
avr-libc Reference Manual
20020910-cvs

Generated by Doxygen 1.2.17

Tue Sep 10 09:24:22 2002

CONTENTS i

Contents

1 AVR Libc 1

1.1 Supported Devices. 1

2 avr-libc Module Index 2

2.1 avr-libc Modules . 2

3 avr-libc Data Structure Index 3

3.1 avr-libc Data Structures. 3

4 avr-libc Page Index 3

4.1 avr-libc Related Pages. 3

5 avr-libc Module Documentation 3

5.1 EEPROM handling. 3

5.1.1 Detailed Description. 3

5.1.2 Define Documentation. 4

5.1.3 Function Documentation. 4

5.2 AVR device-specific IO definitions. 5

5.3 Program Space String Utilities. 6

5.3.1 Detailed Description. 6

5.3.2 Define Documentation. 6

5.3.3 Function Documentation. 7

5.4 Additional notes from<avr/sfr defs.h> 9

5.5 Integer Types. 10

5.5.1 Detailed Description. 10

5.6 Setjmp and Longjmp. 11

5.6.1 Detailed Description. 11

5.6.2 Function Documentation. 12

5.7 General utilities. 13

5.7.1 Detailed Description. 13

5.7.2 Define Documentation. 15

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

CONTENTS ii

5.7.3 Typedef Documentation. 15

5.7.4 Function Documentation. 15

5.7.5 Variable Documentation. 20

5.8 Strings. 21

5.8.1 Detailed Description. 21

5.8.2 Function Documentation. 22

5.9 Interrupts and Signals. 28

5.9.1 Detailed Description. 28

5.9.2 Define Documentation. 31

5.9.3 Function Documentation. 32

5.10 Special function registers. 32

5.10.1 Detailed Description. 32

5.10.2 Define Documentation. 34

6 avr-libc Data Structure Documentation 37

6.1 div t Struct Reference. 37

6.1.1 Detailed Description. 37

6.2 ldiv t Struct Reference. 37

6.2.1 Detailed Description. 37

7 avr-libc Page Documentation 38

7.1 Acknowledgments . 38

7.2 Frequently Asked Questions. 38

7.2.1 FAQ Index . 38

7.2.2 My program doesn’t recognize a variable updated within an
interrupt routine . 39

7.2.3 I get ”undefined reference to...” for functions like ”sin()”. . . 39

7.2.4 How to permanently bind a variable to a register?. 40

7.2.5 How to modify MCUCR or WDTCR early?. 40

7.2.6 What is all thisBV() stuff about? 41

7.2.7 Can I use C++ on the AVR?. 41

7.2.8 Shouldn’t I better initialize all my variables?. 42

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

CONTENTS iii

7.2.9 Why do some 16-bit timer registers sometimes get trashed?. 43

7.2.10 How do I use a #define’d constant in an asm statement?. . . . 44

7.2.11 When single-stepping through my program in avr-gdb, the PC
”jumps around”. 44

7.2.12 How do I trace an assembler file in avr-gdb?. 45

7.3 Inline Asm . 46

7.3.1 GCC asm Statement. 47

7.3.2 Assembler Code. 48

7.3.3 Input and Output Operands. 49

7.3.4 Clobbers . 53

7.3.5 Assembler Macros. 55

7.3.6 C Stub Functions. 56

7.3.7 C Names Used in Assembler Code. 57

7.3.8 Links . 58

7.4 Memory Sections. 58

7.4.1 The .text Section. 58

7.4.2 The .data Section. 58

7.4.3 The .bss Section. 59

7.4.4 The .eeprom Section. 59

7.4.5 The .noinit Section. 59

7.4.6 The .initN Sections. 60

7.4.7 The .finiN Sections. 61

7.4.8 Using Sections in Assembler Code. 62

7.4.9 Using Sections in C Code. 62

7.5 Installing the GNU Tool Chain. 62

7.5.1 Required Tools. 63

7.5.2 Optional Tools . 64

7.5.3 GNU Binutils for the AVR target. 64

7.5.4 GCC for the AVR target. 66

7.5.5 AVR Libc . 66

7.5.6 UISP . 67

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

1 AVR Libc 1

7.5.7 Avrprog. 67

7.5.8 GDB for the AVR target. 67

7.5.9 Simulavr . 68

7.5.10 AVaRice. 68

1 AVR Libc

The latest version of this document is always available from
http://www.freesoftware.fsf.org/avr-libc/.

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-bit
RISC microcontrollers..........

There’s a lot of work to be done on this. This file will produce the index.html (for
html output) or the first chapter (in LATEX output).

1.1 Supported Devices

AT90S Type Devices:
• at90s1200[1]
• at90s2313
• at90s2323
• at90s2333
• at90s2343
• at90s4414
• at90s4433
• at90s4434
• at90s8515
• at90s8534
• at90s8535

ATmega Type Devices:
• atmega8
• atmega103
• atmega128
• atmega161
• atmega162
• atmega163
• atmega169
• atmega323

ATtiny Type Devices:
• attiny10[1]
• attiny11[1]
• attiny12[1]

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

http://www.freesoftware.fsf.org/avr-libc/.

2 avr-libc Module Index 2

• attiny15[1]
• attiny22
• attiny28[1]

Misc Devices:
• at94K
• at76c711

[FIXME: troth/2002-09-02: How do the at94 and at76 devices fit into the grand scheme
of all things AVR?]

Note:
[1] Assembly only. There is no support for these devices to be programmed in C
since they do not have a ram based stack.

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

EEPROM handling 3

AVR device-specific IO definitions 5

Program Space String Utilities 6

Integer Types 10

Setjmp and Longjmp 11

General utilities 13

Strings 21

Interrupts and Signals 28

Special function registers 32

Additional notes from <avr/sfr defs.h> 9

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

3 avr-libc Data Structure Index 3

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:

div t 37

ldiv t 37

4 avr-libc Page Index

4.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Acknowledgments 38

Frequently Asked Questions 38

Inline Asm 46

Memory Sections 58

Installing the GNU Tool Chain 62

5 avr-libc Module Documentation

5.1 EEPROM handling

5.1.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:
All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.1 EEPROM handling 4

critical applications should first poll the EEPROM e. g. usingeepromis ready()
before attempting any actual I/O.

avr-libc declarations

• #defineeepromis ready() bit is clear(EECR, EEWE)
• unsigned chareepromrb (unsigned int addr)
• unsigned inteepromrw (unsigned int addr)
• void eepromwb (unsigned int addr, unsigned char val)
• void eepromreadblock (void ∗buf, unsigned int addr, sizet n)

IAR C compatibility defines

• #define EEPUT(addr, val) eepromwb(addr, val)
• #define EEGET(var, addr) (var) = eepromrb(addr)

5.1.2 Define Documentation

5.1.2.1 #defineEEGET(var, addr) (var) = eeprom rb(addr)

read a byte from EEPROM

5.1.2.2 #defineEEPUT(addr, val) eeprom wb(addr, val)

write a byte to EEPROM

5.1.2.3 #define eepromis ready() bit is clear(EECR, EEWE)

return 1 if EEPROM is ready for a new read/write operation, 0 if not

5.1.3 Function Documentation

5.1.3.1 unsigned char eepromrb (unsigned int addr)

read one byte from EEPROM addressaddr

5.1.3.2 void eepromread block (void ∗ buf, unsigned intaddr, sizet n)

read a block ofn bytes from EEPROM addressaddr to buf

5.1.3.3 unsigned int eepromrw (unsigned int addr)

read one 16-bit word (little endian) from EEPROM addressaddr

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.2 AVR device-specific IO definitions 5

5.1.3.4 void eepromwb (unsigned intaddr, unsigned charval)

write a byteval to EEPROM addressaddr

5.2 AVR device-specific IO definitions

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been
specified by the-mmcu= compiler command-line switch.

Note that each of these files always includes

#include <avr/sfr_defs.h>

SeeSpecial function registersfor the details.

Included are definitions of the IO register set and their respective bit values as specified
in the Atmel documentation. Note that Atmel is not very consistent in its naming
conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere.

Finally, the following macros are defined:

• RAMEND

A constant describing the last on-chip RAM location.

• XRAMEND

A constant describing the last possible location in RAM. This is equal to RAMEND
for devices that do not allow for external RAM.

• E2END

A constant describing the address of the last EEPROM cell.

• FLASHEND

A constant describing the last byte address in flash ROM.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 6

5.3 Program Space String Utilities

5.3.1 Detailed Description

#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either theLPMor ELPMinstructions.

Note:
These function are an attempt to provide some compatibility with header files that
come with IAR C, to make porting applications between different compilers eas-
ier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).

Defines

• #definePSTR(s) ({static char c[] PROGMEM = (s); c;})
• #definePGM P const progchar∗
• #definePGM VOID P const progvoid ∗

Functions

• unsigned char elpm inline (unsigned long addr) ATTR CONST
• void ∗ memcpyP (void ∗, PGM VOID P, sizet)
• int strcasecmpP (const char∗, PGM P) ATTR PURE
• char∗ strcatP (char∗, PGM P)
• int strcmpP (const char∗, PGM P) ATTR PURE
• char∗ strcpyP (char∗, PGM P)
• size t strlenP (PGM P) ATTR CONST
• int strncasecmpP (const char∗, PGM P, sizet) ATTR PURE
• int strncmpP (const char∗, PGM P, sizet) ATTR PURE
• char∗ strncpyP (char∗, PGM P, sizet)

5.3.2 Define Documentation

5.3.2.1 #define PGMP const progchar ∗

Used to declare a variable that is a pointer to a string in program space.

5.3.2.2 #define PGMVOID P const progvoid ∗

Used to declare a generic pointer to an object in program space.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 7

5.3.2.3 #define PSTR(s) ({static char c[] PROGMEM = (s); c;})

Used to declare a static pointer to a string in program space.

5.3.3 Function Documentation

5.3.3.1 unsigned char elpm inline (unsigned long addr) [static]

Use this for access to>64K program memory (ATmega103, ATmega128), addr =
RAMPZ:r31:r30

Note:
If possible, put your constant tables in the lower 64K and use ”lpm” since it is
more efficient that way, and you can still use the upper 64K for executable code.

5.3.3.2 void∗ memcpy P (void ∗ dest, PGM VOID P src, sizet n)

ThememcpyP() function is similar tomemcpy(), except the src string resides in pro-
gram space.

Returns :
ThememcpyP() function returns a pointer to dest.

5.3.3.3 int strcasecmpP (const char∗ s1, PGM P s2)

Compare two strings ignoring case.

ThestrcasecmpP() function compares the two strings s1 and s2, ignoring the case of
the characters.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns :
ThestrcasecmpP() function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.3.3.4 char∗ strcat P (char ∗ dest, PGM P src)

ThestrcatP() function is similar tostrcat() except that thesrcstring must be located in
program space (flash).

Returns :
Thestrcat() function returns a pointer to the resulting stringdest.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 8

5.3.3.5 int strcmp P (const char∗ s1, PGM P s2)

The strcmpP() function is similar tostrcmp() except that s2 is pointer to a string in
program space.

Returns :
ThestrcmpP() function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.3.3.6 char∗ strcpy P (char ∗ dest, PGM P src)

ThestrcpyP() function is similar tostrcpy() except that src is a pointer to a string in
program space.

Returns :
ThestrcpyP() function returns a pointer to the destination string dest.

5.3.3.7 sizet strlen P (PGM P src)

The strlenP() function is similar tostrlen(), except that src is a pointer to a string in
program space.

Returns :
Thestrlen() function returns the number of characters in src.

5.3.3.8 int strncasecmpP (const char∗ s1, PGM P s2, sizet n)

Compare two strings ignoring case.

ThestrncasecmpP() function is similar tostrcasecmpP(), except it only compares the
first n characters of s1.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

n The maximum number of bytes to compare.

Returns :
ThestrcasecmpP() function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.4 Additional notes from <avr/sfr defs.h> 9

5.3.3.9 int strncmp P (const char∗ s1, PGM P s2, sizet n)

ThestrncmpP() function is similar tostrcmpP() except it only compares the first (at
most) n characters of s1 and s2.

Returns :
ThestrncmpP() function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.3.3.10 char∗ strncpy P (char ∗ dest, PGM P src, sizet n)

ThestrncpyP() function is similar tostrcpyP() except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns :
ThestrncpyP() function returns a pointer to the destination string dest.

5.4 Additional notes from <avr/sfr defs.h>

The<avr/sfr defs.h > file is included by all of the<avr/ioXXXX.h > files,
which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on theSFR ASMCOMPATdefine.
Some examples from<avr/iom128.h > to show how to define such macros:

#define PORTA _SFR_IO8(0x1b)
#define TCNT1 _SFR_IO16(0x2c)
#define PORTF _SFR_MEM8(0x61)
#define TCNT3 _SFR_MEM16(0x88)

If SFR ASMCOMPATis not defined, C programs can use names likePORTAdirectly
in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). TheSFR OFFSETdefinition is
not used in any way in this case.

Define SFR ASMCOMPATas 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (∗.S) source files, so it is done automatically ifASSEMBLER is defined. By
default, all addresses are defined as if they were memory addresses (used inlds/sts
instructions). To use these addresses inin/out instructions, you must subtract 0x20
from them.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.5 Integer Types 10

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it’s a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, theSFR OFFSETdefinition is no longer necessary
and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)

#if _SFR_IO_REG_P(SPMCR)
out _SFR_IO_ADDR(SPMCR), r24

#else
sts _SFR_MEM_ADDR(SPMCR), r24

#endif

You can use thein/out/cbi/sbi/sbic/sbis instructions, without theSFR -
IO REGP test, if you know that the register is in the I/O space (as withSREG, for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define SFR OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresses (soSREGis 0x5f), and (if code size and
speed are not important, and you don’t like the ugly if above) you can always use lds/sts
to access them. But, this will not work ifSFR OFFSET!= 0x20, so use a different
macro (defined only if SFR OFFSET== 0x20) for safety:

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations ofSFR ASMCOMPATand SFR OFFSETare
supported - theSFR ADDR(SPMCR)macro can be used to get the address of the
SPMCRregister (0x57 or 0x68 depending on device).

The old inp()/outp() macros are still supported, but not recommended to use in new
code. The order ofoutp() arguments is confusing.

5.5 Integer Types

5.5.1 Detailed Description

#include <inttypes.h>

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.6 Setjmp and Longjmp 11

Use [u]intN t if you need exactly N bits.

Note:
These should probably not be used if avr-gcc’s-mint8 option is used.

Typedefs

• typedef signed charint8 t
• typedef unsigned charuint8 t
• typedef intint16 t
• typedef unsigned intuint16 t
• typedef longint32 t
• typedef unsigned longuint32 t
• typedef long longint64 t
• typedef unsigned long longuint64 t
• typedef int16t intptr t
• typedef uint16t uintptr t

5.6 Setjmp and Longjmp

5.6.1 Detailed Description

While the C language has the dreadedgoto statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thesetjmp() and longjmp() functions. setjmp() and
longjmp() are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:
setjmp() andlongjmp() make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

For a very detailed discussion ofsetjmp()/longjmp(), see Chapter 7 ofAdvanced Pro-
gramming in the UNIX Environment, by W. Richard Stevens.

Example:

#include <setjmp.h>

jmp_buf env;

int main (void)
{

if (setjmp (env))
{

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.6 Setjmp and Longjmp 12

... handle error ...
}

while (1)
{

... main processing loop which calls foo() some where ...
}

}

...

void foo (void)
{

... blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

}

Functions

• int setjmp(jmp buf jmpb)
• void longjmp(jmp buf jmpb, int ret) ATTR NORETURN

5.6.2 Function Documentation

5.6.2.1 void longjmp (jmp buf jmpb, int ret)

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last call ofsetjmp() with the corre-
sponding jmpbargument. Afterlongjmp() is completed, program execution contin-
ues as if the corresponding call ofsetjmp() had just returned the valueret.

Note:
longjmp() cannot cause 0 to be returned. Iflongjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Parameters:
jmpb Information saved by a previous call tosetjmp().

ret Value to return to the caller ofsetjmp().

Returns :
This function never returns.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 13

5.6.2.2 int setjmp (jmp buf jmpb)

Save stack context for non-local goto.

#include <setjmp.h>

setjmp() saves the stack context/environment injmpbfor later use bylongjmp(). The
stack context will be invalidated if the function which calledsetjmp() returns.

Parameters:
jmpb Variable of typejmp buf which holds the stack information such that the

environment can be restored.

Returns :
setjmp() returns 0 if returning directly, and non-zero when returning from
longjmp() using the saved context.

5.7 General utilities

5.7.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard,
plus some AVR-specific extensions.

Data Structures

• structdiv t
• structldiv t

Conversion functions for double arguments.

• #defineDTOSTRALWAYS SIGN0x01
• #defineDTOSTRPLUS SIGN0x02
• #defineDTOSTRUPPERCASE0x04
• char∗ dtostre(double val, char∗ s, unsigned char prec, unsigned char-

flags)
• char∗ dtostrf(double val, char width, char prec, char∗ s)

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 14

Non-standard (i.e. non-ISO C) functions.

• char∗ itoa (int val, char∗ s, int radix)
• char∗ ltoa (long int val, char∗ s, int radix)
• char∗ utoa(unsigned int val, char∗ s, int radix)
• char∗ ultoa(unsigned long int val, char∗ s, int radix)

Defines

• #defineRAND MAX 0x7FFFFFFF

Typedefs

• typedef int(∗ comparfn t)(const void∗, const void∗)

Functions

• inline void abort(void) ATTR NORETURN
• int abs(int i) ATTR CONST
• long labs(long i) ATTR CONST
• void ∗ bsearch(const void∗ key, const void∗ base, sizet nmemb, sizet

size, int(∗ compar)(const void∗, const void∗))
• div t div (int num, int denom) asm (” divmodhi4”) ATTR CONST
• ldiv t ldiv (long num, long denom) asm (” divmodsi4”) ATTR -

CONST
• void qsort(void ∗ base, sizet nmemb, sizet size, comparfn t compar)
• longstrtol (const char∗ nptr, char∗∗ endptr, int base)
• unsigned longstrtoul(const char∗ nptr, char∗∗ endptr, int base)
• inline longatol (const char∗nptr) ATTR PURE
• inline int atoi (const char∗ nptr) ATTR PURE
• void exit (int status) ATTR NORETURN
• void ∗ malloc(size t size) ATTR MALLOC
• void free(void ∗ ptr)
• doublestrtod(const char∗s, char∗∗endptr)

Variables

• size t malloc margin
• char∗ malloc heapstart
• char∗ malloc heapend

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 15

5.7.2 Define Documentation

5.7.2.1 #define DTOSTRALWAYS SIGN 0x01

Bit value that can be passed inflags to dtostre().

5.7.2.2 #define DTOSTRPLUS SIGN 0x02

Bit value that can be passed inflags to dtostre().

5.7.2.3 #define DTOSTRUPPERCASE 0x04

Bit value that can be passed inflags to dtostre().

5.7.3 Typedef Documentation

5.7.3.1 typedef int(∗ compar fn t)(const void∗, const void∗)

Comparision function type forqsort(), just for convenience.

5.7.4 Function Documentation

5.7.4.1 inline void abort (void)

The abort() function causes abnormal program termination to occur. In the limited
AVR environment, execution is effectively halted by entering an infinite loop.

5.7.4.2 int abs (int i)

Theabs() function computes the absolute value of the integeri .

Note:
Theabs() andlabs() functions are builtins of gcc.

5.7.4.3 inline int atoi (const char ∗ nptr)

The atoi() function converts the initial portion of the string pointed to bynptr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 16

5.7.4.4 inline long atol (const char∗ nptr)

Theatol() function converts the initial portion of the string pointed to bynptr to long
integer representation.

It is equivalent to:

strtol(nptr, (char **)NULL, 10);

5.7.4.5 void∗ bsearch (const void∗ key, const void ∗ base, sizet nmemb,
size t size, int(∗ compar)(const void∗, const void∗))

The bsearch() function searches an array ofnmembobjects, the initial member of
which is pointed to bybase , for a member that matches the object pointed to by
key . The size of each member of the array is specified bysize .

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bycompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

Thebsearch() function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

5.7.4.6 div t div (int num, int denom)

The div() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure nameddiv t that contains two int members namedquot and
rem.

5.7.4.7 char∗ dtostre (double val, char ∗ s, unsigned char prec, unsigned
char flags)

The dtostre() function converts the double value passed inval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done into in the style [-]d.dddedd where there is one digit before the
decimal-point character and the number of digits after it is equal to the precision
prec ; if the precision is zero, no decimal-point character appears. Ifflags has
the DTOSTREUPPERCASE bit set, the letter ‘E’ (rather than ‘e’) will be used to in-
troduce the exponent. The exponent always contains two digits; if the value is zero, the
exponent is 00.

If flags has the DTOSTREALWAYS SIGN bit set, a space character will be placed
into the leading position for positive numbers.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 17

If flags has the DTOSTREPLUS SIGN bit set, a plus sign will be used instead of a
space character in this case.

5.7.4.8 char∗ dtostrf (double val, char width, char prec, char ∗ s)

The dtostrf() function converts the double value passed inval into an ASCII repre-
sentationthat will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done into in the style [-]d.ddd. The minimum field width of the output
string (including the “.” and the possible sign for negative values) is given inwidth ,
andprec determines the number of digits after the decimal sign.

5.7.4.9 void exit (int status)

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing.

In a C++ context, global destructors will be called before halting execution.

5.7.4.10 void free (void∗ ptr)

Thefree() function causes the allocated memory referenced byptr to be made avail-
able for future allocations. Ifptr is NULL, no action occurs.

5.7.4.11 char∗ itoa (int val, char ∗ s, int radix)

The functionitoa() converts the integer value fromval into an ASCII representation
that will be stored unders . The caller is responsible for providing sufficient storage in
s .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
“9” will be the letter “a”.

Theitoa() function returns the pointer passed ass .

5.7.4.12 long labs (long i)

Thelabs() function computes the absolute value of the long integeri .

Note:
Theabs() andlabs() functions are builtins of gcc.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 18

5.7.4.13 ldiv t ldiv (long num, long denom)

The ldiv() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure namedldiv t that contains two long integer members named
quot andrem.

5.7.4.14 char∗ ltoa (long int val, char ∗ s, int radix)

The functionltoa() converts the long integer value fromval into an ASCII represen-
tation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
“9” will be the letter “a”.

Theltoa() function returns the pointer passed ass .

5.7.4.15 void∗ malloc (sizet size)

The malloc() function allocatessize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc() doesnot initialize the returned memory to zero bytes.

5.7.4.16 void qsort (void∗ base, sizet nmemb, sizet size, compar fn t -
compar)

Theqsort() function is a modified partition-exchange sort, or quicksort.

The qsort() function sort an array ofnmembobjects, the initial member of which is
pointed to bybase . The size of each object is specified bysize . The contents of the
array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

5.7.4.17 double strtod (const char∗ nptr, char ∗∗ endptr)

The strtod() function converts the initial portion of the string pointed to bynptr to
double representation.

The expected form of the string is an optional plus (“+”) or minus sign (“-”) followed
by a sequence of digits optionally containing a decimal- point character, optionally
followed by an exponent. An exponent con sists of an “E” or “e”, followed by an
optional plus or minus sign, followed by a sequence of digits.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 19

Leading white-space characters in the string are skipped.

Thestrtod() function returns the converted value, if any.

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced byendptr .

If no conversion is performed, zero is returned and the value ofnptr is stored in the
location referenced byendptr .

If the correct value would cause overflow, plus or minusHUGEVAL is returned (ac-
cording to the sign of the value), andERANGEis stored inerrno . If the correct value
would cause underflow, zero is returned andERANGEis stored inerrno .

FIXME: HUGE VAL needs to be defined somewhere. The bit pattern is 0x7fffffff, but
what number would this be?

5.7.4.18 long strtol (const char∗ nptr, char ∗∗ endptr, int base)

The strtol() function converts the string innptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional ‘+’ or ‘-’ sign. Ifbase is zero or 16, the string
may then include a “0x” prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is ‘0’, in which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter ‘A’ in either upper or lower case represents 10, ‘B’ represents 11, and so forth,
with ‘Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however,strtol() stores the original value of
nptr in endptr . (Thus, if∗nptr is not ‘\0’ but ∗∗endptr is ‘\0’ on return, the
entire string was valid.)

Thestrtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurs,errno is set to ERANGE and the function return value is clamped
to LONGMIN or LONGMAX, respectively.

5.7.4.19 unsigned long strtoul (const char∗ nptr, char ∗∗ endptr, int base)

Thestrtoul() function converts the string innptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.7 General utilities 20

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional ‘+’ or ‘-’ sign. Ifbase is zero or 16, the string
may then include a “0x” prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is ‘0’, in which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base. (In
bases above 10, the letter ‘A’ in either upper or lower case represents 10, ‘B’ represents
11, and so forth, with ‘Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however,strtol() stores the original value of
nptr in endptr . (Thus, if∗nptr is not ‘\0’ but ∗∗endptr is ‘\0’ on return, the
entire string was valid.)

Thestrtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter case,strtoul() returns ULONGMAX, and
errno is set to ERANGE. If no conversion could be performed, 0 is returned.

5.7.4.20 char∗ ultoa (unsigned long int val, char ∗ s, int radix)

The functionultoa() converts the unsigned long integer value fromval into an ASCII
representation that will be stored unders . The caller is responsible for providing suf-
ficient storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
“9” will be the letter “a”.

The iultoa() function returns the pointer passed ass .

5.7.4.21 char∗ utoa (unsigned int val, char ∗ s, int radix)

The functionutoa() converts the unsigned integer value fromval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
“9” will be the letter “a”.

Theutoa() function returns the pointer passed ass .

5.7.5 Variable Documentation

5.7.5.1 char∗ malloc heap end

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 21

The variables malloc heap start and malloc heap end can be used to re-
strict themalloc() function to a certain memory region. These variables are statically
initialized to point to heap start and heap end , respectively, where heap -
start is filled in by the linker, and heap end is set to 0 which makesmalloc()
assume the heap is below the stack. Any changes need to be made before the very first
call tomalloc().

In case of a device with external SRAM where the heap is going to be allocated in exter-
nal RAM, it’s good practice to already define those symbols from the linker command
line.

5.7.5.2 char∗ malloc heap start

See malloc heap end .

5.7.5.3 sizet malloc margin

When extending the data segment inmalloc(), the allocator will not try to go beyond the
current stack limit, decreased bymalloc margin bytes. Thus, all possible stack
frames of interrupt routines that could interrupt the current function, plus all further
nested function calls must not require more stack space, or they’ll risk to collide with
the data segment.

The default is set to 32. malloc margin should be changed before the very first
call tomalloc() within the application.

All this is only relevant in situations where the heap is allocated below the stack. For
devices with external memory, the heap can be located in external memory while the
stack is usually located in internal SRAM, so no special guard area is needed between
both.

5.8 Strings

5.8.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Functions

• void ∗ memccpy(void ∗, const void∗, int, sizet)
• void ∗ memchr(const void∗, int, sizet) ATTR PURE
• int memcmp(const void∗, const void∗, sizet) ATTR PURE
• void ∗ memcpy(void ∗, const void∗, sizet)

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 22

• void ∗ memmove(void ∗, const void∗, sizet)
• void ∗ memset(void ∗, int, sizet)
• int strcasecmp(const char∗, const char∗) ATTR PURE
• char∗ strcat(char∗, const char∗)
• char∗ strchr(const char∗, int) ATTR PURE
• int strcmp(const char∗, const char∗) ATTR PURE
• char∗ strcpy(char∗, const char∗)
• size t strlcat(char∗, const char∗, sizet)
• size t strlcpy(char∗, const char∗, sizet)
• size t strlen(const char∗) ATTR PURE
• char∗ strlwr (char∗)
• int strncasecmp(const char∗, const char∗, sizet) ATTR PURE
• char∗ strncat(char∗, const char∗, sizet)
• int strncmp(const char∗, const char∗, sizet)
• char∗ strncpy(char∗, const char∗, sizet)
• size t strnlen(const char∗, sizet) ATTR PURE
• char∗ strrchr(const char∗, int) ATTR PURE
• char∗ strrev(char∗)
• char∗ strstr(const char∗, const char∗) ATTR PURE
• char∗ strupr(char∗)

5.8.2 Function Documentation

5.8.2.1 void∗ memccpy (void∗ dest, const void∗ src, int val, sizet len)

Copy memory area.

Thememccpy() function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Returns :
Thememccpy() function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

5.8.2.2 void∗ memchr (const void∗ src, int val, sizet len)

Scan memory for a character.

Thememchr() function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns :
The memchr() function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 23

5.8.2.3 int memcmp (const void∗ s1, const void∗ s2, sizet len)

Compare memory areas.

Thememcmp() function compares the first len bytes of the memory areas s1 and s2.

Returns :
Thememcmp() function returns an integer less than, equal to, or greater than zero
if the first len bytes of s1 is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

5.8.2.4 void∗ memcpy (void∗ dest, const void∗ src, sizet len)

Copy a memory area.

Thememcpy() function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Usememmove() if the memory areas do overlap.

Returns :
Thememcpy() function returns a pointer to dest.

5.8.2.5 void∗ memmove (void∗ dest, const void∗ src, sizet len)

Copy memory area.

Thememmove() function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns :
Thememmove() function returns a pointer to dest.

5.8.2.6 void∗ memset (void∗ dest, int val, sizet len)

Fill memory with a constant byte.

The memset() function fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns :
Thememset() function returns a pointer to the memory area dest.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 24

5.8.2.7 int strcasecmp (const char∗ s1, const char∗ s2)

Compare two strings ignoring case.

Thestrcasecmp() function compares the two strings s1 and s2, ignoring the case of the
characters.

Returns :
The strcasecmp() function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.8.2.8 char∗ strcat (char ∗ dest, const char∗ src)

Concatenate two strings.

Thestrcat() function appends the src string to the dest string overwriting the ‘\0’ char-
acter at the end of dest, and then adds a terminating ‘\0’ character. The strings may not
overlap, and the dest string must have enough space for the result.

Returns :
Thestrcat() function returns a pointer to the resulting string dest.

5.8.2.9 char∗ strchr (const char ∗ src, int val)

Locate character in string.

Thestrchr() function returns a pointer to the first occurrence of the character val in the
string src.

Here ”character” means ”byte” - these functions do not work with wide or multi-byte
characters.

Returns :
The strchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.8.2.10 int strcmp (const char∗ s1, const char∗ s2)

Compare two strings.

Thestrcmp() function compares the two strings s1 and s2.

Returns :
Thestrcmp() function returns an integer less than, equal to, or greater than zero if
s1 is found, respectively, to be less than, to match, or be greater than s2.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 25

5.8.2.11 char∗ strcpy (char ∗ dest, const char∗ src)

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
‘\0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns :
Thestrcpy() function returns a pointer to the destination string dest.

Note:
If the destination string of astrcpy() is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

5.8.2.12 sizet strlcat (char ∗ dst, const char∗ src, sizet siz)

Concatenate two strings.

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Returns :
Thestrlcat() function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval>=
siz, truncation occurred.

5.8.2.13 sizet strlcpy (char ∗ dst, const char∗ src, sizet siz)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns :
Thestrlcpy() function returns strlen(src). If retval>= siz, truncation occurred.

5.8.2.14 sizet strlen (const char∗ src)

Calculate the length of a string.

Thestrlen() function calculates the length of the string src, not including the terminat-
ing ‘\0’ character.

Returns :
Thestrlen() function returns the number of characters in src.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 26

5.8.2.15 char∗ strlwr (char ∗ string)

Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns :
Thestrlwr() function returns a pointer to the converted string.

5.8.2.16 int strncasecmp (const char∗ s1, const char∗ s2, sizet len)

Compare two strings ignoring case.

Thestrncasecmp() function is similar tostrcasecmp(), except it only compares the first
n characters of s1.

Returns :
Thestrncasecmp() function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.8.2.17 char∗ strncat (char ∗ dest, const char∗ src, sizet len)

Concatenate two strings.

Thestrncat() function is similar tostrcat(), except that only the first n characters of src
are appended to dest.

Returns :
Thestrncat() function returns a pointer to the resulting string dest.

5.8.2.18 int strncmp (const char∗ s1, const char∗ s2, sizet len)

Compare two strings.

Thestrncmp() function is similar tostrcmp(), except it only compares the first (at most)
n characters of s1 and s2.

Returns :
Thestrncmp() function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.8 Strings 27

5.8.2.19 char∗ strncpy (char ∗ dest, const char∗ src, sizet len)

Copy a string.

The strncpy() function is similar tostrcpy(), except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns :
Thestrncpy() function returns a pointer to the destination string dest.

5.8.2.20 sizet strnlen (const char∗ src, sizet len)

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating ’\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns :
The strnlen function returns strlen(src), if that is less than len, or len if there is no
’\0’ character among the first len characters pointed to by src.

5.8.2.21 char∗ strrchr (const char ∗ src, int val)

Locate character in string.

Thestrrchr() function returns a pointer to the last occurrence of the character val in the
string src.

Here ”character” means ”byte” - these functions do not work with wide or multi-byte
characters.

Returns :
The strrchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.8.2.22 char∗ strrev (char ∗ string)

Reverse a string.

Thestrrev() function reverses the order of the string.

Returns :
Thestrrev() function returns a pointer to the beginning of the reversed string.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.9 Interrupts and Signals 28

5.8.2.23 char∗ strstr (const char ∗ s1, const char∗ s2)

Locate a substring.

Thestrstr() function finds the first occurrence of the substrings2 in the strings1 . The
terminating ‘\0’ characters are not compared.

Returns :
Thestrstr() function returns a pointer to the beginning of the substring, or NULL
if the substring is not found.

5.8.2.24 char∗ strupr (char ∗ string)

Convert a string to upper case.

Thestrupr() function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Returns :
Thestrupr() function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

5.9 Interrupts and Signals

5.9.1 Detailed Description

Note:
This discussion of interrupts and signals was taken from Rich Neswold’s docu-
ment. SeeAcknowledgments.

It’s nearly impossible to find compilers that agree on how to handle interrupt code.
Since the C language tries to stay away from machine dependent details, each compiler
writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it’s normally executing compiler-generated code.
It’s important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with-
attribute ((interrupt)) .

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined with one of two macros,

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.9 Interrupts and Signals 29

INTERRUPT() andSIGNAL(). These macros register and mark the routine as an in-
terrupt handler for the specified peripheral. The following is an example definition of
a handler for the ADC interrupt.

#include <avr/signal.h>

INTERRUPT(SIG_ADC)
{

// user code here
}

[FIXME: should there be a discussion of writing an interrupt handler in asm?]

If an unexpected interrupt occurs (interrupt is enabled and no handler is installed, which
usually indicates a bug), then the default action is to reset the device by jumping to
the reset vector. You can override this by supplying a function namedvector -
default which should be defined with eitherSIGNAL() or INTERRUPT() as such.

#include <avr/signal.h>

SIGNAL(__vector_default)
{

// user code here
}

The interrupt is chosen by supplying one of the symbols in following table. Note that
every AVR device has a different interrupt vector table so some signals might not be
available. Check the data sheet for the device you are using.

[FIXME: Fill in the blanks! Gotta read those durn data sheets ;-)]

Note:
TheSIGNAL() andINTERRUPT() macros currently cannot spell-check the argu-
ment passed to them. Thus, by misspelling one of the names below in a call to
SIGNAL() or INTERRUPT(), a function will be created that, while possibly being
usable as an interrupt function, is not actually wired into the interrupt vector table.
No warning will be given about this situation.

Signal Name Description
SIG 2WIRE SERIAL 2-wire serial interface (aka. IC [tm])
SIG ADC ADC Conversion complete
SIG COMPARATOR Analog Comparator Interrupt
SIG EEPROMREADY Eeprom ready
SIG FPGA INTERRUPT0
SIG FPGA INTERRUPT1
SIG FPGA INTERRUPT2
SIG FPGA INTERRUPT3
SIG FPGA INTERRUPT4
SIG FPGA INTERRUPT5

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.9 Interrupts and Signals 30

Signal Name Description
SIG FPGA INTERRUPT6
SIG FPGA INTERRUPT7
SIG FPGA INTERRUPT8
SIG FPGA INTERRUPT9
SIG FPGA INTERRUPT10
SIG FPGA INTERRUPT11
SIG FPGA INTERRUPT12
SIG FPGA INTERRUPT13
SIG FPGA INTERRUPT14
SIG FPGA INTERRUPT15
SIG INPUT CAPTURE1 Input Capture1 Interrupt
SIG INPUT CAPTURE3 Input Capture3 Interrupt
SIG INTERRUPT0 External Interrupt0
SIG INTERRUPT1 External Interrupt1
SIG INTERRUPT2 External Interrupt2
SIG INTERRUPT3 External Interrupt3
SIG INTERRUPT4 External Interrupt4
SIG INTERRUPT5 External Interrupt5
SIG INTERRUPT6 External Interrupt6
SIG INTERRUPT7 External Interrupt7
SIG OUTPUT COMPARE0 Output Compare0 Interrupt
SIG OUTPUT COMPARE1A Output Compare1(A) Interrupt
SIG OUTPUT COMPARE1B Output Compare1(B) Interrupt
SIG OUTPUT COMPARE1C Output Compare1(C) Interrupt
SIG OUTPUT COMPARE2 Output Compare2 Interrupt
SIG OUTPUT COMPARE3A Output Compare3(A) Interrupt
SIG OUTPUT COMPARE3B Output Compare3(B) Interrupt
SIG OUTPUT COMPARE3C Output Compare3(C) Interrupt
SIG OVERFLOW0 Overflow0 Interrupt
SIG OVERFLOW1 Overflow1 Interrupt
SIG OVERFLOW2 Overflow2 Interrupt
SIG OVERFLOW3 Overflow3 Interrupt
SIG PIN
SIG PIN CHANGE0
SIG PIN CHANGE1
SIG RDMAC
SIG SPI SPI Interrupt
SIG SPM READY Store program memory ready
SIG SUSPENDRESUME
SIG TDMAC
SIG UART0
SIG UART0 DATA UART(0) Data Register Empty Interrupt
SIG UART0 RECV UART(0) Receive Complete Interrupt
SIG UART0 TRANS UART(0) Transmit Complete Interrupt
SIG UART1
SIG UART1 DATA UART(1) Data Register Empty Interrupt
SIG UART1 RECV UART(1) Receive Complete Interrupt
SIG UART1 TRANS UART(1) Transmit Complete Interrupt
SIG UART DATA UART Data Register Empty Interrupt
SIG UART RECV UART Receive Complete Interrupt
SIG UART TRANS UART Transmit Complete Interrupt
SIG USART0 DATA USART(0) Data Register Empty Interrupt
SIG USART0 RECV USART(0) Receive Complete Interrupt
SIG USART0 TRANS USART(0) Transmit Complete Interrupt

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.9 Interrupts and Signals 31

Signal Name Description
SIG USART1 DATA USART(1) Data Register Empty Interrupt
SIG USART1 RECV USART(1) Receive Complete Interrupt
SIG USART1 TRANS USART(1) Transmit Complete Interrupt
SIG USB HW

Global manipulation of the interrupt flag

• #definesei() asm volatile (”sei” ::)
• #definecli() asm volatile (”cli” ::)

Macros for writing interrupt handler functions

• #defineSIGNAL(signame)
• #defineINTERRUPT(signame)

Allowing specific system-wide interrupts

• void enableexternalint (unsigned char ints)
• void timer enableint (unsigned char ints)

5.9.2 Define Documentation

5.9.2.1 #define cli() asm volatile (”cli” ::)

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

5.9.2.2 #define INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((interrupt)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.10 Special function registers 32

5.9.2.3 #define sei() asm volatile (”sei” ::)

#include <avr/interrupt.h>

Enables interrupts by clearing the global interrupt mask. This function actually com-
piles into a single line of assembly, so there is no function call overhead.

5.9.2.4 #define SIGNAL(signame)

Value:

void signame (void) __attribute__ ((signal)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

5.9.3 Function Documentation

5.9.3.1 void enableexternal int (unsigned char ints)

#include <avr/interrupt.h>

This function gives access to thegimsk register (oreimsk register if using an AVR
Mega device). Although this function is essentially the same as using theoutb() func-
tion, it does adapt slightly to the type of device being used.

5.9.3.2 void timer enable int (unsigned char ints)

#include <avr/interrupt.h>

This function modifies thetimsk register using theoutb() function. The value you
pass viaints is device specific.

5.10 Special function registers

5.10.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.10 Special function registers 33

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate IO address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific IO instructions that are applicable to
some or all of the IO address space (in , out , sbi etc.). The entire IO address space
is also made available asmemory-mapped IO, i. e. it can be accessed using all the
MCU instructions that are applicable to normal data memory. The IO register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the IO register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access IO registers either with a special function likeoutb () :

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the IO port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use of ansbi instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people
might also feel that this is more readable. For example, the following two statements
would be equivalent:

outb(DDRD, inb(DDRD) & ˜LCDBITS);
DDRD &= ˜LCDBITS;

The generated code is identical for both. Whitout optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smaller)in/out MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer IO reg-
isters where access from both the main program and within an interrupt context can
happen. SeeWhy do some 16-bit timer registers sometimes get trashed?.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.10 Special function registers 34

Modules

• Additional notes from<avr/sfr defs.h>

Bit manipulation

• #define BV(bit) (1 << (bit))

IO operations

• #defineinb(sfr) SFRBYTE(sfr)
• #defineinw(sfr) SFRWORD(sfr)
• #defineoutb(sfr, val) (SFRBYTE(sfr) = (val))
• #defineoutw(sfr, val) (SFRWORD(sfr) = (val))

IO register bit manipulation

• #definecbi(sfr, bit) (SFRBYTE(sfr) &= ∼ BV(bit))
• #definesbi(sfr, bit) (SFRBYTE(sfr) |= BV(bit))
• #definebit is set(sfr, bit) (inb(sfr) & BV(bit))
• #definebit is clear(sfr, bit) (∼inb(sfr) & BV(bit))
• #defineloop until bit is set(sfr, bit) do{ } while (bit is clear(sfr, bit))
• #defineloop until bit is clear(sfr, bit) do{ } while (bit is set(sfr, bit))

Deprecated Macros

• #defineoutp(val, sfr) outb(sfr, val)
• #defineinp(sfr) inb(sfr)
• #defineBV(bit) BV(bit)

5.10.2 Define Documentation

5.10.2.1 #defineBV(bit) (1 << (bit))

#include <avr/io.h>

Converts a bit number into a byte value.

Note:
The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when usingBV().

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.10 Special function registers 35

5.10.2.2 #define bitis clear(sfr, bit) (∼inb(sfr) & BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is clear.

5.10.2.3 #define bitis set(sfr, bit) (inb(sfr) & BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is set.

5.10.2.4 #define BV(bit) BV(bit)

Deprecated:
For backwards compatibility only. This macro will evetually be removed.
Use BV() in new programs.

5.10.2.5 #define cbi(sfr, bit) (SFR BYTE(sfr) &= ∼ BV(bit))

#include <avr/io.h>

Clear bitbit in IO registersfr .

5.10.2.6 #define inb(sfr)SFR BYTE(sfr)

#include <avr/io.h>

Read a byte from IO registersfr .

5.10.2.7 #define inp(sfr) inb(sfr)

Deprecated:
For backwards compatibility only. This macro will evetually be removed.
Useinb() in new programs.

5.10.2.8 #define inw(sfr)SFR WORD(sfr)

#include <avr/io.h>

Read a 16-bit word from IO register pairsfr .

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

5.10 Special function registers 36

5.10.2.9 #define loopuntil bit is clear(sfr, bit) do { } while (bit is set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is clear.

5.10.2.10 #define loopuntil bit is set(sfr, bit) do { } while (bit is clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is set.

5.10.2.11 #define outb(sfr, val) (SFR BYTE(sfr) = (val))

#include <avr/io.h>

Write val to IO registersfr .

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

5.10.2.12 #define outp(val, sfr) outb(sfr, val)

Deprecated:
For backwards compatibility only. This macro will evetually be removed.
Useoutb() in new programs.

5.10.2.13 #define outw(sfr, val) (SFR WORD(sfr) = (val))

#include <avr/io.h>

Write the 16-bit valueval to IO register pairsfr . Care will be taken to write the
lower register first. When used to update 16-bit registers where the timing is critical
and the operation can be interrupted, the programmer is the responsible for disabling
interrupts before accessing the register pair.

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

6 avr-libc Data Structure Documentation 37

5.10.2.14 #define sbi(sfr, bit) (SFR BYTE(sfr) |= BV(bit))

#include <avr/io.h>

Set bitbit in IO registersfr .

6 avr-libc Data Structure Documentation

6.1 div t Struct Reference

6.1.1 Detailed Description

Result type for functiondiv().

Data Fields

• int quot
• int rem

The documentation for this struct was generated from the following file:

• stdlib.h

6.2 ldiv t Struct Reference

6.2.1 Detailed Description

Result type for functionldiv().

Data Fields

• longquot
• long rem

The documentation for this struct was generated from the following file:

• stdlib.h

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7 avr-libc Page Documentation 38

7 avr-libc Page Documentation

7.1 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn’t have a terrific,free set of tools to develop AVR
projects. We all owe thanks to:

• The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

• Denis Chertykov [denisc@overta.ru] for making the AVR-specific
changes to the GNU tools.

• Denis Chertykov and Marek Michalkiewicz [marekm@linux.org.pl] for
developing the standard libraries and startup code forAVR-GCC .

• Theodore A. Roth [troth@verinet.com] for setting up avr-
libc’s CVS repository, bootstrapping the documentation project
using doxygen, and continued maintenance of the project on
http://savannah.gnu.org/projects/avr-libc

• Uros Platise for developing the AVR programmer tool,uisp.

• Joerg Wunsch [joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSD [http://www.freebsd.org] ports tree and for pro-
viding the demo project in [FIXME: hasn’t been merged yet, put ref here].

• Brian Dean [bsd@bsdhome.com] for developingavrprog (an alternate to
uisp) and for contributing [FIXME: need to merge section onavrprog] which
describes how to use it.

• All the people you have submitted suggestions, patches and bug reports. (See
the AUTHORS files of the various tools.)

• And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

7.2 Frequently Asked Questions

7.2.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:troth@verinet.com
http://savannah.gnu.org/projects/avr-libc
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com

7.2 Frequently Asked Questions 39

2. I get ”undefined reference to...” for functions like ”sin()”

3. How to permanently bind a variable to a register?

4. How to modify MCUCR or WDTCR early?

5. What is all this BV() stuff about?

6. Can I use C++ on the AVR?

7. Shouldn’t I better initialize all my variables?

8. Why do some 16-bit timer registers sometimes get trashed?

9. How do I use a #define’d constant in an asm statement?

10. When single-stepping through my program in avr-gdb, the PC ”jumps around”

11. How do I trace an assembler file in avr-gdb?

7.2.2 My program doesn’t recognize a variable updated within an interrupt rou-
tine

When using the optimizer, in a loop like the following one:

uint8_t flag;
...

while (flag == 0) {
...

}

the compiler will typically optimize the access toflag completely away, since its
code path analysis shows that nothing inside the loop could change the value offlag
anyway. To tell the compiler that this variable could be changed outside the scope of
its code path analysis (e. g. from within an interrupt routine), the variable needs to be
declared like:

volatile uint8_t flag;

Back toFAQ Index.

7.2.3 I get ”undefined reference to...” for functions like ”sin()”

In order to access the mathematical functions that are declared in<math.h >, the
linker needs to be told to also link the mathematical library,libm.a .

Typically, system libraries likelibm.a are given to the final C compiler command
line that performs the linking step by adding a flag-lm at the end. (That is, the initial

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 40

lib and the filename suffix from the library are written immediately after a-l flag. So
for a libfoo.a library, -lfoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to thelibm.a file at the same place
on the command line, i. e.after all the object files (∗.o). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index.

7.2.4 How to permanently bind a variable to a register?

This can be done with

register unsigned char counter asm("r3");

SeeC Names Used in Assembler Codefor more details.

Back toFAQ Index.

7.2.5 How to modify MCUCR or WDTCR early?

The method of early initialization (MCUCR, WDTCRor anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S

#include <avr/io.h>

.section .init1,"ax",@progbits

ldi r16,_BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

Assemble it, link the resultingxram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the new.init N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup – no stack and nozero reg yet), and
no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leavestack at its default value (end of internal SRAM
– faster, and required on some devices like ATmega161 because of errata), and add
-Wl,-Tdata,0x801100 to start the data section above the stack.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 41

For more information on using sections, including how to use them from C code, see
Memory Sections.

Back toFAQ Index.

7.2.6 What is all this BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some IO register. While the device documentation provides mnemonic names for
the various bits in the IO registers, and theAVR device-specific IO definitionsreflect
these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
ansbi () call), so the definitions cannot usefully be made as byte values in the first
place.

So in order to access a particular bit number as a byte value, use theBV() macro. Of
course, the implementation of this macro is just the usual bit shift (which is done by the
compiler anyway, thus doesn’t impose any run-time penalty), so the following applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.

”BV” stands for ”bit value”, in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on
compare match (COM2x = 0b01), and clear timer on compare match (CTC2= 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index.

7.2.7 Can I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc , .cpp or .Cwill automat-
ically cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the nameavr-c++ .

However, there’s currently no support forlibstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

• Obviously, none of the C++ related standard functions, classes, and template
classes are available.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 42

• The operatorsnew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

• Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into
extern "C" { . . . }

(This could certainly be fixed, too.)

• Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off using-fno-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference togxx personality sj0 .

Constructors and destructorsaresupported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index.

7.2.8 Shouldn’t I better initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 , seeThe .init-
N Sections. With respect to the standard, this sentence is somewhat simplified (because
the standard would allow for machines where the actual bit pattern used differs from
all bits 0), but for the AVR target, in effect all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the.bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s RAM.)

In contrast, global and static variables that have an initializer go into the.datasection
of the file. This will cause them to consume space in the file (in order to record the
initializing value),andin the flash ROM of the target device. The latter is needed since
the flash ROM is the only way how the compiler can tell the target device the value this
variable is going to be initialized to.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 43

Now if some programmer ”wants to make doubly sure” their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it’s usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, initializers should only be written if they are non-zero.

Back toFAQ Index.

7.2.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value register (TCNTn), the input capture
register (ICRn), and write access to the output compare registers (OCRnM). Refer to
the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it’s usually best to use the
SIGNAL() macro when declaring the interrupt function, and to ensure that interrupts
are still disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei() macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uint16_t
read_timer1(void)
{

uint8_t sreg;
uint16_t val;

sreg = SREG;
cli();
val = TCNT1;
SREG = sreg;

return val;
}

Back toFAQ Index.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 44

7.2.10 How do I use a #define’d constant in an asm statement?

So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation error:"Error: constant value required" .

PORTBis a precompiler definition included in the processor specific file included in
avr/io.h . As you may know, the precompiler will not touch strings andPORTB,
instead of0x18 , gets passed to the assembler. One way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" (PORTB):);

Note:
avr/io.h already provides asbi() macro definition, which can be used in C
programs.

Back toFAQ Index.

7.2.11 When single-stepping through my program in avr-gdb, the PC ”jumps
around”

When compiling a program with both optimization (-O) and debug information (-g)
which is fortunately possible inavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without the-g switch.

This can have unwanted side effects. Since the compiler is free in reordering code
execution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative jump (rjmp)
instruction, which will need one additional word of ROM.

Other side effects of optimzation are that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the function is still in
lexical scope. When trying to examine the variable inavr-gdb , the displayed result
will then look garbled.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.2 Frequently Asked Questions 45

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern.

Back toFAQ Index.

7.2.12 How do I trace an assembler file in avr-gdb?

When using the-g compiler option,avr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a singlestep command
in gdb . This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, since the-g compiler switch does not
apply to the assembler.

So in order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it’s the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn’t
know about this.) This is done using the (GNU) assembler option--gstabs .

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly using -x
assembler-with-cpp), the compiler frontend needs to be told to pass the
--gstabs option down to the assembler. This is done using-Wa,--gstabs .
Please take care toonly pass this option when compiling an assembler input file. Oth-
erwise, the assembler code that results from the C compilation stage will also get line
number information, which greatly confuses the debugger.

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to has been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the letterb for a backward reference, orf for a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push r16
push r17
push r18
push YL
push YH
...
eor r16, r16 ; start loop
ldi YL, lo8(sometable)
ldi YH, hi8(sometable)
rjmp 2f ; jump to loop test at end

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 46

1: ld r17, Y+ ; loop continues here
...
breq 1f ; return from myfunc prematurely
...
inc r16

2: cmp r16, r18
brlo 1b ; jump back to top of loop

1: pop YH
pop YL
pop r18
pop r17
pop r16
ret

Back toFAQ Index.

7.3 Inline Asm

AVR-GCC

Inline Assembler Cookbook

About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It’s assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It’s not a C language tutorial either.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 47

way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release checkhttp://www.ethernut.de.

Herne, 17th of May 2002 Harald Kippharald.kipp@egnite.de

Note:
As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://www.freesoftware.fsf.org/avr-libc/ .

7.3.1 GCC asm Statement

Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (PORTD) :);

Eachasm statement is devided by colons into four parts:

1. The assembler instructions, defined as a single string constant:

"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:

"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (PORTD)

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of theasm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list : clobber list);

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

http://www.ethernut.de.
mailto:harald.kipp@egnite.de
http://www.freesoftware.fsf.org/avr-libc/

7.3 Inline Asm 48

In the code section, operands are referenced by a percent sign followed by a single
digit. %0refers to the first%1 to the second operand and so forth. From the above
example:

%0refers to"=r" (value) and

%1refers to"I" (PORTD) .

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

lds r24,value
/* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected registerr24 for storage of the value read
from PORTD. The compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to theasm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (PORTD) :);

The last part of theasm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.3.2 Assembler Code

You can use the same assembler instruction mnemonics as you’d use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:
The available assembler directives vary from one assembler to another.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 49

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
::);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it’s own assembler code.

You may also make use of some special registers.

Symbol Register
SREG Status register at address 0x3F
SP H Stack pointer high byte at address 0x3E
SP L Stack pointer low byte at address 0x3D
tmp reg Register r0, used for temporary storage
zero reg Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at the
end of your code. It’s a good idea to usetmp reg and zero reg instead of
r0 or r1 , just in case a new compiler version changes the register usage definitions.

7.3.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in parantheses.AVR-GCC3.3 knows the following constraint characters:

Note:
The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.

Note:
The x register isr27:r26 , the y register isr29:r28 , and thez register is
r31:r30

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 50

Constraint Used for Range
a Simple upper registers r16 to r23
b Base pointer registers

pairs
y, z

d Upper register r16 to r31
e Pointer register pairs x, y, z
G Floating point constant 0.0
I 6-bit positive integer

constant
0 to 63

J 6-bit negative integer
constant

-63 to 0

K Integer constant 2
L Integer constant 0
l Lower registers r0 to r15
M 8-bit integer constant 0 to 255
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
w Special upper register

pairs
r24, r26, r28, r30

x Pointer register pair X x (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author’s as-
sumption is, that this part of the compiler has never been really finished in this version,
but that assumption may be wrong. The selection of the proper contraint depends on
the range of the constants or registers, which must be acceptable to the AVR instruction
they are used with. The C compiler doesn’t check any line of your assembler code. But
it is able to check the constraint against your C expression. However, if you specify
the wrong constraints, then the compiler may silently pass wrong code to the assem-
bler. And, of course, the assembler will fail with some cryptic output or internal errors.
For example, if you specify the constraint"r" and you are using this register with an
"ori" instruction in your assembler code, then the compiler may select any register.
This will fail, if the compiler choosesr2 to r15 . (It will never chooser0 or r1 ,
because these are uses for special purposes.) That’s why the correct constraint in that
case is"d" . On the other hand, if you use the constraint"M" , the compiler will make
sure that you don’t pass anything else but an 8-bit value. Later on we will see how to
pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren’t strict enough. There is, for example, no constraint, which restricts integer

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 51

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,I and r,r
andi d,M asr r
bclr I bld r,I
brbc I,label brbs I,label
bset I bst r,I
cbi I,I cbr d,I
com r cp r,r
cpc r,r cpi d,M
cpse r,r dec r
elpm t,z eor r,r
in r,I inc r
ld r,e ldd r,b
ldi d,M lds r,label
lpm t,z lsl r
lsr r mov r,r
mul r,r neg r
or r,r ori d,M
out I,r pop r
push r rol r
ror r sbc r,r
sbci d,M sbi I,I
sbic I,I sbiw w,I
sbr d,M sbrc r,I
sbrs r,I ser d
st e,r std b,r
sts label,r sub r,r
subi d,M swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies
= Write-only operand, usually used for all

output operands.
+ Read-write operand (not supported by

inline assembler)
& Register should be used for output only

Output operands must be write-only and the C expression result must be an lvalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 52

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint"0"
tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must add the& constraint modifier to
your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (port), "r" (output)

);

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses the& constraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %B0" "\n\t"
"mov %B0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

First you will notice the usage of registertmp reg , which we listed among other
special registers in theAssembler Codesection. You can use this register without
saving its contents. Completely new are those lettersA andB in %A0and%B0. In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 53

"mov __tmp_reg__, %B0" "\n\t"
"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code you use%A0to refer
to the lowest byte of the first operand,%A1to the lowest byte of the second operand
and so on. The next byte of the first operand will be%B0, the next byte%C0and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

"e" (ptr)

and the compiler selects registerZ (r30:r31) , then

%A0refers tor30 and

%B0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needZ, like in

ld r24,Z

If you write

ld r24, %a0

with a lower casea following the percent sign, then the compiler will create the proper
assembler line.

7.3.4 Clobbers

As stated previously, the last part of theasm statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed
to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 54

asm volatile(
"cli" "\n\t"
"ld r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)
: "r24"

);

The compiler might produce the following code:

cli
ld r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering registerr24 is, to make use of the special tem-
porary register tmp reg defined by the compiler.

asm volatile(
"cli" "\n\t"
"ld __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)

);

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)

);
}

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 55

Now every thing seems correct, but it isn’t really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)
: "memory"

);
}

The special clobber ”memory” informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed to byptr to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

7.3.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could
be found in the directoryavr/include . Using such include files may produce com-
piler warnings, if they are used in modules, which are compiled in strict ANSI mode.
To avoid that, you can write asm instead ofasm and volatile instead of
volatile . These are equivalent aliases.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 56

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special pattern%=, which is replaced by a
unique number on eachasm statement. The following code had been taken from
avr/include/iomacros.h :

#define loop_until_bit_is_clear(port,bit) \
__asm__ __volatile__ (\
"L_%=: " "sbic %0, %1" "\n\t" \

"rjmp L_%=" \
: /* no outputs */ \
: "I" ((uint8_t)(port)), \

"I" ((uint8_t)(bit)) \
)

When used for the first time,L %= may be translated toL 1404 , the next usage might
createL 1405 or whatever. In any case, the labels became unique too.

7.3.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)
{

uint16_t cnt;
asm volatile (

"\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %B0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)
);

}

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delaycount must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in theclobbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.3 Inline Asm 57

uint16_t inw(uint8_t port)
{

uint16_t result;
asm volatile (

"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
: "=r" (result)
: "I" (port)
);

return result;
}

Note:
inw() is supplied by avr-libc.

7.3.7 C Names Used in Assembler Code

By defaultAVR-GCCuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCCyou can specify the use of a specific register:

void Count(void)
{

register unsigned char counter asm("r3");

... some code...
asm volatile("clr r3");
... more code...

}

The assembler instruction,"clr r3" , will clear the variable counter.AVR-GCCwill
not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept theasm keyword in the function definition:

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.4 Memory Sections 58

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE.

7.3.8 Links

A GNU Development Environment for the AVR Microcontrollercovers the details of
the GNU Tools that are specific to the AVR family of processors. By Rich Neswold.
http://www.enteract.com/ ∼rneswold/avr/

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

7.4 Memory Sections

Remarks:
Need to list all the sections which are available to the avr.

Weak Bindings
FIXME: need to discuss the .weak directive.

The following describes the various sections available.

7.4.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:
The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

7.4.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

http://www.enteract.com/~rneswold/avr/
http://gcc.gnu.org/onlinedocs/

7.4 Memory Sections 59

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by adding-Wl,-Tdata, addr to the avr-gcc command
used to the link your program. Not thataddr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetexplained]

7.4.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

7.4.4 The .eeprom Section

This is where eeprom variables are stored.

7.4.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causeavr-gcc to issue an error:

int bar __attribute__ ((section (".noinit"))) = 0xaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-Wl,--section-start=.noinit=0x802000 to theavr-gcc command line
at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note:
Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.4 Memory Sections 60

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

7.4.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of the.text section.

The purpose of these sections is to allow for more specific placement of code within
your program.

Note:
Sometimes it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names the tell the linker where to stick a chunk
of code which isnot a function. Notice that the examples forasmandC can not
be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.

.init0:
Weakly bound to init(). If user defines init(), it will be jumped into immediately
after a reset.

.init1:
Unused. User definable.

.init2:
In C programs, weakly bound to initialize the stack.

.init3:
Unused. User definable.

.init4:
Copies the .data section from flash to SRAM. Also sets up and zeros out the .bss
section. In Unix-like targets, .data is normally initialized by the OS directly from
the executable file. Since this is impossible in an MCU environment,avr-gcc
instead takes care of appending the .data variables after .text in the flash ROM
image. .init4 then defines the code (weakly bound) which takes care of copying
the contents of .data from the flash to SRAM.

.init5:
Unused. User definable.

.init6:
Unused for C programs, but used for constructors in C++ programs.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.4 Memory Sections 61

.init7:
Unused. User definable.

.init8:
Unused. User definable.

.init9:
Jumps into main().

7.4.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call toexit(). These all are subparts of the.text section.

The.finiN sections are executed in descending order from 9 to 0.

.finit9:
Unused. User definable. This is effectively whereexit() starts.

.fini8:
Unused. User definable.

.fini7:
Unused. User definable.

.fini6:
Unused for C programs, but used for destructors in C++ programs.

.fini5:
Unused. User definable.

.fini4:
Unused. User definable.

.fini3:
Unused. User definable.

.fini2:
Unused. User definable.

.fini1:
Unused. User definable.

.fini0:
Goes into an infinite loop after program termination and completion of anyexit()
code (execution of code in the .fini9 -> .fini1 sections).

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.5 Installing the GNU Tool Chain 62

7.4.8 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .init1,"ax",@progbits
ldi r0, 0xff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0

Note:
The,"ax",@progbits tells the assembler that the section is allocatable (”a”),
executable (”x”) and contains data (”@progbits”). For more detailed information
on the .section directive, see the gas user manual.

7.4.9 Using Sections in C Code

Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init1")));

void
my_init_portb (void)
{

outb (PORTB, 0xff);
outb (DDRB, 0xff);

}

7.5 Installing the GNU Tool Chain

Note:
This discussion was taken directly from Rich Neswold’s document. (SeeAc-
knowledgments).

Note:
This discussion is Unix specific. [FIXME: troth/2002-08-13: we need a volunteer
to add windows specific notes to these instructions.]

This chapter shows how to build and install a complete development environment for
the AVR processors using the GNU toolset.

The default behaviour for most of these tools is to install every thing under the
/usr/local directory. In order to keep the AVR tools separate from the base

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.5 Installing the GNU Tool Chain 63

system, it is usually better to install everything into/usr/local/avr . If the
/usr/local/avr directory does not exist, you should create it before trying to
install anything. You will needroot access to install there. If you don’t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using the--prefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will use$PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:
Be sure that you have yourPATHenvironment variable set to search the direc-
tory you install everything inbeforeyou start installing anything. For example, if
you use--prefix=$PREFIX , you must have$PREFIX/bin in your exported
PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Note:
The versions for the packages listed below are known to work together. If you mix
and match different versions, you may have problems.

7.5.1 Required Tools

• GNU Binutils (2.14)

http://sources.redhat.com/binutils/

Installation

• GCC (3.3)

http://gcc.gnu.org/

Installation

• AVR Libc (20020816-cvs)

http://savannah.gnu.org/projects/avr-libc/

Installation

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

http://sources.redhat.com/binutils/
http://gcc.gnu.org/
http://savannah.gnu.org/projects/avr-libc/

7.5 Installing the GNU Tool Chain 64

Note:
As of 2002-08-15, the versions mentioned above are still considered experimental
and must be obtained from cvs. Instructions for obtaining the latest cvs versions
are available at the URLs noted above. Significant changes have been made which
are not compatible with previous stable releases. These incompatilities should be
noted in the documentation.

7.5.2 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

• uisp (20020626)

http://savannah.gnu.org/projects/uisp/

Installation

• avrprog (2.1.0)

http://www.bsdhome.com/avrprog/

Installation

• GDB (5.2.1)

http://sources.redhat.com/gdb/

Installation

• Simulavr (0.1.0)

http://savannah.gnu.org/projects/simulavr/

Installation

• AVaRice (1.5)

http://avarice.sourceforge.net/

Installation

7.5.3 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as), linker (avr-ld), and librarian (avr-ar andavr-ranlib). In addi-
tion, you get tools which extract data from object files (avr-objcopy), dissassem-
ble object file information (avr-objdump), and strip information from object files
(avr-strip). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

http://savannah.gnu.org/projects/uisp/
http://www.bsdhome.com/avrprog/
http://sources.redhat.com/gdb/
http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/

7.5 Installing the GNU Tool Chain 65

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:
Replace<version > with the version of the package you downloaded.

Note:
If you obtained a gzip compressed file (.gz), usegunzip instead ofbunzip2 .

It is usually a good idea to configure and buildbinutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended by thebinutils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$../configure --prefix=$PREFIX --target=avr --disable-nls

If you don’t specify the--prefix option, the tools will get installed in the
/usr/local hierarchy (i.e. the binaries will get installed in/usr/local/bin ,
the info pages get installed in/usr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

When configure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:
BSD users should note that the project’sMakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by usinggmake.

If the tools compiled cleanly, you’re ready to install them. If you specified a destination
that isn’t owned by your account, you’ll needroot access to install them. To install:

$ make install

You should now have the programs from binutils installed into$PREFIX/bin . Don’t
forget toset your PATHenvironment variable before going to build avr-gcc.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.5 Installing the GNU Tool Chain 66

7.5.4 GCC for the AVR target

Warning:
You must install avr-binutilsand make sure yourpath is setproperly before in-
stalling avr-gcc.

The steps to buildavr-gcc are essentially same as forbinutils:

$ bunzip2 -c gcc-<version>.tar.bz2 | tar xf -
$ cd gcc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \

--disable-nls
$ make
$ make install

To save your self some download time, you can alternatively download only the
gcc-core- <version >.tar.bz2 and gcc-c++- <version >.tar.bz2
parts of the gcc. Also, if you don’t need C++ support, you only need the core part
and should only enable the C language support.

Note:
Early versions of these tools did not support C++.

Note:
The stdc++ libs are not included with C++ for AVR due to the size limitations of
the devices.

7.5.5 AVR Libc

Warning:
You must install avr-binutils, avr-gccand make sure yourpath is setproperly
before installing avr-libc.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz
$ cd avr-libc-<version>
$./doconf
$./domake
$ cd build
$ make install

Note:
Thedoconf script will automatically use the$PREFIX environment variable if
you have set and exported it.

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.5 Installing the GNU Tool Chain 67

Alternatively, you could do this (shown for consistency withbinutils andgcc) :

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -
$ cd avr-libc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note:
If you have obtained the latest avr-libc from cvs, you will have to run thereconf
script before using either of the above build methods.

7.5.6 UISP

Uisp also uses theconfigure system, so to build and install:

$ gunzip -c uisp-<version>.tar.gz | tar xf -
$ cd uisp-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

7.5.7 Avrprog

Note:
This is currently a FreeBSD only program, although adaptation to other systems
should not be hard.

avrprog is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrprog
make install

Note:
Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the appropriateppi(4)
device.

7.5.8 GDB for the AVR target

Gdb also uses theconfigure system, so to build and install:

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

7.5 Installing the GNU Tool Chain 68

$ bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
$ cd gdb-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr
$ make
$ make install

Note:
If you are planning on usingavr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target.

7.5.9 Simulavr

Simulavr also uses theconfigure system, so to build and install:

$ gunzip -c simulavr-<version>.tar.gz | tar xf -
$ cd simulavr-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note:
You might want to have already installedavr-binutils, avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

7.5.10 AVaRice

Note:
These install notes are specific to avarice-1.5.

You will have to editprog/avarice/Makefile for avarice in order to install into
a directory other than/usr/local/avr/bin . Edit the line which looks like this:

INSTALL_DIR = /usr/local/avr/bin

such thatINSTALL DIR is now set to whatever you decided on$PREFIX/bin to
be.

$ gunzip -c avarice-1.5.tar.gz | tar xf -
$ cd avarice-1.5/prog/avarice
$ make
$ make install

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

Index
$PATH,63
$PREFIX,63
–prefix,63
BV

avr sfr, 34
EEGET

avr eeprom,4
EEPUT

avr eeprom,4
comparfn t

avr stdlib,15
elpm inline

avr pgmspace,7
malloc heapend

avr stdlib,20
malloc heapstart

avr stdlib,21
malloc margin

avr stdlib,21

abort
avr stdlib,15

abs
avr stdlib,15

Additional notes from <avr/sfr -
defs.h>, 9

atoi
avr stdlib,15

atol
avr stdlib,15

AVR device-specific IO definitions,5
avr eeprom

EEGET,4
EEPUT,4

eepromis ready,4
eepromrb, 4
eepromreadblock,4
eepromrw, 4
eepromwb, 4

avr interrupts
cli, 31
enableexternalint, 32
INTERRUPT,31

sei,31
SIGNAL, 32
timer enableint, 32

avr inttypes
int16 t, 11
int32 t, 11
int64 t, 11
int8 t, 11
intptr t, 11
uint16 t, 11
uint32 t, 11
uint64 t, 11
uint8 t, 11
uintptr t, 11

avr pgmspace
elpm inline, 7

memcpyP,7
PGM P,6
PGM VOID P,6
PSTR,6
strcasecmpP,7
strcatP,7
strcmpP,7
strcpyP,8
strlenP,8
strncasecmpP,8
strncmpP,8
strncpyP,9

avr sfr
BV, 34

bit is clear,34
bit is set,35
BV, 35
cbi, 35
inb, 35
inp, 35
inw, 35
loop until bit is clear,35
loop until bit is set,36
outb,36
outp,36
outw,36

INDEX 70

sbi,36
avr stdlib

comparfn t, 15
malloc heapend,20
malloc heapstart,21
malloc margin,21

abort,15
abs,15
atoi,15
atol,15
bsearch,16
div, 16
DTOSTRALWAYS SIGN,15
DTOSTRPLUS SIGN,15
DTOSTRUPPERCASE,15
dtostre,16
dtostrf,17
exit, 17
free,17
itoa,17
labs,17
ldiv, 17
ltoa,18
malloc,18
qsort,18
RAND MAX, 14
strtod,18
strtol,19
strtoul,19
ultoa,20
utoa,20

avr string
memccpy,22
memchr,22
memcmp,22
memcpy,23
memmove,23
memset,23
strcasecmp,23
strcat,24
strchr,24
strcmp,24
strcpy,24
strlcat,25
strlcpy,25
strlen,25

strlwr, 25
strncasecmp,26
strncat,26
strncmp,26
strncpy,26
strnlen,27
strrchr,27
strrev,27
strstr,27
strupr,28

bit is clear
avr sfr, 34

bit is set
avr sfr, 35

bsearch
avr stdlib,16

BV
avr sfr, 35

cbi
avr sfr, 35

cli
avr interrupts,31

div
avr stdlib,16

div t, 37
quot,37
rem,37

DTOSTRALWAYS SIGN
avr stdlib,15

DTOSTRPLUS SIGN
avr stdlib,15

DTOSTRUPPERCASE
avr stdlib,15

dtostre
avr stdlib,16

dtostrf
avr stdlib,17

EEPROM handling,3
eepromis ready

avr eeprom,4
eepromrb

avr eeprom,4

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

INDEX 71

eepromreadblock
avr eeprom,4

eepromrw
avr eeprom,4

eepromwb
avr eeprom,4

enableexternalint
avr interrupts,32

exit
avr stdlib,17

FAQ, 38
free

avr stdlib,17

General utilities,13

inb
avr sfr, 35

inp
avr sfr, 35

installation,62
installation, avarice,68
installation, avr-libc,66
installation, avrprog,67
installation, binutils,64
installation, gcc,66
Installation, gdb,67
installation, simulavr,68
installation, uisp,67
int16 t

avr inttypes,11
int32 t

avr inttypes,11
int64 t

avr inttypes,11
int8 t

avr inttypes,11
Integer Types,10
INTERRUPT

avr interrupts,31
Interrupts and Signals,28
intptr t

avr inttypes,11
inw

avr sfr, 35

itoa
avr stdlib,17

labs
avr stdlib,17

ldiv
avr stdlib,17

ldiv t, 37
quot,37
rem,37

longjmp
setjmp,12

loop until bit is clear
avr sfr, 35

loop until bit is set
avr sfr, 36

ltoa
avr stdlib,18

malloc
avr stdlib,18

memccpy
avr string,22

memchr
avr string,22

memcmp
avr string,22

memcpy
avr string,23

memcpyP
avr pgmspace,7

memmove
avr string,23

memset
avr string,23

outb
avr sfr, 36

outp
avr sfr, 36

outw
avr sfr, 36

PGM P
avr pgmspace,6

PGM VOID P

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

INDEX 72

avr pgmspace,6
Program Space String Utilities,5
PSTR

avr pgmspace,6

qsort
avr stdlib,18

quot
div t, 37
ldiv t, 37

RAND MAX
avr stdlib,14

rem
div t, 37
ldiv t, 37

sbi
avr sfr, 36

sei
avr interrupts,31

setjmp
longjmp,12
setjmp,12

Setjmp and Longjmp,11
SIGNAL

avr interrupts,32
Special function registers,32
strcasecmp

avr string,23
strcasecmpP

avr pgmspace,7
strcat

avr string,24
strcatP

avr pgmspace,7
strchr

avr string,24
strcmp

avr string,24
strcmpP

avr pgmspace,7
strcpy

avr string,24
strcpyP

avr pgmspace,8

Strings,21
strlcat

avr string,25
strlcpy

avr string,25
strlen

avr string,25
strlenP

avr pgmspace,8
strlwr

avr string,25
strncasecmp

avr string,26
strncasecmpP

avr pgmspace,8
strncat

avr string,26
strncmp

avr string,26
strncmpP

avr pgmspace,8
strncpy

avr string,26
strncpyP

avr pgmspace,9
strnlen

avr string,27
strrchr

avr string,27
strrev

avr string,27
strstr

avr string,27
strtod

avr stdlib,18
strtol

avr stdlib,19
strtoul

avr stdlib,19
strupr

avr string,28
supported devices,1

timer enableint
avr interrupts,32

tools, optional,64

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

INDEX 73

tools, required,63

uint16 t
avr inttypes,11

uint32 t
avr inttypes,11

uint64 t
avr inttypes,11

uint8 t
avr inttypes,11

uintptr t
avr inttypes,11

ultoa
avr stdlib,20

utoa
avr stdlib,20

Generated on Tue Sep 10 09:24:23 2002 for avr-libc by Doxygen

	AVR Libc
	Supported Devices

	avr-libc Module Index
	avr-libc Modules

	avr-libc Data Structure Index
	avr-libc Data Structures

	avr-libc Page Index
	avr-libc Related Pages

	avr-libc Module Documentation
	EEPROM handling
	Detailed Description
	Define Documentation
	Function Documentation

	AVR device-specific IO definitions
	Program Space String Utilities
	Detailed Description
	Define Documentation
	Function Documentation

	Additional notes from <avr/sfr_defs.h>
	Integer Types
	Detailed Description

	Setjmp and Longjmp
	Detailed Description
	Function Documentation

	General utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	Strings
	Detailed Description
	Function Documentation

	Interrupts and Signals
	Detailed Description
	Define Documentation
	Function Documentation

	Special function registers
	Detailed Description
	Define Documentation

	avr-libc Data Structure Documentation
	div_t Struct Reference
	Detailed Description

	ldiv_t Struct Reference
	Detailed Description

	avr-libc Page Documentation
	Acknowledgments
	Frequently Asked Questions
	FAQ Index
	My program doesn't recognize a variable updated within an interrupt routine
	I get `¨undefined reference to...`¨ for functions like `¨sin()`¨
	How to permanently bind a variable to a register?
	How to modify MCUCR or WDTCR early?
	What is all this _BV() stuff about?
	Can I use C++ on the AVR?
	Shouldn't I better initialize all my variables?
	Why do some 16-bit timer registers sometimes get trashed?
	How do I use a #define'd constant in an asm statement?
	When single-stepping through my program in avr-gdb, the PC `¨jumps around`¨
	How do I trace an assembler file in avr-gdb?

	Inline Asm
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Installing the GNU Tool Chain
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR Libc
	UISP
	Avrprog
	GDB for the AVR target
	Simulavr
	AVaRice

