
Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

c©2011-17 DJ Greaves + S Singh

May 8, 2018

Preface

Kiwi was a collaborative project between the University of Cambridge Computer Laboratory and
Microsoft Research Limited, headed by David Greaves (UoCCL) and Satnam Singh (MRL). From
2013 onwards, the Kiwi system was further developed at the Computer Laboratory and using a logic
synthesis library called HPR-L/S.

Kiwi is developing a methodology for algorithm acceleration using parallel programming and the
C# language. Specifically, Kiwi consists of a run-time library for hardware FPGA execution of
algorithms expressed within C# and a compiler, KiwiC, that converts.NETbytecode into Verilog
RTL for further compilation forFPGAexecution. In the future, custom domain-specific front ends
that generate.NETbytecode can be used.

The Kiwi technology has many potential uses, but some of noteare:

1. Kiwi-HPC: High-performance computing or scientific acceleration.

2. ASIC hard-core generation for standard algorithms that are to be implemented in silicon, such
as MPEG compression.

3. Routing logic for software-defined networking.

4. Rapid transaction processing and hardware implementation of automated trading algorithms.

Compared with existing high-level synthesis tools, KiwiC supports a wider subset of standard pro-
gramming language features. In particular, it supports multi-dimensional arrays, threading, file-
server I/O, object management and limited recursion. Release 1 of KiwiC supports static heap

c©2011-17 DJ Greaves + S Singh

management, where all memory structures are allocated at compile-time and permanently allocated
to on-FPGA RAM or external DRAM. Release 2 of KiwiC, which hashad some successful tests
already, supports arbitrary heap-allocation at run time but does not implement garbage collection.

The Kiwi performance predictor is an important design spaceexploration tool. It enables HPC users
to explore the expected speed up of their application as the modify it, without having to wait for
multi-hour FPGA compilations in each development iteration.

The Kiwi compiler, KiwiC, itself consists of about 22 klocs (thousand lines of code) of F# (FSharp)
code that is a front end to the HPR L/S logic synthesis librarythat is composed of another 60 or so
klocs of F#. The code density for F#, like other dialects of ML, is perhaps (conservatively perhaps)
3 times higher than for common imperative languages like C++, Java and C#, so it is a significant
project.

Note that the PDF version of this document tends to be more up-to-date than the HTML version.
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/manual/kiwic.pdf

Contents

0.1 Asymptotic Background Motivation for FPGA Computing 10

1 Download and License 10

1.1 Warranty .. 11

I Scientific Users’ Guide 12

2 Kiwi Substrate 12

2.1 Console and LCD stdout I/O and LED GPIO 14

2.2 Run-time Exception Handler 14

2.3 DRAM . 14

2.4 Watchpoints and Start/Stop Control 14

2.5 Framestore .. 14

2.6 Profiling .. 14

II Installation and Easy Get Started 15

3 Get Started (Mono on Linux) 15

3.1 Getting A K-Distro Binary Distribution 16

3.2 Using A K-Distro Binary Distribution 16

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

2

c©2011-17 DJ Greaves + S Singh

III Kiwi Supported Language Subset Limitations and Style Guide 19

4 General CSharp Language Features and Kiwi Coding Style 20

4.1 Supported Types .. . 20

4.2 Supported Constants and Variables 20

4.3 String Handling 21

4.4 Supported Operators 21

4.5 Supported Class Features 21

4.6 Supported I/O with Kiwi 21

4.7 Data Structures with Kiwi 1/2 22

4.8 Data Structures with Kiwi 2/2 - more advanced and opaque temporary write up... . . 22

4.8.1 First Stage Processing (repack): 22

4.9 Dynamic Storage Allocation 23

4.10 Pointer Arithmetic 24

4.11 Garbage Collection 24

4.12 Testing Execution Env: Whether I am running on the Workstation, RTL SIM or theFPGAblades. 25

4.13 Clone .26

4.14 Varargs .. 26

4.15 Delegates and Dynamic Free Variables 26

4.16 The ToString() Method 27

4.17 Accessing Numerical Value of Pointer Variables 27

4.18 Accessing Simulation Time 28

4.19 Run-time Status Monitoring, Waypoints and Exception Logging 28

4.20 Exiting Threads 29

4.20.1 Null pointer, Array bounds, Overflow, Divide-By-Zero and Similar Run-time Exceptions 29

4.20.2 Normal Thread and Program Exit 29

4.20.3 User-defined C# Exceptions 29

4.20.4 Debug.Assert or Trace.Assert 30

4.21 Pause Modes (within Sequencer HLS Mode) 30

4.22 Unwound Loops .. . 32

4.23 More-complex implied state machines 32

4.24 Inner loop unwound while outer loop not unwound. 33

4.25 Entry Point With Parameters 33

5 Generate Loop Unwinding: Code Articulation Point 33

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

3

c©2011-17 DJ Greaves + S Singh

6 Supported Libraries Cross Reference 35

6.1 System.Collections.Generic 35

6.2 Standard System.Math Library 35

6.3 Parallel For Loop 36

6.4 System.Random .. . 36

6.5 Console.WriteLine and Console.Write 36

6.6 getManagedThreadId . 37

6.7 System.BitConverter 37

6.8 System.String.ToCharArray 37

6.9 System.IO.Path.Combine 37

6.10 TextWriter .. . 37

6.11 TextReader .. . 37

6.12 FileReader 38

6.13 FileWriter .. . 38

6.14 Threading and Concurrency with Kiwi 38

6.14.1 Sequential Consistency 39

6.14.2 Volatile Declarations 39

7 Kiwi C# Attributes Cross Reference 39

7.1 Kiwi.Remote() Attribute 40

7.1.1 Referentially Transparent and Mirrorable 42

7.1.2 Remote Method Overloading 42

7.1.3 Remote Method Performance .. . 43

7.2 Asynchronous Invokation 43

7.3 Flag Unreachable Code 43

7.4 Hard and Soft Pause (Clock) Control 44

7.5 End Of Static Elaboration Marker - EndOfElaborate 44

7.6 Loop NoUnroll Manual Control 45

7.7 Elaborate/Subsume Manual Control 45

7.8 Synchronous and/or Asynchronous RAM Mapping 46

7.9 Register Widths and Overflow Wrapping 46

7.10 Net-level Input and Output Ports 47

7.11 Wide Net-level Inputs and Outputs 47

7.12 Clock Domains .. . 48

7.13 Remote .49

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

4

c©2011-17 DJ Greaves + S Singh

7.14 Elaboration Pragmas - Kiwi.KPragma 49

7.15 AssertionsDebug.Assert() . 50

7.16 Assertions - Temporal Logic 51

7.17 RTL Parameters 51

8 Memories in Kiwi 52

8.1 On-chip RAM (and ROM) Mirror, Widen and Stripe Directives 55

8.2 ROMs (read-only memories) and Look-Up Tables 55

8.3 Forced Off-chip/Outboard Memory Array Mapping 56

8.4 Off-chip load/store ports 56

8.4.1 HSIMPLE Offchip Interface & Protocol 58

8.4.2 HFAST Offchip Interface & Protocol 58

8.4.3 BVCI Offchip Interface & Protocol 60

8.5 AXI and HFAST-to-AXI mapping 60

8.6 Off-chip address size 62

8.7 B-RAM Inference .. . 62

8.8 Dual-port Block RAMs 64

8.9 Other multi-port RAMs 64

9 Substrate Gateway 65

9.1 Console I/O .. 65

9.2 Filesystem Interface 65

9.3 Hardware Server .. . 66

10 Kiwi Performance Tuning 67

10.1 Kiwi Performance Predictor 68

10.2 Phase Changes, Way Points and Loop Markers 69

10.3 Growth Parameter Assertions/Denotations 70

10.4 Debug, Single Step and Directorate Interface 70

11 Spatially-Aware Binder 72

12 Generated RTL 72

12.1 RAM Library Blocks 72

12.2 ALU Library Blocks 72

13 Incremental Compilation and Black Boxes 73

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

5

c©2011-17 DJ Greaves + S Singh

13.1 IP Integration via IP-XACT 74

13.2 TheKiwi.Remote() Markup . 75

13.3 Required MetaInfo 75

13.4 Instantiation Styles 77

13.5 Subsystem Abend Syndrome Routing 78

14 Design Examples 79

14.1 A get-started example: 32-bit counter. 79

IV Expert and Hardware-level User Guide 80

15 Kiwi Hard-Realtime Pipelined Accelerators 80

15.1 Pipelined Accelerator Example 1 81

16 Designing General/Reactive Hardware with Kiwi 82

16.1 Input and Output Ports 82

16.2 Register Widths and Wrapping 82

16.3 How to write state machines... 83

16.3.1 Moore Machines .84

16.3.2 Mealy and combinational logic: 84

16.4 State Machines 85

16.5 Clock Domains .. . 85

17 SystemCSharp 86

V Kiwi Developers’ Guide and Compiler Internal Operation 87

18 KiwiC Internal Operation 87

18.1 Background: HPR/LS Library (aka Orangepath) 90

18.2 DIC . 92

18.3 ASM . 92

18.4 RTL and FSM .92

18.5 CMD . 92

18.6 Finite-State Machines 92

18.7 CSP/Occam .. 92

18.8 Internal Working of the KiwiC front end recipe stage 93

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

6

c©2011-17 DJ Greaves + S Singh

VI Miscellaneous 96

19 FAQ and Bugs 96

VII Orangepath Synthesis Engines 106

20 A* Live Path Interface Synthesiser 107

21 Transactor Synthesiser 107

22 Asynchronous Logic Synthesiser 107

23 SAT-based Logic Synthesiser 107

24 Bevelab: Synchronous FSM Synthesiser 107

24.1 Bevelab: Hard Pause Mode Internal Operation 110

24.2 Bevelab: Soft Pause Mode Internal Operation 111

25 VSFG - Value State Flow Graph 111

26 PSL Synthesiser 111

27 Statechart Synthesiser 111

28 SSMG Synthesiser 111

29 Repack Recipe Stage 112

30 Restructure Recipe Stage 112

VIII Output and Analysis Recipe Stages 113

31 HPR Output Formats Supported 113

32 C++, SystemC and C# Output Generators 114

33 RTL Output Generator 114

34 IP-XACT Output Generator 115

34.1 Built-in report writers 115

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

7

c©2011-17 DJ Greaves + S Singh

35 Arithmetic and RAM Leaf Cells 115

35.1 Fixed-point ALUs 116

35.2 Floating-point ALUs 117

35.3 Floating-point Convertors 117

35.4 RAM and ROM Leaf Cells .. . 118

IX HPR L/S (aka Orangepath) Facilities 118

36 FILES AND DIRECTORIES 118

36.1 Environment Variables and IncDir Search Paths 118

36.2 Espresso .. . 119

37 Cone Refine 119

38 HPR Command Line Flags 119

38.1 Other output formats 122

38.2 General Command Line Flags 122

38.3 HPR L/S (aka Orangepath) FAQ 123

39 HPR System Integrator 123

39.1 Memory Map Management (Link Editing) 127

39.2 Deadlock and Combinational Paths 127

39.3 Constructive Placement 127

39.4 Multi-FPGA designs 130

39.5 Mux and Demux Blocks .. . 130

39.6 Non-uniform Memory Access (NUMA) 131

39.7 Network On Chip (NoC) 132

39.8 Bus Definitions 133

39.9 Sewing Kit for Miscellaneous Nets 133

39.10System Integrator Example Run 133

40 Diosim Simulator 134

40.1 Simulation Control Command Line Flags 136

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

8

c©2011-17 DJ Greaves + S Singh

Introduction
Kiwi is a compiler and library and infrastructure for hardware accelerator synthesis and general
support for high-performance scientific computing. The output is intended for execution of on FPGA
or in custom silicon on ASIC.

We aim to compile a fairly broad subset of theconcurrent C# language subject to some restrictions:

For Kiwi 1, the current version, we have the following aims:

• Works with the Linux/mono infrastructure but should also work on Windows.

• Program can freely instantiate classes but not at run time - afixed number of instantiation
operations must be detectable at compile time.

• Array and heap structure sizes must all be statically determinable (i.e. at compile time).

• Program can use recursion but the maximum calling depth mustbe statically determined in
Kiwi 1.

• Stack and heap must have same shape at each run-time iteration of non-unwound loops. In
other words, every allocation made in the outer loop of your algorithm must be matched with
an equivalent, manifestly-implicit garbage generation event or explicitobj.Dispose() or
Kiwi.Dispose(Object obj) in the same loop.

• Program can freely create new threads but creation sites statically determined too.

In Kiwi 2 we will relax the static restrictions and allow the size of data structures in DRAM to be
determined at runtime. See
http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/linkedlists.html

Kiwi 2, planned to be available in the middle of 2017, supports three major compilation modes.
These can be mixed in a single design, at a subsystem granularity, with the new incremental compi-
lation support based on IP-XACT.

1. The Sequencer major mode is ‘classical HLS’. It will generate a custom datapath made up
of RAMs, ALUs and external DRAM connections and folds the program onto this structure
using some small number of clock cycles for each iteration ofthe inner loops.

2. The Fully-Pipelined Accelerator major mode (§15) will run the whole subsystem every clock
tick, accepting new data every clock cycle, allbeit with some number of clock cycles latency
between a particular input appearing at the output.

3. The SoC Render major mode provides C# access to anIP-XACT-driven wiring generator with
support for automatic glue logic insertion. The invoked subsystem is called HPR System
Integrator (§39). This can target multi-FPGA designs and provides a cleanmechanism to
wrap up third-party IP blocks, such as CAMs.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

9

c©2011-17 DJ Greaves + S Singh

0.1 Asymptotic Background Motivation for FPGA Computing

The Von Neumann computer has hit a wall in terms of increasingclock frequency. It is widely
accepted that Parallel Computing is the most energy-efficient way forward. The FPGA is intrinsi-
cally massively-parallel and can exploit the abundant transistor count of contemporary VLSI. Andre
DeHon points out that the Von Neumann architecture no longeraddresses the correct problem: he
writes ”Stored-program processors are about compactness,fitting the computation into the minimum
area possible”.

‘Stored-program processors are about compactness, fittingthe computation into the
minimum area possible.’ —‘Fundamental Underpinnings of Reconfigurable Comput-
ing Architectures’by Andre DeHon.

Why is computing on an FPGA becoming a good idea ? Spatio-Parallel processing uses less energy
than equivalent temporal processing (ie at higher clock rates) for various reasons. David Greaves
gives nine:

1. Pollack’s rule states that energy use in a Von Neumann CPU grows with square of its IPC. But
the FPGA with a static schedule moves the out-of-order overheads to compile time.

2. To clock CMOS at a higher frequency needs a higher voltage,so energy use has quadratic
growth with frequency.

3. Von Neumann SIMD extensions greatly amortise fetch and decode energy, but FPGA does
better, supporting precise custom word widths, so no waste at all.

4. FPGA can implement massively-fused accumulate rather than re-normalising after each sum-
mation.

5. Memory bandwidth: FPGA has always had superb on-chip memory bandwidth but latest gen-
eration FPGA exceeds CPU on DRAM bandwidth too.

6. FPGA using combinational logic uses zero energy re-computing sub-expressions whose sup-
port has not changed. And it has no overhead determining whether it has changed.

7. FPGA has zero conventional instruction fetch and decode energy and its controlling micro-
sequencer or predication energy can be close to zero.

8. Data locality can easily be exploited on FPGA — operands are held closer to ALUs, giving
near-data-processing (but the FPGA overall size is x10 times larger (x100 area) owing to
overhead of making it reconfigurable).

9. The massively-parallel premise of the FPGA is the correctway forward, as indicated by
asymptotic limit studies [DeHon].

1 Download and License

Kiwi has been open source since early 2017 and is downloadable (perhaps on completion of a web
form). The download page ishttp://koo.corpus.cam.ac.uk/kiwic-download.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

10

c©2011-17 DJ Greaves + S Singh

1.1 Warranty

Neither the authors nor their employers warrant that the Kiwi system is correct, usable or nonin-
fringing. It is an academic prototype. We accept no responsibility for direct or indirect loss or
consequential loss to the maximum amount allowable in UK law.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

11

c©2011-17 DJ Greaves + S Singh

DRAM BANK

User App 1 User App 2

FPGA

FPGA
Interconnect

Profiling

EthernetDRAM BANK

Watchpoints
Start/Stop

Control

User Code

Kiwi Substrate Services

NetworkFilesystemConsoleDRAMFramestore

Optional HDMI
Monitor Output

Blade-level
LED and LCD output

Figure 1:Kiwi Substrate: Typical Structure of the Kiwi FPGA.

Part I

Scientific Users’ Guide

2 Kiwi Substrate

We use the termsubstrate to refer to an FPGA board or set of server blades that is/are loaded
with various standard parts of the Kiwi system. The most important substrate facilities are access to
DRAM memory, a disk filesystem and a console/debug channel. Basic run/stop/error status output
to LEDs via GPIO is also provided.

The substrate is like an operating system on the FPGA. It supports connection to more than one
application loaded in FGPA at once (cite farming paper).

There is some basic information on the Zynq substrate here:

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/zynq-pio-dma

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

12

c©2011-17 DJ Greaves + S Singh

ARM-A9
ZYNQ P/L FPGA

KSUBS3_AXI_PIO
TARGET

KSUBS3_ZYNQ_TOPLEVEL

Your
DESIGN
(or from
KiwiC)

KSUBS3_INNERCORE

XILINX
AXI4 to AXI3

IP

512KB
L2

ARM-A9

L1DL1IL1DL1I

256KB
SRAM

M_AXI_GP0

M_AXI_GP1

S_AXI_GP0

S_AXI_GP1

DRAM
small cache

DRAM

THREE
AXI BUS

MATRIX

SWITCHES DMA hfast_aximaster

ZYNQ HARD IP

NoC16 Ring

PIO

GPIO
LEDS

ABEND
SYNDROME

Another
DESIGN

LEDs
Switches

HFAST
MUX

Interrupt

Figure 2:Kiwi Substrate: Structure of the Kiwi Ksubs3 Zynq Substrate.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

13

c©2011-17 DJ Greaves + S Singh

2.1 Console and LCD stdout I/O and LED GPIO

2.2 Run-time Exception Handler

Run-time exceptions include integer divide-by-zero and null pointer de-reference, array bounds fail
and runtime fail ofDebug.Assert(). Floating point overflow is normally handled by returning
IEEE Inf or NaN.

CIL bytecode has overflow trapping versions of the arithmetic operators that raise exceptions. We
generate these from C# usingchecked keyword. Numeric casts can also be out of range, as in
(ushort)0x10000 (a CIL conv ovf.u2 assembly instruction is used.) In the future KiwiC can
trap these overflows as run-time errors.

CIL bytecode has overflow trapping versions of the arithmetic operators that raise exceptions. We
generate these from C# usingchecked keyword. Numeric casts can also be out of range, as in
(ushort)0x10000 (a CIL conv ovf.u2 assembly instruction is used.) In the future KiwiC can
trap these overflows as run-time errors.

Convert exceptions for casting a value to an illegal value with respect to the target type range, as
raised by theconv.ovf CLR instruction, ... please explain.

Array bounds checking can also give a run-time error.

TODO: explain here about a per-clock domain error net generated by KiwiC as part of control wires.

The C#Try construct is partially implemented - it does not do anything- no C# exception handling
is supported at the moment.

2.3 DRAM

DRAM and Caches are described in§8.4.

2.4 Watchpoints and Start/Stop Control

2.5 Framestore

Having very high bandwidth for writes to the framestore is anintrinsic feature of FPGA computing.
The framestore can be part of the compute engine and used for high-performance visualisation. Or
it might just be used for a progress indicator - e.g. percentage of the job processed and final output.

2.6 Profiling

Certain basic block visit counts are collected and the results fed back to the performance counters...

Tick counter ... for tnow.Kiwi.tnow.

There is a simple version ofSystem.Diagnostics.Stopwatch that is built trivially on top of the
Kiwi.tnow mechanisms. It has the methods:Reset, Start andStop . The current reading is via a
getter forStopwatch.ElapsedMilliseconds.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

14

c©2011-17 DJ Greaves + S Singh

Part II

Installation and Easy Get Started
Kiwi is currently not as easy to use as it could be. You can find an ‘addin’ for themonodevelop
IDE on the following URL but it is currently not very useful and since it is really focussed on Kiwi
performance prediction which is immature. Currently it is best if you craft aMakefile based on one
of the examples.

Monodevelop addin:http://www.cl.cam.ac.uk/users/djg11/kiwi/kiwiaddins/KiwiScientificA

The Makefile will compile your application and optionally run the application on your workstation
under mono or the Windows equivalent.

The Makefile will then invoke the Kiwi compiler to generate a Verilog RTL file and combine this
with the provided substrate Verilog files for your FPGA target. Finally it will invoke the FPGA tool
suite to give a bitstream file to be loaded to the FPGA.

The means for loading to the FPGA is currently highly-platform specific. Each substrate should have
its own user guide.

3 Get Started (Mono on Linux)

Kiwi is available in source and precompiled binary form.

Requirements:. You need a working dotnet environment (mono or Windows) on your machine
including a C# compiler. It is also handy to have Modelsim or Icarus Verilog and Verilator and
SystemC.

Do not do this for Windows, but for linux set your shell environment MONO variable

$ setenv MONO=mono

$

KiwiC/HPR is currently internally implemented in F# but youjust need a C# compiler to use the
precompiled distribution.

Kiwi binary form is normally supplied as a zip file that contains folders called lib, bin, doc and so
on. If you want the source for the compiler it is now public.

You will need the F# compiler to compile HPR and KiwiC from source. The source build should be
configured by editing the paths inhpr/Makefile.inc. Set the HPRLS shell variable to where the
source code sits and run ‘make’ inkiwipro/kiwic/src to build the compiler.

If F# is not locally installed you will need to manually add atleast the FSharpCore.dll to the Ki-
wiC/distro/lib folder. We do ship one you can move there. Otherwise you may get ’type load’ and
’missing entry point’ errors.

FSharp can be simply obtained withapt-get install fsharp on some machines.

KiwiC uses the Mono.Cecil front end and hence the Mono.Cecil.dll is required, either installed on
the machine or copied to the KiwiC/distro/lib folder.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

15

c©2011-17 DJ Greaves + S Singh

Note: on some versions of linux, applying the shell to the .exe file without invoking mono invokes
wine. The wine Windows emulator munges the dot net O/S interface, telling KiwiC that it is running
on Windows NT and interchanging slashes and backslashes. This is liable not to work very smoothly
(although more robust programming inside KiwiC would help in this respect).

On a Windows box, to get started running KiwiC from the Windows command line, create a folder in
your K-Distro folder, cwd to it and copy in a simple target, liketiny.exe described in§3.2. Then,
in that folder run

..\lib\kiwic.exe tiny.exe -vnl tiny.v

3.1 Getting A K-Distro Binary Distribution

When the Kiwi system is itself compiled, it generates a foldercalled K-Distro. A user can download
this folder or can compile it themselves from the Kiwi sourcedistribution.

The important components of K-Distro are a lib folder containing all of the compiler dlls, a recipes
folder containing the recipe XML file and a support folder containingKiwi.dll andKiwic.dll.

3.2 Using A K-Distro Binary Distribution

The Kiwi compiler itself is invoked via a shellscript calledkiwic in the bin folder of the K-Distro.
It is usual to put that folder on your PATH. The shellscript does little other than apply mono to
../lib/kiwic.exe.

Place the Kiwi distribution somewhere on your filesystem. Let us call that place PREFIX. For source
build this will be$HPRLS/kiwipro/kiwic/distro/lib. To run KiwiC on linux you must execute
the KiwiC shell script

$ $(PREFIX)/bin/kiwic ... args ...

The shellscript just containsmono $(PREFIX)/lib/kiwic.exe

Windows users can invoke thekiwic.exe executable directly.

The arguments to KiwiC should either be portable assembly files (suffix .dll or .exe) or option flags
prefixed with a minus sign. Generally you will supply the current design and KiwiC will automati-
cally load the Kiwi libraries it needs.

Two Kiwi libraries are commonly needed:

1. Kiwi.dll - This defines the Kiwi attributes and other material implemented in C# that should
be supplied both to C# compilations and to the KiwiC compilerfor both FP and WD.

2. Kiwic.dll - This defines additional or replacement implementations ofstandard.NETlibrary
functions for use by the KiwiC compiler and must nominally besupplied on the KiwiC com-
mand line. Generally, this isnot needed for the first stage of a compilation when an application
program in C# is converted to a.NETbinary (.exe or .dll) where that binary is either going
to be run on the workstation (mono/windows) or compiled further by KiwiC. It should be
automatically found by KiwiC and so does not need to be actually named on any command
line.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

16

c©2011-17 DJ Greaves + S Singh

To enable the same RTL file to be synthesised for FPGA by vendortools and simulated
[RTL SIM] but to have slightly different behaviour (e.g. w.r.t. BIST self test) it is handy to
define an external input to the Kiwi code that you tie low in theRTL SIM testbench but strap
high in the FPGA substrate pad ring.

[Kiwi.InputBitPort("FPGA")] static bool FPGA;

If you have these libraries in .cs form only, you will need to compile them to .dll form using mcs or
similar. You will get some warnings about the ‘unsafe’ code they contain.

You must manually include the reference toKiwi.dll in the C# compilation step.

For the KiwiC compilation step, KiwiC will automatically search for the above libraries and include
them in the compilation and this is equivalent to manually including them on the KiwiC command
line.

To disable automatic search or redirect it to specific files, use the command-line flags-kiwic-dll
and-kiwi-dll. Set these to the empty string to disable them or set them to a specific location, e.g.
-kiwic-dll=/usr/lib/kiwic/mykiwic.dll.

Note that anything specified via the command line can also be specified in an XMLrecipe file, with
the command line taking precedence when specified both ways.Kiwi comes with a standard recipe
for accelerating scientific computing. You can modify this to get SystemC output or for privately
developed flows based on Kiwi.

Kiwi defines the terms WD, RTLSIM and FP to define three, so-called,execution environments.

1. WD — Rapid development of applications on the workstation with performance prediction.

2. RTL SIM — Verilog simulation (verilator is fastest) in case of KiwiC bugs and for perfor-
mance calibration when interacting with RTL models of othersystem components.

3. FPGA — high-performance execution on the FPGA.

CIL assemblies have the option for an EntryPoint method to bedesignated. Having one of these is a
main difference between .exe and .dll files.

I can add an option to recognise the entrypoint as a root, or make this default failing all else, but,
for most cases, a different entry point is preferable for thedifferent execution envs and we’d want to
reserve entrypoint for WD. This needs to be looked at especially for multi-FPGA designs.

The Kiwi.HardwareEntryPoint attribute can be attached to one or more static methods in the
input program. These denote so-called ‘client’ methods. The control-flow graph beneath such meth-
ods is converted to hardware. The command line-root flag is another way of specifiying an entry
point. KiwiC does not default to using a static Main method.

TheHardwareEntryPoint attribute can take a pause mode as an argument. This will, in future, set
the starting pause mode for that entrypoint, and moreover, be used to set pipelined accelerator mode.

To obtain Verilog RTL output, KiwiC requires a source file name and access to its libraries. So the
most basic Makefile is something like:

It might be helpful to pass constant values as arguments to the HardwareEntryPoint but this is not
supported. Instead, write a C# shim that takes no arguments and passes constants to a putative entry
point. (But see also§7.17.)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

17

c©2011-17 DJ Greaves + S Singh

PREFIX=$(HPRLS)/kiwipro/kiwic/distro

KLIBC=$(PREFIX)/kiwipro/support/Kiwic.dll

KLIB0=$(PREFIX)/kiwipro/support/Kiwi.dll

KIWIC=$(PREFIX)/kiwipro/bin/kiwic

all:

gmcs /target:library tiny.cs /r:$(KLIB0)

$(KIWIC) tiny.exe

Other useful options until recently: -vnl and -root:

$(KIWIC) tiny.exe -root "tiny;tiny.Main" -vnl tiny.v

Given that you have a file called tiny.exe to hand, this shouldresult in a file calledtiny.v in your
current directory.

To generatetiny.exe one can do the following:

$ cat > tiny.cs
using System;
using KiwiSystem;

class tiny
{

[Kiwi.HardwareEntryPoint()]
public static int Main (string []argv)
{

Console.WriteLine("Hello World");
return 1;

}
}
$ gmcs tiny.cs # or use mcs the mono C# compiler.

Should you need it, KiwiC will write a disassembly of the PE file to obj/ast.cil in the cur-
rent folder, enabled by recipe or command line flag ‘-kiwic-cil-dump=separately’ or ‘-kiwic-cil-
dumpl=combined’.

If you do not have the Kiwi.dll library to hand (e.g. input from C++ instead of C#) or have other
problems putting aHardwareEntryPoint attribute on a method then using the-root command
line flag is a good idea.

If you do not have the Kiwi.dll library to hand (e.g. input from C++ instead of C#) or have other
problems putting aHardwareEntryPoint attribute on a method then using the-root command
line flag is an alternative.

Also, you can externally disassemble a .net CIL file usingikdasm (which works better than the older
monodis) shell command. The commandpedump may also be useful.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

18

c©2011-17 DJ Greaves + S Singh

Part III

Kiwi Supported Language Subset
Limitations and Style Guide
Kiwi aims to support a very broad subset of the C# language andso be suitable for a wide variety
of High-Performance Computing (HPC) applications. However, the user is expected to write in a
parallel/concurrent style using threads to exploit the parallelism available in the FPGA hardware.
However, conventional high-level synthesis (HLS) benefitsshould be realised even for a single-
threaded program.

This chapter will explain the synthesisable subset of C# supported by KiwiC, but currentlymuch
work is needed in this section of the manual ...

In general, for Kiwi 1, all recursion must be to a compile-time determinable depth. The heap and
stack must have the same shape at each point of each iterationof every loop this is not unwound
at compile time. In other words, dynamic storage allocationis supported in KiwiC, provided it is
called only from constructors or once and for all on the main (lasso stems of) threads before they
enter an infinite loop. If called inside a non-unwound loop, the heap must be the same shape at each
point on each iteration.

KiwiC implements a form of garbage collection called ’autodispose’. This can currently (October
2016) be enabled with-autodispose=enable. It will be turned on by default in the near future
when further escape analysis is completed. Currently it disposes of a little too much and when that
memory is reused we have a nasty aliasing problem since that store was still live with other data.
This will crop up with linked-list and tree examples or wherethe address of a field in a heap object
is taken.

When autodispose fails to free something (or is turned off) you can explicitly free such store with a
call toobj.Dispose() or Kiwi.Dispose(Object obj).

WRONG: Dynamic storage regions cannot currently be shared between Kiwi threads. Currently,
KiwiC implements different heap spaces for each thread ... really ? If so this needs fixing ... TODO
... maybe they are only different AFTER a fork but resources allocated before Thread.Start are ok.

Floating point is being provided for the standard 32 and 64-bit IEEE precisions, but FPGAs really
shine with custom precision floating point so we will add support for that while maintaining bit-
accurate compatiblity between the execution environments.

Atomic operations: Kiwi supports the CLR Enter, Exit and Wait calls by mapping them on to the
hpr testandset primitive supported by the rest of the toolchain. Ed: The rest of this paragraph should
be in the ‘internal operation’ section.Although RTL target languages, such as Verilog, are highly-
concurrent, they do not have native support for mutexes. Thebevelab recipe stage correctly supports
testandset calls implemented by its own threads, but KiwiC does not use these threads: instead it
makes a different HPR virtual machine for each thread and these invoke bevelab once each instead
of once and for all with bevelab threads within that invokation. Hence the the testandset primitives
dissappear inside bevelab. ... TODO explain further.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

19

c©2011-17 DJ Greaves + S Singh

4 General CSharp Language Features and Kiwi Coding Style

4.1 Supported Types

Kiwi supports custom integer widths for hardware applications alongside the standard integer widths
of dotnet 8, 16, 32 and 64.

Char is a tagged form of the 16-bit signed integer form.

Single and double-precision floating point are supported.

Enumerations are supported with custom code points. MSDN says the approved underyling types
for an enum are byte, sbyte, short, ushort, int, uint, long, or ulong, but Kiwi uses a suitable custom
width of any number of bits.

One-dimension arrays are supported natively by Kiwi since they are part of the dot net virtual ma-
chine. TheLength attribute does not always work at the moment since its implementation is fully
at compile time and it fails where this varies at a given call site at run time. This can be fixed by the
user using a wrapper class as per the higher-dimensional arrays.

Higher-dimensional arrays, including jagged arrays, are implemented in theKiwic.cs file as wrap-
pers around the native one-dimensional array. This is the same as for other dot net uses of higher-
dimensional arrays. In theory, the standard dot net versionof these wrappers should work well with
Kiwi but we have not tried it. The Kiwi-supplied wrappers have various and properties and meth-
ods missing that should be available. Feel free to add them orpaste the code from the standard
implementations.

Classes and structs are supported. These are different fromeach other in C# (unlike C++). Although
having much in common, C# treats structs and classess differently. C# passes structs by value to
a method, meaning local modifications to contents do not commit to original instance. C# assigns
structs by value, so all fields in the destination are updatedby the assigment, rather than the handle
just being redirected. Support for C# structs is being added.

Static and dynamic instances of classes and structs work. There is also some support for static arrays,
as used in the C++ gcc4cil front end, but arrays are normally dynamically-allocated in C#. Certain
restrictions regarding dynamic storage allocation and automatic garbage collection apply (§III).

4.2 Supported Constants and Variables

Kiwi supports static, instance, local and formal parametervariables.

Variables may be classes or built-in primitive types and arrays of such variables. An array may
contain a class and a class may contain an array, to any nesting depth. Multi-dimensional arrays (as
opposed to jagged arrays) are supported with a little syntactic sugar in the C# compiler but mostly
via library class code provided in Kiwic.dll.

Signed and unsigned integer and floating point primitive variables are fully supported.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

20

c©2011-17 DJ Greaves + S Singh

4.3 String Handling

Verilog and SystemC have 8-bit chars but C# and dotnet have 16-bit chars. KiwiC maps all 16-
bit chars to the closest 8-bit char. UTF-8 escapes could easily be supported in this process but are
missing at the moment.

Strings are supported a little, but there is currently no run-time concatenation or creation of new
strings, so all such string creation operations must be elaborated at KiwiC compile time and hence
be applied to constant strings.

4.4 Supported Operators

All standard arithmetic and logical operators are supported. Some operators, especially floating-
point converts and floating-point arithmetic result in components being instantiated from the cv-
gates.v library. Integer mod, divide and larger multipliesalso result in ALU instantiation, unless
arguments are constant identity values or powers of two thatare easily converted to shifts. Divide
and multiply by a constant may result in adders being generated.

4.5 Supported Class Features

Classes can be statically and dynamically allocated. Constructor code is executed.

Static classes have their constructor code called at compile time (although it is perhaps possible for
the lasoo stem to end partly through the last one one of them.)The same goes for dynamic classes
that are converted to static within the lasoo stem.

Class and array instance handles can be manipulated at run time. KiwiC (repack stage) will allocate
a small integer for each one in each equivalence group where handles are interchanged or shared.
KiwiC checks whether the null value requires a code point in each group. Run-time null dereference
errors will be reported in the abend code register at some point soon.

Many class and array handles are never changed (the group hasjust one member) and hence are
merely an artefact of the C# language. Such handles are optimised away inside KiwiC and have
no run-time overhead. Class and array instance handles can be manipulated at run time. KiwiC
(repack stage) will allocate a small integer for each one in each equivalence class where handles are
interchanged. KiwiC checks whether the null value requiresa code point. Run-time null de-reference
errors will be reported in the abend code register at some point soon.

4.6 Supported I/O with Kiwi

Kiwi supports a number of forms of I/O:

• Net-level RTL-style I/O through peeking and poking of static variables that are shared with
the outside world is the most basic form of I/O. Please see§7.10.

• Methods can also be designated as remotely-callable. Communication between separately-
compiled hardware modules is then analogous to method callsbetween software components.
This is explained in§7.1.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

21

c©2011-17 DJ Greaves + S Singh

• Local console debugging style output. Principly this involves calling +verbConsole.WriteLine()+
and running the KiwiC output on an RTL simulator. On the FPGA blades, output to a logging
file is supported over the network. Also, certain real hardware devices on the substrate such
as LEDs, LCD panels and framestores have also been run experimentally.

• Remote Console, Network and Filesystem I/O via the substrate gateway. See§9.2

4.7 Data Structures with Kiwi 1/2

To achieve high performance from any computer system the programmer must think about their
data structures and have a basic knowledge of cache and DRAM behaviour. Otherwise they will hit
memory bandwidth limitations with any algorithm that is nottruly CPU bound.

As in most programming languages, C# variables and structures are static or dynamic. Dynamic
variables are allocated on the heap or stack. All are converted to static form during compilation
using the version 1 Kiwi compiler. Support for truly dynamicvariables will perhaps be added in a
future release.

Kiwi does not (currently) support taking the address of local variables or static variables in fields
(except when pass by reference is being compiled). All pointers and object handles need to refer to
heap-allocated items.

It is helpful to define the following two terms for pointer variables. Pointers generally point to
dynamic data but their pattern of use falls into two classes.We will call a static pointer one whose
value is initially set but which is then not changed. Adynamic pointer is manipulated at run time.
Some dynamic pointers range over the valuenull . (As with all C# variables, such pointers can be
declared as static or instance in C# program files — this is orthogonal to the current discussion.)

Every C# array and object is associated with at least one pointer because all arrays and objects
are created using a call to ’new’. Also, some valuetypes become associated with a pointer, either
by being passed-by-reference or by application of the ampersand operator in unsafe code. The
KiwiC compiler will ‘subsume’ nearly all static pointers inits front end constant propagation and
any remaining static pointers will be trimmed by later stages in the KiwiC compiler or in the vendor-
specificFPGA/ASIC tools applied to the output RTL.

KiwiC maps data structures to hardware resources in two stages. In the first stage (known as repack
§29), every C# form (that did not disappear entirely in the front end) is converted to either scalars of
some bit width or 1-D arrays (also known as vectors) of such scalars. In the second stage (known
as restructure§30), mapping to physical resource decisions are made as to which vectors and scalars
to place in what type of component (flip-flops, unregistered SRAM, registered SRAM, DP SRAM
or off-chip in DRAM) and which structural instance thereof to use. The first stage behaviour is
influenced mainly by C# programming style. Second stage behaviour is controlled by heuristic rules
parametrised by command-line flags and recipe file values.

4.8 Data Structures with Kiwi 2/2 - more advanced and opaque temporary write up...

4.8.1 First Stage Processing (repack):

Two-dimensional arrays are a good example to start with. Although there is syntactic sugar in C#
for 2-D arrays, with current C# compilers this is just replaced with operations supplied by a library

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

22

c©2011-17 DJ Greaves + S Singh

dll. The dotnet runtime and KiwiC support just 1-D arrays called vectors. There are two possible
implementations of a 2-D array library: jagged and packed. The packed form subscript is computed
using a multiply of the first co-ordinate with the arity of thesecond co-ordinate and then adding
on the second co-ordinate. The jagged form uses a vector of static pointers to vectors that contain
the data; the first co-ordinate is the subscript to the pointer vector and the second co-ordinate is the
subscript to the selected vector. We use the term jagged to encompass their smooth form where all
data vectors are the same length.

KiwiC inlines the subscript computation for a packed array as though the programmer had inlined
such an expression in his C# code. Additionally, there is only one vector created. Therefore packed
2-D arrays first become 1-D vectors. However, such vectors are then subject to unpacking in first
stage operation. For instance, if all subscripts are constant values, the array is replaced with a set
of scalars. Of if the subscripts fall into clearly disjoint regions, the vector is split into multiple,
separately-addressed regions. Or if all the subscripts have a common factor or common offset then
these are divided and subtracted off respectively. This unpacking into multiple vectors removes
structural hazards that would prevent parallelism.

For a jagged array, initially a number of separate vectors are created and a potentially large number
of multiplexing expressions (that appear as the ?: construct in Verilog RTL) are created to direct
reads to the correct vector. For writes, an equivalent demultiplexor is created to select the correct
vector for writing. (The pointer vector is normally static and becomes subsumed, but we will later
discuss what happens if the C# code writes to it, making it dynamic.)

Implementation note: if a jagged array is created by allocating a large 1-D array and storing ref-
erences to offsets in that vector in the pointer array, it is possible to generate a structure that is
identical to the packed array. KiwiC happens to detect this pattern and the behaviour would be as
per the packed array: however this style of programming is not allowed in safe C#, but could be
encountered in unsafe code or other dotnet input form, say, C++.

If we create an array of objects do we expect the fields of the objects to be placed in vectors? Yes,
certainly if the object pointers are subsumed.

If we take the parfir example, there’s one initialise place where empty flags are written from a non-
unwound loop and hence with dynamic subscript, but elsewhere they are updated only with constant
subscripts and so should be simple scalar flags.

Kiwi on Loop Unwinding: Loop-carried dependencies in data or control form limit the amount of
parallelism that can be achieved with unwinding.

The hard cbg algorithm unwinds all loops without event control. The soft algorithm allocates cycles
based on greedy or searching strategies based on complexityand structural hazards. Consider 1:
Hoisting of exit condition computation, or hoisting of datadependency computation: this should
preferably be applied? So the post-dependent tail of each loop can be forked off

4.9 Dynamic Storage Allocation

For statically-allocated object instances, KiwiC packs them into flip-flops, B-RAM or DRAM ac-
cording to thresholds configured in the recipe or command line. This includes objects and structs
allocated on the C# heap before the end of static elaboration.

For dynamically-allocated instances, KiwiC cannot easilytell how much memory may be needed
and so defaults to DRAM channel 0 if present. But we can switchmanually between B-RAM and

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

23

c©2011-17 DJ Greaves + S Singh

DRAM for dynamic storage allocation using C# attributes.

We make the following interesting observation:Once data structures are placed in DRAM there
is no real need to have their number statically determined atcompile time: instead they can be
truely dynamically allocated at run time(DJ Greaves 2015). Indeed, if an application becomes
overly dependant on DRAM data then the FPGA advantage will disappear and a Von Neumann
(e.g. x86) implemenation may likely have better performance. But, there remains some good FPGA
mid ground where a lot of dynamic store is needed but where theaccess bandwidth required is not
excessive.

Kiwi.HeapManager

Physical memories used for dynamic storage require a freespace manager. We can allocate a Heap-
Manager for each physical memory and the user can direct requests to an appropriate instance. Typ-
ically there could be one for each separate DRAM bank and one for each separate on-chip B-RAM.

Also, arrays with dynamic sizes ...

4.10 Pointer Arithmetic

handleArith pointer arithmetic

Kiwi.ObjectHandler<T>

The object handler provides backdoors to certain unsafe code for pointer arithmetic that are banned
even in unsafe C# code. Implementation in CIL assembler would be possible but having hardcoded
support in the KiwiC compiler accessed via this object manager is easier.

4.11 Garbage Collection

With Kiwi 1, the stack and heap must have same shape at each run-time iteration of non-unwound
loops. In other words, every allocation made in the outer loop of the compiled program must be
matched with an equivalent dispose or garbage generation event in the same loop.

Where a heap object is allocated inside a loop that is not compile-time, it will potentially consume
fresh memory on each iteration. There are two basic senariosassociated with such a condition: either
the fresh memory is useful, such as when adding items to a linked-list datastructure, or else it is not
needed because the previous allocation is no longer live andthe same heap space could be simply
reused. This second case is fully served by converting to static allocation at compile time.

KiwiC V2 is implementing a more easy to use, run-time storageallocator, but without garbage
collection.

KiwiC V1 does not support genuine dynamic storage allocation inside an execution-time loop. Bit
it provides two mechanisms to support dynamic to static reduction where dynamic store is not really
needed. The first uses an explicit dispose and the second usesan implicit dispose. Either way, when
the loop iterates, the active heap has shrunk and KiwiC makessure to reuse the previously allocated
heap record at the allocation site (call to C# new).

See the linked list example ... http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-
demos/linkedlists.html

KiwiC V1 arrays - Array sizes must all be statically determinable (i.e. at compile time).

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

24

c©2011-17 DJ Greaves + S Singh

System.BitConverter provides a typical use case that involves a lot of temporary byte arrays. The
F# compiler also uses a lot of temporary structures and the KiwiC has a chance of compiling F#
bytecode by exploiting the implicit disposal approach.

Arrays in.NETdo not have aDispose()method. Instead an array can be disposed of withKiwi.Dispose<T>(T

This is a nop when running on mono/dotnet.

System.BitConverter returns char arrays when destructingnative types and the arrays returned by
BitConverter should be explicitly disposed of inside a non-unwound loop if KiwiC is failing to spot
an implicit manifest garbage creating event, as reported with the an error like:

System.BitConverter returns char arrays when destructingnative types. The arrays returned by Bit-
Converter should be explicitly disposed of inside a non-unwound loop if KiwiC is failing to spot an
implicit manifest garbage removal opportunity, as reported with the an error like

KiwiC +++ Error exit: BitConverterTest.exe: constant_fold_meets

entry_point=5:: Bad form heap pointer for obj_alloc of type

CT_arr(CTL_net(false, 32, Signed, native), 8) post end of elaboration

point (or have already allocated a runtime variable sized object ?).

Unless you are geninuely making a dynamic linked list or tree, this

can generally be fixed using a manual call to Kiwi.Dispose() in your

source code at the point where your allocation could be safely

garbage collected.

Unless you are geninuely making a dynamic linked list or tree, the failed implicit garbage collector
can generally be worked around using a manual call toKiwi.Dispose() in your source code at the
point where your allocation could be safely garbage collected.

new

For making trees and lists, see the linked list example ... http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-
demos/linkedlists.html

... field-arrays and spatial locality

4.12 Testing Execution Env: Whether I am running on the Workstation, RTL SIM or the FPGA

blades.

We need sometimes to achieve different behaviour, for debugging and scaling reasons, in the three
execution environments.

1. For Workstation Development - WD - we can invoke
Kiwi.inHardware() and find that it returns false. TheKiwi.dll file returns false when run
as a normal dotnet program, but KiwiC has a hardcoded bypass that makes it hold (return
true).

2. For RTL SIM check that inHardware returns false and that the
Kiwi.InputBitPort("FPGA")] static bool FPGA; returns false. You should tie this
net low in your simulator top-level instantiation.

3. Otherwise we are in FPGA. The Kiwi substrate for a hardwarePCB should tie this net high in
the pad ring.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

25

c©2011-17 DJ Greaves + S Singh

Call the functionKiwi.inHardware() for this purpose. Since this is a compile-time constant, it is
useful for removing development and debugging code from thefinal implementation. KiwiC will
ignore code that is insideif (false) { } constructs so write
if (!Kiwi.inHardware()) { ... test/debug code ... }.

[KiwiSystem.Kiwi.HprPrimitiveFunction()]

public static bool inHardware()

{

return false; // This is the returned value when running on the workstation.

// An alternative overriding implementation is hardcoded inside KiwiC and will

//return ’true’ for FPGA and RTL simulation.

}

4.13 Clone

Clone of arrays and objects

4.14 Varargs

not there yet ... The varargs support is also pretty trivial to implement inside KiwiC under the current
technique of fully inlining method calls during KiwiC compilation - it’s just a matter of a few lines
of simple interpretative code in the elaborator...

4.15 Delegates and Dynamic Free Variables

Kiwi Dynamic Method Dispatch

Dynamic method dispatch is where which function body that gets called from a callsite is potentially
data-dependent. Computed function calls occur with actionand function delegates and dynamic
object polymorphism.

In C++ there are restrictions that higher-order programming is only possible within a class hierarchy.
This arises from the C compatibility issues where the higher-order function passing does not have
to manage an object pointer. These issues are neatly wrappedup in C# using delegates. An action
delegate has void return type whereas a function delegate returns a value.

Kiwi supports the function and action delegates of C#.

KiwiC partitions dynamically-callable method bodies intoequivalence classes and gives each body
within a class an integer. These classes typically contain only a very few members each. It then
uses constant folding on the entire system control-flow graph as a general optimisation. This may
often turn a dynamic dispatch into a static dispatch, hence these integers will not appear in the output
hardware unless truly dynamic dispatch is being used, such as in

Action<int, string> boz_green = delegate(int var1, string var2)

{ Console.WriteLine(" {1} {0} boz green", var1, var2);

};

Action<int, string> boz_red = delegate(int var1, string var2)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

26

c©2011-17 DJ Greaves + S Singh

{ Console.WriteLine(" {1} {0} boz red", var1, var2);

};

for(int pp=0; pp<3; pp++)

{ Kiwi.Pause(); // Pause makes this loop unwind at run time.

boz_red(pp+100, "site1");

boz_green(pp+200, "site2");

var x = boz_red; boz_red = boz_green; boz_green = x; //swap

}

C# 3.0 onwards supports proper closures. These are implemented inside the C# compiler and com-
pile fine under Kiwi provided the static allocation restrictions are obeyed.

Test55 of the regression suite contains the following demo.

public static Func<int,int> GetAFunc()

{

var myVar = 1;

Func<int, int> inc = delegate(int var1)

{ myVar = myVar + 1;

return var1 + myVar;

};

return inc;

}

[Kiwi.HardwareEntryPoint()] static void Main()

{ var inc = GetAFunc();

Console.WriteLine(inc(5));

Console.WriteLine(inc(6));

}

This compiles and works fine. But, there is a Kiwi 1 resrictionthat theGetAFunc call must be before
the end of static elaboration since this creates the closurethat is allocated on the heap.

If no closure is needed, Action and Function delegates suffer from no static allocation restriction.

4.16 The ToString() Method

Kiwi implements a basic version of the ToString method. It will give output that is rather dependent
on which version of the compiler is being used, but it is better than nothing. Enumerations print as
integers.

4.17 Accessing Numerical Value of Pointer Variables

IntPtr types.

Clearly, the addresses used on the FPGA have little relationship when run on the mono VM, but it
is possible to display class pointer value on the hardware platform. One method is to use the default
ToString method on an object handle. This will generate a Kiwi-specific output.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

27

c©2011-17 DJ Greaves + S Singh

For example

Console.WriteLine(" Ntest14w line0 : pointer={0}", ha.ToString());

Console.WriteLine(" Ntest14w line1 : left={0}", ha.left);

Might give:

Ntest14w line0 : pointer=Var(test14w/T401/Main/T401/Main/V_0%$star1$/test14w/

dc_cls%30008%4, &(CTL_record(test14w/dc_cls,...)), ...,)

Ntest14w line1 : left=32

Ah - this has printed the variable not its value!

4.18 Accessing Simulation Time

The Kiwi.dll library declares a static variable calledKiwi.tnow. During compilation reads of this
are replaced with references to the appropriate runtime mechanism for access to the current simula-
tion time. For instance, the following line

Console.WriteLine("Start compute CRC of result at {0}\n", Kiwi.tnow);

becomes

$display("Start compute CRC of result at %t\n", $time);

when output as Verilog RTL.

The substrate has a tick counter that is instantiated when tnow is used for FPGA execution and so the
RTL SIM code is a now a shim and not a direct call to the non-synthesisable$time infact... TODO
fix.

4.19 Run-time Status Monitoring, Waypoints and Exception Logging

The following text to be corrected and moved to debugging section of manual please:

The user requires an indication of whether an FPGA card is actively running an application. Nearly
all FPGA cards have LED outputs controlled by GPIO pins that are useful for basic status monitor-
ing. It is normal to connect an LED or two to indicate Kiwi activity and/or error, but most status
reporting is via the substrate gateway.

Some FPGAs have LCD or VGA framestore outputs that are also relatively easy to use for monitor-
ing and results.

The sequencer index and waypoint for each thread can be remotely monitored via the substrate
gateway. This provides ... abend syndrome register ... logsthread id, waypoint, pc value and abend
reason.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

28

c©2011-17 DJ Greaves + S Singh

4.20 Client versus Server Designs and Start Commands

An HLS run can generate a client or a server. A server is an accelerator or AFU that will be used by a
client: it does nothing by itself. A client, on the other hand, starts work by itself, either straightaway
or when given a start command. A client can be software running on a host that invokes accelerators
via the Kiwi Substrate, or it may be an HLS design that starts from aKiwi.HardwareEntryPoint
attribute.

A client that performs DMA into a host must be told the DMA address before it starts.

TheksubsRunStop two-bit field is used to control hardware clients.

ksubsRunStop settings

0 0 Assert synchronous reset

0 1 Normal running

1 0 Pause (deassert clock enable)

1 1 (reserved for single step)

[Kiwi.InputWordPort(‘‘ksubsRunStop’’)] static int ksubsRunStop could be polled from
C# as a potentially sensible design point. But we do not use that. Instead, where the client is in-
stantiated by the substrate, its reset and clock enable inputs are connected to a hardware circuit that
interprets the run stop field and which can allow just one single clock cycle of progress in some
variants.

The Pause setting requires the client to have a clock enable input. The command line flag that
ensures clock enables are present is-kiwife-directorate-style=advanced . The clock enable
is calledhpr_ext_run_enable. An AbendSyndrome register is also created in that mode. Clock
enable is de-asserted when abending or exiting. ... say by whom...

4.21 Exiting Threads

4.21.1 Null pointer, Array bounds, Overflow, Divide-By-Zero and Similar Run-time Exceptions

The Kiwi substrate gateway will log the thread identifier, waypoint and sequencer index for threads
that finish or abort in an abend syndrome register. The user can reverse-engineer these via the KiwiC
report file. An XML variant of that file for import into IDE needs to be provided in the future.

It is possible to get a run-timenull pointer exception.

The CSharp language supports arithmetic both with overflow ignored (as in C/C++) and checked.
It is possible to get a run-timechecked overflow exception. (But not yet supported in KwiC as of
January 2017.)

It is possible to get a run-timedivide-by-zero exception.

It is possible to get a run-timearray bounds exception.

It is possible to get a run-time exception.

(Floating point exceptions are normally handled with viaNaN propagation.)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

29

c©2011-17 DJ Greaves + S Singh

4.21.2 Normal Thread and Program Exit

For RTL SIM execution of the KiwiC-generated RTL, it is sometimes convenient to have the simu-
lator automatically exit when the program has completed.

NEW: We replace -kiwic-finish with -kiwife-directorate-endmode

When the main thread of Kiwi program exits (return from Main),the generated code may include a
Verilog $finish statement if the (OLD FLAG-TODO EDIT THIS) flag "-kiwic-finish=enable"

is supplied on the command line or in the recipe file. The equivalent is generated for C++ output.
Otherwise a new implicit state machine state is created withno successors and the thread sits in that
state forever. Hanging forever is the default behaviour forforked threads.

The argument to the $finish statement, if present, is also written to the abend syndrome register
when present (see directorate styles). RTL designs also stop (clock-enable forced deasserted) when
a non-zero syndrome is stored.

For use with a standard execution substrate, having a $finishstatement in the generated design makes
no sense,

Environment.Exit(int syndrome) can also be invoked within C# to cause the same effect as
main thread return. The integer value is stored in the abend syndrome register and the RTL hardware
design halts until next reset.

(Pipelined accelerators cannot exit since they have no sequencer (§15 and are permanently ready to
compute.)

4.21.3 User-defined C# Exceptions

C# try-except blocks are supported as is exception handling. But no exceptions can currently be
caught and all lead to either a compile-time or run-time abend.

In other words, the contents of a C#catchblock are ignored in the current KiwiC compiler.

The contents of a C#finally block are executed under Kiwi as normal.

The following fragment shows how to throw a runtime exception that will cause execution to stop
with an abend syndrome readable by the director shim.

Please follow the coding conventions in table XXX and note that the specific error code 128 is not
an error and will not stop execution if thrown: it is the default aok code.

class myDemoExn: System.Exception

{

// Note KiwiC latches onto an integer field name in uncaught exceptions containing

int ecode = 129;

public int error_code //

{

set { ecode = value; }

}

}

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

30

c©2011-17 DJ Greaves + S Singh

class UncaughtExceptionTest

{

// Steer away from Kiwi-1 dynamic storage complexity by

// making the thrown exception a static.

static myDemoExn my_faulter = new myDemoExn();

public void runner(int roger)

{ for (int pp=0; pp<10;pp++)

{

Kiwi.Pause();

Console.WriteLine(" runner {0}", pp);

my_faulter.error_code = 101 + pp;

if (pp == 5) throw my_faulter;

}

}

}

4.21.4 Debug.Assert or Trace.Assert

System.Diagnostics.Debug.Assert(bool cond) and friends ...

We can raise a run-time assertion problem that is logged in the abend syndrome register with code
0x20.

There is a compile-time variant called - not reached - or something ...

4.22 Pause Modes (within Sequencer HLS Mode)

Kiwi supports several major HLS modes, but the default, sequencer major HLS mode, generates a
sequencer for each thread. When creating a sequencer, the number of states can be fully automatic,
completely manual, or somewhere in between, according to the pause mode setting.

The mapping of logic operations to clock cycles is one of the main tasks automated by high-level
synthesis tools, but sometimes manual control is also needed. Control can be needed for compatibil-
ity with existing net-level protocols or as a means to move the design along the latency/area Pareto
frontier.

KiwiC supports several approaches according to the pause mode selected. Pause modes are listed
Table 1. The number of ALUs and RAM ports available also makesa big difference owing to
structural hazards. Fewer resources means more clock cycles needed.

The pause mode can, most simply, be set once and for all on the command line with, for examples
-bevelab-bevelab-default-pause-mode=soft.

When in soft mode, thebevelab-soft-pause-threshold parameter is one of the main guiding
metrics. But it has no effect on regions of the program compiled in hard-pause or other non-soft
modes.

Typical values for the soft pause threshold are intended to be in the range 0 to 100, with values of
100 or above leading to potentially very large, massively-parallel designs, and with values around
15 or lower giving a design similar to the ‘maximal’ pause mode.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

31

c©2011-17 DJ Greaves + S Singh

No Name Pauses are inserted at
0 auto ?
1 hard exactly where pause statements are explicitly included
2 soft where needed to meet soft-pause-threshold
3 maximal inserted at every semicolon
4 bblock every basic block boundary

Table 1:Kiwi Pause Modes (within Sequencer Major HLS Mode)

The Kiwi.cs file defines an enumeration for locally changing the pause mode for the next part of a
thread’s trajectory.

enum PauseControl

{ autoPauseEnable, hardPauseEnable, softPauseEnable,

maximalPauseEnable, blockbPauseEnable };

The idea is that you can change it locally within various parts of a thread’s control flow graph by
callingKiwi.PauseControlSet(mode) where the mode is a member of the PauseControl enumer-
ation. Also, this can be passed as an argument to a Kiwi.Pausecall to set the mode for just that
pause. However, dynamic pause mode changing may not work at the moment ... owing to minor
bugs.

For example, you can invokeKiwi.PauseControlSet(Kiwi.PauseControl.softPauseEnable).

Nearly all net-level hardware protocols are intolerant to clock dilation. In other words, their seman-
tics are defined in terms of the number of clock cycles for which a condition holds. A thread being
compiled by KiwiC to a sequencer defaults to bblock or soft pause control, meaning that KiwiC is
free to stall the progress of a thread at any point, such as when it needs to use extra clock cycles
to overcome structural hazards. These two approaches are incompatible. Therefore, for a region of
code where clock cycle allocation is important, KiwiC must be instructed to use hard pause control.

The recipe file kiwic00.rcp sets the following as the defaultpause mode now

<option> bevelab-bevelab-default-pause-mode bblock </option>

This is not suitable for net-level interfaces but does lead to quick compile of scientific code which is
what we are targeting at the moment.

For compiling net-level input and output, give KiwiC-bevelab-bevelab-default-pause-mode=hard
as a command line option to override the recipe.

Maximal and blockb are considered just ‘debug’ modes where pauses are inserted at every semicolon
and every basic block boundary respectively.

4.23 Unwound Loops

For a thread in hard-pause mode that executes loops with no Pause() calls in them will, KiwiC will
attempt to unwind all of the work of that loop and perform it ina single run-time clock cycle. (There
are some exceptions to this, such as when there are undecidable name aliases in array operations or

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

32

c©2011-17 DJ Greaves + S Singh

structural hazards on RAMs but these are flagged as warnings at compile time and run time hardware
monitors can also be generated that flag the error).

TODO: describe the way KiwiC resolves structural hazards orvariable-latency if the user has spec-
ified hard pause mode. Currently, KiwiC essentially tacitlytakes and consumes any further clock
cycles it needs to do the work.

main_unwound_leader()
{

q = 100;
for (int d=0; d<16; d++) Console.WriteLine("q={0}", q++);
while (true) { Kiwi.Pause(); Console.WriteLine("q={0}", q++); }

}

The example mainunwoundleader will unwind the first loop at compile time and execute the first
16 print statements in the first clock tick and q will be loadedwith 116 on the first clock tick.

4.24 More-complex implied state machines

main_complex_state_mc()
{

q = 1;
while(true)
{

Kiwi.Pause(); q = 2;
for (int v=0; v<din; v++) { Kiwi.Pause(); q += v; }
Kiwi.Pause(); q = 1;

}
}

The example maincomplexstatemc has a loop with run-time iteration count that is not unwound
because it contains a Pause call. This is accepted by KiwiC. However, it could not be compiled
without the Pause statement in the inner loop because this loop body is not idempotent. In soft-
pause mode the pause call would be automatically added by KiwiC if missing.

4.25 Inner loop unwound while outer loop not unwound.

main_inner_unwound()
{

q = 1;
while(true)
{

Kiwi.Pause(); q = 2;
for (int v=0; v<10; v++) { q <<= 1; }
Kiwi.Pause(); q = 1;

}
}

In main inner unwound the inner loop will be unwound at compile time because it has constant
bounds and no Pause call in its body. (This unwind will be performed in the bevelab recipe stage,
not KiwiC front end.)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

33

c©2011-17 DJ Greaves + S Singh

4.26 Entry Point With Parameters

A top-level entry point with formal parameters, such as

[Kiwi.HardwareEntryPoint()]
main_withparam(int x)
{

...
}

is currently not allowed in normal sequencer mode, althoughin future it would be reasonable for
these to be treated as additional inputs. This will be relaxed soon.

Top-level arguments are allowed in RPC (§7.1) and Accelerator major HLS modes (§15).

In Kiwi, roots may instead or also be specified using dot net attributes similar toKiwi.Hardware.

When you want only a single thread to be compiled to hardware, either add a Kiwi.Hardware attribute
or use a root command line flag. if you have both the result is that two threads are started doing the
same operations in parallel. The currently fairly-simplistic implemention of offchip has no locks and
is not thread safe, so both threads may do operations on the offchip nets at once.

Flag-root rootname specifies the root facet for the current run. A number of itemscan be listed,
separated by semicolons. The ones before the last one are scanned for static and initialisation code
whereas the last one is treated as an entry point.

The-root command line flag is an alternative to the HardwareEntryPoint marker. Supplying this
information on the command line is compatible with multiplecompilation appoaches where a given
source file needs to be processed in different ways on different compilation runs.

5 Generate Loop Unwinding: Code Articulation Point

The KiwiC front end unwinds certain loops such as those that peform storage allocation and fork
threads. The main behavioural elaborate stage of the KiwiC flow also unwinds other loops. Because
of the behaviour of the former, the latter operates on a finite-state system and it makes its decisions
based on space and performance requirements typical in high-level synthesis flows. Therefore, the
loop unwinding performed in the KiwiC front end can be restricted just to loops that perform struc-
tural elaboration. These are known asgenerate loopsin Verilog and VHDL. It is a typical Kiwi
programming style to spawn threads and allocate arrays and other objects in such loops. Such elab-
oration that allocates new heap items, in Kiwi 1, must be donein the KiwiC front end since the rest
of the HPR recipe deals only with statically-allocated variables.

Since threads both describe compile-time and run-time behaviour a means is needed to distinguish
the two forms of loop. The approach adopted is that every thread in the source code is treated as
generally having alassoshape, consisting of code that is executed exactly once before entering any
non-unwound, potentially-infinite loop.

The front-end algorithm used selects an articulation pointin the control graph of a thread where all
loops before this point have been unwound and all code reachable after that point has its control
graph preserved in the program output to the next stage. Figure 3 illustrates the general pattern. The
articulation point is called theend of static elaborationpoint. The point selected is the first branch

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

34

c©2011-17 DJ Greaves + S Singh

Start

Runtime
infinite or exiting

loop

Possible Exit

Linear trajectory
from generate

unwinds Basic Blocks

Possible Exit

Articulation Point

Figure 3:Front End Control Flow after Unwind: Lasso Diagram.

target that is the subject of a conditional branch during an interpreted run of the thread or the entry
point to the last basic block encountered that does not contain a Kiwi.Pause() call.

The branch will be conditional either because it depends on some run-time input data or because
it is after at least oneKiwi.Pause() call. The semantics ofKiwi.Pause() imply that all code
executed after the call are in a new run-time clock cycle. Apparently-conditional branches may be
unconditional because of constant folding/propagation during the interpreted run. This is the basis
of generate-style loop unwinding in the lasso stem.

Some programming styles require the heap changes shape at run time. A simple example occurs
when an array or other object is allocated after the first callto Kiwi.Pause. We have found that
programmers quite often write in this style, perhaps not allways intenionally, so it is useful if KiwiC
supports it.

main_runtime_malloc()
{

...
Kiwi.Pause();
int [] a = new Int[10];
for (int i=0; i<10; i++) a[i] = i;
while (true) { ... }

}

Provided the heap allocator internal state is modelled in the same way as other variables, no further
special attention is required. In this fragment the heap values are compile-time constants.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

35

c©2011-17 DJ Greaves + S Singh

main_runtime_dyn_malloc()
{

...
Kiwi.Pause();
if (e)
{ int [] a = new Int[10];

for (int i=0; i<10; i++) a[i] = i;
}
while (true) { ... }

}

If the value of ‘e’ in runtime dyn malloc is not a compile-time constant, KiwiC cannot compilethis
since there would be two possible shapes for the heap on the exit for the if statement. A solution is
to call a.Dispose() before exit, but KiwiC currently does not support Dispose calls.

There’s also the matter of saved thread forks

Here the outer loop is non-unwound loop yet has a compile-time constant value on each read if the
inner loop is unwound

while(true) // not unwound
{

for (int i=0;i<3;i++) foo[i].bar(f);
...

}

6 Supported Libraries Cross Reference

We have started documenting our library coverage in this section.

6.1 System.Collections.Generic

Currently (August 2016), none of the standard collection types, such as Dictionary, are provided in
the distro. They are now arriving ... Summer 2017.

6.2 Standard System.Math Library

Implementations of double-precision square-root, log, exp, sine, cos and tan are all being added
Summer 2017 now that incremental compilation is working. These components are in theip0
library in Verilog RTL form with IP-XACT wrappers. You may substitute your own if you wish. A
single-precision set might be useful. Dotnet perhaps does not have them in single-precision form?

6.3 Parallel For Loop

// Execute N copies of f in parallel.

Parallel.For(0, N, i => f(i));

See ParFor1 example

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

36

c©2011-17 DJ Greaves + S Singh

The CSharp compiler maps Parallel.For to a call of System.Threading.Tasks.ParallelLoopResult.

An implementation of this in Kiwic.cs maps it via CSharp backdoors to the Xfork Xjoin forms
supported by bevelab as part of the synthesisable HPR imperative language subset. They are turned
into XRTL by bevelab along with everything else. Note diosimcannot currently (3Q17) support
Fork and Join so a recipe that bypases bevelab on the way to diosim will fail.

6.4 System.Random

For random number generation, for both WD and FP, please useKiwiSystem.Random instead of
System.Random.

KiwiSystem.Random dg = new KiwiSystem.Random();

This is currently an extra dll in userlib that you must manually include but automatic inclusion based
on Kiwi.Remote is likely in the near future (eg. 4Q17), as permany other library functions such as
SqRoot.

6.5 Console.WriteLine and Console.Write

The Write and WriteLine methods are the standard means for printing to the console in C# and Kiwi.
They can also print to open file descriptors. They embodyprintf like functionality using numbered
parameters in braces.

Overloads are provided for used with up to four arguments. Beyond this, the C# compiler allocates
a heap array, fills this in and passes it to WriteLine, after which it requires garbage collection. This
should provide no problem for Kiwi’s algorithm that converts such dynamic use to static use but if
there is a problem then please split a large WriteLine into several smaller ones with fewer than five
arguments (beyond the format string).

Argument formats supported are

1. {n} — display argn in base 10

2. {n:x} — display argn in base 16

Kiwi will convert console writes to Verilog’s$display and $write PLI calls with appropriate
munging of the format strings. These will come out during RTLsimulation of the generated design.
They can also be rendered on the substrate console during FPGA execution.

On important choice is whether this console output is preserved for the FPGA implementation. By
default it is, with the argument strings compiled to hardware and copied character by character over
the console port.

Sometimes two other behaviours are selectively wanted:

• Additional (quick/debugging) console display that is onlyconverted to Verilog PLI calls. This
will display output during an RTL simulation of the FPGA (e.g. using Modelsim) but will be
discarded by the vendor FPGA tools that convert KiwiC outputto FPGA bit streams.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

37

c©2011-17 DJ Greaves + S Singh

• To disableall Console.Write and Console.WriteLine output by default from the FPGA console
such that these calls behave just like item 1 above.

To achieve item 1, do not call Console.Write or Console.WriteLine. Instead call Kiwi.Write or
Kiwi.WriteLine.

To achieve item 2, alter the recipe file or add the following command line argument to KiwiC

-kiwic-fpgaconsole-default=disable

6.6 getManagedThreadId

- returns an integer representing the current thread identifier (tid).

int tid = Thread.CurrentThread.ManagedThreadId;

Console.WriteLine("Receiver process started. Tid={0}", tid);

// OLD Console.WriteLine("Receiver process started. Tid={0}", System.Threading.ManagedThreadId);

6.7 System.BitConverter

6.8 System.String.ToCharArray

- convert a string to an array of chars. Chars are 16 bits wide in dotnet. They are tagged shorts and
do not behave quite the same as shorts for various output options.

6.9 System.IO.Path.Combine

- join a pair of file name paths - OS-specific. FileStream

6.10 TextWriter

6.11 TextReader

The TestReader ReadLine api is allowed to create garbage under Kiwi provided the outer loop frees
or garbages the returned string on every iteration. It must not, for example, store a handle on the
returned string in an array.

6.12 FileReader

6.13 FileWriter

6.14 Threading and Concurrency with Kiwi

One novel feature of Kiwi that sets it apart from other HLS systems is its support for concurrency.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

38

c©2011-17 DJ Greaves + S Singh

Threads can be spawned in the static lasso stem but Kiwi does not support thread creation at runtime.

Kiwi supportsThread.Create() andThread.Start().

To run a method of the current object on its own thread use codelike this:

public static void IProc()

{

while (true) { ... }

}

...

Thread IProcThread = new Thread(new ThreadStart(IProc));

IProcThread.Start();

Or use delegates to pass arguments to a spawned thread running a method of perhaps another object:

Thread filterChannel = new Thread(delegate() { ZProc(1, 2, 3); });

filterChannel.Start();

Exiting threads can be joined with code like this:

... missing ...

Thread.Join(); // not tested currently.

Mutual exclusion is provided with the lock primitive of C#. Its argument must be the object handle
of any instance (not a static class).

The Monitor.Wait and Monitor.PulseAll are supported for interprocess events.

lock (this)

{

while (!emptyflag) { /* Kiwi.NoUnroll(); */ Monitor.Wait(this); }

datum = v;

emptyflag = false;

Monitor.PulseAll(this);

}

The NoUnroll directive to KiwiC can decrease compilation time by avoiding unrolling exploration.

6.14.1 Sequential Consistency

KiwiC does not currently support fine-grained store ordering. Where a number of writes are gen-
erated in one major cycle (delimited by hard or soft pauses) the writes within that major cycle are
freely reordered by the restructure recipe stage to maximimse memory port throughput. However,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

39

c©2011-17 DJ Greaves + S Singh

KiwiC already maintains ordering in PLI and other system calls, so extending this preservation to
remotely-visible writes can easily be added in the near future.

Write buffers and copy-back caches may also be instantiated outside the KiwiC-generated code in
uncore structures that are part of the substrate for a given FPGA blade. KiwiC has no control over
these.

We are writing a paper that explores this space.

C# provides theThread.MemoryBarrier() call to control memory read and write re-ordering
between threads... but in the meantime you have to useKiwi.Pause() to ensure write ordering.

6.14.2 Volatile Declarations

Variables that are shared between threads may need to be marked as volatile. The normal semantics
are that memory fences are inferred from lock block boundaries and other concurrency primitives
such as PulseAll. However, if shared variables are used without such fences they should be declared
as volatile. Otherwise a process spinning on a change written by another thread may never see it
change.

The C# language does not support volatile declarations of some types. You may get an error such as

//tinytest0.cs(16,26): error CS0677: ‘tinytest0.shared’: A volatile field

cannot be of the type ‘ulong’

To overcome this, you can try to use the Kiwi-provided customvolatile attribute instead for now.
For instance:

[Kiwi.Volatile()]

static ulong shared_var;

This technique will not stop the C# compiler from optimisingaway a spin on a shared variable, but
the C# compiler may not do a lot of optimisation, based on the idea that backend (jitting) runtimes
will implement all required optimisations. Ideally KiwiC works out which variables need to be
volatile since all threads sharing a variable are compiled to FPGA at once.

7 Kiwi C# Attributes Cross Reference

TheKiwiC compiler understands various.NETassembly language custom attributes that the user has
added to the source code. In this section we present the attributes available. These control thinks
such as I/O net widths and assertions and to mark up I/O nets and embed assertions that control
unwinding.

C# definitions of the attributes can be taken from the filesupport/Kiwi.cs in the distribution.

The Kiwi attributes can be used by referencing their dll during the C# compiler.

gmcs /target:library mytest.dll /r:Kiwi.dll

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

40

c©2011-17 DJ Greaves + S Singh

Many attributes are copied into the resulting.dll file by thegmcs compiler. Other code from such
libraries is not copied and must be supplied separately to KiwiC. To do this, list the libraries along
with the main executable on the KiwiC command line.

WARNING: THE ATTRIBUTE LIST IS CURRENTLY NOT STABLE AND THISLIST IS NOT
COMPLETE. For the most up-to-date listing, seehprls/kiwi/Kiwi.cs.

The C# language provides a mechanism for defining declarative tags, called attributes, that the pro-
grammer may place on certain entities in the source code to specify additional information. An
attribute is specified by placing the name of the attribute, enclosed in square brackets, in front of the
declaration of the entity to which it applies. We present design decisions regarding attributes that
allow a C# program to be marked up for synthesis to hardware using theKiwiC compiler that we
are developing [3]. This compiler accepts CIL (common intermediate language) output from either
the .NETor Mono C# compilers and generates Verilog RTL.

7.1 Kiwi.Remote() Attribute

Purposes:

1. RPC (Remote-Procedure Call) Interface Between Compilations.

2. Addressing multi-FPGA accelerators.

3. Marking up given methods to be remotely callable.

4. Reducing complexity in classical HLS sequencers.

Object-oriented software sends threads between compilation units to perform actions. Synthesis-
able Verilog and VHDL do not allow threads to be passed between separately compiled circuits:
instead, additional I/O ports must be added to each circuit and then wired together at the top level.
Accordingly, we mark up methods that are to be called from separate compilations with a remote
attribute.

The argument toKiwi.Remote("...") is a string that contains a list of semicolon-separated key/-
value pairs. Keys avaliable include

• exernally-instantiated: true/false

• protocol: HSIMPLE, HFAST and perhaps others...

• overloaded: true/false

• searchbymethod: true/false

• posted: true/false

• reftran : true/false

• mirrorable : true/false

[Kiwi.Remote("protocol=HFAST1;externally-instantiated=true)]

public return_type entry_point(int a1, bool a2, ...)

{ ... }

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

41

c©2011-17 DJ Greaves + S Singh

When an implemented or up-called method is marked as ‘Remote’, a protocol is given and KiwiC
generates additional I/O terminals on the generated RTL that implement a stub for the call. The
originally implemented protocol, HSIMPLE, was asynchronous, using a four-phase handshake and
a wide bus that carries all of the arguments in parallel. Another bus, of the reverse direction, conveys
the result where non-void. Further protocols can be added tothe compiler in future, but we would
like to instead lift them so they can be specified with assertions in C# itself.

Over two runs, KiwiC will generate hardware both for the client and the server as separate RTL files.
In more-realistic examples, there will be multiple files, with one being the top-level that contains
client calls to some of the others which in turn make client calls to others, with the leaf modules in
the design hierarchy being servers only.

Basic procedure:

1. Mark a static method (or several of them) on a class with theRemote attribute.

2. Compile that class to a.dll file and compile that with KiwiC in a context where it is not
invoked (run). The code will not be run if there is no-root orHardwareEntryPoint defined
for this KiwiC invokation. For most non-trival cases, the entry point may be in another.dll
anyway, so avoiding running it is only an issue on toy examples. The result is a.v and some
.xml. This resultingRTL will be the server — an implementation of the method. It is described
in some generatedIP-XACT files whose name starts with ‘AUTOMETA’.

3. For this step, a full implementation of the method(s) is not needed (they can have empty
method bodies), but identical signatures must be present somewhere in the .CIL code read
in for typechecking. Compile the class again (or a stub alternative with null body) but this
time with a thread that invokes the method. KiwiC can either read in theIP-XACTfiles from a
previous run (on theIP-ip-incdir search path) or else regenerate them from the encounted
implementation (stub or otherwise). The resultingRTL will be the client.

4. To use the result, combine the RTL from the two runs for anRTL simulation orFPGA build,
either manually or using HPR System Integrator.

5. (To package up the result for long-term library use, it is perhaps best manually rename the
files without the ‘AUTOMETA’ prefix and perhaps the attributesquirrelling suffix. The prefix
denotes automatically generated files that are likely to be regenerated, whereas without it
the files are intended for more-persistent deployment. The prefix is not put on theIP-XACT

component definition file, just in those it references. You will have to similarly delete such
sub-strings from insideIP-XACT ẋml descriptions too, perhaps using ‘sed’.)

One can also envision leaf modules in the design hierarchy making upcalls to parents, but this is not
currently implemented in Kiwi. Yes it is, sort of, via ‘externally-instantiated’ markup, where the
callee is outside the generated RTL module structurally. Please explain further.

class test10

{

static int limit = 10;

static int jvar;

// Note four-phase is old, predating HSIMPLE - we should now be

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

42

c©2011-17 DJ Greaves + S Singh

// using HFAST1 connection to NoC etc..

[Kiwi.Remote("protocol=HFAST")]

public static int bumper(int delta)

{

jvar += delta;

return jvar;

}

[Kiwi.HardwareEntryPoint()]

public static void Main()

{

Console.WriteLine(‘‘Test 10 Limit=’’ + limit);

for (jvar=1;jvar<=limit;jvar+=2)

{

Console.Write(jvar + ‘‘ ‘‘);

}

Console.WriteLine(‘‘ Test 10 finished.’’);

}

}

See test19 and test67 in the regression suite and the demo on this link

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/timestable-demo/rpc.html

7.1.1 Referentially Transparent and Mirrorable

The following two attributes are commonly used together when a simple library function such as
sqrt is declared.

The ’reftran=true’ designation is an assertion to the Kiwi toolchain that the method is referen-
tially transparent. This strictly means that the method will always give the same result for the same
argument. To KiwiC it is an assertion that the method does nothave to be called if the result is not
needed and that calling it more times than would happen in theWD execution environment.

The ’mirrorable=true’ designation is an assertion to the Kiwi toolchain that morethan one in-
stance of the called component can be deployed by the restructure and/or HPR System Integrator
parts of the tool chain.

7.1.2 Remote Method Overloading

As well as overrides, OO languages like C# support method overloading. KiwiC supports method
overloading in general. Alternative definitions of an overloaded method differ in terms of their arity
and argument types. They may also have method-generic type variables that can be instantiated with
different types.

Invokation of an overloaded method defined and called withina single compilation is handled by the
lookup methods that match the C# types as normal. No unexpected behaviour needs to be considered.

But an issue related to method overloading arises with incremental compilation under KiwiC. The
problem is akin to the C++ linking problem with method overloads: a separate low-level identifier

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

43

c©2011-17 DJ Greaves + S Singh

is needed for each overloaded definition in the generated object code. The solution is to squirrel the
arity and argument types into the name of the generated object. For instance, a separately-compiled
RTL module providing mathematical functions such assqrt() andexp() will most likely provide
definitions for several precisions. Each definition needs a separate name.

Where a method is to be remotely called and more than one definition of it is to be provided. The
overloaded=true setting must be added to theKiwi.Remote() markup in both the actual defi-
nition of the method and any stub that is used as a proxy by the caller. This causes the generated
method’s name to be extended with an argument type squirrel.The modified name will be visible in
the IP-XACT metafiles and concrete outputs in RTL and SystemC etc..

Alternative overloads of the same method must be provided ina common CIL assembly (a single .dll
file). (All parts of a C# partial class definition must be within the one assembly). Currently KiwiC
compiles all Remote marked overloads and puts them in the same RTL file which will contain one
RTL module for tha assembly with disjoint terminals for the different methods. If not all of the
methods are used in a given application, which is typically the case, the unused variants will be
removed outside the Kiwi toolchain by subsequent RTL tools owing to their output terminals being
disconnected.

Note: methods of the same name in different classes have unique hierarchic and flattened names and
are not affected by overloading considerations.

7.1.3 Remote Method Performance

Invoking a remote method in blocking style stalls the sequencer of the calling thread. Parallelism
is thereby lost. Asynchronous dispatch usingKiwi.Remote() provides a non-blocking interface
but the result must be void at the moment. TODO: notes on integrating with the C# asynchronous
delegates andawait ...

7.2 Asynchronous Invokation

await keyword

C# now has the ‘await keyword. We have done some experiments with support for this... whitepa-
per in preparation ...

7.3 Flag Unreachable Code

Kiwi.NeverReached("This code is not reached under KiwiC compilation.");

This call can be inserted in user code to create a compile-time error if elaborated by KiwiC. If a
thread of control that is being expanded by KiwiC encountersthis call, it is a compile-time error.

For flagging invalid run-time problems, please useSystem.Diagnostics.Debug.Assert within
Kiwi code.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

44

c©2011-17 DJ Greaves + S Singh

7.4 Hard and Soft Pause (Clock) Control

This section needs joining up with the repeated copy elsewhere in this manual!

Many net-level hardware protocols are intolerant to clock dilation. In other words, their semantics
are defined in terms of the number of clock cycles for which a condition holds. A thread being
compiled by KiwiC defaults to soft pause control (or other default set in the recipe or command
line), meaning that KiwiC is free to stall the progress of a thread at any point, such as when it needs
to use extra clock cycles to overcome structural hazards. These two approaches are incompatible.
Therefore, for a region of code where clock cycle allocationis important, KiwiC must be instructed
to use hard pause control.

TheKiwi.Pause() primitive may be called without an argument, when it will pause according to
the current pause control mode of the calling thread. It may also be called with the explicit argument
‘soft’ or ‘ hard’.

The current pause control mode of the current thread can be updated by calling
‘Kiwi.SetPauseControl’.

When a thread callsKiwi.SetPauseControl(hardPauseControl) its subsequent actions will
not be split over runtime clock cycles except at places wherethat thread makes explicit calls to
Kiwi.Pause() or makes a blocking primitive call.

The default schedulling mode for a thread can be restored by making the thread calls
Kiwi.SetPauseControl(autoPauseControl).

Finally, blockb pause control places a clock pause at every basic block andmaximal pause control
turns every statement into a separately-clocked operation
Kiwi.SetPauseControl(maximalPauseControl).

TheKiwi.Pause() primitive may be called with an argument that is an integer denoting a combi-
nation of built-in flags. This enables per-call-site override of the default pause mode.

7.5 End Of Static Elaboration Marker - EndOfElaborate

public static void EndOfElaborate()

{

// Every thread compiled by KiwiC has its control flow partitioned

// between compile time and run time. The division is the end

// of elaboration point.

// Although KiwiC will spot the end of elaboration point for itself,

// the user can make a manual call to this at the place where they

// think elaboration should end for confirmation.

// This will be just before the first Pause in hard-pause mode or

// undecidable name alias or sensitivity to a run-time input etc..

}

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

45

c©2011-17 DJ Greaves + S Singh

7.6 Loop NoUnroll Manual Control

Put a call to ‘Kiwi.NoUnroll(loopvar)’ in the body of a loop that is NOT to be unrolled by
KiwiC. Pass in the loop control variable.

If there is a ‘KiwiC.Pause()’ in the loop, that’s the default anyway, so the addition of a NoUnroll
makes no difference.

The number of unwinding steps attempted by the CIL front end can be set with the ‘-cil-uwind-budget
N’ command line flag. This is different from theubudget command line flag used by the FSM/RTL
generation phase.

Because a subsume attribute cannot be placed on a local variable in C#, an alternative syntax based
on dummy calls toUnroll is provided.

public static void Unroll(int a)
{ // Use these unroll functions to instruct KiwiC to subsume a variable (or variables)

// during compilation. It should typically be used with loop variables:
//
// for (int cpos = 0; cpos < height; cpos++)
// { Kiwi.Unroll(cpos);
// ...
// }

}

public static void Unroll(int a, int b)
{ // To subsume annotate two variables at once.
}

public static void Unroll(int a, int b, int c)
{ // To annotate three variables.

// To request subsumation of more than three variables note that
// calling Unroll(v1, v2) is the same as Unroll(v1 + v2). I.e. the
// support of the expressions passed is flagged to be subsumed in total or
// at least in the currently enclosing loop.

}

7.7 Elaborate/Subsume Manual Control

OLD: Ignore this paragraph from 2015 onwards.

This manual control was used in early versions of KiwiC but has not been needed recently.

KiwiC implements an elaboration decision algorithm. It decides which variables to subsume at
compile time and which to elaborate into concrete variablesin the output RTL design.

The decisions it made can be examined by grepping for the word‘decided’ in the obj/h1.log file.

The algorithm sometimes makes the wrong decision. This is being improved on in future releases.

For variables that can take attributes in C# (i.e. not all variables), it can be forced one way or the
other by instantiating one of the pair of attributes,Elaborate or Subsume.

For example, to force a variable to be elaborated, use:

[Kiwi.Elaborate()]
bool empty = true;

Examples of variables that cannot be attributed is the implied index variable used in aforeach loop,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

46

c©2011-17 DJ Greaves + S Singh

or the explicit local defined inside afor loop using thefor (int i=...;... ; ...) syntax.

The force of an elab can also be made using the-fecontrol command line option. For instance,
one might put-fecontrol ’elab=var1;elab=var2’;

7.8 Synchronous and/or Asynchronous RAM Mapping

See§8.

7.9 Register Widths and Overflow Wrapping

Integer variables of width 1, 8, 16, 32 and 64 bits are native in C# and CIL but hardware designers
frequently use other widths. We support declaration of registers with width up to 64 bits that are not
a native width using an ‘HwWidth’ attribute. For example, a five-bit register is defined as follows.

[Kiwi.HwWidth(5)] static byte fivebits;

When running the generated C# natively as a software program (as opposed to compiling to hard-
ware), the width attribute is ignored and wrapping behaviour is governed by the underlying type,
which in the example is a byte. We took this approach, rather than implementing a genuine imple-
mentation of specific-precision arithmetic by overloadingevery operator, as done in OSCI SystemC
[1], because it results in much more efficient simulation, i.e. when the C# program is run natively.

Although differences between simulation and synthesis canarise, we expect static analysis inKiwiC
to report the vast majority of differences likely to be encountered in practice. Current development
of KiwiC is addressing finding the reachable state space, not only so that these warnings can be
generated, but also so that efficient output RTL can be generated, such that tests that always hold (or
always fail) in the reachable state space are eliminated from the code.

The following code produces a KiwiC compile-time error because the wrapping behaviour in hard-
ware and software is different.

[Kiwi.HwWidth(5)] byte fivebits;
void f()
{

fivebits = (byte)(fivebits + 1);
}

The cast of the rhs to a byte is needed by normal C# semantics.

Compiling this example gives an error:

KiwiC:assignment may wrap differently:
(widthclocks_fivebits{storage=8 }+1)&mask(7..0):
assign wrap condition test rw=8, lw=5, sw=8

Q. Can I pass constant expressions into my attributes, such as Kiwi.HwWidth(), to make highly-
parameterisable code? When do the constant expressions get evaluated? Can values set viaKiwi.RtlParameter()
be used within hardware width expressions attributes?

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

47

c©2011-17 DJ Greaves + S Singh

7.10 Net-level Input and Output Ports

Input and Output Ports can arise and be defined in a number of ways.

Net-level I/O ports are inferred from static variables in top-most class being compiled. These are
suitable for GPIO applications such as simple LED displays and push buttons etc.. The following
three examples show input and output port declarations, where the first two have their input and
output have their width specified by the underlying type and the last by an explicit width attribute.

[Kiwi.OutputBitPort("done")] static bool done;
[Kiwi.InputPort("serin")] static bool serialin;
[Kiwi.HwWidth(5)] [Kiwi.OutputPort("data_out")] static byte out5;

KiwiC can create obscure names if these I/O declarations arenot in a top-level class. So, the contents
of the string are a friendly name used in output files.

For designers used to the VDHL concept of a bit vector, we alsoallow arrays of bools to be des-
ignated as I/O ports. This can generate more efficient circuits when a lot of bitwise operations are
performed on an I/O port.

[Kiwi.OutputWordPort(11, 0, "dvi_d")] public static int[] dvi_d = new bool [12];
[Kiwi.OutputWordPort(11, 0, "dvi_i")] public static int[] dvi_i = new int [12];

Although it makes sense to denote bitwise outputs using booleans, this may require castings, so ints
are also allowed, but only the least significant bit will be anI/O port in Verilog output forms.

Currently we are extending the associated Kiwi library so that abstract data types can be used as
ports, containing a mixture of data and control wires of various directions. Rather than the final
direction attribute being added to each individual net of the port, we expect to instantiate the same
abstract datatype on both the master and slave sides of the interface and use a master attribute, such
as ‘forwards’ or ‘ reverse’, to determine the detailed signal directions for the complete instance.

The following examples work

// four bit input port
[Kiwi.HwWidth(4)]
[Kiwi.InputPort("")] static byte din;

// six bit local var
[Kiwi.HwWidth(6)] static int j = 0;

A short-cut form for declaring input and output ports

[Kiwi.OutputIntPort("")]
public static int result;

[Kiwi.OutputWordPort(31, 0)]
public static int bitvec_result;

7.11 Wide Net-level Inputs and Outputs

The C# language supports primitive data word lengths up to 64bits. Sometimes we require net-level
I/O busses that are wider than this. This can be achieved by attaching the net-level attribute markups
to arrays.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

48

c©2011-17 DJ Greaves + S Singh

Coding style ‘lostio’

Note: this style stopped working in about 2010 but is just being made to work again (Dec 2016).

// Wide input and output, net-level I/O.
[Kiwi.InputWordPort("widein")]
static int [] widein = new int [8]; // 32 byte parallel input

[Kiwi.OutputWordPort("wideout")]
static int [] wideout = new int [8]; // 32 byte parallel output

[Kiwi.HardwareEntryPoint()]
public static void Dut()
{

for (int p=0; p<widein.Length; p++)
{

wideout[p] = widein[p];
}

}

Coding style using structs ... being fixed ...

public class WideWordDemo
{

// Demo of wide input and output words.
// You may want to overload your arithmetic operators to handle such constructs?

// Note: this is a C# struct, not a C# class. Structs behave like valuetypes.
public struct widenet
{

public ulong word1, word0;
}

[Kiwi.OutputWordPort("normal")] public static ulong normal;

[Kiwi.OutputWordPort("word128_in")] public static widenet word128_in;
[Kiwi.OutputWordPort("word128_out")] public static widenet word128_out;

static void valuetype_test(widenet bof) // Structs are passed by value, but call-by-value still gives a local
{

bof.word0 += 1; // Falls foul of operating on formals if passed by value?
}
...

}

7.12 Clock Domains

You do not need to worry about clock domains for general scientific computing: they are only a
concern for hardware interfacing to new devices.KiwiC generates synchronous logic. By default
the output circuit has one clock domain and requires just onemaster clock and reset input. The
allocation of work to clock cycles in the generated hardwaredepends on the current ‘pause mode’
and thebevelab-soft-pause-threshold unwind budgetdescribed in [3] and the user’s call to
built-in functions such as ‘Kiwi.Pause’.

Terminal namesclk andreset are automatically generated for the default clock domain. To change
the default names, or when more than one clock domain is used,a ‘Kiwi.ClockDom()’ attributes
is used to mark up a method, giving the clock and reset nets to be used for activity generated by the
process loop of that method.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

49

c©2011-17 DJ Greaves + S Singh

[Kiwi.ClockDom("clknet1", "resetnet1")]
public static void Work1()
{ while(true) { ... } }

A negative edge clock is generated if the third argument is provided"clockPolarity=neg".

Mechanisms for overring the default reset synchronicity and clock enable guard will be supported
soon, using further colon-separated properties inside thethird argument.

Each thread, hardware entry point or remote-callable method has its own, so-called ‘directorate’ and
the clock domain properties are part of a directorate. Only one directorate is allowed for a thread,
but that thread may call methods called from (shared with) other threads: their bodies get in-lined in
the elaboration of the thread..

7.13 Remote

Object-oriented software sends threads between compilation units to perform actions. Synthesis-
able Verilog and VHDL do not allow threads to be passed between separately compiled circuits:
instead, additional I/O ports must be added to each circuit and then wired together at the top level.
Accordingly, we mark up methods that are to be called from separate compilations with a remote
attribute.

[Kiwi.Remote("parallel:four-phase")]
public return_type entry_point(int a1, bool a2, ...)
{ ... }

When an implemented or up-called method is marked as ‘Remote’, a protocol is given (or implied)
andKiwiC generates additional I/O terminals on the generated RTL that implement a stub for the
call. The originally implemented protocol, HSIMPLE, was synchronous (using the current clock
domain - TODO explain how to wire up), using a four-phase handshake and a wide bus that carries
all of the arguments in parallel. Another bus, of the reversedirection, conveys the result where
non-void. Further protocols have now been added to the compiler.

A remote-marked method is either an entry point or a stub for the current compilation. This is
inferred depending on whether it is called from other hardware entry points (roots).

If it is called, then it is treated as a stub and its body is ignored. Call sites will initiate communication
on the external nets. The directions of the external nets is such as to send arguments and receive
results (if any).

If it is not called from within the current compilation, thenit is treated as a remote-callable entity.
The directions of the external nets is such as to receive arguments and return results (if any).

In the regression suite, test19 is an old example and new examples calling to maths modules are
being added...

7.14 Elaboration Pragmas - Kiwi.KPragma

public static int KPragma(bool fatalFlag, string cmd_or_message)

public static int KPragma(bool fatalFlag, string cmd_or_message, int arg0)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

50

c©2011-17 DJ Greaves + S Singh

public static int KPragma(bool fatalFlag, string cmd_or_message, int arg0,

Kiwi.KPragma with first argument as Boolean true can be used to conditionally abend elaboration.
This behaves the same way asSystem.Diagnostics.Debug.Assert described in§7.15 except
that a user-defined error code can be passed in arg0.

Note, you may want to use Trace.Assert instead and to’export MONO TRACE LISTENER=Console.Error’

With the Bool false, it is used to log user progress messages during elaboration.

Kiwi.KPragma calls present in run-time loops can be emittedat runtime using the Console.WriteLine
mechanisms (in the future - current release ignores them beyond elaboration).

Kiwi.KPragma calls with magic string values will be used to instruct the compiler, but no magic
words are currently implemented.

7.15 AssertionsDebug.Assert()

Sometimes it is convenient to generate compile-time errorsor warnings. Othertimes we want to flag
a run-time abend, as per§2.2.

Typically you might want to direct flow of control differently using the functionKiwi.inHardware()
and to abort the compilation if it has gone wrong. Call the functionKiwi.KPragma(true/false, ‘‘my message’’)

to generate compile time messages. If the first arg holds, thecompilation stops, otherwise this serves
as a warning message.

You can make use ofSystem.Diagnostics.Debug.Assert within Kiwi code.

In KiwiC 1.0 you have to re-code dynamic arrays with static sizes and this is needed for all on-chip
arrays in Kiwi 2.0. The code below originally inspected the fileStream Length attribute and created
a dynamic array. But it had to be modified for Kiwi 1.0 use as follows

int length = (int)fileStream.Length; // get file length - will be known at runtime

System.Console.WriteLine("DNA file length is {0} bytes.", length);

const int max_length = 1000 * 1000 * 10; // Arrays need to be constant length for

System.Diagnostics.Debug.Assert(length <= max_length, "DNA file length exceeds static

buffer = new byte[max_length]; // create buffer to read the file

int count; // actual number of bytes read

int sum = 0; // total number of bytes read

// read until Read method returns 0 (end of the stream has been reached)

while ((count = fileStream.Read(buffer, sum, length - sum)) > 0)

{

sum += count; // sum is a buffer offset for next reading

}

System.Console.WriteLine("All read, length={0}", sum);

The C# compiler may/will ignore the Assert calls unless someflag is passed ...

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

51

c©2011-17 DJ Greaves + S Singh

7.16 Assertions - Temporal Logic

Universal assertions about a design can be expressed with a combination of a predicate method (i.e.
one that returns a bool) and a temporal logic quantifier embedded in an attribute. For instance, to
assert that whenever the following method is called, it willreturn true, one can put

[Kiwi.AssertCTL("AG", "pred1 failed")]
public bool pred1()
{ return (...); }

where the stringAG is a computational tree logic (CTL) universal path quantifier and the second
argument is a message that can be printed should the assertion be violated. Although the function
‘pred1’ is not called by any C# code,KiwiC generates an RTL monitor for the condition and
Verilog$display statements are executed should the assertion be violated. In order to nest one CTL
quantifier in another, the code of the former can simply call the latter’s method. Since this is rather
cumbersome for the commonly usedAX andEX quantifiers that denote behaviour in the next state,
an alternative designation is provided by passing the predicate to a function called ‘Kiwi.next’.
A second argument is an optional number of cycles to wait, defaulting to one if not given. Other
temporal shorthands are provided by ‘Kiwi.rose’, ‘ Kiwi.fell’, ‘ Kiwi.prev’, ‘ Kiwi.until’ and
‘Kiwi.wunitl’. These all have the same meaning as in PSL.

We are currently exploring the use of assertions to describethe complete protocol of an I/O port.
Such a description, when compiled to a monitor, serves as aninterface automaton. To automatically
synthesise glue logic between I/O ports, the method of [4] can be used, which implements all non-
blocking paths through the product of a pair of such interface automata.

7.17 RTL Parameters

Sometimes it is helpful to generate anRTL file from a single run of KiwiC that is to be instantiated
many times. Each time will use a different run of theFPGA logic synthesiser tools. It is handy to be
able to pass in a constant at the logic synthesis time that might be different for each instance.

A good use-case example is when link editing a number of components into a single entity that
will use a shared memory bank. Each component wants its datastructures at a different address in
the memory bank. The HPR System Integrator computes base addresses and provides a parameter
overide for the KiwiC-generated logic.

Within C#, in order to read in a logic-synthesis constant we use the KiwiRtlParamter attribute as
in:

class RTLprams1

{

[Kiwi.RtlParameter("rtl_pram1", 1001)] public static int rtl_pram1 = 1001;

[Kiwi.RtlParameter("rtl_pram2")] public static int rtl_pram2;

...

}

Parameters of this nature should generally have the typeint. For well-formedRTL, those with default values
should preceed those without.

This leads finally to anRTL module with signature such as

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

52

c©2011-17 DJ Greaves + S Singh

module DUT #(parameter rtl_pram1=32’sd1001,

parameter rtl_pram2)

(input clk,

input reset,

...);

...

8 Memories in Kiwi

Arrays allocated by the C# code must be allocated hardware resources. Small arrays are commonly
converted directly into Verilog array definitions that compile to on-chip RAMs using today’s FPGA
tools. There are a number of (adjustable) threshold values that select what sort of RAM to target.
Larger arrays are placed off-chip by default. Arrays that are only written at each location precisely
once with a constant value for each location are treated as read-only look-up tables (ROMs).

Sometimes there are multiple ports to a given memory space/bank for bandwidth reasons. For in-
stance, on the Xilinx Zynq, it is common to use two high-performance AXI bus connections to the
same DRAM bank. In addition, there can be multiple memory controllers each with its ownchannel.
We prefer the term channel to the older term bank since bank now refers to an internal bank within
a DRAM chip that can have up to one row open in each bank. Kiwi does not currently support
multiple channels.

Terminology summary: we use the following hierarchy of terms to describe the off-chip memory
architecture: bit, lane, word, row, col, bank, rank, channel.

Explanation: A word is addressed with a binary address. The row, col, bank and rank are all fields
in the address. Ordering between col and bank may vary. Channels potentially have disjoint address
spaces. Mapping the channel number into the address would eliminate spatial reuse and simply be
an extension of the rank. Within the word there are multiple lanes that are separately writable and
each lane has some number of bits. In today’s CPUs from Intel and ARM, the lane size is 8 (a byte
lane) and the word size is also 8, making it a 64-bit word. On FPGAs, where clock frequencies are
lower than DRAM speeds, word sizes of 512 can commonly be usedwith a correspondingly larger
number of lanes.

In this documentation, we use the term ‘off-chip’ to denote resources that are not instantiated by
KiwiC and which, instead, are provided by the substrate platform. In reality, the resources might
physically be on the same silicon chip as the FPGA programmable logic.

Each array with off-chip status is allocated a base address in one of some number of off-chip memory
channels and accessed via one or more off-chip load/store ports.

Overall, these thresholds and attributes map each RAM instance to a specific level in a four-level
memory technology hierarchy:

1. unstructured: no read or write busses are generated (the old default, sea-of-gates, any number
of concurrent reads and writes are possible without worry over structural hazard)

2. combinational read, synchronous write register file (address generated in same cycle as read
data consumed)

3. latency of 1 SSRAM (address generated one clock cycle before read data used)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

53

c©2011-17 DJ Greaves + S Singh

FPGAs tools support RAMs in four general ways. The four ways provide increasingly
better FPGA area use, but become more complex to read and write.

1. Flip-flop register file: Each bit of RAM becomes a flip-flop. This does not
limit the number of concurrent readers or writers.

2. Distributed RAM , also known asLUT RAM : The look-up table (LUT) of
a typical FPGA is used normally for something like an arbitrary two-output
function of five inputs. It is then actually a 32-word RAM of 2-bit words. The
can be used as RAM by many FPGAs. It is called distributed, LUTor slice
RAM.

3. Block RAM : As well as I/O, flip-flops and LUTs, all modern FPGAs also pro-
vide BRAMs (block RAMs) as a first-class programmable resource. Typically
these are dual ported and 18 kilobit in size.

4. Off-chip RAM - SRAM or DRAM : Rather than storing data on the FPGA,
load/store ports (I/O pins) are used to connect to external,standard RAM parts
or memory resources.

The FPGA tools will generally automatically choose which ofthe first three forms in
the above list to infer for a given RTL array declaration. They take into account the
size and use pattern. Important aspects of the use pattern are whether the output is
used in the same clock cycle as the address is generated and how many different and
concurrent address patterns are used. The fouth RAM form is not automatically gen-
erated by FPGA tools, but HLS tools such as KiwiC will deploy it and the FPGA tools
will simply see logic that implements the protocol to operate the RAM or generate
AXI transactions destined for a complex memory subsystem.

Table 2:RAM forms supported by FPGAs.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

54

c©2011-17 DJ Greaves + S Singh

4. external memory interface for off-chip ZBT/QBI, DRAM, orcached DRAM.

The number of ports is unlimited for type 1 (register file) andthe FPGA tools will typically imple-
ment such a register file if the number of operations per clockcycle is more than one. This depends
on the number of subscription operators in the generated RTL, the number of different address ex-
pressions in use and whether the tools can infer disjointness in their use.

For types 2 through 4, the number of ports is decided by KiwiC and it generates that number of
read, write and address busses. By default, KiwiC uses one port per clock domain, but this can be
influenced in the future with PortsPerThread and ThreadsPerPort attributes.

In the current version of Kiwi, theres2-loadstore-port-count recipe setting configures the
number of load/store ports available per thread Also, each thread that makes off-chip loads and
stores must have its own port since KiwiC does not automatically instantiate the DRAM (HFAST)
arbiters: instead the substrate top-level needs to instantiate the arbiters when KiwiC generates more
DRAM ports than physically exist on the FPGA.

The three thresholds set in the command line or recipe that distinguish between the four memory
types are :

1. res2-regfile-threshold: the number of locations below which to not instantiate any sort of
structural SRAM or register file: instead raw flip-flops are used.

2. res2-combram-threshold:, the threshold in terms of number of locations at which to start
instantiating synchronous, latency=1, structural SRAM,

3. res2-offchip-threshold: the threshold in terms of number of locations at which to map to an
off-chip resource, such as TCM, ZBT or cached DRAM. The size in bytes will depend on the
word width of that array. TheKiwi.OutboardArray() attribute allows manual override.

In addition to comparing sizes against compilation thresholds, the user can add CSharp attributes to
instances to force a given technology choice on a per-RAM basis.

TheSynchSRAM(n) attribute indicates that an array is to be mapped to an on-chip RAM type that
may not be the default for its size. The argument is the numberof clock cycles of latency for read.
When the argument is omitted it defaults to unity - the standard value for FPGA BRAM.

The CombSRAM(n) attribute indicates that an array is to be mapped to an on-chip RAM type that
may not be the default for its size. Only small RAMs are mappedto register files or LUT RAM
with combinational (zero cycle) read, but this attribute will force any sized RAM to be mapped that
way. Note that LUT RAM is very inefficient in FPGA area terms and should be avoided for larger
structures of 32 words or more.

TODO: describe PortsPerThread and so on... these control multi-port RAMS and how the number
of external ports is configured.

Kiwi has a scheduller in its restructure phase that runs at compile time to sequence operations on
scarce resources such as complex ALUs and memory resources.Kiwi supposedly implements run-
time arbitration for resources that are contended between threads, but the reality is currently differ-
ent. It follows three policies: 1. For ’on-chip’ RAMs like FPGA B-RAM it allocates one port per
thread so, with Xilinx and Altera that support up to two portsonly two threads can access an ’on-
chip’ B-RAM. 2. For ALUs it does not share them between threads and starts the ALU budgeting
freshly for each thread, just as though the threads had been separately compiled. 3. For ‘off-chip

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

55

c©2011-17 DJ Greaves + S Singh

RAM’ like DRAM, it generates one (more are possible via the command line) HFAST port per
thread. The user must currently manually instantiate arbiters that mux this collection of ports onto
the DRAM banks that are available.

However, Kiwi does not care whether ‘off-chip’ resources are actually off-chip and instead one can
use the off-chip technique to multiplex and arbitrate multiple threads onto on-chip resources, such
as a large, manually instantiated B-RAM.

External instantiation is when a component that could logically be an instance within the current
module is instead instantiated outside the current module and the current module thereby gets addi-
tional I/O nets for connecting to the external instance. Those nets would normally just be local to
the current module.

8.1 On-chip RAM (and ROM) Mirror, Widen and Stripe Directives

To increase memory performance, three techniques are generally available (these techniques may
not all be sensible for off-chip RAM resources). All of theseincrease the number of data bus wires
to RAMs, thereby increasing available throughput.

1. A Kiwi.Mirror(n) directive applied to a C# array instructs KiwiC to make multiple copies of
the RAM or ROM. This is most sensible for ROMs since all copiesof a RAM must be updated
with every write.

2. A Kiwi.Widen(n) directive applied to a C# array instructs KiwiC to packn words into a
single location. This multiplies the data bus width by this factor. For RAMs, a RAM with
laned writes may be needed. This will boost performance where an aligned group ofn words
is commonly read and written at once.

3. A Kiwi.Stripe(n) directive applied to a C# array instructs KiwiC to allocaten multiple
RAMs or ROMs each of 1/nth the size with everynth word placed in each of them.

(In order to pack multiple user arrays into a single RAM on theFPGA, additional directives are
needed. Not described here currently.)

8.2 ROMs (read-only memories) and Look-Up Tables

Most FGPAs support ROMs. ROM inference is a variation on RAM inference. Combination and reg-
istered ROMs are both commonly used, depending on size. KiwiC will deploy ROMs with pipeline
latency of 1 when the size in addresses exceeds the size set byres2-combrom-threshold.

ROM inference in KiwiC can be turned off with flagrepack-to-rom=disable in which case
RAMs are commonly generated and initialised with the ROM contents after the run-time reset. But,
when ROMs are present, they are manifest in the generated Verilog RTL as arrays that have their
only write operations embodied in Veriloginitial statements that install the fixed data.

ROMs can sometimes usefully be mirrored. TheKiwi.Mirror(4) attribute can be applied to indi-
vidual array instances to mirror them.

[Kiwi.Mirror(4)]

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

56

c©2011-17 DJ Greaves + S Singh

static readonly uint[] htab4 =

{ 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96,

... many more entries ...

};

Or else the command line flagrepack-to-rom=4 can be added, which would replicate all ROMs
up to a factor of 4, but the additional copies would not be generated if they cannot usefully be used.

8.3 Forced Off-chip/Outboard Memory Array Mapping

TheKiwi.OutboardArray() attribute forces that an array is to be mapped to a region of external
memory instead of being allocated a private array (BRAM memory) inside the current compilation.
Large arrays are placed off chip in this way by default without using an attribute. (Large is deter-
mined by comparingres2-offchip-threshold). It is up to the substrate architect what sort of
memory to attach to the resulting port: it could range from simple large SRAM bank to multiple
DRAM banks with caches.

With a string argument provided, this controls the load/store port name or DRAM bank name used.

OLD: The fullest version of this attribute takes two arguments: a bank name and an offset in that
bank.

OLD: Pre performance profiling: In general, arrays can be mapped to a specific bank by giving the
bank name and leaving out the base address. KiwiC will then allocate the base addresses for each
memory to avoid overlaps. If no bank name is given, (unit argKiwi.OutboardArray()) then a
default of ’drambank0’ is automatically supplied. Therefore, without using any attributes, all large
arrays are mapped into consecutive locations of a memory space called ’drambank0’.

TODO: profile-directed feedback will balance up the ports inthe future.

Using the special argument ‘-onchip-’ theKiwi.OutboardArray("-onchip-") attribute forces
that an array is not offboard regardless of size. Clearly this may result in a design that is unsuitable
for the target technology.

8.4 Off-chip load/store ports

KiwiC generates load/store ports to access off-chip memory. (Off-chip means not instantiated by
KiwiC, so the addressed resource can be on the same die in reality). With more load/store ports
in use, greater memory access bandwidth is available AND greater opportunities for out-of-order
memory service exist.

The off-chip port architecture is defined in recipe/commandline settings. It is also written as a
report file in every KiwiC run. The Off-chip Memory Physical Ports/Banks report looks something
like this:

-----------+----------+--------+--------+-------+-----------

| Name | No Words | Awidth | Dwidth | Lanes | LaneWidth |

-----------+----------+--------+--------+-------+-----------

| loadstor1 | 4194304 | 22 | 256 | 32 | 8 |

-----------+----------+--------+--------+-------+-----------

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

57

c©2011-17 DJ Greaves + S Singh

Total load/store port width = bits per lane * number of lanes.

Default -res2-loadstore-port-count=1

Number of LOADSTORE ports for automatic off-chipping of large RAMs.

res2-loadstore-port-lanes 32 LOADSTORE ports - number of write lanes.

res2-loadstore-lane-width 8 LOADSTORE lane width

When the number of lanes is 1 no lane write enables are used and the memory is word addressed
always.

A suitable behavioural Verilog fragment to connect to them for simulation test purposes is available
as part of the distro in therams folder.

Typical DRAM controllers run much faster than the FPGA user logic and hence a wide word is
presented to the KiwiC-generated code of 256 bits or so.

The user’s wanted data width is either rounded up to some integer multiple number of external words,
or some fraction of a word where the fraction is rounded up to abounding power of 2 number of
lanes.

The restructure log file will explain, somewhat cryptically, how each DRAM bank is being used with
a table that contains interleaved entries covering all the banks (portnames). The lines in this report
can be decoded with experience: D16 means sixteen bits wide.AX means an array. etc..

Off-chip Memory Map

-----------------+-----------+-------+-----------+-----------

| Resource | Base | Width | Length | Portname |

-----------------+-----------+-------+-----------+-----------

| D8US_AX/CC/SOL | 0x1312d02 | 32 | 0x989680 | drambank0 |

| D16SS_AX/CC/SOL | 0x0 | 32 | 0x1312d02 | drambank0 |

-----------------+-----------+-------+-----------+-----------

Performance generally needs to be enhanced above this baseline by packing data sensibly into
DRAM words. Also, support of multiple in-flight requests is preferable for the highest performance.

The KiwiC-generated code should be connected to an externally-provided memory controller that
will often also also include some sort of cache.

Three off-chip protocols are supported BVCI, HSIMPLE and HFAST. HFAST is most commonly
used. BVCI allows multiple transactions to be in flight. AXI is now being added shortly to KiwiC,
replacing BVCI, but there are also some AXI components in thesupport and subtrates library. In-
cluding an HFAST to AXI protocol bridge and AXI master and slave shims for the Zynq substrate
for CPU interaction and DRAM access.

When we say ‘off-chip’ we simply mean outside the generated hardware circuit - the substrate con-
figuration may put various items on the same Physical chip.

KiwiC will shortly be enhanced to issue prefetch bus cycles on off-chip RAMs. These are appro-
priate for cached DRAM and sometimes appropriate for uncached off-chip RAMs. They serve no
useful function for SRAM (static RAM), whether on-chip or off-chip, owing to its uniform access
latency.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

58

c©2011-17 DJ Greaves + S Singh

8.4.1 HSIMPLE Offchip Interface & Protocol

The implementation of HSIMPLE within KiwiC was a low performance. It will be deleted soon as
we converge to AXI-like protocols for everything.

Low-performance HSIMPLE uses four-phase handshake and only transfers data once every four
clock cycles. It is more suitable for connecting to simple peripherals than DRAM. The following
nets will require connection to the synthesis output when the DRAM is in use with the default,
simple, 4/P HSIMPLE protocol.

output reg hs_dram0bank_req,

input hs_dram0bank_ack,

output reg hs_dram0bank_rwbar,

output reg [255:0] hs_dram0bank_wdata,

output reg [21:0] hs_dram0bank_addr,

input [255:0] hs_dram0bank_rdata,

output reg [31:0] hs_dram0bank_lanes,

When the number of lanes is one, there are no lane outputs.

8.4.2 HFAST Offchip Interface & Protocol

HFAST1 is our primary protocol for load/store ports to DRAM.It has half-duplex and simplex
variants. Protocol adapators to AXI4 and AXI4-Lite are in the distribution.

HFAST1 offers one cycle read latency and back-to-back operations, achieving 100 percent through-
put. It is ideal for front-side cache connections where prefetch is not used.
The signature for HFAST is typically as follows (the total width and number of lanes and address
bus width are all parameterisable).

output reg hf1_dram0bank_OPREQ,

input hf1_dram0bank_OPRDY, // Any posedge clk with overlap of opreq and opack starts a new

input hf1_dram0bank_ACK, // Ack acknowledges the last request is complete.

output reg hf1_dram0bank_RWBAR, // 1=read, 0=write on request active clock edge.

output reg [255:0] hf1_dram0bank_WDATA, // For write, data to be written, valid on request active clock

output reg [21:0] hf1_dram0bank_ADDR // Address, valid on request active clock edge.

input [255:0] hf1_dram0bank_RDATA, // Read result, valid on ack cycle.

output reg [31:0] hf1_dram0bank_LANES, // Byte lane qualifiers.

A half-duplex port has RWBAR. A storeport has no RDATA and a loadport has no WDATA or
LANES. LANES are only present if there is more than one lane per word. There is no full-duplex
port: instead one uses a pair of simplex ports.

IP-XACT definitions for all variants are in the Kiwi distribution. Their names follow a scheme such
as HFAST1 M RONLY which denotes an outstanding transaction count of 1, masterside interface,
(simplex) write only.

When the number of lanes is 1 no lane write enables are used and the memory is word addressed
always.

A DDRAM2 controller is available in the filekiwi/rams/ddr2-models. This can be used for
high-level simulations. It instantiates theDDR DRAM BANK underneath itself.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

59

c©2011-17 DJ Greaves + S Singh

A behavioural model of a DDRAM2 is available in the filekiwi/rams/ddr2-models. It has sig-
nature:

// (C) 2010-14 DJ Greaves.

// Verilog RTL DDR2 behavioural model - fairly high level.

// The SIMM or DIMM (all the chips of the bank) is modelled with one RTL module.

module DDR_DRAM_BANK(

input clk, // DDR Clock - 800 MHz typically. We use one edge only and double

input reset, // Active high synchronous reset

input ddr_ras, // Active low row address strobe

input ddr_cas, // Active low col address strobe

input [log2_internal_banks-1:0] ddr_ibank,// Internal bank select

input ddr_rwbar,// On CAS: 1=read, 0=write. On RAS 1=precharge, 0=activate.

input [2*dwidth-1:0] ddr_wdata, // The wdata and rdata busses are here twice their width in

input [awidth-1:0] ddr_mux_addr, // Multiplexed address bus

input [2*dwidth/8-1:0] ddr_dm, // Lanes: Separate nets here for +ve and -ve edges instead

output reg [2*dwidth-1:0] ddr_rdata); // Read data bus.

parameter log2_dwidth = 5;

parameter dwidth = (1<<log2_dwidth); // Word width in bits - we actually have twice this to

// FOR DRAM style

// E.g. MT41K256M32-125 DDR3 @ 800 MHz/1.25ns RCD-RP-CL=11-11-11 Arch=32M x 32 bits x 8 banks = 8Gb

parameter LOG2_ROW_SIZE = 15; // Log_2 number of words per RAS

parameter LOG2_COL_SIZE = 10; // Log_2 number of words per CAS

parameter PRECHARGE_LATENCY = 11;

parameter ACTIVATE_LATENCY = 11;

parameter CAS_LATENCY = 11;

parameter log2_internal_banks = 3;

parameter awidth = LOG2_ROW_SIZE; // Address width in bits - word addressed.

// DRAM burst size - can be dynamically encoded in high-order CAS address. Currently fixed at 32 bytes.

With a 32 bit data bus (64 after doubling for DDR) this requires 4 clocks to transfer the

parameter burstSize = 4;

HFAST2 is the same as HFAST1 but uses a two-cycle, fully-pipelined read latency.

A simple cache is provided. Its signature is:

module cache256_hf1

(input clk,

input reset, // synchronous, active high.

// Front-side interface

input fs_rwbar,

output reg [noLanes*laneSize-1:0] fs_rdata,

input [noLanes*laneSize-1:0] fs_wdata,

input [addrSize-1:0] fs_wordAddr,

output fs_oprdy,

input fs_opreq,

output reg fs_ack,

input [noLanes-1:0] fs_lanes,

// Back-side interface

output reg bs_rwbar,

input [noLanes*laneSize-1:0] bs_rdata,

output reg [noLanes*laneSize-1:0] bs_wdata,

output reg [addrSize-1:0] bs_wordAddr,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

60

c©2011-17 DJ Greaves + S Singh

S_AXI_ACP
Cache-coherent
Out-of-order
AXI-4

Kiwi-HLS-Generated
Hardware Accelerator

Design

Kiwi
Substrate

Shim

Programmed
I/O

Parameter
File

Abend
syndrome

Start/Stop
Control

AXI
Switch

Load
Port 0

Load
Port 1

Store
Port

Store
TieOff

FPGA Programmable Logic (PL)

M_AXI_GP0
(32 bits)

Design
Serial
Number

S_AXI_HP[0:3]
High-performance
DMA
AXI Ports

Figure 4:Typical connection of load/store ports to DRAM via AXI (Zynq Example).

input bs_oprdy,

output reg bs_opreq,

input bs_ack,

output reg [noLanes-1:0] bs_lanes

);

parameter dram_dwidth = 256; // 32 byte DRAM burst size or cache line.

parameter laneSize = 8;

parameter noLanes = dram_dwidth / laneSize; // Bytelanes.

The cache must be manually instantiated by the substrate designer.

HFAST arbiters can be instantiated on the front or back side of the cache, so that multiple synthesised
load/store ports can share one cache or multiple caches can share one DRAM bank. Sharing would
be inconsistent.

The default substrate runs the DRAM and DRAM controller at 800 MHz and the Cache and KiwiC
generated code at 133 Mhz which is 1/6th of this.

8.4.3 BVCI Offchip Interface & Protocol

Text missing.

8.5 AXI and HFAST-to-AXI mapping

AXI has become the most prevalent SoC and FPGA bus interface standard. AXI supports burst trans-
actions and out-of-order service. Such AXI service discipline is well-suited to a high-performance

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

61

c©2011-17 DJ Greaves + S Singh

DRAM bank controller. (Such a bank controller typically has8 internal banks, all of which can be
concurrently open on a DRAM row.)

Today’s CPUs use multiple load/store stations per core thatare pari passu with that core’s ALUs.
KiwiC-generated hardware is no different. Each load/storestation is busy with at most one scalar
load/store request and this can only be served in order.

As with CPUs, there are two techniques that adapt between single-issue load/store stations: multi-
plexing and caching.

• Multiplexing multiple single-issue, in-order clients onto a single bus readily generates a traffic
load that can be served out of order. In addition, there may bespatial locality between requests
that can be aggregated into a burst.

• The front-side of a cache is optimised for random-access, low-latency operations. Since each
is served (nominally) instantly, there is no scope for out-of-order discipline. On the other
hand, the back side of a cache creates line fills and writebacks that are burst operations.

KiwiC load/store stations are served with HFAST interfaces. In the fullness of time, KiwiC will
provide automated support for HFAST to AXI adaptation but currently a substrate that manually
matches the number of load/store ports is required. Currently they must be instantiated manually
(but the new recipe stage that inokes HPR System Integrator should fix that soon). The easiest way
is to import the Kiwi design into a GUI-based schematic editor that understands IP-XACT and use a
few mouse clicks to instantiate the required protocol convertors and so on. However, the SoC Render
extension can soon replace this.

The main substrate shim is boiler-plate RTL code that connects to theM AXI GP0 programmed I/O
bus for simple start/stop control and parameter exchange. It is recommended that every design
compiled has a serial number hard-coded in the C# source codeand that this is modified on every
design iteration. The first function of the substrate shim isto provide readback of this value.

The other features of the shim are starting and stopping the design and collecting abend codes.
Sources of abend are null-pointer de-reference, out-of-memory, divide-by-zero, user assertion fail-
ure, and so on.

A Kiwi design that makes access to main memory will have a number of load/store ports. These can
be half-duplex or simplex. Simplex is preferred when main memory is served over the AXI bus, as
in the Zynq design. (Of course there may be a lot of BRAM memoryin the synthesised design itself,
but that does not appear on this figure.) Simplex works well with AXI since each AXI port itself
consists of two independent simplex ports, one for reading and one for writing.

In the illustrated example, the design used three simplex load/store ports. These need connecting
to the available AXI busses hardened on the Zynq design and made available to the FPGA pro-
grammable logic. The user has the choice of a cache-coherent, 64-bit AXI bus that will compete
with the ARM cores for the L2 cache front-side bandwidth, or four other high-performance 64-bit
AXI busses that offer high DRAM bandwidth. These four are notused in the example figure.

Each KiwiC-generated load-store port is an in-order unit, like a load or store station in an out-of-
order processor. By multiplexing their traffic onto AXI-4 busses, bus bandwidths are matched and
out-of-order service from the DRAM system is exploited.

Each load/store port in the generated RTL has is properly described in the IP-XACT rendered by
KiwiC that describes the resulting design. When this IP-XACTis imported into a design suite,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

62

c©2011-17 DJ Greaves + S Singh

manual wiring of the load/store ports to the AXI switch portscan be done in a schematic editor.
(Approaches to automate this stage are ongoing.)

Note that KiwiC as of December 2016 generates so-called HFAST ports, that are either half-duplex,
loadonly or storeonly. These are what was described in the IP-XACT. The user also has to manu-
ally instantiate, in the schematic editor, little protocolconvertors that come with KiwiC and which
convert HFAST variants to AXI variants for connection to thevendor-provided AXI switch blocks.

The substrate typically converts the KiwiC-generated HFAST interfaces to AXI or other off-chip
protocols not currently supported by KiwiC. The substrate provider writes RTL transactors to convert
protocols.

8.6 Off-chip address size

KiwiC assumes it can use address zero upwards in the off-chipspace. The substrate must offset the
address bus to address available SoC regions if this is not the case.

KiwiC accepts a recipe parameter to bound the amount of off-chip memory it can use in its one
channel. Where a design attempts to use more memory, a compile-time error is raised.

‘res2-loadstore-lane-addr-size’ gives the off-chip address bus width in bits. In other words,
this is the log2 no of words of memory available in each address space. Providing different limits for
different off-chip spaces will be enabled in future. The word size and lane structure is defined with
‘res2-loadstore-port-lanes’ and ‘res2-loadstore-lane-width’ where the first of these is
typically 4, 8, 16 or 32 and the second nearly always 8 (ie byte-sized lanes).

8.7 B-RAM Inference

B-RAM instantiation is normally automatic in FPGA tools. B-RAMs with an access latency of one
clock cycle are normally used although KiwiC can support zero and two cycle reads (but how to
access them is not described here! TODO).

A B-RAM is inferred from a structure following one of severalparadigms based on all addresses
passing through a single register or all read data being passed through a single register. These can
be mapped onto the same underlying technology by posting thewrites as necessary but the effects
of read while writing to the same location differ.

KiwiC generates on-chip RAMs as explicit instances in the generated RTL. It uses ’read before’
coding style. The FPGA Vendor ’read after’ forms, where newly written data is read out are not
explicitly found in the generated RTL: KiwiC will forward the data for itself when needed, either at
compile or run time.

// (C) Xilinx 2009. Single-Port B-RAM with Byte-wide Write Enable: Read-First mode

// Download: ftp://ftp.xilinx.com/pub/documentation/misc/xstug_examples.zip

// File: HDL_Coding_Techniques/rams/bytewrite_ram_1b.v

//

module v_bytewrite_ram_1b #(

parameter SIZE = 1024,

parameter ADDR_WIDTH = 10,

parameter COL_WIDTH = 9,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

63

c©2011-17 DJ Greaves + S Singh

parameter NB_COL = 4)

(

input clk,

input [NB_COL-1:0] we,

input [ADDR_WIDTH-1:0] addr,

input [NB_COL*COL_WIDTH-1:0] di,

output reg [NB_COL*COL_WIDTH-1:0] do);

reg [NB_COL*COL_WIDTH-1:0] RAM [SIZE-1:0];

always @(posedge clk) begin

do <= RAM[addr];

end

generate

genvar i;

for (i = 0; i < NB_COL; i = i+1) begin

always @(posedge clk)

if (we[i]) RAM[addr][(i+1)*COL_WIDTH-1:i*COL_WIDTH] <=

di[(i+1)*COL_WIDTH-1:i*COL_WIDTH];

end

endgenerate

endmodule

// Single-Ported Block RAM with registered output Option

// Please note that XST infers distributed RAM or B-RAM based on the size.

// For small RAMs, you may need to use ram_style constraint to fore the use

of B-RAM.

module TWO_CYCLE_READ_BRAM(

input clk,

input wen,

input [6:0] a,

input [15:0] di,

output reg [15:0] do);

reg [15:0] ram [0:127];

reg [15:0] do0;

always @(posedge clk) begin

if (wen) ram[a] <= di;

do0 <= ram[a];

do <= do0;

end

endmodule

Style 1:

always @(posedge clk) begin

addr_reg <= addr ... ;

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

64

c©2011-17 DJ Greaves + S Singh

if (wen ...) data[addr_reg] <= (wdata ...);

rdata = data[addr_reg]; // Note blocking assign used or

// else the rhs freely used elsewhere.

end

Style 2:

always @(posedge clk) begin

if (wen ...) data[addr] <= (wdata ...);

rdata_reg <= data[addr]; // No other reads elsewhere

end

There are also the dual-ported equivalents of these styles,supported by both Xilinx and Altera.

8.8 Dual-port Block RAMs

See demo test50.

The FPGA libraries contain (typically) dual-port BRAMs. Where an array is small enough to in-
stantiated as an FPGA on-chip BRAM (block RAM), and overrides are not applied, then such a
BRAM will be used. Both Xilinx and Altera provided FPGAs withon-chip, dual-ported BRAMs
with synchronous read latency of one cycle.

Such BRAMS are atomatically used for sharing data between upto two threads. Threads can also
shared data via a scalar variables. Kiwi supports any numberof threads reading or writing shared
scalar variables but for BRAMs there are technology restrictions.

What if I want to get increased RAM bandwidth by allocating both ports of a BRAM to the same
thread?

By default, KiwiC will use one port on an SRAM for each thread that operates on it. However, by set-
ting thePortsPerThread parameter or attribute to greater than one then greater access bandwidth
per clock cycle for each thread is possible. Example needed.

8.9 Other multi-port RAMs

If three threads operated on the shared memory, KiwiC could generate an instance of a triple-ported
SRAM module but this would likely not be found in a technologylibrary when logic synthesis tools
were applied.

Instead, the ‘off-chip’ approach needs to be used. This works efficiently even for small BRAM
subsystems, but additional wiring is needed outside the KiwiC-generated RTL. The HPR System
Integrator aims to provide this service.

The approach is

1. Mark the array as off-chip. (Please see example ...missing).

2. KiwiC will then generate as many off-chip load and store ports as is requested for each thread
by thePortsPerThread mechanism.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

65

c©2011-17 DJ Greaves + S Singh

3. The outside logic will instantiate arbiters as needed to connect all the ports created to a suitable
memory resource. The arbiters needed, for HFAST and AXI, arein the bundled technology
library.

... we need to add a little more explanation or forward reference here please ...

9 Substrate Gateway

There is some basic information on the Zynq substrate here: http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/zynq-pio-dma

The substrate gateway is a hardware/software boundary for use on platforms such as Zynq or others
that run embedded linux with a console, network and filesystem. It has an associated protocol for
providing operating system access.

9.1 Console I/O

This section will explain how to do console I/O via the substrate gateway.

We also need to explain the ReadKey situation. Windows usersoften put a readkey call on the end
of their programs to stop Windows deleting the output straightaway ...

// Keep the console window open in debug mode.

Console.WriteLine(‘‘Press any key to exit.’’);

Console.ReadKey();

9.2 Filesystem Interface

The basic dotnet classes for StreamReader, StreamWriter, TextReader and TextWriter are provided
via the substrate gateway. Random access using fseek is alsosupported.

documentation incomplete ... add KiwiFilesystemStubs.dll to your compilation ... documentation
for Zynq use will be added here... Satnam’s windows version ... It works fine under RTLSIM with
verilator.

The following nets will require connection to the synthesisoutput when the Kiwi file system is in
use.

For high performance computing applications the filesystemis part of the Kiwi Substrate (alongside
the DRAM).

output reg KiwiFiles_KiwiRemoteStreamServices_perform_op_req,

input KiwiFiles_KiwiRemoteStreamServices_perform_op_ack,

input [63:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_return,

output reg [63:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_a2,

output reg [31:0] KiwiFiles_KiwiRemoteStreamServices_perform_op_cmd,

A suitable behavioural Verilog fragment to connect to them for simulation test purposes is/kiwi/filesystem/kiwifs_bev.v
that provides the basic console and file stat/exists/open/close/read/write calls required by the dotnet
Stream and File.IO classes.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

66

c©2011-17 DJ Greaves + S Singh

The remainder of this part of the user manual is missing, but please check the Bowtie Geneome
Sequencer demo for an example of file system use.

9.3 Hardware Server

TheServer attribute indicates that a method and the methods it calls inturn are to be allocated to a
separate RTL module that is instantiated once and shared over all calling threads.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

67

c©2011-17 DJ Greaves + S Singh

10 Kiwi Performance Tuning

An HLS system can be set to optimise for

1. Performance: achieving the best execution time, aiming for maximal clock frequency and
minimal number of clock cycles,

2. Area: using as little area as possible, generally at the expense of many more clock cycles,

3. Debugibility: renaming and sharing registers as little as possible and providing additional
debug and trace resources for interative access.

The main parameters for tuning the Kiwi Area/Performance tradeoff, folding space over time are:

1. Thebevelab-soft-pause-threshold parameter. The nominal range is 0 to 100 with use-
ful values currently being between 5 and 40. A lower value tends towards more clock cycles
and possibly less area. Values above 40 may lead to very long KiwiC compile time.

2. The loop unwind limits alter the amount that a loop is unwound at compile time, leading to
parallelism. For instance, theKiwi.Unroll("COUNT~=4", lvar); attribute added to the
C# source code suggests that the loop whose control variableis called ‘lvar’ is unwound by a
factor of 4.

3. Structural Resource Budgets: The restructure phase accepts ten or so recipe settings that
limit the maximum number of structural resources, such as floating-point ALUs allocated
pre thread. Smaller settings lead to smaller designs that use more clock cycles.

4. RAM thresholds: Settings such asres2-offchip-threshold alter the amount of block
RAM allocated. This is faster than external (off-chip) SRAMor DRAM but uses more FPGA
resources.

5. The settingres2-loadstore-port-lanes alters the number of external memory ports used.
These each operate in order, so if you have more of them and muxthem externally onto
separate resources or an out-of-order bus then you get more parallelism and external RAM
bandwidth.

6. ALU latency: Settings such asfp_fl_dp_div describe the type of divider to generate. For
such components you can provide your own implementations, alongside those provided in
the Kiwi libraries likecvgates.v, and specifiy whether they are fixed or variable latency,
fully-pipelined and what the fixed or expected latency in clocks cycles is.

7. Register colouring affinty: Thekiwic-colour-enable setting alters the amount to which
KiwiC reuses registers. With it disabled, the hardware is easier to inspect/debug, but many
more registers are generated. An experimental, spatially-aware binder is being added to Kiwi
at the moment. This will handle both registers and ALUs and gives a floorplan plot.

Commonly, the system DRAM will run at a hardwired clock frequency, such as 800 MHz. This
is too fast for most current FPGA logic, Kiwi-generated or otherwise. An integer divisor of 4 or 5
typically needs to be applied to bring the logic speed below 200 MHz. Getting KiwiC to hit a target
clock frequency is a common requirement ... TBC ...

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

68

c©2011-17 DJ Greaves + S Singh

10.1 Kiwi Performance Predictor

In 2015 a performance predictor was added to Kiwi so that estimates of run-time performance can
be rapidly provided without having to do an FPGA place-and-route or even a complete pre-FPGA
RTL simulation. The performance predictor is based on basicblock visit ratios stored in a database
that is updated with the results from short runs. When the application is edited and recompiled with
KiwiC, a new prediction is generated, straightaway, based on the contents of the database generated
by previous versions. Short profile runs of the new design canthen be run to improve prediction
accuracy. Every prediction is reported with confidence limits. The reported confidence is reduced
(wider error bars) both by certain design edits and by extrapolating to runs that are much longer than
those used for profiling.

Performance prediction is based on accurate knowledge of control flow branching ratios: the per-
centage of time a conditional branch is taken or not taken. This enables execution counts for each
basic block to be estimated. Profile information from previous runs is the default basis for this
knowledge. To ensure the information stored in the profile database is robust against program edits,
it cannot be indexed by fragile tags such as a basic block number in global syntax-directed enumer-
ation. Instead, performance prediction uses the method names occurring naturally in the application
program as timing markers. Every method has a clear entry point as well as potentially several exit
points (return statements are numbered in their textual order in the CIL byte code... branches to the
exit). With loops that contain no method calls in their bodies, the user must add a method call to a
dummy method (null body) and that method should be (preferably?) annotated with aKppMarker
attribute. Conditional branches and basic block names are then taken in a syntax-directed way from
the code between the named control-flow points and discrepancies in the control flow graph between
named points is used to flag warnings and discard profile information no longer usable.

All call strings for a method can either be considered separately or in common. The call string is the
concatenation of the call site textual names from the threador program entry point. If the call strings
are considered in common, they are being disregarded and theaverage over all call strings is used.

These attributes also enable the user to control the way the performance estimation report is pre-
sented. They also enable the user to provide a substitute loop or visit count that overrides the stored
profile. This provides the basis for extrapolating the run time from a small test or profiling data set
to the envisioned real date size that will be processed on theFPGA.

Where the performance predictor cannot find profile information for a branch it assumes a 50/50
division and the number of such assumptions and their effecton the confidence in the result is
included in the report.

Profiles for performance prediction can be sourced from various places, including diosim, but RTL
simulation is used in the following, step-by-step, example.

1. Preferably denote several waypoints in the application C# programKiwi.KppMark().

2. Generate an RTL design using KiwiC and an RTL testbench using the standard flow for your
envionment, but with the following minor changes

• OLD:Stop KiwiC generating any$finish() calls with the-kiwic-finish=disable
command line flag. NEW: We replace -kiwic-finish with -kiwife-directorate-endmode.

• Augment your C# program to make it drive a top-level net called ‘finished’ high at the
end of simulation by declaring a satic boolean OutputBitPort and assigning true to it at

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

69

c©2011-17 DJ Greaves + S Singh

the program end (you will typically also include a waypoint called FINISH at that site
too.

• textually includekpp_testbench_mon_onethread.v in the testbench using an RTL
include statement.

3. Run your RTL simulation. The included material will writeout a file file called ’profile.xml’
or similar. (You can also get this file from diosim without an external RTL simulator).

4. Invoke the performance predictor (hpr/kpredict.fs) using ... and you will see

5. With a suitable Makefile, you can make the web page redisplay automatically after every
high-level edit ...

10.2 Phase Changes, Way Points and Loop Markers

Hardware itself does not have a start and end time. Instead, performance metrics are always quoted
between a START/FINISH pair of named events. A typical program is structured with a time-domain
series of internal phases, such as ‘startup’, ‘load’, ‘compute’ and ‘report’. The performance predictor
makes separate predictions for each phase and sums them. Theconfidence for different phases may
be different, typically according to which part of the program was most recently edited. A marker
between phases is called away point. Kiwi.KppMark() dummy calls and/or Kiwi.KppMarker
attributes are used to define waypoints. Each way point has a manually-allocated number and name
and all but the last start a phase that optionally also has a name. The entry and exit waypoints should
be called START and FINISH respectively. The program’s control flow cannot loop around a way
point. If a KppMarker is found in a loop body, or a method body where that method is called more
than once, the provided labels are code point markers (explained below).

// Typical pattern of waypoint markup.

Kiwi.KppMark(1, "START", "subsequent-phase-name1");

...

Kiwi.KppMark(2, "waypoint-name2", "subsequent-phase-name2");

...

Kiwi.KppMark(3, "waypoint-name3", "subsequent-phase-name3");

...

Kiwi.KppMarker(0, "FINISH");

A waypoint is a special form of code point marker. The use of code point markers adds robustness to
the information stored in the profile database against program edits, allowing it to be safely applied
to edited programs. The markers provide index points that can be associated with loop heads and
other control-flow points, to assist in robustness of the profile for complex method bodies. Basic
block names are then named in a syntax-directed way with respect to, and as textual extensions of,
the previous and next labelled control point.

KppMark has no innate multi-threaded capabilities and so should generally be set by an application’s
master/controlling thread, assuming it has one.

An exiting application has precisely one entry point. It hasone exit point if other exits are are routed
to a singleton exit point. Way points should appear once. Given expected visit ratios for each basic

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

70

c©2011-17 DJ Greaves + S Singh

block, the problem is overconstrained and the frequency of visiting each way point and the singleton
exit point can be inspected as a confidence indicator: they are all nominally visited once.

Note: many older designs have defined a net-level output called done or finished and assigned to it
at the end of the main thread. Today we prefer to useKiwi.ReportNormalCompletion() which
also counts as a waypoint. We need to direct exit and so on to it...

10.3 Growth Parameter Assertions/Denotations

C# attributes also enable the user to provide a substitute loop or visit count that overrides the stored
profile. This provides the basis for extrapolating the run time from a small test or profiling data set
to the envisioned real data set size that will be processed onthe FPGA. Also, hardware itself does
not have a start and end time - it is static/eternal. Instead,performance metrics are always quoted
between a start/end pair of named code lables, again specified with C# attributes. Times for various
phases within a program, such as ‘load’, ‘process’ and ‘write out’, can also be predicted by inserting
appropriate further control-graph delineations with an attribute that denotes a way point.

10.4 Debug, Single Step and Directorate Interface

There is no explict support for hardware debug currently in Kiwi, other than single stepping and PC
value collection when the abend syndrome is non-zero. User logic can readily provide PIO access to
major state holding RAMs [LINK TO EXAMPLE NEEDED]. Note thatuser variable mappings to
RTL registers is typically many to one and the mapping is reported in the KiwiC.rpt file generated
on each run.

The directorate interface adds the following features to the generated RTL that can be hooked up
to a management CPU via the substrate gateway. They each add hardware overhead but this can be
trimmed out mostly by FPGA tools when reporting resources are left disconnected.

1. Clock, Clock Enable and Reset inputs. Clock-enable is optional and can be used for single-
step or other purposes.

2. Abend syndrome register - successful halt/array bounds/integer overflow/null pointer run time
errors agumented with PC value or waypoint per thread.

3. Waypoint and/or PC value monitoring for each thread. Waypoint indicates not started, run-
ning, exited and various user-defined intermediate points.

4. Generic unary LED readback.

5. CPU register debug access ports: additional read/write logic is generated enabling programmed
I/O access to every register (in the future).

6. Argument/result handshake and run/stop control in one ofseveral styles:

• startmode: self-start or wait-start;

• endmode: auto-restart, hang or finish;

• ready-flag: present or absent.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

71

c©2011-17 DJ Greaves + S Singh

7. PC breakpoint control (in the future).

Nearly all FPGA blades have a some simple LED indicators connected to I/O pads. Kiwi has the
concept of the ‘generic unary LEDs’ for each FPGA. Kiwi defines a uniform way to drive these and
the substrate makes their values available to the host CPU, which is useful when the LEDs are in a
different room or continent from the application user. Theywill commonly be used as a user-defined
mirror of the Waypoint code (§10.2).

The directorate complexity is controlled with the recipe/command-line flag-kiwife-directorate-style

The single-step and breakpoint registers are/will be present with directorate style advanced-kiwife-directorate-style=advanced
in the future. Single-step can be achieved with suitable user logic connected to the clock-enable in-
put for a thread. Note that clock enable is not a simple synchronous clock gate owing to the presence
of pipelined components that cannot be freely stopped (suchas BRAM).

Watchpoints are currently best implemented by the user in the C# source code and recompiled, or
else use vendor tools like ChipScope etc..

The abend syndrome register is present with directorate styles normal and advanced-kiwife-directorate-style=normal

When a component is compiled as a module to be instantiated in later KiwiC runs, it needs to have
an HFAST interface (when in classical HLS major mode). The HFAST interface is generated with
the command line flags

-kiwife-directorate-startmode=wait-start

-kiwife-directorate-endmode=auto-restart

-kiwife-directorate-ready-flag=present

A top-level HFAST interface can be wrapped as an AXI-S interface with an externally-instantiated
adaptor (from the HPRSHIMS library) that itself can be instantiated by HPR System Integrator.

The abend syndrome codes used by Kiwi in classical HLS major mode are:

• Abend code0x00 — Not yet started code.

• Abend code0x01 — Normal Errorless Exit/Completion.

• Abend code0x01 — Unspecified Abnormal Exit/Completion

• Abend code0x03-0x7f — User Exit Codesfrom System.Environment.Exit(int code)

• Abend code0x80 — Normal operation in progress.

• Abend code0x81 — Paused indication during normal operation.

• Abend code0x83 — Suspended (breakpoint/!single step etc.)

• Abend code0x90 — Abend on Heap Memory Fault

• Abend code0x91 — Abend on Heap Memory Exceeded

• Abend code0x92 — Abend on Integer Divide-By-Zero

• Abend code0x93 — Abend on Null Pointer Dereference

• Abend code0x94 — Abend on Array Subscript Out-of-Bounds

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

72

c©2011-17 DJ Greaves + S Singh

• Abend code0x95 — Abend on C# Safe-Mode Checked Overflow

• Abend code0xA0 — Debug.Assert Failure

• Abend code0xAn — Other User Thrown Abend from hpr_abend()

• Abend code0xFF — No abend, still running.

11 Spatially-Aware Binder

An experimental, spatially-aware binder is being added to Kiwi at the moment. This will handle
both registers and ALUs and gives a floorplan plot.

Register colouring, RAM binding with memory maps and ALU binding is reported in the KiwiC
report file. Only a static mapping, generated at KiwiC compile time, is used.

12 Generated RTL

Kiwi generates Verilog RTL for synthesis toFPGAby vendor tools. It can also generate SystemC and
CSharp but we do not commonly use those flows at the moment and their will be some regressions.

KiwiC will assume the presence of various IP blocks in Verilog. These include RAMs and fixed and
floating point ALUs. It will instantiate instances of them.

The libary blocks are generally provided in the following source files:

CV_FP_ARITH_LIB=$(HPRLS)/hpr/cv_fparith.v

CV_INT_ARITH_LIB=$(HPRLS)/hpr/cvgates.v

CVLIBS=$(CV_INT_ARITH_LIB) $(CV_FP_ARITH_LIB)

12.1 RAM Library Blocks

Fixed-latency RAMs are provided in the cvgates.v. They havenames such asCV_SP_SSRAM_FL1
which denotes a synchronous RAM with fixed read latency of oneclock cycle (FL1) and one port
(SP). The cvgates implementations are intended to by synthesisable by FPGA tools.

Parameter overrides set the address range and word and lane width.

12.2 ALU Library Blocks

These blocks are found in cvfparith.v

Example: CV_FP_FL5_DP_ADDER - floating point, fixed latency of 5 clock cycles, double

CV_FP_FL_SP_MULTIPLIER

Key: FLASH=combinational.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

73

c©2011-17 DJ Greaves + S Singh

FLn = fixed latency of n clock cycles, VL variable latency with handshake wires,

blocking while busy,

DP=double precision,

SP=single precision.

13 Incremental Compilation and Black Boxes

The IP-XACT -based incremental compilation features are being released 2Q2017.
This section of the KiwiC manual is going out of date now — please see§39 for up-to-date
information.

Compiling everything monolithically does not scale to large projects. Separate and incremental com-
pilation is needed in large projects to handle scale, component reuse, unit testing, revision control
and is the basis for project management. It can also be a basisfor parallelism. So, for larger designs,
to manage complexity, it is always desirable to designate subsystems for separate compilation.

Also, the classical HLS approach embodied in the normal KiwiC compilation mode, in-lines all
method calls made by a thread into one flat control-flow graph.KiwiC reuses ALUs and local vari-
able registers in both the spatial and time domains, but tends to generate the largest and fastest circuit
it can, subject to ALU instance count limits per thread set inthe recipe. Even though FPGA/ASIC
logic synthesiser tools typically re-encode the resultingstate machine so that the output function is
simple to decode, having more than a few thousand states becomes impractical. It makes sense for
complex subsystems to be synthesised separately so that a call to them takes one state in the caller’s
sequencer. Any sequencer in the called component has its states shared over all calls. All standard
library functions of any complexity are better handled in this way. Prime examples are trig and log
functions and I/O marshalling such as ASCII to/from floatingpoint. When these components are
referentially transparent, KiwiC can deploy as many instances as it likes, guided by metrics.

Multi-FPGA designs require the logic to be partitioned between logic synthesis runs using sepa-
rate RTL files. Again this requires incremental compilationand established protocols between the
FPGAs. The approach is to use HPR System Integrator to instantiate SERDES links at the FPGA
boundaries, potentially multiplexing a number of servicesonto the available links.

The ability to use separately-compiled components also forms the basis of ablack box import mech-
anism for third-party IP blocks. In principle, instantiating a black box containing third-party IP is
no different from instantiating a separately synthesised Kiwi module. Example Kiwi modules are
standard trig and log functions, random number generators and subsystems from user designs. The
CAMs on the NetFPGA boards and the new Xilinx hardened FIFOs are typical third-party black-box
componenets. See test72.

Third-party IP blocks and existing hardware interfaces aretypically described in terms of net-level
timing waveforms or formal specifications thereof. To exploit these components from a high-level
language viaHLS, wrappers need to be manually written.

class blackbox_wrapper_tx_demo

{

[Kiwi.OutputWordPort("wdata")] static byte wdata;

[Kiwi.OutputWordPort("n_wstrobe")] static bool n_wstrobe;

[Kiwi.InputWordPort("n_rdy")] static bool n_rdy;

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

74

c©2011-17 DJ Greaves + S Singh

[Kiwi.OutputWordPort("n_sop")] static bool n_sop;

[Kiwi.OutputWordPort("n_eop")] static bool n_eop;

[Kiwi.Remote("protocol=HFAST")]

public static void SendPacket(byte [] darray, int len)

{

Kiwi.PauseControlSet(Kiwi.PauseControl.hardPauseEnable);

for (int i=0; i<len; i++)

{

n_wstrobe = !true;

n_sop = !(i==0);

n_eop = !(i==len-1);

wdata = darray[i];

while (!n_rdy) Kiwi.Pause();

Kiwi.Pause();

}

n_wstrobe = !false;

}

}

In some design styles, subsystems can also best be placed in aserver pool with dynamic load bal-
ancing. Design-time manual control sets the number of instances generated. KiwiC will share such
server instances in the time domain rather than instantiateas many as it needs (subject to ALU count
limits). Note: Server pools are not currently automated within Kiwi but should involve little more
than a C# library that the current KiwiC can compile.

Method designated as top-level entry points must be static.But for incremental compilation, entry
points are commonly not static.

13.1 IP Integration via IP-XACT

There are several cut points in the Kiwi design flow where separately-compiled modules can be
combined:

1. KiwiC will accept any number of.dll or .exe files on its command line. These will have
been generated, typically, from separate invokation of theC# compiler.

2. TheKiwi.Remote() attribute described in§7.1 enables a designated class or method to be
cut out for separate compilation with its own IP-XACT description.

3. Incremental invokation of FPGA tools is also typically possible, where some RTL files have
been seen before and others are new, but is beyond the scope ofthis document.

4. (In principle it is possible to load and save VMs to disk (serialised in XML) and so incremental
compilation at intermediate points in the opath recipe is a future option.)

Numbers 1 and 3 in the following list are relatively obvious,so we discuss only number 2.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

75

c©2011-17 DJ Greaves + S Singh

IP-XACT is an IEEE standard for describing IP blocks and for automated configuration and inte-
gration of assemblies of IP blocks. All conformant documents will have the following basic titular
attributes spirit:vendor, spirit:library, spirit:name,spirit:version. A document typically then repre-
sents one of:

1. a bus specification, giving its signals and protocol etc;

2. a leaf IP block data sheet with links to the design files;

3. a heirarchic component wiring diagram that describes a sub-system by connecting up or ab-
stracting leaf components.

Today, the predominant protocol for interblock communication is AXI in its various forms. A block
with AXI interfaces should be accompanied with an XML description using the IP-XACT schema.

13.2 TheKiwi.Remote() Markup

Separately-compiled modules will not share hardware resources (such as registers, ALUs or RAMs)
between them. Also, each will, in general, have its own (set of) load/store port(s) for access to
centralised resources such as DRAM.

Restriction: A module for separate compilation by KiwiC cannot have free parameters at the mo-
ment, as would be used to statically set a dictionary maximumcontents size for instance.1 For ex-
ample, a generic dictionary component [insert link here please] cannot be compiled, even though the
basic data operations on it are marked up as remotely callable with Kiwi.Remote() or otherwise.
The dictionary example fails for these reasons:

1. the content type is typically polymorphic and hence the item size is not known when compiled
to hardware standalone,

2. the capacity of the dictionary might be compile-time fixedand set via its constructor, but the
constructor will not be called,

3. the dictionary component is an instance class and KiwiC can only compile static methods at
the top-level.

The solution is to compile the dictionary with a minimal testbench that calls the constructor, passes
in a data type and re-exports the data handling business API.Example here ... TBA

13.3 Required MetaInfo

The IP-XACT standard schema provides all of the informationneeded for net-level structural IP
block interconnection.

Beyond providing the block name and version number, it givesa full description of the net-level
interface and any TLM interfaces in higher-level models. The precision of the implemented function
is manifested by the bit-widths of the busses.

1We mean structural parameters in the style of Verilog. The heapbase for link editing is now being added (§7.17). A
separately-compiled method/function will accept its arguments (a.k.a. parameters) of course.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

76

c©2011-17 DJ Greaves + S Singh

bool Referentially Transparent Always same result for same arguments (statless/mirrorable).
bool EIS (An end in itself) Has unseen side effects such as turning on an LED.
bool FL or VL Fixed or Variable latency.
bool External Whether to instantiate outside the current module.
int Block latency Cycles to wait from arguments in to result out (or average if VL).
int Initiation Interval minimum number of cycles between starts (arguments in time) (or average if VL).
real Energy Joules per operation (for power modelling via SystemC virtualplatform output).
real Gate count or area Area is typically given in square microns or, for FPGA, number of LUTs.

Table 3:Kiwi Extensions to IP-XACT for HLS

Hence the HPR System Integrator mode of compilation, illustrated below for the peered instances,
is readily supported without extensions. Afterall, this isthe primary use today for IP-XACT.

We currently do not support automatic selection of sub-assemblies based on non-functional param-
eters, such as area and energy, but method overloading within the API of a given block works. Also,
we do not automatically partition a design for incremental compilation according to the scale of the
blocks or other heuristics: instead[Kiwi.Remote()] attributes must be manually added.

Where a custom block is separately compiled for use in an incremental compilation project, it,
generally, has a custom interface. Hence there are two IP-XACT documents associated with an
incremental compilation step: a so-called ‘spirit:abstractionDefintion’ that defines the interface and
the ‘spirit:component’ that defines the child component, making reference to the interface document
and also other interfaces, such as management and services ports, also sported by the child.

The parent compilation will read in these documents. And further IP-XACT documents will be
written to describe the parent block by the parent compilation.

A final document may ultimately be written by HPR System Integrator that is a ‘spirit:design’ for
the whole structure.

We use a squirrelling function, akin to the one used for C++ link editing, to generate an almost-
human-readable kind name for the the interface. Alternatively, a kind name can be manually speci-
fied in the C#[Kiwi.Remote()] attribute.

The abstraction definition describes the transactional method names associated with the net-level
ports. For instance, a child component might have three methods, such asread(a), write(a, d)

andflush().

The default approach is that each method has dedicated handshake, argument and result nets (as
in Bluespec). The default approach is not always suitable, especially for pre-existing IP blocks.
For example, on a single-ported RAM the address bus will be shared between theread(a) and
write(a, d) methods. A second example is a general trig block ALU that implements ten different
trig functions (sin, cos, tanh, ...): the argument and result busses will be shared over each invokable
opertion.

One way to achieve sharing of argument and result busses, while retaining the default approach
where each function has dedicated nets, is to write in C# a shim with a single callable method
around the bock’s natural API and direct operations to this target. This simply requires adding one
further, public, method to the component’s C# class definition and making sure that all required calls
pass through that method. An example is in Figure 5.

To exploit an existing component as a black box, the RTL result of synthesising the child component
is not needed. The IP-XACT defining the child should be manually edited in the place where it refers

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

77

c©2011-17 DJ Greaves + S Singh

class Server1

{

void flush() { ... }

int read(int a) { ...; return foo; }

void write(int a, int d) { ... }

[Kiwi.Remote("HFAST")]

public int transact(enum cmd, int a, int d)

{

switch (cmd)

{

case server1.cmd_t.flush: flush();

case server1.cmd_t.read: return read(a);

case server1.cmd_t.write: write(a, d);

}

return 0;

}

}

Figure 5:Monomethod API example. Several methods in a component are made accessible via a single
shim method. This will reduce wiring between separately-compiled coponents, which may or may not be
helpful (e.g. helpful when interconnected between FPGAs), but is also a good way to connect to existing
IP-blocks that were defined to share the same net-level pins over various transactions.

to the RTL filename to instead refer to a manual implementation that uses the third-party component,
such as the CAM on the NetFPGA board (see ... to be added).

Alternatively, going beyond the default method, so-called‘meld’ code can be provided that defines
the transactional protocol at the net level.

TODO: define re-entrant synchronisation aspects and sharing of resources over entry points...

IP-XACT only provides about half of the information needed to import a hardware IP block for
HLS so we use extensions for this purpose. Additional information is needed for replication and
schedulling of such blocks in an HLS flow. A summary of the additional information needed is in
Table 3. We use the<spirit:VendorExtensions><hprls:...> namespace for our extensions.
The schema is here: LINK MISSING.

13.4 Instantiation Styles

There are two main module instantiation styles: IP blocks can be instantiated as peers or with hier-
archy.

Each instanced block needs to have both a C# implementation and an RTL implementation packaged
with an IP-XACT wrapper. The RTL and IP-XACT may have been generated by earlier runs of
KiwiC or else may have been created by hand or have come from a third party. The C# version is
required for two reasons: 1. so that the instantiating C# filewill compile without a missing class error,
and 2. so that the the system as a pure dotnet design in WD (workstation development) environment.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

78

c©2011-17 DJ Greaves + S Singh

Only a stub implementation (null method bodies) is needed for C# compilation to succeed. And for
the dotnet run, only a high-level behavioural model is needed in the C# when the real implementation
comes from elsewhere, such as when it is hardened IP like the NetFPGA CAM.

Peer interfacing requires both sides to import a shared interface declaration so they may be compiled
separately at the C# stage, yet still communicate afterwards. This could be a TLM abstraction of
a standard interface, such as an AXI variant, or it could be a custom application-specific interface.
And a TLM2-style socket set might be used to falicitate the binding.

Peer instancing skeleton example:

// See http://www.cl.cam.ac.uk/research/srg/han/ACS-P35/obj-2.1/zhp283300d5c.html
RAM r = new RAM(...); // Create peer instances
CPU c = new CPU(...); //
IO i = new IO(...); //
c.axi_m0.bind(r.axi_s0); // Establish wiring between them.
c.axi_m1.bind(i.axi_s0); // bind is provided by SystemCsharp TLM.

Hierarchic instancing is where one C# file is compiled first and a second has an instance of it avail-
able during its own compilation.

Hierarchic instancing skeleton example:

[Kiwi.Remote(...)] ALU a = new ALU(...);

int foo(int x, int y) = { return x * a.f1(y/121); }

KiwiC will be invoked several times in either of these codingstyles and each run generate a set of
output files. Each set consists typically of some RTL and/or SystemC files and an IP-XACT meta
file describing the set.

In the peer instancing example, each of the three instantiated components is defined as a class that is
itself marked up with the Kiwi.Remote() attribute. In the hierarchic example, the attribute is instead
applied to the instance. Also, in the hierarchic example, the ALU instance may actually be placed
outside the rendered containing RTL with additional top-level ports provided for wiring it up.

Note that the ALU in the hierarchic example might typically be stateless and hence replicatable. If
so, its invokation will be completely on a par with the multiplier and divider instances also needed for
method foo. The HLS binder will decide how many instances of it to make and the HLS scheduller
will factor in the appropriate fixed pipelining delay or variable delay and handshake nets.

13.5 Subsystem Abend Syndrome Routing

Kiwi defines that if any subsystem stops with an abend syndrome code, this must be passed up
through parent modules to the substrate wrapper. And all modules must halt at that instant so PC
values can be collected.

An example of glue logic being inserted by HPR System Integrator is when it must collect these
abend syndromes and PC values from each instantiated moduleand combine them into a larger
abend code and to halt the composite when any component abends.

In the peer instancing example, the KiwiC front end will invoke the HPR System Integrator function
(§39) of the HPR library that underlies Kiwi.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

79

c©2011-17 DJ Greaves + S Singh

The HPR System Integrator compiler takes a set of HPR VMs and generates SPRTL constructs to
wire up their ports following the VM instantiation pattern or an input IP-XACT document. It will
instantiate protocol adaptors and glue logic based on pre-defined rules.

Please see SoC render part of the manual: Section 39.

HPR System Integrator supports:

1. Creating inter-module wiring structures with tie-off ofunused ports.

2. Working both at the TLM level and structural net list level.

3. Outputs are in Verilog, IP-XACT, SystemC TLM, SystemC behavioural and SystemC RTL-
styles.

4. Glue logic insertion in the form of instantiated adapators from the library are readily inserted
automatically using rules based on interface type differences.

5. Custom glue logic from the Greaves/Nam cross-product technique can also be rendered.

Another example, at the moment, is that KiwiC generates HFAST load/store ports but the Zynq
platform requires these to be adapted to AXI. This can eitherbe done automatically by HPR System
Integrator or by using the IP Integrator GUI within Vivado.

14 Design Examples

There are some examples in the standard distribution, such as primes and cuckoo cache.

14.1 A get-started example: 32-bit counter.

Here’s how to make a simple synchronous counter that produces a 32-bit net-level output.

using KiwiSystem;

{

[Kiwi.OutputWordPort("counter")]

static int counter;

[Kiwi.HardwareEntryPoint()]

static int Main2()

{

while(true)

{

Kiwi.Pause();

counter = counter + 1;

}

}

}

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

80

c©2011-17 DJ Greaves + S Singh

Part IV

Expert and Hardware-level User Guide

15 Kiwi Hard-Realtime Pipelined Accelerators

Note: real-time Pipelined Accelerator mode is being implemented 3Q16.

Classical HLS generates a custom datapath and controlling sequencer for an application. The ap-
plication may run once and exit or be organised as a server that goes busy when given new input
data. KiwiC supported only, up until now, that classical wayfor each thread. We call this ‘sequencer
major HLS mode’.

In ‘Pipelined Accelerator’ major HLS mode, KiwiC will generate a fully-pipelined, fixed-latency
stream processor that tends not to have a controlling sequencer, but which instead relies on predicated
execution and a little backwards and forwards forwarding along its pipeline.

Like classical HLS mode, a compilation root is identified in the high-level source, but its manifes-
tation in the hardware is different. The loop is implementedby the subtrate instead of the KiwiC-
generated RTL. Hence a different subtrate is needed and different techniques are used to connect
such components together by HPR System Integrator.

The root designation for a hardware accelerator is a C# static method with arguments and a return
value. This is typically the loop body of a C# iteration wherethe loop construct itself is only used in
C# form in WD (workstation development) execution (§3.2).

A pipelined accelerator mode with latency set to zero results in a purely combinational circuit in
terms of input to output data path, but it may post writes to registers and RAMs that still need a
clock.

The priorKiwi.Remote() attribute, described in§7.1, enables a given method to be cut out for
separate compilation. This was non-rentrant and does not enforce hard real time.

When generating a real-time accelerator, a C# function (method with arguments and return value) is
designated by the user as the target root, either using a C# attribute or a command line flag to the
KiwiC compiler. The user may also state the maximum processing latency. He will also typically
state the reissue frequency, which could be once per clock cycle and whether stalls (flow control) is
allowed.

[Kiwi.HardwareEntryPoint(Kiwi.PauseControl.pipelinedAccelerator)]

static int piCombDemo(int arga) // The synthesis target

{

// Trival example: probably a combinational design infact.

return arga+100;

}

For a real-time accelerator, multiple ‘calls’ to (or invokations of) the designated function are being
evaluated concurrently in the generated hardware. Operations on mutable state, including static
RAMs and DRAM are allowed, but care must be taken over the way multiple executions appear to
be interleaved, just as care is needed with re-entrant, multithreaded software operating on shared

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

81

c©2011-17 DJ Greaves + S Singh

variables. Local variables are private to each invokation.

Although we default to every concurrent run’s behaviour being treated in isolation, we support two
means for inter-run communication: we can address the arguments and intermediate state of neigh-
bouring (in the time domain) runs and, as mentioned just above, we can read and write mutable state
variables that are shared between runs.

Variable-latency leaf cells cannot be instantiated (currently) in accelerator mode where the latency
varies by more than the reinitiation interval. Further details need defining, but, for now, we need to
avoid off-chip DRAM and KiwiC will request fixed-latency integer dividers (latency equal to the bit
width) instead of the more commonly instantiated variable-latency divider.

15.1 Pipelined Accelerator Example 1

A simple example is test54 in KiwiC regression suite. Alternative mark up illustrated ... final system
under design.

static readonly uint[] htab4 = { 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96,

... many more entries ...

};

// We require a reissue interval of 1 (fully pipelined)

// We want a maximum latency of 16.

[Kiwi.PipelinedAccelerator("accel1", "nostall", 1, "maxlat", 16)]

static uint Accel1(uint a0)

{

uint r0 = a0;

for (int p=0; p<3; p++) { r0 += htab4[(r0 >> 6) % htab4.Length]; }

return r0;

}

We can specify the reissue interval via the C# attribute. In this example, a reissue interval of 1 is
specified. This generates fully-pipelined hardware that can be supplied with fresh arguments every
clock cycle.

We also specify the maximum result latency as 16. KiwiC will determine its own latency, up to this
value, guided by the logic cost settings, and report it in theKiwiC.rpt output file.

The ROM, in the full source code of the example, has 256 entries, and so is implemented as a
statically-initialised block RAM on most FPGAs. This has a synchronous access time of one clock
cycle. For multiple, concurrent accesses, as required by the reissue interval of 1, the ROM must be
mirrored. Owing to loop-carried ROM address dependencies,the minumum implementation latency,
by inspection, is 5 cycles.

All loops offered in pipelined accelerator mode must be fully unwindable by KiwiC. This means
they must have a hard and obvious upper iteration limit, but they may have data-dependent early
exit.

Internally, in our first implementation, the bevelab recipestage unwinds all loops. This gives a single
superstate to the restructure recipe stage which operates in a mode where all holding registers and

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

82

c©2011-17 DJ Greaves + S Singh

input operands are replicated as needed in pipeline form andwhere mirroring of structural resources,
such as the ROM in the above example, is used to avoid structural hazards arising not only for
multiple use by a single run, as normal, but over different stages in that run that are separated by
more than the reissue interval.

16 Designing General/Reactive Hardware with Kiwi

Kiwi can be used in an RTL-like style for some applications. This is where the user takes more
active control over clock cycle mapping than is required or desired by scientific users.

The Kiwi system has ahard pause mode, clock domainsandnet-level I/O facilities for specifying
cycle-accurate hardware. This is needed for bit-bang coding to connecting to existing hardware
interfaces like AXI, I2C and LocalLink. Ideally, protocolsare supported natively by Kiwi and bit-
banging can be avoided.

16.1 Input and Output Ports

Input and Output Ports can arise and be defined in a number of ways.

Net-level I/O ports are inferred from static variables in top-most class being compiled. These are
suitable for GPIO applications such as simple LED displays and push buttons etc.. The following
two examples show input and output port declarations, wherethe input and output have their width
specified by the underlying type and by attribute, respectively.

[Kiwi.InputPort("serin")] static bool serialin;
[Kiwi.HwWidth(5)] [Kiwi.OutputPort("data_out")] static byte out5;

The contents of the string are a friendly name used in output files.

For designers used to the VDHL concept of a bit vector, we alsoallow arrays of bools to be des-
ignated as I/O ports. This can generate more efficient circuits when a lot of bitwise operations are
performed on an I/O port.

[Kiwi.OutputWordPort(11, 0, "dvi_d")] public static int[] dvi_d = new bool [12];
[Kiwi.OutputWordPort(11, 0, "dvi_i")] public static int[] dvi_i = new int [12];

Although it makes sense to denote bitwise outputs using booleans, this may require castings, so ints
are also allowed, but only the least significant bit will be anI/O port in Verilog output forms.

16.2 Register Widths and Wrapping

Integer variables of width 1, 8, 16, 32 and 64 bits are native in C# and CIL but hardware designers
frequently use other widths. We support declaration of registers with width up to 64 bits that are not
a native width using an ‘HwWidth’ attribute. For example, a five-bit register is defined as follows.

[Kiwi.HwWidth(5)] static byte fivebits;

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

83

c©2011-17 DJ Greaves + S Singh

When running the generated C# natively as a software program (as opposed to compiling to hard-
ware), the width attribute is ignored and wrapping behaviour is governed by the underlying type,
which in the example is a byte. We took this approach, rather than implementing a genuine imple-
mentation of specific-precision arithmetic by overloadingevery operator, as done in OSCI SystemC
[1], because it results in much more efficient simulation, i.e. when the C# program is run natively.

Although differences between simulation and synthesis canarise, we expect static analysis inKiwiC
to report the vast majority of differences likely to be encountered in practice. Current development
of KiwiC is addressing finding the reachable state space, not only so that these warnings can be
generated, but also so that efficient output RTL can be generated, such that tests that always hold (or
always fail) in the reachable state space are eliminated from the code.

The following code produces a KiwiC compile-time error because the wrapping behaviour in hard-
ware and software is different.

[Kiwi.HwWidth(5)] byte fivebits;
void f()
{

fivebits = (byte)(fivebits + 1);
}

The cast of the rhs to a byte is needed by normal C# semantics.

Compiling this example gives an error:

KiwiC assign wrap error:
(widthclocks_fivebits{storage=8 }+1)&mask(7..0):
assign wrap condition test rw=8, lw=5, sw=8

The following examples work

// four bit input port
[Kiwi.HwWidth(4)]
[Kiwi.InputPort("")] static byte din;

// six bit local var
[Kiwi.HwWidth(6)] static int j = 0;

A short-cut form for declaring input and output ports

[Kiwi.OutputIntPort("")]
public static int result;

[Kiwi.OutputWordPort(31, 0)]
public static int bitvec_result;

16.3 How to write state machines...

Kiwi hardware coding styles: how to code combinational, Mealy and Moore systems in hard-pause
mode.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

84

c©2011-17 DJ Greaves + S Singh

16.3.1 Moore Machines

First compare the Moore machines define by mainpre and mainpost:

[Kiwi.Input()] int din;
[Kiwi.Output()] int q;

main_pre()
{

q = 100;
while (true) { q -= din; Kiwi.Pause(); }

}

main_post()
{

q = 100;
while (true) { Kiwi.Pause(); q -= din; }

}

each has some initial reset behaviour followed by an indefinite looping behaviour. Their difference
is the contents of q on the first tick: mainpre will subtract din on the first tick whereas mainpost
does not. In both cases, q is a Moore-style output (i.e. dependent on current state but not on current
input).

The shortly-to-be-implemented optimisation in bevelab will make a further change: the run-time
program counter will disappear entirely for mainpost because the loading of q with its initial value
will be done as part of the hardware reset. However, mainpre will still use a state machine to
implement its different behaviour on the first clock tick.

16.3.2 Mealy and combinational logic:

Coding Mealy-style logic and purely combinational sub-circuits is not currently supported (but will
be via pipelined accelerator mode where latency is set to zero cycles). Purely combinational logic
could possibly inferred from an unguarded infinite loop, such as maincomb

main_comb() { while (true) q = (din) ? 42:200; }

However, maincomb is not a sanitary program to run under KiwiS since it willhog excessive CPU
power.

Mealy-style coding could better be implemented with a new attribute as illustrated in mainmealy
where the mel output is a function of both the current state q and current input din.

[Kiwi.OutputMealy()] int mel;

main_mealy() { while (true) { q += 1; mel = q+din; Kiwi.Pause(); }

Exploring this further would best be done in conjunction with further development of SystemCsharp
to yield a nice overall semantic. TODO perhaps?

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

85

c©2011-17 DJ Greaves + S Singh

16.4 State Machines

Explicit state machines can be coded fairly naturally:

main_explicit_state_mc()
{

q = 1;
while(true)
{

Kiwi.Pause();
switch(q)
{

case 1: q = 2; break;
case 2: q = 3; break;
case 3: q = 1; break;

}
}

}

and the position of the single Kiwi.Pause() statement before or after the switch statement only alters
the reset behaviour, as discussed above.

Implicit state machines can also be used:

main_implicit_state_mc()
{

q = 1;
while(true)
{

Kiwi.Pause(); q = 2;
Kiwi.Pause(); q = 3;
Kiwi.Pause(); q = 1;

}
}

Because mainimplicit statemc is a relatively simple example, the KiwiC compiler can be expected
to reuse the initial state as the state entered after the third Pause call, but in general the compiler may
not always spot that states can be reused.

16.5 Clock Domains

A synchronous subsystem designed with Kiwi requires a master clock and reset input. The allocation
of work to clock cycles in the generated hardware is controlled by anunwind budgetdescribed in [3]
and the user’s call to built-in functions such as ‘Kiwi.Pause’. By default, one clock domain is used
and default net namesclock andreset are automatically generated. To change the default names,
or when more than one clock domain is used, the ‘ClockDom’ attribute is used to mark up a method,
giving the clock and reset nets to be used for activity generated by the process loop of that method.

[Kiwi.ClockDom("clknet1", "resetnet1")]
public static void Work1()
{ while(true) { ... } }

A method with one clock domain annotation must not call directly, or indirectly, a method with a
differing such annotation.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

86

c©2011-17 DJ Greaves + S Singh

17 SystemCSharp

SystemCSharp follows the design of SystemC using C# insteadof C++. Currently there is a very
initial version of it in existence. Please see the README.txt in its folder.

SystemCsharp is a library, written in C#, that provides RTL semantics for hardware modelling.
In particular, it provides signals that support the evaluate/commit paradigm of synchronous digital
logic, where all variables in a clock domain take on their newvalues, atomically, one the active edge
of the relevant clock.

The KiwiC compiler can generate SystemCsharp output by using the-csharp-gen=enable com-
mand line flag. The default output name is the default name with the suffix.sysc.cs added. The
-cgen-fn=filename flag can be used to change the output filename.

Several of the C++ output flags affect the way that C# is generated but these may be decoupled in
the future.

Note that emitting C# or C++ with the standard recipe writes these output files at the same point in
the system flow as used for RTL output. Hence a large number of parallel, RTL-style assignments
will be used. Using a shorter recipe or with some of the intermediate stages disabled, output closer
to the input form can be rendered: for instance, with bevelabturned off assignments will be made in
order using a thread instead of an HLS sequencer.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

87

c©2011-17 DJ Greaves + S Singh

KiwiC
Front End

Verilog
Conversion

SystemC
Conversion SystemC

(C++)

RTL Output
(Verilog)

Repack: Pointer
disambiguation and
Array Partitioning

Diosim
Simulator

Console
Output

Bevelab:
FSM

Generation

Application program
post C# compilation.
One or more exe/dll
portable assemblies.

Canned libraries
fed in or built in to

Kiwic1

2

3

4

Restructure:
ALU and Memory

port mapping.

VCD
Output

Profile
Output

Predictor
Graph
Output

.dll

.exe .dll

.dll

5a

5b

5d 5c

Figure 6: The main components of the default KiwiC flow using the default recipe (KiwiC00.rcp) in
the KiwiC tool.

Part V

Kiwi Developers’ Guide and Compiler
Internal Operation

18 KiwiC Internal Operation

KiwiC is a compiler for the Kiwi project. It aims to produce anRTL design out of a named sub-
program of a C# program.

KiwiC does not currently invoke the C# compiler: instead it reads a CIL portable assembly language
file (.exe or .dll) generated by a Microsoft or Mono C# compiler.

Figure 6 shows key components of the main flow through the toolas set up with the provided recipe
file (KiwiC00.rcp). The full recipe contains ten or so stagesand theobj folder created by running
the tool contains the log files and intermediate forms for each stage. Other output flows and formats
can be deployed by changing the recipe. The dotted line showsthat using thesimvnl command
line option the internal simulator (Diosim) can be applied to the RTL after it has been round-tripped

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

88

c©2011-17 DJ Greaves + S Singh

.net
assemblies

.dll or .exe

HPR
MACHINE(S)

CIL PARSER
(uses mono.cecil)

Disassembly
(ast.cil)

User’s
app
DLL

KiwiC
DLL

Kiwi
DLL

User’s
library
DLL

Class Directory

Scan for Kiwi.HardwareEntryPoint

-root Command Line Flag

KCODE
Intermediate code fo each thread.

FIRST PASS:
Per method-basis, remove stack

Insert SPILL variables

SECOND PASS
Inlines all methods of a thread

THIRD PASS: Generate HPR DIC per thread.
Design becomes fully staticly allocated,

Unwinds loops,
Points-to analysis for each heap object,

Many object pointers disappear,
Remaining object pointers become enumeration types.

Local Variables at same call depth
of same thread are reused

Heap must be same shape at each point
on each

iteration of non-unwound loops

KCODE
listing

Detect thread starts (new roots)

Convert all expressions to CE form.

One machine per thread
using shared variables and mutexes

for communication

C# User DLL Example

CIL disassembly fragment

KCODE listing fragment

HPR DIC fragment

Figure 7: The internal flow of the KiwiC front-end recipe stage.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

89

c©2011-17 DJ Greaves + S Singh

through Verilog. For debugging, Diosim can be applied to anyHPR machine intermediate form, by
varying the recipe. (There’s also a shortcut ‘-conerefine=disable -repack=disable -verilogen=disable’
that will cause diosim to run the original VM generated by theKiwiC front end without conversion
to hardware). This is needed for the profile-directed feedback.

The.NETexecutable bytecode is read using the Mono.Cecil front end.Any needed libraries, including
Kiwi.dll and Kiwic.dll are also read in. These are combined with some canned (hardwired in the
front end) system libraries. The result is a large CIL abstract syntax tree. This can be output for
tracing/debugging if desired (using thekiwic-cil-dump flag).

The KiwiC front end (IL Elaborate stage) converts the .net AST to the internal representation used
by the core HPR/LS library. This is the HPR VM2 machine.

The VM code emitted by KiwiC front end is a set of parallel ‘DIC’ blocks. These are ‘directly
indexed code’ arrays of imperative commands and there is onefor each user thread. They are placed
in parallel using the PAR construct. Each DIC array is indexed by a program counter for that thread.
There is no stack or dynamic storage allocation. The statements are: assign, conditional branch,
exit and calls to certain built-in functions, including hprtestandset, hprprintf and hprbarrier. The
expressions occurring in branch conditions, r.h.s. of assignment and function call arguments still
use all of the arithmetic and logic operators found in the IL input form. In addition, limited string
handling, including a string concat function are handled, so that console output from the CIL input
is preserved as console output in the generated forms (eg. $display in Verilog RTL).

Memory disambiguation and partitioning into statically-sized memories and DRAM is done by the
repack receipe stage (§29) . The KiwiC front end has labelled every storage operation with a storage
class. Repack conglomorates classes that are assigned between and then uses arithmetic pointer
analysis rules for alias analysis. Its input is an HPR VM where every variable and array location
has a virtual address (hidx) in a so-called wondarray. A wondarray is allocated for every dotnet
datatype (except structs). The wondarray contains 264 words of that datatype but only the words
on integer multiples of the datatype’s size in bytes are used. The output from repack has had all of
these mapped to scalars or to smaller 1-D arrays and each is branded with an identifier. Some input
variables to repack have been allocated a reserved ‘unadressable’ hidx which means they are scalar
and do not have their address taken. These go through repack without modification and appear as
identical scalars in the repack output. In Kiwi use, these correspond to static variables.

The conerefine recipe stage deletes unused parts of the design. A part of the design is unused if it
generates no output. Outputs include PLI calls like Console.WriteLine or net-level outputs flagged
with Kiwi.OutputWordPort or similar. Object and array handles that are not manipulated actively by
the program are removed.

The conversion from imperative code to FSM is performed, normally, by bevelab, described in§24.
This allocates work to clock cycles based on theKiwi.Pause() statements manually embedded
by the designer or automatically inserted by the KiwiC frontend. The bevelab output is an HPR
machine where every statement from every thread nominally operates in parallel — i.e. pure RTL.
However, some PC-like annotations are retained for easily projection (and re-encoding) in FSM
form. FSM re-encoding for thread’s controller will later typically be done by the FPGA tools to
simplify the controller output decode function.

The restructure recipe stage (§30) binds and schedules operations and storage to physical resources.
Storage decisions are made as to which vectors and scalars toplace in what type of component
(flip-flops, unregistered SRAM, registered SRAM, DP SRAM or off-chip in DRAM) and which
structural instance thereof to use. ALU’s and other primitives are also instantiated and bindings

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

90

c©2011-17 DJ Greaves + S Singh

of program operations are made. Owing to the FSM annotationspreserved by bevelab, the binder
can easily determine which RTL statements are disjoint. Each state in the input FSM potentially
becomes multiple, so-called, microstates in the output as structural hazards on memory ports are
avoided and pipelined ALU operations are composed. Allocation decisions are based on heuristic
rules parametrised by command-line flags and recipe file values, such as the number of floating-point
multipliers per thread.

The output forms available include Verilog RTL, which we have used for FPGA layout. The stylised
output from the FSM generation stage is readily converted toa list of Verilog non-blocking assign-
ments.

18.1 Background: HPR/LS Library (aka Orangepath)

HPR L/S (aka Orangepath) is a library and framework designedfor synthesis and simulation of a
broad class of computer systems, protocols and interfaces in hardware and software forms. The
Orangepath library provides facilities for a number of experimental compilers.

The primary internal representation (IR) is a so-called HPRVM2 virtual machine. The framework
consists of a number of plugins that operate on this IR. Hence, in type terms at least, all operations
are ‘src-to-src’. But in practice, certain forms cannot be used in certain places: for instance a VM2
containing RTL code cannot be rendered directly as C++ (it would have to be passed through the
bevelab plugin first).

HPR virtual machines and the operations to be applied to themare stored in a standard opath com-
mand format to be executed by an Orangepath recipe (program of commands).

A characteristic feature of Orangepath is that plugins can potentially, always be applied in any order
and often have inverses. For instance a plugin that outputs RTL is reveresed by a plugin that reads in
RTL. A plugin that performs HLS from behavioural code to RTL would be reversed that by a plugin
that gives a single-threaded imperative program from a large body of parallel RTL code.

A simulator plugin, called diosim, is able to simulate the IRin any form and, in particular, is able
to simulate interactions between parts of the system definedin different styles. For instance it can
simulate a pair of CPU cores communicating with each other where one is modelled in RTL and the
other as a cycle-callable ISS. Asynchronous I/O and networkhardware is also modellable with these
primitives.

A so-called recipe, which is an XML file, invokes the plugins in a particular order, supplying param-
eters to them. The input and output of each recipe stage is a so-called HPR VM2 machine. Loops
in the recipe can be user to repeat a step until a property holds. The opath core provides command
line handling so that parameters from the recipe and the command line are combined and fed to the
plugin components as they are invoked. The opath core also processes a few ‘early args’ that must
be at the start of the command line. These enable the recipe file to be specified and the logging level
to be set.

The Orangepath library has plugins that support a variety ofexternal input and output formats.

An HPR VM2 machine contains scalar and 1-D array declarations, imperative code sections and
assertions.

Values are signed and unsigned integers of any width and floating point of any width is also sup-
ported in the framework but library components currently only work for IEEE 32 and 64 bit formats.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

91

c©2011-17 DJ Greaves + S Singh

Enumeration types are also supported, the most important being the boolean type. For all enumer-
ations, an exclusion principle is applied, in that if an expression is known not to be any but one
of the values of enumeration, then it must be that one value. Booleans are held differently from
other enumerations internally but all expressions on enumerations are only stored in minimised form
(using Espresso or otherwise). The library supports a greatdeal of constant folding and identity
operation elimination (such as multiplying by zero or one).It has limited handling for strings and
string constants, which are either treated in the same way that they are handled in Verilog, which
is as an expression or register of width 8 times the string length in characters, or as a special string
handle type (where widtho=-1). But the Kiwi front-end and the repack stage can map a fixed set of
strings to an enumeration type of a suitable width with the strings stored only once and indexed by
the enumeration.

Expressions are held memoised, and in a normal form, as far aspossible, that makes identity check-
ing and common sub-expression reuse easier. This is especially useful to be able to rapdily confirm,
as often as possible, index expression equality or inequality, to avoid name alias RaW/WaW depen-
dencies on arrays and loop value forwarding for sequential access patterns.

The imperative code is in any mix of RTL and DIC forms. RTL contains register transfer assign-
ments, partitioned into clock domains, where all assignments in a clock domain run in parallel on the
active edge of the clock. There is also a combinational domain that has no clock. The DIC impera-
tive form (directly indexed code) is an array of statements indexed by a program counter, where the
main statements are: scalar assignment, 1-D array assignment, library call and conditional branch
within the array. Code sections can be in series or parallel with each other, using CSP/Occam-like
SER and PAR blocks. Assertions are coded in temporal logic and associated with a clock domain,
just like PSL (property specification language). And a dataflow/transport-triggered IR form is being
implemented at the moment.

Dynamic storage allocation is also being added.

HPR L/S (aka Orangepath) represents a system as an hierarchyof abstract machines in a tree struc-
ture. Its aim is to ’seamlessly’ model both hardware and software in a common intermediate form
that suits easy co-synthesis and co-simulation.

Each machine is a collection of declarations, executable code and assertions/goals. But typically, an
individual machine only uses on form of representation.

Plugins convert the machines from one form to another.

Other plugins generate machines, read them in from files or other front-end languages, or write them
out.

The goals are assertions about the system behaviour, input directly, or generated from compilation
of temporal logic and data conservation rules into automata. Executable code can pass through the
system unchanged, but any undriven internal nodes are provided with driver code that ensures the
system meets its goals.

It also includes some temporal logic for assertions. Software can exist as both machine code/assem-
bler and a high-level, block-structured, AST form.

A VM contains variable declarations, executable code, temporal logic assertions and child machines.

A system is a tree of VMs where each may be the root of a tree of VMs.

Variables are signed and unsiged integers of various precisions, single and double precision floating
point and 1-D arrays of such variables. A small amount of string handling is also provided. All

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

92

c©2011-17 DJ Greaves + S Singh

variable are static (no dynamic storage) and must be unique in a single namespace that spans the
system. The variables are declared inside a given VM and may be global or local. Global variables
may be accessed by code and assertions in any VM and local onesshould (not enforced) only be
accessed in locally (or in son machines?).

Expressions commonly use the hexpt form and commands use the hbevt form. Single-bit variables
have hbexpt form. A library of ’ix xxx’ primitives can be called as functions or procedures from
hexp t, hbexpt and hbevt respectively. Expressions are all stored in a memoising heap using weak
pointers.

The executable code of a VM has several basic forms (dic, asm,rtl, cmd, fsm). All code and
assertions access the variables for read and write (but assertions don’t tend to write!) regardless of
form.

18.2 DIC

DIC - Directly-indexed array: Imperative program (assign/conditional branch/builtin call) stored in
an array indexed by a PC.

18.3 ASM

ASM - Assembler for a local family of microprocessors

18.4 RTL and FSM

RTL - Register transfer-level code - a set of parallel assignments to be executed on an event.

18.5 CMD

Abstract syntax tree of a block-structured imperative program (for/while/break/continue/assign/if
etc) or single assigment statement.

18.6 Finite-State Machines

FSM - Finite-state machine form - like RTL but the assignments are collated into disjoint sets that
are separated by a current-state variable or program counter. Any RTL can be factored out in this
way (a Shannon Decomposition) using any set of bits as the program counter. The decomposition is
a reversible transform.

18.7 CSP/Occam

Message-passing, CSP-like channels are another thing thatshould perhaps be added as a primitive
form in future. They make perfect sense in the overall framework. CSP communication primitives
should really be added ... to add channels and complete the picture.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

93

c©2011-17 DJ Greaves + S Singh

The executable code may be clocked or nonclocked. Fragmentsmay be put in serial or parallel using
the SPpar and SPseq combinators. There are two variants of SPpar, for lockstep and asynchronous
composition.

Further executable forms, just being added are executable dataflow graphs:

VSDG - a dataflow graph for a single basic block with additional state edges representing memory
order constraints. VSFG - an executable form of the VSDG where back edges in the control flow
graph are represented using nested graphs.

The library is structured as a number of components that operate on a VM to return another VM.
The opath (orangepath) mini-language enables a ’recipe’ tobe run that invokes a sequence of library
operations in turn. An opath recipe is held in an XML file.

Automatic recipes: The overall systems is a pluggable library. Where certain components only ac-
cept certain input forms and such a component is specified to be used by a recipe, it is envisioned that
automatic invokation of the other components to serve as input adaptors will be triggered. Otherwise
it is necessary to manually instantiate additional recipe stages.

For Kiwi use, the opath default recipe file isKiwiC00.rcp.

In this manual, we concentrate almost entirely on the.NETCIL input format and the Verilog RTL
output format.

18.8 Internal Working of the KiwiC front end recipe stage

The IL Elaborate stage is implemented by the the FSharp fileskiwipro/kiwic/src/*.fs. It reads
in CIL code and writes out HPR ‘dic’ form code. Internally it converts from CIL to, so-called, kcode,
before generating HPR code. The kcode can be rendered to a filefor debugging/inspection using the
kiwic-kcode-dump flag. The dotnet VM is a stack machine and the dotnet code is stack code. The
stack is removed during the conversion to kcode. Kcode is neither stack or register code: all data is
instead stored in wondarrays or global static variables.

CIL code is the assembly language used by the mono and.NETprojects. Like other assembly lan-
guages, it has an assembler and disassembler for convertingbetween binary and human-readable
forms. KiwiC originally read the assembly using a bison parser but now reads the binary using the
mono.cecil libraries.

Front end flow steps are:

1. Perform first pass of each invoked method body in isolation.

2. Perform a symbolic execution of each thread at the CIL basic block level and emit kcode for
each block. CIL branch instructions and CIL label names thatare branch destinations define
the basic block boundaries. This inlines all dotnet method applications.

3. Optimise the kcode within each thread using constant folding.

4. Analyse kcode to find the end of static elaboration point ineach thread’s lasso structure.

5. Perform register allocation (colouring) for the run-time part of each lasso.

6. Prefix start-up code from static class and method constructors to the lasso stem of the main
thread.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

94

c©2011-17 DJ Greaves + S Singh

Front end: KIWIFE

REPACK

Verilog
Conversion

SystemC
Conversion

Microcontroller
Assembly
Language

XML
Serialised

C++/
SystemC

(C++)

Assembler
(or m/code)RTL Output

(Verilog)

.net
Assembly

BEVELAB FSM
Generation

RESTRUCTURE
OFFCHIP

CONE-REFINE

ARRAY MODULO
SCHEDULER

VLIW SCHEDULER
DATAPATH

INTER-THREAD
SCHEDULER

STRUCTURAL HAZARD
RESOLVE

.net
Assembly

.net
Assembly

Analyse array subscript patterns.
Divide arrays into smaller arrays, register files

and scalar registers.

Map large arrays to DRAM
Generate connections

for DRAM controller

BEVELAB
Convert thread to finite state machine:

Pause mode:
 Soft, Hard, Autom BasicBlock, Maximal

Split soft pauses into micostates

Error if strucutral hazard in hard pause mode
Error if need non-causal input.

Trim design
using cone-of-influence

DIOSIM
simulator

Output options

All output forms can be round-tripped
back to an HPR VM

for simulation or further recipe stages.

Experimental
Recipe
Stages

Figure 8: General flow implemented in an early version of the KiwiC tool (same as figure??). This
diagram does not clearly show the recipe stages now used. TheDRAM restructure is now part of the
general binding done by the later restructure phase.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

95

c©2011-17 DJ Greaves + S Singh

7. Perform symbolic evaluation of the kcode and emit HPR code. Further thread starts may be
detected, which causes recursive activation of most of the steps above. Each thread becomes
a separate HPR dic.

8. Perform dataflow analysis of the kcode to establish and conglomorate label region names
(storeclasses) and points-at relationships.

The front end peforms a first pass of every method body that will be needed. This finds the basic
block boundaries and the dotnet stack depth at every branch or jump. It gives a symbolic name to
every code site where a type is needed. It symbolically executes the code using types without data
and ignoring the control flow. Basic blocks that commence or resume with values on the dotnet
stack are modified to avoid this situation by defining additional local variables, known as spills, and
byprefixing with loads and postfixing with stores. These spill variables are frequently optimised
away within the front end, but if they hold data over aKiwi.Pause() they may appear in the output
RTL. All return statements within a method are replaced witha branch to the end of the method.
This sets up all the ground work for removing the dot net stack, on the fly, each time the method is
called.

A -root command line flag orHardwareEntryPoint attribute enables the user to select a number
of methods or classes for compilation. The argument is a listof heriarchic names, separated by
semicolons. Other items present in the CIL input code are ignored, unless called from the root
items.

Where a class is selected as the root, its contents are converted to an RTL module with IO terminals
consisting of various resets and clocks that are marked up inthe CIL with custom attributes (see
later, to be written). The constructors of the class are interpreted at compile time and all assignments
made by these constructors are interpreted as initial values for the RTL variables. Where the values
are not further changed at run time, the variables turn into compile-time constants and disappear
from the object code.

Where a class is selected as a root, all of the methods in that class will be compiled as separate entry
points and it is not normally appropriate for one to call another: calls should generally be to methods
of other classes.

Where a method is given as a root component, its parameters areadded to the formal parameter list
of the RTL module created. Where the method code has a preamblebefore entering an infinite loop,
the actions of the preamble are treated in the same way as constructors of a class, viz. interpreted at
compile-time to give initial or reset values to variables. Where a method exits and returns a non-void
value, an extra parameter is added to the RTL module formal parameter list.

The VM code can be processed by the HPR tool in many ways, but ofinterest here is the ’con-
vert to rtl’ operation that is activated by the ’-vnl’ command line option. (NB: This is now on by
default in the KiwiC00 recipe, disable with -verilog-gen=disable).

KiwiC TimesTable.exe -root ‘TimesTable;TimesTable.Main’ -vnl TimesTable.v

More than one portable assembly (CIL/PE) file can be given on the command line and KiwiC will
aggregate them. The file name of the last file listed will be used to name the compilation outputs by
default (in the absence of other command line flags).

(At some point, KiwiC might be extended to also invoke the C# compiler if given a C# file.)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

96

c©2011-17 DJ Greaves + S Singh

Part VI

Miscellaneous

19 FAQ and Bugs

Note: Do not use Console.Writeline or Write with 4 or more arguments since MCS converts these
calls to a different style not supported by KiwiC.

Q. My design takes forever to compile but seems to make more progress with-repack=disable.

A. -repack=disable will cause all arrays to be of size 2**64 words. The only thingyou can
usefully do with repack disabled is run the internal simulator, Diosim. Diosim models enormous
arrays as dictionary-based sparse structures. It is nice tosee the Diosim output, but the resulting
RTL will break most back-end simulation or synth flows (unless they too are able to handle arrays
like that).

Q. Can I use Kiwi for Visual Basic?

A. Kiwi has not been directed to address Visual Basic but there is a little trial/demo on the following
link:

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/kiwic-demos/kiwi-visual-basic

Q. If I multiply by a constant, floating-point number, will specialist FP ALUs be made or will KiwiC
use a standard FP adder with a tied-off argument?

A. Currently it is the latter, although the argument may not be tied off in all cases: generally the
multiplier will be being used for various operations with multiplexing of provided arguments. Also,
where it is tied off, the FPGA tools will typically perform some (considerable?) constant folding.

Q. I am converting from C code that contains legacy unions ...

A. KiwiC is not set up to handle unsafe unions at all. It mostlyworks on the basis that the input code
is strongly typed, but there is a little backdoor (called FastBitConvert) somewhere for floating point
operations. The standard GetBytes forms in BitConverter should also work, but they produce a lot of
intermediate code that goes all down the KiwiC recipe until,hopefully, allmost totally disappearing
in load/store elides in the final output.

From test56 - Adding the FastBitConvert attribute makes KiwiC ignore the bodies of functions such
as these and replaces the body with its own fast-path identity code based only on the signatures of
the functions.

[Kiwi.FastBitConvert()]

static ulong fast_from_double(double darg)

{

byte [] asbytes = BitConverter.GetBytes(darg);

return BitConverter.ToUInt64(asbytes, 0);

}

[Kiwi.FastBitConvert()]

static double fast_to_double(ulong farg)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

97

c©2011-17 DJ Greaves + S Singh

{

byte [] asbytes = BitConverter.GetBytes(farg);

double rr = BitConverter.ToDouble(asbytes, 0);

return rr;

}

[Kiwi.FastBitConvert()]

static uint fast_from_float(float darg)

{

byte [] asbytes = BitConverter.GetBytes(darg);

return BitConverter.ToUInt32(asbytes, 0);

}

[Kiwi.FastBitConvert()]

static float fast_to_float(uint farg)

{

byte [] asbytes = BitConverter.GetBytes(farg);

float rr = BitConverter.ToSingle(asbytes, 0);

return rr;

}

Q. KiwiC stops with an incomprehensible error. How can I tellhow far KiwiC is getting through my
compilation?

A. The most simple approach, with a fragile tool, is to build up your application slowly and check
whether KiwiC keeps compiling it successfully as you go. Visibility can be gained by adding com-
mand line flags to write out the disassembled PE file and intermediate kcode. The PE file can
be found inobj/ast.cil if you add flag +-kiwic-kcode-dump=enable+. You should get one kcode
listing file for each thread of your design. These can be foundin files such asobj/kcode.T403.gt4.txt.
These contain low-level imperative code generated from theC# method bodies. If the full Kiwife
recipe stage runs successfully, you should see a file calledobj/h02_kiwife/report-full which
is the input to the HLS toolchain implemented by HPR in its subsequent receipe stages. You may
need to add-report-each-step to get each report file added. Also, there are serveral verbose
logging modes that can be enabled from the command line with flags called loglevel which should
be set to zero for maximum output.

Q. Can we have 2 [Kiwi.HardwareEntryPoint()] in the same class? Are the threads being translated
as different always blocks to Verilog?

A. There are three ways to make new threads.

1. I normally create a second thread from the first using the C#standard approach that you show and
as used in some of the tests like test44.cs

Thread threadx = new Thread(newThreadStart(reader.ReceiveProcess));

but 2. having more than one hardware entry point attribute or3. more than one entry on -root cmd
line flag should all also work fine. The threads do not have to bein different classes but techniques
2 and 3 can only be added to a static method.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

98

c©2011-17 DJ Greaves + S Singh

Note: Join is not supported at the moment.

Regarding the number of always blocks resulting, I am not toosure off hand. The compose recipe
stage combines updates from different VM2s and this should perhaps ensure there is only one. But
most designs, I think, run the same or and/or compile faster with -compose=disable. So the ver-
ilog gen stage is also doing the same trick I think. Certainly a shared variable needs to be only
written by one always block in the standard synthesisable Verilog subset. Or if it is an on-chip RAM
then two threads maximum owing to dual-port RAM available inFPGA.

Q. ... but the compiler exhausts all of the memory and the machine crashes ...

A. Which stage is taking all the time ? Can you see the relative timestamps of the create time of the
various folders in theobj folder?

Are you in hard pause mode and is all the time time being taken in the kiwife or bevelab? If so, make
sure that every control flow path in your non-unwound loops contains aKiwi.Pause(). You should
be able to set the unwind budgets to smaller values to make thecompiler stop attempting earlier.
Defaults are large:

-cil-uwind-budget=10000

-bevelab-ubudget=10000

Q. I got another 2 warnings:

+++ precision failure? ::: diadic_promote_and_resolve did not know

what to do with CT_cr(Emu/debug_operands, <<NONE>>) V_minus

CTL_net(false, 32, Signed,[native])

+++ precision failure? ::: diadic_promote_and_resolve did not know

what to do with &(CT_arr(CTL_net(false, 64, Unsigned,[native]),

<unspec>)) V_bitor CTL_net(false, 64, Signed,[native])

A. This first one is a subtract of a 32 bit integer from a class reference (object pointer). The second
one looks like you are doing bitwise or of a 64-bit value with with the address of an array.

Neither of these is allowed in safe C# although you can do whatyou want in unsafe C#. These
operations are not supported. Kiwi only supports comparisons, multiplexing and assignment of
array bases.

Q. If I want to multiply a pair of 32-bit numbers to get a 64-bitresult I would typically use something
like

int a, b;

long p = ((long)a) * b;

but won’t this instantiate a 64-bit multiplier component?

A. The multipliers that KiwiC (restructure2) instantiatesfrom cvgates.v, such as
CV_INT_FL3_MULTIPLIER_S, are just soft macros that the FPGA tools will flatten and optimise on
a use-case basis. If that multiplier is used just for the one multipication, the FPGA tools will trim
the internal logic of the multiplier to handle only 32-bit inputs, using fewer DSP splices. If the
instantiated multiplier has been schedulled for use at other use sites that use higher-order input or

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

99

c©2011-17 DJ Greaves + S Singh

output bits, the multiplier will be trimmed less. But, the latency allocated to the 64-bit multiplier
will be a couple of cycles more than the smaller one and the FPGA tools do not, of course, retime
the design such that this can be reclaimed.

Q. I get a postscript file called ’nolayout.eps’ what is this?

A. The HPR library contains a constructive placer that writes a graphical floor plan to an eps
PostScript file. This is used for net-length power analysis on output RTL. It is also being used
in the constructive placer to decide how best to colour registers and bind functional units such as
ALUs.

Q. Do you have any Xillybus or JetStream (Manchester) demos?

A. No, but we expect these to be contributed soon ... Perhaps start with the the Zynq director
substrate.

Q. KiwiC is generating a circuit with too many output terminals to fit in my FPGA. Why is this?

A. You may be directly instantiating the Kiwi-generated RTLas the top-level of your FPGA. This
is not a normal design route: you should most likely be using astandard Kiwi substrate for your
FPGA and it is the substrate that instantiates the Kiwi code.The problem most likely arises from the
Waypoint outputs. These are only for simulation purposes and they can be safely ignored. If they
are left disconnected in the component that instantiates the Kiwi-generated RTL the FPGA tools
will delete the logic that drives them instead of attemptingto route them to a lot of output pads (IO
BLOCKS).

output reg [639:0] KppWaypoint0,

output [639:0] KppWaypoint1,

You can also use command line flag-vnl-keep-waypoints=disable to turn off their rendering.

Q. What IP-XACT support does Kiwi have?

A. There is a new feature (1Q17) to report each component synthesised using IP-XACT. The IP-
XACT output should be the same for RTL and RTL-style SystemC outputs, but will be different for
TLM style SystemC output owing to method calls being used instead of nets. The substrate access
port for debug and directing also appears in the reported in IP-XACT (§10.4).

The cell libary of RAMs and other components that KiwiC instantiates is currently hard-coded in
KiwiC, but as part of the increased support for incremental compilation and black boxes we will
soon allow Kiwi to instantiate components described with IP-XACT.

The HPR L/S HPR System Integrator is a simple IP-XACT-drivenwiring generator. This can be
accessed via Kiwi’s new HPR System Integrator facilities inearly 2017.

Q. I tried more ideas for one-liners, such as:

exist = Array.IndexOf(LUT, tmp) > -1 ? true : false;

but it didn’t work.

A. Since Kiwi imports very little of the standard C# libraries, the .Index method of the Array class
is most likely missing. For 2-D and greater arrays, Kiwi usesan implementation in Kiwic.cs and
it is easily possible to add the implementation of Index intothose implementations in C# src code
form and it should then work. For 1-D arrays, the bulk of the implementation is hardcoded inside

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

100

c©2011-17 DJ Greaves + S Singh

KiwiC, but there should be potential to extend the hardcoding with additional C# code and place
that, ultimately, in Kiwic.cs as well. Its a matter of knowing what to put in there. In short you should
easily be able to contribute your own implementation of suchthings.

Q. Why do I get KiwiC error: do not update your formal parameters for now.

A. The message you have now encountered is a result of storingor modifying a formal parameter to
a function which is functionality was missing. Just copy your formal into a local var at the start of
the function body for now. Fixed in version 2.16 onwards, August 2016.

void myfun (int fp)

{

int copied_fp = fp;

copied_fp += 1; // Do not directly modify your call by value

// formals before Sept 2016.

// (Pass by reference works fine).

}

Q. What does this mean: System.Exception:CV_INT_FL2_MULTIPLIER_S unrecognised gate for
presim: arity=6

A. This is from the built-in simulator, diosim. The design has used a fixed-latency of 2 multiplier
component (from cvgates.v or elsewhere) but the simulator does not know how to simulate it. Re-
structure2 should have included its own simulation model for each component it deploys, but one fix
is to not apply diosim to this design (miss off the -sim=nnnn flag) since the generated RTL should
be ok.

Q. How can I get meaningful line numbers in my error messages from KiwiC ?

A. Line numbers are hard to track through the C# front end, buterrors should be reported on a
method name basis. There is a fairly-detailed log file written to the obj/h02kiwic folder but it is hard
to understand. Increasingly you can get a finer cross reference with the source code by embedding
waypoints in your source file.§10.2

Q. Why are bools using 32 bits, even in arrays ?

A. A C# compiler may compiles them this way - CIL has no run-time bool class. It may be best to
instantiate your own bit-packed array class with suitable overloads if you want to exploit bit-level
storage.

Q. Can I generate a VCD using the builtin simulator, diosim.

A. Yes, use the ”-sim=nnnn” argument to set the number of cycles to simulate for and add ”-diosim-
vcd=myvcd.vcd” to set the output file name. The ”-recipe=recipes/simkcode.rcp” command line flag
is also useful for just running the KiwiC front end in a software-like simulation.

Q. Why is the reset input not used in the generated RTL?

A. See§38. The reset net is disconnected unless you indeed add

-vnl-resets=synchronous

or

-vnl-resets=asynchronous

or change this XML line in the file /distro/lib/recipes/KiwiC00.rcp

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

101

c©2011-17 DJ Greaves + S Singh

<defaultsetting> resets none </defaultsetting>

Q. Why does the type of the output result end up as: reg [31:0] FIFO FIFO2 result; instead of reg
FIFO FIFO2 result; ?

A. In Verilog, integers are signed and registers are not. Youcan alter this by adjusting the definition
of result. Recent Verilog standards also allow signed registers to be defined.

Q. I have lots of X uncertain values in my simulation

A. Is the source of X from flip-flops that are not cleared at reset or is it floating inputs? Did you put
-vnl-resets=synchronous ? You do not need this on all FPGA simulations since FPGA flops are self
resetting, but with the associated simulator you may need this.

It is good to trace the pc10nz program counter (or similar name) generated by KiwiC for each
thread. This normally starts at zero. You can cross check that with the dot graphviz output or the
tables appended to the back of the .v file (also present in the obj/h08 restructure/s00... file).

Q. I thought I would have a go at synthesizing the ... However,the Verilog finish statement gets in
the way. Should there really be a finish command in synthesizable Verilog?

A. OLD: If the main entry point to the C# program allows its thread to exit then a finish will be put
in the output code by default. This is indeed not synthesisable. Quite often one wants the program
to exit when run native but not when synthesised. One solution to this is to place the main body
of the program in a subroutine that is called from the Main method (ie the entry point). The same
subroutine is also called from a second method where it is enclosed in an infinite while loop. This
second method can then be named as the root/entry point for KiwiC and this will avoid a finish
statement in the generated code.

NEW: We replace -kiwic-finish with -kiwife-directorate-endmode. OLD: Suppressing the default
operation on main thread exit statement can be controlled with a command line flag-kiwic-finish.

-kiwic-finish= [enable | disable]

Another solution is to mark up the main body subroutine with theKiwi.Remote() attribute. This
places it in an infinite loop, where it will become ready to serve again once the body has finished,
and adds handshaking wires to synchronise its execution.

Another solution is to put an infinite loop in the main entry point (perhaps including a Kiwi.Pause()
statement in the loop if there is other complexity to ensure KiwiC spends less time working out that
it is infinite).

Q. I get the error ’kiwife: ran out of lasso steps, please increase fe unwind budget’ ?

A. If your program has no input, compiling it is the same thingas interpreting it. KiwiC is prob-
ably trying to run the whole program at compile time. To give it something to do at run time, a
Kiwi.Pause() should be inserted before you enter the main outer loop of your application.

Q. I get the following strange error message even when I am sure my program is not allocating fresh
memory inside the thread lasso loop :Bad form heap pointer for obj_alloc (already allocated a
variable sized object ?).

A. Check whether you are allocating local arrays on the stack: if these are just constant lookup tables
makes sure you put the keyword const in front to make them statically-allocated.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

102

c©2011-17 DJ Greaves + S Singh

Q. I get an error like [ERROR] FATAL UNHANDLED EXCEPTION: System.Exception: thread-
start//T403/Main/t552: Creating class instance this/uid token=System/Action‘2/star1/@/16/SS/TX1/SINT/TX0:
Bad form heap pointer for objalloc of type System/Action‘2/star1/@/16/SS/TX1/SINT/TX0 post
end of elaboration point (or have already allocated a runtime variable sized object ?). storemode=STOREMODE
sbrk=/tend:notaconst constantfold meets entrypoint=0

A. This is a Kiwi 1 restriction - most heap objects need to be allocated before the end of static
elaboration. Consider moving the code that allocates the heap object to the class constructor or else
to another method that you call earlier. (For allocate-onceitems, this code migration will become
automatic soon.)

Q.Can I use in Kiwi the data type struct?

A. Kiwi aims to support static and dynamic classes well. Structs in C# are slightly odd things and
Kiwi has little support form them that is properly well tested. This is being fixed 4Q2016. Normally
you should use classes but it you have a good reason to use structs we can see how well it is currently
working.

Q. What string formatting is supported in Console.Write or WriteLine?

A. Up to three arguments are supported. String, integer decimal, integer hex and floating point
should all work. String catenation is also supported provided it is done a KiwiC compile time.

Q. I get FPGA or RTL SIM error regardingCV_SP_SSRAM_FL1 missing.

A. This is a single-ported synchronous static RAM with fixed latency of 1 read cycle. It will most
likely be mapped to block RAM by FPGA tools. There are a numberof such components that
KiwiC instantiates. Please include a Kiwi technology library such asdistro/lib/cvgates.v in
your back end compile

Q. Does Kiwi supports the keyword ‘break’?

A. Yes, all control flow constructs like for/while/continue/break are handled by the C# compiler and
just appear as goto’s in the CIL dot net code input to KiwiC.

Q. What Console.Write formatting is supported?

A.

examples - all are standard dot net

{0} - arg 0 in decimal or floating

{1} - arg 1

{2} - arg 2

{1:x} - arg 1 in hex

{1:X} - arg 1 in upper case hex

{1:3} - field width of 3 decimal

{1:03X} - field width of 3, hex with leading zeros

Q. If I instantiate : static ulong[] buffer = new ulong[10] , KiwiC will generate registers. In the
simulation I noticed that I got, not 10 regs, but 18 I tried also with static ulong[] buffer = new
ulong[5] and got 8 regs.

A. A short array of 10 entries is most likely to be mapped to 10 separate registers, especially if you
only use constant subscripts. If your subscripts can be determined not to use the whole range or
only use multiples of a some constant or fall in disjoint regions you will get other patterns. Quite

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

103

c©2011-17 DJ Greaves + S Singh

how it gets allocated depends on the pattern of subscriptions you use. The figure 18 you quote is
presumably inflation on top of that from other aspects of the design? Kiwi does not replicate and
mirror storage at the moment (but this is being added for ROM mirrors) although this could possibly
be useful under some circumstances. Ditto 5 to 8. Also, it depends on how many time you assign to
buffer and how many different calls to new you make. I assume you have just one assign outside of
any loop or re-entrant code.

Q. I try to instantiate 2 ulong[256] arrays. In the RTL there are two memories, one A64 US...[255:0][63:0]
and one A64 US...[2047][63:0]. I checked also the verilog file and I noticed that the address of the
second array, whenever there is an operation, is multipliedby 8. Is it because of some optimization?

A.The byte address of a u64 array will be a factor of 8 different from the word address. Also If you
only used every 8th location in an array, the repack recipe stage might notice this and divide each
address by 8 to save space. The addresses on the input to the repack recipe stage are byte addresses.
The addresses afterwards should be efficiently packed addresses, which would be /64 if you used
only every 8th word owing to both effects acting.

Q. KiwiC seems to be deleting most of my design. Is this correct?

A. The processing stage called conerefine deletes unused parts of the design. A part of the design
is unused if it generates no output. Outputs include PLI calls like Console.WriteLine or net-level
outputs flagged withkiwi.outputwordport or similar. Adding-conerefine=disable to the
command line suppresses the associated trimming, resulting in a larger RTL or other output file,
although occasionally this may lead to elements being present at the code generation stage that
cannot be sensibly rendered in the output language.

Also, certain keeps can be marked up on the command line so that conerefine uses these as roots.

Another common cause of an empty or near-empty RTL file is thatno compilation roots were spec-
ified. This can be spotted when the fileobj/h02_kiwife/report-full contains no executable
code. You then need to add something like-root=MyApp.MyMain. You also see in KiwiC.rpt that
no root was processed, except for perhaps the odd class constructor.

Q. If I want a net-level I/O bus wider than 128 bits (the size ofa ulong), what can I do?

A. There is some support for this that needs documenting, where an array is passed as I/O. The
colourbars example illustrates this style, but it is not in the repo and has not been tested for a while.
However, having a static C# struct (not a class) as an I/O ought to work. However, C# structs is not
mature in KiwiC. We can easily fix a few basic cases now however. See test51.

Q. KiwiC is taking a very long time to compile and then fails. It says it has run out of unwind steps.
Why is this?

A. If you are in a soft pause mode, KiwiC will infer Kiwi.Pause() statements where it feels necessary
to allocate work to clock cycles. In hard pause mode KiwiC is not free to insert such pauses. If you
have an infinite loop without a pause in it, KiwiC will fail to unwind the loop. Check that all control
paths (PC trajectories) inside infinite loops have at least one Kiwi.Pause() inside them. Also, try
setting the unwind attempt limits (cil-unwind-budget, bevelab-ubudget, etc.) to smaller values to
discover the error earlier or to larger values if you think the effort is warranted.

Q. Icarus Verilog reports buffer overflow.

A. This results from too many commments in the RTL files. Add-vnl-add-aux-reports=disable

to your command line.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

104

c©2011-17 DJ Greaves + S Singh

Q. Icarus Verilog 10.0 gives fails on test0 and elsewhere.

A. That is a duff version, build Icarus 10.2 from source.

Q. KiwiC is trying to start wine and creating file paths with backslashes in them, even though I
am running on Linux. It also reports it is running on NT 5.2 when there is no windows machine
anywhere involved.

A. On recent linux systems, on encountering a .exe the shell will start wine and try to open windows
and so on. The KiwiC shell scripts enable you to define MONO andyou should set this in your
environment to ‘mono’ or ‘/usr/bin/mono’. If this still does not fix the problem please set you shell
env var MONOOS OVERRIDE to something begining with ’l’ such as linux64 and KiwiC will
override the installed path combiner and related options.

+++ checking failed:

Factorial_fac[15:0]:OUTPUT::Unsigned{init=0, io_output=true, HwWidth=16, storage

=32} := Factorial_fac*FTFT4FactorialCircuit_V_0: assignment may wrap differently

: rhs/w=32, lhs/w=16, store/w=32

[Kiwi.OutputWordPort(15, 0)] static uint fac = 1;

Q. Hi, I was looking at the Kiwi project for compiling C# Programs into FPGA, what the tool does
is convert the C# program to a logic circuit? is there is a way to visualize the logic circuit associated
to program?

A. You can look at the circuit in the FPGA tools schematic viewer. But the generated circuit is
typically very large indeed and you need to look at a block diagram of the datapath and a flowchart
of the controller relating to each thread. The controller flowcharts are rendered in GraphViz dot but
is often too large for that tool if it has 1000 or so codepoints. Graphical output for the datapath is
being worked on at the moment as part of the new spatially-aware register colouring system that tries
to minimise wiring and multiplexor complexity.

Q. Can I use Xilinx FIFOs? pg057-fifo-generator.pdf

A. The CAMs on the NetFPGA boards and the new Xilinx hardened FIFOs are typical third-party
black-box componenets. These are accessible to Kiwi users by treating them as separately-compiled
components to be invoked viaKiwi.Remote() See test72 under construction. Test72 shows both
halves of the separate compilation needed to wrap up a third-party IP block for structural instan-
tiation. But the wrapped up result for Virtex-like FIFOs is also going to be placed in the Kiwi
distribution (folder name TBD) so that end-users need only do the easy half.

OLD ANSWER : To use them in Kiwi I would probably (currently) split the code for the source and
sink units such that each can be separately compiled by Kiwi but so that the composite design can
also be run as a mono program where the FIFO functionality is supplied by a fifo.dll generated from
C#. For the FPGA implementation I would read the separate Verilog outputs from the two Kiwi
compiles into the FPGA tools along with an implementation ofthe FIFO. My first implementation
would be some simple hand-crafted RTL and then later I would replace this with the output of the
Xilinx FIFO generator. The two stages are to retain ease of debugging and design portability, where
an RTL simulation of the system without Xilinx IP remains possible.

Additional answer: please see test72 for a worked example that needs writing up proprely.

Q. The burning question for me is, what options are availablefor exploiting parallelism that are

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

105

c©2011-17 DJ Greaves + S Singh

not explicitly referred to from the C code? Does your converter alleviate the Von Neumann ALU
bottleneck from critical paths or is an imperative C description unsuitable for substantial acceleration
opportunities?

A. With KiwiC, all the standard HLS limits on parallelism apply. This means a program that can
be executed in one clock cycle will be executed in one clock cycle provided sufficient budgets on
hardware resource use and and logic in a clock cycle are set.

The is no intrinsic parallelisation limit arising from a single-threaded, imperative description. But
limits arise in practice from data and control dependencies/hazards.

Regarding data dependencies, where array subscript comparison is undecidable at compile-time
(name aliases), the resulting h/w design from trying to go massively parallel is generally dominated
by spurious multiplexing paths and not a good design. When making array subscript comparisons at
compile time, KiwiC can spot common paradigms, such as identical expressions, constant expres-
sions and mainfestly unequal expressions likex andx+1. Computing theory states that there will
always be decidable equalities outside those KiwiC is programmed to decide.

Regarding control dependencies, the current KiwiC elaboration algorithms do not dynamically un-
wind outer loops when inner loops are still being unwound - this will be addressed in the VSFG
replacement to bevelab. But a programming style where the loop exit predicate is determinable near
the head of the loop body always helps in sequencer modes, as it does with Von Neumann comput-
ers, and the compilers always try to hoist it. There is no problem, of course, with data-independent
loop control.

All object fields and static variables are currently strictly updated in program order. Additional
annotation or policy control as ’non-architectural’ or ’relaxed’ for for fields or static variables may
be supported in the near future. These will enable KiwiC to domore speculative execution but make
debugging harder because program order will not be followed. To help this, architectural ’slave’
registers may be added for debug viewing that can simply be deleted by the FPGA toolchain if not
being monitored in any way.

Q. What endianness is Kiwi - I need this for unsafe bit conversion routines ?

A. KiwiC supports only little-endian operations. There arevarious dot net API calls that you can
make to interogate this at run time and Kiwi’s libraries provided this information. For your code
to remain portable you should invoke this API and KiwiC will progagate the constants accordingly,
discarding any code for big-endian support.

Q. From what I can tell thekiwi.dll is not being taken into account at all the kiwi specific stuff
when creating the.exe ?

A. The Kiwi-specific ’stuff’ just adds a few attributes to the.dll — it will normally still run as a
mono/dotnet program with those attributes in it. The KiwiC compiler invokes a multi-stage recipe
with reports for each stage written to separate sub-foldersin the ‘obj’ folder that it creates for itself.
Their detail level can be increased with -report-each-stepand various verbose and tracelevel settings.
If the recipe gets as far as making something like ‘h10verilog-gen’ in the ‘obj’ folder you should
find the primary Verilog output file has been written to your filesystem in folder containing ‘obj’.

Q. Sorry to take your time again but I’m new to this and I wan’t to be sure of something, what is
implemented on the FPGA is a processor that runs the program or is directly the representation of
the program as a logic circuit?

A. Short answers: it is a circuit, not a processor plus firmware. There are various compilation

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

106

c©2011-17 DJ Greaves + S Singh

styles. The fully-pipelined accelerator will run the wholeprogram every clock tick, accepting new
data every clock cycle, allbeit with some number of clock cycles latency between a particular input
appearing at the output. Sequencer mode will generate a custom datapath made up of RAMs, ALUs
and external DRAM connections and fold the program onto thisstructure using some small number
of clock cycles for each iteration of the inner loops. Compilation directives alter the trade off between
silicon used and the number of clock cycles needed. No standard processor is used. (High-level
synthesis of this kind is used in your mobile phone and enables it to compress motion video from
the camera without instantly flattening the battery.)

For larger programs, a good deal of the code tends to be start up and reporting code that is executed
far less frequently than the main inner loops. This code can be placed on a standard processor and
coupled to the HLS-generated hardware or else the datapath for the higher-performance parts can
also be used as an unoptimised datapath for the less-commonly-executed code.

Q. Can continuous assignment be achieved between Kiwi net-level I/O descriptions.

A. There is no analogous behaviour for a C# program, but this facility might be useful in various
debug lashups perhaps. See notes elsewhere on SystemCSharp. But a Kiwi.Hardware attribute given
to an infinite loop in hard pause mode with no Pause statementsinside it should probably generate
combinational logic, or the pipelined accelerator mode with a re-initiation interval of zero should
also serve. We need to check whether these currently work, but probably not at the moment (Jan
2018).

Q. Is the dotnet reflection API supported at all?

A. You can use Object.GetType and Object.ToString in certain places found so far to be useful. The
results are not guaranteed to be the same as mono returns, butare nonetheless helpful.

A. These are warnings that the generated RTL will behave differently from the dot net versions if
overflow occurs in the custom bit width fields.

You defined the output port to be a sixteen bit register but used the ’uint’ dot net valuetype to model
it in the dll. You are performing an operation on this field that is sensitive to its width. The warning
is that there might be a difference in behaviour if, e.g. you increment this value so that it goes above
56535.

Part VII

Orangepath Synthesis Engines
The HPR L/S (aka Orangepath) library supports various internal synthesis engines. These are plug-
ins.

Because all input is converted to the HPR virtual machine andall output is from that internal form it
is also sensible to use the HPR library for translation purposes without doing any actual synthesis.

All plugins rewrite one HPR machine as another. But some thatread in an external file, like the Kiwi
front end or the deserialiser or the RTL front end simply ignore the input machine they are fed by
the Orangepath recipe.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

107

c©2011-17 DJ Greaves + S Singh

20 A* Live Path Interface Synthesiser

The H2 front end tool allows access to the live path interfacesynthesiser. The A* version is described
on this web page. http://www.cl.cam.ac.uk/ djg11/wwwhpr/gpibpage.html

This plugin has not been tested recentl.

21 Transactor Synthesiser

The transactor synthesiser is described on this link

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

This plugin has not been tested recently.

22 Asynchronous Logic Synthesiser

The H1 tool implements an asynchronous logic synthesiser described on this link.

http://www.cl.cam.ac.uk/ djg11/wwwhpr/dsasynch.html

This plugin has not been tested recently.

23 SAT-based Logic Synthesiser

The H1 tool implements a SAT-based logic synthesiser described on this link.

http://www.cl.cam.ac.uk/ djg11/wwwhpr/dslogic.html

This synthesiser is currently not part of the main HPR revision control branch.

24 Bevelab: Synchronous FSM Synthesiser

Bevelab is an HPR plugin that converts HPR threaded forms to RTL form. Both the input and outputs
to this stage typically have the concept of a program counterper thread, but the number of program
counter states is greatly reduced. In the output form, many assignments and array writes are made
in parallel. A custom data path is generated for each thread and the program counter becomes the
internal state of a micro-sequencer that controls that datapath. The emitted program counter does
not need to be treated differently, then on, from any other scalar register, although the distinction is
preserved in the output form for readibility, debugging andease of determining disjoint structural
operations in restructure (and perhaps to assist proof tools), and for the HPR Performance Predictor
that needs to track the control flow graph through the complete toolchain.

(Alternatives to Bevelab are Systolic and VSFG. VSFG (§25) can achieve greater throughput with
heavily-pipelined components in the presence of complex control flow. Systolic requires bounded
loops and projects to a systolic array (not described in thismanual).)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

108

c©2011-17 DJ Greaves + S Singh

Usually, the input is in DIC form where the DIC contains assignments, conditional gotos, fork/join
and leaf calls to HPR library functions. More-advanced imperative control flow constructs, such as
while, for, continue, break, call and return need to have been already removed.

The resulting RTL is generally ‘synthesisable’ as defined bylanguage standards for Verilog, VHDL
and SystemC. Although it uses common subexpression sharing, it is hopelessly inefficient since a
naive compilation to hardware would instantiate a fresh, flash arithmetic operator at every textual
site where an operator occurs. In addition, it will typically be full of structural hazards where RAMs
are addressed at multiple locations in one clock cycle, whereas in reality they are limited in number
of simultaneous operations by their number of ports. Finally,the RAMs and ALUs are assumed to
be combinatorial by this RTL, whereas in reality they are pipelined or variable latency.

Converting to one of the output languages, such as SystemC, is by a subsequent plugin. But the
output of Bevelab is normally first passed via Restructure (that overcomes structural hazards, re-
pipelines and performs load balancing) to the Verilog-gen plugin where it is converted to Verilog
RTL syntax.

Both Bevelab and Restructure can trade execution time against number of resources in parallel use:
the time/space fold/unfold. Bevelab is the core component of any ‘C-to-gates’ compiler. It packs
a sequential imperative program into a hardware circuit. Aswell as packing multiple writes into
one cycle, it can unwind loops any bounded number of times. Loops that read and write arrays
can generate very large multiplexor trees if the array subscripts are incomparable at unwind time,
since there are very many possible data bypasses and forwardings needed. Therefore, a packing that
minimises the number of multiplexors is normally chosen. A simple greedy algorithm is used by
default: as much logic as possible is packed into the first state, defined by the entry point to the
thread, subject to four limits:

1. a multiplexing logic depth heuristic limit being reached,

2. a name alias (undetermined array address comparison) being needed,

3. a user-annotatated loop unwind limit being reached, and

4. containing an intrinsically pausing operation.

Once the first state is generated, which may contain multipleinput conditional branches that become
predication within that state, successive micro-sequencer states are generated until closure.

Certain operations are already known to be pausing. One is a user-level explicit pause where the
source code contains a call to ‘Pause()’. This is needed for net-level protocols, such as parallel to
serial conversion in a UART, and for connecting to hard IP blocks that have synchronous interfaces.
Others, such as trying to use results from integer divide, any floating point arithmetic, non-fully-
pipelined multiply and reads from RAMs that are known to be registered also generate pauses when
their source operands are also generated in the current micro-sequencer state.

Bevelab operates using the heuristics given in Table 4. It takes an additional input, from the com-
mand line, which is an unwind budget: a number of basic blocksto consider in any loop unwind
operation. Where loops are nested or fork in flow of control, the budget is divided over the various
ways.

The flaggenerate-nondet-monitors turns on and off the creation of embedded runtime monitors
for non-deterministic updates.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

109

c©2011-17 DJ Greaves + S Singh

-ubudget n

HPR
Machine

HPR
Machine(s)

Output queue with
rollback checkpoints

(pc, address, [e1/v2, e2/v2, ...]) list
Pending activation queue

Input
program

Symbolic
simulator

Input Activation

Entry point
for each thread

0, 1, or 2
output activations

Blocking
activation or

budget
consumed ?

Completed activation list

Unwind
budget

Already processed
checker ? Discard

yes

no
no

yes

Figure 9: Details of the Hard Pause Mode algorithm, as provided by Bevelab plugin in the HPR L/S
library.

Parameter Style Default Max
Maximum number of name aliases array read 0
Maximum number of multiplexors in logic path 10
Maximum default number of iterations to unwindloops 4

Table 4: Bevelab Heuristic Table.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

110

c©2011-17 DJ Greaves + S Singh

The flagpreserve-sequencer should be supplied to keep the per-thread vestigal sequencer in
RTL output structures. This makes the output code more readable but can make it less compact for
synthesis, depending on the capabilites of the FPGA tools todo their own minimisation.

The string-vnl-resets=synchronous should be passed in to add synchronous resets to the gen-
erated sequencer logic. This is the default.

The string-vnl-resets=asynchronous should be passed in to add assynchronous resets to the
generated sequencer logic.

The string-vnl-resets=none should be passed in to supress reset logic for FPGA targets. FPGA’s
tend to have built-in, dedicated reset wiring. See§38.

Bevelab has a number of scheduling algorithms (selectable from recipe or command line). Alterna-
tively, Bevelab can be replaced with a different opath plugin, such as VSFG or Systolic.

24.1 Bevelab: Hard Pause Mode Internal Operation

This section describes only Hard Pause Mode. This is where the position of clock pulses is under
explict programmer control via the insertion ofPause() calls.

The central data structure is the pending activation queue,where an activation consists of a program
counter name, program counter value and environment mapping variables that have so far been
changed to their new (symbolic) values.

The output is a list of finite-state-machine edges that are finally placed inside a single HPR parallel
construct. The edges have to forms (g, v, e) (g, fname, [args]) where the first form assigns e to v
when g holds and the second calls function fname when g holds.

Both the pending activation queue and the output list have checkpoint annotations so that edges
generated during a failed attempt at a loop unwind can be discarded.

The pending activation list is initialised with the entry points for each thread. Operation removes one
activation and symbolically steps it through a basic block of the program code, at which time zero,
one or two activations are returned. These are either added to the output list or to the pending acti-
vation list. An exit statement terminates the activation and a basic block terminating in a conditional
branch returns two activations. A basic block is terminatedwith a single activation at a blocking
native call, such as hprpause. When returned from the symbolic simulator, the activation may be
flagged as blocking, in which case it is fed to the output queue. Otherwise, if the unwind budget is
not used up the resulting activations are added to the pending queue.

A third queue records successfully processed activations.Activations are discarded and not added
to the pending queue if they have already been successfully processed. Checking this requires com-
parison of symbolic environments. These are kept in a ”closeto normal form” form so that syntactic
equivalence can be used. This list is also subject to rollback.

Operation continues until the pending activation queue is empty. A powerful proof engine for com-
paring activations would enable this condition to be checked more fully and avoid untermination
with a greater number of designs.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

111

c©2011-17 DJ Greaves + S Singh

24.2 Bevelab: Soft Pause Mode Internal Operation

Classical HLS operates by loop unwinding to expose parallelism. This is achieved by Bevelab when
running in Soft Pause Mode. It reorganises the input programin terms of the number and size of
basic blocks. Instead of expecting explictPause() calls in the input language, as in Hard Pause
Mode, basic blocks of appropriate size and with other properies are automatically generated from
raw procedural programming. This is the approach needed forgeneral acceleration of scientific (aka
Big Data) programs.

The transforms available are :

1. Loop fusion: combining the operations of two successive loops with identical trip counts into
one loop;

2. Loop unrolling: expanding the body of a loop by an unwind factor;

3. Predication: replacing control flow with conditional expressions;

4. De-predication: converting conditional expressions into control flow.

25 VSFG - Value State Flow Graph

VSFG is an alternative to the bevelab plugin - it uses distributed dataflow instead of having a cen-
tralised micro-sequencer per thread. It is based on the paper ‘A New Dataflow Compiler IR for
Accelerating Control-Intensive Code in Spatial Hardware’[5]. It can achieve greater throughput
with heavily pipelined components in the presence of complex control flow compared with tradi-
tional loop unwinding and static schedulling.

Its implementation within Kiwi is currently experimental (January 2015).

26 PSL Synthesiser

The PSL synthesiser converts PSL temporal assertions into FSM-based runtime monitors.

27 Statechart Synthesiser

The Sys-ML statechart synthesiser is built in to the front end of the H2 tool. It must be built in to
other front ends that generate HPR VMs,

28 SSMG Synthesiser

SSMG is the main refinement component that converts assertions to executable logic using goal-
directed search. The SSMG synthesiser is described in a separate document and is a complete
sub-project with respect to HPR.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

112

c©2011-17 DJ Greaves + S Singh

Parameter Style Default Max
Max no of integer adders and subtractors per thread flash unlimited
Max no of integer multipliers per thread one-cycle 5000 bit products
Max no of integer dividers per thread vari-latency 5
Max no of F/P ALUs per thread fixed latency of 5 5
Max size register file (bits) 512
Max size single-port block RAM per thread
Max no of single-port block RAMs per thread 2
Max no dual-port block RAMs shared over threads 2
Max size dual-port block RAMs shared over threads bits
No of DRAM front-side cache ports unlimited
No of DRAM banks platform-specific

Table 5: An Example Structural Resource Guide Table.

29 Repack Recipe Stage

The repack function is essentially KiwiC-specific. It is therefore described in the KiwiC chapters of
this manual (§4.8.1).

30 Restructure Recipe Stage

Restructuring is need to overcome structural hazards arising when there are insufficient resources
for all the required operations to take place in parallel andto generally sequence operations in the
time domain. Resources are mainly ALUs and memory ports. Table 5 shows the main parameters
that control time/space trade off while restructuring a design. Further parameters relate to the cache
size and architecture, DRAM clock speed. The repack phase (§29) generated as many memories
as possible. These must now be allocated to the allowed hardware resources, which may mean
combining memories to reduce their total number, but takinginto account a good balance for port
bandwidth. Hardware platforms vary in the number of DRAM banks provided. The number of
block RAMs inside an individual FPGA, like the number of ALUsto use, can be varied between one
compilation and another.

The restructure phase bounds the number of each type of structural resource generated for each
thread. It then generates a static schedule for that thread.Certain subsystems can have variable
latency, in which case the static schedule is based on the average execution time, with stalls and
holding registers being generated for cases that run respectively slower or faster than nominal. The
schedule may also get stalled at execution time owing to dynamic events that cannot be predicted
in advance. Typical dynamic events are cache misses, contention for shared resources from other
threads and blocking message passing between threads.

The scheduller statically maps memory operations to ports on multi-ported memories. It overcomes
all static hazards, ensuring that no attempt to use a resource more than once at a time occurs. It there-
fore ensures that different operations occur in different cycles, with automatic insertion of holding
registers to maintain data values that would not be available when needed.

The five-stage pipeline for FPUs consists of, for an add, the following fully-pipelined steps: 1. un-

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

113

c©2011-17 DJ Greaves + S Singh

pack bit fields and compare mantissas, 2. shift smaller mantissa, 3. add mantissas, 4. normalise,
5. round and repack.

Part VIII

Output and Analysis Recipe Stages
The HPR library contains the Diosim simulator, output generators and other analysis tools. Each is
a plugin invoked by an Orangepath recipe stage.

31 HPR Output Formats Supported

The HPR library contains a number of output code generators.All of these write out a representation
of an internal HPR machine. Not all forms of HPR machine can bewritten out in all output forms,
but, where this is not possible, a synthesis engine should beavailable that can be applied to the
internal HPR machine to convert it.

Certain output formats can encode both an RTL/hardware-style and a software/threaded style. For
instance, a C-like input file can be rendered out again in threaded C style, or as a list of non-blocking
assignments using the SystemC library.

The following output formats are created by selecting plugins:

1. RTL Form: The RTL output is written as a Verilog RTL. One module is created that either
contains just the RTL portion of the design, or the RTL and instances of each MPU that is
executing software parts of the design.

2. Netlist Form: The RTL output is compiled to a structural netlist in Verilogthat contains
nothing but gate and flip-flop instances.

3. H2 IMP Form: The HPR form is output to an IMP file. This has the same syntax asthe
imperative subset of H2. Discontinued now.

4. SMV form: The HPR VM is output as an SMV code and the assertions that havenot been
compiled or refined are output as assertions for SMV to check.

5. C++ and CSharp Forms: The HPR VM is output as C++ or C# code suitable for third-party
compilers. RTL forms may also be output as synthesisable SystemC.

6. UIA MPU Form: The IMP imperative language is compiled to IMP assembly language and
output as a.s file.

7. IP-XACT form: The structural components are written out as IP-XACT definitions and in-
stances.

8. S-expression form:The HPR VM is dumped a lisp S-expression to a file.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

114

c©2011-17 DJ Greaves + S Singh

9. UIA Machine Code: The IMP assembly is compiled to machine code for the UIA microcon-
troller. This is output as Intel Hex and also as a list of Verilog assignments for initialising a
memory with this code.

The net-based output architecture is suitable for direct implementation as a custom SoC (system on
chip). H2 defines its own microcontroller and we use the term MPU to denote an H2 microcontroller
with an associated firmware ROM. The net-based architectureconsists of RTL logic and some num-
ber of MPUs. However, by requesting that all output is as C code for a single MPU, the net-based
output degenerates to a single file of portable C code.

Additional output files include log files and synthesisable and high-level models of the UISA micro-
processor that executes IMP machine machine code.

32 C++, SystemC and C# Output Generators

Thecpp-genrecipe stage writes the current design as C++ or SystemC depending on options sup-
plied to it. This can render any mixture of behavioural or structural code, depending on which
processing steps come before it in the Orangepath recipe.

It also can generate C# code.

The-cgen2=enable flag causes the tool to generate SystemC output files.

The-csharp-gen=enable flag causes the tool to generate C# output files.

Header and code files are generated with suffix.cpp and .h. Additional header files are generated
for shared interfaces and structures. Generally, to make a design consisting of a number of C++
classes, the tool is run a number of times with different rootand sysc command line options.

C# does not use header files as such, so files with suffix‘.cs’ are emitted. Classes may be spread
over a number of files according to undocumented commandlineoptions.

Note that emitting C# or C++ with the standard recipe writes these output files at the same point in
the system flow as used for RTL output. Hence a large number of parallel, RTL-style assignments
will be used. Using a shorter recipe or with some of the intermediate stages disabled, output closer
to the input form can be rendered: for instance, with bevelabturned off assignments will be made in
order using a thread instead of an HLS sequencer.

33 RTL Output Generator

Theverilog-genrecipe stage writes the current design as Verilog RTL.

It is not a totally straightforward projection as RTL since sub-expressions of significant complexity
that occur more than once are rendered only once and assignedto intermediate nets using continuous
assigns under a greedy algorithm. This keeps the file size sensible with certain functions that would
become exponential (e.g. a barrel shifter). The quality of the sharing is not optimisied owing to the
assumption is that a subsequent logic synthesis tools will revisit these sharing decisions.

It also can convert the design to a netlist (i.e. do logic synthesis) and estimate the area of the result.
This functionality should be split out into a sepearte recipe stage so, for instance, the net list could

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

115

c©2011-17 DJ Greaves + S Singh

be rendered in SystemC instead.

It also contains a roundtrip function, such that the RTL it has generated is converted back into HPR
internal form. It does this from the RTL AST so cannot serve for textual RTL input in its current
form ... the RTL parser is in cv3cv3.zip and needs integrating ...

The RTL Generator can provide area and wiring length estimates and generate a graphical floorplan
to help visualise the circuit structure and understand how much area is devoted to which resources.

Wiring length estimates based on the design hierarchy and Rent’s Rule are fairly accurate and do not
require an actual layout.

The flag-vnl-layout-delay-estimate=enable will create a layout.eps plot file.

34 IP-XACT Output Generator

The ip-xact-genrecipe stage writes the current design as an xml document following the IP-XACT
‘design’ schema.

It can also write out bus specs and individual components used in the current design as IP-XACT
xml documents.

This plugin is/was formerly not freestanding and could onlybe invoked via the verilog-gen recipe
stage.

34.1 Built-in report writers

The Orangepath framework has two built-in rendering tools that produce a textual listing file (called
report or report-full) and Graphviz dot figures.

The-report-each-step flag causes textual report files for each recipe stage to be written into the
obj folders. Alternatively, a pseudo plugin can be put in therecipe at a stage where such a report
should be written.

The-cfg-plot-each-step flag causes the control flow for each recipe stage to be writteninto a
report file in the obj directory. You will typical want to render the dot files with something likedot
-Tpng a.dot > a.png; eog a.png.

The restructure stage accepts some older flags such as-dotplot-plot=combined but these may
be discontinued.

35 Arithmetic and RAM Leaf Cells

The tool will expect the user to provide definitions of various leaf cells with the output from the tool
at the input to the RTL synthesis step. A number of suitable definitions are included incvgates.v
andcv fpgates.v and it may commonly be sufficient just to include these two files in the RTL
compilation.

The leaf cell names follow a few conventions:

1. All have a clock and reset intput, even if not needed.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

116

c©2011-17 DJ Greaves + S Singh

2. All have a fail output, even if they cannot fail or will report their error in-band using, for
example, NaN.

3. The main outputs is listed before inputs, but associativeinstantiation is normally used anyway.
For divide and mod the numerator is listed before the denominator. For subtractors the lhs is
listed first.

4. The naming convention has the lettersVL for a variable-latency component and this has hand-
shake wires. OtherwiseFLn denotes a fixed-latency ofn clock cycles, fully-pipelined. The
tool will schedule an average budget for variable lantency components.

5. Parameter overrides, listed in the order output, first intput, second input, set the precision of
ALU connections and RAM dimensions.

For variable-latency leaf cells in the libray, the VLA protocol is used. The VLA handshake protocols
is as follows:

• Handshake uses areq input and ardy output.

• New input args are read in on a cycle wherereq is asserted, which will be just one cycle in response to
areq.

• Results are ready in a cycle whenrdy is asserted.

• New work may be presented withreq during the same cycle that the output data becomes live (therdy

cycle).

• Assertingreq before the lastrdy has been delivered will be ignored.

• The output, once live, remains valid until another operation starts (i.e. until the cycle afterreq next
holds).

• No combinational path between inputs and outputs, includingreq andrdy, is allowed inside the com-
ponent.

Components following the AXI Streaming protocol are also supported. This is the same as the Xilinx
LocalLink protocol in all important aspects. It has a pair ofhandshake nets (ready/valid) for both
the input and the output and does not hold its data on completion. Compared with VLA, the AXI
streaming component requires another holding register to be instantiated by the HLS tool when it
knows it may need the data in more than one subsequent cycle inits schedule.

Note: The above is for on-chip devices instantiated directly by the tool. Off-chip RAM connections
use a separate protocol (HSIMPLE, HFAST, AXI, BVCI).

35.1 Fixed-point ALUs

The RTL backend will use built-in RTL operators for adders and substractors. For multipliers and di-
viders and modulus with non-constant arguments it instantiates specific units, such asCV INT VL DIVIDER US

Very small multipliers are rendered with the RTL asterisk infix operator and left to the FPGA tools
as per the adders/substractors.

Kiwi generally calls out to variable latency dividers and fixed-latency multipliers. It uses an estimate
for the variable latency computation time in its schedules.When using a fixed latency it increases

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

117

c©2011-17 DJ Greaves + S Singh

the latency requested for larger parameter widths. Whether fixed or variable is indicated in the com-
ponent kind name. Instantiated components cope with any argument width as specified by parameter
overloads.

Kiwi does not currently generate the fixed-point ALU implementations and it may request one that
is not in the providedcvgates.v baseline library, in which case the poor user must provide their
own implementation. For example, an extreme design might call for a 512 by 1024 fixed latency
multiplier with 5 clock cycle latency.

Recipe parameters alter the points at which the library enlarges the provisioned latency.

35.2 Floating-point ALUs

Floating-point ALUs follow the pattern of fixed-points ALUs, except that add and subtract are also
always instantiated ALUs and the RTL compiler is not expected to handle them. A different set of
recipe parameters control their structure (fixed/variablelatency and expected/required latency).

Only 32 and 64 bit, IEEE standard floating point is currently used by default. A future extension will
provide for custom width floating point, since this is a very powerful feature of HLS that can save
a lot of energy and area. The extension will give the same behaviour on mono WD as on RTLSIM
and FPGA.

A core set of floating point ALUs is provide incv fpgates.v. These are soft macros that the RTL
tools are expected to map to whatever is available in the target FPGA or ASIC library. Specific shims
and bindings to assist with Altera and Xilinx are likely to beadded to the distro in the near future.

35.3 Floating-point Convertors

There is no budget limit on the number of convertors is currently imposed.

The convertors required normally are

CV_FP_CVT_FL2_F32_I32 // Integer 32 to float 32 with fixed latency of 2

CV_FP_CVT_FL2_F32_I64 // Integer 32 to float 32 with fixed latency of 2

CV_FP_CVT_FL2_F64_I32 // Integer 32 to float 32 with fixed latency of 2

CV_FP_CVT_FL2_F64_I64 // Integer 32 to float 32 with fixed latency of 2

CV_FP_CVT_FL2_I32_F32 // Integer 32 from float 32 with fixed latency of 2

CV_FP_CVT_FL2_I32_F64 // Integer 32 from float 32 with fixed latency of 2

CV_FP_CVT_FL2_I64_F32 // Integer 32 from float 32 with fixed latency of 2

CV_FP_CVT_FL2_I64_F64 // Integer 32 from float 32 with fixed latency of 2

CV_FP_CVT_FL0_F32_F64 // Float 32 from float 64 (FL=0 implies combinational)

CV_FP_CVT_FL0_F64_F32 // Float 32 from float 64 (FL=0 implies combinational)

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

118

c©2011-17 DJ Greaves + S Singh

35.4 RAM and ROM Leaf Cells

A set of standard static RAM cells is provided incvgates.v. These are parameterisable in width,
length and number of lanes by overrides. They are single and dual ported and of latencies 0, 1 and 2
clock cycles.

Kiwi and other tools based on the HPR library generate instances of these RAMs.

RTL tools are expected to map these to appropriate structures, such as LUT RAM and block RAM
on FPGA.

RAM instances are also generated with no write ports and static initialisations using the Verilog
initial statements. RTL tools will treat these as ROMs. Unlike RAMs,where the user is expected
to manually couple a definition fromcvagtes.v or elsewhere to their RTL synthesis step input,
ROMs are are embedded in the main RTL output files from a run of the tool.

Part IX

HPR L/S (aka Orangepath) Facilities
HPR L/S (aka Orangepath) is a library and framework designedfor synthesis and simulations of a
broad class of computer systems, protocols and interfaces in hardware and software forms.

The HPR L/S library provides facilities for a number of experimental compilers. This part of the
manual describes the core features, not all of which will be used in every flow.

36 FILES AND DIRECTORIES

When an Orangepath tool is run, it creates a directory in the current directory for temporary files.
This is the obj directory. This obj directory contains temporary files used during compilation.

The .plt files are plot files that can be viewed using diogif, either on an X display or converted to .gif
files.

The h2logs file contains a log of the most recent compilation.These are placed in a folder named
with the early arg-log-dir-name.

36.1 Environment Variables and IncDir Search Paths

Tools must load various files from the filesystem and must knowwhere to look.

Environment variables can provide places to look.

An HPR L/S tool itself will expect to have all of its dlls on thesystem search path or else in the
folder accessed by../lib from where its binary file (such askiwic.exe) is stored.

A user can specify additional folders to search for loadablefiles, such as previous outputs from
incremental compilation steps and standard IP blocks. These are defined by the incdir path. The
HPRLS IP INCDIR environment variable and the-ip-incdir command line or recipe flag can be

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

119

c©2011-17 DJ Greaves + S Singh

set to a string that contains a colon-separated (semicolon on Windows) list of search folders. This
is the incdir path. Most earlier outputs are described in IP-XACT and it is these metafiles that need
to be found in this way, with the actual IP being held in a file named in the IP-XACT xml ‘files’
section. Where those filenames are non-absolute, they will belooked up in the incdir path.

TheHPRLS environment variable may be used to specify another search path for core parts of the
system, but this would needs better documentation ...

36.2 Espresso

The traditional unix espresso tool is not needed for Fsharp implementation of HPR L/S since this
has its own internal implementation.

The Moscow ML implementation of the Orangepath tool required Espresso to be installed in /us-
r/local or else the ESPRESSO environment variable to point to the binary. If set to the ASCII string
NULL then the optimiser is not used.

The-no-espresso flag can also be used to disable call outs to this optimiser. Internal code may be
used instead.

37 Cone Refine

The cone refine optimiser deletes parts of the design that have no observable output. It can be
disabled using the flag-cone-refine=disable.

It may also be programmed to retain other named features of interest.

38 HPR Command Line Flags

The very first args to an HPR/Orangepath tool are the early args that enable the receipe file to be
selected and the logging level and location to be set.

The first argument to an HPR/Orangepath tool, such as h2comp or KiwiC, is a source file name.
Everything else that follows is an option. Options are now described in turn.

The HPR/LS logger makes an object directory and writes log files to it.

Flag-verboselevel=n turns on diversion of log file content to be mirrored on the standard output.
0 is the default and 10 makes everything also come out on the console. Console writes are flushed
after each line and this is also a means of viewing the final part of a log that has not been flushed
owing to stdio buffering.

Flag-verbose turns on a level of console reporting. Certain lines that arewritten to the obj/log files
appear also on the console.

Flag-verbose2 turns on a further level of console reporting. Certain linesthat are written to the
obj/log files appear also on the console.

Flag-recipe fn.xml sets the file name for the recipe that will be followed.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

120

c©2011-17 DJ Greaves + S Singh

Flag -loglevel n sets the logging level with 100 being the maximumn that results in the most
output.

Flag -give-backtrace prevents interceptions of HPR backtraces and will therefore give a less
processed, raw error output from mono.

The developer mode flag,-devx, enables internal messages from the toolchain that are for the benefit
of developers of the tool. Setting the environment variableHPRLS_DEVX=1 performs the same action.

NOTE: Many of the command line flags listed here have a different command line syntax
using the FSharp version of KiwiC. This manual is still being updated. To get their effect one
must currently either make manual edits to the recipe xml file(e.g. kiwici00.rcp) or else simply list
then on the command line using the form-flagname value

If the special name-GLOBALS is specified as a root, then the outermost scope of the assembly,
covering items such as the globals found in the C language, isscanned for variable declarations.

Flag-preserve-sequencer structures output code with an explicit case or switch statement for
each finite-state machine.

Synthcontrol-bevelab-repack-pc=disable creates sequencer encodings where the PC ranges
directly over the h2 line numbers: easier for cross-referencing when debugging. Otherwise it defaults
to a packed binary or unary coding depending on-bevelab-onehot-pc.

Option-array-scalarise all converts all arrays to register files. Other forms allows names to
be specifically listed. See§ ??.

-vnl-resets=none

-vnl-resets=synchronous

-vnl-resets=asynchronous

or change this XML line in the file /distro/lib/recipes/KiwiC00.rcp

<defaultsetting> resets none </defaultsetting>

When doing RTL simulation of the KiwiC-generated RTL output,one can sometimes encounter
a ‘lock up’ where the design makes no further progress. Tracing the ‘pc’ variable in the output
code will reveal it is stuck when trying to make a conditionalbranch whose predicate evaluates to
dont-care owing to un-initialised registers or disconnected inputs.

HPR (KiwiC) (by default) does not generate initialisation code to set static variables to their default
values (zero for integers and floats and false for booleans).The same goes for RAM contents.

For RAM contents, with KiwiC, the user code must contain an explicit clear operation in a C# loop.

To overcome the problem with uninitialised registers, we can potentially use -vnl-resets=synchronous
or -vnl-resets=asynchronous. This will make the RTL simulate properly and overcomes most lockup
problems. But we get additional wiring in the output that canrepeat the FPGA’s own hardwired or
global reset mechanisms.

Clearly the design can be synthesised separately with and without resets. But to avoid the duplication
of effort, hence with a common RTL file (one synthesis run only), one must take one of the following
five routes, where the first two use a KiwiC compile with the default -vnl-resets=none.

1. use an RTL simulator option that has an option where all registers start as zero instead of X,

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

121

c©2011-17 DJ Greaves + S Singh

2. add a set of additional initial statements to the generated RTL that are ignored for FPGA
synthesis (HPR vnl could generate these automatically but does not at the moment),

3. request a reset input to the generated sub-system (using -vnl-resets=synchronous) but tie this
off to the inactive state at the FPGA instantiation of that subsystem and expect the FPGA tools
to strip it out as redundant logic so that it does not consume FPGA resource.

4. trust the FPGA tools to detect a synchronous reset net as such (by boolean dividing FPGA
D-input expressions by it) and map it to the FPGA hardwired reset mechanisms so that it does
not consume FPGA resource.

5. use -vnl-resets=asynchronous and trust the FPGA tools tomap this to the hardware global
reset net.

Note, the vnl output stage always generates subsystems witha reset input but this is (mostly) ignored
under the default option of -vnl-resets=none.

See§ ??.

"-subexps=off"

Thesubexps flag turns off sub-expression commoning-up in the backend.

-vnl-rootmodname name

Use the-vnl-rootmodname flag to set the output module name in Verilog RTL output files.

-vnl-roundtrip name= [enable | disable]

Converts generated Verilog back to internal VM form for further processing.

When enabled, generated RTL will be converted back again before (for example) being simulated
with diosim. When disabled, the input to the verilog generate(vnl) recipe stage will be passed on
unchanged and a typical recipe will then simulate that directly.

"-ifshare=on"

"-ifshare=none"

"-ifshare=simple"

The defaultifshare operation is that guards are tally counted and the most frequently used guard
expressions are placed outermost in a nested tree ofif statements.

Theifshare flag turns off if-block generation in output code. If set to ’none’ then ever statement
has its own ’if’ statement around it. If it is set to ’simple’ then minimal processing is performed.
The default setting is ’on’.

"-dpath=on"

"-dpath=none"

"-dpath=simple"

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

122

c©2011-17 DJ Greaves + S Singh

When dpath=on, with the preserve sequencer options for a thread, a separate ’datapath’ engine is
split out per threads and shared over all data operations by that thread.

Synthcontrolcone-refine-keep=a,b,c accepts a comma-separated list of identifiers names as an
argument and instructs the cone-refine optimiser/trimmer to retain logic that supports those nets.

-xtor mode specifies the generation of TLM transactors and bus monitors. The mode may be
initiator, target or monitor.

-render-root rootname specifies the root facet for output from the the current run. If not spec-
ified, the root facet is used. This has effect for interface synthesis where the root module is not
actually what is wanted as the output from the current run.

-ubudget n specifies a budget number of basic blocks to loop unwind when generating RTL style
outputs.

The-finish={true false} flag controls what happens when the main thread exits. Supplying
this flag causes generated output code to exit to the simulation environment rather than hanging
forever. When running under a simulator such as Modelsim, or when generating SystemC, it is
helpful to exit the simulation but certain design compiler and FPGA tools will not accept input code
that finishes since there is no gate-level equivalent (no self-destruct gate).

38.1 Other output formats

The-smv flag causes the tool to generate a nuSMV output file.

The-ucode flag causes generation of UIA microprocessor code for the design.

-vnl fn.v specifies to generate a Verilog model and write it to file fn.v.

-gatelib NAME requests that the Verilog output is in gate netlist format instead of RTL. The iden-
tifier NAME specifies the cell library and is currently ignored: a default CAMHDL cell library is
used.

-gatelib NAME requests that the Verilog output is in gate netlist format. This takes precedence
over-vnl that causes RTL output.

38.2 General Command Line Flags

The-version flag give tool version and help string.

The-help flag give tool version and help string.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

123

c©2011-17 DJ Greaves + S Singh

38.3 HPR L/S (aka Orangepath) FAQ

Q. I get the error

Error: Could not load file or assembly ’FSharp.Core, Version=4.4.0.0

A. This is not related to any missing files in the Kiwi distro. Instead it is do with FSharp version
incompatibilities. The FSharp.Core is part of the FSharp system. If you are using pre-built dll files
then the version of mono or FSharp on your system may be incompatible with the pre-built dll files
and you would have to change version or else regenerate the dll files by compiling the FSharp source
code with the ’fsharpc’ compiler on your system.

You may wish to just compile a trivial ’Hello World’ FSharp program on your system to check that
FSharp is all set up ok.

39 HPR System Integrator

Q. I cannot see how to start using System Integrator?

A. SystemIntegrator is a standalone program, written in FSharp and using the HPR library. It is in its
own folder (and the binary is hprls/system-integrator/distro/lib/sysint.exe). Examples are currently
missing.

The HPR System Integrator compiler/generator takes a set ofHPR VMs and generates SPRTL con-
structs to wire up their ports following the VM instantiation pattern or an input IP-XACT document.
It will instantiate protocol adaptors and glue logic based on pre-defined rules.

The resulting system can then be emitted without the actual instances using other recipe stages, such
as SystemC, RTL or IP-XACT. These output files will typicallybe combined with the instantiated
components in external tools, such as FPGA logic synthesis.

The resulting system can also be passed on to the Diosim simulator for execution within Orangepath,
for auditing tools to run, or for any other purpose.

Figure 10 illustrates a typical structural set-up arising from multiple compilation units assembled on
a single FPGA. In detail, the figure shows a top-level application (primary IP block) that instantiates
a separately-compiled child component that, in turn, instantiates three grand children of two different
types. The children and grand children are subsidiary IP blocks. They do not do anything unless
commanded by a primary IP block. Each compilation unit connects to its child by an arg/result port
that is of a custom design for the current application. It is application-specific (A/S).

In addition, each child component requires access to RAM resources. In this particular example, the
top-level module did not require RAM access (although it could well have its own BRAM privately
instantiated).

Finally, every component has a directorate port for error reporting. The primary IP block also re-
ceives its run/stop control via this port.

The HPR System Integrator compiler takes a set of HPR VMs and generates an hierarchic netlist to
wire up their ports using pre-defined rules that are based on the concept of domains of connection.
It will instantiate as many protocol adaptors, bus switchesand arbiters as is needed. The resulting
structure is typically rendered as RTL. In the future it can invoke Greaves/Nam glue logic synthesis
or other generators and then instantiate the glue in the netlist.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

124

c©2011-17 DJ Greaves + S Singh

Child B 1 Child B 2

Child C

Arg/Result-B

RAMDebug

Arg/Result-B

Arg/Result-C

Child A logic

Server Blade DRAM
Server Blade

Director PIO Stub

Primary Application
Start/Stop
and Debug

Child A instance

RAMDebug

RAMDebug

Arg/Result-A

Arg/Result-A

AXI-4 Switch

Directorate Mux

Directorate Mux

Read/Write
access local host.

Primary A/S Interface

Service Interface

Directing Interface

Key

(External instatiation)
Internal

instantiations

Kiwi Scientific Acceleration

Incremental Compilation Typical Structure - Single FPGA Design

University of Cambridge Computer Laboratory

Figure 10: Example of multi-compilation structural assembly with internal and external instances.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

125

c©2011-17 DJ Greaves + S Singh

A B C

A B C A B C

Aggregation Farming

Addressed
DEMUX

R1 R2 R3R0 S1S0

Tagged
MUX

Tagged
MUX

Balancing
DEMUX

A B C

Tagged
MUX

Tagged
DEMUX

Concentration
A B C

R

Tagged
MUX

Addressed
DEMUX

R1 R2 R3R0

A

Figure 11: System Integrator Tool: Basic Auxiliary Components.

The resulting system can then be emitted without the actual instances using other recipe stages, such
as SystemC, RTL or IP-XACT. These output files will typicallybe combined with the instantiated
components in external tools, such as FPGA logic synthesis.

The resulting system can also be passed on to the Diosim simulator for execution within Orangepath,
for auditing tools to run, or for any other purpose.

Its internal datastructure, prior to rendering the output,is in a form that can be output as IP-XACT
spirit:design document.

A future facility to read in and obey IP-XACTspirit:design documents could easily be added,
but there are plenty of third-party tools offering that service.

HPR System Integrator supports:

1. Creating inter-module wiring structures with tie-off ofunused ports.

2. Working both at the TLM level and structural net list level.

3. Glue logic insertion in the form of instantiated adapators from the library are readily inserted
automatically using rules based on interface type differences.

4. Allocation of AXI tag numbers.

5. Custom glue logic from the Greaves/Nam cross-product technique can also be rendered.

6. Outputs are rendered in Verilog, IP-XACT, SystemC TLM, SystemC behavioural and Sys-
temC RTL-styles depending on the subsequent recipe stage the output is passed to.

7. Server farm mode supporting dynamic dispatch will be added during 2017.

A component instance can be internal or external. The distinction is more pronounced for RTL than
SystemC. External instantiation is where the instance is inside the current (instantiating) module, in
the style of a traditional hierarchic design. An external instance is instead formed outside the current
module, resulting in additional bindings in the signature of the current module. External instantiation
leads to a flatter design. Its principle advantage is where the instantiated component has a number
of service ports whose bindings would instead need to be conveyed through the current instance
signature.

The HPR System Integrator rule engine understands the following types of component:

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

126

c©2011-17 DJ Greaves + S Singh

• Primary IP Block — a top-level component of the design, such as a primary output from
Kiwi HLS, that embodies an algorithm or processes and generates work for the all the other
components.

• Subsidiary IP Block — an IP-block with slave ports that performs an operation. Examples are
RAMs, ALUs and HLS outputs from earlier parts of an incremental compilation process.

• External Port — a connection to an externally-instantiatedresource, such as a DRAM bank,
inter-FPGAbridge or Ethernet port.

• Aggregators — for arbitrating and dispatching between initiators and demultiplexing based on
addressed target

• Concentrators — for tagged multiplexing and demultiplexing over a shared channel.

• Protocol Adaptor — for converting between bus standards

Every block is accompanied with non-functional meta-info that gives an area, latency, throughput
and energy cost using IP-XACT extensions.

Every external block port and port on a primary IP block must also be manually given a so-called
domain name. The standing rules used by HPR System Integrator endeavour, for each domain,
to wire everything together, thereby achieving conservation of data. There will generally be at
least one domain name for each connection between separately-compiled modules in an incremental
compilation. Also, there will be domains associated with each disjoint memory map/space and one
for the debug/directing logic.

The system synthesis is guided by a goal function, which is a scalar metric that factors area, delay
and energy according to a weights that the user can adjust as desired.

The automatic generation axioms are:

1. The number of primary IP blocks and external ports is set inthe initial configuration, together
with their instance names. Their plurality may not not be adjusted by HPR System Integrator.

2. The plurality of all other components may be freely adjusted by HPR System Integrator, but
it may not replicate state-bearing components (unless theyhave mirror rules defined in the
future).

3. Except for broadcast connections (that have no reverse direction signals), such as clocks, resets
and status codes, all initiating ports must be connected to amatching target port with a one-
to-one direct connection.

4. The IP-XACT max-masters and max-slaves attributes Portsare either multicast or one-to-one.
They may have to be connected or may be left disconnected. Allinitiating ports must be
connected to a matching target port with a one-to-one directconnection.

5. The resulting design should give a low value for the goal function.

This will tend to minimise the number of additionally instantiated components and typically
causes them to be wired in tree-like structures to minimise latency.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

127

c©2011-17 DJ Greaves + S Singh

Per domain metric functions and upper bounds

Algorithm: for each domain name, while there is an unconnected initiator, create a connection for
it to a suitable serving resource. If the serving resource isan external port that is currently discon-
nected, a direct connection can be made. But if the external port is already bound, an additional bus
switch will be instantiated or the arity of an existing one will be increased.

If the serving resource would be an instance of replicatableIP block, ...

If the serving resource would be an instance of mirrorable IPblock, ...

39.1 Memory Map Management (Link Editing)

A shared memory resource that is serving a plurality of disjoint requirements needs memory man-
agement to statically or dynamically allocate disjoint memory to each component. This is essentially
a link editing problem.

Kiwi solves this in two ways. For static allocation in each bank, HPR System Integrator reads in from
IP-XACT how much static memory is required and supplies a base address as an RTL parameter to
each instantiated component. This base address is promolgated into the core of the logic by constant
propagation in the logic synthesiser (FPGA tool) that is applied to the KiwiC output.

For dynamic allocation, an allocator component, coded in C#must implement a free pointer or
equivalent policy, be instantiated once, and serve out memory blocks. This will require unsafe
C# in each client (or shim thereof) to cast the address to the required struct or object type. Only
the alloc/dealloc requests need be sent to the shared component: the data read and write transfers
themselves are transferred over a general the AXI switch fabric that can provide as much spatial
diversity as is appropriate.

For genuinely shared pools there will inevitibly be a C# module that directs the requests for WD
development and this must be separately compiled and connected to by multiple parent IP blocks.

For multiple address spaces it is convenient to add extra fantom bits ...

39.2 Deadlock and Combinational Paths

... TBD

39.3 Constructive Placement

The general flow for the tool is illustrated in Fig. 12. Its inputs are the name of a primaryIP block
for the top-level, a search path for lookup of the so-called subsidiary and auxiliaryIP blocks, and
a description of the target platform described in a fileblade-manifest.xml. The tool operates
in two stages. The first is a planner that makes floorplanning and memory layout decisions and
instantiates subsidiary and auxiliary blocks as needed. The resulting high-level design is written out
as anIP-XACT design report, a graphical plot and a human-readable reportthat tabulates utilisation
metrics. The second stage compiles the design to a structural netlist. This writes out a masterRTL

file for eachFPGA.

The blade manifest lists the number ofFPGAs available on the platform, describing their size, inter-

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

128

c©2011-17 DJ Greaves + S Singh

Primary
IP Block

Blade
Manifest

IP-XACT
Design

System Integrator
Planner

RTL
Outputs

Visual
Plot

Resource
Summary

Subsidiary
IP Blocks

Library
IP Blocks

System Integrator
Wiring Generator

Figure 12: System Integrator Tool: Inputs and Outputs and flow between the two stages.

connection pattern and hardenedIP ports and capabilities. It is anXML file crafted by hand or using
anXML editor.

The tool can potentially use any standard optimisation procedure to minimise its global cost metric.
The current implementation uses a constructive placer thatis run about 50 times using different
pseudo-random seeds with the best solution and spread beingreported. A critical consideration is
whether anyIP blocks themselves are good candidates for consequential re-synthesis. There are three
reasons for re-synthesising a component:

1. General time/space fold:StandardHLS tools have considerable freedom to produce large and
fast designs or smaller designs that require a greater number of clock cycles.

2. Degree of Port Mirroring: Where a subsidiary block can be mirrored, the parent needs to
be synthesised with a determined number of master ports whenthese are connected one-to-
one with the children. Moreover, the number of load, store and load/store stations on the
component can also be manually controlled with our tool.

3. Move to variable-latency handshakes:Where a block instantiates a fixed-latency child con-
nection, but then that connection has to be converted to variable-latency owing to inter-FPGA

bridges (or perhaps being in a server farm in the future).

The System Integrator’s main job is to generate a design thatincludes the primaryIP block and all
the support it needs. Starting from the primaryIP block, it adds the subsidiaryIP blocks referred to
in its port list. These may have further application-specific ports (as shown in Figure 10) that in turn
need to be supported. Hence it iterates at this stage. Using its constructive placer, it puts each block
on a namedFPGAwhere there is sufficient area remaining. Connections that span multiple dies have
their necessary protocol adaptors instantiated straightaway. Where a bridge link is shared between
bus connections, concentrators are added (addressing tagsare later created in a global colouring
step). Any placement attempt where any hard limit is breached is aborted without further study.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

129

c©2011-17 DJ Greaves + S Singh

Hard limits include anyFPGA being full, as just mentioned, or a guaranteed throughput orlatency
(sequential or combinational) cannot be met.

As illustrated in Figure 10, there are three forms of bus connection understood by System Integrator:

1. A Primary Application-Specific Interface enables a component to invoke functions using a
custom bus structure on a child component that has a reverse interface of the same type. In
our HLS system, such bus specifications are emitted automatically as augmentedIP-XACT bus
abstraction documents. The same file is emitted when either side is compiled, with the second
simply overwriting the first. When the boundary reflects a class definition in the high-level
language, the file name and interface name are the same as the class name. Such a class can
have any number of methods and each method will use some set ofthe busses (or ‘ports’ as
they are called inIP-XACT) making up the interface. This sort of connection is also used for
connections to the standard libraries of maths functions.

2. A Service Interface provides access to main memory resources for the component.The
component is free to instantiate its ownRAMs where it wishes, such asFPGA block RAM, but
larger regions need wiring toDRAM resources. These are either statically instantiated on the
server blade or else accessed overAXI or PCIe on some platforms.

3. A Directing Interface provides start/stop control of the primary application andcollects status
and abnormal end codes from subsidiary blocks. It may also provide debug inspection.

A connection between two components is valid when all of the following conditions hold:

• Kind Name: the protocol kinds have the same name. Differences in the other threeIP-XACT

naming attributes, vendor, version and library name, are warned about but otherwise ignored.

• Connection Rule: A one-to-one connection must have two peers: one an initiator and the
other a target. A multicast connection must have exactly oneinitiator.

• Parameters Match: IP-XACT parameters are key/value pairs, and these must match apart from
any that the user specifically annotates (on the command line) as allowed to mismatch. This
ensures, for instance, that a 32-bit data bus is not connected to 64-bit data bus. To overcome
simple mismatches of any complexity, one side needs to be manually renamed by the user and
an additional protocol adapator added on the search path that encompasses the adaption, such
as ignoring unused address bits. Automation of this is expected in the future.

• Unified Domains: The connection domains must either already match under thecurrent unifi-
cation or else a fresh, non-contradictorary, unification isadded for the remainder of the design
construction.

The domain unifier operates over equivalence classes that contain at most one domain constant and
any number of domain variables that are unified to that constant or just to each other when a domain
constant is not present.

When a protocol adaptor is instantiated, it is given a fresh domain variable that is allocated to both
ports.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

130

c©2011-17 DJ Greaves + S Singh

Tagging Mux/Demux PairKey Protocol Convertor Pair

P Q

P Q

S Q

R S

P Q

S Q

R S

R

S

P

PQ

SQ

RS

PQ

SQ

RS

R

S

P

FPGA 1FPGA 0

Serdes
pair

Serdes
pair

PQ

Figure 13: Inter-FPGA bridge structure: typical setup. TheSERDESinstances, as described manually
in the blade manifest, are utilised by the System Integrator’s instantiation of protocol adaptors and
concentrators as required.

39.4 Multi-FPGA designs

HPR System Integrator can allocate logic between FPGA chips.

As illustrated by theSERDESpair in Figure 13, inter-FPGA bridges are bi-directional and have four
ports for binding by the System Integrator as it creates an inter-FPGAnetwork. The two ends of each
simplex channel have the same domain name, but the bandwidthand latency for the two channels
can be described differently in the associatedIP-XACT description. Each of the four bus interfaces is
AXI streaming with a specified word width, giving the losslessFIFO paradigm. Each direction of the
pair is kept matched by the System Integrator, as it adapts the hardware resource to its needs. The
adaption steps are just the same as may be freely used elsewhere in the assembly: they are inserting
a protocol adaptor pair on each side or inserting a concentrator pair consisting of a tagging mux
and an inverse de-multiplexing component that processes and removes the tags. There is a set of
standard protocol adaptors corresponding to all basic method signatures of up to 3 arguments with
and without a result in our standard distribution. Others can be created by hand as needed and added
to the library, or they can be macro-generated on demand in the future. Glue logic for these purposes
can also be synthesised from a non-deadlocking, data-conserving product of protocol state machines
by known techniques, such as [2].

39.5 Mux and Demux Blocks

Figure 14 shows three use cases involving tagged multiplexing and differing demultiplexing ap-
proaches. The arrows in the Figure indicate direction of initiation, but each underlying bus can
normally carry data in either direction according to the whether read-style or write-style operations

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

131

c©2011-17 DJ Greaves + S Singh

A B C

A B C A B C

Aggregation Farming

Addressed
DEMUX

R1 R2 R3R0 S1S0

Tagged
MUX

Tagged
MUX

Balancing
DEMUX

A B C

Tagged
MUX

Tagged
DEMUX

Concentration
A B C

R

Tagged
MUX

Addressed
DEMUX

R1 R2 R3R0

A

Figure 14: Three forms of multiplexing/demultiplexing where the demultiplexors respectively uses
tags, addresses and utilisation to make a routing decision.

are currently being conveyed.

The left of the Figure shows straightforwardconcentration, where multiple logical channels are
conveyed over a shared physical channel. A tagging multiplexor is matched with a detagging demul-
tiplexor. The tags inserted at the top are removed at the bottom and are private to the configuration.
This configuration provides perfect data conservation withrespect to the mulitplexed channels from
the point of entry at the top to the point of exit at the bottom.

The centre of the Figure shows shared access to a logical address space by a number of initiators
where the address space is served by anaggregationof physical memory resources. The demul-
tiplexor operates using address ranges. The multiplexor still inserts tags, but this time these are
removed againalsoby the multiplexor. These tags are only examined by the multiplexor that cre-
ated them: it removes them when the result is forwarded upwards to the originator. The tags are
conveyed opaquely within all lower components. Two degenerate forms of the aggregation configu-
ration arise: 1. when there is only a single client for an aggregated resource, the multiplexor is not
needed; and 2. when the resource is monolithic the demultiplexor is not needed.

The right of the Figure illustrates theserver farm configuration, that again uses a tagging multi-
plexor, but the demultiplexor operates on a load-balancingbasis. The server farm is not currently
natively supported byHPR System Integrator. Instead, the user must implement this paradigm by
writing their own implementations of the multiplexor and demultiplexor. This is easy to do in C# for
synthesis toRTL by KiwiC. If the C# is marked up for separate synthesis of the relevant components,
theHPR System Integrator will then assemble the system, treating the farming blocks as subsidiary
IP blocks to be assembled as normal. An example will be placed here ... TBD.

39.6 Non-uniform Memory Access (NUMA)

It is desirable for traffic to take the shortest route betweenlayout zones. TheHPR System Integrator
implements Warshall’s algorithm to find available routes and to price design solutions that use them.
However, Figure 15 shows, on the left, the typical structurethat arises when static resources in two

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

132

c©2011-17 DJ Greaves + S Singh

Static
Port (DRAM)

A B

Tagged
MUX

C D

Tagged
MUX

Addressed
DEMUX

Static
Port (DRAM)

Static
Port (DRAM)

A B

Tagged
MUX

C D

Tagged
MUX

Addressed
DEMUX

Static
Port (DRAM)

Tagged
Mux

Addressed
DEMUX

Tagged
Mux

Unbalanced Balanced

Zone 0 Zone 1 Zone 0 Zone 1

Figure 15: Illustration of non-uniform memory access designs: Left is current implementation style
and right is preferred style.

different zones are aggregated and then shared by clients where the clients (A, B, C and D) are also
distributed over the zones.

The right-hand side of the figure illustrates a preferred design that is typically exploited in non-
uniform memory architectures (NUMA). Although this has a little more logic, the average access
latency for Zone 1 is improved.

The HPR System Integrator operates by first creating the required data paths as a rats’ nest without
regard to layout zone. As mentioned in§??, it then inserts bridges and concentrators as it maps that
network onto the layout zones. This leads to the left-hand style of design. To achieve the preferred
design, greater smartness is needed: a spatially aware design is needed from the outset. We aim to
address this in a subsequent release of the tool.

Warshall’s algorithm is also applied to protocol adaptors in the library, to see what can be connected
to what in principle and the best pattern of adaptors, givingeach adaptor a unit cost at this time. //
We must avoid building wandering chains that convert backwards and forwards between protocols,
but as Warshall considers each protocol a node in a multi-hopjourney, it will only instantiated at
most one of each type of adaptor in a path.

39.7 Network On Chip (NoC)

It is interesting to examine whetherHPRSystem Integrator can be said to be synthesising a Network-
on-Chip (NoC).

Although there may be no absolute definition of what constitutes a NoC, the following defining
principles can be identified:

• Connectivity: Data can be sent, in principle, from ingress node to any exitnode.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

133

c©2011-17 DJ Greaves + S Singh

• Sharing: Traffic for different purposes uses a common bus infrastructure with sharing in the
time domain.

• Route Diversity: Traffic may take various routes from a source to a destination determined
by some static or run-time decision or policy.

The HPR System Integrator will make a custom mesh network as it instantiates concentrators to
exploit shared inter-zone bridges. So it does sometimes generate a NoC using the ‘sharing’ principle.
Where the inter-zone bridges are arranged just as a physical ring, then the resulting network is a ring
network (being a degenerate form of mesh). The ring is bi-directional or uni-directional, in terms of
instantiation, according to the same property in the pattern of the available bridges. But each bridge
is bi-directional in data terms, in that responses are carried in the reverse direction over the bridge
that carried the request. Overall, there is currently no route diversity.

In the future, for largeFPGAs, it is sensible perhaps to divide them into several layout zones, perhaps
with fluid boundaries where area can be vired between zones. It will then be neccessary to instantiate
inter-zone bridges in the blade manifest between these zones. Such bridges will be nothing more than
point-to-point wiring, which will be totally reified by the back-end logic synthesis tool, so there is
no run-time overhead. The advantage is that the pattern of concentrators will closer resemble a
fine-grained NoC and the generated wiring will resemble ...

39.8 Bus Definitions

Bus definitions inIP-XACTare split over two files. The definition and the abstraction.

All IP-XACTfiles needed will be search for using the path specified withip-incdir=. This is a colon
or semicolon (on Windows) separated list of folders.

39.9 Sewing Kit for Miscellaneous Nets

Any hardware design will have a few extra nets (wires) that System Integrator does not need to
understand. Since the tool emits the top-level design file oneach run, the simplistic approach would
be to reinsert such logic with a sed or perl script. This is a bit messy. Nonetheless, there are
someSED_BIND_POINT tokens emitted as comments in the rendered output to assist with such an
approach.

A more general support mechanism called the Sewing Kit will be added to direct System Integrator
to emit miscellaneous nets in the future.

39.10 System Integrator Example Run

Under construction May/Sept 2017...

The HPR System Integrator application is invoked from the command line using the shell script
found in HPRLS/system_integrator/dist/bin called sysint that invokes thesysint.exe
portable assembly under mono.

You need to also minimally supply

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

134

c©2011-17 DJ Greaves + S Singh

-blade-manifest=my-manifest.xml

-root=rootipname

-ip-incdir=folder1:folder2:folder3

For a single zone, you can set the Verilog output file name withvnl=filename.v but for multiple
zones, you are better setting the output folder name with-obj-dir=outputfolder and allowing
the tool to create its own output files. The output files followa built-in naming scheme that extends
a root name which defaults to ‘roger’ and which can be set to something else with ‘-outroot=fred’
etc..

All flags can also be set instead from the Organgepath recipe by extending the defaultsysint00.rcp
file and redirecting to the extended copy with-recipe=myrecipe.rcp which needs to be (pretty
much) the first argument after themono sysint.exe part of the overall command line.

The HPR System Integrator generates (by default) a graphical plot like this early example:

The primary and subsidiary I/P blocks are in black. Concentrators are in green. Adaptors are in
brown.

For complex designs, a separate plot for each layout zone is helpful. This is achieved with ...

40 Diosim Simulator

The HPR L/S library provides a built-in simulator called Diosim. It is intended to be able to execute
any mixture of intermediate codes since all have executablesemantics.

Diosim is invoked by the recipe. Typically a recipe may invoke it on the same intermediate form that
is being rendered as RTL or SystemC etc..

The Orangepath system contains its own simulator called Diosim. Since the target is output from
the compiler as portable code to be fed into third-party C andVerilog compilers, it is not strictly
necessary to use the Orangepath simulator. However, the simulator provides a self-contained means
of evaluating a generated target without using external tools.

The simulator accepts a hierarchical set of VM2 machines andsimulates them and their interactions.

The simulator will dynamically validate all safety assertion rules that contain no temporal logic
operators. Other safety and all liveness assertions are ignored.

Non-deterministic choices are made on the basis of a PRBS that the user may seed.

The PRBS is also used for synthetic input generation from plant machines or external inputs. PRBS
values used for external inputs are checked against plant safety assertions and rejected if they would
violate.

Output is to files. Several files are generated:

• A log file where individual events are visible if logging level is set high enough, eg. with
diosim-tl=100.

• A plot file. The plot file is currently in diogif plot format.

• A VCD file - viewable with gtkwave and/or modelsim etc..

• A console spool file, typically calleddiosim.out.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

135

c©2011-17 DJ Greaves + S Singh

chip1

chip2

Layout zone chip1

axi410_mux
concen_2_axi4_MUX

childport0

childport1
focus

axi412_mux
concen_2_axi4_MUX

childport0

childport1
focus

axi410.MUX.MUXi1

ONE-to-TWO

PortM

STATIC BLOCK

axi412.MUX

chassoc20_adt_near_0
adaptor-loadstore10-axi_puber

port-right port-left

chassoc20.LN.0.NY.MUXi0

chassoc24_adt_near_0
adaptor33-axi_unter

port-left port-right

chassoc24.LN.0.NY.MUXi1

chassoc26_adt_near_0
adaptor-loadstore10-axi_puber

port-right port-left

chassoc26.LN.0.NY.MUXi0

top-primary-IP-block
primex

bram33port

loadstore10m-port

subsa0-master-port0

dir12port

chassoc20.LN.0.NX chassoc24.LN.0.NX

fortopprimaryIPblock12
example_BRAM44

BRAM-slave-port

chassoc22

fortopprimaryIPblock16
primsubs55

subsa0-slave-port loadstore10-m-port

chassoc18

chassoc26.LN.0.NX

axi412_demux
concen_2_axi4_DEMUX

focus
childport0

childport1

axi412.DEMUX

axi_m1

axi4-static-master101p0

STATIC BLOCK

axi_m2

axi4-static-master101p0

STATIC BLOCK

axi_s1

axi4-static-slave202p0

STATIC BLOCK

TWO-to-ONE

PortM

STATIC BLOCK

ONE-to-TWO

PortS

STATIC BLOCK

Layout zone chip2

axi410_demux
concen_2_axi4_DEMUX

focus
childport0

childport1

chassoc20_adt_far_0
adaptor-loadstore10-axi_punter

port-left port-right

chassoc20.LF.0.FX.DEMUXi0

chassoc24_adt_far_0
adaptor33-axi_uber

port-right port-left

chassoc24.LF.0.FX.DEMUXi1

axi410.DEMUX.DEMUXi1

chassoc26_adt_far_0
adaptor-loadstore10-axi_punter

port-left port-right

chassoc26.LF.0.FX.DEMUXi0

fortopprimaryIPblock14
offchip-memory-service-shimr

offchip-memory-service-port axiout

chassoc20.LF.0.FY

fortopprimaryIPblock10
axi_dir_shim

dirshim-axi4-slave-port dirshim-directorate12-port

chassoc24.LF.0.FY

forfortopprimaryIPblock1610
offchip-memory-service-shimr

offchip-memory-service-port axiout

chassoc26.LF.0.FY

TWO-to-ONE

PortS

STATIC BLOCK

Figure 16: Draft. Output via ‘dot’ of the inter-IP block wiring generated in an example System
Integrator run. Two layout zones were used, corresponding to two FPGAs.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

136

c©2011-17 DJ Greaves + S Singh

40.1 Simulation Control Command Line Flags

As well as providing simulation output in VCD and console form, diosim can collect statistics and
help with profile generating. However, it is fairly slow and it is best to collect profiles from faster
execution engines, such as via Verilator.

The statistics that diosim can collect range from net-levelswitching activity to higher-level statistics
like imperative DIC instructions executed, RTL sequentialand combinational assignment counts.

Only the two Verilog output forms, RTL and gatelevel, support conversion back into HPR machine
form for post generation simulation.

-sim n specifies to simulate the system using the builtin HPR event-driven simulator for n cycles.
The output is written to t.plt for viewing. The-traces flag provides a list of net patterns to trace in
the simulator.

The-title title flag names the diosim plot title.

The -diosim-techno=enable flag causes print statements from the simulator to include ANSI
colour escape codes for various highlighting options.

The-plot plotfile flag causes plot file output of the diosim simulation to a namedplot file in
diogif format.

The plot file can be viewed under X-windows and/or converted to a gif using the diogif program.

The-diosim-vcd=filename.vcd flag causes diosim to write a Verilog Change Dump (vcd) report
to the named file.

Detailed logging can be found in the obj/log files. If a program prints the string ’diosim:traceon’ or
’diosim:traceoff’ the level of logging is changed dynamically.

If a program prints ’diosim:exit’ then diosim will exit a though builtin functionhpr exit() were
called.

KiwiC using C++ instead of C#

Visual Basic, Visual C++ and gcc4cil will generate dotnet portable assemblies from C++ code.

Using the gcc4cil compiler you should find a binary called ”cil32-gcc” in the<path_to_cross_compiler>/bin
directory. To create a CIL file use this compiler with the -S option.

Getting gcc4cil.

1. Get Gcc4Cil from the svn-repository that is mentioned on the

Gcc4Cil website (http://www.mono-project.com/Gcc4cil)

"svn co svn://gcc.gnu.org/svn/gcc/branches/st/cli"

2. As Gcc4Cil wants to compile files for the Mono-platform, you

need the Mono-project installed on your system. The easiest way to

install it is to use "Linux installer for x86" that can be found

under http://www.mono-project.com/Downloads . Installation

instructions are available under

http://www.mono-project.com/InstallerInstructions .

3. It may be possible that you need to install the portable .NET

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

137

c©2011-17 DJ Greaves + S Singh

project. During the manual compilation of gcc4cil I got errors, that

made me install this project. However I could not find a line in the

automatic generated Makefile that has a reference to the p.net path

in my home-dir. If you get the impression that you need it, you can

find it here: http://www.gnu.org/software/dotgnu/pnet-install.html

4. Because I did not know that there was a automatic script for this, I did a

<path_to_gcc4cil>/configure using the following options

--prefix=<where it should be installed to>

--with-mono=<install_dir_of_mono>

--with-gmp=<install_dir_of_glib>

I then did a make bootstrap-lean and installed the following libraries because

of compile errors:

- bison-2.3.tar.gz*

- glib-2.12.9.tar.gz

- pkg-config-0.22.tar.gz

I think it is likely that you may want so skip this step, as

this step DOES_NOT generate a compiler for cil but for boring x86

code (what I learned after I did this). However I set up paths to the

installed libraries in this step, so I mention it. I do not know for

sure if all those paths are needed in the end. As it works for me

now, I wont remove them:

setenv HOST_MONOLIB "/home/petero/mono-1.2.5.1/lib"

setenv HOST_MONOINC "/home/petero/mono-1.2.5.1/include/mono-1.0:/home/petero/mono-1.2.5

setenv CIL_AS "/home/petero/p.net/lib:/home/petero/p.net/bin"

5. in the directory where you put the gcc4cil source code, you can

find a shell script called "cil32-crosstool.sh". Execute this and the

crosscompiler for C-to-CIL compilation hopefully now gets compiled.

Nov 2016 note: The main gcc4cil problem was a lack of any sort of linker, as I recall. I do not recall why a linker was criticalsince KiwiC and dotnet are both happy to accept multiple dll files. Perhaps
there was a related problem with .h files. I don’t know whethergcc4cil maintenance is now abandoned.

Of course Visual C++ produces dotnet code that should work pretty much as well as the recent Visual Basic demo. I don’t knowhow much Visual C++ resembles standard C++ or whether it can only
be compiled on windows.

All of the HPR recipe stages except for the first, kiwife, are independent of dotnet. The intermediate HPR VM forms betweenrecipe stages are all supposed to be serialisable to disk: you use recipe

files that start and end with a load and save of VM code. But thatfacility has not been used recently. It might become important again to help overcome long monolithic compile times.

References

[1] Francesco Bruschi and Fabrizio Ferrandi. Synthesis of complex control structures from behav-
ioral SystemC models.Design, Automation and Test in Europe, pages 112 – 117, 2003.

[2] D. J. Greaves and M. J. Nam. Synthesis of glue logic, transactors, multiplexors and serialisors
from protocol specifications. In2010 Forum on Specification Design Languages (FDL 2010),
pages 1–7, Sept 2010.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

138

c©2011-17 DJ Greaves + S Singh

[3] David Greaves and Satnam Singh. Kiwi: Synthesis of FPGA circuits from parallel programs. In
The 16th IEEE Symposium on Field-Programmable Custom Computing Machines, April 2008.

[4] R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-Vincentelli. Convertibility verifi-
cation and converter synthesis: Two faces of the same coin. In Proceedings of the International
Conference on Computer-Aided Design, November 2002.

[5] A.M. Zaidi and D.J. Greaves. A new dataflow compiler IR foraccelerating control-intensive
code in spatial hardware. InParallel Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International, pages 122–131, May 2014.

Kiwi Scientific Acceleration Manual
Rough Draft User Manual (KiwiC Version Alpha 0.3.2e) (Sept 2017)

139

Index

140

	Asymptotic Background Motivation for FPGA Computing
	Download and License
	Warranty

	I Scientific Users' Guide
	Kiwi Substrate
	Console and LCD stdout I/O and LED GPIO
	Run-time Exception Handler
	DRAM
	Watchpoints and Start/Stop Control
	Framestore
	Profiling

	II Installation and Easy Get Started
	Get Started (Mono on Linux)
	Getting A K-Distro Binary Distribution
	Using A K-Distro Binary Distribution

	III Kiwi Supported Language Subset Limitations and Style Guide
	General CSharp Language Features and Kiwi Coding Style
	Supported Types
	Supported Constants and Variables
	String Handling
	Supported Operators
	Supported Class Features
	Supported I/O with Kiwi
	Data Structures with Kiwi 1/2
	Data Structures with Kiwi 2/2 - more advanced and opaque temporary write up...
	First Stage Processing (repack):

	Dynamic Storage Allocation
	Pointer Arithmetic
	Garbage Collection
	Testing Execution Env: Whether I am running on the Workstation, RTL_SIM or the FPGA blades.
	Clone
	Varargs
	Delegates and Dynamic Free Variables
	The ToString() Method
	Accessing Numerical Value of Pointer Variables
	Accessing Simulation Time
	Run-time Status Monitoring, Waypoints and Exception Logging
	 Exiting Threads
	Null pointer, Array bounds, Overflow, Divide-By-Zero and Similar Run-time Exceptions
	Normal Thread and Program Exit
	User-defined C# Exceptions
	Debug.Assert or Trace.Assert

	Pause Modes (within Sequencer HLS Mode)
	Unwound Loops
	 More-complex implied state machines
	Inner loop unwound while outer loop not unwound.
	Entry Point With Parameters

	Generate Loop Unwinding: Code Articulation Point
	Supported Libraries Cross Reference
	System.Collections.Generic
	Standard System.Math Library
	Parallel For Loop
	System.Random
	Console.WriteLine and Console.Write
	get_ManagedThreadId
	System.BitConverter
	System.String.ToCharArray
	System.IO.Path.Combine
	TextWriter
	TextReader
	FileReader
	FileWriter
	Threading and Concurrency with Kiwi
	Sequential Consistency
	Volatile Declarations

	Kiwi C# Attributes Cross Reference
	Kiwi.Remote() Attribute
	Referentially Transparent and Mirrorable
	Remote Method Overloading
	Remote Method Performance

	Asynchronous Invokation
	Flag Unreachable Code
	Hard and Soft Pause (Clock) Control
	End Of Static Elaboration Marker - EndOfElaborate
	Loop NoUnroll Manual Control
	Elaborate/Subsume Manual Control
	Synchronous and/or Asynchronous RAM Mapping
	Register Widths and Overflow Wrapping
	Net-level Input and Output Ports
	Wide Net-level Inputs and Outputs
	Clock Domains
	Remote
	Elaboration Pragmas - Kiwi.KPragma
	Assertions Debug.Assert()
	Assertions - Temporal Logic
	RTL Parameters

	Memories in Kiwi
	On-chip RAM (and ROM) Mirror, Widen and Stripe Directives
	ROMs (read-only memories) and Look-Up Tables
	Forced Off-chip/Outboard Memory Array Mapping
	Off-chip load/store ports
	HSIMPLE Offchip Interface & Protocol
	HFAST Offchip Interface & Protocol
	BVCI Offchip Interface & Protocol

	AXI and HFAST-to-AXI mapping
	Off-chip address size
	B-RAM Inference
	Dual-port Block RAMs
	Other multi-port RAMs

	Substrate Gateway
	Console I/O
	Filesystem Interface
	Hardware Server

	Kiwi Performance Tuning
	Kiwi Performance Predictor
	Phase Changes, Way Points and Loop Markers
	Growth Parameter Assertions/Denotations
	Debug, Single Step and Directorate Interface

	Spatially-Aware Binder
	Generated RTL
	RAM Library Blocks
	ALU Library Blocks

	Incremental Compilation and Black Boxes
	IP Integration via IP-XACT
	The Kiwi.Remote() Markup
	Required MetaInfo
	Instantiation Styles
	Subsystem Abend Syndrome Routing

	Design Examples
	A get-started example: 32-bit counter.

	IV Expert and Hardware-level User Guide
	Kiwi Hard-Realtime Pipelined Accelerators
	Pipelined Accelerator Example 1

	Designing General/Reactive Hardware with Kiwi
	Input and Output Ports
	Register Widths and Wrapping
	How to write state machines...
	 Moore Machines
	 Mealy and combinational logic:

	 State Machines
	Clock Domains

	SystemCSharp

	V Kiwi Developers' Guide and Compiler Internal Operation
	KiwiC Internal Operation
	Background: HPR/LS Library (aka Orangepath)
	DIC
	ASM
	RTL and FSM
	CMD
	Finite-State Machines
	CSP/Occam
	Internal Working of the KiwiC front end recipe stage

	VI Miscellaneous
	FAQ and Bugs

	VII Orangepath Synthesis Engines
	A* Live Path Interface Synthesiser
	Transactor Synthesiser
	Asynchronous Logic Synthesiser
	SAT-based Logic Synthesiser
	Bevelab: Synchronous FSM Synthesiser
	Bevelab: Hard Pause Mode Internal Operation
	Bevelab: Soft Pause Mode Internal Operation

	VSFG - Value State Flow Graph
	PSL Synthesiser
	Statechart Synthesiser
	SSMG Synthesiser
	Repack Recipe Stage
	Restructure Recipe Stage

	VIII Output and Analysis Recipe Stages
	HPR Output Formats Supported
	C++, SystemC and C# Output Generators
	RTL Output Generator
	IP-XACT Output Generator
	Built-in report writers

	Arithmetic and RAM Leaf Cells
	Fixed-point ALUs
	Floating-point ALUs
	Floating-point Convertors
	RAM and ROM Leaf Cells

	IX HPR L/S (aka Orangepath) Facilities
	FILES AND DIRECTORIES
	Environment Variables and IncDir Search Paths
	Espresso

	Cone Refine
	HPR Command Line Flags
	Other output formats
	General Command Line Flags
	HPR L/S (aka Orangepath) FAQ

	HPR System Integrator
	Memory Map Management (Link Editing)
	Deadlock and Combinational Paths
	Constructive Placement
	Multi-FPGA designs
	Mux and Demux Blocks
	Non-uniform Memory Access (NUMA)
	Network On Chip (NoC)
	Bus Definitions
	Sewing Kit for Miscellaneous Nets
	System Integrator Example Run

	Diosim Simulator
	Simulation Control Command Line Flags

