Programmed Design Load |e— Cachefcoherent
Par;lrgeter Port0 :><: Out-of-order
File AX|_4
Load ax < >
E Fortt Switch
i Store]
B Port S_AX I_H P[O : 3]
o High-performance
Stan/StopI Abend Desi Store DMA
en esign <
M—AX|_GPO Control syndrome Seriagl TieOff AXl POI’tS
(32 hits) Kiwi Number >
< »| Substrate |« ——
Shim G——p
~ J

Figure 4:Typical connection of load/store ports to DRAM via AXI (Zynq Example).

input bs_oprdy,

output reg bs_opreq,

input bs_ack,

output reg [nolLanes-1:0] bs_lanes

)3

parameter dram_dwidth = 256; // 32 byte DRAM burst size or cache line.

parameter laneSize = 8;
parameter nolanes = dram_dwidth / laneSize; // Bytelanes.

The cache must be manually instantiated by the substraignées

HFAST arbiters can be instantiated on the front or back sittesocache, so that multiple synthesised
load/store ports can share one cache or multiple cachesheasm sne DRAM bank. Sharing would
be inconsistent.

The default substrate runs the DRAM and DRAM controller & 8Hz and the Cache and KiwiC
generated code at 133 Mhz which is 1/6th of this.

8.4.3 BVCI Offchip Interface & Protocol

Text missing.

8.5 AXI and HFAST-to-AXI mapping

AXI has become the most prevalent SoC and FPGA bus interfandard. AXI supports burst trans-
actions and out-of-order service. Such AXI service disagpls well-suited to a high-performance

Kiwi Scientific Acceleration Manual 61
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

DRAM bank controller. (Such a bank controller typically famternal banks, all of which can be
concurrently open on a DRAM row.)

Today's CPUs use multiple load/store stations per coredt@pari passu with that core’s ALUs.
KiwiC-generated hardware is no different. Each load/sttation is busy with at most one scalar
load/store request and this can only be served in order.

As with CPUs, there are two techniques that adapt betwegjtesissue load/store stations: multi-
plexing and caching.

e Multiplexing multiple single-issue, in-order clients ord single bus readily generates a traffic
load that can be served out of order. In addition, there maphégal locality between requests
that can be aggregated into a burst.

e The front-side of a cache is optimised for random-access)dtency operations. Since each
is served (nominally) instantly, there is no scope for dubi@er discipline. On the other
hand, the back side of a cache creates line fills and writedideit are burst operations.

KiwiC load/store stations are served with HFAST interfacés the fullness of time, KiwiC will
provide automated support for HFAST to AXI adaptation butrently a substrate that manually
matches the number of load/store ports is required. Cuyrémty must be instantiated manually
(but the new recipe stage that inokes HPR System Integrataid fix that soon). The easiest way
is to import the Kiwi design into a GUI-based schematic editat understands IP-XACT and use a
few mouse clicks to instantiate the required protocol caiove and so on. However, the SoC Render
extension can soon replace this.

The main substrate shim is boiler-plate RTL code that catsnectheM_AXI_GPO programmed 1/O
bus for simple start/stop control and parameter exchangés recommended that every design
compiled has a serial number hard-coded in the C# sourceammti¢hat this is modified on every
design iteration. The first function of the substrate shito igrovide readback of this value.

The other features of the shim are starting and stopping ¢is&gd and collecting abend codes.
Sources of abend are null-pointer de-reference, out-ofrong divide-by-zero, user assertion fail-
ure, and so on.

A Kiwi design that makes access to main memory will have a remobload/store ports. These can
be half-duplex or simplex. Simplex is preferred when maimrogy is served over the AXI bus, as
in the Zynq design. (Of course there may be a lot of BRAM meniotiie synthesised design itself,
but that does not appear on this figure.) Simplex works wetth WiX1 since each AXI port itself
consists of two independent simplex ports, one for readinbamne for writing.

In the illustrated example, the design used three simplad/&tore ports. These need connecting
to the available AXI busses hardened on the Zyng design arttk ragailable to the FPGA pro-
grammable logic. The user has the choice of a cache-coh&tit AXI bus that will compete
with the ARM cores for the L2 cache front-side bandwidth, aurfother high-performance 64-bit
AXI busses that offer high DRAM bandwidth. These four areused in the example figure.

Each KiwiC-generated load-store port is an in-order uikg & load or store station in an out-of-
order processor. By multiplexing their traffic onto AXI-44ses, bus bandwidths are matched and
out-of-order service from the DRAM system is exploited.

Each load/store port in the generated RTL has is properlgritei in the IP-XACT rendered by
KiwiC that describes the resulting design. When this IP-XAGTmported into a design suite,

Kiwi Scientific Acceleration Manual 62
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

manual wiring of the load/store ports to the AXI switch poecemn be done in a schematic editor.
(Approaches to automate this stage are ongoing.)

Note that KiwiC as of December 2016 generates so-called HR#Bts, that are either half-duplex,
loadonly or storeonly. These are what was described in theéA@T. The user also has to manu-
ally instantiate, in the schematic editor, little protocohvertors that come with KiwiC and which
convert HFAST variants to AXI variants for connection to tlendor-provided AXI switch blocks.

The substrate typically converts the KiwiC-generated HFASerfaces to AXI or other off-chip
protocols not currently supported by KiwiC. The substraite/jier writes RTL transactors to convert
protocols.

8.6 Off-chip address size

KiwiC assumes it can use address zero upwards in the offsgfape. The substrate must offset the
address bus to address available SoC regions if this is aattbe.

KiwiC accepts a recipe parameter to bound the amount oftoff-memory it can use in its one
channel. Where a design attempts to use more memory, a cetimpdesrror is raised.

‘res2-loadstore-lane-addr-size’ gives the off-chip address bus width in bits. In other words
this is the log2 no of words of memory available in each adsdspace. Providing different limits for
different off-chip spaces will be enabled in future. The d/size and lane structure is defined with
‘res2-loadstore-port-lanes’ and ‘res2-loadstore-lane-width’ where the first of these is
typically 4, 8, 16 or 32 and the second nearly always 8 (ie-sized lanes).

8.7 B-RAM Inference

B-RAM instantiation is normally automatic in FPGA tools.ABBAMs with an access latency of one
clock cycle are normally used although KiwiC can supporbzand two cycle reads (but how to
access them is not described here! TODO).

A B-RAM is inferred from a structure following one of sevegdradigms based on all addresses
passing through a single register or all read data beingedabsough a single register. These can
be mapped onto the same underlying technology by posting/itites as necessary but the effects
of read while writing to the same location differ.

KiwiC generates on-chip RAMs as explicit instances in theegated RTL. It uses 'read before’

coding style. The FPGA Vendor 'read after’ forms, where njewtitten data is read out are not

explicitly found in the generated RTL: KiwiC will forward ¢hdata for itself when needed, either at
compile or run time.

// (C) Xilinx 2009. Single-Port B-RAM with Byte-wide Write Enable: Read-First mode
// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.v
//
module v_bytewrite_ram_1b #(
parameter SIZE = 1024,
parameter ADDR_WIDTH = 10,
parameter COL_WIDTH = 9,

Kiwi Scientific Acceleration Manual 63
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

parameter NB_COL = 4)

(

input clk,

input [NB_COL-1:0] we,

input [ADDR_WIDTH-1:0] addr,

input [NB_COL*COL_WIDTH-1:0] di,
output reg [NB_COL*COL_WIDTH-1:0] do);

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk) begin
do <= RAM[addr];
end

generate
genvar 1ij;
for (i = 0; i < NB_COL; i = i+1) begin
always @(posedge clk)
if (wel[il) RAM[addr] [(i+1)*COL_WIDTH-1:i*COL_WIDTH] <=
di[(i+1)*COL_WIDTH-1:i*COL_WIDTH] ;
end
endgenerate

endmodule

// Single-Ported Block RAM with registered output Option

// Please note that XST infers distributed RAM or B-RAM based on the size.
// For small RAMs, you may need to use ram_style constraint to fore the use

of B-RAM.

module TWO_CYCLE_READ_BRAM(
input clk,
input wen,
input [6:0] a,
input [15:0] di,
output reg [15:0] do);

reg [15:0] ram [0:127];
reg [15:0] doO;

always @(posedge clk) begin
if (wen) ram[a] <= di;
do0 <= ram[a];
do <= do0;
end
endmodule

Style 1:

always @(posedge clk) begin
addr_reg <= addr ... ;

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

64

(©2011-17 DJ Greaves + S Singh

8.8 Dual-port Bl

8.9 Other multi-

if (wen ...) dataladdr_reg] <= (wdata ...);
rdata = dataladdr_regl; // Note blocking assign used or

// else the rhs freely used elsewhere.
end

Style 2:

always @(posedge clk) begin
if (wen ...) dataladdr] <= (wdata ...);
rdata_reg <= dataladdr]; // No other reads elsewhere
end

There are also the dual-ported equivalents of these ssueported by both Xilinx and Altera.

ock RAMs

See demo test50.

The FPGA libraries contain (typically) dual-port BRAMs. Whean array is small enough to in-
stantiated as an FPGA on-chip BRAM (block RAM), and ovesidee not applied, then such a
BRAM will be used. Both Xilinx and Altera provided FPGAs witin-chip, dual-ported BRAMs
with synchronous read latency of one cycle.

Such BRAMS are atomatically used for sharing data betweeto t&wo threads. Threads can also
shared data via a scalar variables. Kiwi supports any numibweads reading or writing shared
scalar variables but for BRAMSs there are technology retsnis.

What if | want to get increased RAM bandwidth by allocatinghboorts of a BRAM to the same
thread?

By default, KiwiC will use one port on an SRAM for each threhdttoperates on it. However, by set-
ting thePortsPerThread parameter or attribute to greater than one then greatessbemdwidth
per clock cycle for each thread is possible. Example needed.

port RAMs

If three threads operated on the shared memory, KiwiC coeietgate an instance of a triple-ported
SRAM module but this would likely not be found in a technoldipyary when logic synthesis tools
were applied.

Instead, the ‘off-chip’ approach needs to be used. This svefficiently even for small BRAM
subsystems, but additional wiring is needed outside thei®&igenerated RTL. The HPR System
Integrator aims to provide this service.

The approach is
1. Mark the array as off-chip. (Please see example ...ngksin

2. KiwiC will then generate as many off-chip load and storgpas is requested for each thread
by thePortsPerThread mechanism.

Kiwi Scientific Acceleration Manual 65
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

3. The outside logic will instantiate arbiters as neededtmect all the ports created to a suitable
memory resource. The arbiters needed, for HFAST and AXljratee bundled technology
library.

... we need to add a little more explanation or forward refeechere please ...

9 Substrate Gateway

There is some basic information on the Zynq substrate héei/lmww.cl.cam.ac.uk/research/srg/han/hpi

The substrate gateway is a hardware/software boundanséon platforms such as Zynq or others
that run embedded linux with a console, network and filesgstit has an associated protocol for
providing operating system access.

9.1 Consolel/O

This section will explain how to do console I/O via the subtdrgateway.

We also need to explain the ReadKey situation. Windows usfeea put a readkey call on the end
of their programs to stop Windows deleting the output shrizigay ...

// Keep the console window open in debug mode.
Console.WriteLine(‘‘Press any key to exit.’’);
Console.ReadKey () ;

9.2 Filesystem Interface

The basic dotnet classes for StreamReader, StreamWritdRdader and TextWriter are provided
via the substrate gateway. Random access using fseek isuglported.

documentation incomplete ... add KiwiFilesystemStubs$adyour compilation ... documentation
for Zynqg use will be added here... Satham’s windows versiolh works fine under RTLSIM with
verilator.

The following nets will require connection to the synthesigput when the Kiwi file system is in
use.

For high performance computing applications the filesystepart of the Kiwi Substrate (alongside
the DRAM).

output reg KiwiFiles_KiwiRemoteStreamServices_perform_op_req,

input KiwiFiles_KiwiRemoteStreamServices_perform_op_ack,

input [63:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_return,
output reg [63:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_a2,
output reg [31:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_cmd,

A suitable behavioural Verilog fragment to connect to thensfmulation test purposes/&iwi/filesyste:
that provides the basic console and file stat/exists/ofmm@lread/write calls required by the dotnet
Stream and File.IO classes.

Kiwi Scientific Acceleration Manual 66
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

The remainder of this part of the user manual is missing, ledge check the Bowtie Geneome
Sequencer demo for an example of file system use.

9.3 Hardware Server

TheServer attribute indicates that a method and the methods it catlsrmare to be allocated to a
separate RTL module that is instantiated once and sharedthwalling threads.

Kiwi Scientific Acceleration Manual 67
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

10 Kiwi Performance Tuning

An HLS system can be set to optimise for

1.

Performance: achieving the best execution time, aimémgrfaximal clock frequency and
minimal number of clock cycles,

. Area: using as little area as possible, generally at therese of many more clock cycles,

. Debugibility: renaming and sharing registers as litdepassible and providing additional

debug and trace resources for interative access.

The main parameters for tuning the Kiwi Area/Performanadenff, folding space over time are:

1.

Thebevelab-soft-pause-threshold parameter. The nominal range is 0 to 100 with use-
ful values currently being between 5 and 40. A lower valuelsetowards more clock cycles
and possibly less area. Values above 40 may lead to very lomigCkcompile time.

. The loop unwind limits alter the amount that a loop is unmghat compile time, leading to

parallelism. For instance, th&iwi.Unroll ("COUNT~=4", 1lvar); attribute added to the
C# source code suggests that the loop whose control vaisabédled ‘Ivar’ is unwound by a
factor of 4.

. Structural Resource Budgets: The restructure phasetactan or so recipe settings that

limit the maximum number of structural resources, such eatifig-point ALUs allocated
pre thread. Smaller settings lead to smaller designs tleatase clock cycles.

. RAM thresholds: Settings such ass2-offchip-threshold alter the amount of block

RAM allocated. This is faster than external (off-chip) SRAKMDRAM but uses more FPGA
resources.

. The settinges2-1loadstore-port-lanes alters the number of external memory ports used.

These each operate in order, so if you have more of them andtham externally onto
separate resources or an out-of-order bus then you get naoaiigiism and external RAM
bandwidth.

. ALU latency: Settings such &p_f1_dp_div describe the type of divider to generate. For

such components you can provide your own implementatidoggaide those provided in
the Kiwi libraries like cvgates.v, and specifiy whether they are fixed or variable latency,
fully-pipelined and what the fixed or expected latency irckcycles is.

. Register colouring affinty: Theiwic-colour-enable setting alters the amount to which

KiwiC reuses registers. With it disabled, the hardware serao inspect/debug, but many
more registers are generated. An experimental, spagathre binder is being added to Kiwi
at the moment. This will handle both registers and ALUs andga floorplan plot.

Commonly, the system DRAM will run at a hardwired clock fregay, such as 800 MHz. This
is too fast for most current FPGA logic, Kiwi-generated dnestvise. An integer divisor of 4 or 5
typically needs to be applied to bring the logic speed beld® iHz. Getting KiwiC to hit a target
clock frequency is a common requirement ... TBC ...

Kiwi Scientific Acceleration Manual 68
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

10.1 Kiwi Performance Predictor

In 2015 a performance predictor was added to Kiwi so thatredéis of run-time performance can
be rapidly provided without having to do an FPGA place-amate or even a complete pre-FPGA
RTL simulation. The performance predictor is based on Halsick visit ratios stored in a database
that is updated with the results from short runs. When theiegapn is edited and recompiled with
KiwiC, a new prediction is generated, straightaway, bagethe contents of the database generated
by previous versions. Short profile runs of the new designtban be run to improve prediction
accuracy. Every prediction is reported with confidencetBmiThe reported confidence is reduced
(wider error bars) both by certain design edits and by ertetjmg to runs that are much longer than
those used for profiling.

Performance prediction is based on accurate knowledgerafaidlow branching ratios: the per-
centage of time a conditional branch is taken or not takeris &hables execution counts for each
basic block to be estimated. Profile information from presgiouns is the default basis for this
knowledge. To ensure the information stored in the profitaliase is robust against program edits,
it cannot be indexed by fragile tags such as a basic block puintglobal syntax-directed enumer-
ation. Instead, performance prediction uses the metho@saccurring naturally in the application
program as timing markers. Every method has a clear entryt psiwell as potentially several exit
points (return statements are numbered in their textuarardthe CIL byte code... branches to the
exit). With loops that contain no method calls in their baglithe user must add a method call to a
dummy method (null body) and that method should be (prefgPatannotated with &ppMarker
attribute. Conditional branches and basic block namesaretaken in a syntax-directed way from
the code between the named control-flow points and discoggsmim the control flow graph between
named points is used to flag warnings and discard profilenmdition no longer usable.

All call strings for a method can either be considered sepirar in common. The call string is the
concatenation of the call site textual names from the thoegdogram entry point. If the call strings
are considered in common, they are being disregarded araénage over all call strings is used.

These attributes also enable the user to control the waydtermance estimation report is pre-
sented. They also enable the user to provide a substitypeioagisit count that overrides the stored
profile. This provides the basis for extrapolating the rumetifrom a small test or profiling data set
to the envisioned real date size that will be processed oRFI@A.

Where the performance predictor cannot find profile infororafor a branch it assumes a 50/50
division and the number of such assumptions and their efiacthe confidence in the result is
included in the report.

Profiles for performance prediction can be sourced fromouarplaces, including diosim, but RTL
simulation is used in the following, step-by-step, example

1. Preferably denote several waypoints in the applicati#p@grankKiwi . KppMark ().

2. Generate an RTL design using KiwiC and an RTL testbenatgubie standard flow for your
envionment, but with the following minor changes

e OLD:Stop KiwiC generating angfinish() calls with the-kiwic-finish=disable
command line flag. NEW: We replace -kiwic-finish with -kiwitirectorate-endmode.

e Augment your C# program to make it drive a top-level net chlfamished’ high at the
end of simulation by declaring a satic boolean OutputBitRad assigning true to it at

Kiwi Scientific Acceleration Manual 69
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

the program end (you will typically also include a waypoiatled FINISH at that site
too.

e textually includekpp_testbench_mon_onethread.v in the testbench using an RTL
include statement.

3. Run your RTL simulation. The included material will wribeit a file file called 'profile.xml’
or similar. (You can also get this file from diosim without atie¥nal RTL simulator).

4. Invoke the performance predictor (hpr/kpredict.fshgsi. and you will see

5. With a suitable Makefile, you can make the web page redisplaomatically after every
high-level edit ...

10.2 Phase Changes, Way Points and Loop Markers

Hardware itself does not have a start and end time. Insteafhrpance metrics are always quoted
between a START/FINISH pair of named events. A typical pangis structured with a time-domain
series of internal phases, such as ‘startup’, ‘load’, ‘catepand ‘report’. The performance predictor
makes separate predictions for each phase and sums therooffigence for different phases may
be different, typically according to which part of the pragr was most recently edited. A marker
between phases is calledway point. Kiwi.KppMark() dummy calls and/or Kiwi.KppMarker
attributes are used to define waypoints. Each way point hasnaatly-allocated number and name
and all but the last start a phase that optionally also hag@n#@he entry and exit waypoints should
be called START and FINISH respectively. The program’s marftow cannot loop around a way
point. If a KppMarker is found in a loop body, or a method bodyene that method is called more
than once, the provided labels are code point markers (exguldoelow).

// Typical pattern of waypoint markup.
Kiwi.KppMark(1l, "START", "subsequent-phase-namel");

Kiwi.KppMark(2, "waypoint-name2", "subsequent-phase-name2");
Kiwi.KppMark(3, "waypoint-name3", "subsequent-phase-name3");

Kiwi.KppMarker (0, "FINISH");

A waypoint is a special form of code point marker. The use dfecpoint markers adds robustness to
the information stored in the profile database against pragedits, allowing it to be safely applied
to edited programs. The markers provide index points thatbeaassociated with loop heads and
other control-flow points, to assist in robustness of thdileréor complex method bodies. Basic
block names are then named in a syntax-directed way witrect$p, and as textual extensions of,
the previous and next labelled control point.

KppMark has no innate multi-threaded capabilities and soilshgenerally be set by an application’s
master/controlling thread, assuming it has one.

An exiting application has precisely one entry point. It bas exit point if other exits are are routed
to a singleton exit point. Way points should appear onceefsxpected visit ratios for each basic

Kiwi Scientific Acceleration Manual 70
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

block, the problem is overconstrained and the frequencysiting each way point and the singleton
exit point can be inspected as a confidence indicator: theeglanominally visited once.

Note: many older designs have defined a net-level outpwdaibne or finished and assigned to it
at the end of the main thread. Today we prefer toKisei . ReportNormalCompletion() which
also counts as a waypoint. We need to direct exit and so on.to it

10.3 Growth Parameter Assertions/Denotations

C# attributes also enable the user to provide a substitofedo visit count that overrides the stored
profile. This provides the basis for extrapolating the rumetifrom a small test or profiling data set
to the envisioned real data set size that will be processatierPGA Also, hardware itself does
not have a start and end time - it is static/eternal. Instpadfprmance metrics are always quoted
between a start/end pair of named code lables, again spkwitie C# attributes. Times for various
phases within a program, such as ‘load’, ‘process’ and éwiit’, can also be predicted by inserting
appropriate further control-graph delineations with anitatte that denotes a way point.

10.4 Debug, Single Step and Directorate Interface

There is no explict support for hardware debug currentlyiiwiKother than single stepping and PC
value collection when the abend syndrome is non-zero. ldgér tan readily provide PIO access to
major state holding RAMs [LINK TO EXAMPLE NEEDED]. Note thaser variable mappings to
RTL registers is typically many to one and the mapping is regubin the KiwiC.rpt file generated
on each run.

The directorate interface adds the following features téoghnerated RTL that can be hooked up
to a management CPU via the substrate gateway. They eaclaadigdnre overhead but this can be
trimmed out mostly by FPGA tools when reporting resourcededt disconnected.

1. Clock, Clock Enable and Reset inputs. Clock-enable ioat and can be used for single-
step or other purposes.

2. Abend syndrome register - successful halt/array boimdgér overflow/null pointer run time
errors agumented with PC value or waypoint per thread.

3. Waypoint and/or PC value monitoring for each thread. Vdaypindicates not started, run-
ning, exited and various user-defined intermediate points.

4. Generic unary LED readback.

5. CPU register debug access ports: additional read/vagie Is generated enabling programmed
1/0 access to every register (in the future).

6. Argument/result handshake and run/stop control in orsewéral styles:

e startmode: self-start or wait-start;
e endmode: auto-restart, hang or finish;
e ready-flag: present or absent.

Kiwi Scientific Acceleration Manual 71
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7. PC breakpoint control (in the future).

Nearly all FPGA blades have a some simple LED indicators eotad to 1/O pads. Kiwi has the

concept of the ‘generic unary LEDs’ for each FPGA. Kiwi defirreuniform way to drive these and
the substrate makes their values available to the host CRldhvis useful when the LEDs are in a
different room or continent from the application user. Thal{ycommonly be used as a user-defined
mirror of the Waypoint code§(0.2).

The directorate complexity is controlled with the reciayenand-line flagkiwife-directorate-style

The single-step and breakpoint registers are/will be prtagith directorate style advance#iwife-direct.
in the future. Single-step can be achieved with suitable loggc connected to the clock-enable in-

put for a thread. Note that clock enable is not a simple syorauis clock gate owing to the presence

of pipelined components that cannot be freely stopped (aa@RAM).

Watchpoints are currently best implemented by the userarCt source code and recompiled, or
else use vendor tools like ChipScope etc..

The abend syndrome register is present with directoralesstyyrmal and advancetiwife-directorate-

When a component is compiled as a module to be instantiatedenKiwiC runs, it needs to have
an HFAST interface (when in classical HLS major mode). Th&HF interface is generated with
the command line flags

-kiwife-directorate-startmode=wait-start
-kiwife-directorate-endmode=auto-restart
-kiwife-directorate-ready-flag=present

A top-level HFAST interface can be wrapped as an AXI-S itegfwith an externally-instantiated
adaptor (from the HPRSHIMS library) that itself can be insi@ed by HPR System Integrator.

The abend syndrome codes used by Kiwi in classical HLS magatenare:
e Abend codedx00 — Not yet started code.
e Abend code)x01 — Normal Errorless Exit/Completion.
e Abend codéx01 — Unspecified Abnormal Exit/Completion
e Abend cod@x03-0x7f — User Exit Codesfrom System.Environment .Exit (int code)
e Abend codedx80 — Normal operation in progress.
e Abend codedx81 — Paused indication during normal operation.
e Abend codedx83 — Suspended (breakpoint/!single step etc.)
e Abend codedx90 — Abend on Heap Memory Fault
e Abend code)x91 — Abend on Heap Memory Exceeded
e Abend code€dx92 — Abend on Integer Divide-By-Zero
e Abend cod@x93 — Abend on Null Pointer Dereference

e Abend codedx94 — Abend on Array Subscript Out-of-Bounds

Kiwi Scientific Acceleration Manual 72
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

e Abend codéx95 — Abend on C# Safe-Mode Checked Overflow
e Abend code€OxAO0 — Debug.Assert Failure
e Abend codéxAn — Other User Thrown Abend from hpr_abend ()

e Abend codeOxFF — No abend, still running.

11 Spatially-Aware Binder

An experimental, spatially-aware binder is being added itwi kit the moment. This will handle
both registers and ALUs and gives a floorplan plot.

Register colouring, RAM binding with memory maps and ALU diimg is reported in the KiwiC
report file. Only a static mapping, generated at KiwiC comfihe, is used.

12 Generated RTL

12.1

12.2

Kiwi generates Verilog RTL for synthesis kpGAby vendor tools. It can also generate SystemC and
CSharp but we do not commonly use those flows at the momenteirditill be some regressions.

KiwiC will assume the presence of various IP blocks in Vegild hese include RAMs and fixed and
floating point ALUs. It will instantiate instances of them.

The libary blocks are generally provided in the followingisze files:
CV_FP_ARITH_LIB=$(HPRLS) /hpr/cv_fparith.v

CV_INT_ARITH_LIB=$(HPRLS) /hpr/cvgates.v
CVLIBS=$(CV_INT_ARITH_LIB) $(CV_FP_ARITH_LIB)

RAM Library Blocks
Fixed-latency RAMs are provided in the cvgates.v. They haammes such aGv_SP_SSRAM_FL1

which denotes a synchronous RAM with fixed read latency of@oek cycle (FL1) and one port
(SP). The cvgates implementations are intended to by syistitde by FPGA tools.

Parameter overrides set the address range and word anditithe w

ALU Library Blocks
These blocks are found in dparith.v
Example: CV_FP_FL5_DP_ADDER - floating point, fixed latency of 5 clock cycles, dout
CV_FP_FL_SP_MULTIPLIER

Key: FLASH=combinational.

Kiwi Scientific Acceleration Manual 73
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

FLn = fixed latency of n clock cycles, VL variable latency with handshake wi
blocking while busy,

DP=double precision,

SP=single precision.

13 Incremental Compilation and Black Boxes

The IP-XACT -based incremental compilation features are being releagde2Q2017.
This section of the KiwiC manual is going out of date now — plese see39 for up-to-date
information.

Compiling everything monolithically does not scale to lpyojects. Separate and incremental com-
pilation is needed in large projects to handle scale, compbreuse, unit testing, revision control
and is the basis for project management. It can also be afoagiarallelism. So, for larger designs,
to manage complexity, it is always desirable to designdbsysiems for separate compilation.

Also, the classical HLS approach embodied in the normal Eiwompilation mode, in-lines all
method calls made by a thread into one flat control-flow gréiwiC reuses ALUs and local vari-
able registers in both the spatial and time domains, bustendenerate the largest and fastest circuit
it can, subject to ALU instance count limits per thread sehmrecipe. Even though FPGA/ASIC
logic synthesiser tools typically re-encode the resultaje machine so that the output function is
simple to decode, having more than a few thousand statesngsconpractical. It makes sense for
complex subsystems to be synthesised separately so that@tbem takes one state in the caller’s
sequencer. Any sequencer in the called component hastiés staared over all calls. All standard
library functions of any complexity are better handled iis thay. Prime examples are trig and log
functions and I/O marshalling such as ASCII to/from floatpmjnt. When these components are
referentially transparent, KiwiC can deploy as many instasas it likes, guided by metrics.

Multi-FPGA designs require the logic to be partitioned betw logic synthesis runs using sepa-
rate RTL files. Again this requires incremental compilatéord established protocols between the
FPGAs. The approach is to use HPR System Integrator to instaliSERDES links at the FPGA
boundaries, potentially multiplexing a number of servioa® the available links.

The ability to use separately-compiled components alsagdhe basis of Black boximport mech-
anism for third-party IP blocks. In principle, instantiagia black box containing third-party IP is
no different from instantiating a separately synthesises khodule. Example Kiwi modules are
standard trig and log functions, random number generatatsabsystems from user designs. The
CAMs on the NetFPGA boards and the new Xilinx hardened FIF®$yaical third-party black-box
componenets. See test72.

Third-party IP blocks and existing hardware interfacestgpécally described in terms of net-level
timing waveforms or formal specifications thereof. To expllbese components from a high-level
language viaiLs, wrappers need to be manually written.

class blackbox_wrapper_tx_demo

{
[Kiwi.OutputWordPort ("wdata")] static byte wdata;
[Kiwi.OutputWordPort ("n_wstrobe")] static bool n_wstrobe;
[Kiwi.InputWordPort("n_rdy")] static bool n_rdy;

Kiwi Scientific Acceleration Manual 74
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

[Kiwi.OutputWordPort("n_sop")] static bool n_sop;
[Kiwi.OutputWordPort("n_eop")] static bool n_eop;

[Kiwi.Remote ("protocol=HFAST")]
public static void SendPacket(byte [] darray, int len)
{
Kiwi.PauseControlSet (Kiwi.PauseControl.hardPauseEnable) ;
for (int i=0; i<len; i++)
{
n_wstrobe = !true;
n_sop = !(i==0);
n_eop = !(i==len-1);
wdata = darray[i];
while (!n_rdy) Kiwi.Pause();
Kiwi.Pause();
}
n_wstrobe = !false;
}
}

In some design styles, subsystems can also best be placestimea pool with dynamic load bal-
ancing. Design-time manual control sets the number of iitets generated. KiwiC will share such
server instances in the time domain rather than instaraiteany as it needs (subject to ALU count
limits). Note: Server pools are not currently automatediniKiwi but should involve little more
than a C# library that the current KiwiC can compile.

Method designated as top-level entry points must be stBtit.for incremental compilation, entry
points are commonly not static.

13.1 IP Integration via IP-XACT

There are several cut points in the Kiwi design flow where sspl/-compiled modules can be
combined:

1. KiwiC will accept any number ofd11 or .exe files on its command line. These will have
been generated, typically, from separate invokation ofie&ompiler.

2. TheKiwi.Remote() attribute described if§7.1 enables a designated class or method to be
cut out for separate compilation with its own IP-XACT deption.

3. Incremental invokation of FPGA tools is also typicallysgible, where some RTL files have
been seen before and others are new, but is beyond the scthpe décument.

4. (Inprincipleitis possible to load and save VMs to diski@ésed in XML) and so incremental
compilation at intermediate points in the opath recipe igtare option.)

Numbers 1 and 3 in the following list are relatively obvioss,we discuss only number 2.

Kiwi Scientific Acceleration Manual 75
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

IP-XACT is an IEEE standard for describing IP blocks and fotomated configuration and inte-
gration of assemblies of IP blocks. All conformant docursesill have the following basic titular
attributes spirit:vendor, spirit:library, spirit:namspirit:version. A document typically then repre-
sents one of:

1. abus specification, giving its signals and protocol etc;
2. aleaf IP block data sheet with links to the design files;

3. a heirarchic component wiring diagram that describesiasgstem by connecting up or ab-
stracting leaf components.

Today, the predominant protocol for interblock commuriarats AXI in its various forms. A block
with AXI interfaces should be accompanied with an XML destian using the IP-XACT schema.

13.2 TheKiwi.Remote() Markup

Separately-compiled modules will not share hardware messusuch as registers, ALUs or RAMS)
between them. Also, each will, in general, have its own ($etoad/store port(s) for access to
centralised resources such as DRAM.

Restriction: A module for separate compilation by KiwiC nahhave free parameters at the mo-
ment, as would be used to statically set a dictionary maxiroantents size for instanceFor ex-
ample, a generic dictionary component [insert link heragd$ cannot be compiled, even though the
basic data operations on it are marked up as remotely calaith Kiwi .Remote () or otherwise.
The dictionary example fails for these reasons:

1. the content type is typically polymorphic and hence tamitize is not known when compiled
to hardware standalone,

2. the capacity of the dictionary might be compile-time fixeadl set via its constructor, but the
constructor will not be called,

3. the dictionary component is an instance class and KiwiCordy compile static methods at
the top-level.

The solution is to compile the dictionary with a minimal teestch that calls the constructor, passes
in a data type and re-exports the data handling businessBimple here ... TBA

13.3 Required Metalnfo

The IP-XACT standard schema provides all of the informatieeded for net-level structural IP
block interconnection.
Beyond providing the block name and version number, it gavdsll description of the net-level

interface and any TLM interfaces in higher-level modelse precision of the implemented function
is manifested by the bit-widths of the busses.

1We mean structural parameters in the style of Verilog. The e for link editing is now being adde§i7(17). A
separately-compiled method/function will accept its arguimiémk.a. parameters) of course.

Kiwi Scientific Acceleration Manual 76
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

bool | Referentially Transparent Always same result for same arguments (statless/mirrorable).
bool | EIS (An end in itself) Has unseen side effects such as turning on an LED.
bool | FLor VL Fixed or Variable latency.
bool | External Whether to instantiate outside the current module.

int | Block latency Cycles to wait from arguments in to result out (or average ij.VL

int Initiation Interval minimum number of cycles between starts (arguments in time) @age if VL).
real | Energy Joules per operation (for power modelling via SystemC vinplatform output).
real | Gate countor area Area is typically given in square microns or, for FPGA, numbietdTs.

Table 3:Kiwi Extensions to IP-XACT for HLS

Hence the HPR System Integrator mode of compilation, ilaiet below for the peered instances,
is readily supported without extensions. Afterall, thighie primary use today for IP-XACT.

We currently do not support automatic selection of sub+abties based on non-functional param-
eters, such as area and energy, but method overloadingligiAPI of a given block works. Also,
we do not automatically partition a design for incrementahpilation according to the scale of the
blocks or other heuristics: insteddiwi.Remote ()] attributes must be manually added.

Where a custom block is separately compiled for use in an mental compilation project, it,
generally, has a custom interface. Hence there are two IBIXAocuments associated with an
incremental compilation step: a so-called ‘spirit:absitmDefintion’ that defines the interface and
the ‘spirit:component’ that defines the child componentkimgreference to the interface document
and also other interfaces, such as management and seroitgsgiso sported by the child.

The parent compilation will read in these documents. Andhtr IP-XACT documents will be
written to describe the parent block by the parent compitati

A final document may ultimately be written by HPR System Inégr that is a ‘spirit:design’ for
the whole structure.

We use a squirrelling function, akin to the one used for C+ik kditing, to generate an almost-
human-readable kind name for the the interface. Altereftia kind name can be manually speci-
fied in the C#[Kiwi.Remote ()] attribute.

The abstraction definition describes the transactionahatkhames associated with the net-level
ports. For instance, a child component might have three adsthsuch asead(a), write(a, d)
andflush().

The default approach is that each method has dedicated eltejsargument and result nets (as
in Bluespec). The default approach is not always suitatdpe@ally for pre-existing IP blocks.
For example, on a single-ported RAM the address bus will zeeshbetween theead(a) and
write(a, d) methods. A second example is a general trig block ALU thatémgnts ten different
trig functions (sin, cos, tanh, ...): the argument and tdsudses will be shared over each invokable
opertion.

One way to achieve sharing of argument and result bussete vdtaining the default approach
where each function has dedicated nets, is to write in C# m stith a single callable method
around the bock’s natural API and direct operations to tiigdt. This simply requires adding one
further, public, method to the component’s C# class definiind making sure that all required calls
pass through that method. An example is in Figure 5.

To exploit an existing component as a black box, the RTL teddynthesising the child component
is not needed. The IP-XACT defining the child should be mdgpealited in the place where it refers

Kiwi Scientific Acceleration Manual 77
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

class Serverl

{
void flush() { ...}
int read(int a) { ...; return foo; }
void write(int a, int d) { ... }

[Kiwi.Remote ("HFAST")]
public int transact(enum cmd, int a, int d4)

{
switch (cmd)
{
case serverl.cmd_t.flush: flush();
case serverl.cmd_t.read: return read(a);
case serverl.cmd_t.write: write(a, d);
}
return O;
}

}

Figure 5:Monomethod API example. Several methods in a component are made accessible via a single
shim method. This will reduce wiring between separately-compiled coponents, which may or may not be
helpful (e.g. helpful when interconnected between FPGAs), but is also a good way to connect to existing
IP-blocks that were defined to share the same net-level pins over various transactions.

to the RTL filename to instead refer to a manual implementatiat uses the third-party component,
such as the CAM on the NetFPGA board (see ... to be added).

Alternatively, going beyond the default method, so-calledld’ code can be provided that defines
the transactional protocol at the net level.

TODO: define re-entrant synchronisation aspects and shafiresources over entry points...

IP-XACT only provides about half of the information neededimport a hardware IP block for
HLS so we use extensions for this purpose. Additional infatiom is needed for replication and
schedulling of such blocks in an HLS flow. A summary of the &ddal information needed is in
Table 3. We use thespirit:VendorExtensions><hprls:...> namespace for our extensions.
The schema is here: LINK MISSING.

13.4 Instantiation Styles

There are two main module instantiation styles: IP blockslmainstantiated as peers or with hier-
archy.

Each instanced block needs to have both a C# implementatiaraRTL implementation packaged
with an IP-XACT wrapper. The RTL and IP-XACT may have beenegated by earlier runs of
KiwiC or else may have been created by hand or have come frdrinchgarty. The C# version is
required for two reasons: 1. so that the instantiating C#fillcompile without a missing class error,
and 2. so that the the system as a pure dotnet design in WD (abdksdevelopment) environment.

Kiwi Scientific Acceleration Manual 78
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Only a stub implementation (null method bodies) is neede@#compilation to succeed. And for
the dotnet run, only a high-level behavioural model is ndéd¢he C# when the real implementation
comes from elsewhere, such as when it is hardened IP like ¢tieRGA CAM.

Peer interfacing requires both sides to import a sharedaue declaration so they may be compiled
separately at the C# stage, yet still communicate aftersvafthis could be a TLM abstraction of

a standard interface, such as an AXI variant, or it could bestomn application-specific interface.

And a TLM2-style socket set might be used to falicitate thredbig.

Peer instancing skeleton example:

// See http://www.cl.cam.ac.uk/research/srg/han/ACS-P35/0bj-2.1/zhp283300d5¢c.html

RAM r = new RAM(...); // Create peer instances
CPU ¢ = new CPU(...); //
I0 i = new I0(...); //

c.axi_m0.bind(r.axi_s0); // Establish wiring between them.
c.axi_ml.bind(i.axi_s0); // bind is provided by SystemCsharp TLM.

Hierarchic instancing is where one C# file is compiled first arsecond has an instance of it avail-
able during its own compilation.

Hierarchic instancing skeleton example:

[Kiwi.Remote(...)] ALU a = new ALU(...);

int foo(int x, int y) = { return x * a.f1(y/121); }

KiwiC will be invoked several times in either of these codstgles and each run generate a set of
output files. Each set consists typically of some RTL andimt&nC files and an IP-XACT meta
file describing the set.

In the peer instancing example, each of the three instadt@mponents is defined as a class that is
itself marked up with the Kiwi.Remote() attribute. In thetdarchic example, the attribute is instead
applied to the instance. Also, in the hierarchic example,AhU instance may actually be placed
outside the rendered containing RTL with additional togelgorts provided for wiring it up.

Note that the ALU in the hierarchic example might typically &tateless and hence replicatable. If
S0, its invokation will be completely on a par with the muliggp and divider instances also needed for
method foo. The HLS binder will decide how many instanced tif make and the HLS scheduller
will factor in the appropriate fixed pipelining delay or \aie delay and handshake nets.

13.5 Subsystem Abend Syndrome Routing

Kiwi defines that if any subsystem stops with an abend syndroaude, this must be passed up
through parent modules to the substrate wrapper. And allulesdnust halt at that instant so PC
values can be collected.

An example of glue logic being inserted by HPR System Intiegris when it must collect these
abend syndromes and PC values from each instantiated maddleombine them into a larger
abend code and to halt the composite when any componentsbend

In the peer instancing example, the KiwiC front end will ikedhe HPR System Integrator function
(§39) of the HPR library that underlies Kiwi.

Kiwi Scientific Acceleration Manual 79
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

The HPR System Integrator compiler takes a set of HPR VMs anémtes SIRTL constructs to
wire up their ports following the VM instantiation pattern an input IP-XACT document. It will
instantiate protocol adaptors and glue logic based on efieet rules.

Please see SoC render part of the manual: Section 39.
HPR System Integrator supports:

1. Creating inter-module wiring structures with tie-offuofused ports.
2. Working both at the TLM level and structural net list level

3. Outputs are in Verilog, IP-XACT, SystemC TLM, SystemC &gbural and SystemC RTL-
styles.

4. Glue logic insertion in the form of instantiated adapsifoom the library are readily inserted
automatically using rules based on interface type diffeesn

5. Custom glue logic from the Greaves/Nam cross-produbiigae can also be rendered.

Another example, at the moment, is that KiwiC generates HFAfad/store ports but the Zynq
platform requires these to be adapted to AXI. This can elteetone automatically by HPR System
Integrator or by using the IP Integrator GUI within Vivado.

14 Design Examples

There are some examples in the standard distribution, suptiraes and cuckoo cache.

14.1 A get-started example: 32-bit counter.

Here’s how to make a simple synchronous counter that prada&2-bit net-level output.

using KiwiSystem;

{
[Kiwi.OutputWordPort ("counter")]
static int counter;

[Kiwi.HardwareEntryPoint ()]
static int Main2()
{
while(true)
{
Kiwi.Pause();
counter = counter + 1;
}
}
}

Kiwi Scientific Acceleration Manual 80
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Part IV
Expert and Hardware-level User Guide

15 Kiwi Hard-Realtime Pipelined Accelerators

Note: real-time Pipelined Accelerator mode is being impleranted 3Q16.

Classical HLS generates a custom datapath and controkiggesicer for an application. The ap-
plication may run once and exit or be organised as a servegtes busy when given new input
data. KiwiC supported only, up until now, that classical vi@yeach thread. We call this ‘sequencer
major HLS mode’.

In ‘Pipelined Accelerator’ major HLS mode, KiwiC will gerete a fully-pipelined, fixed-latency
stream processor that tends not to have a controlling sequdyut which instead relies on predicated
execution and a little backwards and forwards forwardirmgglits pipeline.

Like classical HLS mode, a compilation root is identified lie thigh-level source, but its manifes-
tation in the hardware is different. The loop is implemeribgdhe subtrate instead of the KiwiC-
generated RTL. Hence a different subtrate is needed anerdiff techniques are used to connect
such components together by HPR System Integrator.

The root designation for a hardware accelerator is a C#gtagthod with arguments and a return
value. This is typically the loop body of a C# iteration wh#hre loop construct itself is only used in
C# form in WD (workstation development) executig3).

A pipelined accelerator mode with latency set to zero resulta purely combinational circuit in
terms of input to output data path, but it may post writes fgisters and RAMs that still need a
clock.

The priorKiwi.Remote () attribute, described i§7.1, enables a given method to be cut out for
separate compilation. This was non-rentrant and does foteenhard real time.

When generating a real-time accelerator, a C# function (otethith arguments and return value) is
designated by the user as the target root, either using atfi#ugg or a command line flag to the
KiwiC compiler. The user may also state the maximum prooesksitency. He will also typically
state the reissue frequency, which could be once per clodk eynd whether stalls (flow control) is
allowed.

[Kiwi.HardwareEntryPoint (Kiwi.PauseControl.pipelinedAccelerator)]
static int piCombDemo(int arga) // The synthesis target
{
// Trival example: probably a combinational design infact.
return arga+100;

}

For a real-time accelerator, multiple ‘calls’ to (or invakens of) the designated function are being
evaluated concurrently in the generated hardware. Opesathn mutable state, including static
RAMs and DRAM are allowed, but care must be taken over the waliphe executions appear to

be interleaved, just as care is needed with re-entrant,thmeldded software operating on shared

Kiwi Scientific Acceleration Manual 81
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

variables. Local variables are private to each invokation.

Although we default to every concurrent run’s behaviounpereated in isolation, we support two

means for inter-run communication: we can address the argtsvand intermediate state of neigh-
bouring (in the time domain) runs and, as mentioned just@bee can read and write mutable state
variables that are shared between runs.

Variable-latency leaf cells cannot be instantiated (mitlyg in accelerator mode where the latency
varies by more than the reinitiation interval. Further dstaeed defining, but, for now, we need to
avoid off-chip DRAM and KiwiC will request fixed-latency ieger dividers (latency equal to the bit
width) instead of the more commonly instantiated varidatency divider.

15.1 Pipelined Accelerator Example 1

A simple example is test54 in KiwiC regression suite. Alaive mark up illustrated ... final system
under design.

static readonly uint[] htab4 = { 0x51f4a750, 0x7e416553, Oxlal7a4c3, 0x3a275e96,
. many more entries ...

};

// We require a reissue interval of 1 (fully pipelined)
// We want a maximum latency of 16.

[Kiwi.PipelinedAccelerator("accell", "nostall", 1, "maxlat", 16)]
static uint Accell(uint a0O)
{

uint r0 = a0;
for (int p=0; p<3; p++) { rO += htab4[(r0 >> 6) % htab4.Lengthl; }
return ro0;

}

We can specify the reissue interval via the C# attribute.hig éxample, a reissue interval of 1 is
specified. This generates fully-pipelined hardware thatlmsupplied with fresh arguments every
clock cycle.

We also specify the maximum result latency as 16. KiwiC watermine its own latency, up to this
value, guided by the logic cost settings, and report it inkiwaC.rpt output file.

The ROM, in the full source code of the example, has 256 entaed so is implemented as a
statically-initialised block RAM on most FPGAs. This hasyashronous access time of one clock
cycle. For multiple, concurrent accesses, as requireddyetissue interval of 1, the ROM must be
mirrored. Owing to loop-carried ROM address dependentiiesninumum implementation latency,
by inspection, is 5 cycles.

All loops offered in pipelined accelerator mode must beyfulhwindable by KiwiC. This means
they must have a hard and obvious upper iteration limit, bay tmay have data-dependent early
exit.

Internally, in our firstimplementation, the bevelab recege unwinds all loops. This gives a single
superstate to the restructure recipe stage which operatesniode where all holding registers and

Kiwi Scientific Acceleration Manual 82
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

input operands are replicated as needed in pipeline formvliede mirroring of structural resources,
such as the ROM in the above example, is used to avoid steidtazards arising not only for
multiple use by a single run, as normal, but over differeages in that run that are separated by
more than the reissue interval.

16 Designing General/Reactive Hardware with Kiwi

Kiwi can be used in an RTL-like style for some applicationshisTis where the user takes more
active control over clock cycle mapping than is requiredesickd by scientific users.

The Kiwi system has hard pause mode clock domainsandnet-level I/O facilities for specifying
cycle-accurate hardware. This is needed for bit-bang gptiinconnecting to existing hardware
interfaces like AXI, 12C and LocalLink. Ideally, protocatse supported natively by Kiwi and bit-
banging can be avoided.

16.1 Input and Output Ports

Input and Output Ports can arise and be defined in a numben. wa

Net-level I/O ports are inferred from static variables ip-tmost class being compiled. These are
suitable for GPIO applications such as simple LED displays push buttons etc.. The following
two examples show input and output port declarations, wterénput and output have their width
specified by the underlying type and by attribute, respelstiv

[Kiwi.InputPort("serin")] static bool serialin;
[Kiwi.HwWidth(5)] [Kiwi.OutputPort("data_out")] static byte out5;

The contents of the string are a friendly name used in outlast fi

For designers used to the VDHL concept of a bit vector, we alkov arrays of bools to be des-
ignated as I/O ports. This can generate more efficient ¢gauien a lot of bitwise operations are
performed on an 1/O port.

[Kiwi.OutputWordPort(11, 0, "dvi_d")] public static int[] dvi_d = new bool [12];
[Kiwi.OutputWordPort(11, 0, "dvi_i")] public static int[] dvi_i = new int [12];

Although it makes sense to denote bitwise outputs usingdamal, this may require castings, so ints
are also allowed, but only the least significant bit will bel&hport in Verilog output forms.

16.2 Register Widths and Wrapping

Integer variables of width 1, 8, 16, 32 and 64 bits are native# and CIL but hardware designers
frequently use other widths. We support declaration ofstegs with width up to 64 bits that are not
a native width using ariwWidth’ attribute. For example, a five-bit register is defined akfos.

’ [Kiwi.HwWidth(5)] static byte fivebits;

Kiwi Scientific Acceleration Manual 83
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

When running the generated C# natively as a software progaarogposed to compiling to hard-
ware), the width attribute is ignored and wrapping behaviswoverned by the underlying type,
which in the example is a byte. We took this approach, rattem tmplementing a genuine imple-
mentation of specific-precision arithmetic by overloadavery operator, as done in OSCI SystemC
[1], because it results in much more efficient simulatios,\iwhen the C# program is run natively.

Although differences between simulation and synthesisacige, we expect static analysisiwiC

to report the vast majority of differences likely to be enctaued in practice. Current development
of KiwiC is addressing finding the reachable state space, not onlyasdhtese warnings can be

generated, but also so that efficient output RTL can be g@mtkrauch that tests that always hold (or
always fail) in the reachable state space are eliminated the code.

The following code produces a KiwiC compile-time error hesmthe wrapping behaviour in hard-
ware and software is different.

[Kiwi.HwWidth(5)] byte fivebits;
void ()
{

fivebits = (byte) (fivebits + 1);
¥

The cast of the rhs to a byte is needed by normal C# semantics.
Compiling this example gives an error:

KiwiC assign wrap error:
(widthclocks_fivebits{storage=8 }+1)&mask(7..0):
assign wrap condition test rw=8, lw=5, sw=8

The following examples work

// four bit input port
[Kiwi.HwWidth(4)]
[Kiwi.InputPort("")] static byte din;

// six bit local var
[Kiwi.HwWidth(6)] static int j = 0;

A short-cut form for declaring input and output ports

[Kiwi.OutputIntPort("")]
public static int result;

[Kiwi.OutputWordPort (31, 0)]
public static int bitvec_result;

16.3 How to write state machines...

Kiwi hardware coding styles: how to code combinational, Mead Moore systems in hard-pause
mode.

Kiwi Scientific Acceleration Manual 84
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

16.3.1 Moore Machines

First compare the Moore machines define by maie and mairpost:

[Kiwi.Input()] int din;
[Kiwi.Output O] int q;

main_pre()
q = 100;

while (true) { q -= din; Kiwi.Pause(); 1}
}

main_post ()
q = 100;

while (true) { Kiwi.Pause(); q -= din; ¥
}

each has some initial reset behaviour followed by an indeflobping behaviour. Their difference
is the contents of g on the first tick: mapre will subtract din on the first tick whereas mainst
does not. In both cases, q is a Moore-style output (i.e. digrgron current state but not on current
input).

The shortly-to-be-implemented optimisation in bevelali wiake a further change: the run-time
program counter will disappear entirely for mginst because the loading of q with its initial value

will be done as part of the hardware reset. However, ppagwill still use a state machine to
implement its different behaviour on the first clock tick.

16.3.2 Mealy and combinational logic:

Coding Mealy-style logic and purely combinational sulzgits is not currently supported (but will
be via pipelined accelerator mode where latency is set i @grles). Purely combinational logic
could possibly inferred from an unguarded infinite loop,fsas maincomb

main_comb() { while (true) q = (din) ? 42:200; } ‘

However, maincomb is not a sanitary program to run under KiwiS since it it excessive CPU
power.

Mealy-style coding could better be implemented with a netlatte as illustrated in maimealy
where the mel output is a function of both the current statedqcarrent input din.

[Kiwi.OutputMealy()] int mel;

main_mealy() { while (true) { q += 1; mel = g+din; Kiwi.Pause(); }

Exploring this further would best be done in conjunctionhifitrther development of SystemCsharp
to yield a nice overall semantic. TODO perhaps?

Kiwi Scientific Acceleration Manual 85
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

16.4 State Machines

Explicit state machines can be coded fairly naturally:

main_explicit_state_mc()
{

Q=1

while(true)

{

Kiwi.Pause();

switch(q)
case 1: q = 2; break;
case 2: q = 3; break;
case 3: q = 1; break;

}
}
}

and the position of the single Kiwi.Pause() statement leefoafter the switch statement only alters
the reset behaviour, as discussed above.

Implicit state machines can also be used:

main_implicit_state_mc()
{
Q=1
while(true)
{
Kiwi.Pause(); q
Kiwi.Pause(); q
Kiwi.Pause(); q

2;

33

1;
}

}

Because maitimplicit_statemc is a relatively simple example, the KiwiC compiler can kpexted
to reuse the initial state as the state entered after theRiaiuse call, but in general the compiler may
not always spot that states can be reused.

16.5 Clock Domains

A synchronous subsystem designed with Kiwi requires a makiek and reset input. The allocation

of work to clock cycles in the generated hardware is corgcolly anunwind budgetiescribed in [3]

and the user’s call to built-in functions such &@swi.Pause’. By default, one clock domain is used
and default net nameslock andreset are automatically generated. To change the default names,
or when more than one clock domain is used, ttieckDom’ attribute is used to mark up a method,
giving the clock and reset nets to be used for activity gardray the process loop of that method.

[Kiwi.ClockDom("clknetl", "resetnetl")]
public static void Work1()
{ while(true) { ... } }

A method with one clock domain annotation must not call diyeor indirectly, a method with a
differing such annotation.

Kiwi Scientific Acceleration Manual 86
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

17 SystemCSharp

SystemCSharp follows the design of SystemC using C# ingié&#+. Currently there is a very
initial version of it in existence. Please see the READMErbits folder.

SystemCsharp is a library, written in C#, that provides REimantics for hardware modelling.
In particular, it provides signals that support the evalmmmit paradigm of synchronous digital
logic, where all variables in a clock domain take on their medues, atomically, one the active edge
of the relevant clock.

The KiwiC compiler can generate SystemCsharp output bygusie-csharp-gen=enable com-
mand line flag. The default output name is the default namle thi# suffix.sysc.cs added. The
-cgen-fn=filename flag can be used to change the output filename.

Several of the C++ output flags affect the way that C# is geeédraut these may be decoupled in
the future.

Note that emitting C# or C++ with the standard recipe writesse output files at the same point in
the system flow as used for RTL output. Hence a large numbearallpl, RTL-style assignments
will be used. Using a shorter recipe or with some of the intsdiate stages disabled, output closer
to the input form can be rendered: for instance, with bevelated off assignments will be made in
order using a thread instead of an HLS sequencer.

Kiwi Scientific Acceleration Manual 87
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Application program (\

post C# compilation. KiwiC
One or more exe/dll Front End

portable assemblies. @ ;H

Repack: Pointer
disambiguation and
Array Partitioning
o —

Bevelab:

FSM
_ Generation 3)
4 . N\
Verilog

Conversion (RTL Output
(Verilog)

Canned libraries
fed in or built in to
Kiwic

o
i

Restructure: —>1

ALU and Memory \ 5b)
port mapping. 4
SystemC @
Conversion
\ 5¢/

Figure 6: The main components of the default KiwiC flow using tefault recipe (KiwiC00.rcp) in
the KiwiC tool.

Diosim
Simulator
5a

Console
Output

Profile
Output

Predictor
Graph 5d
Output

Part V

Kiwi Developers’ Guide and Compiler
Internal Operation

18 KiwiC Internal Operation

KiwiC is a compiler for the Kiwi project. It aims to produce &TL design out of a named sub-
program of a C# program.

KiwiC does not currently invoke the C# compiler: insteactds a CIL portable assembly language
file (.exe or .dll) generated by a Microsoft or Mono C# compile

Figure 6 shows key components of the main flow through theasalet up with the provided recipe
file (KiwiC00.rcp). The full recipe contains ten or so stagesl theobj folder created by running
the tool contains the log files and intermediate forms fohesdage. Other output flows and formats
can be deployed by changing the recipe. The dotted line shimatusing thesimvnl command
line option the internal simulator (Diosim) can be appliedite RTL after it has been round-tripped

Kiwi Scientific Acceleration Manual 88
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

User's

app
DLL

User's
library
DLL

.net
assemblies

.dil or .exe

e
v

CIL PARSER

(uses mono.cecil),

Disassembly
(ast.cil)

:

Class Directory

Scan for Kiwi.HardwareEntryPoint

!

-root Command Line Flag

FIRST PASS:

Per method-basis, remove stack
Insert SPILL variables

A

SECOND PASS
Inlines all methods of a thread <*——— Convert all expressions to CE form.

p / Detect thread starts (new roots)

!

KCODE

ntermediate code fo each thread.

KCODE
listing

|

THIRD PASS: Generate HPR
Design becomes fully staticl

Points-to analysis for each

Remaining object pointers become

Unwinds loops,

Many object pointers disappear,

Local Variables at same call depth

DIC per thread. of same thread are reused

ly allocated,

heap object, .
Heap must be same shape at each point
on each

enumeration typed. . .
iteration of non-unwound loops

One machine per thread
using shared variables and mutexes
for communication

C# User DLL Example

0
i

- 3use7;
e drite s el
tint 20; jos

. vorduise);

s (1), bitvec, counter, dropper);

roper 4o 201
Kivd Pause();

[

)

17 This Vil be a oot for hardvare comilation using the Kivd.Hardware() attribute.
[kivi

‘
Console.riteL e
Toptevel();
ConsoleriteLne(

)

CIL disassembly fragment
.method static class [System]Void TopLevel()

.locals ([0] [sy;temuntzz v e,

©:ldc int32 ex12
Sistloc .0
str "Hello World. Wordwis

9ittasria [System]UInt32 smal

16:box [System]UInt32

21:callcall class [Systemlvoid
[System]Console: :WriteLine([] [System]String
L1 [systemiobject)

PN
@
a
28
o
a

2 3

35itaec o
34:ldc int32 .1
35:and

36:ldc int32 .0
37:cgt

39:stloc .2

KCODE listing fragment

0600:LP: Systen/Console/MriteLine/Callsite

38 commands

s s sy urtetine,
< T arrlcr neidse, 16 stone, mative); 30,
CE(atring “Hardare thresd should stort here. 1)) SATT)
o002, Snatl fopLevet /catisire

900335 sssion: sebor (TBZ/sualTopLeel 0,41y ONOR/SXS2/SS\HA2IM,
CF net (false, 32, Signed, native), 5005,
Sasin TenTY(ET ne{atse, 33, Sigheds ative), CE_x(om L2SET))

0004:17: Systen/Console/MriteLine/Callsite

ook enslce amlyuriteioe,
argl = TVCT arr(CT net(false, 16, Signed, native), 25), CE x(string “ello World. orduises{s)"))
o102 = UCT etfase, 32, Uisioes, nacive), Vor{smariseio st srusionions
netifalse, 32, Unéigned, nstive), $(15. (s . ioputatrue)))) BAIT)
S s saslon: Unsar (T3 el Tskevel /0. SONSH3 551308280,
net(false, 505,)
Sassion ThssT(CE seb(Taise 3, Sioned, Rative), CE_x(om 01)

0007:1p: Tdo2/smalTopLevelsecond/LL123
299K boto MO, THe2/sal Toteyel/seconL1123)
0609:K cad // src {ab: TopLevel

T2 smal opevlsecend /133

X s gaesin:” Thstar(T402/seal Tt vl 71 /5871 /USRS,
Toetitatse, 1. u ve))

sassign

e atavar (1483 sea{L /oL rel /8. 41V mwwxzrssusn«a
T et False, 32, Signed, nativel. 5005, JATVICT net(false, 32, Sioned, rative), CE x(num 1))

HPR DIC fragment

wami
*APPLY: bpr writeln(SSATTOFORMAT: This will be automatically
rrala:rd ith 8 grnt foratedsti., "fareare thread sl start bre.)

3
s ,,, oo rld Wrkise, wriise);
s Tob.4
st
Scucdestis
TSToB.4 ¥ 2 := Bc(1&TSTo8.4 ¥ 0);
beq(|-[T5T08.4.¥.2,displ6, 3)
14 displt:

S cater = ol comter
n(": Bitvec is % Comter is W, ssall_dropper,

1 L dropper;
: 1 pase)
A o

20 bel §(TsTob.4 ¥ 129) ucdestis, 9)
26:d15p1

2 “easc HOPLICT wrteln[STORIUT: This vill be utomaticall

e it ria Tortaes s, e st o terminate e,
B
- et panse();
b Kgnmumtuz! B);
isple

Figure 7: The internal flow of the KiwiC front-end recipe stag

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

89

(©2011-17 DJ Greaves + S Singh

through Verilog. For debugging, Diosim can be applied to HRR machine intermediate form, by
varying the recipe. (There’s also a shortcut ‘-conerefingadale -repack=disable -verilogen=disable’
that will cause diosim to run the original VM generated by iieiC front end without conversion
to hardware). This is needed for the profile-directed feeklba

The.NETexecutable bytecode is read using the Mono.Cecil front Angl.needed libraries, including
Kiwi.dll and Kiwic.dll are also read in. These are combineiivsome canned (hardwired in the
front end) system libraries. The result is a large CIL alustsgntax tree. This can be output for
tracing/debugging if desired (using tkéwic-cil-dump flag).

The KiwiC front end (IL Elaborate stage) converts the .neTA& the internal representation used
by the core HPR/LS library. This is the HPR VM2 machine.

The VM code emitted by KiwiC front end is a set of parallel ‘Diflocks. These are ‘directly
indexed code’ arrays of imperative commands and there i$arreach user thread. They are placed
in parallel using the PAR construct. Each DIC array is indgxg a program counter for that thread.
There is no stack or dynamic storage allocation. The stattsrage: assign, conditional branch,
exit and calls to certain built-in functions, including higstandset, hpprintf and hptbarrier. The
expressions occurring in branch conditions, r.h.s. ofgassent and function call arguments still
use all of the arithmetic and logic operators found in therlput form. In addition, limited string
handling, including a string concat function are handledihsat console output from the CIL input
is preserved as console output in the generated forms (egpl&gin Verilog RTL).

Memory disambiguation and partitioning into staticallgesl memories and DRAM is done by the
repack receipe stagé9) . The KiwiC front end has labelled every storage openatith a storage
class. Repack conglomorates classes that are assignedelmetmd then uses arithmetic pointer
analysis rules for alias analysis. Its input is an HPR VM wehevery variable and array location
has a virtual address (hidx) in a so-called wondarray. A veoray is allocated for every dotnet
datatype (except structs). The wondarray contafidsv@ords of that datatype but only the words
on integer multiples of the datatype’s size in bytes are u$ée output from repack has had all of
these mapped to scalars or to smaller 1-D arrays and eacanddmd with an identifier. Some input
variables to repack have been allocated a reserved ‘ursadiles hidx which means they are scalar
and do not have their address taken. These go through repdadutvmodification and appear as
identical scalars in the repack output. In Kiwi use, theseaspond to static variables.

The conerefine recipe stage deletes unused parts of thenddsigart of the design is unused if it
generates no output. Outputs include PLI calls like CongdligeLine or net-level outputs flagged
with Kiwi.OutputWordPort or similar. Object and array hdeslthat are not manipulated actively by
the program are removed.

The conversion from imperative code to FSM is performediadly, by bevelab, described §24.
This allocates work to clock cycles based on Ki&i.Pause() statements manually embedded
by the designer or automatically inserted by the KiwiC frent. The bevelab output is an HPR
machine where every statement from every thread nomingkyaies in parallel — i.e. pure RTL.
However, some PC-like annotations are retained for easdjeption (and re-encoding) in FSM
form. FSM re-encoding for thread’s controller will latempigally be done by the FPGA tools to
simplify the controller output decode function.

The restructure recipe stadi80) binds and schedules operations and storage to physgmlnces.
Storage decisions are made as to which vectors and scalatad® in what type of component
(flip-flops, unregistered SRAM, registered SRAM, DP SRAM dfrahip in DRAM) and which
structural instance thereof to use. ALU’s and other privediare also instantiated and bindings

Kiwi Scientific Acceleration Manual 90
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

of program operations are made. Owing to the FSM annotapioeserved by bevelab, the binder
can easily determine which RTL statements are disjoint.hEsate in the input FSM potentially
becomes multiple, so-called, microstates in the outputrastsiral hazards on memory ports are
avoided and pipelined ALU operations are composed. Allonatecisions are based on heuristic
rules parametrised by command-line flags and recipe fileegakuch as the number of floating-point
multipliers per thread.

The output forms available include Verilog RTL, which we based for FPGA layout. The stylised
output from the FSM generation stage is readily converteallist of Verilog non-blocking assign-
ments.

18.1 Background: HPRI/LS Library (aka Orangepath)

HPR L/S (aka Orangepath) is a library and framework desigoedynthesis and simulation of a
broad class of computer systems, protocols and interfacesrdware and software forms. The
Orangepath library provides facilities for a number of expental compilers.

The primary internal representation (IR) is a so-called HRR2 virtual machine. The framework
consists of a number of plugins that operate on this IR. Heindgpe terms at least, all operations
are ‘src-to-src’. But in practice, certain forms cannot Bediin certain places: for instance a VM2
containing RTL code cannot be rendered directly as C++ (iildidnave to be passed through the
bevelab plugin first).

HPR virtual machines and the operations to be applied to trenstored in a standard opath com-
mand format to be executed by an Orangepath recipe (prograomomands).

A characteristic feature of Orangepath is that plugins eaargially, always be applied in any order
and often have inverses. For instance a plugin that outptitsseveresed by a plugin that reads in
RTL. A plugin that performs HLS from behavioural code to RThuwld be reversed that by a plugin
that gives a single-threaded imperative program from aelaayly of parallel RTL code.

A simulator plugin, called diosim, is able to simulate theitRany form and, in particular, is able

to simulate interactions between parts of the system defindiferent styles. For instance it can

simulate a pair of CPU cores communicating with each otheresbne is modelled in RTL and the
other as a cycle-callable ISS. Asynchronous I/O and netivarliware is also modellable with these
primitives.

A so-called recipe, which is an XML file, invokes the pluginsai particular order, supplying param-
eters to them. The input and output of each recipe stage iscallgal HPR VM2 machine. Loops
in the recipe can be user to repeat a step until a propertyshdlde opath core provides command
line handling so that parameters from the recipe and the @mdrtine are combined and fed to the
plugin components as they are invoked. The opath core atgepses a few ‘early args’ that must
be at the start of the command line. These enable the rede file specified and the logging level
to be set.

The Orangepath library has plugins that support a variegxtdrnal input and output formats.

An HPR VM2 machine contains scalar and 1-D array declarationperative code sections and
assertions.

Values are signed and unsigned integers of any width andrftppbint of any width is also sup-
ported in the framework but library components currentliyavork for IEEE 32 and 64 bit formats.

Kiwi Scientific Acceleration Manual 91
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Enumeration types are also supported, the most importamg biee boolean type. For all enumer-
ations, an exclusion principle is applied, in that if an egsion is known not to be any but one
of the values of enumeration, then it must be that one valusold&ns are held differently from
other enumerations internally but all expressions on ematiess are only stored in minimised form
(using Espresso or otherwise). The library supports a gfeak of constant folding and identity
operation elimination (such as multiplying by zero or onkhas limited handling for strings and
string constants, which are either treated in the same watythiey are handled in Verilog, which
is as an expression or register of width 8 times the stringtlein characters, or as a special string
handle type (where widtho=-1). But the Kiwi front-end and tiepack stage can map a fixed set of
strings to an enumeration type of a suitable width with thiegs stored only once and indexed by
the enumeration.

Expressions are held memoised, and in a normal form, as faosssble, that makes identity check-
ing and common sub-expression reuse easier. This is epesiaful to be able to rapdily confirm,
as often as possible, index expression equality or inegutdiavoid name alias Raw/WaW depen-
dencies on arrays and loop value forwarding for sequent@ss patterns.

The imperative code is in any mix of RTL and DIC forms. RTL ains register transfer assign-
ments, partitioned into clock domains, where all assigrisiera clock domain run in parallel on the
active edge of the clock. There is also a combinational dorteit has no clock. The DIC impera-
tive form (directly indexed code) is an array of statementieked by a program counter, where the
main statements are: scalar assignment, 1-D array assignlibeary call and conditional branch
within the array. Code sections can be in series or paraltél ®ach other, using CSP/Occam-like
SER and PAR blocks. Assertions are coded in temporal logicaasociated with a clock domain,
just like PSL (property specification language). And a datefiransport-triggered IR form is being
implemented at the moment.

Dynamic storage allocation is also being added.

HPR L/S (aka Orangepath) represents a system as an hiedrahgtract machines in a tree struc-
ture. Its aim is to 'seamlessly’ model both hardware andws® in a common intermediate form
that suits easy co-synthesis and co-simulation.

Each machine is a collection of declarations, executalie emd assertions/goals. But typically, an
individual machine only uses on form of representation.

Plugins convert the machines from one form to another.

Other plugins generate machines, read them in from fileshardtont-end languages, or write them
out.

The goals are assertions about the system behaviour, iimpatlg or generated from compilation
of temporal logic and data conservation rules into automik@cutable code can pass through the
system unchanged, but any undriven internal nodes aredadwiith driver code that ensures the
system meets its goals.

It also includes some temporal logic for assertions. Softwan exist as both machine code/assem-
bler and a high-level, block-structured, AST form.

A VM contains variable declarations, executable code, tmaigogic assertions and child machines.
A system is a tree of VMs where each may be the root of a tree af.VM

Variables are signed and unsiged integers of various poesissingle and double precision floating
point and 1-D arrays of such variables. A small amount ohgthandling is also provided. All

Kiwi Scientific Acceleration Manual 92
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

18.2

18.3

18.4

18.5

18.6

18.7

(©2011-17 DJ Greaves + S Singh

variable are static (no dynamic storage) and must be unigaesingle nhamespace that spans the
system. The variables are declared inside a given VM and reayjdbal or local. Global variables
may be accessed by code and assertions in any VM and locakboekl (not enforced) only be
accessed in locally (or in son machines?).

Expressions commonly use the hetorm and commands use the hbigform. Single-bit variables
have hbexpg form. A library of 'ix_xxx’ primitives can be called as functions or proceduresnfro
hexpt, hbexpt and hbewt respectively. Expressions are all stored in a memoisirag lusing weak
pointers.

The executable code of a VM has several basic forms (dic, asntmd, fsm). All code and
assertions access the variables for read and write (butiassedon’t tend to write!) regardless of
form.

DIC
DIC - Directly-indexed array: Imperative program (assggmlditional branch/builtin call) stored in
an array indexed by a PC.
ASM
ASM - Assembler for a local family of microprocessors
RTL and FSM
RTL - Register transfer-level code - a set of parallel agsigmnts to be executed on an event.
CMD

Abstract syntax tree of a block-structured imperative paag (for/while/break/continue/assign/if
etc) or single assigment statement.

Finite-State Machines

FSM - Finite-state machine form - like RTL but the assignmeeare collated into disjoint sets that
are separated by a current-state variable or program aoukiy RTL can be factored out in this

way (a Shannon Decomposition) using any set of bits as thgrgmocounter. The decomposition is
a reversible transform.

CSP/Occam

Message-passing, CSP-like channels are another thinghbatd perhaps be added as a primitive
form in future. They make perfect sense in the overall fraorewCSP communication primitives
should really be added ... to add channels and complete ¢che i

Kiwi Scientific Acceleration Manual 93
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

The executable code may be clocked or nonclocked. Fragnmetde put in serial or parallel using
the SPpar and SBseq combinators. There are two variants off&f, for lockstep and asynchronous
composition.

Further executable forms, just being added are executaktddélav graphs:

VSDG - a dataflow graph for a single basic block with additicstate edges representing memory
order constraints. VSFG - an executable form of the VSDG wihback edges in the control flow
graph are represented using nested graphs.

The library is structured as a number of components thatadpem a VM to return another VM.
The opath (orangepath) mini-language enables a recigee tan that invokes a sequence of library
operations in turn. An opath recipe is held in an XML file.

Automatic recipes: The overall systems is a pluggable fjbrd/here certain components only ac-
cept certain input forms and such a component is specified tséd by a recipe, it is envisioned that
automatic invokation of the other components to serve ag imgaptors will be triggered. Otherwise
it is necessary to manually instantiate additional rectpges.

For Kiwi use, the opath default recipe fileK$wiC00.rcp.

In this manual, we concentrate almost entirely on .N&rCIL input format and the Verilog RTL
output format.

18.8 Internal Working of the KiwiC front end recipe stage

The IL Elaborate stage is implemented by the the FSharpifilespro/kiwic/src/*. fs. Itreads

in CIL code and writes out HPR ‘dic’ form code. Internally @roverts from CIL to, so-called, kcode,
before generating HPR code. The kcode can be rendered tda filebugging/inspection using the
kiwic-kcode-dump flag. The dotnet VM is a stack machine and the dotnet codedk stade. The
stack is removed during the conversion to kcode. Kcode theestack or register code: all data is
instead stored in wondarrays or global static variables.

CIL code is the assembly language used by the monansmbrojects. Like other assembly lan-

guages, it has an assembler and disassembler for convedtagen binary and human-readable
forms. KiwiC originally read the assembly using a bison patsut now reads the binary using the
mono.cecil libraries.

Front end flow steps are:
1. Perform first pass of each invoked method body in isolation

2. Perform a symbolic execution of each thread at the ClLchalsick level and emit kcode for
each block. CIL branch instructions and CIL label names déinatbranch destinations define
the basic block boundaries. This inlines all dotnet methualieations.

. Optimise the kcode within each thread using constanirfgld

3
4. Analyse kcode to find the end of static elaboration poimgoh thread’s lasso structure.
5. Perform register allocation (colouring) for the run-¢impart of each lasso.

6

. Prefix start-up code from static class and method coristuto the lasso stem of the main
thread.

Kiwi Scientific Acceleration Manual 94
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

BEVELAB
Convert thread to finite state machine:

Pause mode:
Soft, Hard, Autom BasicBlock, Maximal

Front end: KIWIFE

v

REPACK

'

Divide arrays into smaller arrays, register files

RESTRUCTURE <

and scalar registers.

Map large arrays to DRAM

OFFCHIP Generate connections
e, for DRAM controller
BEVELAB FSM
Experimental Generation
Recipe ! v ¥
Stages | array MODULO VLIW SCHEDULER| | INTER-THREAD
SCHEDULER DATAPATH SCHEDULER
¥ v
y
....... Trim design
CONE-REFINE 4" sing cone-of-influence
STRUCTURAL HAZARD T, Split soft pauses into micostates
RESOLVE Error if strucutral hazard in hard pause mode
Error if need non-causal input.
\
y
Output options A Y YT
Microcontroller 3
. DIOSIM s
c Verllog CSystemlC Assembly smultor %
onversion onversion Language i

XML

Serialised

RTL Output
(Verilog)

A

All output forms can be round-tripped
back to an HPR VM
for simulation or further recipe stages.

Figure 8: General flow implemented in an early version of thei® tool (same as figur@?). This
diagram does not clearly show the recipe stages now usedDRAd restructure is now part of the
general binding done by the later restructure phase.

Kiwi Scientific Acceleration Manual

95

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

7. Perform symbolic evaluation of the kcode and emit HPR cédether thread starts may be
detected, which causes recursive activation of most oftégssabove. Each thread becomes
a separate HPR dic.

8. Perform dataflow analysis of the kcode to establish andjloamorate label region names
(storeclasses) and points-at relationships.

The front end peforms a first pass of every method body thatweiheeded. This finds the basic
block boundaries and the dotnet stack depth at every brangimp. It gives a symbolic name to

every code site where a type is needed. It symbolically eesdhe code using types without data
and ignoring the control flow. Basic blocks that commenceesume with values on the dotnet
stack are modified to avoid this situation by defining addiaidocal variables, known as spills, and
byprefixing with loads and postfixing with stores. Theselsmltiables are frequently optimised

away within the front end, but if they hold data ovetiasi . Pause () they may appear in the output

RTL. All return statements within a method are replaced withranch to the end of the method.
This sets up all the ground work for removing the dot net staokthe fly, each time the method is
called.

A -root command line flag oHardwareEntryPoint attribute enables the user to select a number
of methods or classes for compilation. The argument is afisteriarchic names, separated by
semicolons. Other items present in the CIL input code arerigmh unless called from the root
items.

Where a class is selected as the root, its contents are cedteran RTL module with 10 terminals
consisting of various resets and clocks that are marked tipeirCIL with custom attributes (see
later, to be written). The constructors of the class arepnéted at compile time and all assignments
made by these constructors are interpreted as initial gdbrahe RTL variables. Where the values
are not further changed at run time, the variables turn iotmpile-time constants and disappear
from the object code.

Where a class is selected as a root, all of the methods in et wlill be compiled as separate entry
points and it is not normally appropriate for one to call &eot calls should generally be to methods
of other classes.

Where a method is given as a root component, its parameteasidedl to the formal parameter list
of the RTL module created. Where the method code has a predqeifiole entering an infinite loop,
the actions of the preamble are treated in the same way aswttoss of a class, viz. interpreted at
compile-time to give initial or reset values to variables. &#a method exits and returns a non-void
value, an extra parameter is added to the RTL module formrahpeter list.

The VM code can be processed by the HPR tool in many ways, buitefest here is the 'con-
vertto_rtl" operation that is activated by the "-vnI’ command linptmn. (NB: This is now on by
default in the KiwiCO0O recipe, disable with -verilog-gerisable).

KiwiC TimesTable.exe -root ‘TimesTable;TimesTable.Main’ -vnl TimesTable.v

More than one portable assembly (CIL/PE) file can be giverhercommand line and KiwiC will
aggregate them. The file name of the last file listed will bedusename the compilation outputs by
default (in the absence of other command line flags).

(At some point, KiwiC might be extended to also invoke the G#hpiler if given a C# file.)

Kiwi Scientific Acceleration Manual 96
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Part VI
Miscellaneous

19 FAQ and Bugs

Note: Do not use Console.Writeline or Write with 4 or more arguais since MCS converts these
calls to a different style not supported by KiwiC.

Q. My design takes forever to compile but seems to make magress with-repack=disable.

A. -repack=disable will cause all arrays to be of size 2**64 words. The only thiygu can
usefully do with repack disabled is run the internal simuaDiosim. Diosim models enormous
arrays as dictionary-based sparse structures. It is niseédhe Diosim output, but the resulting
RTL will break most back-end simulation or synth flows (uslésey too are able to handle arrays
like that).

Q. Can | use Kiwi for Visual Basic?

A. Kiwi has not been directed to address Visual Basic builiea little trial/demo on the following
link:

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-visual-t

Q. If multiply by a constant, floating-point number, willsgialist FP ALUs be made or will KiwiC
use a standard FP adder with a tied-off argument?

A. Currently it is the latter, although the argument may nettied off in all cases: generally the
multiplier will be being used for various operations with ltiplexing of provided arguments. Also,
where it is tied off, the FPGA tools will typically perform see (considerable?) constant folding.

Q. I am converting from C code that contains legacy unions ...

A. KiwiC is not set up to handle unsafe unions at all. It mostyrks on the basis that the input code
is strongly typed, but there is a little backdoor (calledtBé€onvert) somewhere for floating point

operations. The standard GetBytes forms in BitConverteulshalso work, but they produce a lot of
intermediate code that goes all down the KiwiC recipe uhtibefully, allmost totally disappearing

in load/store elides in the final output.

From test56 - Adding the FastBitConvert attribute makesiKiwgnore the bodies of functions such
as these and replaces the body with its own fast-path igezdde based only on the signatures of
the functions.

[Kiwi.FastBitConvert()]
static ulong fast_from_double(double darg)

{
byte [] asbytes = BitConverter.GetBytes(darg);
return BitConverter.ToUInt64(asbytes, 0);

}

[Kiwi.FastBitConvert ()]
static double fast_to_double(ulong farg)

Kiwi Scientific Acceleration Manual 97
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

{
byte [] asbytes = BitConverter.GetBytes(farg);
double rr = BitConverter.ToDouble(asbytes, 0);
return rr;

}

[Kiwi.FastBitConvert ()]

static uint fast_from_float(float darg)

{
byte [] asbytes = BitConverter.GetBytes(darg);
return BitConverter.ToUInt32(asbytes, 0);

3

[Kiwi.FastBitConvert ()]

static float fast_to_float(uint farg)

{
byte [] asbytes = BitConverter.GetBytes(farg);
float rr = BitConverter.ToSingle(asbytes, 0);
return rr;

}

Q. KiwiC stops with an incomprehensible error. How can I eiv far KiwiC is getting through my
compilation?

A. The most simple approach, with a fragile tool, is to buifdyour application slowly and check
whether KiwiC keeps compiling it successfully as you go.iMIgy can be gained by adding com-
mand line flags to write out the disassembled PE file and irediate kcode. The PE file can
be found inobj/ast.cil if you add flag +-kiwic-kcode-dump=enable+. You should gat &code
listing file for each thread of your design. These can be fonfites such asbj/kcode . T403.gt4. txt.
These contain low-level imperative code generated fronCtenethod bodies. If the full Kiwife
recipe stage runs successfully, you should see a file cellgfh02_kiwife/report-full which

is the input to the HLS toolchain implemented by HPR in itssaduent receipe stages. You may
need to add-report-each-step to get each report file added. Also, there are serveral verbos
logging modes that can be enabled from the command line vaigs ftalled loglevel which should
be set to zero for maximum output.

Q. Can we have 2 [Kiwi.HardwareEntryPoint()] in the sames®Are the threads being translated
as different always blocks to Verilog?

A. There are three ways to make new threads.

1. I normally create a second thread from the first using thet@#dard approach that you show and
as used in some of the tests like test44.cs

Thread threadx = new Thread(newThreadStart(reader.ReceiveProcess));
but 2. having more than one hardware entry point attribut onore than one entry on -root cmd

line flag should all also work fine. The threads do not have timluifferent classes but techniques
2 and 3 can only be added to a static method.

Kiwi Scientific Acceleration Manual 98
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Note: Join is not supported at the moment.

Regarding the number of always blocks resulting, | am notstoe off hand. The compose recipe
stage combines updates from different VM2s and this shoetblgps ensure there is only one. But
most designs, | think, run the same or and/or compile fastér wompose=disable. So the ver-
ilog_gen stage is also doing the same trick | think. Certainly aeshaariable needs to be only
written by one always block in the standard synthesisabti#dgesubset. Or if it is an on-chip RAM
then two threads maximum owing to dual-port RAM availabl&RGA.

Q. ... but the compiler exhausts all of the memory and the madirashes ...

A. Which stage is taking all the time ? Can you see the relaitmedtamps of the create time of the
various folders in thebj folder?

Are you in hard pause mode and is all the time time being takémei kiwife or bevelab? If so, make
sure that every control flow path in your non-unwound loop#&ins &Kiwi.Pause (). You should
be able to set the unwind budgets to smaller values to makeadimpiler stop attempting earlier.
Defaults are large:

-cil-uwind-budget=10000
-bevelab-ubudget=10000

Q. | got another 2 warnings:

+++ precision failure? ::: diadic_promote_and_resolve did not know
what to do with CT_cr(Emu/debug_operands, <<NONE>>) V_minus
CTL_net(false, 32, Signed, [native])

+++ precision failure? ::: diadic_promote_and_resolve did not know
what to do with &(CT_arr(CTL_net(false, 64, Unsigned, [native]),
<unspec>)) V_bitor CTL_net(false, 64, Signed, [native])

A. This first one is a subtract of a 32 bit integer from a clagésremce (object pointer). The second
one looks like you are doing bitwise or of a 64-bit value witithithe address of an array.

Neither of these is allowed in safe C# although you can do whbatwant in unsafe C#. These
operations are not supported. Kiwi only supports compagsonultiplexing and assignment of
array bases.

Q. If lwant to multiply a pair of 32-bit numbers to get a 64-@sult | would typically use something
like

int a, b;
long p = ((longla) * b;

but won't this instantiate a 64-bit multiplier component?

A. The multipliers that KiwiC (restructure2) instantiafesm cvgates.v, such as
CV_INT_FL3_MULTIPLIER_S, are just soft macros that the FPGA tools will flatten androjsie on

a use-case basis. If that multiplier is used just for the oné#ipication, the FPGA tools will trim
the internal logic of the multiplier to handle only 32-bitputs, using fewer DSP splices. If the
instantiated multiplier has been schedulled for use atraibe sites that use higher-order input or

Kiwi Scientific Acceleration Manual 99
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

output bits, the multiplier will be trimmed less. But, thedacy allocated to the 64-bit multiplier
will be a couple of cycles more than the smaller one and theAR@Is do not, of course, retime
the design such that this can be reclaimed.

Q. | get a postscript file called 'nolayout.eps’ what is this?

A. The HPR library contains a constructive placer that writegraphical floor plan to an eps
PostScript file. This is used for net-length power analysisoatput RTL. It is also being used
in the constructive placer to decide how best to colour teggsand bind functional units such as
ALUs.

Q. Do you have any Xillybus or JetStream (Manchester) demos?

A. No, but we expect these to be contributed soon ... Perhapswgith the the Zynq director
substrate.

Q. KiwiC is generating a circuit with too many output termto fit in my FPGA. Why is this?

A. You may be directly instantiating the Kiwi-generated Ras the top-level of your FPGA. This
is not a normal design route: you should most likely be usimigadard Kiwi substrate for your
FPGA and it is the substrate that instantiates the Kiwi cdthe. problem most likely arises from the
Waypoint outputs. These are only for simulation purposesthay can be safely ignored. If they
are left disconnected in the component that instantiateKitvi-generated RTL the FPGA tools
will delete the logic that drives them instead of attemptimgoute them to a lot of output pads (10
BLOCKS).

output reg [639:0] KppWaypointO,
output [639:0] KppWaypointl,

You can also use command line flagnl-keep-waypoints=disable to turn off their rendering.
Q. What IP-XACT support does Kiwi have?

A. There is a new feature (1Q17) to report each componenhegised using IP-XACT. The IP-
XACT output should be the same for RTL and RTL-style Systerafpuats, but will be different for
TLM style SystemC output owing to method calls being usetkad of nets. The substrate access
port for debug and directing also appears in the reporteB-XACT (510.4).

The cell libary of RAMs and other components that KiwiC imgtates is currently hard-coded in
KiwiC, but as part of the increased support for incrementahpgilation and black boxes we will
soon allow Kiwi to instantiate components described withkKIRCT.

The HPR L/S HPR System Integrator is a simple IP-XACT-drivéring generator. This can be
accessed via Kiwi's new HPR System Integrator facilitiesdnly 2017.

Q. I tried more ideas for one-liners, such as:
exist = Array.Index0f (LUT, tmp) > -1 7 true : false;

but it didn’t work.

A. Since Kiwi imports very little of the standard C# librasighe .Index method of the Array class
is most likely missing. For 2-D and greater arrays, Kiwi uaesmplementation in Kiwic.cs and

it is easily possible to add the implementation of Index ititose implementations in C# src code
form and it should then work. For 1-D arrays, the bulk of thelementation is hardcoded inside

Kiwi Scientific Acceleration Manual 100
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

KiwiC, but there should be potential to extend the hardcgdiith additional C# code and place
that, ultimately, in Kiwic.cs as well. Its a matter of knowgimhat to put in there. In short you should
easily be able to contribute your own implementation of siitgs.

Q. Why do | get KiwiC error: do not update your formal paramgfer now.

A. The message you have now encountered is a result of storimgpdifying a formal parameter to
a function which is functionality was missing. Just copy yarmal into a local var at the start of
the function body for now. Fixed in version 2.16 onwards, Ast2016.

void myfun (int fp)
{
int copied_fp = fp;
copied_fp += 1; // Do not directly modify your call by value
// formals before Sept 2016.
// (Pass by reference works fine).

3

Q. What does this mean: System.Exceptioi_INT_FL2_MULTIPLIER_S unrecognised gate for

presim: arity=6

A. This is from the built-in simulator, diosim. The designshased a fixed-latency of 2 multiplier

component (from cvgates.v or elsewhere) but the simulaies chot know how to simulate it. Re-
structure2 should have included its own simulation modeééxh component it deploys, but one fix
is to not apply diosim to this design (miss off the -sim=nnragJlsince the generated RTL should
be ok.

Q. How can | get meaningful line numbers in my error messages KiwiC ?

A. Line numbers are hard to track through the C# front end,dotdrs should be reported on a
method name basis. There is a fairly-detailed log file wmittethe obj/hOkiwic folder but it is hard

to understand. Increasingly you can get a finer cross referetith the source code by embedding
waypoints in your source fil10.2

Q. Why are bools using 32 bits, even in arrays ?

A. A C# compiler may compiles them this way - CIL has no rundibool class. It may be best to
instantiate your own bit-packed array class with suitabierioads if you want to exploit bit-level
storage.

Q. Can | generate a VCD using the builtin simulator, diosim.

A. Yes, use the "-sim=nnnn” argument to set the number ofesytth simulate for and add "-diosim-
vcd=myvcd.vcd” to set the output file name. The "-recipeiges/simkcode.rcp” command line flag
is also useful for just running the KiwiC front end in a softerdike simulation.

Q. Why is the reset input not used in the generated RTL?
A. See§38. The reset net is disconnected unless you indeed add
-vnl-resets=synchronous

or
-vnl-resets=asynchronous

or change this XML line in the file /distro/lib/recipes/KiwiC00.rcp

Kiwi Scientific Acceleration Manual 101
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

<defaultsetting> resets none </defaultsetting>

Q. Why does the type of the output result end up as: reg [31BPPHIFO2 result; instead of reg
FIFO_FIFO2result; ?

A. In Verilog, integers are signed and registers are not. dualter this by adjusting the definition
of result. Recent Verilog standards also allow signed teido be defined.

Q. I have lots of X uncertain values in my simulation

A. Is the source of X from flip-flops that are not cleared at resés it floating inputs? Did you put
-vnl-resets=synchronous ? You do not need this on all FP@Alsitions since FPGA flops are self
resetting, but with the associated simulator you may neied th

It is good to trace the pclOnz program counter (or similar efagenerated by KiwiC for each
thread. This normally starts at zero. You can cross chedkvitih the dot graphviz output or the
tables appended to the back of the .v file (also present inkijileQ8 restructure/s00... file).

Q. I thought | would have a go at synthesizing the ... Howeter Verilog finish statement gets in
the way. Should there really be a finish command in synthb2Zerilog?

A. OLD: If the main entry point to the C# program allows itseéhd to exit then a finish will be put
in the output code by default. This is indeed not synthesgsauite often one wants the program
to exit when run native but not when synthesised. One salutiahis is to place the main body
of the program in a subroutine that is called from the Mainhudt(ie the entry point). The same
subroutine is also called from a second method where it ibbged in an infinite while loop. This
second method can then be named as the root/entry point WiCKkand this will avoid a finish
statement in the generated code.

NEW: We replace -kiwic-finish with -kiwife-directorate-edmode. OLD: Suppressing the default
operation on main thread exit statement can be controllddasdommand line flagkiwic-finish.

-kiwic-finish= [enable | disable]

Another solution is to mark up the main body subroutine whithkiwi .Remote () attribute. This
places it in an infinite loop, where it will become ready tovgeagain once the body has finished,
and adds handshaking wires to synchronise its execution.

Another solution is to put an infinite loop in the main entnimddperhaps including a Kiwi.Pause()
statement in the loop if there is other complexity to ensukei® spends less time working out that
it is infinite).

Q. | get the error ’kiwife: ran out of lasso steps, pleasedase fe unwind budget’ ?

A. If your program has no input, compiling it is the same thawinterpreting it. KiwiC is prob-
ably trying to run the whole program at compile time. To givsdmething to do at run time, a
Kiwi.Pause () should be inserted before you enter the main outer loop aof gpplication.

Q. I get the following strange error message even when | amraymprogram is not allocating fresh
memory inside the thread lasso loop :Bad form heap pointestg_alloc (already allocated a
variable sized object ?).

A. Check whether you are allocating local arrays on the stdithese are just constant lookup tables
makes sure you put the keyword const in front to make thericaligtallocated.

Kiwi Scientific Acceleration Manual 102
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Q. | get an error like [ERROR] FATAL UNHANDLED EXCEPTION: Sysm.Exception: thread-
start//T403/Main/t532: Creating class instance this/uid token=System/AcBstarl/@/16/SS/TX1/SINT/
Bad form heap pointer for okalloc of type System/Action‘atarl/@/16/SS/TX1/SINT/TX0 post

end of elaboration point (or have already allocated a rumtiariable sized object ?). storemode=STORE!
sbrk=/tend:notaconst constantold_meets entrypoint=0

A. This is a Kiwi 1 restriction - most heap objects need to Hecalted before the end of static
elaboration. Consider moving the code that allocates thp bbject to the class constructor or else
to another method that you call earlier. (For allocate-dteras, this code migration will become
automatic soon.)

Q.Can | use in Kiwi the data type struct?

A. Kiwi aims to support static and dynamic classes well. &sun C# are slightly odd things and
Kiwi has little support form them that is properly well tegtel' his is being fixed 4Q2016. Normally
you should use classes but it you have a good reason to ustsstreican see how well it is currently
working.

Q. What string formatting is supported in Console.Write or Alrihe?

A. Up to three arguments are supported. String, integemuciinteger hex and floating point
should all work. String catenation is also supported predid is done a KiwiC compile time.

Q. | get FPGA or RTL SIM error regardingy_SP_SSRAM_FL1 missing.

A. This is a single-ported synchronous static RAM with fixatehcy of 1 read cycle. It will most
likely be mapped to block RAM by FPGA tools. There are a numiifesuch components that
KiwiC instantiates. Please include a Kiwi technology lityrauch asiistro/lib/cvgates.v in
your back end compile

Q. Does Kiwi supports the keyword ‘break’?

A. Yes, all control flow constructs like for/while/contintbeeak are handled by the C# compiler and
just appear as goto’s in the CIL dot net code input to KiwiC.

Q. What Console.Write formatting is supported?
A.

examples - all are standard dot net
{0} - arg O in decimal or floating
{1} - arg 1
{2} - arg 2
{1:x} - arg 1 in hex
{1:X} - arg 1 in upper case hex
{1:3} - field width of 3 decimal
{1:03X} - field width of 3, hex with leading zeros

Q. If | instantiate : static ulong[] buffer = new ulong[10] ,iMiC will generate registers. In the
simulation | noticed that | got, not 10 regs, but 18 | triedoalgith static ulong[] buffer = new
ulong[5] and got 8 regs.

A. A short array of 10 entries is most likely to be mapped to é@asate registers, especially if you
only use constant subscripts. If your subscripts can bermeted not to use the whole range or
only use multiples of a some constant or fall in disjoint cegi you will get other patterns. Quite

Kiwi Scientific Acceleration Manual 103
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

how it gets allocated depends on the pattern of subscripon use. The figure 18 you quote is
presumably inflation on top of that from other aspects of tegigh? Kiwi does not replicate and
mirror storage at the moment (but this is being added for RGMans) although this could possibly

be useful under some circumstances. Ditto 5 to 8. Also, ieddp on how many time you assign to
buffer and how many different calls to new you make. | assumehave just one assign outside of
any loop or re-entrant code.

Q. Itry to instantiate 2 ulong[256] arrays. In the RTL there tavo memories, one £4_US...[255:0][63:0]
and one A64.US...[2047][63:0]. | checked also the verilog file and | oetl that the address of the
second array, whenever there is an operation, is multiphe8l Is it because of some optimization?

A.The byte address of a u64 array will be a factor of 8 difféfesm the word address. Also If you
only used every 8th location in an array, the repack reciggestnight notice this and divide each
address by 8 to save space. The addresses on the input tpélck recipe stage are byte addresses.
The addresses afterwards should be efficiently packed s&kewhich would be /64 if you used
only every 8th word owing to both effects acting.

Q. KiwiC seems to be deleting most of my design. Is this carec

A. The processing stage called conerefine deletes unustedgbahe design. A part of the design
is unused if it generates no output. Outputs include PLkd#k Console.WriteLine or net-level
outputs flagged wittkiwi.outputwordport or similar. Adding-conerefine=disable to the
command line suppresses the associated trimming, reguftia larger RTL or other output file,
although occasionally this may lead to elements being ptesiethe code generation stage that
cannot be sensibly rendered in the output language.

Also, certain keeps can be marked up on the command line sodharefine uses these as roots.

Another common cause of an empty or near-empty RTL file isrtbatompilation roots were spec-
ified. This can be spotted when the fidej/h02_kiwife/report-full contains no executable
code. You then need to add something li®ot=MyApp.MyMain. You also see in KiwiC.rpt that
no root was processed, except for perhaps the odd classuciost

Q. If want a net-level I/O bus wider than 128 bits (the sizeaflong), what can | do?

A. There is some support for this that needs documentingyrevae array is passed as 1/0. The
colourbars example illustrates this style, but it is nothia tepo and has not been tested for a while.
However, having a static C# struct (not a class) as an I/Otaghliork. However, C# structs is not
mature in KiwiC. We can easily fix a few basic cases now howeSee test51.

Q. KiwiC is taking a very long time to compile and then failssays it has run out of unwind steps.
Why is this?

A. If you are in a soft pause mode, KiwiC will infer Kiwi.Pau3statements where it feels necessary
to allocate work to clock cycles. In hard pause mode KiwiCasfree to insert such pauses. If you
have an infinite loop without a pause in it, KiwiC will fail towind the loop. Check that all control
paths (PC trajectories) inside infinite loops have at least IGiwi.Pause() inside them. Also, try
setting the unwind attempt limits (cil-unwind-budget, bRb-ubudget, etc.) to smaller values to
discover the error earlier or to larger values if you thin& éffort is warranted.

Q. Icarus Verilog reports buffer overflow.

A. This results from too many commments in the RTL files. Agtdd1-add-aux-reports=disable
to your command line.

Kiwi Scientific Acceleration Manual 104
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Q. Icarus Verilog 10.0 gives fails on test0 and elsewhere.
A. That is a duff version, build Icarus 10.2 from source.

Q. KiwiC is trying to start wine and creating file paths withckalashes in them, even though |
am running on Linux. It also reports it is running on NT 5.2 whbere is no windows machine
anywhere involved.

A. On recent linux systems, on encountering a .exe the slik8tart wine and try to open windows
and so on. The KiwiC shell scripts enable you to define MONO yuul should set this in your
environment to ‘mono’ or ‘/usr/bin/mono’. If this still dsenot fix the problem please set you shell
env var MONQOS OVERRIDE to something begining with 'I' such as linux64 andmMC will
override the installed path combiner and related options.

+++ checking failed:

Factorial_fac[15:0] :0UTPUT: :Unsigned{init=0, io_output=true, HwWidth=16, storage
=32} := Factorial_fac*FTFT4FactorialCircuit_V_0: assignment may wrap differently
: rhs/w=32, lhs/w=16, store/w=32

[Kiwi.OutputWordPort (15, 0)] static uint fac = 1;

Q. Hi, I was looking at the Kiwi project for compiling C# Pragns into FPGA, what the tool does
is convert the C# program to a logic circuit? is there is a veayisualize the logic circuit associated
to program?

A. You can look at the circuit in the FPGA tools schematic \eewBut the generated circuit is

typically very large indeed and you need to look at a blockydien of the datapath and a flowchart
of the controller relating to each thread. The controllew@ibarts are rendered in GraphViz dot but
is often too large for that tool if it has 1000 or so codepoir@saphical output for the datapath is
being worked on at the moment as part of the new spatiallyr@vegyister colouring system that tries
to minimise wiring and multiplexor complexity.

Q. Can | use Xilinx FIFOs? pg057-fifo-generator.pdf

A. The CAMs on the NetFPGA boards and the new Xilinx harden&®B are typical third-party
black-box componenets. These are accessible to Kiwi ugdrediting them as separately-compiled
components to be invoked vidiwi.Remote () See test72 under construction. Test72 shows both
halves of the separate compilation needed to wrap up a piairty- IP block for structural instan-
tiation. But the wrapped up result for Virtex-like FIFOs is@ going to be placed in the Kiwi
distribution (folder name TBD) so that end-users need onlyha easy half.

OLD ANSWER : To use them in Kiwi | would probably (currently)lgghe code for the source and
sink units such that each can be separately compiled by Kiivsb that the composite design can
also be run as a mono program where the FIFO functionalityppked by a fifo.dll generated from
C#. For the FPGA implementation | would read the separatdogeoutputs from the two Kiwi
compiles into the FPGA tools along with an implementationhef FIFO. My first implementation
would be some simple hand-crafted RTL and then later | woeitdace this with the output of the
Xilinx FIFO generator. The two stages are to retain ease lofigiging and design portability, where
an RTL simulation of the system without Xilinx IP remains pitxe.

Additional answer: please see test72 for a worked examptengreds writing up proprely.
Q. The burning question for me is, what options are availétmeexploiting parallelism that are

Kiwi Scientific Acceleration Manual 105
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

not explicitly referred to from the C code? Does your coreedtleviate the Von Neumann ALU
bottleneck from critical paths or is an imperative C ded@ipunsuitable for substantial acceleration
opportunities?

A. With KiwiC, all the standard HLS limits on parallelism dgp This means a program that can
be executed in one clock cycle will be executed in one cloakecprovided sufficient budgets on
hardware resource use and and logic in a clock cycle are set.

The is no intrinsic parallelisation limit arising from a gie-threaded, imperative description. But
limits arise in practice from data and control dependeficzzards.

Regarding data dependencies, where array subscript csopds undecidable at compile-time
(name aliases), the resulting h/w design from trying to gssively parallel is generally dominated
by spurious multiplexing paths and not a good design. Wheringaktray subscript comparisons at
compile time, KiwiC can spot common paradigms, such as idanéxpressions, constant expres-
sions and mainfestly unequal expressions klkandx+ 1. Computing theory states that there will
always be decidable equalities outside those KiwiC is aogned to decide.

Regarding control dependencies, the current KiwiC elaimralgorithms do not dynamically un-

wind outer loops when inner loops are still being unwoundis thill be addressed in the VSFG

replacement to bevelab. But a programming style where thedaxit predicate is determinable near
the head of the loop body always helps in sequencer modesjass with Von Neumann comput-

ers, and the compilers always try to hoist it. There is no lemob of course, with data-independent
loop control.

All object fields and static variables are currently styiatipdated in program order. Additional
annotation or policy control as 'non-architectural’ orlaeed’ for for fields or static variables may
be supported in the near future. These will enable KiwiC tomiwe speculative execution but make
debugging harder because program order will not be followkal help this, architectural 'slave’
registers may be added for debug viewing that can simply ketbby the FPGA toolchain if not
being monitored in any way.

Q. What endianness is Kiwi - | need this for unsafe bit conegrsoutines ?

A. KiwiC supports only little-endian operations. There a&ezious dot net API calls that you can
make to interogate this at run time and Kiwi’s libraries pd=d this information. For your code

to remain portable you should invoke this APl and KiwiC witbgagate the constants accordingly,
discarding any code for big-endian support.

Q. From what | can tell th&iwi.d11 is not being taken into account at all the kiwi specific stuff
when creating theexe ?

A. The Kiwi-specific 'stuff’ just adds a few attributes to tha11 — it will normally still run as a
mono/dotnet program with those attributes in it. The Kiwi@npiler invokes a multi-stage recipe
with reports for each stage written to separate sub-folidettse ‘obj’ folder that it creates for itself.
Their detail level can be increased with -report-each-atepvarious verbose and tracelevel settings.
If the recipe gets as far as making something like ‘w&@ilog-gen’ in the ‘obj’ folder you should
find the primary Verilog output file has been written to youegiystem in folder containing ‘obyj’.

Q. Sorry to take your time again but I'm new to this and | wap'toe sure of something, what is
implemented on the FPGA is a processor that runs the prograsndirectly the representation of
the program as a logic circuit?

A. Short answers: it is a circuit, not a processor plus firnewvafhere are various compilation

Kiwi Scientific Acceleration Manual 106
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

styles. The fully-pipelined accelerator will run the whalegram every clock tick, accepting new
data every clock cycle, allbeit with some number of clocklegdatency between a particular input
appearing at the output. Sequencer mode will generate arowktapath made up of RAMs, ALUs

and external DRAM connections and fold the program ontodtriscture using some small number
of clock cycles for each iteration of the inner loops. Comtiiln directives alter the trade off between
silicon used and the number of clock cycles needed. No stdrgtacessor is used. (High-level

synthesis of this kind is used in your mobile phone and esabl® compress motion video from

the camera without instantly flattening the battery.)

For larger programs, a good deal of the code tends to be gtamndireporting code that is executed

far less frequently than the main inner loops. This code @plaéced on a standard processor and
coupled to the HLS-generated hardware or else the datapathd higher-performance parts can

also be used as an unoptimised datapath for the less-coymaxatuted code.

Q. Can continuous assignment be achieved between Kiwenet4/O descriptions.

A. There is no analogous behaviour for a C# program, but #agify might be useful in various

debug lashups perhaps. See notes elsewhere on SystemCBtaaiKiwi.Hardware attribute given

to an infinite loop in hard pause mode with no Pause statenmesitie it should probably generate
combinational logic, or the pipelined accelerator modéhwaitre-initiation interval of zero should
also serve. We need to check whether these currently wotkprbbably not at the moment (Jan
2018).

Q. Is the dotnet reflection APl supported at all?

A. You can use Object.GetType and Object.ToString in cefpéaces found so far to be useful. The
results are not guaranteed to be the same as mono returasemdnetheless helpful.

A. These are warnings that the generated RTL will behavewdifftly from the dot net versions if
overflow occurs in the custom bit width fields.

You defined the output port to be a sixteen bit register butl tise 'uint’ dot net valuetype to model
it in the dll. You are performing an operation on this fieldttisasensitive to its width. The warning
is that there might be a difference in behaviour if, e.g. ymrément this value so that it goes above
56535.

Part VII
Orangepath Synthesis Engines

The HPR L/S (aka Orangepath) library supports various matesynthesis engines. These are plug-
ins.

Because all input is converted to the HPR virtual machineainoutput is from that internal form it
is also sensible to use the HPR library for translation psegavithout doing any actual synthesis.

All plugins rewrite one HPR machine as another. But somertiaat in an external file, like the Kiwi
front end or the deserialiser or the RTL front end simply ignthe input machine they are fed by
the Orangepath recipe.

Kiwi Scientific Acceleration Manual 107
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

20

21

22

23

24

(©2011-17 DJ Greaves + S Singh

A* Live Path Interface Synthesiser

The H2 front end tool allows access to the live path interfacghesiser. The A* version is described
on this web page. http://www.cl.cam.ac.uk/ djg11/wwwhpithpage.html

This plugin has not been tested recentl.

Transactor Synthesiser

The transactor synthesiser is described on this link
http://www.cl.cam.ac.uk/research/srg/han/hprls/gegrath/transactors
This plugin has not been tested recently.

Asynchronous Logic Synthesiser

The H1 tool implements an asynchronous logic synthesisaried on this link.
http://www.cl.cam.ac.uk/ djgl1/wwwhpr/dsasynch.html
This plugin has not been tested recently.

SAT-based Logic Synthesiser

The H1 tool implements a SAT-based logic synthesiser desdron this link.
http://www.cl.cam.ac.uk/ djg11/wwwhpr/dslogic.html
This synthesiser is currently not part of the main HPR revigiontrol branch.

Bevelab: Synchronous FSM Synthesiser

Bevelab is an HPR plugin that converts HPR threaded form3tof&m. Both the input and outputs
to this stage typically have the concept of a program coupeethread, but the number of program
counter states is greatly reduced. In the output form, masigaments and array writes are made
in parallel. A custom data path is generated for each thraddlse program counter becomes the
internal state of a micro-sequencer that controls that platia. The emitted program counter does
not need to be treated differently, then on, from any othalasaegister, although the distinction is
preserved in the output form for readibility, debugging &ade of determining disjoint structural
operations in restructure (and perhaps to assist proa)taatd for the HPR Performance Predictor
that needs to track the control flow graph through the corapteilchain.

(Alternatives to Bevelab are Systolic and VSFG. VSRE@5) can achieve greater throughput with
heavily-pipelined components in the presence of complerobflow. Systolic requires bounded
loops and projects to a systolic array (not described inrttaaual).)

Kiwi Scientific Acceleration Manual 108
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Usually, the input is in DIC form where the DIC contains assignts, conditional gotos, fork/join
and leaf calls to HPR library functions. More-advanced iratiee control flow constructs, such as
while, for, continue, break, call and return need to haventadeeady removed.

The resulting RTL is generally ‘synthesisable’ as definedbimguage standards for Verilog, VHDL
and SystemC. Although it uses common subexpression shatriilsghopelessly inefficient since a
naive compilation to hardware would instantiate a frestghflarithmetic operator at every textual
site where an operator occurs. In addition, it will typigdde full of structural hazards where RAMs
are addressed at multiple locations in one clock cycle, admem reality they are limited in number
of simultaneous operations by their number of ports. Frtalk RAMs and ALUs are assumed to
be combinatorial by this RTL, whereas in reality they arespiped or variable latency.

Converting to one of the output languages, such as Systesniy, & subsequent plugin. But the
output of Bevelab is normally first passed via Restructunat(bvercomes structural hazards, re-
pipelines and performs load balancing) to the Verilog-gkmip where it is converted to Verilog
RTL syntax.

Both Bevelab and Restructure can trade execution time sigaimmber of resources in parallel use:
the time/space fold/unfold. Bevelab is the core componéang ‘C-to-gates’ compiler. It packs
a sequential imperative program into a hardware circuit.w&f as packing multiple writes into
one cycle, it can unwind loops any bounded number of timesopkdhat read and write arrays
can generate very large multiplexor trees if the array sifitscare incomparable at unwind time,
since there are very many possible data bypasses and fangarteeded. Therefore, a packing that
minimises the number of multiplexors is normally chosen. ilapde greedy algorithm is used by
default: as much logic as possible is packed into the firde stiefined by the entry point to the
thread, subject to four limits:

1. a multiplexing logic depth heuristic limit being reached

2. aname alias (undetermined array address comparisary beeded,
3. auser-annotatated loop unwind limit being reached, and
4,

containing an intrinsically pausing operation.

Once the first state is generated, which may contain multiplet conditional branches that become
predication within that state, successive micro-sequestages are generated until closure.

Certain operations are already known to be pausing. One se@level explicit pause where the
source code contains a call to ‘Pause()’. This is neededdbtevel protocols, such as parallel to
serial conversion in a UART, and for connecting to hard IRkdathat have synchronous interfaces.
Others, such as trying to use results from integer dividg, femating point arithmetic, non-fully-
pipelined multiply and reads from RAMs that are known to gistered also generate pauses when
their source operands are also generated in the currend{sgcjuencer state.

Bevelab operates using the heuristics given in Table 4 kégan additional input, from the com-
mand line, which is an unwind budget: a number of basic bldoksonsider in any loop unwind

operation. Where loops are nested or fork in flow of contra, lihdget is divided over the various
ways.

The flaggenerate-nondet-monitors turns on and off the creation of embedded runtime monitors
for non-deterministic updates.

Kiwi Scientific Acceleration Manual 109
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

HPR

Machine(s) Unwind -ubudget n .
budget Entry point
for each thread
Pending activation queue
(pc, address, [el/iv2, e2/v2, ...]) list
: Input : Input Activation -—
i program : : —
Completed activation list
 «—»| Symbolic | | | | - |
H simulator -
Y A » no
- no _ | Already processed
Blocking i checker ? = Discard
0,1,0r2 activation or yes
: output activations budget _&»
consumed ?

Output queue with

rollback checkpoints
Machine

Figure 9: Details of the Hard Pause Mode algorithm, as pexviay Bevelab plugin in the HPR L/S

library.
Parameter Style | Default Max
Maximum number of name aliases array read 0
Maximum number of multiplexors in logic path 10
Maximum default number of iterations to unwindoops 4
Table 4: Bevelab Heuristic Table.
Kiwi Scientific Acceleration Manual 110

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

The flagpreserve-sequencer should be supplied to keep the per-thread vestigal sequémce
RTL output structures. This makes the output code more Badat can make it less compact for
synthesis, depending on the capabilites of the FPGA toals their own minimisation.

The string-vnl-resets=synchronous should be passed in to add synchronous resets to the gen-
erated sequencer logic. This is the default.

The string-vnl-resets=asynchronous should be passed in to add assynchronous resets to the
generated sequencer logic.

The string-vnl-resets=none should be passed in to supress reset logic for FPGA targeGAB
tend to have built-in, dedicated reset wiring. $88.

Bevelab has a number of scheduling algorithms (selectathe fecipe or command line). Alterna-
tively, Bevelab can be replaced with a different opath pluguch as VSFG or Systolic.

24.1 Bevelab: Hard Pause Mode Internal Operation

This section describes only Hard Pause Mode. This is wher@diition of clock pulses is under
explict programmer control via the insertion®fuse () calls.

The central data structure is the pending activation quebere an activation consists of a program
counter name, program counter value and environment mgpgariables that have so far been
changed to their new (symbolic) values.

The output is a list of finite-state-machine edges that agdlyiplaced inside a single HPR parallel
construct. The edges have to forms (g, v, e) (g, fname, [avgsére the first form assigns e to v
when g holds and the second calls function fname when g holds.

Both the pending activation queue and the output list haweelgoint annotations so that edges
generated during a failed attempt at a loop unwind can beudied.

The pending activation list is initialised with the entryipis for each thread. Operation removes one
activation and symbolically steps it through a basic blotthe program code, at which time zero,
one or two activations are returned. These are either addibe toutput list or to the pending acti-
vation list. An exit statement terminates the activatiod arfasic block terminating in a conditional
branch returns two activations. A basic block is terminatéfth a single activation at a blocking
native call, such as hgrause. When returned from the symbolic simulator, the dativanay be
flagged as blocking, in which case it is fed to the output qu&iteerwise, if the unwind budget is
not used up the resulting activations are added to the pgmglieue.

A third queue records successfully processed activatibiotivations are discarded and not added
to the pending queue if they have already been successfalbgpsed. Checking this requires com-
parison of symbolic environments. These are kept in a "dos®rmal form” form so that syntactic
equivalence can be used. This list is also subject to rdtlbac

Operation continues until the pending activation queueriptg. A powerful proof engine for com-
paring activations would enable this condition to be chdakmre fully and avoid untermination
with a greater number of designs.

Kiwi Scientific Acceleration Manual 111
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

24.2 Bevelab: Soft Pause Mode Internal Operation

25

26

27

28

Classical HLS operates by loop unwinding to expose paisttel This is achieved by Bevelab when

running in Soft Pause Mode. It reorganises the input progratarms of the number and size of

basic blocks. Instead of expecting explretuse () calls in the input language, as in Hard Pause
Mode, basic blocks of appropriate size and with other priepeare automatically generated from

raw procedural programming. This is the approach needegkioeral acceleration of scientific (aka

Big Data) programs.

The transforms available are :

1. Loop fusion: combining the operations of two successieps$ with identical trip counts into
one loop;

2. Loop unrolling: expanding the body of a loop by an unwinctda;
3. Predication: replacing control flow with conditional ezpsions;

4. De-predication: converting conditional expressiorts gontrol flow.

VSFG - Value State Flow Graph

VSFG is an alternative to the bevelab plugin - it uses disted dataflow instead of having a cen-
tralised micro-sequencer per thread. It is based on therpapgdew Dataflow Compiler IR for
Accelerating Control-Intensive Code in Spatial HardwdE]. It can achieve greater throughput
with heavily pipelined components in the presence of comptatrol flow compared with tradi-
tional loop unwinding and static schedulling.

Its implementation within Kiwi is currently experimentalanhuary 2015).

PSL Synthesiser

The PSL synthesiser converts PSL temporal assertions $itb-fased runtime monitors.

Statechart Synthesiser

The Sys-ML statechart synthesiser is built in to the frort ehthe H2 tool. It must be built in to
other front ends that generate HPR VMs,

SSMG Synthesiser

SSMG is the main refinement component that converts assertioexecutable logic using goal-
directed search. The SSMG synthesiser is described in aaepdocument and is a complete
sub-project with respect to HPR.

Kiwi Scientific Acceleration Manual 112
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Parameter Style Default Max
Max no of integer adders and subtractors per thread flash unlimited
Max no of integer multipliers per thread one-cycle 5000 bit products
Max no of integer dividers per thread vari-latency 5

Max no of F/P ALUs per thread fixed latency of 5 5

Max size register file (bits) 512

Max size single-port block RAM per thread

Max no of single-port block RAMs per thread 2

Max no dual-port block RAMs shared over threads 2

Max size dual-port block RAMs shared over threads bits

No of DRAM front-side cache ports unlimited

No of DRAM banks platform-specific

Table 5: An Example Structural Resource Guide Table.

29 Repack Recipe Stage

The repack function is essentially KiwiC-specific. It istbfore described in the KiwiC chapters of
this manual §4.8.1).

30 Restructure Recipe Stage

Restructuring is need to overcome structural hazardsngrishen there are insufficient resources
for all the required operations to take place in parallel emdenerally sequence operations in the
time domain. Resources are mainly ALUs and memory portsleTalshows the main parameters
that control time/space trade off while restructuring aiglesFurther parameters relate to the cache
size and architecture, DRAM clock speed. The repack ph2® @enerated as many memories
as possible. These must now be allocated to the allowed laaedwesources, which may mean
combining memories to reduce their total number, but takig account a good balance for port
bandwidth. Hardware platforms vary in the number of DRAM kaprovided. The number of
block RAMs inside an individual FPGA, like the number of ALWsuse, can be varied between one
compilation and another.

The restructure phase bounds the number of each type otwstlicesource generated for each
thread. It then generates a static schedule for that thr€adltain subsystems can have variable
latency, in which case the static schedule is based on thagexecution time, with stalls and

holding registers being generated for cases that run régplgcslower or faster than nominal. The

schedule may also get stalled at execution time owing to mymavents that cannot be predicted
in advance. Typical dynamic events are cache misses, dantdor shared resources from other
threads and blocking message passing between threads.

The scheduller statically maps memory operations to partaolti-ported memories. It overcomes
all static hazards, ensuring that no attempt to use a resouwce than once at a time occurs. It there-
fore ensures that different operations occur in differgites, with automatic insertion of holding
registers to maintain data values that would not be avalatlen needed.

The five-stage pipeline for FPUs consists of, for an add, dleving fully-pipelined steps: 1. un-

Kiwi Scientific Acceleration Manual 113
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

pack bit fields and compare mantissas, 2. shift smaller ssmti3. add mantissas, 4. normalise,
5. round and repack.

Part VIII
Output and Analysis Recipe Stages

The HPR library contains the Diosim simulator, output gatmns and other analysis tools. Each is
a plugin invoked by an Orangepath recipe stage.

31 HPR Output Formats Supported

The HPR library contains a number of output code generafdisf these write out a representation
of an internal HPR machine. Not all forms of HPR machine cawbten out in all output forms,
but, where this is not possible, a synthesis engine shoulavaiable that can be applied to the
internal HPR machine to convert it.

Certain output formats can encode both an RTL/hardwale-atyd a software/threaded style. For
instance, a C-like input file can be rendered out again iratied C style, or as a list of non-blocking
assignments using the SystemC library.

The following output formats are created by selecting plagi

1. RTL Form: The RTL output is written as a Verilog RTL. One module is ceeathat either
contains just the RTL portion of the design, or the RTL andanses of each MPU that is
executing software parts of the design.

2. Netlist Form: The RTL output is compiled to a structural netlist in Verilttat contains
nothing but gate and flip-flop instances.

3. H2 IMP Form: The HPR form is output to an IMP file. This has the same syntathas
imperative subset of H2. Discontinued now.

4. SMV form: The HPR VM is output as an SMV code and the assertions that iatvieeen
compiled or refined are output as assertions for SMV to check.

5. C++ and CSharp Forms: The HPR VM is output as C++ or C# code suitable for third-party
compilers. RTL forms may also be output as synthesisable8\a.

6. UIA MPU Form: The IMP imperative language is compiled to IMP assembly lzgg and
output as a s file.

7. IP-XACT form: The structural components are written out as IP-XACT déding and in-
stances.

8. S-expression form:The HPR VM is dumped a lisp S-expression to a file.

Kiwi Scientific Acceleration Manual 114
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

9. UIA Machine Code: The IMP assembly is compiled to machine code for the UIA ndore
troller. This is output as Intel Hex and also as a list of \@giassignments for initialising a
memory with this code.

The net-based output architecture is suitable for direptémentation as a custom SoC (system on
chip). H2 defines its own microcontroller and we use the teri.Mo denote an H2 microcontroller
with an associated firmware ROM. The net-based architectsists of RTL logic and some num-
ber of MPUs. However, by requesting that all output is as Gedod a single MPU, the net-based
output degenerates to a single file of portable C code.

Additional output files include log files and synthesisalild high-level models of the UISA micro-
processor that executes IMP machine machine code.

32 C++, SystemC and C# Output Generators

The cpp-genrecipe stage writes the current design as C++ or Systemhdageon options sup-
plied to it. This can render any mixture of behavioural oustural code, depending on which
processing steps come before it in the Orangepath recipe.

It also can generate C# code.
The-cgen2=enable flag causes the tool to generate SystemC output files.
The-csharp-gen=enable flag causes the tool to generate C# output files.

Header and code files are generated with suffixpp and .h. Additional header files are generated
for shared interfaces and structures. Generally, to makeseyl consisting of a number of C++
classes, the tool is run a number of times with different eoat sysc command line options.

C# does not use header files as such, so files with suffix’ are emitted. Classes may be spread
over a number of files according to undocumented commandfitiens.

Note that emitting C# or C++ with the standard recipe writesse output files at the same point in
the system flow as used for RTL output. Hence a large numbearallpl, RTL-style assignments
will be used. Using a shorter recipe or with some of the intsiiate stages disabled, output closer
to the input form can be rendered: for instance, with bevelatied off assignments will be made in
order using a thread instead of an HLS sequencer.

33 RTL Output Generator

Theverilog-genrecipe stage writes the current design as Verilog RTL.

It is not a totally straightforward projection as RTL sinadsexpressions of significant complexity
that occur more than once are rendered only once and ass@imtermediate nets using continuous
assigns under a greedy algorithm. This keeps the file sizétdenvith certain functions that would
become exponential (e.g. a barrel shifter). The qualityhefgharing is not optimisied owing to the
assumption is that a subsequent logic synthesis toolsenilsit these sharing decisions.

It also can convert the design to a netlist (i.e. do logic sgsis) and estimate the area of the result.
This functionality should be split out into a sepearte re@fage so, for instance, the net list could

Kiwi Scientific Acceleration Manual 115
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

be rendered in SystemC instead.

It also contains a roundtrip function, such that the RTL & ganerated is converted back into HPR
internal form. It does this from the RTL AST so cannot servetéxtual RTL input in its current
form ... the RTL parser is in cv3cv3.zip and needs integgatin

The RTL Generator can provide area and wiring length eséisnand generate a graphical floorplan
to help visualise the circuit structure and understand hoawhrarea is devoted to which resources.

Wiring length estimates based on the design hierarchy antisRRule are fairly accurate and do not
require an actual layout.

The flag-vnl-layout-delay-estimate=enable will create a layout.eps plot file.

34 IP-XACT Output Generator

Theip-xact-genrecipe stage writes the current design as an xml documdawoly the IP-XACT
‘design’ schema.

It can also write out bus specs and individual componentd irséhe current design as IP-XACT
xml documents.

This plugin is/was formerly not freestanding and could dmdyinvoked via the verilog-gen recipe
stage.

34.1 Built-in report writers

The Orangepath framework has two built-in rendering tdwdé produce a textual listing file (called
report or report-full) and Graphviz dot figures.

The-report-each-step flag causes textual report files for each recipe stage to ieewinto the
obj folders. Alternatively, a pseudo plugin can be put in theipe at a stage where such a report
should be written.

The-cfg-plot-each-step flag causes the control flow for each recipe stage to be wiittera
report file in the obj directory. You will typical want to readthe dot files with something likéot
-Tpng a.dot > a.png; eog a.png.

The restructure stage accepts some older flags suelicaplot-plot=combined but these may
be discontinued.

35 Arithmetic and RAM Leaf Cells

The tool will expect the user to provide definitions of vasdeaf cells with the output from the tool
at the input to the RTL synthesis step. A number of suitabfanidiens are included ikvgates.v
andcv_fpgates.v and it may commonly be sufficient just to include these twasfitethe RTL
compilation.

The leaf cell names follow a few conventions:

1. All have a clock and reset intput, even if not needed.

Kiwi Scientific Acceleration Manual 116
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

2. All have a fail output, even if they cannot fail or will refiaheir error in-band using, for
example, NaN.

3. The main outputs is listed before inputs, but associ@istantiation is normally used anyway.
For divide and mod the numerator is listed before the denatoin For subtractors the Ihs is
listed first.

4. The naming convention has the lettétsfor a variable-latency component and this has hand-
shake wires. OtherwisELn denotes a fixed-latency of clock cycles, fully-pipelined. The
tool will schedule an average budget for variable lanterymonents.

5. Parameter overrides, listed in the order output, firgiuifitsecond input, set the precision of
ALU connections and RAM dimensions.

For variable-latency leaf cells in the libray, the VLA protis used. The VLA handshake protocols
is as follows:

e Handshake usesraq input and ardy output.

e New input args are read in on a cycle wheeg is asserted, which will be just one cycle in response to
areq.

e Results are ready in a cycle whedy is asserted.

e New work may be presented witfeq during the same cycle that the output data becomes livertthe
cycle).

e Assertingreq before the lastdy has been delivered will be ignored.

e The output, once live, remains valid until another operation starts (itéd.the cycle afterreq next
holds).

e No combinational path between inputs and outputs, includiswgandrdy, is allowed inside the com-
ponent.

Components following the AXI Streaming protocol are alspmurted. This is the same as the Xilinx
LocalLink protocol in all important aspects. It has a paitahdshake nets (ready/valid) for both
the input and the output and does not hold its data on coroplettompared with VLA, the AXI
streaming component requires another holding registeetmétantiated by the HLS tool when it
knows it may need the data in more than one subsequent cyitéesichedule.

Note: The above is for on-chip devices instantiated diydaylthe tool. Off-chip RAM connections
use a separate protocol (HSIMPLE, HFAST, AXI, BVCI).

35.1 Fixed-point ALUs

The RTL backend will use built-in RTL operators for adderd anbstractors. For multipliers and di-
viders and modulus with non-constant arguments it insigggispecific units, such @_INT_VL_DIVIDER_US
Very small multipliers are rendered with the RTL asteriskximperator and left to the FPGA tools

as per the adders/substractors.

Kiwi generally calls out to variable latency dividers ancefiilatency multipliers. It uses an estimate
for the variable latency computation time in its scheduM#hen using a fixed latency it increases

Kiwi Scientific Acceleration Manual 117
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

the latency requested for larger parameter widths. Whetkestt br variable is indicated in the com-
ponent kind name. Instantiated components cope with amyeegt width as specified by parameter
overloads.

Kiwi does not currently generate the fixed-point ALU implentations and it may request one that
is not in the providedtvgates.v baseline library, in which case the poor user must provieg th
own implementation. For example, an extreme design mighfaraa 512 by 1024 fixed latency
multiplier with 5 clock cycle latency.

Recipe parameters alter the points at which the libraryrgatathe provisioned latency.

35.2 Floating-point ALUs

Floating-point ALUs follow the pattern of fixed-points ALUsxcept that add and subtract are also
always instantiated ALUs and the RTL compiler is not expgdtehandle them. A different set of
recipe parameters control their structure (fixed/variddtiency and expected/required latency).

Only 32 and 64 bit, IEEE standard floating point is currentigdiby default. A future extension will
provide for custom width floating point, since this is a veomerful feature of HLS that can save
a lot of energy and area. The extension will give the samewietmaon mono WD as on RTLSIM
and FPGA.

A core set of floating point ALUs is provide iew_fpgates.v. These are soft macros that the RTL
tools are expected to map to whatever is available in thet&@GA or ASIC library. Specific shims
and bindings to assist with Altera and Xilinx are likely to&eded to the distro in the near future.

35.3 Floating-point Convertors

There is no budget limit on the number of convertors is culyeémposed.
The convertors required normally are

CV_FP_CVT_FL2_F32_I32 // Integer 32 to float 32 with fixed latency of 2
CV_FP_CVT_FL2_F32_I64 // Integer 32 to float 32 with fixed latency of 2
CV_FP_CVT_FL2_F64_I32 // Integer 32 to float 32 with fixed latency of 2
CV_FP_CVT_FL2_F64_164 // Integer 32 to float 32 with fixed latency of 2

CV_FP_CVT_FL2_I32_F32 // Integer 32 from float 32 with fixed latency of 2
CV_FP_CVT_FL2_I32_F64 // Integer 32 from float 32 with fixed latency of 2
CV_FP_CVT_FL2_I64_F32 // Integer 32 from float 32 with fixed latency of 2
CV_FP_CVT_FL2_I64_F64 // Integer 32 from float 32 with fixed latency of 2

CV_FP_CVT_FLO_F32_F64 // Float 32 from float 64 (FL=0 implies combinational)
CV_FP_CVT_FLO_F64_F32 // Float 32 from float 64 (FL=0 implies combinational)

Kiwi Scientific Acceleration Manual 118
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

35.4 RAM and ROM Leaf Cells

A set of standard static RAM cells is provideddmgates.v. These are parameterisable in width,
length and number of lanes by overrides. They are single aatpdrted and of latencies 0, 1 and 2
clock cycles.

Kiwi and other tools based on the HPR library generate ingsof these RAMSs.

RTL tools are expected to map these to appropriate strig;taoeh as LUT RAM and block RAM
on FPGA.

RAM instances are also generated with no write ports anétdtatialisations using the Verilog
initial statements. RTL tools will treat these as ROMs. Unlike RAMSere the user is expected
to manually couple a definition froravagtes.v or elsewhere to their RTL synthesis step input,
ROMs are are embedded in the main RTL output files from a ruheofdol.

Part IX
HPR L/S (aka Orangepath) Facilities

HPR L/S (aka Orangepath) is a library and framework desidoedynthesis and simulations of a
broad class of computer systems, protocols and interfadesrdware and software forms.

The HPR L/S library provides facilities for a number of expeental compilers. This part of the
manual describes the core features, not all of which will fedun every flow.

36 FILES AND DIRECTORIES

When an Orangepath tool is run, it creates a directory in theeotidirectory for temporary files.
This is the obj directory. This obj directory contains temgoy files used during compilation.

The .plt files are plot files that can be viewed using diogthei on an X display or converted to .gif
files.

The h2logs file contains a log of the most recent compilatibmese are placed in a folder named
with the early arg-log-dir-name.

36.1 Environment Variables and IncDir Search Paths

Tools must load various files from the filesystem and must kwiere to look.
Environment variables can provide places to look.

An HPR L/S tool itself will expect to have all of its dlls on tleystem search path or else in the
folder accessed by. /1ib from where its binary file (such asiwic.exe) is stored.

A user can specify additional folders to search for loadditds, such as previous outputs from
incremental compilation steps and standard IP blocks. &'hes defined by the incdir path. The
HPRLS_IP_INCDIR environment variable and theip-incdir command line or recipe flag can be

Kiwi Scientific Acceleration Manual 119
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

set to a string that contains a colon-separated (semicaldNindows) list of search folders. This
is the incdir path. Most earlier outputs are described iXAET and it is these metafiles that need
to be found in this way, with the actual IP being held in a filenea in the IP-XACT xml ‘files’
section. Where those filenames are non-absolute, they witidked up in the incdir path.

The HPRLS environment variable may be used to specify another seatthfpr core parts of the
system, but this would needs better documentation ...

36.2 Espresso

The traditional unix espresso tool is not needed for Fshagdeémentation of HPR L/S since this
has its own internal implementation.

The Moscow ML implementation of the Orangepath tool reqliiEspresso to be installed in /us-
r/local or else the ESPRESSO environment variable to poitite binary. If set to the ASCII string
NULL then the optimiser is not used.

The-no-espresso flag can also be used to disable call outs to this optimis&rial code may be
used instead.

37 Cone Refine

The cone refine optimiser deletes parts of the design tha havobservable output. It can be
disabled using the flagcone-refine=disable.

It may also be programmed to retain other named featuregeytist.

38 HPR Command Line Flags

The very first args to an HPR/Orangepath tool are the early thi@ enable the receipe file to be
selected and the logging level and location to be set.

The first argument to an HPR/Orangepath tool, such as h2ceoripaC, is a source file name.
Everything else that follows is an option. Options are noacdied in turn.

The HPRI/LS logger makes an object directory and writes leg tib it.

Flag-verboselevel=n turns on diversion of log file content to be mirrored on thexdtad output.

0 is the default and 10 makes everything also come out on theot® Console writes are flushed
after each line and this is also a means of viewing the final gfaa log that has not been flushed
owing to stdio buffering.

Flag-verbose turns on a level of console reporting. Certain lines thatarten to the obj/log files
appear also on the console.

Flag -verbose2 turns on a further level of console reporting. Certain litlest are written to the
obj/log files appear also on the console.

Flag-recipe fn.xml sets the file name for the recipe that will be followed.

Kiwi Scientific Acceleration Manual 120
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Flag-loglevel n sets the logging level with 100 being the maximunthat results in the most
output.

Flag -give-backtrace prevents interceptions of HPR backtraces and will theesfive a less
processed, raw error output from mono.

The developer mode flagdevx, enables internal messages from the toolchain that arbddrenefit
of developers of the tool. Setting the environment variabRLS_DEVX=1 performs the same action.

NOTE: Many of the command line flags listed here have a differencommand line syntax
using the FSharp version of KiwiC. This manual is still being updated. To get their effect one
must currently either make manual edits to the recipe xm([dilg. kiwici00.rcp) or else simply list
then on the command line using the forfilagname value

If the special name-GLOBALS is specified as a root, then the outermost scope of the asgembl
covering items such as the globals found in the C languageaisned for variable declarations.

Flag -preserve-sequencer structures output code with an explicit case or switch state for
each finite-state machine.

Synthcontrol-bevelab-repack-pc=disable creates sequencer encodings where the PC ranges
directly over the h2 line numbers: easier for cross-referepwhen debugging. Otherwise it defaults
to a packed binary or unary coding depending-bavelab-onehot-pc.

Option-array-scalarise all converts all arrays to register files. Other forms allows esuto
be specifically listed. Seg??.

-vnl-resets=none
-vnl-resets=synchronous
-vnl-resets=asynchronous

or change this XML line in the file /distro/lib/recipes/Ki@D0.rcp
<defaultsetting> resets none </defaultsetting>

When doing RTL simulation of the KiwiC-generated RTL outpote can sometimes encounter
a ‘lock up’ where the design makes no further progress. fitathie ‘pc’ variable in the output
code will reveal it is stuck when trying to make a conditiobhednch whose predicate evaluates to
dont-care owing to un-initialised registers or disconaddhputs.

HPR (KiwiC) (by default) does not generate initialisatiarde to set static variables to their default
values (zero for integers and floats and false for booledrs .same goes for RAM contents.

For RAM contents, with KiwiC, the user code must contain apliek clear operation in a C# loop.

To overcome the problem with uninitialised registers, wepatentially use -vnl-resets=synchronous
or -vnl-resets=asynchronous. This will make the RTL sirteufgoperly and overcomes most lockup
problems. But we get additional wiring in the output that cepeat the FPGA's own hardwired or
global reset mechanisms.

Clearly the design can be synthesised separately with ahdutiresets. But to avoid the duplication
of effort, hence with a common RTL file (one synthesis run proyie must take one of the following
five routes, where the first two use a KiwiC compile with theadgtf -vnl-resets=none.

1. use an RTL simulator option that has an option where aistexg start as zero instead of X,

Kiwi Scientific Acceleration Manual 121
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

2. add a set of additional initial statements to the gendr®EL that are ignored for FPGA
synthesis (HPR vnl could generate these automatically ke dot at the moment),

3. request a reset input to the generated sub-system (wsihgesets=synchronous) but tie this
off to the inactive state at the FPGA instantiation of thdtssistem and expect the FPGA tools
to strip it out as redundant logic so that it does not consuR@A resource.

4. trust the FPGA tools to detect a synchronous reset netdss(by boolean dividing FPGA
D-input expressions by it) and map it to the FPGA hardwiregtenechanisms so that it does
not consume FPGA resource.

5. use -vnl-resets=asynchronous and trust the FPGA toaisafo this to the hardware global
reset net.

Note, the vnl output stage always generates subsystemawaget input but this is (mostly) ignored
under the default option of -vnl-resets=none.

See§ ??.
"-subexps=off"

The subexps flag turns off sub-expression commoning-up in the backend.
-vnl-rootmodname name

Use the-vnl-rootmodname flag to set the output module name in Verilog RTL output files.
-vnl-roundtrip name= [enable | disable]

Converts generated Verilog back to internal VM form for hant processing.

When enabled, generated RTL will be converted back againrdéfor example) being simulated
with diosim. When disabled, the input to the verilog genefatd) recipe stage will be passed on
unchanged and a typical recipe will then simulate that diyec

"-ifshare=on"
"-ifshare=none"
"-ifshare=simple"

The defaultifshare operation is that guards are tally counted and the most émttyjuused guard
expressions are placed outermost in a nested tree sfatements.

The ifshare flag turns off if-block generation in output code. If set t@fhe’ then ever statement
has its own 'if’ statement around it. If it is set to 'simpldign minimal processing is performed.
The default setting is 'on’.

"-dpath=on"
"-dpath=none"
"-dpath=simple"

Kiwi Scientific Acceleration Manual 122
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

When dpath=on, with the preserve sequencer options for adheeseparate 'datapath’ engine is
split out per threads and shared over all data operationsatytiread.

Synthcontrokone-refine-keep=a,b, c accepts a comma-separated list of identifiers names as an
argument and instructs the cone-refine optimiser/trimmeetain logic that supports those nets.

-xtor mode specifies the generation of TLM transactors and bus monitdiee mode may be
initiator, target Ormonitor.

-render-root rootname specifies the root facet for output from the the current réimot spec-
ified, the root facet is used. This has effect for interfacettsgsis where the root module is not
actually what is wanted as the output from the current run.

-ubudget n specifies a budget number of basic blocks to loop unwind wieereigting RTL style
outputs.

The -finish={true false} flag controls what happens when the main thread exits. Singply
this flag causes generated output code to exit to the siroolatvironment rather than hanging
forever. When running under a simulator such as Modelsim, leenvgenerating SystemC, it is
helpful to exit the simulation but certain design compiled&PGA tools will not accept input code
that finishes since there is no gate-level equivalent (rfedssitruct gate).

38.1 Other output formats

The-smv flag causes the tool to generate a nuSMV output file.
The-ucode flag causes generation of UIA microprocessor code for thgdes
-vnl fn.v specifies to generate a Verilog model and write it to file fn.v.

-gatelib NAME requests that the Verilog output is in gate netlist formatéad of RTL. The iden-
tifier NAME specifies the cell library and is currently igndrea default CAMHDL cell library is
used.

-gatelib NAME requests that the Verilog output is in gate netlist formalisTakes precedence
over-vnl that causes RTL output.

38.2 General Command Line Flags

The-version flag give tool version and help string.
The-help flag give tool version and help string.

Kiwi Scientific Acceleration Manual 123
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

38.3 HPRL/S (aka Orangepath) FAQ

Q. | get the error
Error: Could not load file or assembly ’FSharp.Core, Version=4.4.0.0

A. This is not related to any missing files in the Kiwi distrastead it is do with FSharp version
incompatibilities. The FSharp.Core is part of the FShagiey. If you are using pre-built dll files
then the version of mono or FSharp on your system may be inatibh@ with the pre-built dll files
and you would have to change version or else regeneratelileslby compiling the FSharp source
code with the 'fsharpc’ compiler on your system.

You may wish to just compile a trivial 'Hello World’ FSharpgayram on your system to check that
FSharp is all set up ok.

39 HPR System Integrator

Q. I cannot see how to start using System Integrator?

A. Systemintegrator is a standalone program, written indfghand using the HPR library. Itis in its
own folder (and the binary is hprls/system-integratotfdifib/sysint.exe). Examples are currently
missing.

The HPR System Integrator compiler/generator takes a $¢®PBfVMs and generates S®TL con-
structs to wire up their ports following the VM instantiatipattern or an input IP-XACT document.
It will instantiate protocol adaptors and glue logic basagoe-defined rules.

The resulting system can then be emitted without the aatggdmnces using other recipe stages, such
as SystemC, RTL or IP-XACT. These output files will typicallg combined with the instantiated
components in external tools, such as FPGA logic synthesis.

The resulting system can also be passed on to the Diosimationdibr execution within Orangepath,
for auditing tools to run, or for any other purpose.

Figure 10 illustrates a typical structural set-up arisirgy multiple compilation units assembled on
a single FPGA. In detalil, the figure shows a top-level apgibica(primary IP block) that instantiates
a separately-compiled child component that, in turn, imsates three grand children of two different
types. The children and grand children are subsidiary IleKslo They do not do anything unless
commanded by a primary IP block. Each compilation unit catso its child by an arg/result port
that is of a custom design for the current application. lleation-specific (A/S).

In addition, each child component requires access to RAMuess. In this particular example, the
top-level module did not require RAM access (although itldavell have its own BRAM privately
instantiated).

Finally, every component has a directorate port for errporéng. The primary IP block also re-
ceives its run/stop control via this port.

The HPR System Integrator compiler takes a set of HPR VMs anérgtes an hierarchic netlist to

wire up their ports using pre-defined rules that are baseti@edncept of domains of connection.

It will instantiate as many protocol adaptors, bus switched arbiters as is needed. The resulting
structure is typically rendered as RTL. In the future it cavoke Greaves/Nam glue logic synthesis
or other generators and then instantiate the glue in thstetl

Kiwi Scientific Acceleration Manual 124
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

p
Kiwi Scientific Acceleration
Incremental Compilation Typical Structure - Single FPGA Design

University of Cambridge Computer Laboratory

Key Primary Application
W Primary A/S Interface; StarStop
Arg/Result-A and Debug

N Service Interface

Directing Interface

(Child A instance

Arg/Result-C

Child C

(External instatiation)
Debug

Arg/Result-A

Child A logic

Internal
instantiations

Arg/Result-B

Child B 2

Arg/Result-B

ChidB 1

Directorate Mux

[
L AXI-4 Switch

=15

Server Blade
<—>Director PIO Stub Server Blade DRAM

Directorate Mux

Read/Write
access local host.

J/

(N

Figure 10: Example of multi-compilation structural assgmiith internal and external instances.

125

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Concentration Aggr egati on Far m ng
A B C A B C A B C A A B C
[L1 L]
Ta’\%gxed Ta’ﬁ?xed Ta’&%(ed Ta’%;)?d

T[?Eg ed Addr essed Addr essed Bal anci ng
DEMUX DEMUX DEMUX
ABC RO RL R2 R3 R RORL R R3 S0 s1

Figure 11: System Integrator Tool: Basic Auxiliary Compotse

The resulting system can then be emitted without the aatggmnces using other recipe stages, such
as SystemC, RTL or IP-XACT. These output files will typicallg combined with the instantiated
components in external tools, such as FPGA logic synthesis.

The resulting system can also be passed on to the Diosimationfibr execution within Orangepath,
for auditing tools to run, or for any other purpose.

Its internal datastructure, prior to rendering the outfauin a form that can be output as IP-XACT
spirit:design document.

A future facility to read in and obey IP-XAC¥pirit:design documents could easily be added,
but there are plenty of third-party tools offering that seev

HPR System Integrator supports:

1. Creating inter-module wiring structures with tie-offuriused ports.
2. Working both at the TLM level and structural net list level

3. Glue logic insertion in the form of instantiated adapsifoom the library are readily inserted
automatically using rules based on interface type diffeesn

4. Allocation of AXI tag humbers.
5. Custom glue logic from the Greaves/Nam cross-produbiigae can also be rendered.

6. Outputs are rendered in Verilog, IP-XACT, SystemC TLMs®ynC behavioural and Sys-
temC RTL-styles depending on the subsequent recipe stagrithut is passed to.

7. Server farm mode supporting dynamic dispatch will be datleging 2017.

A component instance can be internal or external. The dtébinis more pronounced for RTL than
SystemC. External instantiation is where the instancesisiénthe current (instantiating) module, in
the style of a traditional hierarchic design. An externatamce is instead formed outside the current
module, resulting in additional bindings in the signaturthe current module. External instantiation
leads to a flatter design. Its principle advantage is wherérttantiated component has a number
of service ports whose bindings would instead need to beey@a/through the current instance
signature.

The HPR System Integrator rule engine understands thenfioliptypes of component:

Kiwi Scientific Acceleration Manual 126
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

e Primary IP Block — a top-level component of the design, sustagrimary output from
Kiwi HLS, that embodies an algorithm or processes and géeermork for the all the other
components.

e Subsidiary IP Block — an IP-block with slave ports that perfe an operation. Examples are
RAMSs, ALUs and HLS outputs from earlier parts of an increnaénbmpilation process.

e External Port — a connection to an externally-instantiatsburce, such as a DRAM bank,
inter+PGAbridge or Ethernet port.

e Aggregators — for arbitrating and dispatching betweeliatots and demultiplexing based on
addressed target

e Concentrators — for tagged multiplexing and demultiplgxiver a shared channel.

e Protocol Adaptor — for converting between bus standards

Every block is accompanied with non-functional meta-irffattgives an area, latency, throughput
and energy cost using IP-XACT extensions.

Every external block port and port on a primary IP block musbo &e manually given a so-called

domain name. The standing rules used by HPR System Integratieavour, for each domain,

to wire everything together, thereby achieving conseovatif data. There will generally be at

least one domain name for each connection between sepacatapiled modules in an incremental

compilation. Also, there will be domains associated witbhedisjoint memory map/space and one
for the debug/directing logic.

The system synthesis is guided by a goal function, which saéas metric that factors area, delay
and energy according to a weights that the user can adjustsaed.

The automatic generation axioms are:

1. The number of primary IP blocks and external ports is s#térinitial configuration, together
with their instance names. Their plurality may not not beiatjd by HPR System Integrator.

2. The plurality of all other components may be freely agjddty HPR System Integrator, but
it may not replicate state-bearing components (unless ltlagg mirror rules defined in the
future).

3. Except for broadcast connections (that have no reversetdin signals), such as clocks, resets
and status codes, all initiating ports must be connectedniatahing target port with a one-
to-one direct connection.

4. The IP-XACT max-masters and max-slaves attributes Roeteither multicast or one-to-one.
They may have to be connected or may be left disconnectedinifiiting ports must be
connected to a matching target port with a one-to-one da@uhection.

5. The resulting design should give a low value for the goatfion.

This will tend to minimise the number of additionally insteted components and typically
causes them to be wired in tree-like structures to mininagenkcy.

Kiwi Scientific Acceleration Manual 127
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Per domain metric functions and upper bounds

Algorithm: for each domain name, while there is an uncoretkaitiator, create a connection for
it to a suitable serving resource. If the serving resour@isxternal port that is currently discon-
nected, a direct connection can be made. But if the exteoraigpalready bound, an additional bus
switch will be instantiated or the arity of an existing ondl e increased.

If the serving resource would be an instance of replicatdblaock, ...
If the serving resource would be an instance of mirrorableldk, ...

39.1 Memory Map Management (Link Editing)

A shared memory resource that is serving a plurality of disjeequirements needs memory man-

agement to statically or dynamically allocate disjoint neeyrto each component. This is essentially
a link editing problem.

Kiwi solves this in two ways. For static allocation in eacimbkaHPR System Integrator reads in from
IP-XACT how much static memory is required and supplies & lzaikress as an RTL parameter to
each instantiated component. This base address is promalig¢o the core of the logic by constant
propagation in the logic synthesiser (FPGA tool) that isligpto the KiwiC output.

For dynamic allocation, an allocator component, coded inn@ist implement a free pointer or
equivalent policy, be instantiated once, and serve out mgrlmcks. This will require unsafe
C# in each client (or shim thereof) to cast the address todbsired struct or object type. Only
the alloc/dealloc requests need be sent to the shared cemipdhe data read and write transfers
themselves are transferred over a general the AXI switchidfdbat can provide as much spatial
diversity as is appropriate.

For genuinely shared pools there will inevitibly be a C# medhat directs the requests for WD
development and this must be separately compiled and ctathecby multiple parent IP blocks.

For multiple address spaces it is convenient to add exttarfabits ...

39.2 Deadlock and Combinational Paths

.. TBD

39.3 Constructive Placement

The general flow for the tool is illustrated in Fig. 12. Its i are the name of a primany block
for the top-level, a search path for lookup of the so-callglisiiary and auxiliaryp blocks, and
a description of the target platform described in a filade-manifest.xml. The tool operates
in two stages. The first is a planner that makes floorplannirdyraemory layout decisions and
instantiates subsidiary and auxiliary blocks as needed.ré&sulting high-level design is written out
as aniP-xACT design report, a graphical plot and a human-readable répatrtabulates utilisation

metrics. The second stage compiles the design to a struotiast. This writes out a masterL
file for eachFPGA

The blade manifest lists the numberrfGas available on the platform, describing their size, inter-

Kiwi Scientific Acceleration Manual 128
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Subsidiary
IP Blocks
Library
IP Blocks

IP Block

Resource

Summary

IP-XACT
Design

Blade
Manifest
Primary

Figure 12: System Integrator Tool: Inputs and Outputs amvd fletween the two stages.

connection pattern and hardenegborts and capabilities. It is ammL file crafted by hand or using
anxMmL editor.

The tool can potentially use any standard optimisationguiace to minimise its global cost metric.
The current implementation uses a constructive placerishain about 50 times using different
pseudo-random seeds with the best solution and spread teginged. A critical consideration is
whether anyp blocks themselves are good candidates for consequensghtaesis. There are three
reasons for re-synthesising a component:

1. General time/space fold:StandardiLs tools have considerable freedom to produce large and
fast designs or smaller designs that require a greater nuohioiock cycles.

2. Degree of Port Mirroring: Where a subsidiary block can be mirrored, the parent needs to
be synthesised with a determined number of master ports tieme are connected one-to-
one with the children. Moreover, the number of load, storé mad/store stations on the
component can also be manually controlled with our tool.

3. Move to variable-latency handshakesWhere a block instantiates a fixed-latency child con-
nection, but then that connection has to be converted tablarlatency owing to interPGA
bridges (or perhaps being in a server farm in the future).

The System Integrator’s main job is to generate a designinbhtdes the primaryp block and all
the support it needs. Starting from the primarylock, it adds the subsidiany blocks referred to
in its port list. These may have further application-spegfirts (as shown in Figure 10) that in turn
need to be supported. Hence it iterates at this stage. Usiagnstructive placer, it puts each block
on a named@pPGAwhere there is sufficient area remaining. Connections theat sultiple dies have
their necessary protocol adaptors instantiated straightaWhere a bridge link is shared between
bus connections, concentrators are added (addressingtadater created in a global colouring
step). Any placement attempt where any hard limit is breddheaborted without further study.

Kiwi Scientific Acceleration Manual 129
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Hard limits include anyPGA being full, as just mentioned, or a guaranteed throughpiatency
(sequential or combinational) cannot be met.

As illustrated in Figure 10, there are three forms of bus eation understood by System Integrator:

1. A Primary Application-Specific Interface enables a component to invoke functions using a
custom bus structure on a child component that has a reveeséaice of the same type. In
our HLS system, such bus specifications are emitted automaticalyugmentedd-xACT bus
abstraction documents. The same file is emitted when eiitheiscompiled, with the second
simply overwriting the first. When the boundary reflects aldsfinition in the high-level
language, the file name and interface name are the same dashaname. Such a class can
have any number of methods and each method will use some & bfisses (or ‘ports’ as
they are called inP-xACT) making up the interface. This sort of connection is alsaluse
connections to the standard libraries of maths functions.

2. A Service Interface provides access to main memory resources for the comporidme.
component is free to instantiate its omamMs where it wishes, such &GA block RAM, but
larger regions need wiring tbrRAM resources. These are either statically instantiated on the
server blade or else accessed ovearor pCie on some platforms.

3. ADirecting Interface provides start/stop control of the primary application aalfiects status
and abnormal end codes from subsidiary blocks. It may alsaige debug inspection.

A connection between two components is valid when all of dikeding conditions hold:

e Kind Name: the protocol kinds have the same name. Differences in ther dbhreep-xACT
naming attributes, vendor, version and library name, ama@&thabout but otherwise ignored.

e Connection Rule A one-to-one connection must have two peers: one an initend the
other a target. A multicast connection must have exactlyiitiator.

e Parameters Match IP-xACT parameters are key/value pairs, and these must match epart f
any that the user specifically annotates (on the commangdmallowed to mismatch. This
ensures, for instance, that a 32-bit data bus is not corshézt®4-bit data bus. To overcome
simple mismatches of any complexity, one side needs to beatigmenamed by the user and
an additional protocol adapator added on the search patkithampasses the adaption, such
as ignoring unused address bits. Automation of this is e the future.

e Unified Domains The connection domains must either already match undeutient unifi-
cation or else a fresh, non-contradictorary, unificaticadded for the remainder of the design
construction.

The domain unifier operates over equivalence classes thtdinat most one domain constant and
any number of domain variables that are unified to that cohstgust to each other when a domain
constant is not present.

When a protocol adaptor is instantiated, it is given a freghalo variable that is allocated to both
ports.

Kiwi Scientific Acceleration Manual 130
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Key Tagging Mux/Demux Pair Protocol Convertor Pair
:D_. A(l: —lo P> —{p o~
FPGA 0 FPGA 1

jL »:}Dﬁmﬂ{:ﬂ{” js

Serdes Serdes
pair pair

s Q — Qs
-
OO
P P Q QP P

Figure 13: InterrPGA bridge structure: typical setup. TlseRDESInstances, as described manually
in the blade manifest, are utilised by the System Integsatostantiation of protocol adaptors and
concentrators as required.

39.4 Multi-FPGA designs

HPR System Integrator can allocate logic between FPGA chips

As illustrated by thesERDESpair in Figure 13, inteFPGA bridges are bi-directional and have four
ports for binding by the System Integrator as it creates tam-#PGAnetwork. The two ends of each
simplex channel have the same domain name, but the bandandttatency for the two channels
can be described differently in the associate’ACT description. Each of the four bus interfaces is
AXI streaming with a specified word width, giving the lossles® paradigm. Each direction of the
pair is kept matched by the System Integrator, as it adaptbdndware resource to its needs. The
adaption steps are just the same as may be freely used etsewltiee assembly: they are inserting
a protocol adaptor pair on each side or inserting a condentpair consisting of a tagging mux
and an inverse de-multiplexing component that processgseanoves the tags. There is a set of
standard protocol adaptors corresponding to all basic edetfgnatures of up to 3 arguments with
and without a result in our standard distribution. Otherstvacreated by hand as needed and added
to the library, or they can be macro-generated on demaneifutbre. Glue logic for these purposes
can also be synthesised from a non-deadlocking, data-aenggroduct of protocol state machines
by known techniques, such as [2].

39.5 Mux and Demux Blocks
Figure 14 shows three use cases involving tagged multipdeaind differing demultiplexing ap-

proaches. The arrows in the Figure indicate direction dfation, but each underlying bus can
normally carry data in either direction according to the thiee read-style or write-style operations

Kiwi Scientific Acceleration Manual 131
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Concentration Aggr egat i on Far m ng
A B C A B C A B C A A B C
Ta’\%%?d Ta'\%%(ed Ta'\%%?d Ta'&%?d
Tgé; ed Addr essed Addr essed Bal anci ng

DEMUX DEMUX DEMUX
b D P

Figure 14: Three forms of multiplexing/demultiplexing whehe demultiplexors respectively uses
tags, addresses and utilisation to make a routing decision.

are currently being conveyed.

The left of the Figure shows straightforwacdncentration, where multiple logical channels are
conveyed over a shared physical channel. A tagging mukiplis matched with a detagging demul-
tiplexor. The tags inserted at the top are removed at theiodind are private to the configuration.
This configuration provides perfect data conservation vépect to the mulitplexed channels from
the point of entry at the top to the point of exit at the bottom.

The centre of the Figure shows shared access to a logicatsgldpace by a number of initiators
where the address space is served baggregation of physical memory resources. The demul-
tiplexor operates using address ranges. The multipleXbirsterts tags, but this time these are
removed agaimlso by the multiplexor. These tags are only examined by the piahor that cre-
ated them: it removes them when the result is forwarded ugsviar the originator. The tags are
conveyed opaquely within all lower components. Two degatiesiorms of the aggregation configu-
ration arise: 1. when there is only a single client for an aggted resource, the multiplexor is not
needed; and 2. when the resource is monolithic the demetplis not needed.

The right of the Figure illustrates theerver farm configuration, that again uses a tagging multi-
plexor, but the demultiplexor operates on a load-balanbigjs. The server farm is not currently
natively supported byiPR System Integrator. Instead, the user must implement thisdgm by
writing their own implementations of the multiplexor anchaldtiplexor. This is easy to do in C# for
synthesis t®TL by KiwiC. If the C# is marked up for separate synthesis of #lewant components,
the HPR System Integrator will then assemble the system, treatiadarming blocks as subsidiary
IP blocks to be assembled as normal. An example will be placesl.herBD.

39.6 Non-uniform Memory Access (NUMA)

It is desirable for traffic to take the shortest route betwlegnut zones. ThelPR System Integrator
implements Warshall’'s algorithm to find available routed smprice design solutions that use them.
However, Figure 15 shows, on the left, the typical structhet arises when static resources in two

Kiwi Scientific Acceleration Manual 132
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

Unbal anced Bal anced

Zone 0 Zone 1 Zone 0O Zone 1
A B A B cC D
Tagged Tagged

Tagged
VX MUX MJX
Addr essed Addr essed
DEMUX DEMUX
Addr essed ixCZZj | 3
DEMUX
Tagged Tagged
Mux Mux

(e}

-—
+— U

—
QD

«Q

Q
[¢]
o

g

Static Static Static Static
Port (DRAM Port (DRAM Port (DRAM Port (DRAM

Figure 15: lllustration of non-uniform memory access desid_eft is current implementation style
and right is preferred style.

different zones are aggregated and then shared by cliermt®tie clients (A, B, C and D) are also
distributed over the zones.

The right-hand side of the figure illustrates a preferredgiethat is typically exploited in non-
uniform memory architectures (NUMA). Although this has tldi more logic, the average access
latency for Zone 1 is improved.

The HPR System Integrator operates by first creating the requiréal plaths as a rats’ nest without
regard to layout zone. As mentionedg®?, it then inserts bridges and concentrators as it maps that
network onto the layout zones. This leads to the left-hayie sif design. To achieve the preferred
design, greater smartness is needed: a spatially awagndesieeded from the outset. We aim to
address this in a subsequent release of the tool.

Warshall's algorithm is also applied to protocol adaptarthie library, to see what can be connected
to what in principle and the best pattern of adaptors, gidagh adaptor a unit cost at this time. //
We must avoid building wandering chains that convert bactls/and forwards between protocols,
but as Warshall considers each protocol a node in a multijnamey, it will only instantiated at
most one of each type of adaptor in a path.

39.7 Network On Chip (NoC)

It is interesting to examine whethiePRr System Integrator can be said to be synthesising a Network-
on-Chip (NoC).

Although there may be no absolute definition of what congtta NoC, the following defining
principles can be identified:

e Connectivity: Data can be sent, in principle, from ingress node to anyrede.

Kiwi Scientific Acceleration Manual 133
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

e Sharing: Traffic for different purposes uses a common bus infrattirecwith sharing in the
time domain.

e Route Diversity: Traffic may take various routes from a source to a destinatetermined
by some static or run-time decision or policy.

The HPR System Integrator will make a custom mesh network as it intistges concentrators to
exploit shared inter-zone bridges. So it does sometimesrgma NoC using the ‘sharing’ principle.
Where the inter-zone bridges are arranged just as a physigatien the resulting network is a ring
network (being a degenerate form of mesh). The ring is @adional or uni-directional, in terms of
instantiation, according to the same property in the paéthe available bridges. But each bridge
is bi-directional in data terms, in that responses are @aiiri the reverse direction over the bridge
that carried the request. Overall, there is currently noerdiversity.

In the future, for largePGas, it is sensible perhaps to divide them into several layones, perhaps
with fluid boundaries where area can be vired between zotesl then be neccessary to instantiate
inter-zone bridges in the blade manifest between thesesz&ueh bridges will be nothing more than
point-to-point wiring, which will be totally reified by thedzk-end logic synthesis tool, so there is
no run-time overhead. The advantage is that the pattern mfertrators will closer resemble a
fine-grained NoC and the generated wiring will resemble ...

39.8 Bus Definitions

Bus definitions inp-xacTare split over two files. The definition and the abstractian. .

All ip-xacTfiles needed will be search for using the path specified ¥ithincdir=. This is a colon
or semicolon (on Windows) separated list of folders.

39.9 Sewing Kit for Miscellaneous Nets

Any hardware design will have a few extra nets (wires) that&y Integrator does not need to
understand. Since the tool emits the top-level design fileawh run, the simplistic approach would
be to reinsert such logic with a sed or perl script. This is taniéssy. Nonetheless, there are
someSED_BIND_POINT tokens emitted as comments in the rendered output to asiissuch an
approach.

A more general support mechanism called the Sewing Kit veiladded to direct System Integrator
to emit miscellaneous nets in the future.

39.10 System Integrator Example Run

Under construction May/Sept 2017...

The HPR System Integrator application is invoked from thee@nd line using the shell script
found in HPRLS/system_integrator/dist/bin called sysint that invokes thesysint.exe
portable assembly under mono.

You need to also minimally supply

Kiwi Scientific Acceleration Manual 134
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

-blade-manifest=my-manifest.xml
-root=rootipname
-ip-incdir=folderl:folder2:folder3

For a single zone, you can set the Verilog output file name witt+filename. v but for multiple
zones, you are better setting the output folder name withj-dir=outputfolder and allowing
the tool to create its own output files. The output files follmluilt-in naming scheme that extends
a root name which defaults to ‘roger’ and which can be set toething else with ‘-outroot=fred’
etc..

All flags can also be set instead from the Organgepath regipgtending the defaultysint00.rcp
file and redirecting to the extended copy withecipe=myrecipe.rcp which needs to be (pretty
much) the first argument after theno sysint.exe part of the overall command line.

The HPR System Integrator generates (by default) a gralgblmdike this early example:

The primary and subsidiary I/P blocks are in black. Conegats are in green. Adaptors are in
brown.

For complex designs, a separate plot for each layout zoredpéuh This is achieved with ...

40 Diosim Simulator

The HPR L/S library provides a built-in simulator called Biim. It is intended to be able to execute
any mixture of intermediate codes since all have executsteantics.

Diosim is invoked by the recipe. Typically a recipe may ingdkon the same intermediate form that
is being rendered as RTL or SystemC etc..

The Orangepath system contains its own simulator callegi®io Since the target is output from
the compiler as portable code to be fed into third-party C ¥edlog compilers, it is not strictly
necessary to use the Orangepath simulator. However, thgatonprovides a self-contained means
of evaluating a generated target without using externdstoo

The simulator accepts a hierarchical set of VM2 machinessandlates them and their interactions.

The simulator will dynamically validate all safety assemntirules that contain no temporal logic
operators. Other safety and all liveness assertions aceddn

Non-deterministic choices are made on the basis of a PRB$hhaser may seed.

The PRBS is also used for synthetic input generation fromtpteachines or external inputs. PRBS
values used for external inputs are checked against pléetysssertions and rejected if they would
violate.

Output is to files. Several files are generated:

A log file where individual events are visible if logging léve set high enough, eg. with
diosim-t1=100.

o Aplot file. The plot file is currently in diogif plot format.

A VCD file - viewable with gtkwave and/or modelsim etc..

A console spool file, typically callediosim.out.

Kiwi Scientific Acceleration Manual 135
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

chipl
"lop—primary—lP—block*
ONE-to-TWO TWO-to-ONE axi_sl axi_m2 axi_mi primex
PortS PortM 4-stati 02p(4-stat ter101pp i4-stati ter101pD bram33port Layout zone chipl
STATIC BLOCK STATIC BLOCK STATIC BLOCK STATIC BLOCK STATIC BLOCK loadstore10m-port| dir12port
subsa0-master-portf
chassoc22 chassoc18 chassoc20.LN.0.NX ‘chassoc24.LN.0.NX
i block12| ylPblock16 chassoc20_adt_near_0 chassoc24_adt_near |0
example_BRAM44 primsubs55 adaptor-loadstore10-axi_pubgr(| adaptor33-axi_unter|
BRAM-slave-port subsao-slave-poj(loadstore10-m-por] port-right port-left port-left | port-right
‘chassoc26.LN.0O.NX (chassoc20.LN.0.NY.MUXi0 chassoc24.LN.0.NY.MUXi1

chassoc26_adt_near_0
adaptor-loadstore10-axi_pub

axi410_mux
concen_2_axi4_MUX

childporto
focus

port-left

port-right

childportl

childport0
childport1

chassoc26.LN.0.NY.MUXiQ

axi412_mux
concen_2_axi4_MUX

axi410.MUX.MUXi1

focus

i412.MUX

ONE-to-TWO

PortM

STATIC BLOCK

‘axi412.DEMUX

Figure 16: Draft. Output via ‘dot’ of the intar block wiring generated in an example System

TWO-to-ONE
PortS
STATIC BLOCK

focus

chassoc20.LF.0.FX.DEM

axi410.DEMUX.DEMUXi1

axi410_demux
concen_2_axi4_DEMUX

chip2

axi412_demux
concen_2_axi4_DEMUX

childporto
childport1

Layout zone chip2

focus

chassoc26.LF.0.FX.DEMUXi0

chassoc26_adt_far_0
adaptor-loadstore10-axi_puntel

port-right

childport0
childportl

port-left

chassoc24.LF.0.FX.DEMUXi1~chassoc26.LF.0.FY

forfortopprimary|Pblock1610

UXi

chassoc20_adt_far_0
adaptor-loadstore10-axi_punts

er/| adaptor33-axi_ubel

chassoc24_adt_far_0
offchip-memory-service-shimr

oﬂchlp-memory»servlce-porﬁ axiout

port-left port-right

port-right | port-left

chassof24.LF.0.F

chassoc20.LF.0.FY

fortopprimary|Pblock14
offchip-memory-service-shimr

fortopprimaryIPblock10
axi_dir_shim

4-sl; ,,cr*" hi orate12-pol

JF axiout

fchi
P P

—

Integrator run. Two layout zones were used, corresponadingd FPGAS.

136

Kiwi Scientific Acceleration Manual

Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

40.1 Simulation Control Command Line Flags

As well as providing simulation output in VCD and consolenfiordiosim can collect statistics and
help with profile generating. However, it is fairly slow artds best to collect profiles from faster
execution engines, such as via Verilator.

The statistics that diosim can collect range from net-lewatching activity to higher-level statistics
like imperative DIC instructions executed, RTL sequerdia combinational assignment counts.

Only the two Verilog output forms, RTL and gatelevel, suggmmversion back into HPR machine
form for post generation simulation.

-sim n specifies to simulate the system using the builtin HPR edemén simulator for n cycles.
The output is written to t.plt for viewing. Thetraces flag provides a list of net patterns to trace in
the simulator.

The-title title flag names the diosim plot title.

The -diosim-techno=enable flag causes print statements from the simulator to includ&SAN
colour escape codes for various highlighting options.

The-plot plotfile flag causes plot file output of the diosim simulation to a naipletifile in
diogif format.

The plot file can be viewed under X-windows and/or converted gif using the diogif program.

The-diosim-vcd=filename.vcd flag causes diosim to write a Verilog Change Dump (vcd) report
to the named file.

Detailed logging can be found in the obj/log files. If a pragrarints the string 'diosim:traceon’ or
'diosim:traceoff’ the level of logging is changed dynaniiga

If a program prints 'diosim:exit’ then diosim will exit a thigh builtin functionhpr_exit () were
called.

KiwiC using C++ instead of C#
Visual Basic, Visual C++ and gcc4cil will generate dotnettpble assemblies from C++ code.

Using the gcc4cil compiler you should find a binary called32igcc” in the<path_to_cross_compiler>/
directory. To create a CIL file use this compiler with the -Siap.

Getting gccdcil.

1. Get Gcc4Cil from the svn-repository that is mentioned on the
Gcc4Cil website (http://www.mono-project.com/Geccdcil)
"svn co svn://gcc.gnu.org/svn/gcc/branches/st/cli"

2. As Gcc4Cil wants to compile files for the Mono-platform, you
need the Mono-project installed on your system. The easiest way to
install it is to use "Linux installer for x86" that can be found
under http://www.mono-project.com/Downloads . Installation
instructions are available under
http://www.mono-project.com/InstallerInstructions .

3. It may be possible that you need to install the portable .NET

Kiwi Scientific Acceleration Manual 137
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

References

project. During the manual compilation of gcc4cil I got errors, that
made me install this project. However I could not find a line in the
automatic generated Makefile that has a reference to the p.net path
in my home-dir. If you get the impression that you need it, you can
find it here: http://www.gnu.org/software/dotgnu/pnet-install.html

4. Because I did not know that there was a automatic script for this, I did a
<path_to_gcc4cil>/configure using the following options
—--prefix=<where it should be installed to>
--with-mono=<install_dir_of_mono>
--with-gmp=<install_dir_of_glib>

I then did a make bootstrap-lean and installed the following libraries becaus
of compile errors:

- bison-2.3.tar.gzx*

- glib-2.12.9.tar.gz

- pkg-config-0.22.tar.gz

I think it is likely that you may want so skip this step, as
this step DOES_NOT generate a compiler for cil but for boring x86
code (what I learned after I did this). However I set up paths to the
installed libraries in this step, so I mention it. I do not know for
sure if all those paths are needed in the end. As it works for me
now, I wont remove them:

setenv HOST_MONOLIB "/home/petero/mono-1.2.5.1/1ib"
setenv HOST_MONOINC "/home/petero/mono-1.2.5.1/include/mono-1.0:/home/petero/
setenv CIL_AS "/home/petero/p.net/lib:/home/petero/p.net/bin"

5. in the directory where you put the gcc4cil source code, you can
find a shell script called "cil32-crosstool.sh". Execute this and the
crosscompiler for C-to-CIL compilation hopefully now gets compiled.

Nov 2016 note: The main gcc4cil problem was a lack of any siditker, as | recall. | do not recall why a linker was criticsihce KiwiC and dotnet are both happy to accept multiple fiPerhaps
there was a related problem with .h files. | don't know whetjs4cil maintenance is now abandoned.

Of course Visual C++ produces dotnet code that should wagktypmuch as well as the recent Visual Basic demo. | don't khow much Visual C++ resembles standard C++ or whether it ain o
be compiled on windows.

All of the HPR recipe stages except for the first, kiwife, arédpendent of dotnet. The intermediate HPR VM forms betweeipe stages are all supposed to be serialisable to diskuge recipe

files that start and end with a load and save of VM code. Butfttwlity has not been used recently. It might become impurégain to help overcome long monolithic compile times.

[1] Francesco Bruschi and Fabrizio Ferrandi. Synthesioofpdex control structures from behav-
ioral SystemC modeldesign, Automation and Test in Eurggeages 112 — 117, 2003.

[2] D. J. Greaves and M. J. Nam. Synthesis of glue logic, atss, multiplexors and serialisors
from protocol specifications. 18010 Forum on Specification Design Languages (FDL 2010)
pages 1-7, Sept 2010.

Kiwi Scientific Acceleration Manual 138
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

(©2011-17 DJ Greaves + S Singh

[3] David Greaves and Satnam Singh. Kiwi: Synthesis of FP@euis from parallel programs. In
The 16th IEEE Symposium on Field-Programmable Custom CtingpMachines April 2008.

[4] R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangioi/incentelli. Convertibility verifi-
cation and converter synthesis: Two faces of the same cordceedings of the International
Conference on Computer-Aided Desigtovember 2002.

[5] A.M. Zaidi and D.J. Greaves. A new dataflow compiler IR &mcelerating control-intensive
code in spatial hardware. FParallel Distributed Processing Symposium Workshops BBWY/),
2014 IEEE Internationalpages 122-131, May 2014.

Kiwi Scientific Acceleration Manual 139
Rough Draft User Manual (KiwiC Version Alpha 0.3.2¢e) (Sept?)

Index

140

	Asymptotic Background Motivation for FPGA Computing
	Download and License
	Warranty

	I Scientific Users' Guide
	Kiwi Substrate
	Console and LCD stdout I/O and LED GPIO
	Run-time Exception Handler
	DRAM
	Watchpoints and Start/Stop Control
	Framestore
	Profiling

	II Installation and Easy Get Started
	Get Started (Mono on Linux)
	Getting A K-Distro Binary Distribution
	Using A K-Distro Binary Distribution

	III Kiwi Supported Language Subset Limitations and Style Guide
	General CSharp Language Features and Kiwi Coding Style
	Supported Types
	Supported Constants and Variables
	String Handling
	Supported Operators
	Supported Class Features
	Supported I/O with Kiwi
	Data Structures with Kiwi 1/2
	Data Structures with Kiwi 2/2 - more advanced and opaque temporary write up...
	First Stage Processing (repack):

	Dynamic Storage Allocation
	Pointer Arithmetic
	Garbage Collection
	Testing Execution Env: Whether I am running on the Workstation, RTL_SIM or the FPGA blades.
	Clone
	Varargs
	Delegates and Dynamic Free Variables
	The ToString() Method
	Accessing Numerical Value of Pointer Variables
	Accessing Simulation Time
	Run-time Status Monitoring, Waypoints and Exception Logging
	 Exiting Threads
	Null pointer, Array bounds, Overflow, Divide-By-Zero and Similar Run-time Exceptions
	Normal Thread and Program Exit
	User-defined C# Exceptions
	Debug.Assert or Trace.Assert

	Pause Modes (within Sequencer HLS Mode)
	Unwound Loops
	 More-complex implied state machines
	Inner loop unwound while outer loop not unwound.
	Entry Point With Parameters

	Generate Loop Unwinding: Code Articulation Point
	Supported Libraries Cross Reference
	System.Collections.Generic
	Standard System.Math Library
	Parallel For Loop
	System.Random
	Console.WriteLine and Console.Write
	get_ManagedThreadId
	System.BitConverter
	System.String.ToCharArray
	System.IO.Path.Combine
	TextWriter
	TextReader
	FileReader
	FileWriter
	Threading and Concurrency with Kiwi
	Sequential Consistency
	Volatile Declarations

	Kiwi C# Attributes Cross Reference
	Kiwi.Remote() Attribute
	Referentially Transparent and Mirrorable
	Remote Method Overloading
	Remote Method Performance

	Asynchronous Invokation
	Flag Unreachable Code
	Hard and Soft Pause (Clock) Control
	End Of Static Elaboration Marker - EndOfElaborate
	Loop NoUnroll Manual Control
	Elaborate/Subsume Manual Control
	Synchronous and/or Asynchronous RAM Mapping
	Register Widths and Overflow Wrapping
	Net-level Input and Output Ports
	Wide Net-level Inputs and Outputs
	Clock Domains
	Remote
	Elaboration Pragmas - Kiwi.KPragma
	Assertions Debug.Assert()
	Assertions - Temporal Logic
	RTL Parameters

	Memories in Kiwi
	On-chip RAM (and ROM) Mirror, Widen and Stripe Directives
	ROMs (read-only memories) and Look-Up Tables
	Forced Off-chip/Outboard Memory Array Mapping
	Off-chip load/store ports
	HSIMPLE Offchip Interface & Protocol
	HFAST Offchip Interface & Protocol
	BVCI Offchip Interface & Protocol

	AXI and HFAST-to-AXI mapping
	Off-chip address size
	B-RAM Inference
	Dual-port Block RAMs
	Other multi-port RAMs

	Substrate Gateway
	Console I/O
	Filesystem Interface
	Hardware Server

	Kiwi Performance Tuning
	Kiwi Performance Predictor
	Phase Changes, Way Points and Loop Markers
	Growth Parameter Assertions/Denotations
	Debug, Single Step and Directorate Interface

	Spatially-Aware Binder
	Generated RTL
	RAM Library Blocks
	ALU Library Blocks

	Incremental Compilation and Black Boxes
	IP Integration via IP-XACT
	The Kiwi.Remote() Markup
	Required MetaInfo
	Instantiation Styles
	Subsystem Abend Syndrome Routing

	Design Examples
	A get-started example: 32-bit counter.

	IV Expert and Hardware-level User Guide
	Kiwi Hard-Realtime Pipelined Accelerators
	Pipelined Accelerator Example 1

	Designing General/Reactive Hardware with Kiwi
	Input and Output Ports
	Register Widths and Wrapping
	How to write state machines...
	 Moore Machines
	 Mealy and combinational logic:

	 State Machines
	Clock Domains

	SystemCSharp

	V Kiwi Developers' Guide and Compiler Internal Operation
	KiwiC Internal Operation
	Background: HPR/LS Library (aka Orangepath)
	DIC
	ASM
	RTL and FSM
	CMD
	Finite-State Machines
	CSP/Occam
	Internal Working of the KiwiC front end recipe stage

	VI Miscellaneous
	FAQ and Bugs

	VII Orangepath Synthesis Engines
	A* Live Path Interface Synthesiser
	Transactor Synthesiser
	Asynchronous Logic Synthesiser
	SAT-based Logic Synthesiser
	Bevelab: Synchronous FSM Synthesiser
	Bevelab: Hard Pause Mode Internal Operation
	Bevelab: Soft Pause Mode Internal Operation

	VSFG - Value State Flow Graph
	PSL Synthesiser
	Statechart Synthesiser
	SSMG Synthesiser
	Repack Recipe Stage
	Restructure Recipe Stage

	VIII Output and Analysis Recipe Stages
	HPR Output Formats Supported
	C++, SystemC and C# Output Generators
	RTL Output Generator
	IP-XACT Output Generator
	Built-in report writers

	Arithmetic and RAM Leaf Cells
	Fixed-point ALUs
	Floating-point ALUs
	Floating-point Convertors
	RAM and ROM Leaf Cells

	IX HPR L/S (aka Orangepath) Facilities
	FILES AND DIRECTORIES
	Environment Variables and IncDir Search Paths
	Espresso

	Cone Refine
	HPR Command Line Flags
	Other output formats
	General Command Line Flags
	HPR L/S (aka Orangepath) FAQ

	HPR System Integrator
	Memory Map Management (Link Editing)
	Deadlock and Combinational Paths
	Constructive Placement
	Multi-FPGA designs
	Mux and Demux Blocks
	Non-uniform Memory Access (NUMA)
	Network On Chip (NoC)
	Bus Definitions
	Sewing Kit for Miscellaneous Nets
	System Integrator Example Run

	Diosim Simulator
	Simulation Control Command Line Flags

