User's Guide

$\label{eq:premium sqc for Excel^{\tiny \rm TM}} Premium \ SQC \ for \ Excel^{\scriptscriptstyle \rm TM}$

Version 3.02f

© 1991-2001 BaRaN Systems Ltd.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of BaRaN Systems Ltd.

© 1991-2001 BaRaN Systems Ltd.

Disclaimer

Microsoft® and Excel are registered trademarks of Microsoft Cooperation.

SQC for ExcelTM and **Premium SQC for ExcelTM** are provided "as is" without warranty. To the best of our knowledge, the statistical calculations provided in the package are accurate. However, this validity is not guaranteed. The user is responsible for decisions made based on the results generated by the package.

The spreadsheets generated by the **SQC for ExcelTM** or **Premium SQC for ExcelTM** program can only be used when a license for the **SQC for ExcelTM** or **Premium SQC for ExcelTM** programs are purchased. Please do **not** distribute the stand-alone SQC worksheets generated by the **SQC for ExcelTM** or **Premium SQC for ExcelTM** without written permission of BaRaN Systems Ltd.

BaRaN Systems (BSL) 458 Plantation Dr. PMB 100 Lake Jackson, TX 77566

Phone: (403) 449-6554 Web www.baran-systems.com

Document No. Sfx_Premium_101.doc

Contents

Introduction	5
Before You Begin	5
Microsoft [®] Excel Version	5
Online SQC for Excel TM	6
Introduction	6
How the Program Works	6
1- Input Data Processing	6
2- History Buffer	7
3- Calculation Buffer	8
How to Setup Online Parameters	9
Quick Tour	10
Purpose of the Quick Tour	10
Files Required	10
Flow of Calculations	11
a- Opening the initial data file	11
b- Installing the SQC for Excel TM	12
c- Loading the data to a working SQC spreadsheet	13
e- Analyzing the data.	14
f. Softing the external data generator	13
g- Starting the Online SOC for Excel TM	10
h- Checking the results	17
Online SQC Using External Database	19
Introduction	19
How to set the Access Database	20
How to set the Online Worksheet	21
How to Start the Online Program	24
Nested Charts	25
Introduction	25
Theory	26
Calculation	28
Nested Control Chart Example	20
How to Calculate	
How to Analyze Nested Control Charts	34
How to Setup Nested Charts	35

PCA - Partial Component Analysis	39
Introduction	39
Theory	40
Data processing and scaling	40
Example	40
Data processing and scaling	41
Similarity matrix calculation.	42
Calculation of Eigen vector and Eigen matrix	42
Sorting of Eigen vector	4
Loading Factors	40
Score Factors	4
M-SQC	48
How to Use PCA Program	49
References	52

Introduction

Before You Begin

Complete and mail the registration card.

Make a back-up of your original disk. Do not use your original disk as your working copy. If you happen to overwrite it, you will have lost your **Premium SQC for Excel**TM program. Keep your original disk locked. Either copy it to your hard disk or make a working copy on another floppy.

The spreadsheets generated by the **Premium SQC for ExcelTM** or **SQC for ExcelTM** programs can only be used when a license for the **Premium SQC for ExcelTM** or **SQC for ExcelTM** program are purchased. Please do **not** distribute the stand-alone SQC worksheets generated by the **SQC for ExcelTM** or **Premium SQC for ExcelTM** without written permission of BaRaN Systems Ltd.

Microsoft® Excel Version

The SQC for ExcelTM and Premium SQC for ExcelTM are developed for Microsoft[®] Excel 97 or version 8 or Microsoft[®] Excel 2000 or version 9.

Online SQC for ExcelTM Introduction

The **Online SQC for Excel**[™] allows the users to connect their Excel SQC charts to the auxiliary online measurement. The Access to your DCS (Digital Computer Systems) or any other computer should be functional before installing this program.

Data Gathering Computer

SQC Computer

How the Program Works

The Online program utilizes the following steps:

1- Input Data Processing

The program runs on an internal timer set by the user. At a fixed sampling time, Ts. The program runs to update the history buffer and all appropriate calculations and reports.

The program assumes that at each sample time, Ts, the data fields are updated by an auxiliary program.

The data fields can be set to collect data directly with programs such as @aGlance. In this case the user connects the data fields to the auxiliary program manually.

The Data can be collected automatically with an External Data Gathering Program (see the last section of this chapter).

2- History Buffer

When the online option is activated, at each sample time of Ts, the program will copy the data fields from the ONLINE worksheet to the history buffer in the DATA worksheet.

Ts = 1.0 Min.	10:30 10 19 18 17
	10:31 11 11 12 14
	10:32 12 12 14 12
10:45 13 12 11 12	10:33 13 12 11 11
	10:44 14 13 12 11
	10:45 13 12 11 12

ONLINE worksheet

DATA Worksheet

For example at 10:45 a new sample arrives and the program copies it to the history buffer.

ONLINE worksheet	DATA Workshee
	10:46 14 14 10 12
	10:45 13 12 11 12
	10:44 14 13 12 11
10:46 14 14 10 12	
10.46 14.14.10.12	10:33 13 12 11 11
	10:32 12 12 14 12
	10:31 11 11 12 14
Ts = 1.0 Min.	10:30 10 19 18 17

At 10:46 the program executes again and copies the 10:46 data to the history buffer.

The maximum number of records in the history buffer, Nh, is set to 1000 records. Then the user can change this setting by choosing Setup from SQC menu. The new data is copied from the ONLINE worksheet and is placed at the end of the history buffer until the buffer size reaches the Nh. If the number of records in the history buffer exceed the Nh, the program automatically scrolls the buffer and deletes the first record (or the oldest record).

Record 1	Record 2	Record 3	Record 4
Record 2	Record 3	Record 4	Record 5
Record 3	Record 4	Record 5	Record 6
Record 999	Record 1000	Record 1001	Record 1002
Record 1000	Record 1001	Record 1002	Record 1003

7

3- Calculation Buffer

The SQC for Excel[™] has an internal calculation buffer, Nc. This is the number of RECORDS or number of points in the SQC chart. You set this number by selecting the initial SCQ data. For example the "Quick Tour Example had 15 sub-groups or 15 records).

The **Online SQC for Excel**[™] program will connect the CALCULATION worksheet data buffer to the newest data in the history buffer of the DATA worksheet.

How to Setup Online Parameters

The Online Parameters are:

Variable	Description	Value
Start and Stop	These buttons start and stop the Premium SQC	
Button	for Excel [™] program.	
External Trigger	The content of the cell B3 is changed externally.	
Internal Trigger	The program runs at sample Time, Ts, entered in	
	the cell B4.	
Sample Time (Ts)	The time program will run if the Internal trigger is	
	selected	
Data	The data to be used by Premium SQC for Excel TM	
Output	The data to be sent to the External source	
Reports and Saving	This option allows the user to print a report and	
-	save the data to a disk.	

× B	ook3								_ 🗆 ×
	А	В	С	D	E	F	G	Н	
1 2 3	Start	Stop							
4	External trigger								
5	Local timer	0:01:00							
6	Time Stamp								
7	Refresh external data								
8				Label	Date	Product	Batch	Tag 1	Tag 2
9			Data						
10									
11	Chart name	Out of control points							
12	Output2								
13	Output3								
14	Output4								
15	Output5								
16	Output5								
17				_					
18	□ Print report every	10.000		-					
19	Save workbook every	10.000							
20					<u> </u>				
	▶ ▶ NOnline / Calculation	on / Charts / Auto correlat	ion / Cap	abilities / Re	egi∣∢				

From SQC menu, choose Setup to change the history buffer size.

Setup		2
Number of	decimal place: 3	OK
HISTORY SIZE	1000	Cancel
Font		Beload
Nane:	Arial	Save
Size:	10	

Quick Tour

Purpose of the Quick Tour

The purpose of the quick tour is to provide the user with a quick overview of the functionality of **SQC for Excel** by stepping through an example problem. By so doing, the user will become familiar with the basic steps involved in doing an analysis and will readily acquire a feel for the tool.

The example involves analyzing data from a manufacturing process. Five observations a day have been made over a fifteen day period and tabulated in the following table.

Day	No 1	No 2	No 3	No 4	No 5
1	13.6	12.6	13.2	13.1	12.1
2	13.5	12.8	13.0	12.8	12.4
3	13.0	13.0	12.1	12.2	13.3
4	13.9	12.1	12.7	13.4	13.0
5	14.4	12.4	12.6	12.4	12.5
6	13.3	12.8	13.0	13.0	13.1
7	13.4	13.3	12.0	13.0	13.1
8	14.2	12.7	12.2	12.9	12.5
9	14.0	13.2	12.4	16.0	13.0
10	14.1	13.7	13.4	12.2	12.5
11	13.3	12.7	12.6	13.0	12.7
12	13.9	12.4	12.7	12.4	12.8
13	13.2	12.3	12.6	13.1	12.7
14	13.2	12.8	12.8	12.3	12.6
15	13.3	12.4	13.0	12.3	12.2

The task is to develop online SQC charts for this data. It assumes that the external program will generate 5 data points every minute.

Files Required

There is one file required to run this example:

1. Process_Data worksheet in the Cases.xls file

Flow of Calculations

There are several steps in transforming a set of raw data points from an Excel worksheet into a set of charts or reports. These steps include:

- a- Opening the initial data file
- b- Installing the SQC for ExcelTM program (see installation chapter)
- c- Loading the data to a working SQC spreadsheet.
- d- Analyzing the data.
- e- Adding Premium SQC for Excel[™] parameters
- f- Setting the external data generator
- g- Starting the Premium SQC for ExcelTM
- h- Checking the results

Once the data has been selected and the load data option has been selected, flow of calculations will automatically proceed to the plotting phase. The report option needs to be specifically selected to generate printed output. Once a set of calculations has been completed, the user is able to restart the sequence at any point.

a- Opening the initial data file

The **SQC for Excel**TM can be loaded into the Microsoft® Excel using the following procedure:

- 1. Start Microsoft® Excel
- From File menu, choose Open and select Cases.xls file in the Program Files→ SQC for Excel 97 folder.

🔯 Exploring - Program Files	;				_ 🗆 ×
<u>F</u> ile <u>E</u> dit ⊻iew <u>T</u> ools <u>H</u> e	lp				
🔄 Program Files	•	🖻 🚈 👗 🖻 🛍 🖻	X 😭 😐	8- 8- 8- 8-	
All Folders		Contents of 'Program Files'			
🗄 🚖 Program Files		Name	Size	Туре	Modifiec 🔺
Projects		📄 Paint Shop Pro		File Folder	3/30/97
📃 🕀 💼 Qgate		Plus!		File Folder	5/23/96
Raplayer		SQC for Excel 97		File Folder	9/2/97 9
Recycled		🚞 The Microsoft Network		File Folder	8/30/97
😥 💼 Rfire	-	🚞 Web Publish		File Folder	5/6/976 🔫
1 object(s) selected					

3. Click OK

b- Installing the SQC for ExcelTM

- 1. Check to see if you have SQC on the Excel menu bar, if not please do the following:
 - a. From Tools menu, choose Add-in...

- b. Make sure that the SFX_Main add-in is checked
- c. Click OK
- <u>Note</u>: If SFX_Main SQC for Excel[™] is not shown in the add-in list, please follow the directions given in the installation chapter or add it in by clicking on the Browse... button and look at Program Files → SQC for Excel folder.

c- Loading the data to a working SQC spreadsheet

Only data that has been selected on the raw data worksheet will be analyzed. To select data on the raw data worksheet, use the mouse or keypad to highlight the area of cells, which represents the data of interest. In the following example, the whole data set representing fifteen days of observations is selected.

Select data (C11 to G25)

- 1. From Window menu, choose file Cases.xls
- 2. Select the Process_Data worksheet
- **3.** Select the first data point (i.e. click on cell **C11**)
- **4.** Hold the mouse button down and drag to the last data point (i.e. cell **G25**) or click on the **Select Data** Button.

Se ca	ses.xls							_ 🗆 ×
	A	В	С	D	E	F	G	
5 6 7			Operator Log o	f Process Read	ings	Sele	ct Data	
8 9 10	Sub group No		Shift Readings 06:00	10:00	14:00	18:00	22:00	
11	1		13.6	12.6	13.2	13.1	12.1	
12	2		13.5	12.8	13.0	12.8	12.4	
13	3		13.0	13.0	12.1	12.2	13.3	
14	4		13.9	12.1	12.7	13.4	13.0	
15	5		14.4	12.4	12.6	12.4	12.5	
16	6		13.3	12.8	13.0	13.0	13.1	
17	7		13.4	13.3	12.0	13.0	13.1	
18	8		14.2	12.7	12.2	12.9	12.5	
19	9		14.0	13.2	12.4	16.0	13.0	
20	10		14.1	13.7	13.4	12.2	12.5	
21	11		13.3	12.7	12.6	13.0	12.7	
22	12		13.9	12.4	12.7	12.4	12.8	
23	13		13.2	12.3	12.6	13.1	12.7	<u>81</u>
24	14		13.2	12.8	12.8	12.3	12.6	
25	15		13.3	12.4	13.0	12.3	12.2	
	▶ ▶ ∖ Summary	} Process	5_Data / Ford_E:	kample / P_Char	t / nP_ 🚺			

e- Analyzing the data.

Follow the instruction in the Quick Tour Chapter in the **SQC for ExcelTM** User manual.

f- Adding Online SQC for ExcelTM parameters

The **Premium SQC for Excel[™]** updates all worksheets selected in the Analysis dialog. To ensure that the **Premium SQC for Excel[™]** program does all calculations on time, please follow these steps:

- 1- From the SQC menu, choose the Analysis option.
- 2- Change the parameters to get the following setup.

🗌 Histogram/Distribu	ution	Properties
Auto Correlation		
🗖 (Process Capabiliti		
Control Charts		
C None		Propertie
Variables	XBar & R 💌	
C Attrib <u>u</u> tes	P Z	
C <u>M</u> ulti variable	Nested Chart 📃	
Advanced		
Runs and Irends	☐ Cu <u>S</u> UM	Propertie
Tren <u>d</u> chart	<u>Г</u> Е <u>W</u> MA	

- 3- Click on the NEXT button.
- 4- Select the worksheet TAB labeled "Online".

Start and	В	look3								_ 🗆 ×
		A	В	С	D	E	F	G	Н	
Stop Buttons	1 2	Start	Stop				Data		7	
	T 3									
T., (4	External trigger								
Internal	5	☑Local timer	0:01:0	0						
Trigger	6	Time Stamp								
	7	Refresh external data								
	18				Label	Date	Product	Batch	Tag 1	Tag 2
	9			Data						
	10									
	11	Chart name	Out of control points	3						
	12	Output2								
	13	Output3								
	14	Output4								
	15	Output5		_						
Reports and	16	Output5								
Saving	17		10.00	2	_					
	18	Print report every	10.00		-					
	19	Save workbook every	10.00	U	_					
	20					1.1				▼
		□▶□▶□∖Online (Calculati	on / Charts / Auto correl	ation / Cap	abilities / Re	egi∣◀∣				

5- Set the following Parameters

Variable	Description	Value
Start and Stop	These buttons start and stop the	Do not use now
Button	Premium SQC for Excel TM	
	program.	
Trigger	External: The content of the cell	Select Internal trigger and
	B3 is changed externally.	enter 00:01:00 for 1
	Internal: The program works at	minute in cell B4.
	frequency entered in cell B4.	
Data	The data to be used by	Enter =Now() in cell B8
	Premium SQC for Excel TM	
Output	The data to be sent to the	Enter the UCL and LCL
	External source	from the calculation
		worksheet.
		B13 \rightarrow =Calculation!C12
		B14 \rightarrow =Calculation!C11
Reports and Saving	This option allows the user to	Select both options
	print a report and save the data	
	to a disk.	

6- Save the Spreadsheet as ONLINE.XLS

f- Setting the external data generator

Do the following steps to start the SQC_DDE.

1- Double click on SFX_DDE.EXE file in the SQC folder

		_ 🗆 ×
duce rando aved before	m numbers ir e running thi	n given range s program.
Online.xls	6	-
Online		_
): [9	6	-
5	-	
13	14	
): 60000		Send now
	🖵 Start	sending data
	duce rando aved before Online.xls Online 9 5 13 13	duce random numbers in aved before running thi Online.xls Online 9 6 5 13 14 14

- 2- Set the parameters as shown above
- 3- Check mark the Start Sending data

S] 0	nline.xls								
	D	E	F	G	Н]	J	K	L 🗍
8	Product E	Batch	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Status	Comment
9			13.656	13.464	13.052	13.664	13.335		
10	ASFX DD)E	i ai	1					
11									
12	This program	n will produc	e random num	nbers in given	range				
13	work book r	nust be sav	ed before runn	ing this progra	am.				
14									
15	Workbook	name:) nline, xls						
16	Workshee	t name:)nline						
10	Cell numbe	и ег (В2С2): Га							
10	Connumbe		і						
20	- N	o of Col: 15	i		-			-	
21	Min and M	lax: 1	3 1.	4					
22		1							
23	Send each	h (milisec): F a	:0000	A					
24		. comercial	0000		na now				
25			N	Start sendin	g data				
]				elat	ion / •			L L

4- Check that the values in Data row in the ONLINE.XLS file is changing.

g- Starting the Online SQC for ExcelTM

Once the external data is being forwarded to the **Online.XLS**, you can start the **Premium SQC for Excel**TM program with the following steps:

1- From SQC menu, choose Report and set it as shown below

	- Portrait -	- Fit to page -	%Normal size -
🗖 <u>D</u> ata	P	N	100
Histogram/Distribution	•	v	100
Auto Correlation	Г	v	100
Process Capabilities	N	v	100
Regression	N	v	100
Г РСА	V	V	100
SQC calculations	Г	v	100
Control Charts	V	V	100
Runs and Irends	V	v	100

2- In the **Online** worksheet click on the **Start** button.

Note: You need to click the STOP button to stop the online program. In case of emergency press the ESCAPE key and then click on the END button. The ESCAPE key will make the program terminate incorrectly and you will need to start over again.

h- Checking the results

The SQC for ExcelTM program automatically updates all relevant calculations and charts in the Online spreadsheet.

Online SQC Using External Database

Introduction

The Online functionality of SQC for ExcelTM can be used with a variety of external databases. The supported databases are listed below:-

Once you have your data updated in one of the above databases, you can connect it to the SQC for ExcelTM for online observation. The following example provides the information and step by step instructions on how to setup the connections between SQC for ExcelTM and Microsoft® Access 97. You can use this example to set connections with other databases.

How to set the Access Database

The SQC for Excel[™] data input should be EXACTLY the way the data is arranged in the DATA worksheet for your SQC charts. The data worksheet for the Online Quick tour is constructed as:

Label	Date	Product	Batch	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Status	Comment
				13.6	12.6	13.2	13.1	12.1		
				13.5	12.8	13.0	12.8	12.4		
				13.0	13.0	12.1	12.2	13.3		
				13.9	12.1	12.7	13.4	13.0		

Therefore you need to create an Access database with exactly the same fields and connect your Access database to the data-gathering program.

Sneett . Tal	ле		
Field	Name	Data Type	Description
0		AutoNumber	
Label		Number	
Date		Date/Time	
Product		Text	
Batch		Number	
Tag1		Number	
Tag 2		Number	
Tag 3		Number	
Tag 4		Number	
Tag 5		Number	
Status		Text	
Comment		Text	
UCL		Number	
LCL		Number	
		Field Properties	
General Look	un l		
Cield Cies	up Levels		A held
rielu size	Long Ir	ileger	name can
New values	Increm	eni	B4
Format			characters
Laption			long.
Indexed	Yes (N	o Duplicates)	including
			spaces.
			Press F1
			for help
			on field

How to set the Online Worksheet

Once the database is setup and connected to the data-gathering program (i.e. collecting data at every minute), you need to setup the ONLINE worksheet. Please follow these steps:-

Step 1: Select the ONLINE worksheet.

Step 2: From **Data** menu, choose **Get External Data** → **Create New Query...**option. Step 3: Choose "MS Access 97 Database" and click OK.

Step 4: Click on your data (Sheet1) and click on the ">" arrow to copy all fields across.

Query Wizard - Choose Columns What columns of data do you want to include in y	your query?	? ×
Available tables and columns:	Columns in your query:	
Preview of data in selected column:		
Preview Now	< Back Next >	Cancel

Step 5: Click on NEXT button until the following dialog.

Query Wizard - Finish		? ×
What would you like to do next?		
© <u>R</u> eturn Data to Microsoft Excel	<u>S</u> a	ive Query
View data or edit query in Microsoft Query		
2	< <u>B</u> ack Finish	Cancel

Step 7: Select the "View Data..." and click on the **Finish** button.

🏠 Microsoft Q	uery					_ 🗆 ×
<u>File E</u> dit ⊻ie	w Forma <u>t</u> Ta <u>b</u> le <u>C</u> rite	eria <u>R</u> ecords <u>W</u> indow	<u>H</u> elp			
	SQL (# # 1 = 2		2			
Query 1 fron	n MS Access 97 Databa LastOfDate	se (not sharable) LastOfTag1	LastOf	Tag2	LastOfTac	
▶ 16	1899-12-30 10:00:00	11.0	12.0		13.0	
•						•
Ready					NUN	

Step 8: Write the following SQL commands in a word processor or Excel and copy them to the local buffer.

SELECT DISTINCTROW
Last(Sheet1.ID) as LastofID.
Last(Sheet1.Label) as LastofLabel.
Last(Sheet1.Date) as LastofDate.
Last(Sheet1.Product) as LastofProduct,
Last(Sheet1.Batch) as LastofBatch,
Last(Sheet1. Tag 1) as LastofTag1,
Last(Sheet1.`Tag 2`) as LastofTag2,
Last(Sheet1.`Tag 3`) as LastofTag3,
Last(Sheet1.`Tag 4`) as LastofTag4,
Last(Sheet1. Tag 5) as LastofTag5,
Last(Sheet1.Status) as LastofStatus,
Last(Sheet1.Comment) as LastofComment,
Last(Sheet1.UCL) as LastofUCL,
Last(Sheet1.LCL) as LastofLCL
FROM `c:\My Documents\db3`.Sheet1 Sheet1

Note that all of the fields are shown here. The Tag 1 is placed in a single apostrophe to preserve the space. The address of the database should be the address of your database.

Step 9: Click on the SQL button on the QUERY tool bar or choose SQL from View menu. Paste the above commands instead of the one that exists there. The above SQL will update the LAST record of the database for SQC for ExcelTM access. Click the OK button.

SQL		? ×
SQL statement	Γ	<u>0</u> K
SELECT DISTINCTROW Last(Sheet1.ID) as LastofID.		
Last(Sheet1 Label) as LastofLabel,		Cancel
Last(Sheet1.Date) as LastofDate,		
Last(Sheet1.Product) as LastofProduct,		
Last(Sheet1.Batch) as LastofBatch,		
Last(Sheet1.`Tag1`) as LastofTag1,		
Last(Sheet1.`Tag 2`) as LastofTag2,		
Last(Sheet1.`Tag 3`) as LastofTag3,		
Last(Sheet1.`Tag 4`) as LastofTag4,		
Last(Sheet1.`Tag 5`) as LastofTag5,	•	

SQL	? ×
SQL statement Last(Sheet1.'Tag 1') as LastofTag1, Last(Sheet1.'Tag 2') as LastofTag2, Last(Sheet1.'Tag 3') as LastofTag3, Last(Sheet1.'Tag 5') as LastofTag4, Last(Sheet1.'Tag 5') as LastofTag5, Last(Sheet1.'Status) as LastofStatus, Last(Sheet1.'Status) as LastofComment, Last(Sheet1.'CL) as LastofLCL, FROM'c:\My Documents\db3'.Sheet1 Sheet1	Cancel

Step 10: Click on the following dialog.

Microsoft	Query		×
⚠	SQL Query can't be rep	presented g	raphically. Continue anyway?
	ОК	Cancel	<u>H</u> elp

Note: After this dialog you should not have any errors. However if you get one check your SQL commands.

Step 11: From File Menu, choose Close and Return Data to Excel.

Step 12: Enter Cell C8 as the data entry

Returning External Data to Microsoft Excel	? ×
Where do you want to put the data? © Existing worksheet:	OK
New worksheet	P <u>r</u> operties
	Parameters

How to Start the Online Program

Once the external database is connected to ONLINE worksheet, please do the following steps:

Step 1: Make sure you clicked the

- a- Local time check box
- b- Refresh External data
- c- Entered the sample time of 0:0:1

1	ook2						_	
	A	В	С	D	E	F	G	
1 2 3	Start	Stop						
4	External trigger							
5	✓ Local timer	0:01:00					2	
6	Time Stamp	10:36:45	TRUE					
7	🖌 Refresh external data							
8			LastofID	LastofLabel	LastofDate	LastofProduct	LastofBatch	Las
9			16	16	1/0/00 10:00	new	1	
10								
11	Chart name	Out of control points						
12	X-Bar	2.000						
13	Range Chart	2.000						
14								
15		2						
16								
17								
18	Print report every	10.000	- 8 - 5					
19	Save workbook every	10.000						
20								-
	► N Online / Calculat	ion / Charts / Auto corre	lation / Ca	apabilities / R	•	1		

Step 2: Click the Start button. Note that the SQC menu on the menu bar is now dimmed. You need to click the Stop button to stop the Online SQC for ExcelTM program. After a minute you will see the program writes the time stamp in cell B5 and copies the data to all appropriate spreadsheets. For example the CALCULATION worksheet after three minutes is shown.

	Α	В	С	D	E	 E 	Ģ	н	1		ा
11		2			14.1	13.7	13.4	12.2	12.5		
12					13.3	12.7	12.6	13.0	12.7		
13					13.9	12.4	12.7	12.4	12.8		
14					13.2	12.3	12.6	13.1	12.7		
15					13.2	12.B	12.8	12.3	12.5		
16					13.3	12.4	13.0	12.3	12.2		
17	16	1.0/00 10:00	DENU .	1	11	12	13	14	15	16	17
18	16	1,0/00 10:00	NEW	1	11	12	13	14	15	16	17
19	16	1,0/00 10:00	new	1	11	12	13	14	15	16	17
20				2		101	5.00				
21											
22											
23				constant of the	and the second second	and second of	week and				

Nested Charts

Introduction

This chapter describes how to construct nested SQC charts. This allows the user to examine multiple sources of variations.

Suppose a process generates 15 batches of a product For each batch 2 samples are taken and the thickness of each sample is measured 2 times. Using the standard SQC charting techniques described in the previous sections, we can analyze the process using X-Bar and S Charts:

	Α	В	All	
First SubGroup	1.000	1.000	1.000	Limits are calculated using zone AB
Last SubGroup	30.000	30.000	30.000	
Std-				
Average	3.013	3.013	3.013	
LCL	0.000	0.000	0.000	Std_Ave * [0.000 B3]
UCL	9.843	9.843	9.843	Std_Ave * [3.267 B4]
X bar-				
Average	99.522	99.522	99.522	
LCL	91.511	91.511	91.511	X_BaStd_Ave - Std_Ave * [2.659 A3]
UCL	107.533	107.533	107.533	X_BaStd_Ave + Std_Ave * [2.659 A3]
X Average	99.522	99.522	99.522	
Sigma	3.776	3.776	3.776	Std_Ave / [0.798 C4]
LCL	91.970	91.970	91.970	X_Ave -2 * Sigma
UCL	107.073	107.073	107.073	X_Ave +2 * Sigma

Analyzing the above data yields the following X Bar and S charts.

Theory

Considering the above charts, the X-Bar chart is severely out-of-control. In interpreting these charts, one should realize that the control limits in the X-Bar chart were calculated on the basis of the standard deviations within the subgroup on the basis of the within-sample variability. The subsequent subgroups, however, are not only subject to within-sample variability, but also to between sample to sample and batch to batch variability.

What are the sources of variation in a product response? There are three major sources of variation in a process.

- 1. Measurement variability
- 2. Sampling variability (within batch)

3. Batch to batch variability

Each of the three sources of variability adds variation or error to the results. The sample pulled from the batch and tested yields to:

$$E = X - X_{bar}$$
 (Average)

Where

E	is the error,
Х	is the measurement and
X _{bar} (Average)	is the population average.

The overall error has three components corresponding to three sources of variations:-

$$E = E_{Batch} + E_{Sample} + E_{Measurement}$$

Where

E _{Batch}	is the error caused by batch to batch variability,
E _{Sample}	is the error caused by batch to sampling variability and
E Measurement	is the error caused by batch to measurement variability

By definition, these errors have zero averages and can be assumed to be represented as normal distributions with fixed variances.

The standard deviation, $\boldsymbol{\sigma}$, calculated from the data represents an estimate of the combination of these error components.

$$\boldsymbol{\sigma}^{2} = \boldsymbol{\sigma}_{Batch}^{2} + \boldsymbol{\sigma}_{Sample}^{2} + \boldsymbol{\sigma}_{Measurement}^{2}$$

where

 σ^2 is the total estimated variable

 σ_{Batch}^{2} is the batch-to-batch estimated variance

 σ_{sample}^2 is the sample estimated variance

 $\sigma_{\text{Measurement}}^2$ is the measurement variance

Calculation

The following variances are calculated:-

Measurement Variance

The estimated variance of measurement, $\sigma_{\text{Measurement}}\,^2$, is calculated as the average of all measurement variances.

$$(\boldsymbol{\sigma}_{\text{Measurement}}^2)_J = \text{Variance}(X_{I, J} I=1, 2) \text{ for all } J=1, 2, ..., 15$$

 $(\boldsymbol{\sigma}_{\text{Measurement}}^2) = \text{Average}((\boldsymbol{\sigma}_{\text{Measurement}}^2)_J, J=1, 2, ..., 15)$

Sample Variance

If Variance of the samples equals the average of the variances of the sample averages, then

$$Vs = (\sigma_{Sample}^2) + (\sigma_{Measurement}^2) / k$$

where

k is the number of measurements per sample

 $\sigma_{\text{Measurement}}^2$ is the estimated variance of measurement

 $\sigma_{\text{Sample}}^{2}$ is the estimated variance of sample

Batch Variance

The Batch to Batch variance is determined from the batch averages. The following procedure is used to calculate batch to batch variance σ_{Batch}^2

$$Vp = (\boldsymbol{\sigma}_{Batch}^{2}) + (\boldsymbol{\sigma}_{Sample}^{2})/n + (\boldsymbol{\sigma}_{Measurement}^{2})/(k * n)$$

Vp is the variance of the batch averages k is the number of measurements per sample and n is the number of samples taken per batch.

Nested Control Chart Example

Based on the statistical definition provided before, we can construct control charts for batch process variability.

Variable	Description	Value
k	Number of Measurements per sample	2
	(Sub-group size)	
n	Number of Samples per Batch	2
Nc	Total Number of Batches	15
	(Calculation buffer size)	

The SQC for ExcelTM automatically generates the following calculations:-

Step 1: Develop S charts based on all measurements.

Subgroup size = Ns = $2 \rightarrow k$ Number of subgroups = I*J = 2 * 15 = 30

P) n	🐕 nested_1.xls							
	A	В	С	D				
1								
2								
3	Product	Sample	Test1	Test2				
4	1	1	92.32	97.38				
5	1	2	120.12	111.36				
6	2	1	123.21	121.86				
7	2	2	111.58	115.66				
8	3	1	99.43	96.73				
9	3	2	102.26	99.9				
10	4	1	100.73	98.67				
11	4	2	89.9	91.71				
12	5	1	101.43	103.61	-			
28	13	1	81.22	81.57				
29	13	2	92.68	87.72				
30	14	1	105.31	107.38				
31	14	2	95.86	104.17				
32	15	1	100.81	102.88				
33	15	2	101.01	98.91				
34								
	🕨 🕨 🔪 She	et1 / Sheet2	2 / Sh 🛛 🖣					

	۵	В	All	
First SubGroup	1 000	1 000	1 000	Limits are calculated using zone AB
Last SubGroup	30.000	30.000	30.000	
Std-				
Average	3.013	3.013	3.013	
LCL	0.000	0.000	0.000	Std_Ave * [0.000 B3]
UCL	9.843	9.843	9.843	Std Ave * [3.267 B4]
X bar-				
Average	99.522	99.522	99.522	
LCL	91.511	91.511	91.511	X BaStd Ave - Std Ave * [2.659 A3]
UCL	107.533	107.533	107.533	X_BaStd_Ave + Std_Ave * [2.659 A3]
X Average	99.522	99.522	99.522	
Sigma	3.776	3.776	3.776	Std_Ave / [0.798 C4]
LCL	91.970	91.970	91.970	X Ave -2 * Sigma
UCL	107.073	107.073	107.073	X_Ave +2 * Sigma

Step 2: Construct nested S charts based on the averages of each batch. This is similar to having the X-Bar and S charts constructed for each batch average.

Step 3: Calculate the Sample Average and Variance for each sample (2 measurements per sample)

No.	X[1]	X[2]	X-bar	Var
1	92.320	97.380	94.850	12.802
2	120.120	111.360	115.740	38.369
3	123.210	121.860	122.535	0.911
- 4	111.580	115.660	113.620	8.323
- 5	99.430	96.730	98.080	3.645
6	102.260	99.900	101.080	2.785
7	100.730	98.670	99.700	2.122
8	89.900	91.710	90.805	1.638
9	101.430	103.610	102.520	2.376
10	94.470	97.960	96.215	6.090

Step 4: Construct a new table based on Samples per Batch

Label	S[1]	S[2]
1.000	94.850	115.740
2.000	122.535	113.620
3.000	98.080	101.080
4.000	99.700	90.805
5.000	102.520	96.215
6.000	79.960	96.690
7.000	92.185	114.210
8.000	97.285	83.120
9.000	94.210	93.560
10.000	104.620	99.030
11.000	94.200	100.690
12.000	103.935	117.050
13.000	81.395	90.200
14.000	106.345	100.015
15.000	101.845	99.960

Nested Charts								
	Α	В	All					
First SubGroup	1.000	1.000	1.000	Limits are	calculated	using zone	AB	
Last SubGroup	15.000	15.000	15.000	K=	2	J=	2	
Var(m)	14.890	14.890	14.890	13%				
Var(s)	58.432	58.432	58.432	53%	Var(s) = ∖	/s -Var(m)/l	K	
Var(b)	37.563	37.563	37.563	34%	Var(b) = V	/p - Var(s)/l	K + Var(s)/J	J*K
Var(t)	110.885	110.885	110.885		Var(t) = Var(m) + Var(s) + Var(b))
Vs	65.878	65.878	65.878					
Vp	70.501	70.501	70.501		∨p = Var(b) + Var(s)/	/k + Var(s)/	j*k
SQRT(Vs)	8.117	8.117	8.117	Sigma S =	= SQRT(V:	3)		
LCL	0.000	0.000	0.000	Sigma S *	⁻ [0.000 B3]		
UCL	26.517	26.517	26.517	Sigma S *	7 [3.267 B4			
SQRT(Vp)	8.397	8.397	8.397	Sigma(X) =	= SQRT(V	p)		
Average	99.522	99.522	99.522					
LCL	77.195	77.195	77.195	X_Bar_Ave	e - Sigma	(X) * [2.659	9 A3]	
UCL	121.848	121.848	121.848	X_Bar_Ave	e + Sigma	(X) * [2.659	9 A3]	

Note that the S(1) and S(2) for the first record are the averages of the first and second records from the previous table. The table size is $\frac{1}{3}$ ize of the original table.

How to Calculate

- 1- Calculate the **Var**(**m**) = Average of all Variances in the Table 1.
- 2- Calculate the Average and Variance for table

Label	S[1]	S[2]	Var	Average
1.000	94.850	115.740	218.196	105.295
2.000	122.535	113.620	39.739	118.078
3.000	98.080	101.080	4.500	99.580
4.000	99.700	90.805	39.561	95.253
5.000	102.520	96.215	19.877	99.368
6.000	79.960	96.690	139.946	88.325
7.000	92.185	114.210	242.550	103.198
8.000	97.285	83.120	100.324	90.203
9.000	94.210	93.560	0.211	93.885
10.000	104.620	99.030	15.624	101.825
11.000	94.200	100.690	21.060	97.445
12.000	103.935	117.050	86.002	110.493
13.000	81.395	90.200	38.764	85.798
14.000	106.345	100.015	20.034	103.180
15.000	101.845	99.960	1.777	100.903

- 3- Calculate the Vs or the Average of all Variances in the Table 2.
- 4- Calculate the **Vp** or the Variance of all Averages in the Table 2.
- 5- Calculate the Var(s) = Vs Var(m)/K where k is 2
- 6- Calculate the Var(b) = Vp Var(s)/K + Var(s)/J*K Where K and J are 2 and 2 respectively.
- 7- Calculate Var(t) = Var(m) + Var(s) + Var(b) and the percentage of each Var out of total variance Var(t)
- 8- Calculate the Sigma for control charts as Sigma= SQRT(Vs)
- 9- Calculate the S Chart Lower Control Limit LCL = Sigma* [0.000 B3]
- 10- Calculate the S Chart Upper Control Limit LCL = Sigma* [3.267 B4]
- 11- Calculate the overall average as Average of all Averages in the Table 2.
- 12- Calculate the Nested Chart Upper Control Limit

 $UCL = X_Bar_Ave - Sigma(X) * [2.659 A3]$

- 13- Calculate the Nested Chart Lower Control Limit LCL = X_Bar_Ave + Sigma(X) * [2.659 A3]
- X_Bar Chart (Nested) 130 X(b) UCL 120 X_Bar (Nested) 110 100 🖕 X(b) 90 80 X(b) LCL 70 N с S ശ ω ი 4 9 7 42 13 4 15 **Batch Number** LCL = 77.195 Ave = 99.522 UCL =121.848

How to Analyze Nested Control Charts

- 1. Establish control limits for the nested control charts.
- 2. Use the first S chart to monitor within the sample variability. Out of control situations have to be interpreted as uniformity problems. Note do not analyze X-Bar charts.
- 3. Use the nested S chart to monitor the posted standard deviation **Var(b)**. When out of control, first check the S chart. If this shows no out of control, then there is a between sample problem.
- 4. Finally, use individual Nested Control charts to monitor the **Var(b)** as well as the trend of the run averages. In the case of out of control, check within the sample and between the sample charts for out of control. IF the latter is OK, then a batch problem exists.

The material in this chapter is based on the following references:

- Rene Penning De Vnes, "Control Charts in IC Manufacturing"
- W.H McNeese and R.A. Klein, "Statistical Methods for the Process Industries", ASQC Quality Press, 1991

How to Setup Nested Charts.

The nested charts are calculated for you automatically with the Premium version of **SQC** for Excel TM.

Please do the following steps:-

1- Prepare Original Data

The data should be prepared as Batch, Sample and Measurement. For example in the previous section, the data was organized as:

- 2 Measurements per Sample
- 2 Samples per Batch
- 15 Batches

However it is possible to have access to data with more samples or sub-groups per Batch. The following example provides a example of how to use MS Excel to collect the data.

Assume that you have collected

- 10 measurements per Sample
- 10 samples per Batch
- 5 Batches

However you are interested in analyzing only 5 Sample per batch instead of 10. The following steps will provide you with a detailed procedure to do this:

😭 d	ata. xls											_ 0	×
	L	M	N	0	P	Q	R	S	Т	u	ν	W	
1	Batch	Sample Num.	Tag1	Tag2	Та <u>д</u> З	Tag4	Tag5	Tag6	Tag7	Tag8	Tag9	Tag10,	ļ
2	1	1	7065	7135	7055	7065	7120	7030	7150	7045	7155	7065	
3	1	2	7035	7015	7045	6990	6905	6885	6890	6910	6940	6825	
4	1	3	6835	6875	6990	6905	6895	6985	6915	6910	6925	6890	
5	1	4	7000	6970	6975	6865	6940	7045	7035	7145	7030	7045	
6	1	5	7035	7035	6930	6990	7015	6940	6955	6885	6975	7065	
7	1	6	6995	6835	6960	6985	6885	7015	7080	7135	7135	7145	
8	1	7	7080	7110	6965	7125	7020	7050	7020	6990	7050	6985	
9	1	8	7055	7050	7165	7070	7100	6920	7060	7170	7175	7150	
10	1	9	7005	7080	7005	7015	7005	6895	6895	6980	6955	7010	
11	1	10	7030	7160	6970	6995	7250	7035	7000	6980	6945	6940	
12	2	1	6985	6970	6985	6970	7055	7055	7110	6900	6975	7070	
13	2	2	6960	6940	6950	6930	6930	6970	6935	6955	6925	6840	
14	2	3	7045	7190	7025	7010	7085	7195	7125	7090	7080	7005	Ţ
			7000		7055				7000		7000	7005	
50	5	y .	7030	/115	/055	6980	6920	6965	7030	6985	/000	7025	
51	5	10	7025	/130	/045	/125	/025	/015	/055	/075	/095	/115	. 💌
		٩/					· · ·	•				► ►	

Step 1: Open the spreadsheet with data.

Step 2: From the Data menu, choose Filter and then AutoFilter

Step 3: In the cell labeled Sample Number, click on the down arrow and then select **Custom** option.

(All)
(Top 10)
(Custom)
1
2
3
4
5
6
7
8
9
10

Step 4: Click on the selection arrow and choose the "Less than and Equal to" option.

Custom AutoFilter		? ×
Show rows where: Sample Num. equals		OK Cancel
Use ? to represent any single character Use * to represent any series of characte	rs	
Custom AutoFilter		? X
Custom AutoFilter Show rows where: Sample Num. Is less than or equal to	5	OK Cancel

🔡 d	ata.xls										_	
	L	M	N	0	Р	Q	R	S	Т	U	۷	. ا
1	Batc -	Sample Num.	Tag1 🔽	Tag2 🔽	Tag3 🗸	Tag4 🔽	Tap5 🔽	Tag6 🔽	Tag7 🗸	Tag8 🔽	Tag9 🚽	Tac
2	1	1	7065	7135	7055	7065	7120	7030	7150	7045	7155	7
3	1	2	7035	7015	7045	6990	6905	6885	6890	6910	6940	6
4	1	3	6835	6875	6990	6905	6895	6985	6915	6910	6925	6
5	1	4	7000	6970	6975	6865	6940	7045	7035	7145	7030	7
6	1	5	7035	7035	6930	6990	7015	6940	6955	6885	6975	7
12	2	21	6985	6970	6985	6970	7055	7055	7110	6900	6975	7
13	2	2	6960	6940	6950	6930	6930	6970	6935	6955	6925	6—
14	2	2 3	7045	7190	7025	7010	7085	7195	7125	7090	7080	7
15	2	2 4	6805	7000	6890	6955	6905	6965	6980	6965	6915	6
16	2	. 5	6955	6885	6935	6975	6930	6895	6915	6940	6930	6
22	3	}1	7145	6990	7015	7110	6970	7030	7165	7135	7135	7
23	3	2	6980	6900	6890	6825	6935	7005	6980	7010	6990	6
24	3	3	7145	6985	6985	6915	6955	7010	7090	7045	6965	6 🗸
40			6060			C040	6065	6040	6060	7015	enen	7 4
42		/ I	0900	7000	0000	7005	0900	0940	090U 7005	7010	0900	
40		/	0900	7000	0900	2000	0920	0970	7000	2010	7000	<u> </u>
44		י ס ג	2000	0970 7105	7195	7005	0910 7040	2105	0970 7105	7060	7020	7
40	2	, 4 ; <i>E</i>	7010	7045	7130	7090	7040	7120	7100	1000	7090	
40)	(030	7040	1080	/080	7040	/080	7035	6990	1060	···· 🔽
		A./										

Step 5: all data with the Sample Number of less than or equal 5 are selected.

Step 6: Highlight the data and choose New from SQC Menu.

🔡 da	ata.xls											_ 🗆 ×
	0	Р	Q	R	S	Т	U	٧	W	Х	Y	<u>_</u>
1	Tag2 🔻	Tag3 🔻	Tag4 🔻	Tag5 🔻	Tag6 🔻	Tag7 🔻	Tag8 🔻	Tag9 🗸	Tag1 🗸			
2	7135	7055	7065	7120	7030	7150	7045	7155	7065			
3	7015	7045	6990	6905	6885	6890	6910	6940	6825			
4	6875	6990	6905	6895	6985	6915	6910	6925	6890			
5	6970	6975	6865	6940	7045	7035	7145	7030	7045			
6	7035	6930	6990	7015	6940	6955	6885	6975	7065			
12	6970	6985	6970	7055	7055	7110	6900	6975	7070			
13	6940	6950	6930	6930	6970	6935	6955	6925	6840			
14	7190	7025	7010	7085	7195	7125	7090	7080	7005			
15	7000	6890	6955	6905	6965	6980	6965	6915	6925			
16	6885	6935	6975	6930	6895	6915	6940	6930	6875			
22	6990	7015	7110	6970	7030	7165	7135	7135	7200			
23	6900	6890	6825	6935	7005	6980	7010	6990	6985			
24	6985	6985	6915	6955	7010	7090	7045	6965	6970			.
42	6880	6880	6940	6965	6940	6960	7015	6960	7015			
43	7000	6980	7005	6920	6975	7005	7010	6885	7005			
44	6975	6975	6940	6915	6965	6970	6905	7020	6890			
45	7125	7135	7095	7040	7125	7105	7060	7095	7110			
46	7045	7085	7080	7045	7080	7035	6990	7060	7120			
50 												

PCA - Partial Component Analysis

Introduction

Statistical process control, SPC, is being implemented across the industry without consideration to the multivariable nature of the measurements. The objective of this chapter is to provide basic statistical theory and application of the Principal Component Analysis (PCA) technique to evaluate and understand process unit data. The theory is presented from the user's point of view and more detail of mathematical derivations can be found in the references. The technology is mainly being introduced to the chemical industry by John MacGregor of McMaster University.

The statistical process control, SPC, and statistical quality control, SQC, foundations are based upon the detection of a statistically significant change in a given process. When a process can be described by a single measurement, such as making an object with a desired length, implementation of these techniques becomes an easy task.

However in the majority of the industries, a given process such as a reactor can not be described completely by a single measurement. Implementation of SQC and SPC technology will yield hundreds of control charts which will identify some causes but not the status of the process.

The multivariable nature of processes makes it difficult to provide the unit operator with the information with respect to the health of the process based on SQC and SPC technology due to the number of charts generated.

The PCA technique presented in this chapter will reduce a large multivariable system (i.e. 10 tags with 200 measurements) to a manageable system (i.e. 2 tags with 200 measurement) while preserving most of the information in the original system.

Theory

Principal Component Analysis, PCA, is a mathematical technique, which examines a multivariable data set and determines the underlying associative patterns based on variance. Process computers routinely collect thousands and thousands of data from multitude of plant sensors every second. This data overload will cause the operators to ignore the majority of the received information and concentrated on few measurements. However statistical method such as PCA are capable of compressing the information down to a manageable size by retaining most of the information.

Data processing and scaling

The multivariable data gathered either online or from historical data bases to represent a process usually have different mean and standard deviations. This will yield some inconsistency in statistical evaluation of the data.

The implementation of PCA is achieved by

- 1. Data processing and scaling
- 2. Calculation of Similarity matrix
- 3. Calculation of Eigen vector and Eigen matrix
- 4. Sorting of Eigen vector
- 5. Loading Factors
- 6. Score Factors

which are described in the following sections.

Example

Assume a simple database of 5 variables (m=5) and 12 observations (n=12). The objective is to condense the data to a single variable (k=3) with same number of observations (n=12). The variables are:

1.Population 2.School 3.Employment 4.Professional Services 5.House with the following observations:

Рор	School	Emp.	Prof.Ser	House
5700	12.8	2500	270	25000
1000	10.9	600	10	10000
3400	8.8	1000	10	9000
3800	13.6	1700	140	25000
4000	12.8	1600	140	25000
8200	8.3	2600	60	12000
1200	11.4	400	10	16000
9100	11.5	3300	60	14000
9900	12.5	3400	180	18000
9600	13.7	3600	390	25000
9600	9.6	3300	80	12000
9400	11.4	4000	100	13000

Data processing and scaling

The multivariable data gathered either online or from historical databases represent a process usually having different means and standard deviations. This will yield some inconsistency in statistical evaluation of the data.

Assume a multivariable data set consists of \mathbf{m} data points (i.e. 5 classes of measurement) and \mathbf{n} measurements (i.e. 12 in the above example).

However, if one calculates the (Data - Mean)/(Standard Deviation) as the normalized measurement, then each class of data has the same effect on the overall analysis of the data.

Similarity matrix calculation.

The degree of relationship existing between three or more variables is called multiple correlation. The fundamental principles involved in the problems of multiple correlation are analogous to those of single input, single output or simple correlation.

In case of a simple correlation, the relationship between two variables, x and y is investigated. The variables x and y as shown below, seem to lie near a line, hence the correlation is called linear.

The linear relationship between variables x and y can be described as

Y = SLOPE * X + INTERCEPT

after estimation of SLOPE and INTERCEPT using least square regression, the goodness of the regression is defined as

R = SQRT (explained variation / Total variation)

$$R = SQRT(\Sigma(Y_{est} - Y_{ave})^2 / \Sigma(Y - Y_{ave})^2)$$

The quantity, R , called the coefficient of correlation, varies between +1 and -1.

In a multivariable case the coefficients of correlation for the m variables needs to be calculated. This is called the similarity matrix or correlation matrix R.

Defining

 $X_i {=} SLOPE * X_j + INTERCEPT$

R = SQRT (explained variation / Total variation)

$$R = SQRT(\Sigma(X_{i \text{ est}} - X_{i \text{ ave}})^{2} / \Sigma(X_{i} - X_{i \text{ ave}})^{2})$$

and

and in the case of the multivariable system (m=5) R can be represented as:

	Рор	School	Emp.	Prof.Ser	House
Рор	1.000	0.010	0.972	0.439	0.022
School	0.010	1.000	0.154	0.691	0.863
Emp.	0.972	0.154	1.000	0.515	0.122
Prof.Ser	0.439	0.691	0.515	1.000	0.778
House	0.022	0.863	0.122	0.778	1.000

Calculation of Eigen vector and Eigen matrix

The correlation matrix represents the correlation of the variables with respect to each other. The PCA technique is based on using the correlation matrix to calculate a new set of linear coefficients, called **Loading Factors**.

These coefficients will be used in condensing the original data set of \mathbf{m} variables by \mathbf{n} observations to a manageable \mathbf{k} variables by \mathbf{n} observations.

Where **k** is usually much less than **m**.

Hence PCA calculates a new set of \mathbf{k} variables, called **Scored Factors**, based on the original data.

There are many different algorithms to calculate the **Factor Loading** matrix. The algorithm used here to calculate the **Factor Loading** matrix uses the Eigen vector, **e** and Eigen value matrix, **E**, of the correlation matrix, **R** calculated by the Jaccobian decomposition method.

In other words by calculating the Eigen vector of the correlation matrix one will evaluate the importance or the weighting of each variable.

For example assume an Eigen vector calculated and sorted for a data set with 5 measurements is:

	Value 1	Value 2	Value 3	Value 4	Value 5
Eigen Value	2.873	1.797	0.215	0.100	0.015
Difference	1.077	1.582	0.115	0.085	

The amount of information on each Eigen vector element can be evaluated by calculation of the Percentage of Information or Proportion,

Proportion = $\mathbf{e}_i / \mathbf{\Sigma} : \mathbf{e}_i$ for i = 1,...,5

which is

	Value 1	Value 2	Value 3	Value 4	Value 5
EigenValue	2.873	1.797	0.215	0.100	0.015
Difference	1.077	1.582	0.115	0.085	
Proportion	0.575	0.359	0.043	0.020	0.003
Cumulative	0.575	0.934	0.977	0.997	1.000

This means the first measurement can represent about 57.5% of the information and the combination of the first and second measurement will represent 93.4% (or 57.5+35.9%) of the data.

In the above example the order of significance, relative weighting of the Eigen Vector, and the data order is the same (the first Eigen value is the largest one and so on).

However one needs to sort the Eigen vector in descending order of significance. Assume a data based with 5 measurements and the following Eigen vector:

	1	2	3	4	5
Value	1.422	1.1	0.678	0.3	1.5
Proportion	28.4%	22.0%	13.6%	6.0%	30.0%

Sorting of Eigen vector

The order of the Eigen Vector is 5,1,2,3 and 4, therefore the 5th element is the most significant one.

By sorting the Eigen vector in a descending order

	5	1	2	3	4
Value	1.5	1.422	1.1	0.678	0.3
Proportion	30.0%	28.4%	22.0%	13.6%	6.0%
	30.0%	58.4%	80.4%	94.0%	100.0%

Hence by using only 5, 1 and 2 one can utilize 80.44% of information within the original data set and the system size has been reduced form 5 to 3.

Loading Factors

The program calculates the following Loading Factor Matrix

	Factor 1	Factor 2	Factor 3
Рор	0.581	0.806	0.028
School	0.767	-0.545	0.319
Emp.	0.672	0.726	0.115
Prof.Ser	0.932	-0.104	-0.308
House	0.791	-0.558	-0.065

Score Factors

The program calculates the following Score Factors

Score 1	Score 2	Score 3
0.970	-0.713	-1.057
-1.331	-0.759	0.320
-1.472	0.090	-1.118
0.460	-1.291	0.814
0.333	-1.162	0.113
-0.692	1.150	-1.430
-1.023	-1.175	0.373
0.057	0.855	1.472
0.785	0.566	0.692
1.880	-0.059	-1.184
-0.227	1.330	-0.244
0.262	1.167	1.251

This chart represents the Score2 and Score3 plotted against Score1. Please observe that the data is normalized with the mean centering and standard deviation scaling. Hence any point outside +- 3 sigma is out of control.

M-SQC

Based on the Scored data, the Norm of the data (i.e the dissonance from the center) is plotted as individual X-chart.

 $x = SQRT \ (\ \Sigma \ (\ S_i \)^2 \ \ for \ i = 1,2 \ and \ 3)$

How to Use PCA Program

Step	Dialog
Select	0
Data	PCATest xis
	1 Ime Pop School Emp. Prot.Ser House 2 1 5700 12.8 2500 270 25000
	5 4 3800 13.6 1700 140 25000
	6 5 4000 12.8 1600 140 25000 - 7 6 8200 8.3 2600 60 12000
	8 7 1200 11.4 400 10 16000 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	9 8 9100 11.5 3300 60 14000 10 9 9900 12.5 3400 180 1800
	11 10 9600 13.7 3600 390 25000 12 11 9600 9.6 3300 80 13000
	13 12 9400 11.4 4000 100 13000
	14 IM IM IM IM IM IM IM IM IM IM
	Choose PCA worksheet and select data from B1 to F13 (See Quick Tour
	chapter for more detail).
Start SQC	From SQC menu, choose New option
Select	Make sure you click on Header row if you have selected the header in your data
Type of	(i.e. Row 1)
Data	
	SQC for Excel(TM) 97 - Step 2 of 4 - Load Data
	The Load Data dialog helps you to copy your data to the SQC worksheet
	Direction of data Paste data as
	C Row C Value
	C Link to value
	Header information Address type
	C No header row Data type
	© Incremental
	Cancel < Back Next > Einish

Do the following steps to develop the PCA charts.

Select PCA	Make sure you ONLY select PCA to speed up the operation SQC for Excel(TM) 97 - Step 3 of 4 - Analysis Analysis Histogram/Distribution Properties Auto Correlation Process Capabilities Process Capabilities Properties Ontrol Charts Properties
	Variables XBar & R Attributes P Multi variable Nested Chart Advanced Image: CuBUM Runs and Trends CuBUM Trend chart EWMA Cancel < Back Next > Einish
PCA Parameters	You can select 3 parameters for PCA 1- Number of Score Factors (i.e for the above example) 2- % Accumulation 3- SQC Charts Mumber of score capabilities Auto Correlation Regression PCA Histogram/Process Capabilities Auto Correlation Regression PCA Percent of confidence: 0.95 ©CC ©K Cancel

References

The following is a list of references that provide more information on concepts and terminology used in this paper.

- 1- A. Hoskuldsson. <u>PLS regression methods</u>. Journal of Chemometrics, 2:211-22S, 1988.
- 2- Arthur Jutan, J. F. MacGregor, and J. D. Wright. <u>Multivariate computer control of a butane hydrogenolysis reactor. part ii: Data collection, parameter estimation, and stochastic disturbance identification</u>. AIChE Journal, 23(5):742-750, September 1977.
- 3- J. C. Liao. Fermentation data analysis and state estimation in the presence of incomplete mass balance. Biotechnology and Bioengineering, 33:613-622, 1989.
- 4- John F. MacGregor, Thomas E. Marlin, James Kresta, and Bert Skagerberg. <u>Multivariate statistical methods in process analysis and control</u>. In CPC-IV, 1991.
- 5- Rolf Manne. <u>Analysis of two partial-least-squares algorithms for multivariate</u> <u>calibration</u>. Chemometrics and Intelligent Laboratory Systems, 2:187-197, 1987.
- 6- G. Musumarra, G. Scarlata, G. Romano, and S. Clementi. <u>Identification of drugs by</u> <u>principal component analysis of rf data obtained by TLC in different effluent</u> <u>systems</u>. Journal of Analytical Toxicology, 7:286-292, 1983.
- 7- J. J. Roffel, J. F. MacGregor, and T. W. Hoffman. <u>The design and implementation of a multivariable controller for a continuous polybutadiene polymerization train</u>. In Proceedings of the 2nd IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation Columns, and Batch Processes. Pergamon Press, 1989.

I

Introduction, 5 Before You Begin, 5 Microsoftâ Excel Version, 5

Ν

Nested Charts, 25

0

Online Parameters, 9

Online SQC for Excel[™], 6 Online SQC Using External Database, 19

P

PCA - Partial Component Analysis, 39

Q

Quick Tour, 10

R

References, 52