
molegro virtual docker

user manual

MVD 2011.5.0 for Windows, Linux, and Mac OS X

copyright molegro 2011

Molegro ApS

Copyright © 2005–2011 Molegro ApS. All rights reserved.

Molegro Virtual Docker (MVD), Molegro Data Modeller (MDM), Molegro Virtual Grid (MVG), and MolDock are trademarks of Molegro ApS.

All the other trademarks mentioned in this user manual are the property of their respective owners.

All trademarks are acknowledged.

Information in this document is subject to change without notice and is provided "as is" with no warranty. Molegro ApS makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Molegro ApS, shall not be liable for errors contained herein or for any direct, indirect, special, incidental, or consequential damages in connection with the use of this material.

Table of Contents

4	Introduction to Malagra Virtual Decker	7
Т	Introduction to Molegro Virtual Docker	
	1.1 Contact Information	
	1.2 System Requirements	
	1.3 Reporting Program Errors	8
	1.4 Text Formats Used in the Manual	8
	1.5 Keyboard Shortcuts	9
	1.6 Screenshots Used In the Manual	
	1.7 Future Updates	
ว	Docking Tutorial.	
Ζ		
	2.1 Importing and Preparing Molecules	
	2.2 Running the Docking Simulation	16
	2.3 Viewing the Results	
3	User Interface	
	3.1 Basic Concepts	23
	3.2 Overview	23
	3.3 Toolbar	24
	3.4 Workspace Explorer	
	3.5 Properties Window	
	3.6 Console Window	
	3.7 Clipping Planes	
	3.8 Creating a Search Space	
	3.9 Hiding Distant Residues	
	3.10 Workspace Finder	
	3.11 Sequence Viewer	
	3.12 Workspace Properties	
	3.13 Measurements and Annotations	36
	3.14 Selection of Atoms, Amino Acids, Rings, and Molecules	37
	3.15 Custom Coloring of Atoms, Amino Acids, and Molecules	37
	3.16 Creating Labels	
	3.17 Creating Molecular Surfaces	
	3.18 Creating Protein Backbone Visualizations	41
	3.19 Making Screenshots	
	3.20 Sidechain Minimization	
	3.21 Working With Multiple Receptor Conformations	
	3.22 Visualization Settings Dialog	
	3.23 High-Quality Rendering	
	3.24 Biomolecule Generator	
	3.25 Structural Alignment of Proteins	
	3.26 Structural Alignment of Small Molecules	60
	3.27 Macro and Menu Editor	
	3.28 PDB and SDF Import Notes	
4	Preparation	
•	4.1 Import of Molecules	
		55

4.2 Automatic Preparation	66
4.3 Manual Preparation	69
4.4 Protein Preparation	.71
4.5 The Protonation Tab	71
4.6 The Mutate and Optimize Tab	.74
4.7 The Settings Tab	
4.8 Customizing the Protonation Templates	76
5 Data Sources	
5.1 Data Sources Syntax	. 80
5.2 Using Data Sources	. 81
6 Docking Functionality	84
6.1 Cavity Prediction	. 84
6.2 Constraints	.85
6.3 Docking Wizard	.89
6.4 GPU Screening	
7 Analyzing the Docking Results	105
7.1 Pose Organizer	
7.2 Saving Molecules and Solutions Found	112
7.3 Ligand Energy Inspector	113
7.4 Ligand Map (2D Depictions)	121
7.5 Pose Modifier	123
7.6 RMSD Matrix	124
8 Sidechain Flexibility	
8.1 The Setup Sidechain Flexibility Dialog	
8.2 Sidechain Flexibility in the Docking Wizard	
8.3 Sidechain Flexibility and Scripting	
9 Displaceable Water	
9.1 Docking with Displaceable Water Molecules	
9.2 Inspecting Results	
10 Template Docking	
10.1 Template Scoring Function	142
10.2 Setting up Template Docking	
10.3 Docking with Templates	
10.4 Inspecting Results	
11 Customizing Molegro Virtual Docker	
11.1 General Preferences	
11.2 Command Line Parameters	
11.3 Changing Re-ranking Score Coefficients	
12 Obtaining the Best Docking Results	
12.1 Preparation	
12.2 Docking	
12.3 Post-analysis	
13 Data Analyzer	
13.1 GUI Overview	
13.2 Workspace Explorer	163

13.3 Properties Window	164
13.4 Toolbar	
13.5 Spreadsheet Window	167
13.6 Changing Spreadsheet Color Scheme	
13.7 Custom Data View	
13.8 Dataset Finder	
13.9 Creating a New Dataset	
13.10 Importing Datasets and Regression Models	
13.11 Creating Subsets	
13.12 Dataset Scaling and Normalization	
13.13 Convert Discrete Descriptors	
13.14 Cross-Term Generator	
13.15 Convert Between Numerical and Textual Descriptors	186
13.16 Handling Constant Columns	
13.17 Deleting, Replacing, or Repairing Invalid Cells	186
13.18 Scrambling Data Columns	
13.19 Creating Regression Models Using the Regression Wizard	
13.20 Inspecting Regression Models	
13.21 How to Make Predictions Using an Existing Model	
13.22 Offline Model Predictions	
13.23 Inspecting Numerical and Predicted Descriptors	
13.24 3D Plots	
13.25 Similarity Browser.	
13.26 Data Transformation Dialog Box	
13.27 Exporting Datasets and Derived Regression Models	
13.28 Workspace Properties	
13.29 The Chemistry Module	
13.30 Getting Started	
14 Molecular Descriptor Calculations	236
14.1 Using the Descriptor Calculation Wizard	236
14.2 Descriptors in MVD	
14.3 Choosing an Output Format	
14.4 Working with Molecular Descriptors	
14.5 Chemical Feature Distance Matrix Descriptors	
15 Molegro Virtual Grid	
15.1 Security Considerations	246
15.2 Network and Firewall Issues	
15.3 Licensing.	
15.4 Running the Agents	
15.5 The Agent GUI	
15.6 Console Mode	
15.7 Agent Web Interface	
15.8 The Virtual Grid Controller	
15.9 Combining Results	
15.10 License Management	254

15.11 How Virtual Grid Works	
16 Help	
16.1 PDF Help	
16.2 Tip of the Day	
16.3 The Molegro Website	
16.4 Technical Support	. 258
17 Script Interface	
17.1 Using the Script Interface	259
17.2 Running a Text-file Script	
17.3 Examples of Common Script Jobs	.260
17.4 Running the Script Interface Interactively	.261
17.5 Running the Script Interface From Python	262
18 Appendix I: MolDock Scoring Function	264
19 Appendix II:PLANTS Scoring Function	.271
20 Appendix III: MolDock Optimizer	273
21 Appendix IV: Cavity Prediction	
22 Appendix V: Clustering Algorithm	.277
23 Appendix VI: Supported File Formats	.279
24 Appendix VII: Automatic Preparation	. 281
25 Appendix VIII: Third Party Copyrights	
26 Appendix IX: Keyboard Shortcuts	.285
27 Appendix X: Console and Macro Commands	.286
28 Appendix XI: Script Commands	
28.1 List of Script Commands Available	
28.2 Flow Control	.307
29 Appendix XII: MolDock SE	309
30 Appendix XIII: Iterated Simplex	312
31 Appendix XIV: Grid-based Scores	.314
32 Appendix XV: Statistical Measures	
32.1 General Symbols Used	.316
32.2 Univariate Analysis	
32.3 Bivariate Analysis	
33 Appendix XVI: References	
••	

1 Introduction to Molegro Virtual Docker

Molegro Virtual Docker (MVD) is an integrated environment for studying and predicting how ligands interact with macromolecules.

The identification of ligand binding modes is done by iteratively evaluating a number of candidate solutions (ligand conformations) and estimating the energy of their interactions with the macromolecule. The highest scoring solutions are returned for further analysis.

MVD requires a three-dimensional structure of both protein and ligand (usually derived from X-ray/NMR experiments or homology modeling). MVD performs flexible ligand docking, so the optimal geometry of the ligand will be determined during the docking.

The preferred way to get started with MVD is:

- Read the remainder of the introduction (Chapter 1)
- Go through the docking tutorial (Chapter 2).
- Read the instructions on how to use the GUI (Chapter 3).

Overall, Chapters 3 to 9 describe various aspects of MVD from importing and preparing molecules to docking and inspecting the docked solutions. Chapter 8 describes docking with flexible sidechains. Chapter 13 introduces the built-in Data Analyzer that can be used to e.g. customize the reranking/affinity scoring functions or to create and predict models for estimation of chemical properties (e.g. QSAR). Chapter 17 provides an overview of the scripting features in MVD.

More detailed information about the algorithms (cavity detection, clustering, binding mode prediction) and scoring functions (MolDock Score and PLANTS Score) used by MVD can be found in the appendices.

1.1 Contact Information

Molegro Virtual Docker is developed by:

Molegro ApS C. F. Moellers Alle 8, Building 1110 DK-8000 Aarhus C Denmark www.molegro.com

Information:

- Phone: (+45) 8715 5571
- Fax: (+45) 8715 4102
- VAT no.: DK 2832 6947

E-mail:

- General inquiries: <u>info@molegro.com</u>
- Product support: <u>support@molegro.com</u>
- Reporting bugs: <u>bugs@molegro.com</u>

1.2 System Requirements

The system requirements for Molegro Virtual Docker are:

- Windows 7, Vista, 2003, XP, or 2000.
- Linux: Most standard distributions. We provide both 32 and 64 bit builds.
 Please send a mail to <u>support@molegro.com</u> if the program does not work on a particular distribution – and we will try to provide a new build.
- Mac OS X 10.5 Intel (and later versions).

1.3 Reporting Program Errors

If you discover a program error, please mail the information to:

bugs@molegro.com

Remember to specify how the error can be reproduced, the version number of Molegro Virtual Docker in question, and the operating system that was used. If possible, inclusion of molecular files used (e.g. Mol2, PDB, MVDML) will make it easier for us to reproduce (and correct) the error.

1.4 Text Formats Used in the Manual

The following formatting styles are used in this manual:

 All GUI text, labels, and keyboard shortcuts are written in bold face with initial capital letters.

Examples: Workspace Explorer, Macro Definition, Ctrl-O

- Menus and menu items are identified using dividing lines and bold face.
 Example: View | Docking View indicates that the user should first select the View menu and then select the Docking View menu item.
- Filenames are written in mono-spaced font.

Example: \Molegro\MVD\bin\mvd.exe

1.5 Keyboard Shortcuts

The keyboard shortcuts used in the manual works for Windows and Linux versions of MVD. On Mac OS X, the **CTRL** key is replaced by the **command** key and function key shortcuts (e.g. **F1**) should be invoked by pressing the function key and the **fn** key (e.g. **fn+F1**).

1.6 Screenshots Used In the Manual

The screenshots used in the manual are taken from the Windows XP and Vista versions of MVD. Therefore, dialogs and other GUI related material may slightly differ on Linux and Mac OS X versions.

1.7 Future Updates

Molegro Virtual Docker contains a built-in version checker making it easy to check for new program updates including new features and bug fixes. To check for new updates, select **Help** | **Check for Updates**. A window showing available updates and details about changes made will appear (see Figure 1).

% New Version Found	x
Latest version available 2010.4.1.0	
Your current version 2009.3.2.1	5
Changes:	
June 9th 2010: MVD Version 4.1.0	
Molegro Virtual Docker 4.1.0 updates the Data Analyzer and improves Molegro Virtual Grid performance and stability.	=
Notice that it is possible (and recommended) to update trial licenses as long as the trial license key is still valid.	
February 10th 2010: MVD Version 4.0.2	
Molegro Virtual Docker 4.0.2 is a minor update, which adds better support for very large molecules, foreign (unicode) characters in MVG scripts, and fixes a few bugs.	Ŧ
A new version has been found. Please go to www.molegro.com to update your application	on.
ОК	

Figure 1: Check for updates.

2 Docking Tutorial

This tutorial will go through a simple docking exercise by redocking a cocrystallized ligand to its native binding site. The tutorial will highlight aspects such as import and preparation of molecules, conducting the actual docking run, and visual inspection of the poses found.

2.1 Importing and Preparing Molecules

In order for MVD to be able to perform optimally, the molecules in the workspace must be properly prepared before the docking begins. The molecules can either be prepared internally in MVD, or externally by another program (e.g. MOE from CCG [CCG] or Maestro from Schrödinger, LLC [SCHRODINGER]). In this tutorial we will use the built-in preparation method available in MVD.

File Import

If the workspace is not empty, start by clearing it (select **File** | **Clear Workspace**). Next we will add some structures. This can be accomplished by selecting **File** | **Import Molecules...** or by dragging and dropping a molecule structure file. MVD supports PDB, Mol2, SDF, and its own XML-based format, MVDML.

Start by importing the file 1HVR.pdb from the installation examples directory (located in the MVD installation folder). This file (a HIV-1 protease complexed with XK263) is an unmodified file taken from the RCSB Protein Data Bank (www.pdb.org).

Choosing Molecules to Import

The **Import Molecules** dialog (see Figure 2) appears.

9	Import	Molecules	X					
	Import	Preparation Warn	ings (0)					
	Select which molecules to import.							
	ms] ms] is]							
	Import s	mall molecules as:	Ligands 💌					
	Replace	or add to workspace:	Add to current workspace 🛛 👻					
	lmp(ort cofactors as ligands						
			Import Cancel					

Figure 2: Importing 1HVR from the PDB file.

Deselect the cofactors since we will not need these for this example. The import dialog shows two proteins: actually these are two chains from the same protein. It also indicates that a ligand has been detected in the PDB file.

Choosing Preparation Types

Select the **Preparation** tab (see Figure 3). Some structures contain information about bond types and bond orders, and have explicit hydrogens assigned. However, PDB files often have poor or missing assignment of explicit hydrogens, and the PDB file format cannot accommodate bond order information. Set **Assign All Below** to **Always**. This ensures that all preparation will be done by MVD.

🤋 Import Molecules	×					
Import Preparation Warnings (0)						
Assign All Below	Custom 💌					
Assign bonds If Missing						
Assign bond orders and hybridization	If Missing 💌					
Create explicit hydrogens	If Missing 💌					
Assign charges (calculated by MVD)	Always 💌					
Detect flexible torsions in ligands	Always 💌					
Assign Tripos atom types	If Missing 💌					
Notice:						
The preparation options (If Missing, Always, Never applies to each individual molecule (not each indiv atom).	· · ·					
For instance, setting 'Assign bonds' to 'If Missing' results in covalent bonds being created for molecules not containing any bonds at all while molecules with bond information will preserve their bond assignments.						
Likewise, setting 'Create explicit hydrogens' to 'If Missing' will not add additional hydrogens to molecules containing e.g. polar hydrogens only. In this case, 'Always' should be used if all hydrogens should be created.						
	Cancel					

Figure 3: Preparing the PDB-file.

If the protein structure has been prepared beforehand and saved in a format capable of handling all structural information (e.g. Mol2 file format), you should import it via the default preparation setting **If Missing**. This setting only performs a given preparation if the required information cannot be found in the file.

Notice: Per default any charge information for a molecule is ignored ('Assign charges = Always' means that MVD's internal charge scheme is always used to calculate charges). If you want to use partial charges stored with the molecule, set 'Assign charges = If Missing' – this way MVD will only calculate charges for molecules with no charge information present. If charges are imported from molecules (e.g. provided with Mol2 files), partial charges assigned to hydrogens will be moved to bonded heavy-atom since explicit hydrogens are not taken into account by the scoring functions used during docking.

Inspecting the Warnings

The last tab in the import dialog (**Warnings (0)**) shows potential problems with the structure file. In this case no warnings are reported.

Now click the **Import** button. The protein and the ligand appears in the **Visualization Window** (see Figure 4).

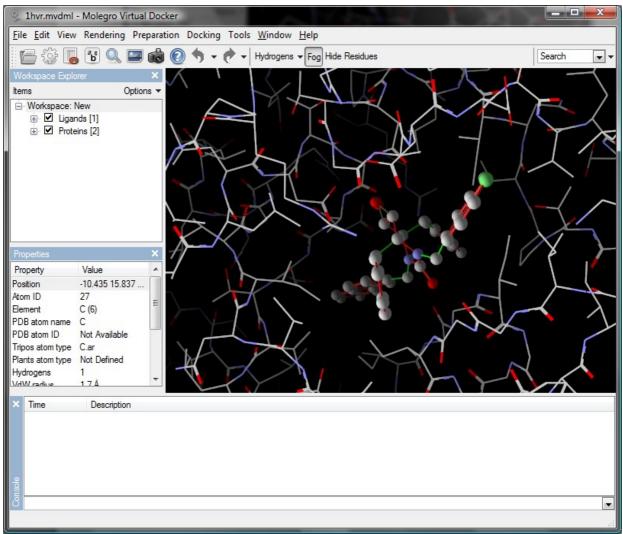


Figure 4: The imported structure.

In order to inspect the imported ligand, hide the protein by clicking on the check box next to the **Proteins** category in the **Workspace Explorer** (see Figure 5).

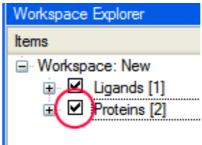


Figure 5: Hiding the Protein.

Now zoom in on the ligand (see Figure 6).

Zooming can be performed using either:

- the scroll wheel on the mouse
- by pressing and holding both mouse buttons
- by pressing shift and holding left mouse button

It is also possible to choose **Fit to Screen** from the context menu for ligands in the **Workspace Explorer**. Notice that the ligand has been assigned bond orders, aromatic rings have been detected, and explicit hydrogens have been added. Also notice that some bonds are green. These bonds will be set flexible during the docking simulation. If a bond should be held rigid during the simulation, right-click on it, and choose **Set Flexibility** from the context menu.

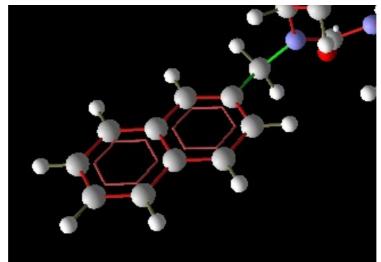


Figure 6: Inspecting flexible bonds.

Adding a Molecular Surface

Next we will add a surface to get an impression of the structure of the protein. We will do this by choosing **Create Surface...** from the **Proteins** context menu in the **Workspace Explorer** (see Figure 7).

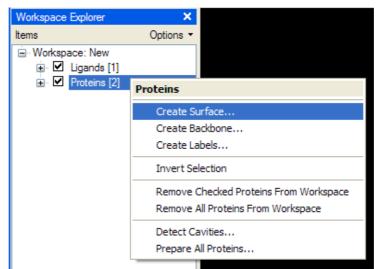


Figure 7: Surface creation.

In the dialog that appears, just click **OK**. This will create a protein surface based on the default settings which are an opaque solvent accessible surface colored according to the electrostatic potential (red and blue colored areas correspond to regions with respectively negatively and positively charged residues). Notice that the surface also show up as an element in the **Workspace Explorer** (**Surfaces** category).

Predicting the Binding Site

Next we will try to narrow down the potential binding site for the protein. This can be done automatically by selecting **Preparation** | **Detect Cavities**. After pressing the **OK** button, the system will predict a binding site in the center of the protein (see Figure 8) using the algorithm described in Appendix IV: Cavity Prediction.

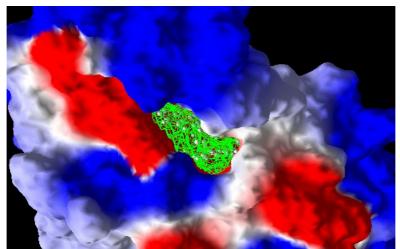


Figure 8: The predicted binding site.

Now we are ready to start the docking. To get a clearer view of this process start by selecting **View** | **Reset View**!. This will reset the 3D view (and hide the surface). Now select **View** | **Docking View**. This will switch to a view where ligands and poses have different colors and capped-stick representation instead of ball-and-stick.

2.2 Running the Docking Simulation

The **Docking Wizard** is invoked by selecting **Docking | Docking Wizard**.

Choosing Structures

The first tab shows which structures are included in the simulation. If multiple ligands are available they can be chosen here. Since we are doing a redocking study here, we will use the only available ligand as reference: Set **Reference Ligand** to **XK2_263** and continue to the next tab by pressing **Next**.

Defining the Region of Interest

The most important thing on the next tab is to set the binding site. Since we have detected cavities, we set **Origin** to **Cavity 1...**. If the protein had multiple potential binding sites, more choices would appear (see Figure 9).

-Binding Si	ite —		
Origin:			Reference Ligand
Center:	X:	-9.21	Reference Ligand User-defined
Radius:	15	÷	Cavity 1: Volume: 292.352, Surface: 593.92

Figure 9: Selecting the binding site.

Now continue to the next tab where **Search Parameters** can be set. We will not change any search parameters – press the **Next** button to proceed to the next tab.

The next tab (**Pose Clustering**) allows you to configure whether multiple poses should be returned. We will stick to the default setting, which will limit the number of poses returned to a maximum of five. Continue to the next tab.

The **Errors and Warnings** tab in the **Docking Wizard** shows potential problems with the docking setup (if any). It should not show any warnings at this stage. Press the **Next** button to proceed to the last tab.

In the **Setup Docking Execution** tab (see Figure 10), several choices are available for executing the docking simulation. We will use the default settings (the settings are further explained in Section 6.3). Finally, the **Output directory** specifies where the docking data (log file and found poses) will be

stored. Choose a directory pressing the "..." button or keep the default settings.

😤 Docking Wizard 🛛 🔀						
Setup Docking Execution						
Choose how to execute the docking						
Run docking in separate process Creates a script and executes it in an external process. You can continue working on the current workspace.						
Create a docking scriptjob, but do not run it now.						
Can be used to prepare larger docking runs (e.g. on several machines).						
 Start job on Virtual Grid 						
Virtual Grid docking is only enabled when docking from a data source.						
Edit script manually						
Data output						
Output directory: c:/Program Files/Molegrd/DockingOutput						
Save found poses as: Mol2						
Create SMILES in MVDResults file						
The generated script, the logfile and the found poses will be stored in the output directory						
< <u>B</u> ack Start <u>C</u> ancel						

Figure 10: Setup docking execution.

Now we can begin the docking simulation by pressing the **Start** button.

The **Molegro Virtual Docker Batchjob** dialog appears showing the docking progress (see Figure 11).

nish (estimate	d: Fri Dec 4 09:05:31 2009. Elapsed: 00:01:45 ed): 10:20:31. Remaining: 01:13:15 ::/Program Files/Molegro/DockingOutput 1 / 10 runs)	 kip run nple <<<
.og Poses (current ligand) Poses (all) Graph Current script	
Time	Description	~
09:06:55.592	Iteration: 220. Lowest Energy: -229.549.	
09:06:00.032	Iteration: 220. Lowest Energy: -223.343.	
09:07:00.520	Iteration: 260. Lowest Energy: -230.345.	
09:07:02.170	Iteration: 270. Lowest Energy: -237.559.	
09:07:04.327	Iteration: 280. Lowest Energy: -238.933.	
09:07:04.967	Iteration: 290. Lowest Energy: -239.13.	
09:07:05.592	Iteration: 300. Lowest Energy: -240.168.	
09:07:06.170	Iteration: 310. Lowest Energy: -241.356.	
09:07:14.905	Iteration: 320. Lowest Energy: -241.771.	
09:07:15.467	Iteration: 330. Lowest Energy: -241.798.	
09:07:16.030	Iteration: 340. Lowest Energy: -242.063.	
09:07:16.702	Iteration: 350. Lowest Energy: -242.094.	
09:07:17.295	Iteration: 360. Lowest Energy: -242.121.	~

Figure 11: Docking Progress dialog.

While the simulation is running the energy of the currently best found pose (the pose with the lowest energy) can be observed on the **Graph** tab page (see Figure 12). The graph shows the docking score (in arbitrary units) as a function of number of iterations performed by the docking search algorithm.

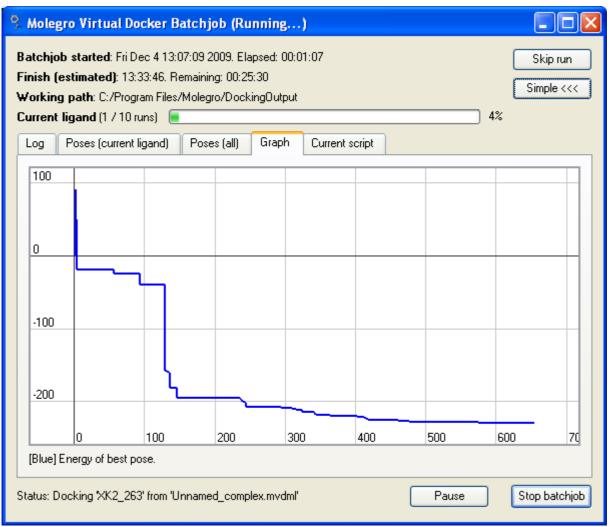


Figure 12: Docking search progress.

Let the simulation run for a while (1-2 minutes or so). The docking engine should find a good solution within 800 iterations. The simulation will eventually time out on its own (after 2,000 iterations or about 100,000 evaluations) or if the simulation has converged.

Notice: Because of the stochastic nature of the docking engine more than one docking run may be needed to identify the correct binding mode.

The docking run can also be stopped by pressing the **Stop batchjob** button. When the docking run finishes, the poses found are saved to the **Output directory** specified previously in the **Docking Wizard** dialog (here *c:\Program Files\Molegro\MVD\ScriptOutput* was used).

The poses found can now be imported into MVD by:

1) Selecting **Import Docking Results (*.mvdresults)...** from the **File** menu using the *DockingResults.mvdresults* file.

- 2) Dragging and dropping the *DockingResults.mvdresults* file onto the MVD application.
- 3) Dragging and dropping the *DockingResults* icon onto the MVD application.

The *DockingResults.mvdresults* file is located in the **Output directory** together with a docking log file and the poses found (in Mol2 file format).

After importing the *DockingResults.mvdresults* file, the **Pose Organizer** will appear showing the poses found (see Figure 13).

🨤 Pose C)rganizer	(5 poses)				
File Edit						
Table	Settings					
Table	Settings					
Poses	s					
Nam	ne	Ligand	MolDock Score Re	rank Score 🛛 H		<u>~</u>
	[00] XK2		-229.85	-180.404	-6.07051	
	[01] XK2	_	-192.467	-146.044	-4.68666	
	[02] XK2		-185.089	-139.513		
	[03] XK2		-160.797		0	
	[04] XK2	XK2_263	-115.676	-53.2015	1.97411	
<						<u> </u>
)ynamic upo	date (notice: disat	oles multiple poses se	lection)		
	Only show to	op 🚹 📑 pos	es for each ligand			
Ope	en checked	<u>poses in Data An</u>	alyzer			
Sortin	ng criteria—					
1st.	Ligand		2nd. MolDock	Score	✓ 3rd. None	~
100	Eigana		End: Mole con	00010		
					ОК	Cancel

Figure 13: The predicted poses.

The **Pose Organizer** allows you to inspect the poses and select which structures to keep (by toggling the select box next to them). At this point we will just add all found poses to the workspace. First select all poses by manually checking them or use the **Edit** | **Check All** menu. Afterwards, press the **OK** button.

2.3 Viewing the Results

At this point it would be a good idea to save the workspace with the new poses added. This can be done by selecting **File** | **Save Workspace...**. This will save the workspace (proteins, ligands, poses, etc.) in MVD's own XML-based format. In order to export the poses to other formats, the **Pose Organizer** can be used.

Revisiting the Pose Organizer

First switch to the pose organizer view (**View** | **Pose Organizer View**). Each pose is shown in different colors. Next open the **Pose Organizer** (select **Docking** | **Pose Organizer**).

File Edit Table Settings Poses Igand MolDock Score Rerank Score HBond ✓ (10)×K2,×K2_263 -229.85 -180.404 -6.07051 ✓ (10)×K2,×K2_263 -192.467 -146.044 -4.686666 ✓ (10)×K2,×K2_263 -185.089 -139.513 -4.88315 ✓ (10)×K2,×K2_263 -180.797 -113.353 0 ✓ (10)×K2,×K2_263 -115.676 -53.2015 1.97411 ✓ number update (notice: disables multiple poses selection) Only show top T poses for each ligand Sorting criteria 1st. Ligand 2nd. MolDock Score 3rd. None	🦻 Pose C	Organizer	r (5 poses)				X
Poses Name Ligand MolDock Score Rerank Score HBond	File Edit						
Poses Name Ligand MolDock Score Rerank Score HBond ♥ [00] × K2 × K2_263 ·229.85 ·180.404 ·6.07051 ♥ [01] × K2 × K2_263 ·192.457 ·146.044 ·4.68666 ♥ [02] × K2 × K2_263 ·185.089 ·139.513 ·4.88315 ♥ [03] × K2 × K2_263 ·160.797 ·113.353 0 ♥ [04] × K2 × K2_263 ·115.676 ·53.2015 1.97411 ● □ □ □ □ □ ● □ □ □ □ □ □ □ ● □	Table	Callings	7				
Name Ligand MolDock Score Rerank Score HBond ✓ (00) XK2 XK2_263 -229.85 -180.404 -6.07051 ✓ (01) XK2 XK2_263 -192.467 -146.044 -4.68666 ✓ (02) XK2 XK2_263 -185.089 -139.513 -4.88315 ✓ (03) XK2 XK2_263 -1160.797 -113.353 0 ✓ (04) XK2 XK2_263 -115.676 -53.2015 1.97411 ✓ (04) XK2 XK2_263 -115.676 -53.2015 1.97411 ✓ ✓ ✓ ✓ ✓ ✓	Table	Settings					
✓ (00)×K2×K2_263 -229.85 -180.404 -6.07051 ✓ (01)×K2×K2_263 -192.457 -146.044 -4.68666 ✓ (02)×K2×K2_263 -185.089 -139.513 -4.88315 ✓ (03)×K2×K2_263 -160.797 -113.353 0 ✓ (04)×K2×K2_263 -115.676 -53.2015 1.97411 ✓ 0 pynamic update (notice: disables multiple poses selection) Only show top 1 e poses for each ligand Open checked poses in Data Analyzer Sorting criteria	Poses	s					
✓ (00) × K2 × K2 263 -229.85 -180.404 -6.07051 ✓ (01) × K2 × K2 263 -192.457 -146.044 -4.68666 ✓ (02) × K2 × K2 263 -185.089 -139.513 -4.88315 ✓ (03) × K2 × K2 263 -160.797 -113.353 0 ✓ (04) × K2 × K2 263 -115.676 -53.2015 1.97411 ✓ (04) × K2 × K2 263 -115.676 -53.2015 1.97411 ✓ 0 Jynamic update (notice: disables multiple poses selection) > > Only show top 1 • poses for each ligand > Open checked poses in Data Analyzer Sorting criteria Sorting criteria	Nam	ne	Ligand	MolDock Score Rera	ank Score HBo	ond	~
Image: [02]×K2×K2_263 -185.089 -139.513 -4.88315 Image: [03]×K2×K2_263 -160.797 -113.353 0 Image: [04]×K2×K2_263 -115.676 -53.2015 1.97411 Image: [05]×M2×K2×K2_263 -115.676 -53.2015 1.97411 Image: [05]×M2×K2_		[00] XK2		-229.85	-180.404	-6.07051	
 [03]×K2×K2_263 -160.797 -113.353 0 [04]×K2×K2_263 -115.676 -53.2015 1.97411 [04]×K2×K2_263 -115.676 -53.2015 -1.97411 [04]×K2×K2_263 -115.676 -53.2015 -1.97411 [04]×K2×K2_263 -1.9741 [05]×K2×K2_263 -1.9741 [05]×K2×K2×K2×K2×K2×K2×K2×K2×K2×K2×K2×K2×K2		[01] XK2	. XK2_263	-192.467	-146.044	-4.68666	
 [04] XK2 XK2_263 -115.676 -53.2015 1.97411 Dynamic update (notice: disables multiple poses selection) Only show top 1 poses for each ligand Open checked poses in Data Analyzer Sorting criteria		[02] XK2	.XK2_263	-185.089	-139.513	-4.88315	
 Dynamic update (notice: disables multiple poses selection) Only show top 1 poses for each ligand Open checked poses in Data Analyzer Sorting criteria						0	
Dynamic update (notice: disables multiple poses selection) Only show top 1 represent for each ligand Open checked poses in Data Analyzer Sorting criteria	✓ [[04] XK2	. XK2_263	-115.676	-53.2015	1.97411	
Dynamic update (notice: disables multiple poses selection) Only show top 1 represent for each ligand Open checked poses in Data Analyzer Sorting criteria							
Dynamic update (notice: disables multiple poses selection) Only show top 1 represent for each ligand Open checked poses in Data Analyzer Sorting criteria							
Dynamic update (notice: disables multiple poses selection) Only show top 1 represent for each ligand Open checked poses in Data Analyzer Sorting criteria							
Dynamic update (notice: disables multiple poses selection) Only show top 1 represent for each ligand Open checked poses in Data Analyzer Sorting criteria							~
Only show top 1 reach ligand Open checked poses in Data Analyzer Sorting criteria	<						>
Only show top 1 reach ligand Open checked poses in Data Analyzer Sorting criteria		Dynamic up	date (notice: disa	ables multiple poses sela	ection)		
Open checked poses in Data Analyzer Sorting criteria							
Sorting criteria		Jinly show to	op 📋 😁 po	ises for each ligand			
Sorting criteria	Оре	en checked	poses in Data A	nalvzer			
	Sortin	o criteria					
1st Ligand V 2nd MolDock Score V 3rd None V	- Oordin	ig circena					
	1st.	Ligand		2nd. MolDock 9	icore 💉	3rd. None	~
Pressing 'OK' will keep 5 poses OK Cancel	Pressing '0	OK' will kee	p 5 poses			OK	Cancel

Figure 14: Viewing multiple poses.

Turn off the original ligand and the search space sphere (colored green) in the 3D view window (by clicking the **Ligands** and **Constraints** check boxes in the **Workspace Explorer**). The poses in the **Pose Organizer** can be visualized by selecting them (see Figure 14).

By enabling the **Dynamic update** option, we can inspect the individual poses one at a time (single pose view mode). Click on the poses on the list to have them visualized (see Figure 15). Notice that hydrogen bonds are dynamically updated and shown when switching to a new pose.

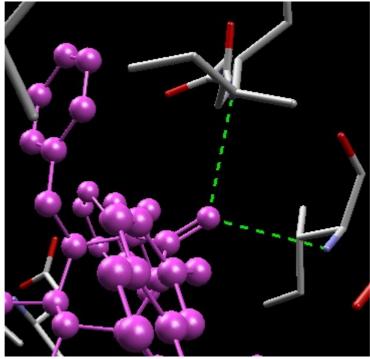


Figure 15: Viewing hydrogen bonds.

The **Pose Organizer** can also automatically rotate rotatable hydrogens (like hydroxyl rotors) in both the receptor and the ligand to their optimal position. It can also be used to rerank the ligands (using a rank score), or view their energy contributions split up into different categories (see Section 7.1 for more details).

This concludes the tutorial.

3 User Interface

3.1 Basic Concepts

Molegro Virtual Docker is based on the notion of workspaces. The *workspace* is the central component and represents all the information available to the user in terms of molecules (proteins, ligands, cofactors, water molecules, and poses), user-defined constraints (visualized as small spheres), cavities (visualized as a grid mesh), and various graphical objects (molecular surfaces, backbone visualizations, labels, etc.).

By default, an empty workspace is shown when starting MVD. A workspace can be saved, cleared, replaced by or appended to other workspaces. The content of the current workspace is listed in the **Workspace Explorer** window, which also allows for manipulation of the various items available (see Section 3.4 for more details).

Notice: When saving a workspace in the internal MVDML format not all 3D visualization objects are saved (e.g. labels, interactions, annotations, backbones, and surfaces). For more information about the MVDML format see Appendix VI: Supported File Formats and Section 7.2.

3.2 Overview

The user interface in MVD is composed of a central 3D view (referred to as the **Visualization Window** or 3D world, together with a number of dockable windows (introduced below).

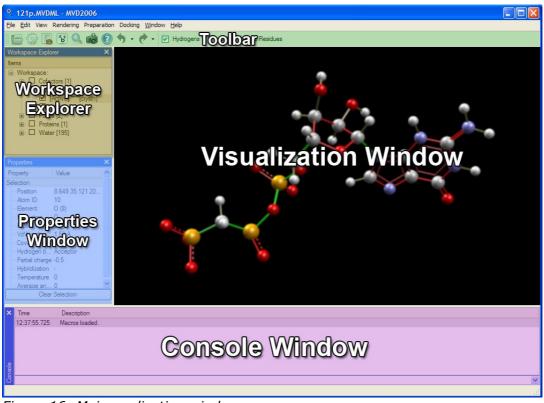
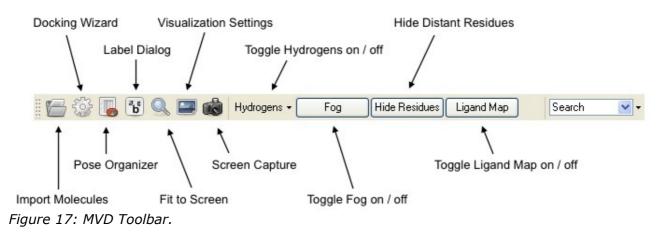



Figure 16: Main application window.

3.3 Toolbar

The **MVD Toolbar** provides easy and fast access to commonly used actions, such as import of molecules, docking using the **Docking Wizard**, and pose inspection using the **Pose Organizer**.

The **MVD Toolbar** also contains four toggle buttons. The **Hydrogens** button makes it easy to switch between different view modes (**Show all hydrogens**, **Show only polar hydrogens**, and **Hide all hydrogens**). The **Fog** button is

used to toggle fog effects on and off. The **Hide Residues** button is used to toggle whether residues should be hidden or not (see Section 3.9 for more details), and the **Ligand Map** button is used to toggle on 2D visualization of a ligand or pose and its interactions with the protein (see Section 7.4 for more details). The **Workspace Finder** located at the far right side of the toolbar can be used to quickly search for molecule names and residue/atom IDs (see Section 3.10 for more details).

3.4 Workspace Explorer

The **Workspace Explorer** window (see Figure 18) contains information about the 3D-objects (both molecules, such as proteins, ligands, and water molecules - but also objects such as labels, surfaces, backbones, and cavities).

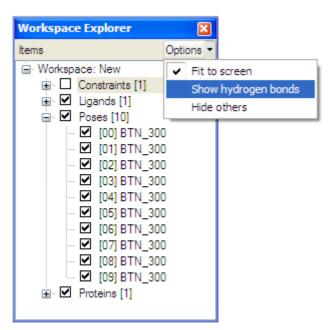


Figure 18: Workspace Explorer window.

The context menu (right mouse button click) allows the user to:

- Export molecules to PDB, Mol2, or SDF format
- Edit workspace properties (workspace title and workspace notes)
- Rename molecules
- Remove items from the current workspace
- Set the currently active ligand
- Set all torsions in a ligand either rigid or flexible
- Copy ligands to poses (used to inspect ligands with the **Pose Organizer**)

3 User Interface

- Clone ligand or protein (makes a copy of the molecule)
- Convert ligand to pose or cofactor
- Convert protein to ligand
- Convert pose to ligand (used when docking poses)
- Modify ligand or pose (using the **Pose Modifier**)
- Detect cavities (using the **Cavity Prediction** dialog) and merge them.
- Export cavity grid points to PDB or Mol2 format (represented as water molecules)
- Inspect poses (using the **Pose Organizer**)
- Prepare molecules
- Create labels, surfaces, and backbones
- Fit the molecule to the visualization window

Inspecting Molecules

The **Workspace Explorer** can also be used to inspect molecules in the **Visualization Window** using the left mouse button to select the molecules or by using keyboard shortcuts (see below).

The **Options** button (see Figure 18) contains settings used to customize the behavior when inspecting molecules. The **Fit to screen** option will automatically zoom selected molecules so that they fit into the **Visualization Window**. The **Show hydrogen bonds** option can be used to display hydrogen bonds (only applicable for ligands and poses). The **Hide others** option toggles whether other checked molecules in the current workspace category are allowed or not.

Keyboard shortcuts are also available for inspecting molecules. Pressing the **Shift** button while clicking the left-mouse button on a molecule in the chosen category (e.g. Ligands or Poses) will fit the selected molecule in the **Visualization Window** and all other molecules located in the same category are hidden.

Alternatively, using **Ctrl+Shift** when clicking on a molecule, hydrogen bonds are shown for the selected molecule.

Instead of using the mouse to select molecules to inspect, **Up** or **Down** keys can be used to browse the molecules present in the currently selected **Workspace Explorer** category. If the **Ctrl** and **Shift** shortcuts are omitted, the settings enabled in the **Options** panel will be used.

If multiple receptor conformations are available in the workspace, a drop-down box will appear at the bottom of the **Workspace Explorer** allowing the user to

change between conformations. For more information about working with multiple receptor conformations, see Chapter 8.

3.5 **Properties Window**

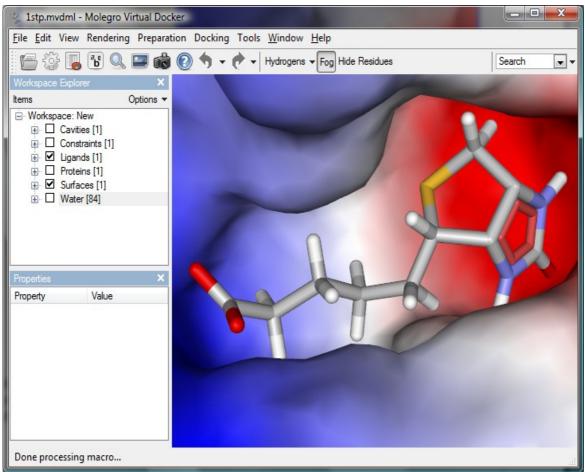
The **Properties Window** contains information about the currently selected (or highlighted) 3D object(s) in the **Visualization Window** and provides useful information while preparing and modifying the molecules.

Figure 19 shows an example of different properties for a highlighted atom.

Properties	×	
Property	Value	
Selection		
- Position	-11.156 14.282 34.709	
Atom ID	25	
- Element	C (6)	
- PDB atom name	С	
- PDB atom ID	1886	
 Tripos atom type 	C.ar	
 Plants atom name 	Not Defined	
Hydrogens	1	
	1.7 Å	
- Covalent radius	0.68 Å	
- Hydrogen bonding	Nonpolar	
 Partial charge 	0	
- Hybridization	Sp2	
 Temperature 	29.56	
ⁱ Average angle	120	
Clear Selection		

Figure 19: Example of properties for a selected atom.

Visualization Window


The **Visualization Window** (see Figure 20) visualizes all the selected molecules in the workspace and all custom graphical objects (e.g. labels, annotations, charges, protonation guides, backbones, surfaces, and cavities).

Notice: For large molecules it can be computationally slow to display all atoms. Therefore it is recommended to adjust the view to the user's needs. Often it is a good idea to add a molecular surface (perhaps transparent) to give some idea of the 3D structure. Alternatively, switching to wireframe visualization style and hiding non-polar (or all) hydrogens atoms can also improve the visualization speed significantly. Also consider cropping (removing) nonrelevant parts of the complex, in order to make the visualization faster. Cropping is described in Section 3.9.

Changing the 3D World Appearance

The visualization engine is highly configurable.

Molecules can be drawn as lines (wireframe), ball-and-sticks, capped-sticks, and space-fill (CPK).

Figure 20: Visualization of Biotin (1STP) in capped-stick style and electrostatic protein surface.

Notice: Ball-and-stick is the preferred style for handling preparation of ligands, since the visualized bond shows bond order, and is color coded to display whether the bond is set rigid (brown or red) or flexible (green).

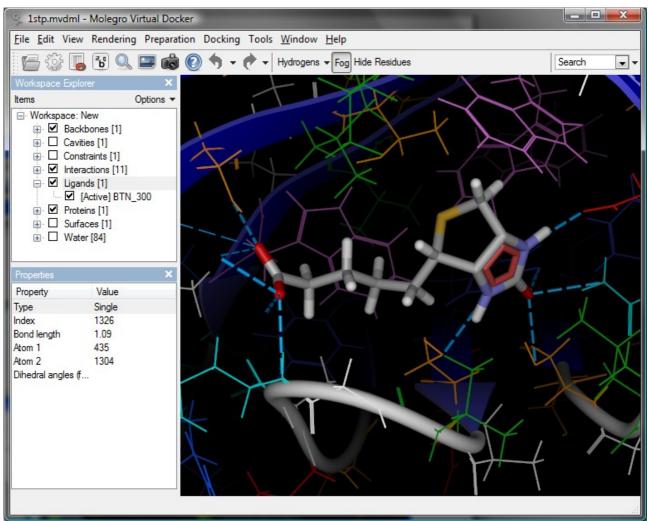


Figure 21: Main window showing different visualization styles.

The easiest way to get acquainted with the different drawing modes is to try the preset modes listed in the **Rendering** menu or to use the **Visualization Settings** dialog to inspect and modify visualization settings (described in Section 3.22). Afterwards, use the **Macro and Menu Editor** (described in Section 3.27) to explore which console commands that are used for a particular view.

Navigating the 3D World

Mouse actions available in the 3D world:

Function	Action
Zoom	By pressing both mouse buttons and moving up and down.
	By using scroll wheel.
	By using shift and left mouse button.
Free Rotation	Dragging mouse cursor while holding left mouse button down.
Drag Atom Rotation	While holding mouse over an atom: Dragging mouse (left mouse button down) will force the atom to follow the mouse cursor.
Free Translation	Dragging mouse cursor while holding right mouse button down.
Show Context Menu	Click and release right mouse button.

All rotations are centered about the rotational center.

This center can be chosen by invoking the context menu on an atom (right mouse button click) and selecting **Set as Rotational Center**. Another option is to choose **Fit to Screen** from the **Workspace Explorer** context menu. **Fit to Screen** will set the rotational center to the center of the bounding box enclosing the chosen molecule. If **Fit to Screen** is invoked from the **MVD Toolbar** or from the **Visualization Window** context menu, the new rotational center will be the center of the bounding box enclosing all visible molecules in the **Visualization Window**.

Manipulating Visualization Objects

All objects in the 3D world have context menu actions. These can be used for changing their properties, e.g. setting hybridization, partial charge, implicit hydrogens, or hydrogen bond types for atoms and bond order or bond flexibility for bonds. See Section 4.3 for more details.

3.6 Console Window

The **Console Window** (at the bottom of the screen) displays information, warnings and errors. The input field at the bottom of the console window

allows the user to enter console commands. The amount of information in the console can be controlled with the associated context menu (right mouse button click) - e.g. info, warnings, and debug messages can be turned off.

3.7 Clipping Planes

Clipping Planes allows you to change the clipping planes of the visualization window, i.e. how close and how far away objects are drawn. This can for example be useful if you want to visualize the interior of a protein or a ligand deeply buried inside a macromolecule.

Clipping Planes	×
Far: 0	
Near: 60	
Figure 22: Clipping Planes	

dockable window.

Clipping Planes can be enabled by choosing **Window** | **Clipping Planes...** from the menu bar. Clipping Planes are enabled when the **Clipping Planes** window is shown and disabled when it is closed. Adjust the near and far slider until the desired region is shown.

3.8 Creating a Search Space

In MVD, a **Search Space** is defined by a position (x,y,z) and a radius. The Search Space is mainly used for restricting the search for potential binding modes during a docking simulation but it can also be used for e.g. focusing on a specific region of the protein when creating new molecular surfaces or when detecting new cavities.

A Search Space region can be created from a given selection in the Visualization Window. To create a Search Space select one or more atoms and invoke the Create Search space dialog from the **Preparation** | **Create Search Space...** menu bar or via the context menu on an atom (**Set as Center of Search Space...**).

😤 Edit Search S	Space ? 🔀
Enter grid radius:	
15 🗢 🦳	
ОК	Cancel
Figure 23: Cres	to Soarch

Figure 23: Create Search Space dialog.

3.9 Hiding Distant Residues

The **Hide Residues** dialog can be invoked by pressing the **Hide Residues** button in the **MVD Toolbar**. In order to show all protein residues again, select the **Hide Residues** button on the **MVD Toolbar**.

The **Hide Residues** dialog (see Figure 24) allows you to hide non-relevant residues and molecules. It is also possible to only display specific residue types.

It is possible to hide objects based on their distance to one of the following objects: any *ligand* or *pose* in the workspace (only the first twenty are listed), any *cavity*, any *selected objects*, a *search space*, or *marked residues* (when using the Protein Preparation dialog).

If a ligand is chosen, the minimum distance between all atoms in the ligand and all atoms in a given residue is calculated. This residue is then hidden if it is farther away than the chosen proximity distance. Poses work the same way. For cavities the distance to each single cavity point is considered when hiding objects. The residues and molecules are dynamically shown/hidden when the **Proximity** slider is moved.

The lower pane of the **Hide Residues** dialog allows you to restrict the types of residues shown by toggling the appropriate button. If a given residue type is not within proximity distance as defined in the panel above, the button corresponding to the type will be grayed and can not be toggled.

Select Which Residues to Hide				
Only show residues close to:				
CSO_67 [A]				
Proximity (Å) 19.18 🚔				
Hide distant molecules (water, ligands,)				
Only show the following residue types				
Ala Arg Asn Asp Cys				
Gln Glu Gly His Ile				
Leu Lys Met Phe Pro				
Ser Thr Trp Tyr Val				
Show backbone only All None				
Crop Molecules OK Cancel				

Figure 24: Hide Residues dialog.

The **Show backbone only** check box can be used to toggle whether sidechains are visible or not. **Cropping**. It is possible to delete molecules from the workspace in order to remove non-relevant regions. To crop molecules, invoke the **Hide Residues** dialog and adjust the settings until the desired residues and molecules are displayed before clicking the **Crop Molecules...** button. A dialog will show which structures will be kept (the checked molecules) and which will be discarded.

Notice that proteins are split and cropped on a per-residue basis: hidden residues will be discarded and visible residues will be kept. All other molecule types are kept or discarded in their entirety.

3.10 Workspace Finder

The **Workspace Finder** located in the far right side of the **MVD Toolbar** (see Figure 25) allows you to quickly search for molecule names and residue/atom IDs in the workspace. The **Workspace Finder** is invoked by typing characters in the search box (text field). A result is selected by pressing the **Return** key. Pressing the **Escape** (Esc) key or mouse-clicking outside the **Workspace Finder** window will cancel the current search query.

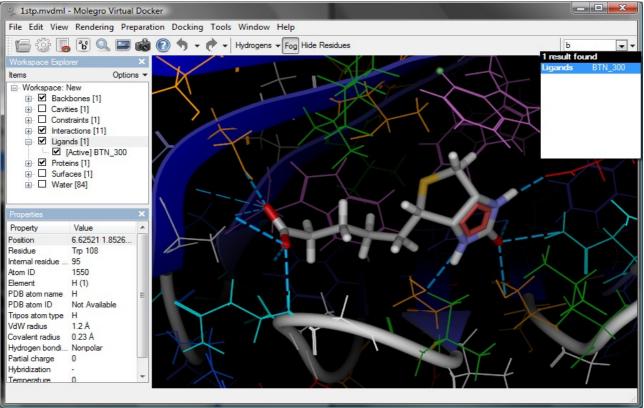
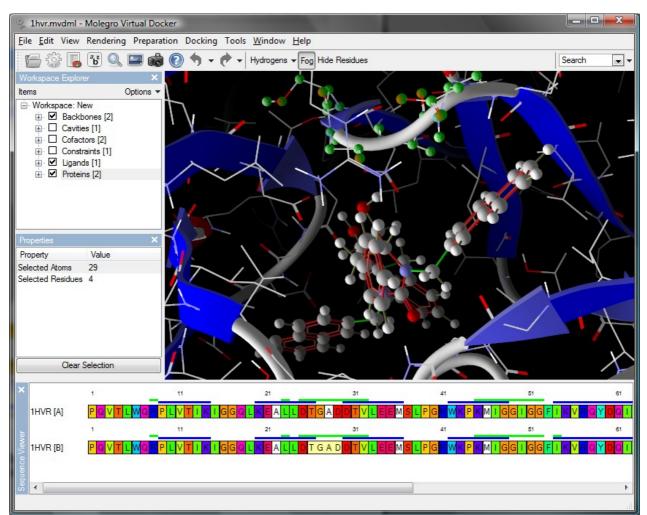


Figure 25: Workspace Finder dialog.

When a name or ID number (or part of it) is typed in the search box, the **Workspace Finder** will present a list of matches (a maximum of 30 matches is returned). It is also possible to search in atom coordinates by prepending

the search with a '!' (e.g. searching for '!1.23' will return atoms where one of the coordinates starts with 1.23).


By default, the **Fit to screen** option is enabled so that items (molecules, residues, or atoms) are fitted to the **Visualization Window** while browsing the list of results found. The **Fit to screen** option can be disabled in the options panel invoked by pressing the small button on the right hand side of the **Workspace Finder** search box.

3.11 Sequence Viewer

The **Sequence Viewer** dialog (see Figure 26) allows you to inspect protein residues in an easy manner. The dialog can be invoked by selecting **Window** | **Sequence Viewer**' or using the **Ctrl-Shift-S** keyboard shortcut.

Using the context menu on the **Sequence Viewer** window it is possible to select residue atoms in the **Visualization Window**, hide non-selected residues, change between one and three-letter residue names, and toggle details about secondary structure. Residues near cavities are indicated with a green ribbon (the distance threshold may be set using the sequence viewer's context menu) and broken protein chains are indicated with vertical lines between residue endpoints.

Detailed information about residue name, index, and secondary structure assignment is available in the tool tip, which can be invoked by focusing the mouse on a specific residue in the Sequence Viewer.

Figure 26: Sequence viewer with selection of four residues highlighted in the Visualization Window.

3.12 Workspace Properties

Workspaces can contain user-specified notes. Further, the title of the workspace can be changed using the **Workspace Properties** dialog. The **Workspace Properties** dialog can be found in the **Edit Properties...** context menu on the **Workspace** item in the **Workspace Explorer** or via **Edit** | **Workspace Properties...** (see Figure 27).

% Workspace	Properties	? 🗙
Workspace title: Last saved: Show propert	not set ies window when loading workspace	
Here you can	write comments and notes	
	OK Car	ncel

Figure 27: Workspace Properties dialog.

3.13 Measurements and Annotations

Distances and angles can be measured directly in the 3D world (see Figure 28).

If two atoms are selected, the distance between them will be shown in the **Properties Window**.

If three connected atoms are selected, the angle that they span will be shown in the **Properties Window**.

If no atoms are selected, and a bond is highlighted, the field **Torsion Angles** in the **Properties Window** will show the torsion angle(s), defined through this bond.

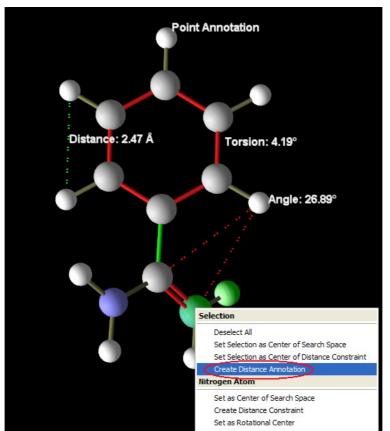


Figure 28: Annotations and measurements.

Measurements can also be made permanent as annotations. There are different kinds of annotations. To create annotations, select 1-4 atoms and use the context menu (right-click mouse button) and choose **Create** ... **Annotation**. The text can be edited before the annotation label is created. Annotations are added to the **Workspace Explorer** category: **Annotations**. Annotations can also be removed from the workspace using the context menu available from the Annotations category in the Workspace Explorer window.

3.14 Selection of Atoms, Amino Acids, Rings, and Molecules

Atoms can be manually selected in the Visualization Window using the mouse.

Using the context menu when focusing on a specific atom it is also possible to select/deselect atoms, molecules, molecules (carbon only), rings (for ligands/cofactors/poses), and amino acids (for proteins).

3.15 Custom Coloring of Atoms, Amino Acids, and Molecules

The atoms in a selection can be set to a custom color using the context menu (invoked by pressing the right-mouse button on a given atom).

Entire molecules can be set to a custom color using the Workspace Explorer context menu by selecting either **Set Custom Color...** or **Set Custom Color** (Carbons Only)....

Custom Coloring is persistent - it will persist after changing rendering/coloring styles, and takes precedence over any coloring style.

The Custom Coloring can be cleared using the **Clear Custom Coloring** option from the Workspace Explorer context menu or from the Visualization Window context menu (when focusing on a given atom).

Notice that aromatic ring indicators (pseudo-bonds) and single-colored bonds will only have custom coloring applied, if the entire molecule is selected (or if the **Set Custom Color** command is invoked from the Workspace Explorer context menu).

The Custom Coloring information is stored together with the atoms in MVDML files and will be used every time the MVDML workspace file is opened in MVD.

3.16 Creating Labels

To create labels use the **Create Label** dialog, which can be invoked via **Create Labels...** in the **Workspace Explorer** context menu (on molecular categories: **Proteins**, **Ligands**, and **Poses**) or via the **Tools** | **Labels** menus.

🖇 Create Label 🛛 🔀
Label Type: Atom
Template: PDB Atom Name and PDB Index 💌
Target(s): Advanced >>>
Only selected atoms
Water [0/84] Proteins [1/1] Uligands [0/1]
OK Cancel

Figure 29:Creating a new label.

The **Create Label** dialog makes it possible to label different *object levels*:

atoms, bonds, molecules, or residues. The labels can be chosen from a list of standard templates or constructed from a list of available variables (using the **Advanced** tab).

🎭 Create Label	\mathbf{X}
Label Type: Atom Template: PDB Atom Name and PDB Index	 ▼
Target(s):	<
 Water [0/84] Proteins [1/1] Ligands [0/1] 	PDBNAME PDBID Enter label expression in the combobox above. Variable names will be substituted when evaluated. Variables can be inserted from the list below Variables: ELE : Element number Etot: Total energy FC : Formal Charge
	OK Cancel

Figure 30: Advanced label expression dialog.

Labels will occur in the **Labels** category in the **Workspace Explorer** - assigned in groups (one group for each molecule). Labels can be removed or hidden using the context menu or by pressing the labels tool bar button.

3.17 Creating Molecular Surfaces

Surfaces can be created for all molecular objects via **Create Surface...** from the context menu in the **Workspace Explorer** or via **Tools** | **Surfaces**.

In MVD surfaces are created by probing points on a uniformly spaced grid. It is possible to adjust the grid resolution (**Resolution**) and probe size (**Probe Radius**) under **Advanced** settings.

Two types of surfaces are available:

Expanded Van der Waals – this is an approximation to the surface created by expanding the Van der Waals radius of each atom with the **Probe Radius**.

Molecular surface – this is an approximation to the surface defined by the contact area of the probe and Van der Waals sized spheres.

It is also possible to restrict the surface to a volume defined by the current search space by enabling **Restrict to 'search space'**.

Surfaces can be colored by **Hydrophobicity**, **Electrostatic Potential**, or **Solid Color**. Surfaces can be drawn transparently, as dots, lines, or solid polygons.

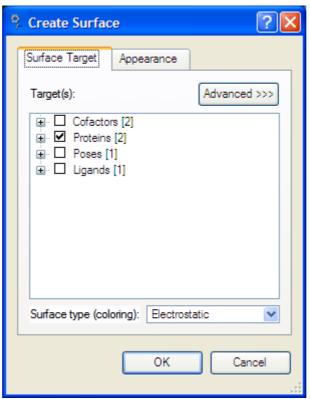


Figure 31: Creating a new surface.

🦻 Create Surfa	ce	? 🔀
Surface Target	Appearance	
Drawing style:	Solid	~
Transparency:		
Choose color:		
	ОК	Cancel
- Figure 32: Ch	anging surface	

appearance.

3.18 Creating Protein Backbone Visualizations

The backbone of the protein can be visualized by using the **Create Backbone Visualization** dialog. The dialog can be invoked by using the context menu on the **Proteins** category (or a single protein item) in the **Workspace Explorer**.

9 Create Back	bone Visualization	X
Backbone Targ Target(s):		Color interpolation ✓ Diameter (Å) 0.30 ♦ Subdivisions 8 ♦
Graphics style Color scheme]
	(OK Cancel

Figure 33: Creating a new backbone.

The Create Backbone Visualization dialog allows you to select which

proteins (or protein chains) the backbone should be visualized for.

Three main graphics styles can be used. The **Cartoon** style visualizes the secondary structure of the protein(s) using arrows to represent beta sheets and helical lines for alpha helices (see Figure 34).

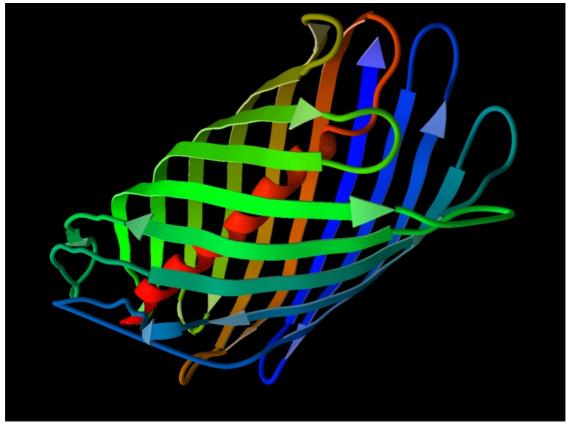


Figure 34: Cartoon graphics style.

If the **Tube** graphics style is used, the backbone is visualized as a spline (a piecewise parametric polynomial curve) interpolating the positions of the alpha carbons in the backbone (see Figure 35).

Figure 35: An example of a protein backbone using the Tube graphics style.

The **Difference Tube** graphics style requires two superimposed protein chains to be present in the workspace. The radius of the 'difference' tube will be proportional to the distance between a C-alpha atom from the selected protein chain and the nearest C-alpha atom of any other chain in the workspace (i.e. the C-alpha atoms compared are not based on a sequence alignment). This makes it possible to visualize where two superimposed structures differs the most.

It is also possible to set the color scheme for the backbone. **Color by structure** colors the backbone based on the secondary structure information (alpha helices are colored yellow, beta sheets are colored blue, and coil is colored gray). **Color by residue position** colors the backbone based on the residues order of occurrence creating a rainbow color effect. **Color by chain** colors each individual protein chain in a different color. **Color by atom** colors the backbone by using the currently shown color of the protein backbone atoms (the color used is taken from the C-alpha atom).

On the advanced panel, the **Color interpolation** check box allows you to determine whether the backbone color should be interpolated between the atoms it passes through or should be held constant between atoms. **Diameter (Å)** sets the width of the backbone in angstrom, **Subdivision** sets the resolution of the backbone (the number of subdivisions between each residue in the protein).

Backbones appear in the **Backbones** category in the **Workspace Explorer** and can be removed via the context menu or hidden using the check box.

3.19 Making Screenshots

Screenshots can be made by choosing **Window** | **Capture Screen**.

😤 Cap	oture	Screen		? 🗙
_lmag	e			
Area	:	Visualization W	/indow	~
Form	nat:	PNG		~
		Capture	Cano	cel

Figure 36: Screen Capture dialog.

It is possible to specify whether to capture the **Visualization Window** only (the 3D view) or the entire **Desktop** (see Figure 36). The captured region can be saved in JPG, BMP, or PNG file formats.

3.20 Sidechain Minimization

MVD allows you to minimize a protein with respect to itself and other structures in the workspace. The minimization is performed using a fairly simple forcefield (it uses the PLP-potentials for steric and hydrogen bonding interactions, and the Coulomb potential for the electrostatic forces as defined in Appendix I: MolDock Scoring Function). Only torsion angles in the sidechains are modified during the minimization – all other properties (including bond lengths and backbone atom positions) are held fixed.

9	Sidechai	in Minimiza	ation		×
	Setup /	Advanced			
	Sidechains	s to minimize:			
	Residue	Protein ID	Torsions	Max T	<u>^</u>
	Phe 117	0 (1STP)	2	23.51	
	Asp 115	0 (1STP)	3	17.82	
		0 (1STP)		18.23	
		0 (1STP)		14.92	
	Leu 111	0 (1STP)	4	13.62	
	Ser 99	0 (1STP)	2	21.15	
	Leu 97	0 (1STP)	4	13.27	
	Leu 96	0 (1STP)	4	12.56	×
	Add Close	est to Active L	igand	Add Visibl	e Add Selected
	Clear	List	Remove Sel	ected	Remove Non-selected
				Minim	ize Close

Figure 37: The Sidechain Minimization dialog.

The **Sidechain Minimization** dialog can be invoked from **Tools** | **Sidechain Minimization** (see Figure 37).

The **Setup** tab on the dialog controls which sidechains to minimize. Several options exist for choosing the sidechains:

Add Closest to Active Ligand - This will choose all sidechains which are close enough to the active ligand to interact with it. More precisely: for each given sidechain, a sphere bounding all possible configurations of the sidechain is calculated, and it is tested whether any atom in the active ligand is close enough to make a steric contact with an atom in this bounding sphere (for the 'MolDock' potential, all steric contacts are cut off at a distance of 6.0 Å). Notice that the 'Active ligand' can be set in the Workspace Explorer window: it is the ligand which name is prepended with an '[Active]' label.

Add Visible - This will add all sidechains which are currently visible in the 3D Visualization window. This feature can be used together with the **Hide Residues** dialog where it is possible to hide sidechains depending on the distance from some given object.

Add Selected - This feature allows for selecting sidechains directly in the 3D Visualization window. A sidechain is selected if one or more atoms inside it are chosen.

Clear List - Removes all sidechains from the list.

Remove Selected - Removes all sidechains that are currently highlighted in the sidechain list view.

Remove Non-selected - Removes all sidechains that are not highlighted in the sidechain list view.

The following columns display information about the selected sidechains:

Residue - The residue name/id.

Protein ID - The protein (or protein chain) ID and name.

Torsions - The number of degrees of freedom in the given sidechain. The degrees of freedom that are minimized during the docking simulation are the torsional angles in the sidechain.

Max T - The temperature factor or B-factor is a measure of how much a given atom vibrates around its position in the crystallographic model. This can be useful since a high B-factor may indicate that the residue is likely to be flexible. **Max T** is the single highest temperature factor of all (heavy) atoms in the sidechain.

Columns in the list can be toggled on or off using the context menu on the sidechain list view.

The Advanced Tab

Sidechain Minimization		×
Setup Advanced		
Interacting structures		
Choose molecules to take into	account:	
Proteins [1/1]		
Choos	se Visible	
- Minimization settings		
Maximum steps per residue:	1000 🗢	
Maximum global steps:	1000	
Maximum grobal steps.	Noto M	
	Minimize Close	
		- :

Figure 38: The Sidechain Minimization 'Advanced' tab.

The **Advanced** tab allows you to determine which structures in the workspace

should interact with the sidechains during the minimization. By default all structures (ligands, cofactors, water, ...) are taken into account when minimizing. If you work simultaneously with multiple conformations of the same receptor in the workspace, make sure that only the specific conformation to be minimized is selected as an interacting structure.

The **Choose Visible** button selects all structures which are currently visible in the workspace as interacting structures.

The lower panel (**Minimization settings**) handles the setup of the minimizations algorithm.

The minimization algorithm is Nelder-Mead simplex minimization, first running a specified number of steps independently for each residue (**Maximum steps per residue**) and afterwards performing a global minimization run on all residues simultaneously (**Maximum global steps**).

The minimization procedure is started by pressing the **Minimize** button. After the minimization procedure completes a new *receptor conformation* will be added to the workspace (usually it takes just a few seconds, but this depends on the number of residues being minimized).

Also notice that new columns are added to the sidechain list after the minimization has completed: **E_before**, which is the energy before the sidechain has been minimized, **E_after** which is the energy after and **dE** which is the difference in energy. Notice that these energies are not measured in chemically relevant units, and that their magnitude will depend on which structures were taken into account during the minimization.

3.21 Working With Multiple Receptor Conformations.

When docking with sidechain flexibility or after sidechain minimizations have been conducted, new *receptor conformations* are added to the workspace.

A receptor conformation is a list of torsional changes to an existing receptor (which can be one or more proteins chains – each protein chain will have its own entry under **Proteins** in the **Workspace Explorer**). Notice that a receptor conformation is not an isolated entity – it always exists in the context of one or more proteins or protein chains.

When new receptor conformations are added to the workspace they will appear in a drop-down box in the **Workspace Explorer** window (Figure 39):

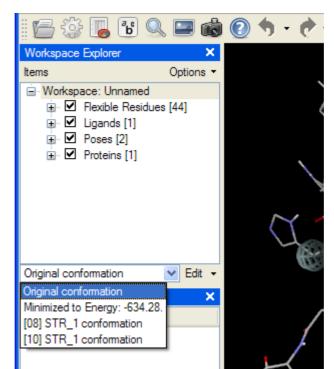


Figure 39: Receptor conformation list.

In order to manipulate receptor conformations, select the appropriate conformation and press the **Edit** drop-down button in the lower-right corner of the **Workspace Explorer** (Figure 40).

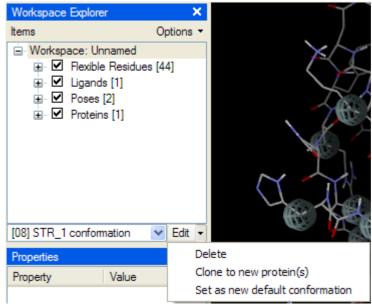


Figure 40: Actions for receptor conformations.

You can delete a conformation (**Delete**) or choose **Clone to new protein(s)** to clone the current conformation to one or more new proteins (if the conformation consists of torsional changes to more than one protein (or

protein chain), a clone will be made for each protein). The last option (**Set as new default conformation**) will make the currently selected conformation the only conformation in the workspace – all other conformations will be discarded, and the original conformation will no longer be available.

Conformations are saved together with the workspace in the MVDML file format. Notice that before saving, the program will always change to *default conformation* and when loading workspaces the *default conformation* will always be the currently selected conformation at startup.

3.22 Visualization Settings Dialog

The graphical settings for the 3D visualization can be adjusted by selecting **Rendering** | **Visualization Settings Dialog**.

Visualization	Settings		
Style and Color	Rendering	Interactions Views	
Choose target:			
Proteins		Graphical style	
Ligands		Ball and stick	*
Poses Water		Atom Scale 🧧	0.20 📚
Cofactors		Bond Scale	0.05 📚
		Shows atoms as spheres and I	bonds as cylinders.
		Coloring Fixed Color Fixed color	
Restore to Default	Settings	<u>K</u>	Apply <u>C</u> ancel

Graphical Styles and Coloring Schemes

Figure 41:The Visualization Settings dialog.

From the **Style and Color** tab, select a category from the list on the left side of the tab (one of 'Proteins', 'Ligands','Poses','Water', and 'Cofactors') and adjust either its graphical style or color scheme.

The following graphical styles can be chosen:

- Ball and Stick. Atoms are drawn as spheres (balls), and bonds are drawn as cylinders (sticks). The Atom Scale parameter sets the fraction of the Van der Waals radius that is used as radius for the sphere. Bond Scale is the diameter of the bonds in Ångstrom. This is the preferred graphical style for modifying and inspecting bond and atom properties (since the bond order is visualized and the atoms are easy to select).
- Stick. Bonds are drawn as cylinders. Bond Scale is the diameter of the bonds in Ångstrom.
- Spacefill (CPK). Atoms are drawn as spheres (balls). Bonds are not drawn. The Atom Scale parameter sets the fraction of the Van der Waals radius that is used as radius for the sphere.
- Wireframe. This is by far the fastest way to draw molecules. Bonds are drawn as lines between atoms. No atoms are drawn (but notice that it is still possible to do atom selections in the GUI). Notice all bonds are drawn as single lines (double bonds and delocalized bonds are also drawn as single lines). It is possible to adjust the line width in pixels (Notice that not all OpenGL implementations support non-integer line widths).

The following coloring styles can be applied to all molecules:

- **Fixed Color** A user-defined color.
- Color By Element (CPK) Atoms are colored according to element type.
- Color By Id (or Chain) Molecules are colored according to their internal molecule ID (i.e. a single ligand will be uniformly colored, but all ligands will have different colors).
- Color By Id (carbons only) Same as above, except only carbons are colored using this scheme. Other atoms are colored according to element type.
- Color By Hydrogen Bond Type Colors atoms according to hydrogen bonding properties (donors are red, acceptors green and atoms capable of both donating and accepting hydrogens are yellow).
- Color By Partial Charge Colors according to electrostatic partial charge (blue corresponds to positive charge, red to negative charge).

The following can only be applied to proteins:

• Color By Temperature (B-Factor) - The temperature factor is a

measure of how much a given atom vibrates around its position in the crystal structure. Notice that this information is not always present in PDB-files, and that it is sometimes used for other purposes. The colors will be interpolated between blue for the minimum temperature and red for the maximum temperature.

- Color By Amino Acid Type Colors proteins according to their residue type.
- Color By Shapely Residue Scheme Same as above with alternative colors.
- Color By Residue ID Colors according to residue ID (rainbow effect).
- Color By Secondary Structure Colors according to secondary structure (red for helices, blue for strands and yellow for turns).
- Color By Hydrophobicity Residue atoms are colored according to the hydropathy index proposed by Kyle and Doolittle in 1982 (see <u>http://en.wikipedia.org/wiki/Hydropathy_index</u> for details). Hydrophilic residues are colored red, hydrophobic residues are colored blue.

Rendering Settings

The **Rendering** tab (Figure 42) on the **Visualization Settings** dialog allows you to customize the rendering behavior.

9 Visualization	Settings		
Style and Color	Rendering	Interactions	Views
Fog Enable fog Near Far 3D Projection		10.0 📚 25.0 📚	Lights
Perspective Angle	-][22.0	✓ Light 1 ✓ Ambient ✓ O.20
Global Coloring – Background Co Label Color Cavity Color	olor		Specular
Restore to Default	Settings		<u>OK</u> <u>Apply</u> <u>C</u> ancel

Figure 42:The Visualization Settings Rendering options.

The **Fog** settings enables or disables fog. It is possible to adjust when the fog should begin (the **Near** value) and when the fog should reach its maximum density (the **Far** value).

The **3D Projection** settings manage the perspective projection. In **Perspective** projection objects farther away from the viewer appear smaller (the magnitude of this effect can be controlled by adjusting the field-of-view **Angle** parameter). In **Orthographic** projection object sizes are independent of their distance from the viewer.

The **Global Coloring** settings allow you to adjust the background color, the color labels are drawn with, and the color cavities (predicted binding pockets) are drawn with.

The **Lights** section controls the global lightning of the 3D world. It is possible to enable one or two light sources. Their positions can be adjusted directly in the 3D sphere view. The light source color can be changed by clicking the color

selector next to the light checkbox.

OpenGL Lights contain three different parts: **Ambient** light always reaches an object, independent of its position relative to the light source. **Diffuse** lightning is dependent on whether the object faces the light source or faces away from it. The reflected light is emitted equally in all directions. **Specular** lightning is also dependent on the objects' orientation towards the light source, but the reflected light is emitted mainly in the direction of the reflected light ray (creating 'highlights').

Interactions

The **Interactions** tab (Figure 43) on the **Visualization Settings** dialog allows you to customize the appearance of hydrogen bonds (energy thresholds, thickness of bond, and color) and electrostatic interactions (energy thresholds and color) shown in the Visualization Window.

9	Visualization Settings	×
	Style and Color Rendering Interactions Views	
	Hydrogen Bonds Minimum Maximum Energy Thickness Color Color 0.0 -0.5 -1.0 -1.5 -2.0 -2.5	
	Electrostatic Interactions Minimum Maximum	
	Energy Negative Positive Color	
	Restore to Default Settings <u>O</u> K <u>Apply</u> <u>C</u> ancel	

Figure 43:Settings for hydrogen bonds and electrostatic interactions.

3 User Interface

Preset Views

The **Views** tab (Figure 44) in the **Visualization Settings** dialog controls the preset views (the macros residing under the **View** menu item on the main window menu bar).

The upper panel on the tab allows you to activate a preset view (by pressing the **Select** button') or delete a view (the **Delete** button). Notice that when deleting a view, you are not able to recover it unless you restore all macros (this can be done by choosing **Edit** | **Macro and Menu Editor** and pressing **Restore all macros**, but notice that all user changes to the macros will be lost).

% Visualization Settings	×
Style and Color Rendering Interactions Views	
Preset views	-
Reset View! Select Hydrogen Bond Interactions Delete Docking View Delete Preparation View Electrostatic Interactions Pose Organizer View Secondary Structure View	
Macro (based on current settings) // Visualization Settings style ligand vdw 0.2 0.05 style pose vdw 0.2 0.05 style protein wireframe 0.15 0.15 2 style water wireframe 0.15 0.15 2 style cofactor vdw 0.2 0.05 // Color settings color ligand fixed 1 1 0	
Use as Default Settings]
Restore Default Settings to Factory Settings]
Restore to Default Settings DK Apply Cancel	

Figure 44: The Visualization Settings Views tab.

The lower panel allows you to create new views based on the current visualization settings. By pressing **New View** a dialog allows you to specify the name for the new view, after which it is added to the list of views on the main window menu bar. Views are stored as parts of the macros.xml file and appear under the **View** menu item.

It is also possible to modify the macro in the text-area before committing it as a macro. Modified macros can be tested by pressing **Test Macro** before they are stored permanently. It is possible to edit existing views in the **Macro and Menu Editor...**

The default visualization settings used by MVD can be changed by pressing the **Use as Default Settings** button.

If needed, the default visualization settings can also be restored to the factory settings by pressing the **Restore Default Settings to Factory Settings** button. The factory settings are the initial settings used by MVD when started for the first time. At that point the factory settings are also used as the default visualization settings.

The current visualization settings shown in the Visualization Settings dialog will be stored in the MVDML workspace file when saving the workspace. When importing workspaces containing visualization settings, these stored settings will be used instead of the default settings.

Notice: When making a new workspace or clearing the current workspace, the default visualization settings will be used.

3.23 High-Quality Rendering

It is possible to create high-quality screenshots by selecting **Rendering** | **High-Quality Render (Raytrace)**

The High-Quality Render (Raytrace) dialog makes is possible to create images in arbitrary size and higher quality than when saving screenshots from the OpenGL view. The High-quality render uses a raytrace engine to create the output image. This has some graphical advantages as compared to the default OpenGL rendering: for instance spheres are not converted into triangle meshes before being drawn, and it possible to create shadow effects. Since another rendering technique is used, the output may deviate from the OpenGL view. The High-Quality Render also makes it possible to create high resolution images suitable for publications.

Notice, that a few graphical objects are not supported by the raytracer: dot surfaces, protonation guides, and energy grids. The raytracer also ignores clipping planes, and the light source settings in the Visualization Settings Dialog.

Width (sizela):	388	
Width (pixels):	1.00	
Height (pixels):	572	×
Double size Hał	f size	Vindow size
Width (inches): Height (inches):	1.29	÷
Width (inches): Height (inches):	1.29	÷
aytracer options		
Create shadows		
Font scale:	1.00	×

Figure 45: The High-Quality Output dialog.

The High-Quality Output dialog controls the size and rendering options. It is possible to specify an image size in either pixels or physical units. In order to use physical units, it is necessary to specify the printing resolution of the physical media - the default resolution is 300 DPI (dots per inch). It is possible to choose between inches and cm as units (but the DPI is always specified in inches).

Shadows can be toggled on and off, and it is possible to specify a font scale: since text is drawn differently by the raytracing engine, text may appear either too large or too small. This can be adjusted using the font scale settings. Adaptive antialias is a technique for reducing jarred boundaries between objects. Higher settings produce higher quality, but takes longer time to render.

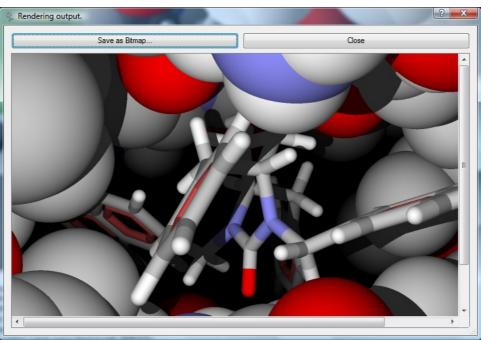


Figure 46: The output preview window.

After the output has been rendered, a preview window appears with the result, and the output can be saved as a bitmap. The PNG format produces the highest-quality images, since it uses loss-less compression, while the JPG format produces the smallest file sizes.

3.24 Biomolecule Generator

Some PDB files contain transformation information for generating biomolecules. To apply these transformations, invoke the **Biomolecule Generator** by choosing **Tools** | **Biomolecule Generator**.

Select molecules to apply transformation(s) on:	Transformations: REMARK 350 GENERATING THE BIOMOLECULE REMARK 350 COORDINATES FOR A COMPLETE MULTIMER REPRESENTI REMARK 350 BIOLOGICALLY SIGNIFICANT OLIGOMERIZATION STATE OF REMARK 350 MOLECULE CAN BE GENERATED BY APPLYING BIOMT TRAI REMARK 350 GIVEN BELOW. BOTH NON-CRYSTALLOGRAPHIC AND REMARK 350 CRYSTALLOGRAPHIC OPERATIONS ARE GIVEN. REMARK 350 BIOMOLECULE: 1 REMARK 350 BIOMOLECULE: 1 REMARK 350 BIOMOLECULE: 1 REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 REMARK 350 BIOMT3 1 0.000000 1.000000 0.000000 REMARK 350 BIOMT1 2 0.298065-0.901822-0.312848 0.00000 REMARK 350 BIOMT2 2 -0.511568 0.125786 -0.849986 0.00000
	REMARK 350 BIOMT3 2 0.805888 0.413394 0.423851 0.00000 Image: State of the state of

Figure 47: The Biomolecule Generator.

The left panel on the dialog controls which molecules the transformation should be applied to. This is normally the proteins (or protein chains), but ligands, water and cofactors can also be transformed.

The right panel contains a text box where a transformation description can be pasted. Notice that if a transformation remark was present in the last loaded PDB file it will automatically appear here.

It can be necessary to manually edit the transformation remarks. For instance the remarks may contain redundant identity transformations which should be removed:

```
// Example of identity transformation.
REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.000000
REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.000000
REMARK 350 BIOMT3 1 0.000000 0.000000 1.000000 0.000000
```

PDB transformation remarks are triplets of remark lines, named BIOMT1-3. The first three columns constitute a rotation matrix, and the last column is a translation vector.

For some complex structures the transformation description may contain several steps where different transformations are applied to different subsets of the molecules. In this case it is necessary to run the **Biomolecule Generator** multiple times.

Also notice that biomolecules can be very large. Always render the protein in wireframe before attempting to generate large biomolecules.

3.25 Structural Alignment of Proteins

It is possible to structurally align proteins in Molegro Virtual Docker.

A structural alignment is done by matching a number of residues in two proteins and calculating the translation and rotation that minimizes the RMSD between the alpha-carbons in the matched residues.

The **Structural Protein Alignment** dialog can be invoked by selecting **Tools** | **Structural Protein Alignment** from the main menu.

Structural Protein A	Alignment					×
Reference protein	2ACR [A]	Matche	d residues (27	2 matches):		
Protein to be aligned	1AH3 [A] 🛛 💌	Index	Reference	Target		^
Using the alignment above,	align additional molecules:	3	- Ang 3	-		
		4	Leu 4	Leu 4		
□ ✓ Ligands [3/5]		5	-	Val 5		
- CAC_317 [13	atoms]	5	Leu 5	-		
- NAP_316 [75	atoms]	6	Leu 6	Leu 6		
🗹 🛛 AYA_1 [A] [9 a	atoms]	7	-	Tyr 7		
- 🗹 NAP_318 [55	atoms]	7	Asn 7	-		
TOL_320 [38	atoms]	8	-	Thr 8		
		8	Asn 8	÷		
		9	Gly 9	Gly 9		
		10	Ala 10	Ala 10		
		11	Lys 11	Lys 11		
		12	Met 12	Met 12		
		13	Pro 13	Pro 13		
		14	lle 14	lle 14		
		15	Leu 15	Leu 15		
		16	Gly 16	Gly 16		~
		 Mat 	ch by residue	type and PI)B index	
		🔿 Mat	ch by residue	type and po	sition. Target offset:	0 📚
					OK Ca	ncel

Figure 48: The Structural Protein Alignment dialog box.

The first step is to choose a reference protein and a protein to be aligned (the target protein). The target protein is the protein which will be translated and re-oriented.

When two proteins have been chosen, the list on the right side of the dialog will suggest a matching between residues in the proteins. Green entries indicate which residues that will be aligned. By default the matching will be done using **Match by residue type and PDB index** – where two residues will be matched if they are of the same kind and have identical PDB residue identifiers.

Two PDB crystal-structures may have similar sequences, but different PDB residue identifiers. In this case it is possible to **Match by residue type and position.** This will match two residues if their positions in the sequences are identical. It is also possible to add a index offset to the target protein index.

Sometimes a number of other molecules are associated with a protein (a bound ligand or cofactor, or another protein chain). It is possible to select a number of additional molecules and apply the same transformation that aligns the target protein to the reference protein to the additional molecules. This is done by checking the desired molecules in the workspace view on the left side of the dialog. Notice that if the reference or target protein is selected as part of an additional alignment they will be ignored (since they are already considered).

3.26 Structural Alignment of Small Molecules

Simple alignment of small molecules is also possible. By selecting three atoms in one ligand, and selecting three atoms in another ligand, a new context menu appears when clicking on an atom in one of the molecules - **Align...**. This will align the molecules. The atoms are aligned in the same order as they are selected, that is, the first selected atom in ligand 1 is aligned to the first selected atom in ligand 2 etc. Therefore, it is important to ensure that the selection order is correct and that no other atoms are selected.

Notice: Only alignments with three selected atoms in each molecule are possible.

3.27 Macro and Menu Editor

The **Macro and Menu Editor** allows the user to modify existing menu entries or to extend the functionality by adding new menu entries. It can be invoked by choosing **Edit** | **Macro and Menu Editor**.

😤 Macro and Menu Editor	
Macros • RootFolder • View • Occking View • Preparation View • Hydrophobicity • Electrostatic Interactions • Pose Organizer View • Secondary Structure View • Reset View! • Preparation • Docking • Docking • Tools New Folder	Macro definition Title Docking View Label
Restore Macro Settings	OK Cancel

Figure 49: The Macro and Menu Editor.

The left pane (Macro overview) displays a hierarchical view of all macros. The top level folders are mapped directly to corresponding menus in MVD. That is, View, Rendering, Preparation and Docking will appear as menus in the GUI. It is possible to add new top-level folder, by selecting the root node (RootFolder) and pressing the New Folder button.

When a folder is highlighted in the **Macro overview**, new macros can be added to it, by pressing the **New Macro** button.

New or existing macros can be modified in the right pane (Macro definition).

A macro consists of a **Title**, which is the name that is shown in the corresponding menu, an optional **Label** which can be used to assign an unique name to the macro, so that it can be called from other macros (this is done by using the macro invoke command, i.e. '!macroname'), an optional **Keyboard shortcut** (which is specified as text i.e. 'Alt+F1' or 'Ctrl+Shift+1,Shift+A' where the last shortcut simultaneously maps two alternative keyboard shortcuts) and the actual **Macro definition**.

If macros or folders appear in red in the **Macro overview**, it is because **Hide from menu** is enabled for them. These items won't show up in the menus.

This can be useful for defining macros which will not show up in the GUI, but still can be called from the **Console Window**.

It is also possible to add separators between the macros which will appear as menu separators in the GUI. To add a separator between macros just use --- (3 strokes) as the **Title** of the macro. Similarly, separators can be created between macro folders. Again just use --- as the **Title** of the macro folder.

Macros can also be rearranged (e.g. changing the order of occurrence within a macro folder or moving macros between folders) by dragging and dropping a macro or a macro folder in the **Macro overview** listview.

If some macros are deleted or modified by mistake, the default macro settings can be restored by pressing the **Restore Macro Settings** link (located in the lower left corner of the dialog). Alternatively, the macros.xml file can be replaced by a backed-up version containing the default settings (macros.backup). Both files are located in the Data directory.

The actual commands that can be used to define the macros are described in Appendix X: Console and Macro Commands.

3.28 PDB and SDF Import Notes

When importing molecules from PDB or SDF files header and annotation information is stored as part of the current workspace. For PDB files the header is stored. For SDF files the first 4 lines and any annotations are stored.

Imported notes can be shown using the context menu on any molecule in the Workspace Explorer or by selecting a molecule in the Workspace Explorer and pressing the **Show PDB Header** or the **Show SDF Header** button for PDB and SDF files respectively.

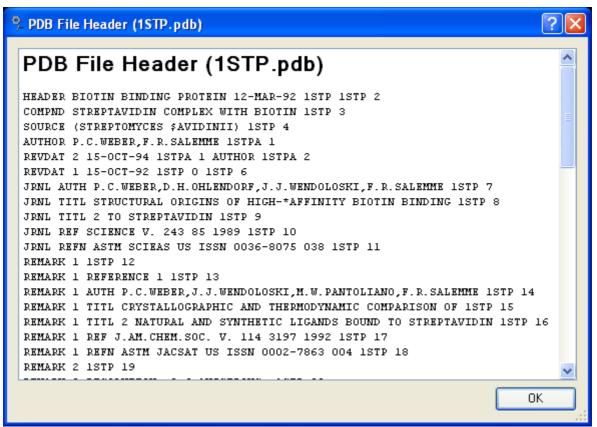


Figure 50:PDB header information shown for imported PDB file.

A workspace may contain an arbitrary number of import notes, and each molecule may have a reference to one of these notes.

Imported notes are stored in the MVDML workspace file and they can be viewed and deleted using the Workspace Properties dialog.

% Workspace	Properties 🛛 🔀
Workspace title:	1STP
Last saved:	not set
Show proper	ties window when loading workspace
User notes	
Here you can	write comments and notes
-Imported notes	
PDB Header fo	
Select All	Inverse Delete Selected Show Selected
	OK Cancel
- igure 51:Imp	orted PDB and SDF notes can be shown and

deleted using the Workspace Properties dialog.

Notes that are no longer referenced by a molecule are automatically removed.

4 Preparation

4.1 Import of Molecules

Molecules can be imported into MVD using the **Import Molecule...** menu option located in the **File** menu. A shortcut is provided from the tool bar by clicking on the **File** folder icon or using the **Ctrl-O** keyboard shortcut. Molecules can also be imported by dragging-and-dropping the molecular file into the main application window.

Currently, MVD supports the following file formats:

- Protein Data Bank (pdb/ent)
- Sybyl Mol2 (mol2)
- MDL (sdf/sd/mol/mdl)

Notice that only PDB and Mol2 files can contain proteins, and water molecules. In general, it is recommended to use Mol2 or SDF files for ligands since they can contain bonding information.

From the **Import Molecules** dialog shown in Figure 52, it is possible to select which molecules to import, prepare molecules, and inspect warnings found during parsing of the imported file.

Notice: If more than 10 ligands are present in the file (typically SDF or Mol2 files), a subset of the ligands can be selected for import using the **Specify ligand range** option (see Figure 52). Since it is computationally slow to display a large number of molecules (e.g. thousands of compounds), ligands and poses are not automatically shown in the **Visualization Window** if the number of molecules imported exceeds 50 (for each category).

🤋 Import Molecules 🛛 🔀
Import Preparation Warnings (1)
Select which molecules to import.
□ Ligands [2088/2088] □ ✓ 479 [33 atoms] □ ✓ 1004 [25 atoms] □ ✓ 1011 [46 atoms] □ ✓ 1012 [46 atoms] □ ✓ 1013 [45 atoms] □ ✓ 1042 [22 atoms] □ ✓ 1199 [43 atoms] □ ✓ 1424 [16 atoms] □ ✓ 1460 [26 atoms]
Specify ligand range: from 1 💿 to 2088 🥃 Select
Import small molecules as:
Replace or add to workspace: Add to current workspace
Import cofactors as ligands
Import Cancel

Figure 52: Import Molecules dialog.

When all relevant molecules have been imported, the molecules can be automatically prepared (see next section).

MVD automatically tries to identify cofactors: a molecule is considered a cofactor if it has less than 5 heavy atoms or its name is included in a list of common cofactor names (like 'HEM', 'SO4', 'PO4', ...). If this is not desired, it is possible to override cofactor recognition by checking the **Import cofactors as ligands** option.

4.2 Automatic Preparation

Some molecular file formats support information about bond type and charge (e.g. Mol2) while others do not (e.g. PDB). In order to maker proper predictions, it is important that the structures have been properly prepared. That is, that the atom connectivity is known and that the correct bond order and charges have been assigned.

The **Prepare Molecules** dialog allows the user to perform the necessary preparation. It is invoked automatically when importing Mol2, SDF, or PDB files, and can be invoked manually by selecting **Preparation** | **Prepare**

Molecules or by using the context menu (e.g. **Prepare Ligand...**) on molecules in the **Workspace Explorer**.

9	Import Molecules				
	Import Preparation Warnings (0)				
	Assign All Below	Custom 💌			
	Assign bonds	If Missing 💌			
	Assign bond orders and hybridization	If Missing 💌			
	Create explicit hydrogens	If Missing 💌			
	Assign charges (calculated by MVD)	Always 💌			
	Detect flexible torsions in ligands	Always 🔽			
	Assign Tripos atom types	If Missing 🔽			
	Notice:				
	The preparation options (If Missing, Always, Never, Remove) applies to each individual molecule (not each individual bond or atom).				
	For instance, setting 'Assign bonds' to 'If Missing' results in covalent bonds being created for molecules not containing any bonds at all while molecules with bond information will preserve their bond assignments.				
	Likewise, setting 'Create explicit hydrogens' to 'If Missing' will not add additional hydrogens to molecules containing e.g. polar hydrogens only. In this case, 'Always' should be used if all hydrogens should be created.				
	Import	Cancel			

Figure 53: Preparing molecules.

Within all preparation types the following four different possibilities are available (see Figure 53):

- **Always**. Unconditionally performs the preparation by MVD.
- **Never**. Skips the preparation.
- If Missing. The preparation will only be performed if no knowledge is already present (e.g. if bond orders exist in the Mol2 file, bond orders are not assigned by MVD. However, if bond order information is not included, MVD will assign it).
- Remove. Tries to remove preparation (e.g. if 'Assign bond orders...' is set to 'remove', all bond orders will be set to single bonds. If 'Create explicit hydrogens' is set to 'remove' all hydrogen atom are removed).

Notice: The preparation options (Always, Never, If Missing, Remove) applies to each individual molecule (not each individual bond or atom). For instance, setting 'Assign bonds' to 'If Missing' results in covalent bonds being created for molecules not containing any bonds at all while molecules with bond information will preserve their bond assignments. Likewise, setting 'Create explicit hydrogens' to 'If Missing' will not add additional hydrogens to molecules containing e.g. polar hydrogens only. In this case, 'Always' should be used if all hydrogens should be created.

Assign Bonds

This option allows to determine which atoms are connected (covalently bound). Two atoms are connected if their distance is more than 0.4Å and less than the sum of their covalent radii plus a threshold of 0.45Å (the threshold is set to 0.4865Å if one of the atoms is Phosphorus).

Assign Bond Order and Hybridization

This options allows recognition of bond orders (whether bonds are single, double or triple, ...), the number of hydrogens attached to the atoms, and their hybridization (SP, SP2, SP3). Also aromatic rings will be detected. It should be noted that this assignment is not always perfect - different protonation states can be difficult to assign properly. A detailed description can be found in Appendix VII: Automatic Preparation.

Notice: The algorithm only assigns the number of implicit hydrogens to each atom. No actual atoms will be added. The next option **Create explicit hydrogens** allows you to add explicit hydrogens based on the implicit ones.

Create Explicit Hydrogens

Creates hydrogens matching the predicted number of hydrogens in the step above. The hydrogens are placed according to geometric criteria (i.e. SP3 hybridized atoms are kept at a 109 degrees geometry). The hydrogens are placed at standard distances according to the atom they are connected to. No energy minimization is performed.

Assign Charges

This option allows to assign partial charges to each atom based on the scheme described in Appendix I: MolDock Scoring Function.

Detect Flexible Torsions In Ligands

This option determines which bonds that should be considered flexible during docking. It is advisable always to set this option to either **If Missing** or

Always. If this option is set to **Remove**, the ligand will be considered rigid during docking.

Assign Tripos Atom Types

This option is used to assign Tripos atom types using a built-in heuristic. If the option is set to **Never**, atom types will be imported from the molecule file, instead of being assigned by MVD (only available for Mol2 structural files). The **Remove** option will set all atom types to 'Undefined'. **Always** will assign Tripos atom types to all atoms using built-in assignment rules, and **If Missing** (default) will assign atom types to 'Dummy', 'Undefined' and 'Other' typed atoms using built-in rules (all other atom types will be imported from the Mol2 file).

Hydrogen Bonding Type

Atom hydrogen bonding types (acceptor, donor, both or non-polar) are always set during preparation.

4.3 Manual Preparation

Molecules can be manually prepared using the context menus of highlighted atoms or bonds (see below).

Set Hybridization

Hybridization (SP, SP2, SP3) can be manually assigned to atoms by rightclicking on the atom in question and selecting the **Set Hybridization** menu option.

Set Hydrogen Bond Type

The hydrogen bond type used by MolDock scoring function (donor, acceptor, both, non-polar) can be manually assigned to atoms by right-clicking on the atom in question and selecting the **Set Hydrogen Bond Type** menu option.

Set Tripos Atom Type

Sometimes, the built-in assignment scheme fails in assigning correct Tripos atom types to specific atom. In such cases, it is possible to change the Tripos atom type for nitrogen, oxygen, carbon, and sulphur atoms by right-clicking on the atom in question and selecting the **Set Tripos Atom Type** menu option.

Set Plants Atom Type

By default, MVD automatically assigns Plants atom types (Donor, Acceptor,

Both, Nonpolar, Metal) before docking with PLANTS Score using the rules described in [KORB 2009]. However, it is also possible to manually assign the Plants atom type by right-clicking on the atom in question and selecting the **Set Plants Atom Type** menu option. Notice: Plants atom types are not defined for hydrogen atoms.

Set Hydrogen Count

The **Set Hydrogen Count** menu option can be used to set the number of explicit hydrogens attached to the highlighted atom.

Assign Charges

The MolDock scoring function uses partial charges assigned when running the **Preparation** dialog. However, the assignment of charges is based on standard templates and charge assignments can be missing in some cases. It is possible to manually assign partial charges to atoms by right-clicking on the atom in question and selecting the **Set Partial Charge** menu option.

Set Bond Order

Bond orders can be manually assigned by right-clicking on the bond in question and selecting the **Set Bond Order** menu option.

Notice that bonds are not visible in some visualization styles. The most suitable view is the ball-and-stick style, which can be set from the **Rendering** menu in the menu bar.

Set Ligand Flexibility

Flexible torsions in the ligand can manually be set rigid or flexible by rightclicking on a bond and selecting the **Set Flexibility** menu option.

Set Root Atom

When automatically detecting and assigning flexible torsion angles (using the automatic preparation procedure), a root atom is chosen. The root atom is used as root in the torsion tree, which is used to construct the ligand conformation during the docking process. Sometimes, the docking performance can be improved by choosing another atom to be the root atom. To manually set the root atom, right-click on an atom and select the **Set as Root Atom** menu option.

Notice that bonds are not visible in some visualization styles. The most suitable view is the ball-and-stick style, which can be set from the **Rendering** menu in the menu bar.

4.4 **Protein Preparation**

The **Protein Preparation** dialog allows you to inspect the proteins in the workspace for structural errors (such as missing atoms or erroneous bonds) and to inspect and change the protonation state for the residues. It is also possible to mutate residues (for instance replacing an asparagine residue with an aspartic acid residue) and subsequently energy minimize them.

The protein preparation dialog can be invoked by choosing **Preparation** | **Protein Preparation** from the main menu bar.

When the protein preparation dialog is invoked, a list of residues is shown. All residues with potential errors are initially highlighted on the list and emphasized in the 3D view with yellow or red spheres corresponding to the two different kinds of residue errors:

Residues with structural errors. These kinds of residues do not match the atom and bond information in the *protonation templates* (explained below). They might have missing atoms or invalid bonds between the atoms. Notice that terminal residues does not always match the standard templates – they may contain additional atoms such as a terminal oxygens (OXT).

It is not possible to change protonation for residues with structural errors – but they may be reconstructed by using the **Mutate and Optimize** tab to 'mutate' to a residue of the same type. These residues are shown with red spheres in the 3D view.

 Residues with a valid atomic structure, but with an invalid protonation. These kinds of errors occur if the residue does not match any of the defined protonation states for the given residue. These errors can be fixed by changing the protonation state into a valid state. These residues are shown with yellow spheres in the 3D view.

4.5 The Protonation Tab

On the protonation tab, a list view displays all residues for the proteins in the workspace. The green arrows jump to the next or previous erroneous residue (either improper structure or unknown protonation state).

Protein P	reparation				
Protonation	Mutate and	Optimize	Settings		
🕑 👍	Warnings			Action +	Select -
Residue		e Protona	tion		~
- Va					
- Arg Gln	•				
- Tyr					
					V
Gin					
lle					
- Lei	u 63 ASZ1				
··· lle					
···· Glu					
- lle					*
	67 CYX				
			L	lide Residue	S
This residu	e has a valid pro			-1	~
Atom	ASP	ASZ	ASZ1		
N	1h				
0	0h				
OD1	0h, - 0.5e	Oh	1h		
	0h, -0.5e	1h	Oh		
OD2					
(h indicates	s the number of ly polar atoms a			al atomic cha	rge)

Figure 54: The Protein Preparation Dialog. The lower panel displays the current protonation state.

If a residue has alternate protonation states, they can be chosen in two different ways:

- By choosing a residue in the list view, and then changing the state from the drop-down menu in the third column ('Choose Protonation').
- By using the context menu in the 3D visualization view on a residue marked by a red or yellow sphere.

Because it can be difficult to get an overview of the individual residues, it is possible to invoke the **Hide Residues** dialog directly from the protonation preparation dialog. The **Hide Residues** button provides a shortcut for invoking this dialog - the functionality is the same as described in Section 3.9.

The text window at the bottom displays information about the currently selected residue. Here it is possible to see the different protonation states, and any errors may be inspected here.

Figure 55: Example of protonation state. Some fields for the alternative protonations (GLZ and GLZ1) are blank. These blank fields must match the base protonation (GLU) in order for a residue to match an alternative protonation.

All protonation states consist of a *base* or *default protonation*, which describes the number of hydrogens for each atom, the bonding between atoms and their charge. The base protonation is listed as the first column in the table (in figure 55 the base protonation is listed in the GLU column). Alternative protonations are modifications to this base scheme. In Figure 55 the GLZ and GLZ1 columns are modifications to the 'GLU' scheme – they provide only information for some of the atoms in the residue (in this case OE1 and OE2). For a residue to match an alternative protonation, the atoms must match the properties described by the alternative protonation, while any atom not described by the alternative protonation must match the base protonation.

Finally, the protonation tab also provides two drop-down menus. The first, **Action**, provides a single option: **Set All Unknown to Default Protonation**. Invoking this option sets all residues with an unknown protonation to their default protonation state. The second drop-down menu **Select** provides an easy way to select multiple residues. The following selections are possible: **Residues with Invalid Structure** selects all residues with structural errors (missing atoms or erroneous bonds). **Residues with Unknown Protonation** selects all residues with protonation schemes not matched by any of the residue templates. Finally the residues most likely to have a non-default protonation state (His, Glu, and Arg) can be selected using this drop down menu.

Notice that the protonation templates are user-customizable. See the last section 'Customizing the protonation templates' for more information.

4.6 The Mutate and Optimize Tab

In order to mutate/change the residue type, select a single residue from the list (it is not possible to mutate multiple residues at once). Whenever a new residue is chosen from the 'Mutate to:' drop-down list, the sidechain is replaced and the 3D view is updated to reflect the changes.

Protein Preparation			
Protonation	Mutate and Optimize	Settings	
Current selected residue: Asp 60			
Mutate to:	Asp	~	
Optimize Residue			
	Optimize Neighbourhood		
	(Close	
	The weeld a new	.:	

Figure 56: The residue mutation and optimization tab.

Residues are substituted by taking the corresponding template defined in the 'misc/data/residuetemplates.mvdml' file, and aligning the N, C, and CA backbone atoms with the N, C, and CA backbone atoms for the chosen residue.

After having substituted the new residue it is recommended to optimize its position. A quick optimization can be performed by choosing **Optimize Residue**. This will perform a search for the best dihedral angles for the residue. It is also possible to optimize the positions of neighbouring residues as well. The optimization uses the same approach as the Sidechain Minimization dialog which is described in Section 3.20.

By choosing **Optimize Neighbours** both the chosen residue and the residues which are closest to it are selected. The selection is done as follows: each residue is assigned a bounding sphere (a sphere which is large enough to enclose the residue in all possible conformations). If the distance between two residues are less than the threshold distance specified in the settings tab (**Residue neighbour distance (Å)**), the residues are considered to be neighbours. By default the neighbour distance is 0 Å, meaning that the bounding spheres must overlap for residues to be considered neighbours. Increasing the distance results in a larger neighbourhood.

4.7 The Settings Tab

The following settings can be customized:

Check (and correct) charges

If this option is checked, all atomic partial charges are validated against the values defined in the protonation template file. The charges defined in this file uses a deliberately simple charge scheme where only a few atoms are assigned charge (see Appendix I: MolDock Scoring Function). If, however, the receptor has been prepared in another program with another charge assignment scheme (and saved in a format such as Mol2 which supports partial atomic charges), uncheck this option in order not to receive several of warnings about wrong atomic partial charge.

Notice that this setting affects both the validation and how protonation states are changed. When a protonation state is changed from the protein preparation dialog, the charges are only modified if this setting is checked.

Check (and correct) non-polar atoms (carbons)

Some PDB files contain only explicit hydrogen information for the polar atoms. Since the hydrogen information for non-polar atoms (the carbons) is not used by the MolDock score during the docking it is not necessary to have them explicitly attached. Therefore, by default only the hydrogen count for polar atoms is checked.

As above this setting affects both the validation and how protonation states are changed. When a protonation state is changed from the protein preparation dialog, hydrogens on non-polar atoms are only modified if this setting is checked.

9 Protein Pr	eparation			
Protonation	Mutate and Optimize	Settings		
Check (and correct) charges.				
Check (and correct) non polar atoms (carbons).				
- Minimization	Settings			
Maximum s	teps per residue: 1000	\$		
Maximum g	Maximum global steps: 1000			
Residue neighbour distance (Å) 0.00 🍧				
Choose mo	lecules to take into acco	unt:		
Cofactors [2/2]				
Choose Visible				
	(Close		

Figure 57: The Settings tab

Minimization Settings

The minimization options are the same as the ones described in the Sidechain Minimization section (see 3.20).

The only difference is the inclusion of the **Residue neighbour distance** (Å), which determines how close residues must be in order to be considered neighbours (this criteria is described in the 'The Mutate and Optimize Tab' section).

4.8 Customizing the Protonation Templates.

The protonation templates are defined in the 'misc/data/residues.xml' file.

It is possible to manually modify and extend this file with new protonation patterns, but we strongly advise that a backup copy of the original file is made before doing so. The protonation template file must be valid XML (Wikipedia offers an introduction to XML at http://en.wikipedia.org/wiki/Xml).

The overall structure of the XML file is illustrated with the following fragment from the protonation template file:

```
<ResidueDefinitions>
  . . .
 . . .
 <Residue name="ASP" letter="D" longName="Aspartate" pdbAlias="ASP">
   <Atom pdbName="C" hyb="2" charge="0" hydrogens="0" element="C" />
   <Atom pdbName="CA" hyb="3" charge="0" hydrogens="1" element="C" />
   <Atom pdbName="CB" hyb="3" charge="0" hydrogens="2" element="C" />
   <Atom pdbName="CG" hyb="2" charge="0" hydrogens="0" element="C" />
   <Atom pdbName="N" hyb="2" charge="0" hydrogens="1" element="N" />
   <Atom pdbName="0" hyb="2" charge="0" hydrogens="0" element="0" />
   <Atom pdbName="OD1" hyb="3" charge="-0.5" hydrogens="0" element="0" />
   <Atom pdbName="OD2" hyb="2" charge="-0.5" hydrogens="0" element="0" />
   <Bond from="CA" to="N" order="1" />
   <Bond from="CA" to="CB" order="1" />
   <Bond from="CA" to="C" order="1" />
   <Bond from="C" to="O" order="2" />
   <Bond from="CB" to="CG" order="1"
                                       />
   <Bond from="CG" to="OD2" order="2" />
   <Bond from="CG" to="OD1" order="1" />
      <Protonation name="ASZ" pdbAlias="ASZ1" description="OD2 protonated (Neutral)">
        <Atom pdbName="OD1" charge="0" hydrogens="0" />
```

```
<Atom pdbName="OD2" charge="0" hydrogens="1" />
</Protonation>
<Protonation name="ASZ1" pdbAlias="ASZ1" description="OD1 protonated (Neutral)">
<Atom pdbName="OD1" charge="0" hydrogens="1" />
<Atom pdbName="OD2" charge="0" hydrogens="0" />
</residue>
</Residue>
<Bond from="CA" to="N" order="1" />
<Bond from="CA" to="C" order="1" />
<Bond from="C" to="0" order="2" />
</Residue>
...
<Residue>
</Residue>
</Residue>
</Residue>
</Residue>
```

The residue template always consists of a *base* or default protonation, which describes the atoms in the residue, their hybridization, element type, partial charge and their number of hydrogens. The base protonation also describes the bonds in the residue and the order of these bonds. The base protonation is described by the <Atom> and <Bond> elements that are immediate children of the <Residue> element.

A residue may also contain a number of *alternative protonations*. These are described by the <Protonation> elements. The alternate protonation are considered modifications to the base protonation, so they describe only the differences to the base protonation. Any <Atom> or <Bond> tag in an alternate protonation description will replace the settings inherited from the base protonation.

A short description of the various attributes is shown in the table below:

Element	Attributes
<residue></residue>	The 'name' attribute is used to identify the residues in a PDB file.
	The other attributes ('letter', 'longName' and 'pdbAlias') are purely informational and not used during parsing).
<atom></atom>	'pdbName' is used to identify the atom in the PDB file.
	'hyb' describes the hybridization of the atom ($2 = SP2$ and $3 = SP3$).
	'Charge' is the atomic partial charge.
	'Hydrogen' is the number of hydrogens attached to this atom. 'Element' is the element type.
<bond></bond>	'from' and 'to' must be 'pdbNames' of the atoms this bond connects.
	The 'order' attribute describes the bond order $(1 = single bond, 2 = double bond, and 1.5 = delocalized bond).$
<protonation></protonation>	'name' refers to the name that will be used as display name and identifier in the GUI.
	'pdbAlias' and 'description' are purely informational.

5 Data Sources

There are several ways to import ligands and prepare them for docking in Molegro Virtual Docker.

- Ligands can be imported in the GUI (using Import Molecules... from the File menu) and included in the workspace before docking. This is the easiest way to import data, but it can be slow if working with thousands of ligands.
- Ligands can be imported using the 'IMPORT' script commands. This has the disadvantage that all of the input file is parsed (e.g. a SDF-file containing 2000 entries will have to be completely loaded and prepared in memory, even if only a subset of it is needed). It is also necessary to modify the MVD-scripts manually.
- Ligands can be read from a *Data Source*. Ligands are 'streamed' from a source (such as a large file) and only one molecule is loaded into memory at a time.

Currently two types of data sources are available in Molegro Virtual Docker:

- File data sources. These are single files containing multiple structures (such as SDF, multi-molecule Mol2, or MVDML). It is possible to read a subset of the molecules contained in the file.
- Multifile data sources. These can be used when the input structures are split over several different files. A multifile data source may contain files with a mixture of different data formats.

5.1 Data Sources Syntax

File Data Sources

File data sources are identified by a 'File=' identifier. Examples:

```
File=\\fileserver\molecules\mol23.mol2
File="C:/Test Molecules/steroids.sdf";Index=2,4-8,12,34-
```

It is possible to import a subset of the structures in a file using the 'Index' specifier.

Molecules must be separated either by '\$\$\$\$' for SDF files or '@<TRIPOS>MOLECULE' for multi-molecule Mol2 files. Only one molecule will be extracted from each section separated by these separators. For PDB files only the first HETATM molecule will be imported.

Notices that all input structures are expected to be ligands. Molecules recognized as proteins or water molecules will be ignored.

The optional 'Index' specifier must be a comma-separated list of either single values or intervals. Notice that open intervals are allowed (e.g. '5-' or '-19'). Indices should be ordered strictly increasing. Invalid or non-existent indices will be ignored. The 'Index' specifier is 1-based (the number of the first molecule is 1 and not 0).

Filenames containing spaces must be enclosed in quotation marks. It is possible to specify files on shared network drives and folders.

Multifile Data Sources

Multifile data sources are identified by a 'Dir=' identifier. Examples:

```
Dir="C:/Test Molecules";Pattern="*.sdf;*.mol2";Index=10-100
Dir=C:/Test;Pattern=Stereo*.sdf;Index=10-100
```

The Multifile data source takes a directory and scans it for the given pattern. Patterns are specified using '*' as a wildcard. Notice that on Linux and Mac operating systems, file patterns are case sensitive.

It is possible to specify more than one pattern by separating sub-patterns with semi-colons. Patterns with semi-colons must be surrounded by quotes.

As with file data sources it is possible to specify a subset using the molecule index specifier ('Index'). Notice, that the 'Index' specifier refers to the molecule index – not the file index.

5.2 Using Data Sources

Data sources can be constructed and used in the following ways:

Specifying a Data Source in the Docking Wizard

The first page in the Docking Wizard (Choose Which Ligands To Dock) allows you to choose to dock from a data source.

Notice that it is not possible to specify an RMSD reference ligand when docking with data sources (since reference ligands must have compatible atoms and this cannot be checked for data sources).

The docking wizard creates a script where the DOCK command contains a reference to the specified data source (see 'using data sources from a script').

9 Docking Wizard	×
Choose Which Ligands to Dock	
O From workspace	
 Proteins IHVR [A] IHVR [B] Igands XK2_263 Cofactors HYD_67 [A] HYD_67 [B] 	
 From external data source 	
File=C:/Documents and Settings/Mikael/Desktop/zinc(2).sdf Setup	
Reference ligand: None	~
< <u>B</u> ack <u>Next</u> > <u>Cancel</u>	<u>]</u> ;;

Figure 58: Using data sources from the Docking Wizard.

When choosing **Setup...** a dialog for defining the data source appears:

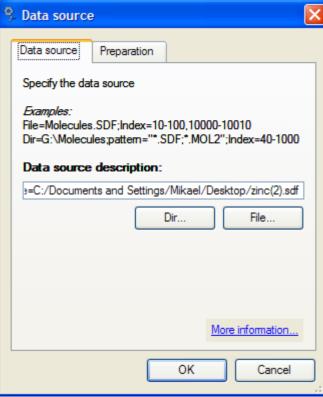


Figure 59: Specifying a data source

Specify the data source on the **Data source description** line input or use either the **Dir...** or **File...** button to choose a directory or file from a dialog.

The **Preparation** tab determines how the data source should be prepared. These settings are described in Section 4.2.

Loading Data Sources Directly into the Workspace

By using the **File | Import From Datasource...** menu item it is possible to directly load a number of molecules into the workspace. This can be useful for importing a small subset of the molecules in a data source to check that the parsing and preparation is okay. Notice that all molecules are loaded into memory which can make the system slow to work with.

The data source wizard that appears is identical to the one described under 'Specifying a data source in the Docking Wizard'.

Using Data Sources from a Script

The Dock command will take a data source as input, if it is surrounded by square brackets:

```
DOCK [File=C:/Molecules/steroids.sdf]
```

or

DOCK [Dir="C:/Molecules";Pattern="*.sdf;*.mol2";Index=10-100]

Notice that all preparation of the data source will be performed according to the settings defined by any previous PREPARE and PARSERSETTINGS statements in the script. E.g:

```
PARSERSETTINGS breakUnrealisticBonds=false;combineMoleculeFragments=true
PREPARE bonds=ifmissing;bondorders=ifmissing;hydrogens=ifmissing;
charges=always;torsiontrees=always;detectcofactors=false
```

```
DOCK [File=C:/Molecules/steroids.sdf]
```

6 **Docking Functionality**

6.1 Cavity Prediction

Potential binding sites (also referred to as cavities or active sites) can be identified using the built-in cavity detection algorithm (see Appendix IV: Cavity Prediction for details).

9. Cavity Detection	
General settings	
Molecular surface:	Expanded Van der Waals 🕞
Max number of cavities:	5
Restrict to 'search space'	
	Simple <<<
Advanced settings	
Minimum cavity volume:	10 🚔
Maximum cavity volume:	10000
Probe size:	1.20
Max number of ray checks:	16
Min number of ray hits:	12
Grid resolution:	0.80
Molecules included:	
Reset All to Defaults	<u>O</u> K <u>C</u> ancel

Figure 60: Cavity Prediction dialog.

A dialog is available for detecting cavities (see Figure 60), allowing to customize the sensibility (and type) of cavity search. The **Cavity Prediction** dialog can be invoked via the context menu in the **Workspace Explorer** (in

the **Proteins** category) or by selecting the **Detect Cavities** menu option from the **Preparation** menu.

For large targets a global search for cavities may be slow or result in too many possible binding sites. It is possible to restrict the search to the sphere defined by the current search space (using the **Restrict to 'search space'** checkbox). This makes it possible to define an approximate location of the most likely interaction sites, and then perform the cavity detection within this volume.

The advanced settings are described in Appendix IV: Cavity Prediction. Notice it is possible to choose which molecules should be taken into account when performing the cavity detection.

Cavities found are listed in the **Workspace Explorer** in the **Cavities** category. Visualization of the cavities can be toggled on and off. Moreover, volume and area are listed for each cavity.

Cavities may be deleted from the workspace by selecting them in the workspace explorer and choosing **Remove cavity from workspace**. It is also possible to merge cavities by choosing **Merge With Other Cavity...**

Notice: If no cavities are identified, ligands can only bind to the surface of the protein (or the cavity is too small to be detected). This situation makes it more difficult for the docking engine to identify the correct binding modes.

6.2 Constraints

Constraints are limitations imposed on the molecular system based on chemical insight or knowledge. Constraints can dramatically increase docking accuracy and speed, as they often limit the search space considerably.

There are two fundamental kinds of constraints:

- Hard Constraints: The docking engine tries to fully satisfy these constraints, i.e. a hard constraint could be used to force a specific ligand atom to be in a given region. The docking engine will enforce these constraints by moving or modifying the poses during docking. If several hard constraints exist, and none of them are satisfied, the system will choose to satisfy an arbitrary one. Notice that this means that not necessarily all hard constraints are satisfied. If a hard constraint is not satisfied, it will add 100 units to the soft constraint energy penalty.
- Soft Constraints: These act as extra energy terms, and contribute to the overall energy of the system. As such, they can be more or less satisfied. They can for example be used to reward ligands in certain regions. If several (enabled) soft constraints exist in the workspace, they are ALL taken into account (i.e. several extra terms are added to the overall docking energy function while docking).

Creating Constraints.

Distance constraints constrain ligand atoms to a given position in 3D-space (see Figure 61). They are used to constrain some or all atoms of a ligand to the vicinity of this position. Distance constraints are visualized as an inner and outer sphere where some ligand atoms must be present between the spheres.

9 Create Distance Constraint			
Constrained system Contraint center: X: 7.86 Y: 16.45 Z: 22.29 16.45 Ligands are constrained to Image: Specific ligand atom id: Image: Specific atoms for each ligand Image: Specific atoms for each ligand Image: Specific atoms Image: Specific atoms			
Hard constraint			
Require distance to be between:			
Minimum: 2.30 📚 Maximum: 3.60 📚			
Soft constraint			
Penalize distances with 'Piecewise Linear Potential' term			
Energy penalty: A0 20.00 🗢 A1 -2.50 🗢			
Distances (Å): R0 2.30 📚 R1 2.60 📚 R2 3.10 📚 R3 3.60 📚			
(3.52, 15.77)			
10.00			
0.00			
OK Cancel			

Figure 61: The Distance Constraint dialog.

The **Distance Constraint** dialog can be invoked either via the context menu on an atom (**Create Distance Constraint**), or by selecting one or more atoms, and using the context menu option (**Set Selection as Center of** **Distance Constraint**). If several atoms are chosen, their mean position will be set as center for the constraint.

The top panel allows the user to modify the location of the constraint (**Constraint Center**). It also controls which parts of the ligand should be constrained. Either a single atom (the **Specific Ligand Atom (ID)** option) or multiple atoms (the **Ligand Atoms of Type** drop down menu). The different choices for multiple atoms are: **All** (meaning all atoms), **None** (which causes the constraints to try to remove atoms within the constraint range), **Hydrogen Donor**, **Hydrogen Acceptor**, **Hydrogen Donor or Acceptor (Both)**, **Nonpolar**, and **Ring Atoms** (atoms in aromatic or aliphatic rings). Additionally, it is also possible to specify ligand atoms from a current selection of atoms using the **Specify atoms for each ligand** option and pressing the **Define from selected atoms** button. This also applies to more than one ligand, which makes it easier to constrain specific atoms for a set of ligands present in the workspace. The **View list** button can be used to inspect the current set of selected ligand atoms.

A **Hard constraint** (see above) range can be specified. If this is enabled the docking engine will try to force the selected ligand atoms to be within this range.

The bottom panel (**Soft constraint**) allows the user to specify a specific potential applied to the selected ligand atoms. The potential is a piece-wise linear potential, which is the same type as used in the docking score function (see Appendix I: MolDock Scoring Function). It is shown graphically in the graph at the bottom.

When applying soft constraints the following procedure is used: for all chosen ligand atoms (as defined by the **Ligands atoms of Type** or **Specific ligand atom** input fields) the distance between the center of the constraint and the atom is calculated. The potential is then evaluated for all these distances, *but only the lowest energy is returned as the soft constraint energy.* That is, only the atom with the lowest energy relative to the constraint potential is taken into account. The reason for this is, that if you for example want to reward ligands with a hydrogen acceptor close to hydrogen donor in the protein, it does not make sense to punish other atoms in the vicinity of the constraint if one hydrogen acceptor is already at its optimal distance from the donor.

Ligand Atom Constraints

Another type of constraint is the **Ligand Atom Constraint**. It is used to constrain a specific ligand. Since **Ligand Atom Constraints** are defined using a list of atom IDs, they are specific to ligands and are only applied to the ligand on which they are defined.

To create a **Ligand Atom Constraint**, select a number of atoms (in the same ligand) in the **Visualization Window**. Ensure that no other objects are

selected, and choose **Constraint Selected Ligand Atoms** from the context menu (right-click mouse button). It is also possible to use the context menu on a single ligand atom (**Create Ligand Atom Constraint**) without performing a selection.

The **Ligand Atom Constraint** dialog will appear (see Figure 62). It is possible to modify the list of atoms in the ligand by entering a comma-separated list of IDs.

Notice: **Ligand Atom Constraints** are always *soft constraints*. It is possible to choose whether the chosen atoms in the ligand should be *rewarded* or *penalized* for contacts with the target molecules (proteins, cofactors and water).

Screate Ligand Atom Constraint
Define ligand constraint
This Ligand Constraint is bound to ligand 0: BTN_300
Constrain the following atoms in ligand (comma-separated list of ID's):
15
Ligand constraints are specific to one ligand.
Soft constraint
Penalize chosen atoms for making contacts. Energy penalty: 500
Reward atoms for making contacts. Energy reward: -500
Define atom contact threshold (Å): 4.00
OK Cancel

Figure 62: Ligand Atom Constraint dialog.

The criteria for contact used here is purely based on the distance between the chosen ligand atoms and the closest atom in any target molecule. The distance threshold for defining contacts can also be customized (using the **Define atom contact threshold (Å)** input field).

Typical Uses

Constraints are useful if something about the system is known in advance. If perhaps a hydrogen bond from a hydrogen donor was known to be present – a distance constraint could be set up at the position of the protein hydrogen donor, and a hard constraint could force hydrogen acceptors in the ligand to satisfy the hydrogen bond.

6.3 Docking Wizard

When all the molecules have been prepared, the docking can commence. To start the **Docking Wizard**, select **Docking | Docking Wizard**. A shortcut is provided by clicking on the docking icon (gear wheel) on the tool bar. Additionally, the keyboard shortcut **F1** is available.

Notice: In order to initiate the docking, at least one protein and one ligand molecule have to be present in the workspace.

Choose Which Ligands to Dock

The first action is to choose which ligands to dock:

🧏 Docking Wizard	X
Choose Which Ligands to Dock	
 From workspace 	
 Proteins Grads Grads Gractors Grad_480 	
 From external data source 	
Datasource	Setup
From KNIME workflow	
Reference ligand: None	~
< Back Next >	Cancel

Figure 63: Select which ligands to dock.

If more than one ligand is available in the workspace, the user can select which ones to use by clicking on the corresponding molecules in the window. If more than one ligand is selected, all selected ligands will be docked one at a time. Water molecules and cofactors (if any) are always included in the docking simulation (remember to remove them from the workspace if they should not be included). Moreover, a reference ligand can be specified at the bottom. The reference ligand is used to calculate the root-mean-squared deviation (RMSD) between the reference ligand and the docked pose. The reference ligand - or ligands - are only available if they are compatible (w.r.t. symmetry, identical number of heavy atoms, etc.) with the ligands selected for docking.

Notice: If more than 10 ligands are present in the workspace, a subset of the ligands can be selected for docking using the **Specify ligand range** option (not shown on Figure 63).

It is also possible to dock ligands from an external data source, see Section 5.2 for details about data sources.

The last option **From KNIME workflow** makes it possible to dock ligands using the KNIME workflow system. See the Molegro KNIME Extensions Installation & usage guide for more details (available from www.molegro.com/knime/).

Choose Scoring Function and Define Binding Site

MVD includes *MolDock Score* [THOMSEN 2006] and PLANTS Score [KORB 2009] for evaluating docking solutions. The *MolDock Score* is further described in Appendix I: MolDock Scoring Function and PLANTS Score is described in Appendix II:PLANTS Scoring Function.

Grid-based versions of the scoring functions are also available. The *MolDock Score* [*Grid*] is a grid approximation using the same energy terms as the *MolDock Score* except that hydrogen bond directionality is not taken into account. *PLANTS Score* [*Grid*] is a grid approximation using the same energy terms as the *PLANTS Score*. The grid-based scoring functions provide a 4-5 times speed up by precalculating potential-energy values on an evenly spaced cubic grid (see Appendix XIV: Grid-based Scores for more details).

The following options are available for the MolDock Scoring functions:

The **Ignore distant atoms** option is used to ignore atoms far away from the binding site. Thus, atoms more than **Radius** angstroms away from the center of the binding site are ignored in the scoring function. This reduces the overall computing time significantly when working on large molecules. Notice that charged atoms (capable of long-range interactions) are always taken into account in the scoring function.

The **Enforce hydrogen bond directionality** option is used to check if bonding between potential hydrogen bond donors and acceptors can occur. If hydrogen bonding is possible, the hydrogen bond energy contribution to the docking score is assigned a penalty based on the deviations from the ideal bonding angle. Using this option can significantly reduce the number of unlikely hydrogen bonds reported.

The **Ligand evaluation** can also be customized: **Internal ES** toggles whether internal electrostatic interactions should be calculated for a pose, **Internal Hbond** toggles whether a pose should be allowed to have internal hydrogen

bonds, and **Sp2-Sp2 Torsions** determines whether an additional dihedral term should be added for taking Sp2-Sp2 bonds into account (see Appendix I: MolDock Scoring Function).

😤 Docking Wizard 🛛 🔀
Choose Scoring Function and Define Binding Site
Scoring function
Score: MolDock Score
✓ Ignore distant atoms
Enforce hydrogen bond directionality
Ligand evaluation: Internal ES Internal HBond Sp2-Sp2 Torsions
Displaceable Water. Entropy reward (for each water displaced): 0.00
Dia dia mandri dia dia dia dia dia dia dia dia dia di
Binding site Origin: User-defined
Center: X: -9.21 🗢 Y: 15.95 🗢 Z: 27.93 🗢
Radius: 15
< <u>B</u> ack <u>N</u> ext > <u>C</u> ancel

Figure 64: Choosing scoring function.

For the PLANTS Score, the following options are available:

Include hydrogens in torsion term toggles whether or not hydrogens should be included when calculating the Tripos torsion potential (see Appendix II:PLANTS Scoring Function for details about the PLANTS scoring function).

The **Ignore distant atoms** option is used to ignore atoms some distance away from the binding site and is similar to the option for the MolDock score.

If water molecules are available in the workspace, it is possible to include displaceable water evaluation by enabling the **Displaceable Water** option (see Section 9.1 for more details).

For the grid-based scoring functions, the **Grid resolution** option (not shown in Figure 64) can be used to set the granularity of the generated energy grids.

The **Binding site** specifies the region of interest and thus where the docking procedure will look for promising poses (ligand conformations). The **Origin** determines which area of the protein is expected to include the binding site.

If cavities have been identified the user can pick one of these as the preferred area of interest. Further, if a reference ligand is being used, the center of the reference ligand can be used. By default (if no cavities have been identified and no reference ligand is specified), the center of the bounding box spanning all protein(s) will be used. The actual center of the binding site used is listed in the **X**, **Y**, and **Z** boxes in the window. Besides the center of the binding site, a **Radius** can be specified (default is 15 angstrom). The **Search Space** region will be shown in the **Workspace Explorer** in the **Constraints** category.

Notice: A sphere in the **Visualizer Window** indicates the position and size of the current search space region (see Figure 65).

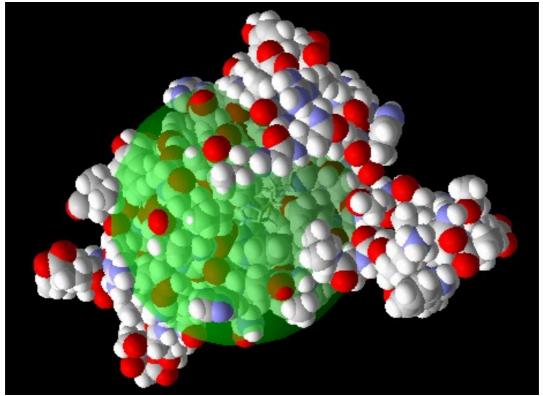
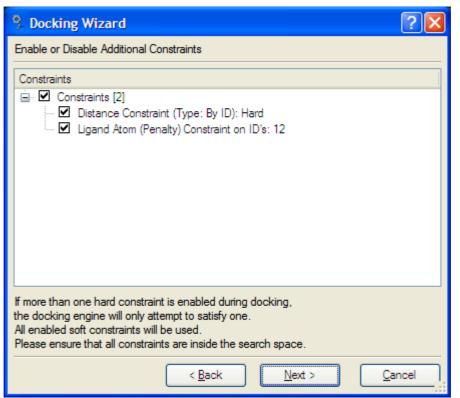



Figure 65: Example of search space region (green sphere).

Enable or Disable Additional Constraints

If constraints (besides the search space region) have been added to the workspace, they can be toggled on and off in the **Enable or Disable Additional Constraints** tab (see Figure 66). In order for a constraint to be meaningful it must be defined within the current search space region.

Figure 66: Enabling or disabling user-defined constraints.

Choose Search Algorithm

MVD includes three search algorithms for molecular docking, *MolDock Optimizer* [THOMSEN 2006], *MolDock SE* (simplex evolution), and Iterated Simplex.

The **Number of runs** specifies the number of times that the docking simulation is repeated for each ligand chosen to be docked. Sometimes more than one run is needed to identify promising poses (in particular for ligands having more than 15 flexible torsions or if no promising cavities exist). If cavities have been identified (see Section 6.1) the poses found by the search algorithm can be constrained to the region spanned by the cavity (by using the **Constrain poses to cavity** option). This option greatly reduces the overall docking process and increases the accuracy of the docking procedure. However, if the ligand does not bind in the region specified by the selected cavity, this option should be disabled.

The **After Docking** settings make it possible to perform two post-docking steps: **Energy Minimization** performs a short Nelder-Mead Simplex minimization of the translation, orientation and flexible dihedral angles of the found poses using the MolDock scoring function. This step can be used to slightly refine the docking results – the evaluation is always performed with a non-grid version of the MolDock scoring function, thus preventing any inaccuracies due to energy grid approximations. Also the non-grid MolDock

scoring function is able to more precisely take hydrogen bonding geometries into account. Enabling this option will usually result in very tiny improvements, and the option is disabled by default. Optimize H-Bonds optimizes the position of the hydrogens for any hydrogen donors (both in the Ligand and in the Proteins). The default behavior for the MolDock score is to only evaluate hydrogen bond angle geometry for hydrogen bonds where the hydrogen positions are fixed (non-rotatable). By optimizing both protein and ligand positions first, additional geometric constraints can be used to evaluate the quality of a hydrogen bond. Notice that enabling this will always slightly raise the energy (since the geometric hydrogen bond terms are penalties imposed on the hydrogen bond energies) - this does not mean that the solution is worse after optimizing the hydrogen bonds, but rather that the more accurate evaluation has made it possible to impose additional penalties on the hydrogen bonding geometry. By default h-bond optimization is enabled. Notice that the **After Docking** settings become unavailable if the workspace contains docking templates, sidechain flexibility descriptors, or constraints.

Notice: For large ligands with more than 10-15 flexible bonds, 20-50 runs are sometimes needed. Using the MolDock SE search algorithm and the grid-based version of the docking scoring function can reduce the computational load significantly (good results have been reported using this combination and setting the **Number of runs** to 50).

The **Parameter Settings** show the parameters used by the MolDock Optimizer search algorithm. The default values shown are generally suitable for most docking tasks. See Appendix III: MolDock Optimizer for details on MolDock Optimizer parameter settings.

The MolDock SE and Iterated Simplex algorithms (and their parameters) are further described in Appendix XII: MolDock SE and Appendix XIII: Iterated Simplex.

9. Docking Wizard	
Customize Search Algorithm	
Search algorithm	
Algorithm:	MolDock Optimizer
Number of runs:	10
Constrain poses to cavity	
After docking: 🔲 Energy Minimization 🛛	Optimize H-Bonds
Parameter settings	
Population size:	50
Max iterations:	2000
Scaling factor:	0.50
Crossover rate:	0.90
Offspring scheme:	Scheme 1
Termination scheme:	Variance-based
< <u>B</u> ack	<u>N</u> ext > <u>C</u> ancel

Figure 67: Customizing the search algorithm.

Pose Clustering

Instead of returning only one final pose for each docking run, it is possible to return multiple poses representing different potential binding modes. This can be useful when the best-scoring (i.e. lowest-energy) pose does not represent the native binding mode or when multiple binding modes exists.

Here, clustering can be used to reduce the number of poses found during the docking run and only the most promising ones will be reported.

If multiple poses are returned for each run, the following options are available:

- Limit the number of poses reported (Max number of poses returned).
- Only report poses with energies less than a user-defined threshold (Enable energy threshold).
- Cluster poses using the specified RMSD threshold (Cluster similar poses). Poses found during the docking run will be clustered (put into bins) using the RMSD criteria. See Appendix V: Clustering Algorithm for a detailed description of the clustering algorithm used. Only the lowest-energy representative from each cluster will be returned when the docking run is completed. Increasing the RMSD threshold will increase the diversity (with respect to RMSD) of the poses returned.
- The **Ignore similar poses** option is used to avoid reporting to similar

poses when conducting multiple runs (docking the same ligand). All poses returned from the runs will be clustered and similar poses are removed (keeping the best-scoring one). Depending on the RMSD threshold specified, more or less diverse poses (combined for all the runs) will be reported.

🌮 Docking Wizard		
Pose Clustering		
Multiple poses		
 Return multiple poses for each run 		
Max number of poses returned:	5 🗢	
Enable energy threshold:	0.00 🔶	
Cluster similar poses. RMSD threshold:	1.00 😂	
Ignore similar poses (for multiple runs only). RMSD threshold:	1.00 📚	
 Return one pose for each run 		
Tabu clustering (penalize poses similar to solutions from earlier	runs)	
RMSD threshold:	2.00 💲	
RMSD calculation: By atom ID (fast)	~	
Energy penalty:	100.00 🤤	
Virtual screening mode		
Keep at least top: 10.00 c percent. Notice: The returned set is guaranteed to contain the top-n percent best poses, but filtering is done during the screening, so more than the chosen percentage will be returned.		
< <u>B</u> ack <u>N</u> ext >	<u>C</u> ancel	

Figure 68: Pose clustering options.

Notice: The actual number of poses returned may be lower than the maximum number of poses specified in **Max number of poses returned**. For instance, the energy- or clustering-threshold options can reduce the number of poses returned (if poses have higher energies or are too similar). However, the overall best-scoring pose will always be returned.

If only one pose is returned per run (**Return one pose for each run**), a special clustering technique (called 'Tabu Clustering') can be applied.

When using this clustering technique each found solution is added to a 'tabu list': during the docking simulation the poses are compared to the ligands in this 'tabu list'. If the pose being docked is closer to one of the ligands in the list than specified by the **RMSD treshold**, an extra penalty term (the **Energy penalty**) is added to the scoring function. This ensures a greater diversity of the returned solutions since the docking engine will focus its search on poses different from earlier poses found. It is possible to specify whether RMSD calculations should be performed by comparing atom ID (which is the fastest choice and the default choice) or if intrinsic ligand symmetries should be taken into account (which is slower but more accurate). Tabu clustering is performed per ligand – when a new ligand is docked the tabu list is cleared. Notice that the tabu list gets longer for each run – so when docking many runs for each ligand tabu clustering may slow the system.

For virtual screening runs, the **Virtual screening mode** option is particularly suitable for returning a percentage of the top-ranked compounds found during the virtual screening run (the percentage can be specified in the dialog). Since the set of top-ranked poses found are updated dynamically during the virtual screening run more than the specified percentage of poses will be returned. Notice: setting the percentage to 0 will toggle off pose clustering and the best-scoring pose for all ligands will be returned.

Errors and Warnings

Docking Wizard			? 🔀
Errors and Warnings			
Warnings			
Category			
Detailed description			
No errors or warnings.			
	< <u>B</u> ack	<u>N</u> ext >	Cancel

Figure 69: Any warnings or errors are shown on the last page in the wizard.

The **Docking Wizard** reports errors and warnings found, such as non-bonding atoms in molecules, steric clashes between atoms, unsupported residues, missing hydrogens in proteins, etc. A detailed description of each warning and error is shown at the bottom of the **Errors and Warnings** tab (see Figure 69).

Setup Docking Execution

In the final tab (see Figure 70), three choices are available for executing the docking simulation. **Run docking in separate process** is the default choice, which creates a MVD script that is executed in an external process (Chapter 17 describes the MVD Scripting Interface in more details). A copy of the current workspace is used, so the user can continue working with the current workspace without interfering with the docking simulation (e.g. add/remove molecules, change preparation, etc.). The second choice **Create a docking script job, but do not run it now** creates a docking script using the currently selected parameter settings. The generated script is saved in the directory specified in the **Output directory** (see below) and can be used to start up the docking simulation on other computers. The third choice **Start job on Virtual Grid** creates a grid job and spawns the Virtual Grid Controller (see Chapter 15 for more details about Virtual Grid execution).

When enabling the **Edit script manually** option, a tab page containing the MVD script is shown making it possible to manually edit the script before starting the docking run.

The **Output directory** specifies where the docking data (MVD script file, MVD script log file, docking results file, and found poses) will be stored. The MVD script file (script.mvdscript) contains the scripting commands automatically generated to perform the docking simulation. The MVD script log file (ScriptLog_timestamp.txt) is a time-stamped log file containing log information generated by the script interpreter. Details about the poses returned after the docking simulation (e.g. docking score, affinity, specific energy terms, and pose Mol2 filename) are included in a mvdresults file (DockingResults.mvdresults). The mvdresults file is used by the **Pose Organizer** to show detailed information about the poses and to dynamically load the molecular structure of the poses (see Section 7.1 for more details). Each pose is stored in either Mol2 or MVDML format (as chosen in the **Save found poses as** combobox). The poses are used by the **Pose Organizer** to show the 3D conformations of the poses in the **Visualization Window**.

The **Pose name pattern** specifies how the poses should be named when saved. By default '[\$ID] \$Name' is used but the pattern can be changed if white spaces or square brackets should be omitted from the pose filename.

If the **Create SMILES in MVDResults file** is enabled, a column with SMILES strings is added to the MVDResults output. This makes it possible to visualize 2D depictions of the molecules in the Data Analyzer and in the Molegro Data Modeller when analyzing docking data.

😤 Docking Wizard 🛛 🔀					
Setup Docking Execution					
Choose how to execute the docking					
 Run docking in separate process Creates a script and executes it in an external process. You can continue working on the current workspace. 					
Create a docking scriptjob, but do not run it now.					
Can be used to prepare larger docking runs (e.g. on several machines).					
 Start job on Virtual Grid 					
Virtual Grid docking is only enabled when docking from a data source.					
Edit script manually					
Data output					
Output directory: c:/Molegro/Src/Mvd/MVDVisualStudio/DockingOutput					
Save found poses as: Mol2					
Pose name pattern: [\$ID] \$NAME e.g.: [01] molecule.mol2					
Create SMILES in MVDResults file					
The generated script, the logfile and the found poses will be stored in the output directory					
< <u>B</u> ack Start <u>C</u> ancel					

Figure 70:Setup docking execution.

Finally, when the **Start** button is pressed, the docking run will start and the **Molegro Virtual Docker Batchjob** dialog will pop up - showing the current status and progress of the docking (see Figures 71 and 72).

Molegro Virtual Docker Batchjob (Running)								
Batchjob started: to 4. maj 10:46:28 2006. Elapsed: 00:00:13 Skip ligand Finish (estimated): 10:50:58. Remaining: 00:03:45 Simple << Working path: c:/Program Files/Molegro/MVD2006/ScriptOutput Simple << Current ligand (1 / 1 runs) 5%								
Log Poses (current ligand) Poses (all) Graph							
Time 10:46:29:304 10:46:29:304 10:46:29:304 10:46:29:314 10:46:29:314 10:46:29:314 10:46:29:314 10:46:29:314 10:46:29:374 10:46:34.151 10:47:06.237 10:47:06:357	Description Found grid in workspace. Setting evaluator init string:cropdistance=0;hbond90=true Setting optimizer init string:cavity=true;popsize=50;scalingfactor=0.50;crossoverrate=0.9 The random seed used for this session is: 1710097600 Optimizer: PopSize:50 ScaleF:0.5 PC:0.9 OffStrategy:1 earlyTerm:0.01 SW:0 ForceCa Evaluator: TorsionScheme:1 dampFactor:1 cropDistance:0 [useEPenal] [useEIntra] Creating Docking Results file: c:/Program Files/Molegro/MVD2006/ScriptOutput/Docki Docking ligand: XK2_263 Beginning run 1 out of 1 Source Ligand was randomized. This will destroy its original orientation. Paused script. Resumed script. Evaluations: #/s: 55.0888 [Accumulated: 2039] -							
Status: Running.	Pause Stop batchjob							

Figure 71: Docking Progress dialog.

The **Graph** tab shows the convergence of the population of candidate solutions. The blue graph shows the energy of the best pose and the red graph shows the mean energy of the entire population of candidate solutions (see Appendix III: MolDock Optimizer for more details about the docking simulation and the population terminology). Notice: The red graph is only shown when using the MolDock Optimizer docking algorithm.

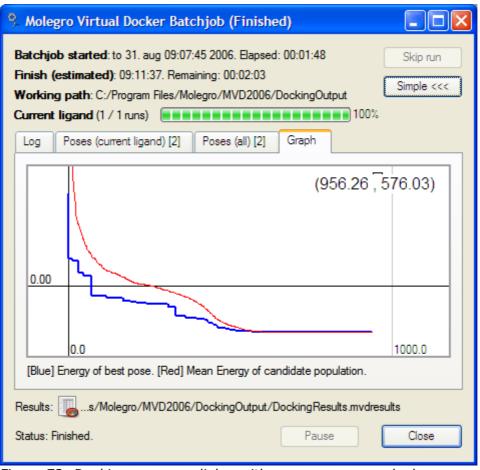


Figure 72: Docking progress dialog with convergence graph shown.

6.4 GPU Screening

It is possible to perform screening runs on a Graphics Processor Unit, a GPU, in Molegro Virtual Docker. The advantage of using a GPU is the speed - a modern CPU processor, such as the Intel Core i7-980 XE may deliver around 200 GFLOPS (FLOPS = Floating Point Operations per Second) of computational power, while a modern GPU, such as the GeForce® GTX® 580, may deliver around 1600 GFLOPS. However, GPU's are less flexible than conventional desktop CPU's, which means the software must target GPU's specifically in order to utilize their computational power.

Molegro Virtual Docker offers a special mode for doing docking calculations using the GPU. Since the algorithms had to be adapted to GPU, the approach for GPU Screening is slightly different than the other algorithms in MVD. The algorithm is described in 'The GPU Screening Algorithm'.

Hardware requirements

The implementation in Molegro Virtual Docker is done using Nvidia's CUDA platform for GPU programming. This means a CUDA-capable graphics card

from Nvidia is required to use the GPU screening modes. There is no direct requirement on the computational power for the graphics card, but it should be able to deliver more than 100 GFLOPS of computational power, in order to make it preferable to use GPU's instead of CPU's.

Notice that our GPU implementation does not rely on double precision floating point support on the GPU. This means that it is not necessary to use the Nvidia Tesla series hardware for doing scientific calculations. The GPU screening can be performed on standard graphics hardware, such as the Nvidia's GeForce or Quadro series of graphics cards.

Selecting a CUDA device

Some machines may have more than one CUDA device installed: for instance, two graphics cards, or a primary graphics card and a Nvidia Tesla card for scientific computations. One instance of Molegro Virtual Docker will only be able to use a single card at a time.

If you have more than two CUDA devices installed, it is necessary to choose the required device. The default device may be selected from the preferences in MVD. Select **Edit** | **Preferences...** and on the **General** tab, choose the number of the required default CUDA device (a list of the detected CUDA devices and their corresponding IDs may be found by choosing **Help** | **Show Available CUDA Devices**).

The default device, specified in the program preferences, is used unless anything else is specified. It is possible to override the default device settings by either:

- Specifying a CUDA device as a command line parameter when starting Molegro Virtual Docker. This is done using the 'cudadevice' parameter, e.g.: *MVD.exe -cudadevice 1* where the number refers to the indices as listed above.
- In a mvdscript, specify the desired device using the 'CUDADEVICE' command, e.g. in a script, add the following line (before the dock and optimizer command):

```
CUDADEVICE 1
OPTIMIZER populationsize=50;cavity=true;...
LOAD "Unnamed_complex.mvdml"
DOCK
```

Setting up a GPU Screening run

In order to set up a GPU Screening run, prepare the workspace as for a normal docking simulation and start the Docking Wizard. Now go to the **Customize Search Algorithm** and set the algorithm to **GPU Screening (CUDA)**.

9 Docking Wizard	—X —						
Customize Search Algorithm							
Search algorithm	Search algorithm						
Algorithm:	GPU Screening (CUDA)						
Number of runs:	10						
Constrain poses to cavity [no cavities found]							
After docking: 🔲 Energy Minimization 📝 Optimize H-Bonds							
Parameter settings							
Max iterations:	1500						
Simultaneous evaluations:	256						
Re-evaluate using CPU scoring function (choosen on previous page)							
	nds' is enabled, poses will be re-evaluated hat 'Energy Minimization' is done using the						
< <u>B</u> ack	<u>N</u> ext > <u>Cancel</u>						

Figure 73: Customizing settings for GPU-based screening.

It is important to notice that in contrast to the other search algorithms, the GPU screening algorithm does not use the scoring function specified on the scoring function tab. Instead it uses a PlantsPLP-like scoring function during the docking search. It is, however, possible to apply a CPU scoring function (as specified from the scoring function tab) after the docking to rerank the results. This can be enabled by checking the 'Re-evaluate using CPU scoring function (chosen on previous page)'.

The parameters for a GPU Screening are described in the next section.

The GPU Screening Algorithm

The GPU Screening algorithm uses a parallel implementation of the Nelder-Mead search algorithm to search the conformational space. Initially, a population of conformations for the current ligand is created, with the poses located on the grid points predicted by the cavity detection (at least one atom of each pose is located on a grid point). The size of the population is controlled by the **Simultaneous evaluations** parameter. Notice, that in order to properly utilise the GPU, a reasonable number of poses must be processed in parallel: usually, the default value of 256 is sufficient, but for higher-end graphics cards, it might be possible to increase the number without affecting performance. After the initial population has been constructed each pose is being minimized using the Nelder-Mead optimization technique. The **Max iterations** parameter determines how many Nelder-Mead minimization steps should be performed (if the minimization of a pose fails to improve beyond a given threshold, the pose is re-initialized with a random configuration on the cavity grid).

Using GPU Screening in a MVD Script

The GPU Screening algorithm can be specified in a mvdscript using the 'OPTIMIZERTYPE' command, e.g.:

```
....
OPTIMIZERTYPE CUDA
OPTIMIZER poses=256;steps=1500;reevaluate=false
....
```

Optionally, if more than one cuda-device is present in a machine, the desired device may be specified (before setting the optimizer type and starting the docking):

```
CUDADEVICE 1
```

Limitations of GPU Screening

Because of the different programming model for the GPU, there are certain limitations, when doing GPU Screening. The following features can not be used when docking with GPU Screening:

- Constraints are ignored during docking (both hard and soft constraints but notice constraints are taken into account, when re-evaluating using the CPU scoring function).
- Sidechain flexibility can not be enabled.
- Displacable water is ignored.
- No support for Molegro Virtual Grid, but notice that it is possible to use GPU Screening together with KNIME.

7 Analyzing the Docking Results

7.1 Pose Organizer

The **Pose Organizer** is used to inspect poses found (see Figure 74). It allows you to browse the list of current poses, to see detailed information about specific energy contributions, to visualize hydrogen bonds, electrostatic interactions, and to calculate ranking scores and estimate binding affinity energies.

The **Pose Organizer** can be invoked in several ways. It is automatically displayed after a docking result file (with mvdresults file extension) has been imported to MVD by dragging-and dropping the file into MVD, using **File** | **Import Docking Results (*.mvdresults)...**, or by dragging and dropping the DockingResults icon **()** (located in the lower left corner of the **Molegro Virtual Docker Batchjob** dialog) onto the MVD application.

Otherwise it can be invoked by using the context menu on the **Poses** category in the **Workspace Explorer** or using **Docking** | **Pose Organizer** if poses are present in the **Workspace Explorer**.

When the **Pose Organizer** is invoked it displays a list of poses parsed from the mvdresults file (or poses currently in the workspace). The table in the middle of the dialog window shows various columns with information about different energy contributions and other data for each pose. The columns can be changed under the **Settings** tab pane. A panel in the bottom of the dialog (**Sorting Criteria**) allows the user to sort the table by up to three different criteria.

By default the table in the middle supports multiple selection, i.e. more than one pose can be highlighted. Only highlighted poses will be visible in the 3D window. This setting is useful for quick comparison of different poses. This default behavior can be changed by selecting **Dynamic update (notice: disables multiple poses selection)**. In this mode only one pose is shown at a time. In return it offers the possibility to visualize different interactions for the current selected pose (e.g. hydrogen bonds).

Even though **Dynamic Update** is a single-selection mode, it is possible to *lock* poses which keeps them visible even when not selected. A pose can be locked by using the context menu on its entry in the table and selecting **Lock** or **Unlock**. Locking is purely a visualization aid, and has no other consequences for the pose.

When inspecting poses obtained from different ligands, the **Only show top** ... option can be used to focus on the most promising poses for each ligand. The selection of the top poses are based on the currently chosen **Sorting criteria**.

Pressing the **Open checked poses in Data Analyzer...** button makes it possible to further inspect poses using the Data Analyzer (introduced in Chapter 13).

Notice: A detailed energy analysis is available by right-clicking poses in the table and selecting **Open Ligand Energy Inspector...** (see Chapter 7.3). Additional options are available in the context menu allowing the user to select, remove, and export poses. These options are also available from the **File** and **Edit** menus located in the **Pose Organizer** dialog.

°} File

Т

able	Settings	h				
Pose	es					
Na	me	Ligand	MolDockScore	Rerank Score	RMSD	~
☑	[03] BTN	BTN_300	-136.234	-109.825	1.17308	
☑	[02] BTN	BTN_300	-131.843	-107.079	1.11397	
	[01] BTN	BTN_300	-131.42	-106.606	0.887424	
☑	[05] BTN	BTN_300	-125.555	-101.303	1.42309	
☑	[00] BTN	BTN_300	-128.821	-99.1438	0.621679	
	[06] BTN	BTN_300	-121.857	-98.8517	1.35976	
	[04] BTN	BTN_300	-128.202	-98.7394	0.876236	
☑	[09] BTN	_		-97.9563	1.23972	
☑	[07] BTN	_		-92.9536	1.43977	
☑	[08] BTN	BTN_300	-120.166	-92.6305	0.912475	
<						>
	_ .					
	Dynamic up(date (notice	e: disables multiple	e poses selection)		
	Only show to	op 1	📚 poses for eacł	n ligand		
<u>Op</u>	en checked	poses in D	ata Analyzer			
Sorti	ng criteria					
1st.	Rerank S	core 🔽	2nd. None	Sid	. None	~

Figure 74: The Pose Organizer dialog.

Pressing 'OK' will keep 10 poses

The **Settings** Tab Pane of the **Pose Organizer** can be used to customize the **Pose Organizer** (see Figure 75).

ΟK

Cancel

😤 Pose Organizer (5 poses) 🛛 🔀					
<u>Eile E</u> dit					
Table Settings					
Show hydrogen bonds Orient hydrogens to optimal position					
Show electrostatic interactions Display only residues closer than (Å): 6.00					
Show matching receptor configuration					
Re-evaluation of poses					
Ranking Score coefficients /D-Trunk/Mvd/Misc/Data/RerankingCoefficients.txt					
Recalculate Energies					
Table columns					
✓ Name Pose Name ✓ Ligand The name of the ligand the pose was created from.					
Filename The file the pose was loaded from (if any).					
Workspace The workspace (.mvdml-file) containing the protein.					
 MolDockScore The energy score used during docking (arbitrary units). Rerank Score The reranking score (arbitrary units). 					
DMCD The DMC deviation from a mformation for a distribution of the deviation of the deviati					
Add descriptor from regression model					
OK Cancel					

Figure 75: Pose Organizer settings.

The Dynamic Update Panel

The top panel (**Dynamic update**) chooses how the **Pose Organizer** behaves when single pose selection (**Dynamic update**) is enabled. It allows you to visualize hydrogen bonds, electrostatic interactions, orient hydrogens in the protein and ligand to their optimal position, and dynamically show residues close to the chosen pose. The **Orient hydrogens to optimal position** option is useful when inspecting poses as this makes it easier to see if the hydrogen bond is optimal.

Working with Receptor Conformations

When docking with sidechain flexibility a receptor conformation is saved

together with each pose. When a new docking results file is imported, MVD automatically checks whether any '.receptorConfiguration' files exist together with the poses.

If this is the case, the option **show matching receptor configuration** under **dynamic update** is enabled. When in dynamic update mode the pose organizer will now automatically change to the receptor conformation corresponding to the selected pose. If poses are imported into the workspace, their corresponding receptor conformations will automatically be added to the workspace.

The Re-Evaluation of Poses Panel

The middle panel allows for recalculation of the MolDock Score and re-ranking score terms. These scoring function values are already calculated if the poses are imported from a mvdresults file. Pressing the **Recalculate Energies** button will recalculate the energy terms (using the coefficients specified in the file for the re-ranking scores). Notice that the default evaluator settings will be used (e.g. internal ligand hydrogen bonds are not enabled)

The reranking score function is computationally more expensive than the scoring function used during the docking simulation but it is generally better than the docking score function at determining the best pose among several poses originating from the same ligand. The default reranking coefficients are listed in the file: \Misc\Data\RerankingCoefficients.txt

Binding Affinities

Predicting the experimental binding affinity of a protein - ligand complex based on a static conformation of the ligand is a difficult task. For instance, energetic contributions from solvent interactions and entropy contributions are difficult to handle in the simplified models used in molecular docking.

While the rerank-score in MVD provides an estimate of the strength of the interaction, it is not calibrated in chemical units and it does not take complex contributions (such as entropy) into account. Even though the rerank score might be successful in ranking different poses of the same ligand, it might be less successful in ranking poses of different ligands.

It is possible to create more sophisticated measures for the binding affinity using the Data Analyzer in MVD (or by using Molegro Data Modeller which offers additional modelling tools). New models can use the descriptors created by MVD during the docking run (the descriptors are stored in the '*.mvdresults' file). These descriptors include both terms extracted from the MolDock score function (like the protein-ligand hydrogen bonding energy) and static descriptors not using the 3D conformation of the pose (like the molecular weight or the number of nitrogen atoms). Molegro Virtual Docker comes with a model trained to predict binding affinities. The model is located in '\Misc\Data\BindingAffinity.mdm'. The coefficients for the binding affinity terms were derived using multiple linear regression. The model was calibrated using a data set of more than 200 structurally diverse complexes (take from the PDB data bank) with known binding affinities (expressed in kJ/mol). The Pearson correlation coefficient was 0.60 when doing 10-fold cross validation. It is important to note that this particular model was trained only on strongly interacting ligands in their optimal conformation known from the PDB complexes. Since the binding affinity measure was trained using known binding modes only, it might sometimes assign too strong binding affinities to weakly or non-binding molecules (false positives). *We therefore recommend ranking the results of a virtual screening run using the rerank score*. The binding affinity measure may then be used subsequently to get a rough estimate of the highest ranked poses.

In order to inspect the 'BindingAffinity.mdm' model, import the model into the Data Analyzer ('File | Import Workspace (Dataset/Models)...'). The model then appears in the workspace. By right clicking the model and selecting 'Show Details...' and choosing the 'Model' tab it is possible to see the actual multiple linear regression expression. The next section explains how to apply a model to docking results in the Pose Organizer.

The Table Columns Panel

The bottom panel (**Table columns**) determines which columns (descriptors) that are shown in the table on the first tab. Table 1 describes the descriptors that are available.

New descriptors can be added from regression models created using the builtin Data Analyzer (see Chapter 13 for more details). To add a new descriptor, simply press the **Add descriptor from regression model...** button and chose the regression model from a saved *Molegro Data Modeling* (MDM) file. Notice that the regression model should only be using the same descriptors as the ones that are available in the *DockingResults* files (only valid regression models will be available in the dialog).

The Pose Organiser shows a subset of the terms in the mvdresults file as columns in the Poses table. Some of the terms use the same terminology as in the mvdresults file (specifically Name, Ligand, Filename, Workspace, RerankScore, Torsions, RMSD, MW, LE1, LE3, Hbond, Similarity Score, Electro, Hbond and Heavy Atoms), but a few terms are renamed (in order to better fit the column layout and for clarity).

Column Name	Description
Name	The internal name of the pose (a concatenation of the pose id and ligand name)
Ligand	The name of the ligand the pose was created from
Workspace	The workspace (.mvdml file) containing the protein.
Filename	The file the pose is stored as (only available when inspecting docking results from a mvdresults file)
MolDock Score	Evaluated after post-processing.
	[This is the 'Energy' term in a mvdresults file]
Rerank Score	The reranking score (arbitrary units)
Plants Score	Evaluated before post-processing (only when using Plants).
	[This is the 'PlantsScore' term in a mvdresults file]
RMSD	The RMS deviation from a reference ligand (if available)
Interaction	The total interaction energy between the pose and the target molecule(s)
	[This is the 'E-Inter total' term in a mvdresults file]
Cofactor	The interaction energy between the pose and the cofactors
	[This is the 'E-Inter (cofactor – ligand)' term in a mvdresults file]
Protein	The interaction energy between the pose and the protein
	[This is the 'E-Inter (protein - ligand)' term in a mvdresults file]
Water	The interaction energy between the pose and the water molecules
	[This is the 'E-Inter (water – ligand)' term in a mvdresults file]
Internal	The internal energy of the pose
	[This is the 'E-Intra (tors, ligand atoms)' term in a mvdresults file]
Torsions	The number of (chosen) rotatable bonds in the pose
Soft Constraints	The energy contributions from soft constraints
	[This is the 'E-Soft Constraint Penalty' term in a mvdresults file]
Electro	Short-range electrostatic protein-ligand interations (r<4.5Å)
ElectroLong	Long-range electrostatic protein-ligand interations (r>4.5Å)
HBond	Hydrogen bonding energy
Heavy Atoms	Number of heavy atoms in ligand
MW	Molecular weight (in dalton)
LE1	Ligand Efficiency 1: MolDock Score divided by Heavy Atoms count
LE3	Ligand Efficiency 3: Rerank Score divided by Heavy Atoms count

Column Name	Description
Docking Score	Evaluated before post-processing (either Plants or MolDock).
	[This is the 'PoseEnergy' term in a mvdresults file]
Similarity Score	The similarity score if docking with templates
DisplacedWater	The energy contributions from non-displaced and displaced water interactions (if enabled)
SMILES	Contains connectivity information - useful for 2D depictions

Table 1: Column names available in the Pose Organizer dialog.

7.2 Saving Molecules and Solutions Found

Saving Workspace

After importing and preparing molecules, all information can be saved in a MVD Workspace (MVDML) file, which contains all relevant information (position of atoms, charges, hybridization, bond orders, ligand flexibility, ...). To save a workspace, select **File** | **Save Workspace As...** Alternatively, use the keyboard shortcut **Ctrl-S**.

Notice: Visualization objects (surfaces, labels, interactions, ...) are not saved in MVDML files.

Exporting Molecules

The **Export Molecules** dialog can be used to export all (or a selection of) the molecules available in the workspace (see Figure 76).

% Export Molecules	X
Molecules	
Notice: Proteins and waters cannot be exported to MDL Mol files (sdf/sd/mol/mdl Output scheme: One single file Export Cancel	

Figure 76: Export Molecules dialog: Select which molecules to export.

To export molecules, select **File** | **Export Molecules...** or **Export Molecules...** from the **Workspace** context menu in the **Workspace Explorer** (also available for proteins, ligands, cofactors, and poses).

Notice: Proteins and water molecules cannot be exported to SDF files.

Exporting Poses Found

To save the poses obtained from the docking runs, either use the **Export Molecules** dialog (described above) or save the poses from the **Pose Organizer** dialog.

7.3 Ligand Energy Inspector

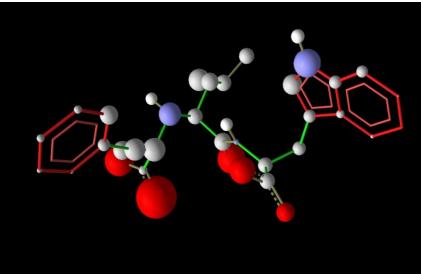
The **Ligand Energy Inspector** allows you to get detailed information about the energy interactions for a given ligand or pose.

The **Ligand Energy Inspector** can be invoked in different ways. It can be started using the context menu in the **Workspace Explorer** by choosing **Open Ligand Energy Inspector** on any Ligand or Pose item. It can also be started from the **Pose Organizer** using the context menu on any pose entry or by selecting **Tools** | **Ligand Energy Inspector**.

Notice: the ligand energy inspector evaluates the energy of the ligand (or pose) when invoked. This means that the proteins, water molecules, and cofactors currently in the workspace are taken into account. If the workspace

has been changed, the energy displayed here may not be the same as the one displayed in the Pose Organizer (since these were assigned during the docking evaluation).

😤 Liga	nd Ene	rgy Inspe	ctor				X
Ligand/	pose: 🚺	KZ_263	🖌 🔲 Hid	le other ligands/	'poses		Action +
Ligano	d Tar	rgets To	ital Energy	Settings			
Atom	Energies	\$				C)ptions 👻
ID	Name	Total	EPair	EPair (cofacto	r) EIntra		<u>^</u>
0	С	-6.42352	-4.76673	0	-1.6567	'9	
1	0	-9.92978	-10.5101	0	0.5803	04	
2	N	-2.80002	-2.27183	0	-0.5281	9	
_ <u>_</u>	c	E E7070	4 05000	0	1 01 44		<u> </u>
Hydro	ogen Bor	nds and Stro	ing Electros	tatic interaction	s	C)ptions +
ID	Donor	Energy	Length				~
0	target	-2.16943	3.16611				
1	ligand	-2.5	3.0145				
2	ligand	-2.5	2.86465				
2	toract	1 00170	2 22710				
Sumn	nary (ator	m energies)					
Туре	e 🔺	He	avy Atoms	Tota	I	Elntra	
All at	oms	46		-235.9	957	-0.47611	
<			IIII				>
Copy ta	ables to c	clipboard					Close .:


Figure 77: The Ligand Energy Inspector.

Using the Ligand/pose combo box it is possible to browse through the ligands and poses available in the Workspace. To avoid visualization of other ligands and poses when inspecting a molecule you can toggle on the Hide other ligands/poses check box.

Besides inspecting the various energy contributions, it is possible to perform various actions, using the **Action** drop down menu:

- Style Ligand Atoms by Energy. This will scale the radius of the ligand atoms proportionally to their energy contribution. Doing this makes it possible to get a visual overview of the important parts of the ligand.
- Style Protein Atoms by Energy. As above, this scales the protein atoms according to their energy contributions. Notice that protein atoms not interacting with the ligand are completely hidden. To make all protein atoms visible again, toggle the Hide Residues toolbar button.

- Style Water Atoms by Energy. This style makes it possible to get a visual overview of important interactions between water molecules and the ligand. The radius of the water atoms is scaled proportionally to their energy contributions. Water molecules with favorable interactions with the ligand are colored green and unfavorable interactions are colored red. Water molecules with no interactions to the ligand are hidden. If the Displaceable water evaluation option is selected, the following coloring scheme applies (see Chapter 9 for more details): displaced waters are colored yellow, non-displaced waters are colored green if they are favorable and red if they are not favorable.
- Optimize Ligand and Protein Hydrogen Positions. When docking with Molegro Virtual Docker the exact positions of the *rotatable* hydrogen atoms are not calculated. Instead it is assumed that the hydrogens are pointing in the optimal direction. In order to view the optimal direction of the rotatable hydrogens apply this option. Any rotatable hydrogens on the protein and ligand which are involved in hydrogen bonds will be oriented to the optimal direction.
- Minimize Ligand. This performs an energy minimization of the current molecule (with regard to its MolDock score energy).

Figure 78: An example of the 'Style Ligand Atoms by Energy visualization', where atoms are scaled according to their energy contributions.

The Ligand Tab

The **Ligand** tab page consists of three tables.

The **Atom Energies** table shows information about individual atoms in the ligand. When hovering the mouse over an atom in the 3D view, it will automatically be highlighted in the table. Similarly when selecting entries in the table, atoms will be selected in the 3D GUI. It is possible to show or hide this table using the **Options** drop-down menu.

The following types of energy contributions may be listed for a ligand atom:

- EPair. This is the pairwise (PLP) steric and hydrogen bonding energy between a ligand atom and a receptor atom. Pairwise interactions between a ligand and either cofactors or water molecules will show up as 'EPair (cofactor)' and 'EPair (water)'.
- **EIntra**. This is the internal ligand energy between a ligand atom and the other atoms in the ligand.
- EElec. This is the pairwise electrostatic interactions. For the protein they are divided into long-range and short-range interactions ('EElec (R < 4.5 Å)' and 'EElec (R > 4.5 Å)').

The second table (**Hydrogen Bonds and Strong Electrostatic Interactions**) shows a list of all hydrogen bond and strong electrostatic interactions between the ligand and the target atoms. From the **Options** dropdown menu it is possible to show or hide the table, but it is also possible to toggle the table to display covalent bonds instead (**Show Covalent Bond Energies**). Finally the **Options** menu also makes it possible to toggle whether hydrogen bonds and strong electrostatic interactions should be visualized in the GUI: Hydrogen bonds are visualized as dashed lines (where strong hydrogen bonds appear more solid) and strong electrostatic interactions are visualized as partial spheres oriented in the direction of the interaction. Green partial spheres correspond to favorable interactions, while yellow spheres correspond to non-favorable interactions.

The bottom panel (**Summary (atom energies)**) displays the sum of all atom interactions. (Notice that this is not the full energy of the ligand. Some interactions, like covalent bonding energies and constraint energies, are not included. For a complete list of energy contributions, see the **Total Energy** tab).

The Target tab

The **Target tab** displays a list of all targets atoms, residues, and molecules involved in an interaction with the inspected ligand (or pose). It is possible to switch between two views:

- Show Residue / Molecule Contributions which shows protein residues and water/cofactor molecules interacting with the inspected molecule.
- Show Atom Contributions which shows individual atoms in proteins,

cofactors, and water molecules in the workspace interacting with the inspected molecule.

The atoms, residues, and molecules are only displayed in the list if the interaction energy is greater then 0.3 (in MolDock Score units).

As with the Ligand Atom Energy table, selecting atoms, residues, or molecules in the table will select them in the 3D view and vice versa. In addition, it is possible to hide non-selected residues by toggling on the **Hide Non-Selected Residues** check box.

The energy contributions are also divided into the same categories as in the Ligand Atom Table (for instance EElec and Epair).

😤 Ligand	Energy I	nspect	or		×
Ligand/po:	se: XK2_2	63 🔽	🔲 Hide d	other ligands/poses	Action +
Ligand	Targets	Total	Energy	Settings	
Liganu	- argets	TUtar	LINEIGY	Jeangs	
Show F	Residue / Mi	olecule C	Contribution	s 💌 🔲 Hide Non-Sel	ected Residues
Molecu	le Residu	e ID	Total	EPair	<u>^</u>
1HVB [/	A] Ala	28	-11.6603	-11.6603	
1HVB [/	A] Arg	8	-2.81096	-2.81096	
1HVB [/	A] Asp	25	-12.3795	-12.3795	
1HVB [/	A] Asp	29	-8.32772	-8.32772	
1HVB [/	A] Asp	30	-9.41378	-9.41378	
1HVR [/	A] Gly	27	-4.936	-4.936	
1HVB [/	A] Gly	48	-7.3479	-7.3479	
1HVR [/	A] Gly	49	-10.5076	-10.5076	
1HVB [/	A] lle	47	-8.8103	-8.8103	
1HVR [/	A] lle	50	-17.5595	-17.5595	
1HVB [/	A] lle	84	-7.12269	-7.12269	
1HVB [/	A] Leu	23	-1.50949	-1.50949	
1HVB [/	A] Leu	76	-0.779384	-0.779384	
1HVR [/	A] Pro	81	-2.99427	-2.99427	
1HVB [/	Al Thr	31	-0.541081	-0.541081	×
					Clear Selection
Copy table	es to clipboa	rd			Close

Figure 79: Targets tab page.

The Total Energy Tab

The **Total Energy** tab displays a hierarchical breakdown of the various energy contributions.

When using the PLANTS scoring function, the following columns are shown:

The **Value** column displays the various terms which the PLANTS Score is based on.

The **PLANTS Score** column shows how the PLANTS score energy is composed. The PLANTS score is a sum of a subset of the Value terms (all terms are given the same weight).

For the MolDock scoring function, the following columns are available:

The **Value** column displays the various terms which the MolDock Score and the Rerank Score are based on.

The **MolDock Score** column shows how the MolDock score energy is composed. The MolDock score is a sum of a subset of the Value terms (all terms are given the same weight).

The **Rerank Score** uses a weighted combination of the terms used by the MolDock score mixed with a few addition terms (the Rerank Score includes the *Steric (by LJ12-6)* terms which are Lennard-Jones approximations to the steric energy – the MolDock score uses a piecewise linear potential to approximate the steric energy). The coefficients for the weighted Rerank Score are given in the **Rerank Weight** column, and the weighted terms and their summations are given in the **Rerank Score** column.

The relation between the terms showed in the Ligand Energy Inspector and the terms found in a mvdresults file is shown in the table below:

Ligand Energy Inspector Term	MVDResults Term
Total Energy	
External Ligand interaction	
Protein - Ligand interactions	
Steric (by PLP)	Steric
Steric (by LJ12-6)	VdW (LJ12-6)
Hydrogen bonds	HBond
Hydrogen bonds (no directionality)	NoHBond90
Electrostatic (short range)	Electro
Electrostatic (long range)	ElectroLong
Cofactor - Ligand	E-Inter (cofactor - ligand)
Steric (by PLP)	Not present in the mvdresults file, but can be calculated as:
	E-Inter (cofactor - ligand) - Cofactor (hbond) - Cofactor (elec)
Steric (by LJ12-6)	Cofactor (VdW)

Hydrogen bonds	Cofactor (hbond)
Electrostatic	Cofactor (elec)
Water - Ligand interactions	E-Inter (water - ligand)
Displacable Water interactions	E-DisplacedWater
Internal Ligand interactions	E-Intra (tors, ligand atoms)
Torsional strain	E-Intra (tors)
Torsional strain (sp2-sp2)	E-Intra (sp2-sp2)
Hydrogen bonds	E-Intra (hbond)
Steric (by PLP)	E-Intra (steric)
Steric (by LJ12-6)	E-Intra (vdw)
Electrostatic	E-Intra (elec)
Search Space Penalty	E-Penal
Soft Constraint Penalty	E-Soft Constraint Penalty

The Settings Tab

On the settings tab, the ligand evaluation can be customized. This can be important when inspecting poses from a docking run: Since the Ligand Energy Inspector is not aware of which scoring function settings were used during the docking, it is necessary to match the settings here to those selected in the Docking Wizard.

The scoring function combo box allows to choose between the docking scoring functions available in MVD: MolDock Score and PLANTS Score. For MolDock Score, the following options are available:

Internal ES toggles whether internal electrostatic interactions should be calculated for a pose, **Internal Hbond (no directionality)** toggles whether a pose should be allowed to have internal hydrogen bonds (notice that hydrogen bond directionality is not taken into account for internal hydrogen bonds in ligands), and **Sp2-Sp2 Torsions** determines whether an additional dihedral term should be added for taking Sp2-Sp2 bonds into account (see Appendix I: MolDock Scoring Function).

It is also possible to toggle on **Displaceable water evaluation** (and set the corresponding **entropy** reward) if that option was used during docking. See Chapter 9 for more details about the displaceable water model used in MVD and the additional information available in the Ligand Energy Inspector.

9 Ligand Energy Inspector
Ligand/pose: 🛛 XK2_263 💽 🔲 Hide other ligands/poses 🛛 🛛 Action 🗸
Ligand Targets Total Energy Settings
Scoring function: MolDock Score
Ligand evaluation:
Internal HBond (no directionality)
Sp2-Sp2 torsions
Displaceable water evaluation:
Entropy reward (for each water displaced): 0.00
Hydrogen bond evaluation: Hydrogen positions are optimized. (Optimize ligand and protein hydrogen positions using the Action menu before enabling this option.)
Re-evaluate
Copy tables to clipboard Close

Figure 80: Settings tab page for MolDock Score.

The last option relates to hydrogen bond evaluation. When estimating hydrogen bonds, MVD does not automatically assume that rotatable hydrogen bond donors have their hydrogen atoms positioned correctly. However, if the hydrogen positions have been optimized (using **Action** | **Optimize Ligand and Protein Hydrogen Positions**) enable this option to take the full geometry of the hydrogen bond into account.

For the PLANTS Score, the following options are available:

Include hydrogens in torsion term toggles whether or not hydrogens should be included when calculating the Tripos torsion potential (see Appendix II:PLANTS Scoring Function for details about the PLANTS scoring function).

The **Use original Plants setup** option toggles between original Plants setup (using PLANTS specific binding penalty terms and ignoring entries with 'dummy' Tripos atom types in Tripos torsion potential) and MVD implementation of PLANTS score (using another binding penalty term and including 'dummy' Tripos atom types in Tripos torsion potential). See Appendix II:PLANTS Scoring Function for details about the different binding penalty terms available for the PLANTS scoring function.

It is also possible to toggle on **Displaceable water evaluation** (and set the corresponding **entropy** reward) if that option was used during docking. See Chapter 9 for more details about the displaceable water model used in MVD and the additional information available in the Ligand Energy Inspector.

🎗 Ligand Energy Inspector	
Ligand/pose: 🛛 XK2_263 🔽 📃 Hide other ligands/poses	Action +
Ligand Targets Total Energy Settings	
Scoring function: PLANTS Score	~
 Include hydrogens in torsion term Use original Plants setup 	
Displaceable water evaluation:	
Displaceable water	
Entropy reward (for each water displaced): 0.00	
Re-evaluate	
Copy tables to clipboard	Close

Figure 81: Settings tab page for PLANTS Score.

7.4 Ligand Map (2D Depictions)

The Ligand Map makes it possible to depict molecules (ligands and poses) in the workspace in 2D. This makes it easier to inspect the molecules, make selections, and to analyze receptor interactions. The Ligand Map can be toggled on and off using the **Ligand Map** button on the tool bar in the main window.

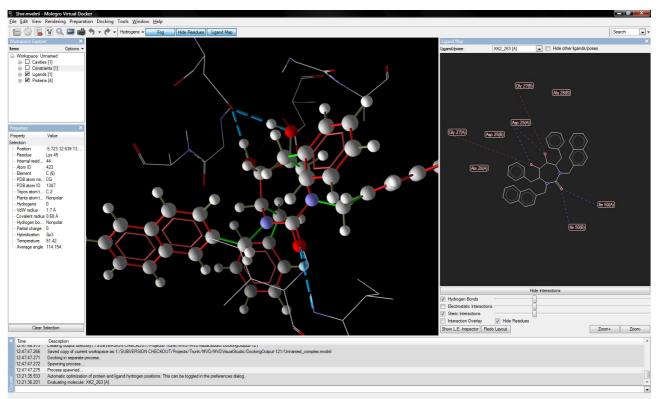


Figure 82: The Ligand Map window.

At the top of the Ligand Map window, it is possible to choose between the currently shown molecule and whether to hide other ligands and poses.

It is possible to select atoms synchronously in the 2D and 3D window by clicking on them. It is also possible to invoke the standard context menu, by right clicking on an atom. This makes it possible to e.g. change atom properties or create constraints.

Interactions and the Ligand Map

By clicking on the **Show Interactions** map, the interactions between the current ligand/pose and the receptor is shown. These interactions are the ones reported by the Ligand Energy Inspector. It is possible to press the **Show L.E. Inspector** button, which will open the **Ligand Energy Inspector**, and make it possible to adjust the scoring function settings or change the scoring function.

By default, only hydrogen bond interactions are shown. It is possible to show electrostatic interactions and steric interactions as well, by checking the respective checkboxes. It is also possible to set a minimum interaction threshold for each type of interaction. Raising the threshold slider limits the number of interactions shown. The specific value of the minimum interaction threshold will be displayed in the statusbar of the main window, when adjusting the sliders. Notice, that for steric interactions, only non-favorable interactions (clashes) are shown - showing the numerous positive interactions would clutter the interaction diagram. However, by placing the mouse cursor over an atom or residue, the favorable steric interactions will also be shown.

It is also possible to visualize how much each ligand atom contributes to the overall binding interaction. By clicking **Interaction Overlay**, a sphere centered at each atom visualizes the strength of the interactions for this specific atom. By enabling the **Hide Residues** option it is possible to hide residues in the 3D visualization window that are not shown in the 2D Ligand Map.

The **Redo Layout** button makes it possible to calculate a new layout for the molecule and its interactions, for instance if the layout contains clashing bonds.

It is possible to zoom in and out using either the mouse wheel, or the zoom buttons in the lower right corner of the window.

7.5 Pose Modifier

It is possible manually to modify a ligand (or a pose found) by right-clicking the molecule in the **Workspace Explorer** and selecting **Modify Pose** (see Figure 83). When invoking the **Pose Modifier**, a new pose is created.

Pose Modifier		? 🛛
Rigid Conformation Dynamic Update	Minimization	
Position 1 0		Default
Position 2 0]	Default
Position 3 0]	Default
RotVector 1 1]]	Default
RotVector 2 0][Default
RotVector 3 0][Default
RotAngle 0	·	Default
Reset All to Defaults	ОК Арріу	Cancel

Figure 83: Pose Modifier dialog.

Notice: It is not possible to directly modify poses after the workspace has been saved and reloaded. However, ligands can be modified any time. To modify

poses saved, these can be converted to ligands and modified afterwards (which will result in a new modified pose). Different interactions can also be visualized on-the-fly (**Dynamic Update** tab).

7.6 RMSD Matrix

The **RMSD Matrix** dialog can be used to quickly inspect deviations between molecules in the workspace. In addition to the standard measure **Pairwise Atom-Atom RMSD (by ID)**, two variants **Pairwise Atom-Atom RMSD** (checking all automorphisms) and **Pairwise Atom-Atom RMSD (by nearest unmatched neighbour)** of the RMSD measure tries to take intrinsic symmetries of the molecule into account when calculating RMSD. The recommended choice is **Pairwise Atom-Atom RMSD (checking all automorphisms)**, which is also used by default.

	Name	[0]	[1]	[2]	[3]
[0]	XK2_263		0.579023	1.25688	1.30984
[1]	[00] XK2_263	0.579023		1.28563	1.3255
[2]	[01] XK2_263	1.25688	1.28563		1.7180
[3]	[02] XK2_263	1.30984	1.32552	1.71806	
()			III) >
loled	cule 1: [00] XK2_2	63			
	cule 2: XK2_263				

Figure 84: RMSD Matrix dialog.

The dialog can be invoked by choosing **RMSD Matrix** from the **Tools** menu. The **Copy to Clipboard button** can be used to copy the table to the clipboard for further inspection in an external text editor or spreadsheet.

8 Sidechain Flexibility

It is possible to work with sidechain conformational changes in two ways:

- By softening the potentials (the steric, hydrogen bonding, and electrostatic forces) used during the docking simulation. This is done in order to simulate flexibility in the binding pocket ('induced fit').
- By defining which residues should be considered flexible during the docking simulation. The backbone is kept rigid, but the torsional angles in the sidechains are allowed to change.

When sidechain flexibility has been setup, the following steps are applied during the docking simulation:

- The ligands will be docked with the softened potentials. At this point the receptor is kept rigid at its default conformation.
- After each ligand has been docked, the sidechains chosen for minimization will be minimized with respect to the found pose. After repositioning the sidechains, the ligand will be energy minimized. The repositioning of the sidechains and minimization of the ligand will be performed using the standard non-softened potentials.

It is preferable to use the 'Tabu Clustering' algorithm in order to ensure a greater diversity of the found poses during the docking simulation (see Section 6.3). Also notice that only the 'MolDock [GRID]' potential supports softened potentials. The 'MolDock' scoring function will always use unsoftened potentials. The **Docking Wizard** will warn you if either of these requirements are not fulfilled.

When sidechain flexibility has been setup a *sidechain flexibility description* is added to the workspace. This information is stored as part of the MVDML file.

In the **Workspace Explorer** a new category (**Flexible Residues**) will appear, indicating that a sidechain flexibility description is present in the workspace.

8.1 The Setup Sidechain Flexibility Dialog

To invoke the **Setup Sidechain Flexibility** dialog, select **Docking** | **Setup Sidechain Flexibility** (see Figure 85). If the workspace already contains a Sidechain flexibility description, you can edit it by using the context menu on the **Flexible Residues** group in the **Workspace Explorer** and selecting **Setup Sidechain Flexibility**.

Texible	sidechains:	:						
Residue	Protein ID	Tolerance	Strength	Flexible	Tor	sions Max T	Mean T	^
Phe 130	0 (1STP)	0.9	1	yes	2	23.51	19.7945	
Asp 128	0 (1STP)	2.41	1	yes	3	17.82	16.405	_
His 127	0 (1STP)	2.41	1	yes	2	18.23	16.766	
Gly 126	0 (1STP)	2.41	1	yes	0	15.25	15.02	
Val 125	0 (1STP)	2.41	1	yes	3	14.92	14.1529	
Leu 124	0 (1STP)	2.41	1	yes	4	13.62	12.58	
Ser 112	0 (1STP)	2.41	1	yes	2	21.15	18.4817	
Leu 110	0 (1STP)	2.41	1	yes	4	13.27	12.4125	
Leu 109	0 (1STP)	2.41	1	yes	4	12.56	12.3038	¥
<			111)>	
Add Clos	est to Active I	Ligand	Add V	îsible		Add Se	elected	
	Clear List		Remove selected R			Remove N	Remove Non-selected	
Adjust p	otential for	(selected) s	sidechains	3:				
Folerance	e					- 0.90 🍧 🕻	Set to defa	ult
Strength:						1.00 🥥 🕻	Set to defa	ult

Figure 85: The Sidechain Flexibility dialog.

The **Setup** tab allows you to select a number of sidechains and define their individual properties: that is, how the potential should be softened and whether the sidechain should be allowed to be flexible during the docking or not.

Several options exist for choosing the relevant residues:

Add Closest to Active Ligand - This will choose all sidechains which are close enough to the active ligand to interact with it. More precisely: for each given sidechain, a sphere bounding all possible configurations of the sidechain is calculated, and it is tested whether any atom in the active ligand is close enough to make a steric contact with an atom in this bounding sphere (for the 'MolDock' potential, all steric contacts are cut off at a distance of 6.0 Å). Notice that the 'Active Ligand' can be set in the Workspace Explorer window: it is the ligand which name is prepended with an '[Active]' label.

Add Visible - This will add all sidechains which are currently visible in the 3D Visualization window. This feature can be used together with the **Hide Residues** dialog where it is possible to hide sidechains depending on the distance from some given object.

Add Selected - This feature makes it possible to select sidechains directly in the 3D Visualization window. A sidechain is considered to be selected if one or more atoms inside it are chosen.

Clear List - Removes all sidechains from the list.

Remove Selected - Removes all sidechains that are currently highlighted in the sidechain list.

Remove Non-selected - Removes all sidechains that are not highlighted in the sidechain list.

Sidechains added to the list will be visualized with a wireframe sphere in the 3D Visualization window. If one or more sidechains are highlighted in the list, only this subset will be visualized.

The list of chosen sidechains contains the following information:

Residue - The residue name/id.

Protein ID - The protein or (protein chain) ID and name.

Tolerance - See below

Strength - See below

Flexible - Indicates whether the sidechain is currently selected for minimization in the docking simulation or not. By default all sidechains added to the list will be set as flexible - however it is possible to add sidechains to the list and only have their potential softened, while keeping them rigid.

Torsions - The number of degrees of freedom in the given sidechain. The degrees of freedom that are minimized during the docking simulation are the torsional angles in the sidechain.

Mean T - The temperature factor or B-factor is a measure of how much a given atom vibrates around its position in the crystallographic model. This can be useful since a high B-factor may indicate that the residue is flexible. **Mean T** is the average temperature for the (heavy) atoms in the sidechain.

Max T - The same as above, except that **Max T** is the single highest temperature factor of all (heavy) atoms in the sidechain.

The columns in the list can be toggled on and off using the context menu on the list view.

Modifying the Potential

The **Tolerance** of a potential refers to the size of the region between a ligand atom and a receptor atom where the interaction energy is optimal. For non-polar steric interactions (such as two carbon atoms) the interaction is optimal between 3.6 Å and 4.5 Å (see Appendix I: MolDock Scoring Function for more information about the scoring function). This gives a tolerance of 0.9 Å. If the tolerance is increased to e.g. 1.5 Å, the interaction would be optimal at distances between 3.3 Å and 4.8 Å. Notice that the tolerance is only softened for atoms in the sidechain, not for the backbone atoms. Also changing the tolerance only affects pairwise steric and hydrogen bonding potentials - electrostatic forces are not changed.

The **Strength** factor is multiplied onto all interaction energies for the sidechain (atomic pairwise steric interactions, hydrogen bondings and electrostatic interactions). If a sidechain is known to be very flexible, set its strength to zero in order to turn all its interactions off during the docking simulation. Notice that the strength factor does not change the interactions of the backbone atom.

After choosing a number of sidechains and configuring their flexibility options, press **OK** to add a sidechain flexibility description to the workspace. A new category will appear in the **Workspace Explorer** (**Flexible Residues**) and the selected sidechains will be indicated visually in the workspace as wireframe spheres. The sphere color will depend on the *strength* parameter, and the sphere size will reflect the *tolerance* parameter (see Figure 86).

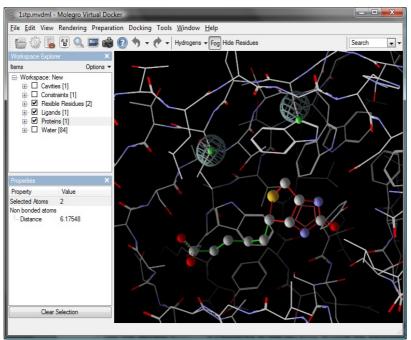


Figure 86: Visualization of flexibility descriptors.

Sidechain flexibility descriptors are saved as part of the workspace. The sidechain flexibility description is read and used directly by the docking engine – see the section 'Sidechain Flexibility in the Docking Wizard' for information about setting up a docking run with sidechain flexibility.

The Visualization Tab

😤 Sidechain Flexibility	?×
Setup Visualize	
Show frame (0/1)	
Compare potential before and after softening	
Create Animation	
Compare two different structures	
First Conformation Second Conformation	_
Create Animation	
ОК Саг	ncel

Figure 87: The Sidechain Flexibility visualization tab.

The **Visualization** tab (Figure 87) is used to create small animations, showing wireframe surfaces interpolating between two different potential energy landscapes. The wireframe surfaces are determined by probing a receptor energy grid with a carbon atom. The grid surface marks the boundary between energetically favorable and non-favorable regions. (Notice that polar atoms capable of making hydrogen bonds would be allowed to be closer to the protein).

The tab serves two purposes:

- Visualizing the effects of softening the potentials, or
- Comparing the potentials of two different receptors. This can be useful if you have several different crystallographic structures and want to compare them in order to determine how the receptor potential should be softened.

In order to visualize the effects of softening the potentials, first setup a *search space* – the surface grids will only be drawn for molecules inside the search space. If a search space has not already been defined, you can use the context-menu (right-click) on any atom in the **Visualization Window**, and choose **Set as Center of Search Space...**

When pressing **Create Animation**, 20 wireframe energy contour surfaces will be created. In order to inspect the surfaces (view the animation) use the slider located at the top of the dialog (**Show frame (x/x)**). After having inspected the energy changes, the surfaces can be removed from the workspace by using the context menu on the **Surfaces** category in the Workspace Explorer (**Remove All Surfaces From Workspace**).

8.2 Sidechain Flexibility in the Docking Wizard

If the **Docking Wizard** is invoked and the workspace contains a sidechain flexibility description, a new page will appear in the wizard after the first page (Figure 88: Sidechain Flexibility in the Docking Wizard.):

The first option: **Soften potentials during the docking** turns on the softening procedure for the potentials. Notice that is necessary to use the 'MolDock Score [Grid]' for potential softening to have any effect.

😤 Docking Wizard 🛛 🔀			
A Receptor flexibility description has been found in the workspace.			
Sidechain Flexibility Setup Soften potentials during the docking			
(12 sidechain(s) set to a non-standard tolerance, 10 sidechain(s) set to a reduced strength.)			
 Minimize receptor for each found pose. (44 sidechain(s), 106 torsional degrees of freedom, marked for flexibility) 			
Max minimization steps for residues and ligand 2000 📚			
Max global minimization steps 2000 🕏			
< <u>B</u> ack <u>N</u> ext> <u>C</u> ancel			

Figure 88: Sidechain Flexibility in the Docking Wizard.

The next option: **Minimize receptor for each found pose** turns the postdocking minimization step on for the best found solutions during the docking run. First, the flexible sidechains are reoriented taking the pose into account. Afterwards, the pose is energy minimized. It is possible to define the maximum number of global and local minimization steps. The receptor and ligand minimization is performed using the Nelder-Mead simplex algorithm, and is described in more detail in Section 3.20.

Notice that is advisable to use Tabu Clustering during the docking simulation in order to ensure a greater diversity of the returned poses. See the **Docking Wizard** (Section 6.3) for more information.

8.3 Sidechain Flexibility and Scripting

If using sidechain flexibility together with scripting, first add a sidechain flexibility description to the workspace. The actual softening of the potentials and post-docking minimization steps, can be scripted using the '**MinimizeReceptor**=[LocalSteps,GlobalSteps]' option for the DockSettings command, and the '**SoftenPotential**=[true|false]' option for the evaluator. Notice that it is advisable to use Tabu Clustering to ensure greater diversity of the returned poses before the minimization run is executed.

This is how a typical script using sidechain flexibility might look like:

```
DOCKSETTINGS maxIterations=2000;runs=20;ignoreSimilarPoses=false;
IgnoreSimilarPosesThreshold=1;MaxPoses=5;MinimizeReceptor=2000,2000
```

```
EVALUATORTYPE MolDockGrid
```

```
EVALUATOR cropdistance=0;gridresolution=0.30;hbond90=true;
SoftenPotential=true;tabuclustering=true,2,100,id
OPTIMIZER cavity=true;popsize=50;scalingfactor=0.50;crossoverrate=0.90;
offspringstrategy=1;terminationscheme=0;earlytermination=0.01;
clusterthreshold=0.0
LOAD SomeComplex.mvdml
DOCK
```

Inspecting Docking Results

When inspecting the docking results in the **Pose Organizer**, it is possible to automatically view the receptor conformation corresponding to the selected pose. This is done by enabling **Show matching receptor configuration** under **Settings** | **Dynamic update** in the **Pose Organizer** dialog. Notice: this requires that the **Pose Organizer** is in **Dynamic Update** mode. For more information see Section 7.1.

9 Displaceable Water

Under normal circumstances good docking results may be obtained without taking explicit water molecules into account. However, sometimes water molecules can play a key role in a protein-ligand interactions by forming or mediating hydrogen bonds between the protein and the ligand. In such cases taking explicit water into account during docking may be necessary to improve the docking accuracy. However, even for a protein structure with explicit water molecules, the ligand may displace them. One way of handling this would be to manually create multiple receptor configurations with individual water molecules toggled on or off. In MVD, the **displaceable water model** makes it possible for a ligand to keep favorable and displace non-favorable water molecules is done during the evaluation of the protein-ligand binding and is thus separated from the conformational sampling.

While the displaceable water model may be successful in some cases where ordinary docking fails it also has some restrictions (see below). Therefore, we recommend to use the displaceable water model in situations where docking without water is not successful. In addition, the model requires *a priori* knowledge of likely water molecule positions something which is not always available.

Restrictions:

- MVD cannot predict water positions in the binding site. If possible, the water molecules should be obtained from an *apo* structure since a *holo* structure containing a co-crystallized ligand might already have displaced the water molecules. Another possibility is to use other third-party software products to predict or identify relevant positions of water molecules.
- Search space: Even though no additional degrees of freedom are

introduced when using the displaceable water model in MVD, the search space may be less predictable resulting in poorer performance. If needed, increasing the number of docking runs can improve the performance.

Speed: Enabling the displaceable water model increases the docking runtime (dependent on the number of water molecules in the workspace). Therefore, we recommend to focus on a selected subset of water molecules and remove all irrelevant water molecules from the workspace before starting the docking run (waters can be easily removed using the crop option in the **Hides Residues** dialog). Example: re-docking the ligand from 1STP (available in examples folder) including six relevant water molecules is approximately twice as slow when enabling displaceable water evaluation compared with default settings. Taking all water molecules into account makes the displaceable water evaluation eight times slower than docking with default settings.

The overall strategy when evaluating a given ligand conformation is to inspect each water molecule individually and decide whether or not it interacts favorably with the ligand. Favorable water molecules are kept whereas nonfavorable water molecules are displaced or ignored. The next section describes this evaluation procedure in more details.

Displaceable Water Evaluation

The displaceable water evaluation in MVD consists of two main steps:

The first step is to pre-calculate energy interactions between a water molecule and all protein and cofactor heavy atoms: $E_{water-protein/cofactor}$ and between a water molecule and all other water molecules: $E_{water-other waters}$. Both $E_{water-protein/cofactor}$ and $E_{water-other waters}$ contributions are calculated using the MolDock scoring function (see Appendix I: MolDock Scoring Function for details).

Notice: the $E_{water-other waters}$ interactions are pre-calculated and include all water molecules in the workspace. In some cases, the pre-calculated $E_{water-other waters}$ contributions might differ a bit compared with the actual contributions from the neighbouring water molecules, since displaced water molecules are included.

The energy required to remove a water molecule is: $E_{remove water} = -(E_{water-protein/cofactor} + E_{water-other waters} + E_{entropy reward})$.

When a water molecule is displaced it gains rotational and translational degrees of freedom (compared with its bound state when binding to a protein or a ligand). Thus, the $E_{entropy reward}$ is a reward representing the gain in entropy that occurs when a water molecule is displaced since a system will always favor states with higher entropy (according to Gibbs free energy).

It can be difficult to determine the optimal entropy reward but it should be less than the contributions from a water molecule interacting with other protein/cofactor/water atoms, i.e. $E_{entropy reward} < -(E_{water-protein/cofactor} + E_{water-other})$. The higher the entropy reward is the easier it gets to displace water molecules. By default, $E_{entropy reward} = 0$ but the entropy reward can be customized by the user. Notice that the units for the entropy reward are arbitrary (the entropy reward is not based on physical units).

The next step is to look at each water molecule during an evaluation of a ligand/pose and decide if the water molecule should be displaced or not. First, the interaction energy between all ligand atoms and the water molecule is calculated using the PLP potential: $E_{water-ligand}$. Afterwards, the water molecule is categorized into one of the following categories:

- Ignored: a water molecule with no net ligand interaction (E_{water-ligand} = 0) is simply ignored (water molecules located more than 6 angstrom from the ligand will not interact with the ligand).
- **Displaced**: a water molecule is displaced if E_{water-ligand} > E_{remove water}.
- Non-displaced: a water molecule is not displaced if E_{water-ligand} ≤ E_{remove} water (e.g. water molecules with favorable ligand interactions, E_{water-ligand} < 0, are always kept).</p>

Using the displaceable water model, the total energy contribution can be summarized in the following formula:

$$E_{\text{Total water energy}} = \sum_{\text{Non-displaced waters}} E_{\text{water-ligand}} + \sum_{\text{Displaced waters}} -(E_{\text{water-protein/cofactor}} + E_{\text{water-other waters}} + E_{\text{entropy reward}})$$

9.1 Docking with Displaceable Water Molecules

Docking with displaceable water molecules can be enabled from the Docking Wizard or from MVD scripts.

Docking Wizard Settings

If the **Docking Wizard** is invoked and the workspace contains one or more water molecules, the option to setup displaceable water evaluation becomes available in the scoring function tab page. To include displaceable water evaluation, toggle on the **Dispaceable Water** option. It is also possible to specify an **entropy reward** for displacing water molecules, which adds a constant reward for each water displaced.

Pocking Wizard			
Choose Scoring Function and Define Binding Site			
- Scoring function			
Score:	MolDock Score [GRID]		
Grid resolution (Å):	0.30 😂		
Based on the current resolution, and the search space size defined below, the grid will require approx. 89.7 MB of memory			
Ligand evaluation: Internal ES] Internal HBond 📃 Sp2-Sp2 Torsions		
Displaceable Water. Entropy reward (f	or each water displaced): 0.00 🔮		
Binding site			
Origin: Us	er-defined 💌		
Center: X: 11.12 📚 Y:	1.82 🗢 Z: -10.83 📚		
Radius: 15 🤹			
< <u>B</u> ack	<u>N</u> ext > <u>C</u> ancel		

Figure 89: Docking Wizard: Enabling docking with Displaceable Water.

Since handling of displaced/non-displaced waters is done during the evaluation step only and therefore separated from the conformational search, no other settings are needed to enable displaceable waters.

Scripting Settings

It is also possible to enable displaceable water evaluation when performing batch job runs using the MVD scripting language. The **DisplaceWater**=[true] false] option is used to toggle the displaceable water evaluation on or off and the entropy reward is specified using the **DisplaceWaterReward**=[0.0-10.0] option. Both settings are specified as parameters for the **EVALUATOR** command.

This is how a typical script using using displaceable water evaluation might look like:

```
DOCKSETTINGS maxIterations=1500;runs=10;ignoreSimilarPoses=true;MaxPoses=5;
IgnoreSimilarPosesThreshold=1
EVALUATORTYPE MolDockGrid
EVALUATOR cropdistance=0;gridresolution=0.30;ligandes=false;sp2sp2bond=false;
internalhbond=false;hbond90=true;DisplaceWater=true;DisplaceWaterReward=0
OPTIMIZERTYPE MSE
```

```
OPTIMIZER populationsize=50;cavity=true;creationEnergyThreshold=100;
poseGenerator=10,10,30;recombine=true;maxsimplex=750;simplexsteps=300;simplexd
istancefactor=1;clusterthreshold=1.00;keepmaxposes=5
LOAD "SomeComplex.mvdml"
DOCK
```

9.2 Inspecting Results

After docking using the displaceable water evaluation, it is possible to inspect the docking results in the **Pose Organizer** or in the **Ligand Energy Inspector**.

Pose Organizer

When inspecting the docking results in the **Pose Organizer**, it is possible to see the overall energy contributions summarizing interactions between nondisplaced waters and the ligand combined with energy contributions and entropy rewards for displaced water molecules. These contributions are listed in the **DisplacedWater** column, which can be enabled from the list of optional columns.

Ligand Energy Inspector

Using the **Ligand Energy Inspector** introduced in Section 7.3, it is possible to inspect the displaceable water evaluation in more details. In short, the Ligand Energy Inspector dialog allows for easy inspection of displaced/non-displaced waters, energy contributions from displaced/non-displaced water interactions, and styling of water molecules for visual inspection in the 3D visualization window.

Since the Ligand Energy Inspector is not aware of which scoring function settings were used during the docking run, it is necessary to match the settings selected in the Docking Wizard or specified in the MVD script file. Therefore, the **Displaceable water** option needs to be toggled on in the Settings tab (see Figure 90). Also, if any entropy reward was applied during docking the same reward value should be specified in the **Entropy reward for each water displaced** setting. Afterwards, to update the energy contributions listed in the other tab pages, the ligand needs to be re-evaluated by pressing the **Re-evaluate** button.

9 Ligand Energy Inspector			
Ligand: BTN_300	Action +		
Ligand Targets Total Energy Settings			
Ligand evaluation:			
Internal ES			
Internal HBond (no directionality)			
Sp2-Sp2 Torsions			
Displaceable water evaluation:			
Displaceable water			
Entropy reward (for each water displaced): 0.00	*		
Re-evaluate			
Copy tables to clipboard	Close		

Figure 90: Ligand Energy Inspector: Re-evaluating displaceable water interactions.

When the ligand has been re-evaluated with the displaceable water option toggled on, a **Displaceable Water** tab will be available (see Figure 91).

The Displaceable Water tab shows the following information about all water molecules available in the workspace:

- ID: Molecule ID (also shown in Properties Window).
- Type: [ignored], Displaced, or Non-Displaced. Indicates whether a water molecule is ignored (no interactions with ligand), displaced (because of non-favorable interactions), or non-displaced (favorable interactions with ligand).
- Detailed energy terms: Energy contribution, Energy (water-ligand), Energy (water-protein/cofactor), Energy (water-other waters).

From the **Options** check box it is possible to focus on displaced and nondisplaced water molecules using the **Hide Ignored Waters** option or show all water molecules using the **Show All Waters** option.

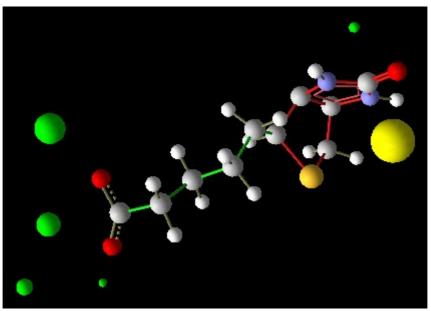
From the list it is possible to visually inspect the water molecules in the 3D

visualization window. By clicking on one or more entries in the list, the corresponding water molecule is selected/highlighted in the 3D visualization window (if water molecules are toggled on in the Workspace Explorer window). The **Clear Selection** button can be used to clear all current selections.

The total energy contribution from the displaceable water interactions is the sum of all values in the **Energy contribution** column. This term, named

9	Liga	and Energy In:	spector		×
L	Ligand: BTN_300 Action -				
į	argets Total Energy Displaceable Water Settings <				
Water Energies Options -					
	ID	Туре 🔺	Energy contribution	Energy (water-lig 🔼	
	84	Displaced	4.98094	14.6528	
	0	Non-displaced	-0.748578	-0.748578	
	1	Non-displaced	-0.119912	-0.119912	
	4	Non-displaced	-3.31589	-3.31589	
	61	Non-displaced	-1.39122	-1.39122	
	82	Non-displaced	-2.36396	-2.36396	
	2	[ignored]	0	0	
	3	[ignored]	0	0	
	5	[ignored]	0	0	
	6	[ignored]	0	0	
	7	[ignored]	0	0	
	8	[ignored]	0	0 🔽	
	<			>	
				Clear Selection	
Copy tables to clipboard Close]		

Figure 91: Displaceable Water tab: Listing of nondisplaced, displaced, and ignored water molecules.


Displacable Water interactions, is also shown in the Energy Total tab (see Figure 92).

and: BTN_300				Actio
igand Targets Total Energy	Displaceable Water	Settings		
Descriptors	Value	MolDock Score	Rerank Weight	Rerank Score 🛛 🧹
🚊 External Ligand interaction		-124.414		-106.696
Protein - Ligand interaction	s	-121.455		-103.738
Steric (by PLP)	-102.473	-102.473	0.686	-70.296
Steric (by LJ12-6)	-36.454		0.533	-19.430
Hydrogen bonds	-17.374	-17.374	0.792	-13.760
Hydrogen bonds (no di	rectionality) -17.374			0.000
- Electrostatic (short ran	ge) 0.000	0.000	0.892	0.000
Electrostatic (long rang	e) -1.608	-1.608	0.156	-0.251
🚍 Cofactor - Ligand		0.000	0.602	0.000
Steric (by PLP)	0.000	0.000		
Steric (by LJ12-6)	0.000			0.000
- Hydrogen bonds	0.000	0.000		0.000
Electrostatic	0.000	0.000		0.000
 Displaceable Water interaction 	tions -2.959	-2.959	1.000	-2.959
Internal Ligand interactions		-0.019		4.195
- Torsional strain	5.087	5.087	0.938	4.771
Torsional strain (sp2-sp2)	0.000		0.636	0.000

Figure 92: Energy contributions from various terms including the Displaceable Water Interactions.

For a more visual inspection of the displaced and non-displaced water molecules, it is possible to style the water atoms based on their individual energy contributions. This styling can be enabled by selecting the **Style Water Atoms by Energy** option from the **Action** menu: The radius of the water atoms will be scaled proportionally to their energy contributions and displaced waters are colored yellow, non-displaced waters are colored green if they are favorable and red if they are not favorable. Figure 93 shows an example of the **Style Waters by Energy** visualization style.

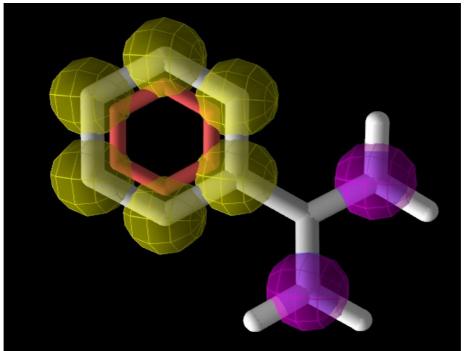
Notice that the styling is not updated automatically, so whenever a ligand is reevaluated (using the **Re-evaluate** button located in the Settings tab), the action has to be selected again from the **Action** menu to update the visualization view.

Figure 93: Example of **Style Waters by Energy** *action. The green spheres represent favorable non-displaced water molecules and the yellow sphere represents a displaced water molecule.*

10 Template Docking

Template docking can be used when knowledge about the 3D conformation of a ligand is available.

For instance, a protein might have one or more inhibitors with experimentally known 3D structures. From the known conformations it is possible to create a *template* with features expected to be relevant for the binding. This allows the docking engine to focus the search on poses similar to the docking template.


Docking templates can be used together with an ordinary docking scoring function (in order to focus or guide the search), but templates can also be used without any additional energy terms (for instance if no structural information about the target is known). This is useful for aligning ligands – by defining a template from one or more ligands as a reference template, and other molecules can then be docked and aligned to the template. Notice that template alignment takes the ligands flexibility into account: The docking engine will try to find the optimal conformation of the ligand when fitting to the template.

It is also possible to align molecules and extract detailed information about the similarity based on the overlap from each individual template point. This information can then be used in the Data Analyzer to create a regression model against some known empirical quantity (3D QSAR)

10.1 Template Scoring Function

Templates are implemented as scoring functions rewarding poses similar to the specified pattern.

A *template* is a collection of *template groups*, where each group represents a chemical feature for an atom (e.g. 'hydrogen acceptors atoms' form a template group). Each template group contains a number of *centers*: optimal 3D

positions for the group feature.

Figure 94: Example of a template with two groups: ring atoms (yellow) and hydrogen donor atoms (purple). The colored spheres indicates group centers.

If an atom matches a group definition (e.g. is a hydrogen acceptor), it will be rewarded depending on its distance to the group centers by using the following (Gaussian) formula for each center:

$e = \omega * \exp(-d^2/r_0^2)$

where *d* is the distance from the position of the atom to the center in the group. ω is a weight (importance) factor for the template group, and r_0 is a distance parameter, specifying a characteristic distance for the template group (when *d* is equal to this characteristic distance, the interaction is at $e^{-1} \sim 36\%$ of its maximum value). ω and r_0 can be customized for each template group.

The following strategy applies when evaluating ligands during docking: For each atom in the ligand, score contributions from all centers in all matching groups are taken into account, i.e. a single atom may contribute to several centers in several groups - an atom is not restricted to the closest matching center or a single group.

The template score is normalized: the resulting score found using the procedure above is divided by the score of a perfectly fitting ligand (i.e. if the template was constructed from one ligand only this ligand would have a normalized template score of 1.0). Notice that in the docking wizard it is possible to specify an overall normalization of the similarity score term to

balance it with other scoring terms: the default overall normalization when docking is -500.0.

10.2 Setting up Template Docking

In order to setup template docking, import the desired reference ligands into the workspace and select **Docking** | **Setup template docking**.

9 Template Docking W	/izard	×	
Choose Ligands Similarity Measure Select one (or more) ligands and press 'Create template'. Poses similar to the templates are rewarded during the docking. Image:			
Merge atoms closer than	(Å): 1.20		
Charge threshold:	0.20		
Only selected atoms	Create Template]	
	OK Cancel		

Figure 95: The Template Docking Wizard.

On the first tab in the template wizard, the reference ligands are specified.

When pressing the **Create Template** button, the docking template is created.

If only one ligand is selected, the procedure is straight forward: each atom in the chosen ligand is tested against the predefined template groups and if the atoms match, the position of the atom is added to the group as a new group center. Notice that only heavy atoms are taken into account when creating the template - hydrogen atoms are simply ignored. If **Only selected atoms** is checked, only the atoms that have been selected in the 3D view are taken into account – this can be useful for creating a template from a subset of a ligand.

If several ligands are chosen, MVD first creates a docking template from the first ligand as above. Then each atom from the remaining ligands are compared to the existing centers from the template being constructed. If an atom is closer to an existing center than the threshold specified in the wizard (default: 1.2 Å) the atom will be considered equal to that center. Notice that a center can be part of several template groups: if any of the existing groups

that the center is part of do not match the atom, the center is removed from them (the center is degraded in order to match both the current atom and the atom which defined the original group).

The **Charge threshold** option is used to specify a charge threshold (default: 0.2) for positive and negative charges. Atoms with a numerical charge less than this threshold are not considered charged.

7 Template Docking W	'izar d				×
Choose Ligands Simila	rity Measu	re			
Setup Similarity Groups:					
Group	Radius	Strength	Count		
Steric Steric	1.8	0.5	46		
Hydrogen Donor	1.8	1	2		
Hydrogen Acceptor	1.8	1	5		
	1.8	1	0		
	1.8	1	0		
☑ Ring	1.8	1	39		
Charge threshold: 0.2					
		🔽 Enable	d		
		Radius (Å)	1	.80	\$
	- 5	Strength	0.	.50	\$
		0	к	Cano	iel

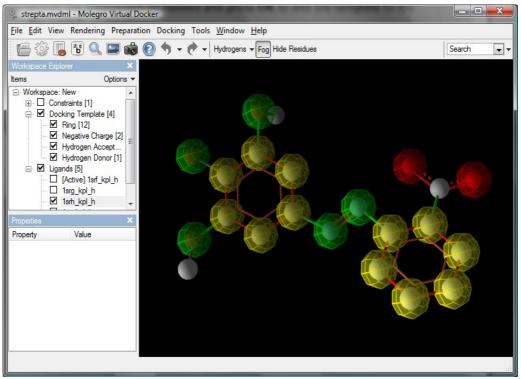
Figure 96: Customizing the similarity measure.

By choosing the **Similarity Measure** tab, it is possible to customize the similarity score. It is possible to enable or disable different template groups, and to adjust the Gaussian function used to compare the atom overlap with the group centers.

The following groups can be chosen:

- **Steric**. The steric group matches all atoms. It is used for shape matching without taking any chemical groups into account.
- Hydrogen Donor. Matches any hydrogen donor atom.
- Hydrogen Acceptor. Matches any hydrogen acceptor atom.
- Negative Charge. Matches negatively charged atoms. Notice that atoms with a numerical charge less than the specified 'Charge threshold' are not considered charged.

- Positive Charge. Similar to negative charge as described above but for positively charged atoms.
- Ring. Matches all atoms which are part of rings (both aromatic and aliphatic).


The list view shows the following information:

- Radius. The characteristic radius (r₀) for the template group (see 'Template Scoring Function' above).
- **Strength**. The strength (ω) or weight for the template group.
- **Count**. The number of centers in the group.

The different template groups will be visualized in the visualization window with a sphere for each center in the template group. Different template groups will be colored in different colors.

The small graph in the lower left corner shows the strength of the potential for the selected group as a function of radial distance. The vertical blue line indicates the characteristic radius, r_0 .

Adjust the parameters as needed and press **OK** to add the template to the workspace.

Figure 97: Visualization of template groups. Notice the corresponding categories in the workspace explorer.

When a docking template has been created, a new category **Docking**

Template appears in the Workspace Explorer. The category can be expanded to reveal the different template groups it contains.

Using the context menu on the Docking Template category, it is possible to edit or remove an existing docking template. From the context menu it is also possible to choose **Open in Data Analyzer**: this allows you to test each ligand or pose in the workspace against the template – the atom overlap for each template group center will be calculated and the resulting spreadsheet will be opened in the Data Analyzer. All values are normalized so a value of 1.0 corresponds to an optimal match. Each row in the spreadsheet corresponds to a ligand or pose, and each column corresponds to the overlap with a template group center. The columns are named Sx for the steric group centers, HDx for hydrogen donors centers, HAx for hydrogen acceptors, and Posx, Negx and Ringx for the positive, negative and ring atom groups (where 'x' is an index). Each group also has a sub-total match designated by an 'ALL' suffix (e.g. 'HD ALL').

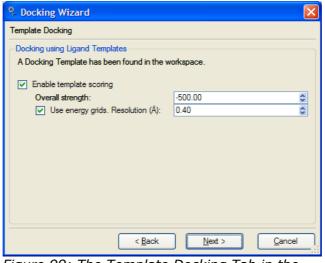

🦻 Data Analyzer							-	
File Edit Preparation Modelling Visua	lization	n <u>W</u> indow						
🚰 🍪 🖬 🗈 🗷 🎩 🗏	👌	Selection	Descriptors: All	-				
Workspace Explorer X		Name	HD0	HD1	HD ALL	HA0	HA1	HA AL 🔨
Items	1	no1	3.45411e-11	0.00174435	0.000872177	0.495962	0.00203077	0.24
Workspace: Unnamed	2	no2	0.301601	5.02867e-12	0.1508	0.301601	5.02867e-12	0.1
Datasets [1] Tamelate Tame	3	no3	0.29031	8.36416e-12	0.145155	0.29031	8.36416e-12	0.14
- Template Terms	4	no4	0	0	0	0.996885	1.31505e-09	0.49
	5	no5	0.298566	7.00662e-12	0.149283	0.298566	0.00131102	0.14
	6	no6	5.69674e-07	2.4248e-05	1.24088e-05	0.94363	2.55057e-05	0.47
	7	no7	7.43624e-07	2.40432e-05	1.23934e-05	0.931631	2.61442e-05	0.46
	8	no8	1.33022e-13	1.67941e-07	8.39707e-08	0.958757	6.37395e-06	0.47
	9	no9	0.305497	4.89084e-12	0.152749	0.305497	4.89084e-12	0.15
Properties ×	10	no10	5.09219e-20	4.07079e-07	2.03539e-07	0.892135	1.0218e-05	0.44
Property Value	11	no11	2.64673e-13	1.44071e-07	7.20357e-08	0.965753	5.5984e-06	0.48
	12	no12	8.61361e-16	4.19531e-05	2.09766e-05	0.998026	4.19531e-05	0.49
	13	no13	1	1	1	1	1	
	14	no14	1	1.02933	1.01467	1	1.02933	1.01
	15	po15	0 000103	1 09/796-15	0.499746	U 999493	0 6276/1	0.81
,	<	1111	J					>
								.::

Figure 98: Using the Data Analyzer for inspecting the docking template.

By analyzing a set of ligands aligned using template docking, it is possible to create a regression model of a experimentally known quantity. This would allow for a '3D QSAR' approach based on the values of the group center overlap.

10.3 Docking with Templates

Whenever a template definition is present in the workspace, the following tab appears in the Docking Wizard (after the first tab where the input ligands are chosen):

Figure 99: The Template Docking Tab in the Docking Wizard.

The **Overall strength** determines the normalization of the similarity score. A ligand perfectly matching the template gets an energy contribution corresponding to the specified strength (e.g. per default a perfectly matching ligand gets a energy contribution of -500). **Use energy grids** toggles whether grids with precalculated energy contributions should be used during the docking. It is recommended to use energy grids.

9 Docking Wizard	N 100 100 100 100 100 100 100 100 100 10
Choose Scoring Function and Define Binding	Site
Scoring function Score: Steric interactions Torsional interactions Electrostatic interactions	Ligand Evaluator
Binding site Origin: Center: X: -1.76 • Y: Radius: 15 •	User-defined 14.46 Z: 16.92 16.92
	<u>N</u> ext > <u>C</u> ancel

Figure 100: The 'Ligand Evaluator' scoring function.

When a similarity definition is present in the workspace, a new score function appears in the Docking Wizard: the 'Ligand Evaluator'. The Ligand Evaluator estimates the internal energy of a ligand and is identical to the E_{intra} term in

Appendix I: MolDock Scoring Function. It is possible to enable or disable steric, torsional and electrostatic interactions.

When aligning molecules it is necessary to use the Ligand Evaluator to prevent internal collapse of the ligands – otherwise different atoms in the ligands might try to overlap each other in order to satisfy the same template group center. Notice that when docking against a protein target *combined* with a template, the Ligand Evaluator should not be used – choose a MolDockScore evaluator instead. The internal ligand energy terms in the MolDockScore will prevent the ligand from collapsing.

10.4 Inspecting Results

After the Docking engine has finished aligning or docking the ligands, the resulting poses are imported back into MVD in the same way as an ordinary docking result.

Pose Organizer (5 poses)	X
<u>Fi</u> le <u>E</u> dit	
Table Settings	
Table Journals	
Dynamic update	1
Show hydrogen bonds Orient hydrogens to optimal position	
Show electrostatic interactions Display only residues close to ligand (slow)	
Show matching receptor configuration	
Re evaluation of poses	ļ
Ranking Score coefficients g://MolegroSVN/MVD-Trunk/Mvd/Misc/Data/RerankingCoefficients.bt	
Binding Affinity coefficients g://MolegroSVN/MVD-Trunk/Mvd/Misc/Data/BindingEnergyCoefficients.txt	
Recalculate Energies	
hecalculate Ellergies	
Table columns	
Heavy Atoms Number of heavy atoms.	
MW Molecular weight (in dalton).	
LE1 Ligand Efficiency 1: MolDock Score divided by Heavy Atoms count. LE2 Ligand Efficiency 2: Binding Affinity divided by Heavy Atoms count.	
LE3 Ligand Efficiency 3: Rerank Score divided by Heavy Atoms count.	
Docking Score The score assigned to the pose during the docking.	
Similarity Score Similarity Score (if docking templates are enabled)	
Add descriptor from regression model	
	5
OK Cancel	

Figure 101: Enabling the Similarity Score term.

It is important to notice that the Pose Organizer table only shows the contributions from the primary score function (the Ligand Evaluator or the MolDock Score function). The similiary contribution from the docking template is not shown per default. In order to see the similiary score go to the **Settings** and enable **Similarity Score** from the list of table columns. To see the score actually assigned to the pose during docking, enable **Docking Score** – this will be the sum of the similarity score and the chosen primary score function.

11 Customizing Molegro Virtual Docker

11.1 General Preferences

Molegro Virtual Docker can be customized using the **Preferences** dialog, which can be invoked from the **Edit** menu or by pressing **F4**. Preference settings are categorized in **General**, **Graphics**, **Mouse**, and **Parsing** tabs.

In the **General** tab (see Figure 102), the following settings are available:

- The Load most recent workspace on startup (if any) option toggles automatic import of the last used workspace.
- The Show tip of the day on startup option toggles whether the Tip of the day dialog box is shown during startup or not.
- The **Check for new updates on startup** option enables MVD to automatically check for new updates during startup.
- The Create system log (in directory below) option is used to toggle whether a system log is created for each execution of MVD. The system log contains information about user actions conducted and is used to track potential bugs and performance problems. By default, the log files are stored in the Logs directory located in the same directory as the mvd executable file but another directory can be used if needed (e.g. if user has no write permissions to the directory used). Notice: If you encounter problems with MVD please email the log file created before the crash to: bugs@molegro.com
- The Working directory setting is used to set the current Working directory, which is the root path for file related operators (e.g. when loading and saving molecular structure files and log files).
- The Virtual Grid executable and PDF viewer settings are used to

specify the location of the executable files for Molegro Virtual Grid and a PDF viewer for reading the user manual. The default PDF viewer specified by the operating system will be used if no executable file is provided.

- The CUDA device setting is used to specify default CUDA device ID. See Section 6.4 for more details.
- The Level of details for docking file logs option is used to specify the level (amount) of information that will be saved to the time-stamped log files created during the docking simulations. In particular, the None and Errors options are suitable for virtual screening runs since the amount of information saved will be small. The setting is used for all docking runs started on the local machine where MVD is installed.

Preferences					
General Graphics Mouse Parsing					
Load most recent workspace on startup (if any)	Default				
Show tip of the day on startup	Default				
Load most recent workspace on startup (if any)					
 Load most recent workspace on startup (if any) Show tip of the day on startup Check for new updates on startup Ligand Energy Inspector auto-optimizes hydrogens Ligand Energy Inspector auto-optimizes hydrogens Create system log (in directory below) System log directory (requires restart): Logs Working directory: c:/molegrosvn/Src/Mvd/MVDVisualStudio Working directory: c:/molegrosvn/Src/Mvd/MVDVisualStudio Default PDF viewer: Default 					
 ✓ Check for new updates on startup ✓ Ligand Energy Inspector auto-optimizes hydrogens ✓ Create system log (in directory below) ✓ Create system log directory (requires restart): Logs ✓ Working directory: c:/molegrosvn/Src/Mvd/MVDVisualStudio ✓ Default ✓ Default 					
System log directory (requires restart): Logs	Default				
Working directory: c:/molegrosvn/Src/Mvd/MVDVisualStudio	Default				
General Graphics Mouse Parsing Load most recent workspace on startup (if any) Show tip of the day on startup Show tip of the day on startup Check for new updates on startup Ligand Energy Inspector auto-optimizes hydrogens Create system log (in directory below) System log directory (requires restart): Logs Working directory: c:/molegrosvn/Src/Mvd/MVDVisualStudio m Default Virtual Grid executable: m Default Default CUDA device: m <lim< li=""> m <lim< li=""> m</lim<></lim<>					
PDF viewer:	Default				
General Graphics Mouse Parsing Load most recent workspace on startup (if any) Default Show tip of the day on startup Default V Check for new updates on startup Default Ligand Energy Inspector auto-optimizes hydrogens Default V Create system log (in directory below) Default System log directory (requires restart): Logs Default Virtual Grid executable: Default Default PDF viewer: Default Default CUDA device: Default Default Reset All to Defaults OK Apply Cancel					
Level of details for docking file logs:	Default				
	Cancel				

Figure 102: General preference settings.

The **Graphics** tab (see Figure 103) contains settings related to the **Visualization Window**:

Preferences		
General Graphics Mouse Parsing		
Show pivot point (rotational center)		Default
Show root atom		Default
Fade 3D labels when in background		Default
Quality: 10		Default
Reset All to Defaults	OK Apply	Cancel

Figure 103: The graphics tab of the Preferences dialog.

- The Show pivot point (rotational center) option toggles the visibility of the pivot point (small grayish ball).
- The Show root atom option toggles the visibility of the currently chosen root atom for each of the ligands in the workspace (see 'Set root atom' in Section 4.3 for more info).
- The Fade 3D labels when in background option toggles fading of labels in the Visualization Window.
- The overall rendering quality can be specified using the **Quality** option. Modern computers with dedicated 3D hardware should be able to run at highest quality even when rendering relatively large molecules. It is easy to test new quality settings by selecting the level of quality and pressing the **Apply** button.

9 Preferences	
General Graphics Mouse Parsing	
Mouse wheel model: Generic Mouse	Default
Invert zoom direction	Default
Wheel rotation speed: 1	Default
Wheel zoom speed: 0.5	Default
Reset All to Defaults OK Apply	Cancel

Figure 104: Mouse Preferences.

The **Mouse** tab customizes how the mouse interacts with the 3D world. MVD supports the 360 degrees scroll-ball on the *Apple Mighty Mouse*. Currently, the 360 degrees scroll-bar feature is only supported on Mac OS X (since no mouse drivers are available for other platforms), but the mouse still works as a generic mouse on Windows and Linux.

To enable *Apple Mighty Mouse* support select it under **Mouse wheel model**. When **Apple Mighty Mouse** mode is selected, the scroll-ball can be used to rotate the 3D world. Additionally, the scroll-ball button can be used to zoom in the 3D world by pressing the button while using the scroll-ball as a standard mouse-wheel. However, to enable the zoom option, the scroll-ball button should be set to **Button 3** in the *Mac OS X Mouse preferences* dialog (see Figure 105).

Invert zoom direction toggles how the 3D worlds zooms – rotating the scroll wheel towards the user will normally make the 3D objects appear larger, but this behavior can be inverted by toggling this option on. The setting also applies to zooming using both mouse buttons.

It is also possible to adjust the mouse wheel sensitivity (by using the **Wheel rotation speed** and **Wheel zoom speed** sliders).

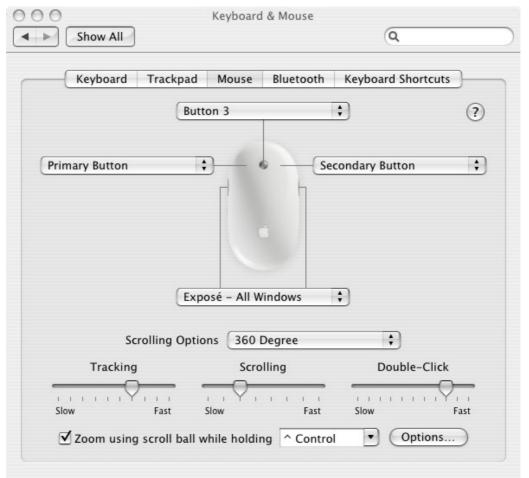


Figure 105: Mighty Mouse preferences on Mac OS X.

The final settings tab, **Parsing**, contains the **Minimum protein size (PDB import)** option. This option is used for setting the minimum number of heavy atoms required for parsing a molecule as a protein during PDB import (default is 69 heavy atoms). If the parsed molecule contains less heavy atoms than the specified threshold value it is parsed as a ligand (and residue information is ignored).

The **Parsing** tab also determines how MVD handles non-standard characters (such as special national characters). This setting is used when importing and exporting molecular structures in text file format (such as SDF, Mol2, PDB files) and when working with other text files (such as 'mvdresults' and 'mvdscript' files and when importing data in the Data Analyzer). XML files (such as MVDs internal MVDML file format) are always stored as UTF-8. Notice that the Batch Job Script Parser always uses UTF-8 as default encoding (it runs in another process and is not aware of the MVD settings).

9. Preferences	×
General Graphics Mouse Parsing	
Minimum protein size (PDB/Mol2 import): 69	Default
Default File Encoding: UTF-8 (also reads UTF-16 and ASCII)	Default
Break unrealistic bonds during import (Mol2/SDF)	Default
Combine Mol2 substructures and small PDB molecules (with same chain ID)	Default
☑ Use hybridization from Sybyl atom types	Default
SDF data header for molecule names (SDF files only)	Default
Reset All to Defaults OK Apply	Cancel

Figure 106: Parsing preferences.

The **Default File Encoding** drop-down box allows you to choose which encoding should be used. It is recommended to use the default setting, UTF-8 Unicode. Using the UTF-8 encoding all Unicode characters can be encoded and since molecular data files rarely contain special characters, it is more spaceefficient than UTF-16 (where each character always uses at least 2 bytes). Files stored as 8-bit ANSI/ASCII files will also be imported correctly as Unicode if they do not contain any special national characters, and UTF-16 will also be automatically recognized in this mode. It is also possible to store data as Locale 8-bit. In this encoding all characters are stored as a single byte, meaning only 256 characters can be represented. The actual characters included in this set depends on the current national codepage settings on the machine. This option should only be used when exporting data to older software products not capable of parsing Unicode text.

Break unrealistic bonds during import (Mol2/SDF) determines whether or not unrealistic bonds parsed from Mol2 or SDF files should be ignored during import. A bond is considered *unrealistic* if the distance between two bonded atoms is more than the sum of their covalent radii plus a threshold of 0.7Å.

The **Combine Mol2 substructures and small PDB molecules (with same chain ID)** option is used to decide whether or not molecule fragments should be combined during import. Molecule fragments can be combined if any atom in one fragment can form a covalent bond to any other atom in another fragment. Molecule fragments can only be combined if they share either Mol2 substructure IDs or chain IDs in the case of PDB files.

When the **Use hybridization from Sybyl atom types** option is enabled, Sybyl atom types will be used to determine hybridization (if they are available during import). Otherwise, the default geometric heuristic is used (see Appendix VII: Automatic Preparation for details).

The final option, **SDF data header for molecule names (SDF files only)**, can be used to specify the name of the SDF data header that will be used for naming molecules during import instead of using the first line in each molecule header. The first line will also be used if the file does not contain the specified data header.

The preference settings are stored when exiting the MVD application. The location of the saved settings depends on the operating system used:

- Windows: the settings are stored in the system registry.
- Mac OS X: the settings are stored in a com.molegro.MVD.plist file located in the <user folder>/Library/Preferences/ folder.
- Linux: the settings are stored in a mvdrc file located in a hidden folder named <user folder>/.molegro.

11.2 Command Line Parameters

Currently, the following command line parameters are available:

```
<filename>
```

```
-nogui
```

```
-interactive
```

- -currentPath
- -cudadevice <ID>
- -licensedir

```
-macro=<label>
```

The <filename> parameter can be used to import molecular files during MVD startup. If more than one file is listed (separated by spaces), each file will be imported.

Example:/Molegro/MVD/bin/mvd 1stp.pdb

If the filename has mvdscript as file extension (e.g. mydocking.mvdscript), a script parsing progress dialog will be invoked and the script will be parsed and interpreted.

The *-nogui* parameter can be used to run the script job without invoking the progress dialog.

Example: /Molegro/MVD/bin/mvd mydocking.mvdscript -nogui

Using the -interactive parameter, MVD can be started in interactive mode which is used to allow scripting languages (e.g. Python) to interact with MVD and control the docking process. See Chapter 17 for more details.

The -currentPath parameter can be used to override the working directory specified in the general preference settings with the current path. This is particularly useful when running MVD from different working directories (using a terminal window) or when using a script to start up MVD.

Example: /Molegro/MVD/bin/mvd -currentPath

The -cudadevice <ID> parameter can be used to specify the CUDA device ID from the command line.

Example: /Molegro/MVD/bin/mvd -cudadevice 0

The *-licensedir* parameter can be used to specify another directory where the MVD license is located. By default, MVD checks for the license file in the same directory as the MVD executable (e.g. Molegro/MVD/bin).

Example: /Molegro/MVD/bin/mvd -licensedir /Molegro/License

Finally, the -macro=<label> parameter can be used to specify a macro that is executed when starting up MVD. This can be useful for e.g. setting up a usercustomized visualization style when running MVD. The macro label is used to identify which macro to execute (the labels can be added or modified in the Macro and Menu Editor dialog). Notice that labels are not allowed to contain white spaces.

Example: /Molegro/MVD/bin/mvd -macro=MyOwnMacro

11.3 Changing Re-ranking Score Coefficients

The energy terms and their weights (coefficients) used in the reranking scoring function can be altered by modifying the RerankingCoefficients.txt file located in the /Misc/Data/ directory (located within the main directory of MVD).

Notice: Changing these coefficients and disabling/enabling energy terms will alter the performance of the reranking score used in the **Pose Organizer** dialog and may result in much worse performance. Remember to backup the original file before modifying the coefficients.

12 Obtaining the Best Docking Results

This section takes a closer look at the most important aspects regarding preparation, docking, and post-analysis that can be decisive for whether docking with Molegro Virtual Docker will be successful or not. By taking the following suggestions into account, we hope that common pitfalls can be avoided.

12.1 Preparation

- General issues: It is recommended to remove unwanted material such as proteins, ligands, cofactors, and water molecules if they are not needed in the actual docking simulation.
- Validation: The automatic preparation of molecules might fail in some cases. It is therefore advisable to manually inspect the molecules (in particular ligands) and check bond orders, hybridization states, and if hydrogens are correctly assigned.
- Protonation: If the protein is expected to have unusual protonation states near the binding site, be sure to set them using the **Protein Preparation** dialog.
- Ligand flexibility: By default, all torsions in the ligand that can be flexible are set flexible during the docking simulation. The complexity of the docking search can be significantly reduced, if the number of torsions that are set flexible during the docking run is lowered. Bonds can be set rigid during docking using the context menu (right-click on the bond and select **Set Flexibility** | **Rigid while docking**).
- Cavity detection: Before starting the docking run, all potential binding sites (active sites) should be identified using the **Detect Cavities** dialog. The default settings listed in the wizard are generally applicable.

However, for large proteins or proteins having a lot of cavities, it is sometimes necessary to increase the number of cavities reported (**Max number of cavities**). Also remember to set the binding site **Origin** (in the **Docking Wizard**) to the specific cavity being investigated.

- Domain knowledge: The success of the docking run can be significantly improved if any domain knowledge is available. For instance, knowledge about preferred binding mode or ligand conformation can be used to set constraints or reduce the search space covered (e.g. constraints and binding site settings in the **Docking Wizard**).
- In some cases, docking performance can be improved by selecting another ligand root atom (right-click on ligand atom and select **Set as Root Atom**. The current root atom can be visually identified if visualization of root-atoms is enabled (see Section 11.1). The root atom is used as root in the torsion tree that is constructed when docking flexible ligands. Docking performance may be improved by setting the root atom in a region of the ligand that is suspected to contribute significantly to the docking energy.

12.2 Docking

Size of search space: The size and location of the volume that the docking search algorithm will sample is defined by the **Binding site** settings in the **Docking Wizard**. Before starting the docking run, potential cavities should be identified (see Section 6.1). Found cavities can be used to specify the origin of the search space (in the **Docking Wizard**) and constrain candidate solutions to the region covered by the cavity (by enabling the **Constrain poses to cavity** option in the **Docking Wizard**).

Notice: It is important to select a search space **Radius** that allows the ligand to be positioned within the search space region (typically between 15 and 20 Å). However, the **Radius** should be set as small as possible to make the docking search efficient. Likewise, the **Origin** (center) of the search space region can be manually adjusted to focus the sampling of candidate solutions to a specific region. This is particularly important if the cavity volume is much bigger than the ligand (for large cavities, focusing on one specific part of the cavity will significantly increase the docking accuracy).

- Search parameters: The default settings for the docking search algorithm are generally applicable. However, in some cases (e.g. for ligands with more than 15 torsions) it can be advantageous to increase the **Population size** to 100 individuals or more.
- Multiple runs: Because of the stochastic nature of the docking search algorithm, it is recommended to make multiple runs for each ligand-

protein setup. Typically, about 5-10 runs are needed to ensure convergence to the lowest-energy solution. For large ligands with more than 10-15 flexible bonds, 20-50 runs are sometimes needed. Additionally, it is recommended to cluster the returned poses (see Section) to lower the number of similar poses reported when taking all docking runs into account.

- Multiple poses: It is advisable to return multiple poses for each docking run (typically between 3 and 10) and rerank the poses found afterwards (see **Ranking poses** bullet below).
- Check warnings: The last tab in the **Docking Wizard** highlights potential warnings and errors. It is important to inspect the warning messages and see if further actions are needed. Otherwise, the docking run might be unsuccessful.

12.3 Post-analysis

Ranking poses: The most promising poses returned when the docking run terminates can be further analyzed in the **Pose Organizer**. Ideally, the highest-scoring pose should represent the best-found binding mode. However, this is not always the case. A useful feature is to evaluate the poses using the **Reranking Score**. The **Reranking Score** makes use of a more advanced scoring scheme than the docking scoring function used during the docking run. Using the Reranking Score will often increase the accuracy of the ranked order of the poses.

13 Data Analyzer

This chapter describes the features available in the **Data Analyzer**, which can be invoked from the Tools menu (**Tools** | **Data Analyzer**).

The Data Analyzer can be used to:

- Create regression models using imported numerical descriptors.
- Predict numerical properties of imported records using a derived regression model.
- Inspect and analyze numerical descriptors and regression models.
- Depict molecules using the built-in chemistry module.

The Data Analyzer is a light-weight version of a separate product, the Molegro Data Modeller. Molegro Data Modeller offers more complex data analysis features including outlier analysis, dimensionality reduction (principal component analysis), clustering, classification, and more complex regression (support vector machines and partial least squares).

Data Analyzer Basics

The Data Analyzer is based on the notion of workspaces, datasets, models, descriptors, and predictions.

The *workspace* is the central component and represents all the information available to the user in terms of *datasets*, regression models (called *models*), and *predictions*. A workspace can be saved, cleared, merged with or replaced by other workspaces (datasets are added to the current workspace when they have been imported).

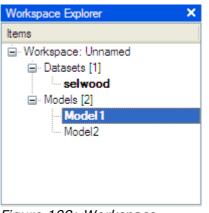
A dataset consists of a number of numerical and textual descriptors (columns). Each row in the dataset corresponds to a given data record in the dataset.

Numerical descriptors are columns containing numerical values only – all other columns are categorized as textual descriptors. The Data Analyzer does not impose any limits to the number of descriptors or data records that can be used. However, the number of cells (number of data records \times (number of descriptors + number of predictions)) is limited by the amount of memory available on the computer.

Models representing regression models made with the Data Analyzer contain information about descriptors used, data transformations performed (e.g. normalization of raw data), and target descriptor used. After training a model using the built-in regression algorithms, the model can be used to make predictions on other datasets.

When a prediction is made on a dataset using one of the models available in the workspace, a new prediction column is added to the dataset. The new prediction column containing the predicted values will be similar to other numerical descriptors available except for some statistical information (e.g. Pearson correlation coefficient, Mean Squared Error) that is stored in the workspace.

13.1 GUI Overview


The main user interface in the Data Analyzer is composed of a central spreadsheet view (referred to as the **Spreadsheet Window**), a **Workspace Explorer** window, and a **Properties Window**.

	<u>V</u> isualizatio	n <u>W</u> indow								
🔁 🎲 🔳 🗈 😕 🎩	1 🚽	Selection	Descriptors: All	+ Coloring	By descriptor	•			Search	~
orkspace Explorer	×	Compound	Activity	ATCH1	ATCH2	ATCH3	ATCH4	ATCH5	ATCH6	
ems	1	K17	-1	0.1685	0.0386	-0.0084	-0.101	0.0035	-0.241	
Workspace: Unnamed	2	D30	-1	0.26	-0.1477	0.091	-0.1629	0.1116	-0.2877	
- Datasets [1] - selwood	3	J19	-0.9	0.1683	0.0395	-0.0095	-0.1004	0.002	-0.2405	Π
Serwood	4	A5	-0.88	0.2473	-0.1403	0.0876	-0.4688	0.1117	-0.2873	
	5	J1	-0.85	0.1687	0.0391	-0.0092	-0.1005	0.0027	-0.2403	Π
	6	K18	-0.41	0.1686	0.0391	-0.0089	-0.1006	0.0028	-0.2401	
	7	G2	-0.38	0.175	0.0408	-0.0055	-0.098	0.0009	-0.2499	
	8	L25	-0.04	0.2793	-0.1651	0.0969	-0.1478	0.0837	-0.2854	
	9	A10	0	0.2621	-0.1435	0.1007	-0.5146	0.1454	-0.2904	
perties	× 10	C11	0.1	0.2593	-0.1462	0.0916	-0.1611	0.1105	-0.2882	
perty Value	11	D23	0.23	0.2589	-0.1469	0.0906	-0.1619	0.1104	-0.2877	
ection	12	F15	0.3	0.2913	-0.523	0.1274	-0.1442	0.0806	-0.2874	
Selections 1	13	G4	0.32	0.2325	-0.1373	0.0525	-0.2566	0.0753	-0.2834	
Selected cells 20	14	G9	0.42	0.2323	-0.2545	0.065	-0.1308	0.0401	-0.2751	
	15	126	0.43	0.2578	-0.1452	0.0911	-0.16	0.1084	-0.2861	
	16	N31	0.48	0.2483	-0.1462	0.0918	-0.1634	0.1174	-0.2886	
	17	H14	0.77	0.2604	-0.1469	0.0917	-0.1623	0.1116	-0.2889	
	18	M6	0.82	0.2834	-0.1642	0.1018	-0.1469	0.0833	-0.2946	
	19	L21	0.82	0.2791	-0.1652	0.097	-0.148	0.084	-0.2854	
	20	E20	0.89	0.2562	-0.1471	0.0895	-0.1628	0.1108	-0.2808	
	21	B13	0.92	0.2602	-0.1461	0.0928	-0.161	0.1113	-0.2898	
	22	B8	1.02	0.2601	-0.1466	0.092	-0.1618	0.1112	-0.2894	
	23	B27	1.03	0.2601	-0.1468	0.0918	-0.1619	0.1113	-0.2886	
	24	B29	1.07	0.2612	-0.146	0.0926	-0.1612	0.1111	-0.2899	
Clear Selections	25	C12	1.13	0.2605	-0.1453	0.0925	-0.1603	0.1104	-0.2901	

Figure 107: Data Analyzer main window.

13.2 Workspace Explorer

The Data Analyzer includes a **Workspace Explorer** window, which contains information about datasets (containing numerical and textual data columns) and regression models available in the current workspace.

Figure 108: Workspace Explorer window.

The Workspace Explorer context menu (invoked by pressing the right mousebutton) allows the user to:

- Export and rename the current workspace.
- Edit workspace properties/notes.
- Export, rename, clone, and delete datasets.
- Revert to original sorting order, i.e. sort the current dataset records according to their order of occurrence when imported to the Data Analyzer.
- Split a dataset (using the 'Subset' column). See Section 13.11 for more details.
- Extract one subset (using the 'Subset' column) from a dataset. See Section 13.11 for more details.
- Export, rename, and delete regression models.
- Show regression model details (e.g. descriptors used by a model). See Section 13.20 for more details.
- Make predictions using selected regression models. See Section 13.21 for more details.

13.3 Properties Window

The **Properties Window** contains information about the currently selected objects in the Workspace Explorer or in the Spreadsheet Window. Figures 109-111 show examples of different properties for a *model* selected in the Workspace Explorer window, a *numerical cell* in the Spreadsheet Window, and a *predicted cell* in the Spreadsheet Window, respectively.

X

Value

0.0386

-0.523

0.0408

-0.133426

0.103667

1

4

Figure 110: Properties for a

numerical cell in the Spreadsheet Window.

Properties		×
Property	Value	
Model		
- Name	Model1	
— Туре	ANN	
- Target variable	Activity	
🗄 Descriptors [53]		

Figure 109: Properties for a model selected in the Workspace Explorer window.

Properties	×
Property	Value
Column	56
Row	4
Prediction	
Name	Prediction1
Method	ANN
- Model name	Model1
- Evaluation procedu	ire Training set
- Dataset	selwood
🗄 Descriptors [53]	
Table Entry	
Value	-0.887966
Range (min)	-0.887966
Range (max)	1.77011
Mean	0.592631
ⁱ Std. Dev.	0.813395
Statistics	
r^2	0.944307
- Spearman (rho)	0.960786
- MSE	0.0549344

Figure 111: Properties for a predicted cell selected in the Spreadsheet Window.

13.4 Toolbar

The **Toolbar** provides easy access to the most commonly used actions in the Data Analyzer, such as importing datasets, creating regression models using the **Regression Wizard**, and inspecting numerical descriptors and predictions using the **Visualization** (histogram, 2D/3D plots) and **Show Correlation Matrix** dialog boxes.

Properties

Range (max)

Property

Value Range (min)

Mean

Row

Column

Std. Dev.

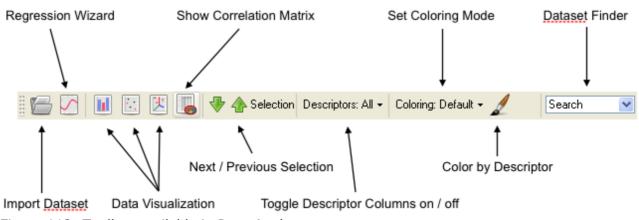


Figure 112: Toolbar available in Data Analyzer.

The **Color by Descriptor** button (pen icon) is used to change the color of the current spreadsheet and the coloring of data points in the 2D/3D plots (see Section 13.6 for more details).

The toolbar contains two selection buttons (down/up arrows) to jump to the next or previous selection in the Spreadsheet Window. This is particularly useful when browsing records selected using the plot dialog boxes.

The toolbar also contains a toggle button that makes it possible to switch between different view modes in the Spreadsheet Window (only applicable if regression models are available in the Workspace Explorer):

- **Descriptors: All** shows all descriptors available for the current dataset.
- Descriptors: Used shows only the descriptors used by the model currently selected.
- **Descriptors: None** hides all numerical descriptors.

For all three views, target variable, textual, and prediction columns are shown.

The last toggle button on the toolbar makes it possible to switch between different coloring modes in the Spreadsheet Window:

- Coloring: Default turns on default coloring mode: Textual descriptors are colored gray, numerical descriptors are colored white, and predicted columns are colored dark-green.
- Coloring: By Model. The Spreadsheet Window is colored using the following scheme: Textual descriptors are colored gray, numerical descriptors are colored blue. The target variable column (indicating the numerical descriptor that the current model estimates) is colored light-green, and the predicted columns are colored dark-green. Notice that target variable and numerical descriptor columns are only colored if a model has been selected in the Workspace Explorer. When selecting other models in the Workspace Explorer, the coloring may change

depending on the model selected. An example of this coloring mode is shown in Figure 113.

- Coloring: By Descriptor uses a coloring setting defined by the user. If no color settings are defined, the Color By Descriptor dialog box will be invoked allowing the user to define the color scheme (based on a userselected descriptor). Section 13.6 describes the Color By Descriptor dialog box in more details.
- The Define descriptor color scheme... menu option is available by pressing the small arrow on the right-hand side of the toggle button. This option invokes the Color By Descriptor dialog box which allows the user to change the color settings for the Coloring: By Descriptor mode described above.

Finally, the **Dataset Finder** located at the far right side of the toolbar can be used to quickly search for descriptor names and values in the current dataset (see Section 13.8 for more details).

13.5 Spreadsheet Window

The **Spreadsheet Window** is the central window in the Data Analyzer listing the descriptors (numerical and textual) and predictions (if any) of the currently selected dataset (shown in boldface in the **Workspace Explorer** window).

File Edit Preparation Modelling	Visualizatio	n Window							
🚰 🍄 🔳 🖻 😕 🎩	- 🕹 👌	Selection De:	scriptors: Used	•					
Workspace Explorer	×	Compound	Activity	ATCH4	ATCH10	MOFI_X	LOGP	Prediction1	
ltems	1	K17	-1	-0.101	-0.4043	574.205	3.007	-1.19691	
Workspace: Unnamed	2	D30	-1	-0.1629	-0.3246	1837.91	3.686	-0.324915	
Datasets [1]	3	J19	-0.9	-0.1004	-0.4033	793.232	7.23	0.0652975	
Seiwood ■ Models [2]	4	A5	-0.88	-0.4688	-0.3269	3099.53	5.73	-0.365038	
- Model1	5	J1	-0.85	-0.1005	-0.4033	766.606	7.239	0.0522514	
Model1	6	K18	-0.41	-0.1006	-0.4039	623.599	4.065	-0.882274	
	7	G2	-0.38	-0.098	-0.327	1686.44	5.96	0.467028	
	8	L25	-0.04	-0.1478	-0.4013	808.408	9.52	0.493685	
	9	A10	0	-0.5146	-0.3243	3400.44	5.67	-0.39719	
Properties	x 10	C11	0.1	-0.1611	-0.3268	1894.86	4.888	0.0307758	
Property Value	11	D23	0.23	-0.1619	-0.3243	1422.58	5.354	-0.106852	
Model	12	F15	0.3	-0.1442	-0.3264	1993.35	5.681	0.371845	
Name Model2	13	G4	0.32	-0.2566	-0.3281	2776.7	7.372	0.78733	
Type MLR Target variable Activity	14	G9	0.42	-0.1308	-0.3279	1822.81	7.372	0.781415	
Descriptors [4]	15	126	0.43	-0.16	-0.3248	3064.93	6.811	1.21814	
	16	N31	0.48	-0.1634	-0.15	1631.94	4.654	0.337726	
	17	H14	0.77	-0.1623	-0.3229	2529.68	6.18	0.742501	
	18	M6	0.82	-0.1469	-0.3248	1726.75	6.994	0.566893	
	19	L21	0.82	-0.148	-0.4015	765.725	8.47	0.186434	
	20	E20	0.89	-0.1628	-0.3998	1650.21	8.466	0.627356	
	21	B13	0.92	-0.161	-0.3249	2622.25	6.113	0.776335	
	22	B8	1.02	-0.1618	-0.3238	2267.29	6.695	0.731907	
	23	B27	1.03	-0.1619	-0.3237	1846.98	6.695	0.494403	
	24	B29	1.07	-0.1612	-0.3243	2447.47	7.269	0.98871	

Figure 113: Spreadsheet Window with different coloring styles for columns depending on the column type (textual, numerical, target variable, prediction).

It is possible to perform basic editing in the spreadsheet, such as manually editing a cell by double clicking on it using the mouse. For numerical cells, only valid numerical values will be accepted. Copy-and-paste operations can be done using **CTRL+C** to copy one or more selected cells and **CTRL+V** to paste the selected cells into another region. If the selected region in the spreadsheet is larger than the content in the clipboard buffer – the entire region will be filled with the clipboard content by repeatedly copying from the clipboard (e.g. useful for filling out a region with identical or repetitive values). Notice that cells containing textual information cannot be pasted into numerical cells.

The context menu (invoked by pressing the right mouse-button) on a spreadsheet cell allows the user to:

- Insert a numerical or textual column.
- Rename a column.
- Add new rows. The new rows will be added to the bottom of the spreadsheet. The number of rows suggested corresponds to the number

of lines in the current clipboard buffer.

- Sort column in ascending/descending order.
- Revert to original sorting order (the order of occurrence when dataset was imported).
- Select entire column/row or all cells.
- Delete selected row(s) or column(s).
- Create a subset from selected rows (see Section 13.11 for more details).

These actions are also available from the **Edit** menu located in the main menu bar (except for **Create subset from Selected Rows** which is available from the **Preparation** menu).

13.6 Changing Spreadsheet Color Scheme

The **Color By Descriptor** dialog box can be used to change the colors used in the Spreadsheet Window.

🔀 Color By Descriptor	
Color descriptor:	Activity
Color by:	Min to max gradient 🛛 💌
Palette:	▼
ОК	Apply Cancel

Figure 114: Color By Descriptor dialog box.

The dialog box can be invoked from the **Color By Descriptor** button (pen icon) or the **Coloring** mode toggle button on the **Toolbar** or from the **Visualization** | **Color By Descriptor...** main menu.

The **Color descriptor** specifies which descriptor should be used for the new color scheme. The **Color by** option is used to define whether the color scheme should be gradient-based (**Min to max gradient**) or (**Max to min gradient**), based on discrete classes (**Discrete classes**), or based on user-defined intervals (**User-defined intervals**). Finally, the **Palette** combo box offers a set of pre-defined color palettes to chose from. Notice: Textual descriptors are restricted to use **Discrete classes** only.

The user-defined intervals are typed into the dialog box as a comma separated

list of interval boundaries. In Figure 115, all records with *Activity* values below 0.5 will be colored red, all records with values between 0.5 and 1.0 will be colored green, and all records with values above 1.0 will be colored blue.

🗟 Color By Descriptor	
Color descriptor:	Activity
Color by:	User-defined intervals 🛛 🔽
Specify interval boundaries as 0.5,1.0	a comma separated list (e.g. '1,5'):
Palette:	
OK	Apply Cancel

Figure 115: Using user-defined intervals for coloring spreadsheet.

Notice: The color scheme defined is *static* meaning that when it has been applied to the spreadsheet, modifications in the spreadsheet (e.g. changing a descriptor value or adding/removing records) will not alter the coloring of the spreadsheet. To update the coloring to reflect the new changes, the **Color By Descriptor** dialog box has to be invoked again.

It is also possible to manually select an entry and color all entries of the same kind. This is done by invoking the context-menu on the desired entry and selecting **Color Selected Values in 'xxx'**. From the sub-menu it is possible to choose a color from either a palette of standard colors or from a color chooser dialog.

ile Edit Preparation Modelling Vi	sualization	Window Modu	les Help					
🗁 🖸 🛃 🍯 🔝	🗵 [😽 👍 Select	ion Descriptors: All	- Coloring: By	descriptor 👻 🔬		Search 💌	
Norkspace Explorer	×	sepal length 👻	sepal width	petal length	petal width	class	~	
tems	67	6	2.7	5.1	1.6	Iris-versicolor	r	
Workspace: Unnamed	68	5.9	3	4.2	1.5	Iris-versicolor	r i i i i i i i i i i i i i i i i i i i	
Datasets [1]	69	5.9	3.2	4.8	1.8	Iris-versicolor	r i i i i i i i i i i i i i i i i i i i	
⊟-Models [1]	70	5.9	3	5.1	1.8	lris-virginica		
KNN (3 neighbors)	71	5.8	2.7	5.1	1.9	lris-virginica		
	72	5.8	2.7	4.1	1	Iris-versicolor	r i i i i i i i i i i i i i i i i i i i	
	73	5.8	2.6	4	1.2	lris-versicolor	r l	
	74	5.8	4	1.2	0.2	lris-s Datas	at a state of the	1
	75	5.8	2.7	3.9	1.2	Iris-v		
roperties	76	5.8	2.7	5.1	1.9	lris-v Co	olor Selected Values in 'dass'	
roperty Value	77	5.8	2.8	5.1	2.4		ort Column Ascending	
alue Iris-setosa	78	5.7	3.8	1.7	0.3	113 3	ort Column Descending	-
ow Info Original Ro 15	79	5.7	2.8	4.1	1.3	115-V	evert to Original Sorting Order	
Bow Index 74	80	5.7	3	4.2	1.2		Select All Cells	
lumn Info	81	5.7	2.9	4.2	1.3	110.4	elect Column	
- Column Index 5	82	5.7	2.6	3.5	1	110-1	elect Row	
Type Text	83	5.7	2.8	4.5	1.3		sert Numerical Column	
	84	5.7	2.5	5	2		sert Textual Column	c
	85	5.7	4.4	1.5	0.4	1110-0	dd New Rows ename Column	<u> </u>
	86	5.6	2.7	4.2	1.3	ins-v		-
	87	5.6	3	4.5	1.5		elete Row(s)	1
	88	5.6	3	4.1	1.3		elete Column(s)	
	89	5.6	2.8	4.9	2		reate Subset from Selected Rows	
	90	5.6	2.5	3.9	1.1	Iris-versicolor		
	91	5.6	2.9	3.6	1.3	Iris-versicolor		
	92	5.5	2.3	4	1.3	Iris-versicolor		

Figure 116: Manually choosing coloring for a particular entry value.

13.7 Custom Data View

The **Custom Data View** dialog box can be toggled on and off using the **Window** | **Custom Data View** menu. **The Custom Data View** dialog box (see Figure 117) can be used to display a second view of the currently selected rows in the Spreadsheet Window focusing on user-selected descriptors. To include a descriptor in the window, select the descriptor in the combo box and press the **Add** button. The descriptors shown in the window can be toggled on and off using the context menu. It is also possible to sort the items according to a given descriptor by clicking on the column header.

Custo		×				
Index	Activity	LOGP	ATCH1	MOL_WT	Compound	
1	-1	3.007	0.1685	264.325	K17	
2	-1	3.686	0.26	364.358	D30	
3	-0.9	7.23	0.1683	390.568	J19	
9	0	5.67	0.2621	452.31	A10	
10	0.1	4.888	0.2593	362.342	C11	
11	0.23	5.354	0.2589	314.342	D23	
12	0.3	5.681	0.2913	452.31	F15	
ATCH2			~		Add	

Figure 117: Custom Data View dialog box.

Notice: When changing dataset in the Workspace Explorer, the current selection of descriptors in the **Custom Data View** will be updated so that only descriptors available in the new dataset will be shown.

13.8 Dataset Finder

The **Dataset Finder** located on the **Toolbar** (see Figure 118) allows you to quickly search for descriptor names, numerical values, and text entries in the current dataset. When a textual name or a numerical value (or part of it) is typed in the search box, the **Dataset Finder** displays a list of matches (a maximum of 30 matches is returned).

B Molegro Data Modeller File Edit Preparation Modelling Visua	lization	Window Help							
i 🗁 🎲 🖬 🗈 🗷 遇 🖉	-		Descriptors: All	- Coloring: N	lone •	0.00	~		
Workspace Explorer 🛛 🗙		ATCH1	ATCH2	ATCH3	ATCH4	11 results f Values		84 (ATCH3)	^
Items	1	0.1685	0.0386	-0.0084	-0.101	T alucs		95 (ATCH3)	
Workspace: Unnamed	2	0.26	-0.1477	0.091	-0.1629	1	-0.00	92 (ATCH3)	
Datasets [1]	3	0.1683	0.0395	-0.0095	-0.1004			89 (ATCH3)	
selwood	4	0.2473	-0.1403	0.0876	-0.4688			55 (ATCH3) 35 (ATCH5)	
	5	0.1687	0.0391	-0.0092	-0.1005			2 (ATCH5)	
	6	0.1686	0.0391	-0.0089	-0.1006	1		27 (ATCH5)	
	7	0.175	0.0408	-0.0055	-0.098	L	0.002	28 (ATCH5)	~
	8	0.2793	-0.1651	0.0969	-0.1478	0.0837			
	9	0.2621	-0.1435	0.1007	-0.5146	0.1454			
Properties ×	10	0.2593	-0.1462	0.0916	-0.1611	0.1105			
Property Value	11	0.2589	-0.1469	0.0906	-0.1619	0.1104			
Selection	12	0.2913	-0.523	0.1274	-0.1442	0.0806			
Selections 3	13	0.2325	-0.1373	0.0525	-0.2566	0.0753			
^t Selected cells 3	14	0.2323	-0.2545	0.065	-0.1308	0.0401			
	15	0.2578	-0.1452	0.0911	-0.16	0.1084			
	16	0.2483	-0.1462	0.0918	-0.1634	0.1174			
	17	0.2604	-0.1469	0.0917	-0.1623	0.1116			
	18	0.2834	-0.1642	0.1018	-0.1469	0.0833			
	19	0.2791	-0.1652	0.097	-0.148	0.084			
	20	0.2562	-0.1471	0.0895	-0.1628	0.1108			
	21	0.2602	-0.1461	0.0928	-0.161	0.1113			
	22	0.2601	-0.1466	0.092	-0.1618	0.1112			
Clear Selections	23	0.2601	-0.1468	0.0918	-0.1619	0.1113	~		
	<		+		•		>		

Figure 118: Dataset Finder dialog box.

The **Dataset Finder** can be invoked from the **Edit** | **Edit Search Query...** menu or by typing characters in the search box (text field) located at the far right side of the **Toolbar**. A shortcut is provided using the **CTRL+F** keyboard shortcut.

To select a result, press the **Return** key. Pressing the **Escape** (Esc) key or mouse-clicking outside the **Dataset Finder** window will cancel the current search query.

13.9 Creating a New Dataset

New datasets can be created using the **New Dataset...** menu option located in the **File** menu. A shortcut is provided using the **CTRL+N** keyboard shortcut. From the **New Dataset...** dialog shown in Figure 119, it is possible to choose a name for the new dataset and the number of columns and rows that the dataset should contain. Notice that only numerical columns are created –

textual columns can be added afterwards.

🏂 New Dataset	×
Dataset name: Noname	
Number of columns:	1
Number of rows:	1
	OK Cancel

Figure 119: Creating a new dataset.

New datasets can be populated using cut-and-paste from the clipboard or the Data Transformation dialog (see Section 13.26 for more details).

13.10 Importing Datasets and Regression Models

Datasets can be imported into the Data Analyzer using the **Import Dataset...** menu option located in the **File** menu. A shortcut is provided from the tool bar by clicking on the File folder icon or using the **CTRL+O** keyboard shortcut. The Data Analyzer supports the *Text CSV* file format for importing datasets, where data is separated by either tabs, commas, or semicolons. Moreover, *MVD Results (mvdresults)* files (tab-separated files containing various numerical descriptors calculated by MVD) can also be imported using the **Import Dataset...** dialog.

The Data Analyzer uses its own data modeling XML format (with file extension *MDM*) for saving datasets, regression models, and predictions.

A CSV, MVD Results, or MDM file can also be imported by dragging-anddropping the file into the main window.

When importing Text CSV (comma separated) or MVD Results (tab separated) files - a CSV Import Wizard is shown allowing for customization of CSV import settings and dataset preview.

port S	ettings Filtering								
Data	set preview								
	Compound	Activity	ATCH1	AT					
1	K17	-1	0.1685	0.0386					
2	D30	-1	0.26	-0.1477					
3	J19	-0.9	0.1683	0.0395					
4	A5	-0.88	0.2473	-0.1403					
5	J1	-0.85	0.1687	0.0391					
6	K18	-0.41	0.1686	0.0391					
7	G2	-0.38	0.175	0.0408					
8	L25	-0.04	0.2793	-0.1651					
9	A10	0	0.2621	-0.1435					
10	C11	0.1	0.2593	-0.1462					
11	D23	0.23	0.2589	-0.1469					
<	m				>				
Color	ring: textual columns	are gray, numeric colu	mns are white, and igr	nored columns are o	orange.				
Choo	ose column format (f	or selected columns):	Text		~				
Choo	se CSV settings use	d during import							
Text	encoding:		UTF-8		*				
Colur	mn separator type:		Automatic detection		*				
ν.	Jse first row as head	der							
	Create ID column								
	Deste no obtainin								
Work	space								
Repl	ace or add to works	pace: Add to current	workspace 🔽						

Figure 120: Import Dataset from CSV file. It is possible to preview the dataset and to change specific CSV import settings.

In the Dataset preview table it is possible to customize the column format for selected columns or for individual columns using the context menu. Numerical columns can be converted to text columns and vice versa. However, a text column can only be converted to a numeric column if all cells in the given column can be interpreted as numeric values. In addition, it is possible to ignore columns during import.

The following CSV import settings are available (see Figure 120):

- Text encoding: In most cases importing files as Unicode will work as expected. Files stored as 8-bit ANSI/ASCII files will also be imported correctly as Unicode *if they do not contain any special national characters*. If they do, it might be necessary to change the encoding to Locale 8-bit. Notice that it is recommended to always work with data in Unicode, because of the greater flexibility and portability. Per default MVD stores data in UTF-8 this can however be changed from the Preferences dialog.
- Column separator type: By default Automatic detection is used which means that the program will try to identify the separator symbol automatically, i.e., the most frequently occurring symbol (comma, tab, space, semicolon) in the first text line). If the automatic detection fails, it is possible to select a separator symbol manually.
- Use first row as header: When this option is enabled, header information (i.e. column names) will be extracted from the first row in the text file. If the file does not contain any header information, this option should be disabled resulting in column names being automatically generated (named 'Col 1', ' Col 2', etc.).
- Create ID column: When this option is enabled, an ID column will be added to the dataset with a numeric index shown for each data point / row imported.

The final option makes it possible to add the imported dataset to the current workspace or to replace the current workspace with the new dataset (the dataset is automatically renamed to ensure that datasets in the workspace have unique names).

The **Filtering** tab page allows for dataset filtering during import (see Figure 121).

The **Filter dataset** option makes it possible to limit the total number of rows / data points to import. The data points selected for import are the ones that have the highest or lowest values of a user-defined numerical descriptor.

The **Select subset** option can be used to specify a subset of records to import.

Notice: Both options can be combined so that the filtering based on descriptor values is applied after a subset has been chosen for import.

Import Dataset from CSV	? 🗙
Import Settings Filtering	
Filter dataset	
Limit number of rows to import. Maximum rows: 99 S Filter by Lowest S values in Activity S column.	
Select subset	\exists
Specify row range: from: 1 🔅 to: 99 🔅	
[Import] Cance	el:

Figure 121: Filtering options available during CSV import.

When pressing the **Import** button, the dataset will be imported using the settings specified in the dialog. If a problem occurs during parsing of the imported file, a **Warning** dialog will be shown.

Typical warnings are:

- Missing value in numerical column.
- Text in numerical column.
- Mismatch between number of columns in header and number of columns imported from data row.

Missing (or invalid) values in numerical columns will be indicated with a red '*nan*' (not a number) label when shown in the **Spreadsheet Window**. Missing values can be removed or repaired (see Section 13.17 for details). Moreover, invalid columns containing one or more invalid cells will not be available during e.g. model creation.

When importing MDM files, the following dialog appears making it possible to select the datasets and regression models that should be imported.

0	Import dataset	×
ſ	Import Warnings (0)	_
	☐ ✓ Datasets [1/1] ↓ ✓ selwood [31 records]	
	Specify record range: from 1 💿 to 31 🥥 Select Replace or add to workspace: Add to current workspace 💌]
l	Import	

Figure 122: Import Datasets and Regression models from MDM Workspace.

13.11 Creating Subsets

In the Data Analyzer, it is possible to group dataset records into subsets. Subsets are represented by an integer identifier listed in the **Subset** column (by default all records belong to subset 0).

Subsets can be used to:

- Split a dataset into several datasets: From the Split Dataset (Using 'Subset' Column) dataset context menu in the Workspace Explorer it is possible to split the given dataset into a number of sub-datasets using the subset identifiers. Each new dataset will be named after the original dataset and the subset identifier (e.g. selwood_0, selwood_1, etc.). The original dataset will not be modified.
- Extract a subset from a dataset: From the Extract One Subset (Using 'Subset' Column) dataset context menu in the Workspace Explorer it is possible to extract a single subset from the given dataset. From the dialog box invoked, it is possible to select which subset to extract. Afterwards, a new dataset is created containing all records with the corresponding subset identifier. The new dataset will be named after the original dataset and the chosen subset identifier (e.g. selwood_2 if subset 2 was chosen). The selected records are removed from the original dataset.

- Perform cross validation of regression models: If a dataset contains subsets, it is possible to perform a N-fold cross validation of a given regression model where the number of folds equals the number of subsets available. The subset-based cross validation option is available via the **Experimental Setup** tab page in the **Regression Wizard**. See Section 13.19 for more details.
- Make regression models using a reduced training set: Using the subsetcreation methods introduced below, it is possible to make a regression model on a subset of the original dataset. Using a subset can lower the total time needed for model training, since the number of records used for training can be significantly reduced compared with the total number of records available in the full dataset.

🛛 Molegro Data Modeller										
File Edit Preparation Modelling Visualization Window Help										
1 🗁 🍄 🚺	🔃 🗷 遇 🥖	🕨 合 Selection	Des	Descriptors: All 👻 Coloring: By			By Model 👻	Search		
Workspace Explo	rer 🗙	Compound		Act	tivity	ATCH1		ATCH2	ATCH3	^
Items		1	K17		-1		0.1685	0.0386	-0.0084	
🖻 Workspace: L		2	D30		-1		0.26	-0.1477	0.091	
⊡- Datasets ^I <mark>selw</mark>		3	J19		-0.9		0.1683	0.0395	-0.0095	
50IM	Dataset				-0.88		0.2473	-0.1403	0.0876	
	Export Dataset				-0.85		0.1687	0.0391	-0.0092	
	Rename Dataset)ataset					0.1686	0.0391	-0.0089	_
	Clone Dataset (Cri		117		-0.38		0.175 0.0408		-0.0055	
	Split Dataset (Usin	-			-0.04		0.2793	-0.1651	0.0969	
	Extract One Subse	et (Usi	: (Using 'Subset' Column)		0	0.2621		-0.1435	0.1007	
Properties	Delete Dataset Fro	om Workspace			0.1	0.2593		-0.1462	0.0916	
Property	Value	11 D23			0.23		0.2589	-0.1469	0.0906	
Name	selwood	12	F15		0.3		0.2913	-0.523	0.1274	
Records	31	13	G4		0.32	2 0.2325		-0.1373	0.0525	
Descriptors Predictions	55 0	14	G9		0.42		0.2323	-0.2545	0.065	
Original Filename	u C:/Program Files/	15	126		0.43		0.2578	-0.1452	0.0911	
		16	N31		0.48		0.2483	-0.1462	0.0918	
		17	H14		0.77		0.2604	-0.1469	0.0917	
		18	M6		0.82		0.2834	-0.1642	0.1018	
		19	L21		0.82		0.2791	-0.1652	0.097	
		20	E20		0.89		0.2562	-0.1471	0.0895	~
		<	m						>	
										:

Figure 123: Context menu actions available for dataset splitting and subset extraction.

Creating Subsets From Selected Rows

Subsets can be created manually from selected records in the Spreadsheet Window. After selecting the records that should be part of a given subset, a subset is created using the **Create Subset from Selected Rows...** menu invoked from the spreadsheet context menu or from the **Preparation** menu. The following options are available:

- As New Dataset (Keep in Current Dataset). A new dataset containing the selected records only will be added to the workspace. The dataset will be given a name similar to the original dataset with the addition of a count indicating the number of selected records in the new dataset and total records in the original dataset. The original dataset is not modified.
- As New Dataset (Remove from Current Dataset). Similar to the option above except that the selected records will be removed from the original dataset.
- Write Subset IDs to 'Subset' Column. The selected records will be assigned a unique subset identifier shown in the Subset column (the column will be created if it does not exist).

	Molegro Dat	a Modeller			×	
File	Edit Prepara	Dataset		1		
1	3 🎲 🚺	Copy Spreadsheet to Cli		escriptors: All	l »	
	Compound	Copy Selected Cells to C		АТСНЗ	^	
1	K17	Paste Cells from Clipboar	rd	-0.0084		
2	D30	Select All Cells		0.091		
3	J19	Sort Column Ascending		-0.0095		
4	A5	Sort Column Descending		0.0876		
5	J1	Revert to Original Sortin	g order	-0.0092		
6	K18	Select Column		-0.0089		
7	G2	Select Row		-0.0055		
8	L25	Insert Numerical Column		0.0969		
9	A10	Insert Textual Column		0.1007		
10	C11	Add New Rows		0.0916		
11	D23	Rename Column		0.0906		
12	F15	Delete Row(s)		0.1274		
13	G4	Delete Column(s)		0.0525		
14	H12	Create Subset from Sele	cted Rows 🔸	As New D)ata :	Set (Keep in Current Dataset)
15	126	0.43 0.2578	-0.1452	As New D)ata :	Set (Remove from Current Datase
16	N31	0.48 0.2483	-0.1462	Write Sub	oset)	IDs to 'Subset' Column
<			-			

Figure 124: Creating a subset from selected records in the Spreadsheet Window.

Creating Subsets Using Random Selection

Subsets can also be created from randomly selected records using the **Create Subset using Random Selection...** menu invoked from the **Preparation** menu. From the sub-menu it is possible to select how the new subset should be created. The options available are identical to the ones described in the 'Creating Subsets From Selected Rows' section.

It is possible to choose the number (or percentage) of records that should be part of the subset. The new subset containing the randomly selected records is created when pressing the **OK** button.

Figure 125: Creating a subset using a random selection of records.

Create Subset Using 'Subset' Column

Subsets can also be created from the subset identifiers listed in the 'subset' column (if available) using the **Create Subset using 'Subset' Column...** menu invoked from the **Preparation** menu. This option can be used to create subsets based on a clustering of a given dataset since the cluster association for each record is provided in the 'subset' column. From the sub-menu it is possible to select how the new subset should be created. The options available are identical to the ones described in the 'Creating Subsets From Selected Rows' section.

📕 Create Subset using Subset Column 🛛 🕐 🔀			
Select number records to extract for each subset ID:			
1			
OK Cancel			

Figure 126: Creating a subset using 'subset' column.

It is possible to choose the number of records to extract for each subset identifier that should be part of the new subset. The maximum number of records that can be extracted for each subset identifier corresponds to the number of records of the subset identifier with the lowest number of records (to ensure that the same number of records are extracted for each subset identifier).

The new subset containing the randomly selected records is created when pressing the **OK** button.

13.12 Dataset Scaling and Normalization

Numerical columns can be scaled or normalized using the Scale and

Normalize Values... menu option located in the **Preparation** menu. From the **Scale and Normalize Values...** dialog shown in Figure 127, it is possible to choose a scaling or normalization method and to select which numerical columns that the scaling/normalization should be applied to.

Unit variance scaling (UVS) divides each data point with the standard deviation of the specific column. For **Mean centering (MC)**, the mean of the specific column is subtracted from each data point.

Auto Scaling makes it possible to perform both UVS and MC, whereas the **normalization** option normalizes the data points to values between the specified **min** and **max** values.

🏂 Scale and Normalize Values 🛛 🗙
 Select scaling or normalization method Unit variance scaling (UVS) Mean centering (MC) Auto scaling (UVS and MC) Normalization: Min: 0.10 Max: 0.90
Select numerical columns Name Activity ATCH1 ATCH2 ATCH3 ATCH4 ATCH5 ATCH6 ATCH7
Select All Invert Selection Clear
OK Cancel

Figure 127: Selected numerical columns can be scaled or normalized.

Notice: It is advisable to perform the scaling or normalization of the dataset in the Regression Wizard (introduced in Section 13.19) since the scaling/normalization applied will be saved as part of the regression models. This will make it possible to use the same scaling/normalization transformation on other datasets that the regression model is applied to without changing the original dataset. If the dataset is modified using the **Scale and Normalize Values...** dialog box, the data transformation done by the

scaling/normalization procedure is not saved and cannot be applied to other datasets afterwards.

13.13 Convert Discrete Descriptors

The Data Analyzer has a simple tool for converting a discrete descriptor to either **integer representation** or **binary representation**. This can be very useful if class information is provided in textual format (e.g. 'true', 'false') or an integer-based numerical descriptor should be converted to a binary representation.

For example, using the **Convert Discrete Column** dialog box, the textual descriptor can be converted to a numerical descriptor containing integer values (assigning a unique integer value to each class instance) or a number of numerical descriptors representing a binary representation of the class instances (see Table 2 for an example). The new descriptors (columns) are appended to the dataset.

Figure 128: Convert Discrete Column dialog box.

To convert the currently chosen column (marked with boldface in the spreadsheet header), invoke the **Convert Discrete Column** dialog box by selecting **Preparation** | **Convert Discrete Descriptor...**.

Class	Class_Bin1	Class_Bin2	Class_Bin3
Iris-setosa	1	0	0
Iris-setosa	1	0	0
Iris-setosa	1	0	0
Iris-versicolor	0	1	0
Iris-versicolor	0	1	0
Iris-versicolor	0	1	0
Iris-virginica	0	0	1
Iris-virginica	0	0	1
Iris-virginica	0	0	1

Table 2: Example of binary representation of discrete Class descriptor.

13.14 Cross-Term Generator

The **Cross-Term Generator** makes it possible to generate squares and pairwise products of the numerical descriptors in the dataset.

Cross-Term Generation	<
Descriptors	
Number of descriptors selected: 4	
Descriptor	
sepal length sepal width petal length petal width	
Select All Invert Selection Clear	
Generate squares (creates 4 new columns)	
Generate pairwise products (creates 6 new columns)	
OK Cancel	:

Figure 129: The Cross-Term Generator.

It may be invoked by choosing **Preparation** | **Generate Cross-Terms...** from the menu.

In order to use the generator select the desired descriptors and choose whether to create the squares, the pairwise products, or both. The new columns will be appended at the end of the current data set.

The names of the new columns are automatically generated. For instance, for columns 'A','B', and 'C', the generator will create the new columns 'A*A', 'B*B', and 'C*C' for the squares, and 'A*B','A*C', and 'B*C' for the cross-terms (if needed, the column names are automatically renamed to ensure they are unique).

Cross-terms are usually included in order to account for non-linear terms when doing multiple linear regression. However caution should be taken when adding cross-terms since the complexity of the model is increased, and chance correlation becomes more likely. In general we suggest trying a non-linear model (e.g. ANN) before resorting to creating cross-terms.

Cross-terms may however be a valuable tool when trying to uncover relations between the various descriptors in a dataset.

13.15 Convert Between Numerical and Textual Descriptors

It is possible to convert a numerical descriptor to a textual descriptor or a textual descriptor to a numerical descriptor using the **Preparation** | **Convert Descriptor (numerical <-> text)...** option. Converting a numerical descriptor to a textual might be an advantage if the numerical descriptor should not be included in the regression analyses (for instance if the descriptor represents compound identifiers).

Notice: When converting from a textual descriptor to a numerical descriptor, textual entries representing integers or doubles will be converted automatically whereas non-valid entries will be represented by 'nan'.

13.16 Handling Constant Columns

Descriptors containing the same data value for all records (i.e. constant columns) do not contribute with any valuable information when creating regression models. It is therefore recommended to remove these columns. To identify constant columns, select **Preparation** | **Select Constant Columns**. All constant columns in the current dataset will be selected and can be removed by choosing **Edit** | **Delete Column(s)**....

13.17 Deleting, Replacing, or Repairing Invalid Cells

Invalid record entries (spreadsheet cells) can occur if the imported dataset contains invalid entries such as *NaN* (not a number). Also, invalid cells can occur in the dataset later on if modifications of the data values results in invalid numerical values. For example, dividing entries by zero or taking the logarithm of a negative number in the **Data Transformation** dialog box will result in invalid entries being created.

Numerical descriptors containing one or more invalid cells cannot be used in regression or clustering analysis. Before using descriptors containing invalid cells, the invalid cells should either be repaired or removed.

Several options are available for repairing invalid cells:

- Manually, repair invalid cells by editing them in the Spreadsheet Window.
- Automatically replace invalid cells with estimated values using the column mean of the specific numerical descriptor that contains the invalid cell(s). Select **Preparation** | **Replace Invalid Cells with Column Mean** to perform this action.
- Automatically replace invalid cells with randomly distributed numbers. It is possible to either use normally distributed values with same mean and variance as the specific column that contains the invalid cell(s) or to use uniformly distributed values using min and max values from the specific column that contains the invalid cell(s). First, select **Preparation** |

Select Invalid Cells to select all invalid cells in the dataset (or manually select the ones that should be repaired). Second, select **Preparation** | **Set Selected Cells to Random Distribution** to invoke the dialog box shown in Figure 130.

🗟 Set Selected Cells to Random Distribution ? 🔀
Select distribution:
Normal with same mean and variance
OK Cancel
igura 120, Sat Salastad Calls to Bandom

Figure 130: Set Selected Cells to Random Distribution dialog box.

Another solution is to remove the invalid values from the dataset. **Preparation** | **Delete Columns with Invalid Cells** is used to remove all numerical columns containing one or more invalid cells. This is particularly useful if several of the entries in a given column are invalid. In a similar manner, **Preparation** | **Delete Rows with Invalid Cells** can be used to remove all rows (data records) containing invalid cells.

13.18 Scrambling Data Columns

It is possible to scramble selected columns (i.e. shuffle data records) from the **Preparation** | **Scramble Selected Columns** menu option. This option can be useful for e.g. detecting random correlations between the independent variables and the dependent variable, see the 'General Recommendations' section below for more details.

13.19 Creating Regression Models Using the Regression Wizard

Once one or more datasets have been imported into the Workspace, new regression models can be created using the **Regression Wizard**. To start the wizard, click on the wizard icon on the tool bar or use the keyboard shortcut (**CTRL+R**). It is also possible to select regression algorithms individually from the main menu: **Modelling** | **Multiple Linear Regression...** or **Modelling** | **Neural Network Regression...**

Select Dataset and Target Variable

The first step is to choose a dataset (see Figure 131). It is possible to work on only a subset of the dataset by using the **Select subset** (the subsets are defined by a **Subset** column in the spreadsheet, see Section 13.11 for more details). Notice: If working on a subset, the N-fold cross validation option will be disabled. By default, all subsets in the dataset are included.

Next, a *target variable* must be selected. The *target variable* indicates which specific numerical descriptor the regression model should try to estimate or predict. Notice that columns containing invalid numerical data or constant data values will be shown in the list, but it will not be possible to use them as target variables. Further, prediction columns cannot be used as target variables.

Regression Wizard	×
Select Dataset and Target Variable	
Dataset	
Select dataset used for building model:	selwood
Select subset:	All
Select target variable:	
Target variable (dependent variable):	<u>^</u>
Activity	
ATCH1 ATCH2	
ATCH2	
ATCH4	
ATCH5	
ATCH6	
ATCH7	
ATCH8 ATCH9	
ATCH10	
DIPV_X	
DIPV_Y	
DIPV_Z	
DIPMOM	
ESDL1	✓
Disabled items indicate either constant value col	umns or invalid columns.
< <u>B</u>	ack <u>N</u> ext> <u>C</u> ancel

Figure 131: Select which dataset to use and what numerical descriptor to model.

Select Descriptors

The **Select Descriptors** page (Figure 132) contains a list of all the numerical descriptors available for building the regression model. As above, spreadsheet columns containing invalid numerical data or constant data values will be shown in the list, but it will not be possible to include them in the model. Prediction columns cannot be used as descriptors.

The **Descriptor selection** drop-down box allows the user to select descriptors

manually or to perform feature selection: the **Manual selection from list below** option allows the user to manually select which descriptors should be included in the model. The **Feature selection (using all descriptors)** and **Feature selection (using selected descriptors)** options make it possible to perform automated selection of relevant descriptors from all descriptors or a manually selected subset of descriptors, respectively. The feature selection options are further described in the next section ('Customizing Training Algorithm').

Regression Wizard	X
Select Descriptors Manually or by Feature Selection	
Descriptors (independent variables)	
Descriptor selection: Manual selection from list below	~
Number of descriptors selected: 53	
Descriptors	^
ATCH1	
ATCH2	
ATCH3 ATCH4	
ATCH5	
ATCH6	
ATCH7	
ATCH8	
ATCH9 ATCH10	
DIPV X	
DIPV_Y	
DIPV_Z	
DIPMOM	
ESDL1	
ESDL2	~
Disabled items indicate either constant value columns or invalid columns.	
Select All Invert Selection Clear	
< <u>B</u> ack <u>N</u> ext > <u>C</u> anc	el

Figure 132: Select which descriptors to include in the regression model.

Customizing Training Algorithm

The algorithms used for training regression models can be customized in the **Customize Training Algorithm** page (see Figures 133 and 134).

😤 Regression Wizard		×
Customize Training Algorithm		
Training algorithm		
Algorithm:	Multiple Linear Regression	~
Shuffle dataset before model training:		
Random seed used in model training: 3694658677		New Seed
	,	
Parameter settings		
No parameters available for Multiple Linear Regression	on algorithm.	
	< Back Next >	Cancel

Figure 133: Parameter settings for Multiple Linear Regression models.

The **Training algorithm** box lists the training algorithms available. Currently, the two regression methods available are *multiple linear regression* (MLR) and *neural networks* (NN).

In multiple linear regression (MLR) the model assumes that the dependent variable Y is a linear function of the independent variables, X_i . The model can be written as:

 $Y = c_0 + c_1 X_1 + c_2 X_2 + \dots + c_N X_N$

where the c_i 's are the regression coefficients in the linear model.

To apply MLR successfully, the number of records (observations) must be larger than the number of descriptors selected.

Notice that if the independent variables are proportional or highly correlated with each other, a warning may be emitted: 'Matrix is rank deficient'. The algorithm will automatically try to handle this by introducing a small artificial perturbation (*ridge regression*), but it is preferable to inspect the descriptors and try to reduce their internal correlation. This can be done by manual pruning, by feature selection, or by principal component analysis.

Artificial neural networks are inspired by real-world biological neural networks. Although neural networks are very simplified models of the neural processing found in the human brain, they have shown good performance on regression and classification problems. The algorithm used in the Data Analyzer for training NN models is called **back-propagation** (see [HAYKIN 1999] for more details about NNs and the back-propagation method).

The **Shuffle dataset before model training** option toggles whether or not the order of the records in the dataset should be shuffled before the regression model is trained or evaluated. In particular the shuffling of the dataset, ensures that the folds are random, when performing N-fold cross-validation. Notice: the shuffling is performed on a cloned copy of the dataset, i.e. so the original dataset is not modified.

The **Random seed used in model training** option makes it possible to reproduce experiments by setting the random seed to the value used in the previous experiments. In addition, the **New Seed** button can be used to change the random seed currently used in the random number generator. The random numbers are used when shuffling the dataset, performing feature selection, and internally by the neural network algorithm. Notice: since the neural network model and the feature selection algorithms use random numbers, changing the random seed can produce different results compared with previous runs.

The **Parameter settings** box show the parameters used by the training algorithm. For the MLR training algorithm, no parameter settings are available.

😤 Regression Wizard		×
Customize Training Algorithm		
Training algorithm		
Algorithm:	Neural Network (Back-Propagation)	~
Shuffle dataset before model training:		
Random seed used in model training: 3694658677		New Seed
Parameter settings	_	
Max training epochs:	1000	\$
Learning rate:	0.30	\$
Output layer learning rate:	0.30	\$
Momentum:	0.20	\$
Data range normalization:	0.1 - 0.9	~
Number of neurons in 1st hidden layer:	10	\$
Number of neurons in 2nd hidden layer:	0	*
Initial weight range (+/-):	0.50	\$
Use bias neurons:		
	< Back Next >	Cancel

Figure 134: Parameter settings for the Neural Network model.

For the NN training algorithm (Back-Propagation) the following parameter settings are available:

The **Max training epochs, Learning rate**, **Output layer learning rate**, and **Momentum** parameters are used when updating neuron weights during the NN training and can be used to speed up the convergence of the back-propagation training algorithm. Depending on the regression problem, other settings may result in more accurate models.

The **Data range normalization** option indicates which normalization procedure that should be applied to the dataset before the model is trained or if none should be applied (if the dataset has been normalized beforehand). Notice that the normalization is stored as part of the model, which makes it possible to reuse the model on other datasets without the need for manually normalizing the data.

The **Number of neurons in 1st hidden layer** and **Number of neurons in 2nd hidden layer** specify the number of neurons for each hidden layer. Often only one hidden layer is needed (setting number of neurons for the second layer to 0). Sometimes more accurate models can be build if a second hidden layer is included but more complex models are also more prone to be overfitted. The number of hidden neurons is very dependent on the actual regression problem so it may take a couple of runs to identify the most suitable choice.

The **Initial weight range (+/-)** value indicates the range (e.g. from -0.5 to 0.5) used by the random number generator when initializing the neurons before model training is started. The default value is generally suitable for most model training tasks.

Finally, the **Use bias neurons** option can be used to set if bias neurons (in input and hidden layers) should be used or not. Typically, including bias neurons will improve the performance of the back-propagation algorithm.

Experimental Setup

On the final page (**Experimental Setup**), it is possible to either:

- Create and train a new regression model using the data from the dataset.
- Validate the generality of selected model parameters using crossvalidation, leave-one-out validation, or percentage split validation.
- Perform feature selection.

Notice: The feature selection option is only available if feature selection has been selected in the **Select Descriptors** page.

Regression Wizard	X			
Experimental Setup				
Experimental settings Create new model and prediction: Using 'selwood' (subset: All) as training set				
Validate model building parameters (creates a prediction but no model): Using Leave one out Using cross validation from subsets				
Using N-fold cross validation. N: 10				
Create 'Subset' column with fold subsets Percentage split: Training set percentage: 66 Create 'Subset' column with train/test subsets				
 Perform feature selection to identify relevant descriptors: 				
Feature selection method:	Forward Selection			
Descriptor relevance:	Correlation to target variable			
Model selection criterion:	Training set (BIC)			
< <u>B</u> ac	< Start Cancel			

Figure 135: Choose experimental setup.

Creating a Model

When the **Create new model and prediction** option is chosen, a new regression model will be created. The model will be available in the **Workspace Explorer** window, and can be used to make predictions on other datasets. In addition, a prediction column (with predicted values of the target variable) is appended to the dataset that was used for training the model.

Validating a Model

Sometimes regression models are over-fitted, resulting in regression models performing much worse on unseen data than on the training set. Overfitting may occur if the regression model is too complex or too few records are available for model training. The complexity of a model is determined by the number of chosen descriptors (which can be pruned using feature selection) and by the number of internal parameters in the model (such as the number of hidden layer neurons in a neural network).

There are different ways to validate the generality of a regression model:

- Test the generated model on an independent test set.
- N-fold cross validation on the training set.
- Leave-one-out validation on the training set.
- Percentage split validation.

Using an independent test set is the best solution, but is only possible when sufficient data records exist. Section 13.21 describes how to make a prediction on an external dataset using a given regression model.

In *N-fold cross validation* (N-CV), the dataset is partitioned into N subsets. N-1 subsets are then used for model training and the remaining subset is used for validation (prediction). The cross validation process is repeated N times, with each of the N subsets used exactly once for validation. Afterwards, the model accuracy (generality) is estimated as the Pearson correlation coefficient calculated from the combined prediction. Usually, N is chosen between 5 and 10. If the **Overwrite 'Subset' column with fold subsets** option is toggled on, the fold ID that identifies what fold a given record was assigned to, is stored in the Subset column.

The **Using cross validation from the 'x' subsets** option makes it possible to perform a N-fold cross validation using the subsets defined in an existing Subset column, where the number of folds corresponds to the number of subsets available. It is also possible to toggle whether the 0-subset should be included or not (records with subset ID equal to 0 may indicate that the records have not been assigned to a subset).

Leave-one-out validation (LOO) is similar to N-fold cross validation, where N is equal to the number of samples (e.g. records or observations) in the dataset.

N-CV is typically used when the dataset contains a lot of samples since LOO can be very time-consuming. However, for small datasets (e.g. less than 50 samples), LOO may provide more accurate estimates.

The *Percentage split* validation procedure divides the dataset into a training set and a test set using the percentage provided by the user (default is 66%). A regression model is trained using the training set and a prediction is made on the held-out test set afterwards. If the **Create 'Subset' column with train/test subsets** is enabled, data records will be assigned a subset ID of 1 (for training set records) and 2 (for test set records).The subset Ids will be stored in the Subset column.

Notice that the validation procedures do not create a regression model since several models are created during the validation process. Only a prediction is

created indicating the accuracy of the current model setup. Notice: For Percentage split validation, the prediction is only made for the test set (training set entries are set to 'NaN').

It is possible to create general regression models by first training a model using the N-CV or LOO procedure in order to identify promising descriptors and model training parameter settings. Therefore, the **Regression Wizard** must be invoked more than once. To aid in the selection of descriptors and parameter settings, the wizard remembers the previously used settings making it easier to adjust the parameters. When a model of high generality has been identified (using the correlation coefficient as a measure of generality), a regression model can be created using the **Create new model and prediction** option.

A way to check whether a regression model is over-fitted or not is to compare the correlation coefficient of the trained model (R_{train}) with the correlation coefficient obtained from N-CV or LOO validation (R_{cv}). If R_{train} is much higher than R_{cv} , the model is probably over-fitted.

Feature Selection

The built-in feature selection algorithms can be used to identify relevant descriptors (see Figure 136). Reducing the number of descriptors makes it easier to interpret the model, and makes overfitting less likely.

😤 Regression Wizard 🛛 🔀				
Experimental Setup				
Experimental settings Create new model and prediction: Using 'selwood' (subset: All) as training set				
Validate model building parameters (creates a prediction but no model): Using Leave one out Using cross validation from subsets				
Using N-fold cross validation. N: 10				
Create 'Subset' column with fold subsets Percentage split: Training set percentage: 66				
Create 'Subset' column with train/test subsets				
Perform feature selection to identify relevant descriptors:				
Feature selection method:	Forward Selection 💌			
Descriptor relevance:	Correlation to target variable			
Model selection criterion:	Training set (BIC)			
< <u>B</u> ack	Start Cancel			

Figure 136: Feature selection options available in the Regression Wizard.

In the **Feature selection method** box it is possible to select whether *Forward Selection*, *Backward Elimination*, or *Hill Climber* should be used to identify relevant descriptors:

- Forward Selection begins with one descriptor and continues to add descriptors one at a time until no further improvement is possible. The descriptors are added in the order given by the chosen **Descriptor** relevance. All descriptors available (i.e. not already selected in previous steps) will be probed at each step of the algorithm. Model improvements are evaluated using the Model selection criterion introduced below.
- Backward Elimination starts with all descriptors available and iteratively removes a descriptor (one at a time) until no more improvements is possible. All descriptors available (i.e. not already removed in previous steps) are probed at each step of the algorithm. Model improvements are

evaluated using the Model selection criterion introduced below.

The Hill Climber starts with an initial solution containing the 3 highest-ranked descriptors, see **Descriptor relevance** below for more details. The initial solution is modified using one of the three variation operators: (i) Add a randomly chosen descriptor from the set of available descriptors, (ii) Remove a randomly chosen descriptor from the current solution (if more than one descriptor is present in the solution), or (iii) Exchange a randomly selected descriptor with another descriptor from the set of available descriptors. Only one variation operator at a time is applied to modify the current solution and the operator is chosen randomly with 10% chance of using the first operator, 10% chance of using the second operator, and 80% chance of using the third operator. New solutions are created iteratively using the variation operators above. A new solution is accepted if it is better than the previous using the Model selection criterion described below. The algorithm is terminated when 100 iterations has occurred.

🧏 Regression Wizard	×
Experimental Setup	
Experimental settings	
Create new model and prediction: Using 'selwood' as training set	
Validate model building parameters (creates a prediction Using Leave one out	but no model):
Using N-fold cross validation. N: 10	
 Perform feature selection to identify relevant descript 	tors:
Feature selection method:	Forward Selection
Descriptor relevance:	Correlation to target variable
Model selection criterion:	Training set (BIC)
	< Back Start Cancel

Figure 137: Feature selection options available in the Regression Wizard.

Before applying one of the feature selection methods described above, the descriptors are sorted according to the **Descriptor relevance** scheme selected. The following schemes are available:

• Correlation to target variable: descriptors are ranked according to the

Pearson correlation coefficient between each descriptor and the target variable.

- Coefficient Relevance (MLR models only): Coefficient relevance scores are calculated from a MLR model using all available descriptors. Each coefficient relevance score is calculated by multiplying the coefficient value with the standard deviation of the corresponding descriptor and dividing the product with the standard deviation of the target variable. Notice: Coefficient relevance scores are only meaningful to calculate if the number of records is higher than the number of numerical descriptors used.
- Relevance Score: (Neural Network models only). The Relevance Score is calculated by following all paths from the input neuron to the output neuron (including hidden layers). For each path, the product of all the connection weights (in absolute values) is added to the score. Afterwards, all relevance scores are normalized to be in the range between 0 and 100.
- **Random Ranking**: The descriptors are assigned a random rank.

The quality/performance of each feature selection solution is evaluated using the criterion chosen in the **Model selection criterion** box. The **Cross validation (Pearson-r)** option evaluates each model using a N-fold cross validated Pearson Correlation Coefficient whereas the **Cross validation (RMSE)** option evaluates each model using N-fold cross validated root mean squared error. The **Training set (BIC)** option uses a Bayesian Information Criterion to evaluate model performance balancing model accuracy (Mean Squared Error) and model complexity (number of descriptors used in the model):

$$BIC = \ln(MSE) + (k+1)(\frac{\ln(n)}{n})$$

where MSE is the Mean Squared Error, k is the number of descriptors used in the model, and n is the number of records.

In general, we recommend the BIC evaluation criterion since it avoids using the cross-validated correlation coefficients during the feature selection process (with the risk of fitting the selection of descriptors to the cross validated results). In addition, the BIC evaluation criterion gives a significant speedup compared to the N-fold cross validation approach since it only uses the training set once for each evaluation of a models performance. Afterwards, the generality of the BIC-derived model can be evaluated using the N-fold cross validation scheme described above.

When the feature selection process has finished the solutions found are presented in the **Feature Selection Results** dialog box (see below).

Feat	ure Selectio	n Results								
Index	Model Score	Pearson (r)	Pearson (r^2)	BIC	RMSE	#Descriptors				
13	-1.40872	0.920616	0.847534	-1.40872	0.317444	7				
12	-1.28265	0.898213	0.806787	-1.28265	0.357353	6				
11	-1.24477	0.880808	0.775822	-1.24477	0.384925	5				
10	-1.23389	0.879415	0.77337	-1.23389	0.387024	5				
9	-1.21258	0.861027	0.741367	-1.21258	0.413449	4				
8	-1.18905	0.857445	0.735211	-1.18905	0.41834	4				
7	-1.13885	0.849457	0.721578	-1.13885	0.428975	4				
6	-1.12393	0.846991	0.717393	-1.12393	0.432186	4				
5	-1.12202	0.846672	0.716853	-1.12202	0.432599	4				
4	-0.967291	0.794199	0.630753	-0.967291	0.494013	3				
3	-0.879518	0.741387	0.549655	-0.879518	0.545573	2				
2	-0.78073	0.709151	0.502894	-0.78073	0.573197	2				
1	-0.650247	0.60602	0.36726	-0.650247	0.646684	1				
Descriptors used: ATCH1										
ATCH4 ATCH6 DIPV_>	4 3									
DIPV_` LOGP MOFI_										
Create	Model From Cur	rent Solution	Select Descrip	tors From Cu	rrent Solutio	n Close				

Figure 138: Feature Selection Results dialog.

For each solution, the corresponding **Model Score** (either BIC, Pearson correlation coefficient, or RMSE), Pearson correlation coefficient, BIC, RMSE, and number of descriptors are shown.

Pressing the **Create Model From Current Solution** button will create a new model using the current solution and add it to the current workspace.

It is also possible to set the descriptors from the current solution as the default choice in the Regression Wizard by pressing the **Select Descriptors From Current Solution** button. Afterwards, a regression model can be created using the training procedure or evaluated using the LOO or N-CV procedures.

General Recommendations

Choose the simplest model. Since simple models are less likely to overfit the training data, always try to find the simplest acceptable solution. For all regression models the complexity decreases if the number of independent variables is lowered. For neural networks the complexity also depends on the number of hidden layer neurons. It may be possible to reduce the number of independent variables by performing a PCA analysis (available in MDM) or using feature selection.

Validate using external test set. The best way to validate the performance of a regression model is to use an external dataset which has not been involved in the training of the model. Unfortunately, the number of data records may be too small to construct an independent set. In this case, it is necessary to rely on cross-validation methods instead.

Watch out for chance correlation. When dealing with a large number of descriptors and a small number of samples, there is always the possibility that a relation between the independent variables and the dependent variable may arise by chance. Notice that cross-validation does not automatically guard against chance correlation: if the number of descriptors is large enough some combinations of the descriptors will be able to describe the dependent variable.

In particular, be careful when using feature selection together with crossvalidation as model selection criteria: in this case, many combinations of descriptors will be tested, and the combination with the best cross-validated correlation will be found. But this correlation may have arisen by chance, simply by trying enough combinations.

Chance correlation can be detected by validation on an external test set, but even if this is not possible, a simple procedure exists that makes it possible to estimate the amount of chance correlation for a dataset: *y*-*Randomization* (sometimes called *y*-*Scrambling*) suggests that whenever a model has been trained on a dataset, the same procedure should be applied to a dataset where the order of the dependent variable (the target variable) has been randomized.

If the model trained on the randomized dataset yields a high cross-validated accuracy, the correlation is caused by chance. Notice that it is important to start the model building from scratch on the randomized dataset: if feature selection was performed on an initial set of descriptors, perform the feature selection once again on the randomized dataset – do not try to build a model on the randomized set with the descriptors chosen from the initial dataset. It is the whole procedure that must be repeated in order to estimate the chance correlation. Also notice that the randomization and model building should be repeated a number of times in order to get an estimate of the magnitude of the chance correlation. Y-Randomization can be performed by choosing **Preparation** | **Scramble Selected Columns** (see Section 13.18).

Check for obvious outliers. It may be difficult to decide whether abnormal data are outliers or not – and it may be scientifically questionable to remove them. However, the datasets should always be checked for *obvious* data errors arising from e.g. preparation or conversion faults.

13.20 Inspecting Regression Models

Once a model has been created (or imported from a MDM file) it is possible to inspect the model details by invoking the **Model Details** dialog box from the context menu of the selected model (by right-clicking on the model with the mouse) and selecting the **Show Details...** item. An example is shown in Figure 139 where a summary of a *neural network* model is provided. For *multiple linear regression* models a similar tab page is shown (except for the algorithm-specific settings).

🗟 Model Details	
Summary Descriptors Model	Value
Property Name Type Target variable Random seed Neurons used incl. bias (input, hidden, output) Max Epochs (Back-Propagation) Momentum (Back-Propagation) General Learning Rate (Back-Propagation) Output Layer Learning Rate (Back-Propagation) Output Layer Learning Rate (Back-Propagation) Data Normalization (Back-Propagation) Use Bias Neurons (Back-Propagation) Descriptors used	Model3 ANN Activity 4261829484 54,11,1 1000 0.2 0.3
	Close

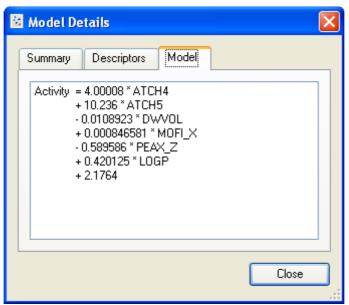
Figure 139: Model Details dialog box: Summar.

The **Descriptors** tab (see Figures 140-141) lists all descriptors the model uses. More importantly, it also provides a **Relevance Score** for each descriptor (for neural network models) or a **Coefficient Relevance** for each coefficient (for multiple linear regression models) indicating how *relevant* the descriptor was during model building with respect to modeling the target variable.

Therefore, the relevance scores can be used to identify which descriptors were most suitable for modeling the target variable and new models can be built omitting descriptors with low scores (useful for manual feature selection). The **Use highlighted descriptors in Regression Wizard** button can be used to set the default choice of descriptors selected in the Regression Wizard to the descriptors currently highlighted in the list view.

The **Relevance Score** for neural networks is calculated by following all paths from the input neuron to the output neuron (including hidden layers). For each path, the product of all the connection weights (in absolute values) is added to the score. Afterwards, all relevance scores are normalized to be in the range between 0 and 100.

6	Mode	l Details				X
[Summa	ry Descr	iptors	Model		
	Index	Name	Releva	nce Score		~
	0	LOGP	100			
	1	ATCH4	58			
	2	MOFI_X	50			
	3	ATCH10	47			
	4	ESDL6	45			
	5	ATCH2	34			
	6	NSDL6	32			
	7	MOL_WT	30			
	8	S8_1DY	30			
	9	SUM_F	27			
	10	MOFI_Z	26			
	11	DIPV_Y	26			
	12	ATCH9	25			
	13	DIPV_X	25			×
		17000	~ ~	T 11 + C ² 1		
				opy Table to Clipb	oard	
		Use k	nighlighte	d descriptors in R	egression Wizard	t l
					(Close


Figure 140: Model Details dialog box: Relevance scores for Neural Network models.

The **Coefficient Relevance** score for multiple linear regression is the product of the specific coefficient and the standard deviation of the corresponding numerical descriptor divided by the standard deviation of the target variable (see Figure 141).

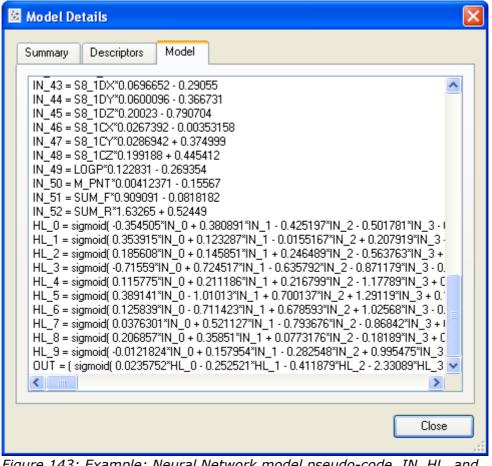

🗄 Mode	l Details				×
Summa	ry Des	criptors	Mode	el	
Index	Name	Coeffici		Coefficient Relevance	
0 1 2	ATCH4 ATCH5 DWVOL			0.450032 0.515685 0.512631	
3	MOFI_X	0.00084	6581	0.885145	
5	LOGP	-0.58958 0.42012		0.761743	
6	Constant	2.1764			
		Сору	y Table	to Clipboard	
	Use hi	ghlighted d	lescrip	tors in Regression Wizard	t
					Close
				_	

Figure 141: Model Details dialog box: Coefficient relevance scores for Multiple Linear Regression models.

The final tab **Model** shows the model in details (see Figure 142-143). It is possible to copy-and-paste the pseudo-code into the Data Transformation dialog box for further usage (see Section 13.26 for more details).

Figure 142: Example: Multiple Linear Regression model pseudo-code.

Figure 143: Example: Neural Network model pseudo-code. IN, HL, and OUT equations represent neurons in the input layer, hidden layer, and output layer, respectively.

13.21 How to Make Predictions Using an Existing Model

Once a model has been created (or imported from a MDM file) it can be used to predict properties (defined by the model's *target variable*) of other datasets present in the workspace. To make a model prediction, simply invoke the **Make Model Prediction** dialog box from the context menu of the selected model (by right-clicking on the model with the mouse) and select the **Make Prediction...** item. In the **Make Model Prediction** dialog box (see Figure 144) it is possible to select the dataset to perform the prediction on and to specify the name of the new prediction column. It is also possible to only predict part of the dataset. Notice that only datasets compatible with the model are listed in the dialog box (a dataset is compatible if it contains numerical descriptors with the same names as those used by the model). Moreover, the name of the prediction is automatically altered if another prediction with the same name is present in the dataset (to ensure uniqueness of names).

ediction 🛛 🔀
selwood 💌
Prediction
OK Cancel

Figure 144: Make Model Prediction dialog: Select dataset and name of prediction.

When the *prediction* is made (by pressing the **OK** button), it will be available in the dataset. Various statistical information can be inspected by pressing a cell in the prediction column (see Figure 111 for an example).

13.22 Offline Model Predictions

Normally, when a regression model is applied to a data set in the Data Analyzer, the data set is located entirely in memory.

For very large datasets, it may not be possible to import them into memory. The **Apply Model to External Dataset...** dialog makes it possible to make a prediction using a model in the workspace to a CSV file stored on disk, without importing the CSV file into memory.

Notice that it is not possible to train models on external dataset. For training, the dataset must always be part of the workspace. It is only possible to make predictions on external data.

In order to make predictions on an external file, choose File | Apply Model to

External Dataset..., or choose **Apply Model to External Dataset...** from the context menu on a model in the workspace.

lagut data filo (CC)	V): C:/MDM+test/Desktop/large.csv	
input data nie (CS	V). C./MDMRest/Desktop/large.csv	
Output data file (C	SV): C:/MDM-test/Desktop/large_out.csv	
Output column nar	ne: "MLR (69D)"	

Figure 145: The Apply to External Dataset dialog.

You must choose an input CSV file, an output CSV file, and choose a name for the prediction column. After pressing OK the **Import Dataset from CSV** wizard will appear, making it possible to setup e.g. column formats, text encoding, and separators. It is not possible to apply filtering in this dialog.

After pressing **OK**, the Data Analyzer will begin processing the external dataset.

Notice, that if the external dataset is too large to fit in memory, it might not be possible to import it to inspect the predictions. However, the **Import Dataset from CSV** wizard makes it possible to filter the dataset while importing it – for instance making it possible to only import a subset with the highest predicted values (see section 13.10for more information).

13.23 Inspecting Numerical and Predicted Descriptors

Numerical and predicted descriptors can be inspected using one of the visualization dialogs available: **1D Plot (Histogram)**, **2D Plot**, and **3D Plot** (introduced in Section '3D Plots').

1D Plot Dialog

The **1D Plot** dialog can be invoked by selecting **Visualization**| **1D Plot** (**Histogram**)... or select the histogram icon in the tool bar.

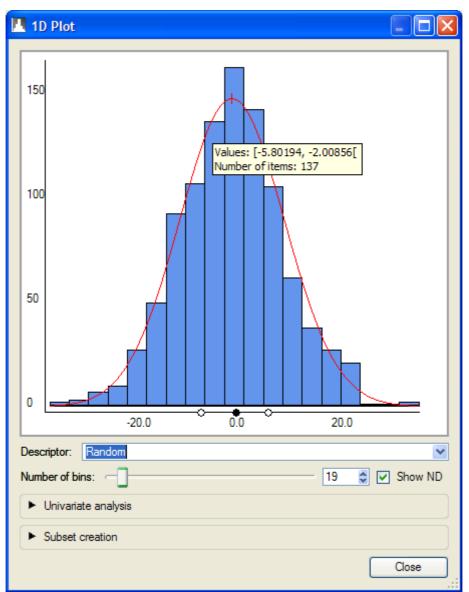


Figure 146: The 1D Plot dialog box.

It is possible to select which descriptor to plot and the **Number of bins** slider (or the mouse-wheel) can be used to adjust the number of bins used. Bins can be selected by pressing the left-mouse button on a bin. When selected, a bin is colored red and the corresponding data points are selected in the spreadsheet.

The context menu (invoked by pressing the right-mouse button) offers the following options:

- **Export to CSV**. Saves the histogram data in CSV format.
- Export to Gnuplot. Export the histogram to a Gnuplot script and data file.
- **Copy to Clipboard**. Copy the histogram data to the clipboard.

- Save Screenshot. Takes a snapshot of the histogram and stores it on disc in either PNG, BMP or JPEG format.
- **Clear Selection**. (*Requires a current selection*).

Univariate analysis listing Range, Median, Mean, Standard Deviation, Skewness, and Excess Kurtosis is provided for the selected descriptor. For more details about the statistical definitions used see Appendix XV: Statistical Measures.

The red curve shows an overlayed probability density function for a normal distribution with the same mean and standard deviation as the chosen descriptor. The normal distribution is scaled to cover the same area as the histogram. This makes it possible to visually inspect if the data samples follow a normal distribution. The normal distribution overlay can be toggled using the **Show ND** checkbox.

Finally, quartile information is provided on the x-axis. The filled circle represents the 50th percentile (median) whereas the two white circles represent the 25th and 75th percentiles, respectively.

2D Plot Dialog

The **2D Plot** dialog box can be invoked by selecting **Visualization** | **2D Plot...** or pressing the scatter plot icon on the toolbar.

It is possible to select which descriptors to plot on the X and Y axes. The plot canvas can be in either *selection* (default) or *zoom* mode. The mode can be changed in the context menu (by pressing the right mouse button on the plot canvas). In selection mode, data points can be selected by left-clicking with the mouse on each data point. Data points within a specific region can be selected by holding down the left mouse button and dragging the mouse. The selected data points in the plot canvas are also selected in the spreadsheet. Further, selections made in the spreadsheet also select the corresponding data points in the plot canvas.

In zoom mode, the left-mouse button can be used to select a specific region to zoom into (hold down the left mouse button and drag the mouse) and the mouse-wheel can be used to zoom in and out. Numerical data points can be inspected by moving the mouse over the data points.

The context menu offers the following options:

- Zoom to Fit.
- Zoom Out.
- Zoom In.
- **Export** | **Export to CSV**. Saves the 2D plot data in CSV format.
- **Export** | **Export to Gnuplot**. Exports the 2D plot to a Gnuplot script

and data file.

- Export | Copy to Clipboard. Copies the 2D plot data to the clipboard.
- Save Screenshot. Takes a snapshot of the 2D plot and stores it on disc in either PNG, BMP, or JPEG format.
- **Clear Selection**. (*Requires a current selection*).

The **Jitter** slider can be used to add random noise to the data point positions making it easier to identify overlapping data points. The **Auto Redraw** option continually toggles whether or not jitter is applied to the data points.

The size of the data point circles can be changed using the **Point Size** slider. The **Fill** option toggles whether the circles should be filled or not.

The **Connect** option can be used to connect the data points by drawing lines between them. The lines are connected using the order of occurrence in the spreadsheet. The **Sort by x** button is used to sort the spreadsheet by the x-axis descriptor (if needed).

Finally, bivariate analysis listing Pearson correlation coefficient and Spearman Rank Correlation Coefficient, Mean Squared Deviation, and Root Mean Squared Deviation (see Appendix XV: Statistical Measures for more details) is provided for the selected descriptor.

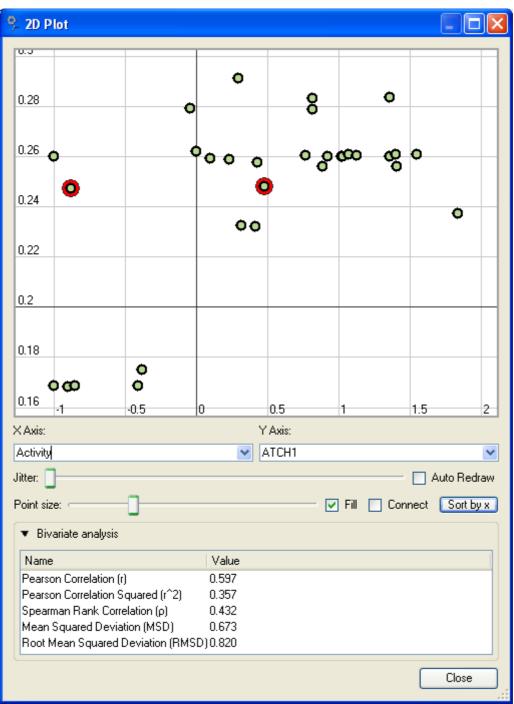


Figure 147: 2D Plot dialog.

Correlation Matrix Dialog

Another useful tool for inspecting and pruning numerical descriptors is the **Correlation Matrix** dialog (see Figure 148), which can be invoked by selecting

Modelling | **Correlation Matrix**... or by clicking on the Table icon in the tool bar.

	Activity	ATCH1	ATCH2	ATCH3	ATCH4	ATCH5	ATCH6	ATCH7	ATCH8	ATCH9	AT	-
Activity		0.357	0.161	0.340	0.032	0.295	0.367	0.336	0.007	0.061		
ATCH1	0.357		0.618	0.975	0.059	0.733	0.880	0.806	0.008	0.131		-
ATCH2	0.161	0.618		0.641	0.024	0.298	0.494	0.249	0.007	0.095		
ATCH3	0.340	0.975	0.641		0.092	0.810	0.899	0.730	0.002	0.178		-
ATCH4	0.032	0.059	0.024	0.092		0.227	0.132	0.010	0.011	0.010		
ATCH5	0.295	0.733	0.298	0.810	0.227		0.857	0.549	0.000	0.198		
ATCH6	0.367	0.880	0.494	0.899	0.132	0.857		0.642	0.006	0.234		
ATCH7	0.336	0.806	0.249	0.730	0.010	0.549	0.642		0.004	0.126		
ATCH8	0.007	0.008	0.007	0.002	0.011	0.000	0.006	0.004		0.535		
ATCH9	0.061	0.131	0.095	0.178	0.010	0.198	0.234	0.126	0.535			
ATCH10	0.038	0.081	0.092	0.131	0.045	0.198	0.249	0.024	0.234	0.814		
DIPV_X	0.022	0.001	0.005	0.000	0.077	0.004	0.009	0.000	0.144	0.023		
DIPV_Y	0.054	0.004	0.023	0.001	0.030	0.132	0.034	0.044	0.000	0.046		
oipv z	0.009	0.013	0.139	0.010	0.001	0.001	0.000	0.003	0.011	0.010	>	~
Correlation m	ieasure:	Pearson	CC square	d, r^2 💌	Zoom fac	tor: 1.00	<u> </u>				-0	כ
Coloring/pru	ning tresh	old, r^2:	0.50]		Gradien	t coloring	~		
escriptors:	ATCH8 /	ESDL1, M	leasures: r	= 0.429, r^	2 = 0.184							

Figure 148: Correlation Matrix dialog.

When invoking the Correlation Matrix dialog the squared Pearson correlation coefficient (r^2) between all pairs of numerical descriptors is shown in the table. From the **Correlation measure** combo box it is also possible to select the non-squared Pearson correlation coefficient (r).

Items with a correlation coefficient above a user-defined threshold (**Coloring/pruning threshold**) can be colored for quick inspection of important descriptors. Using the **Gradient coloring** scheme, a color gradient is shown ranging between low (yellow) and highly (red) correlated entries. Notice: if the non-squared Pearson correlation coefficient measure is used, the absolute value of the entries is compared with the threshold value. The other coloring scheme, **Threshold coloring**, only highlights (red color) entries with values higher or equal to the threshold value. For both coloring schemes, invalid or constant descriptors are indicated by a dark-gray color.

The **Coloring/pruning threshold** is also used when pruning descriptors.

After setting the threshold value it is possible to prune descriptors by pressing the **Prune Descriptors...** button. Afterwards, an overview of the descriptors selected for pruning is presented (see Figure 149). The descriptors selected for pruning are identified in the following manner: First, all invalid or constant descriptors are automatically selected to be pruned. Second, for each descriptor all other descriptors that have a correlation coefficient equal to or above the **Coloring/pruning threshold** are removed (the descriptors are inspected in the order of occurrence shown in the Correlation Matrix table).

Notice: prediction columns are shown in the Correlation Matrix table but they are not included in the pruning procedure.

😤 Prune Descriptors 🛛 🔀
Select descriptors to prune
Number of descriptors selected: 15
Name
ATCH3
ESDL2
ESDL4
ESDL7
ESDL8
ESDL9
MOFI_Y MOFI_Z
NSDL10
NSDL7
NSDL8
NSDL9
PEAX_X
S8_1CY
SURF_A
Select All Invert Selection Clear
Remove Selected Descriptors from Dataset Cancel

Figure 149: Pruning descriptors using selected correlation coefficient threshold.

From the **Prune Descriptors...** dialog it is possible to manually select which descriptors to prune. To remove the pruned descriptors from the dataset simply press the **Remove Selected Descriptors from Dataset**.

For datasets containing a lot of numerical descriptors it can also be advantageous to zoom out and only focus on the coloring of the table entries indicating regions with high or low correlation. To zoom in or out, simply use the **Zoom factor** spin box or slider and the table entries will resize using the current zoom setting. Finally, the table entries can be copied to the clipboard by pressing the **Copy to Clipboard** button.

13.24 3D Plots

To invoke the **3D Plot** dialog box, select **Visualization** | **3D Plot** from the main menu, or press the 3D plot icon on the toolbar.

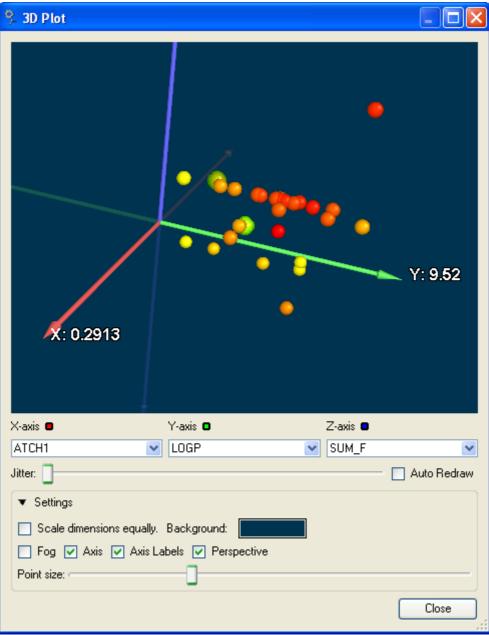


Figure 150: The 3D Plot dialog box.

The 3D Plot dialog box plots the three descriptors (or numerical predictions) which are specified from the combo boxes at the center of the dialog box. The

Jitter slider can be used to add random noise to the data point positions making it easier to identify overlapping data points. The **Auto Redraw** option continually toggles whether or not jitter is applied to the data points.

Navigating in the 3D View

The following mouse actions are available in the 3D world:

Function	Action
Zoom	Press both mouse buttons and moving up and down.
	Use scroll wheel.
	Use shift and left mouse button.
Free Rotation	Drag mouse cursor while holding down left mouse button.
Drag Rotation	Drag mouse (left mouse button down) while holding mouse over a data point. This will force the data point to follow the mouse cursor.
Translation	Drag mouse cursor while holding down right mouse button.
Show Context Menu	Click and release right mouse button.

All rotations are centered about the rotational center which can be changed using the context menu (see below).

The context menu offers the following options:

- **Zoom to Fit**. Scales the 3D objects to fit the window.
- **Zoom Out**.
- **Zoom In**.
- Look Down Z-Axis.
- Set as Pivot Point (rotational center). (Requires the mouse to hover on a data point). The selected data point will be the center for all mouse rotations.
- **Clear Selection**. (*Requires a current selection*).

 Save Screenshot. Takes a snapshot of the screen and stores it on disc in either PNG, BMP, or JPEG format.

By clicking on the **Settings** toggle box, it is possible to adjust the visual appearance. The following options are available:

- Scale dimensions equally. If the dimensions are scaled equally, the units are the same on each axis: therefore, if a selected descriptor spans a smaller interval than another descriptor it may be difficult to see its variations. By default all dimensions are graphically normalized to equal sizes in 3D space.
- **Background**. Sets the background color of the 3D view.
- **Fog**. Enables depth cuing by fading distant objects.
- Axis. Toggles the visualization of the axes on and off.
- Axis Labels. Toggles axis labels on and off.
- Perspective. When perspective is enabled, distant objects appear smaller than objects closer to the viewer. When disabled, objects appear the same size independent of the distance from the viewer (this is sometimes referred to as *orthographic projection*).
- Point size. Sets the point size. Notice: If the point size is set to the minimum value, data points will no longer be drawn as spheres made of polygons, instead each data point will be drawn as a pixel point. This is much faster for large datasets. The plotter will automatically default to this drawing mode for datasets with more than 10,000 points.

Notice that it is possible to select a data point in the 3D view by clicking on it. The selection also selects the corresponding row in the spreadsheet. This makes it possible to easily remove outliers by graphically inspecting a dataset. It is not possible to select data points if the **Point size** is set to minimum size. Further, selections made in the spreadsheet automatically selects the corresponding data points in the 3D view.

13.25 Similarity Browser

A common data modelling task is to identify data points which are similar (in some sense) to a given element, e.g. sometimes it can be useful to focus on one or more specific data points and find other data points that are either similar or different.

In particular, the **Similarity Browser** dialog can be used to inspect/screen a compound database for compounds similar to one or more reference ligands. Here, the similarity can be based on molecular descriptors calculated using the built-in **Descriptor Calculation Wizard** (see Chapter 14 for mored details) or

using other third-party software.

The Similarity Browser makes it possible to:

- Find data points (where the data points corresponds to the rows in the dataset) that are similar to the current selected data points.
- Rank an entire dataset according to its similarity to one or more data points, and create a new column with the rankings.
- Choose different measures of 'similarity' (e.g., Euclidean distance or Tanimoto coefficient) on all or on a subset of the descriptors.
- Find similar data points in another dataset than the currently chosen.
- Find data points that are different from the currently selected data points.

How To Use The Similarity Browser

The **Similarity Browser** is invoked by choosing **Modelling | Similarity Browser...** or by using the keyboard shortcut **CTRL+B**.

This will open a new window, with the **Similar Rows** tab chosen.

1	Similarity	Browse	r					×		
ſ	Similar Rows	Refer	ence Data	set and Me	easure					
	Rows similar to the current selection: Displa									
	[Similarity]	Compou	Activity	ATCH1	ATCH2	ATCH3	ATCH4			
	0	A10	0	0.2621	-0.1435	0.1007	-0.5146			
	1116.37	A5	-0.88	0.2473	-0.1403	0.0876	-0.4688			
	1363.23	B13	0.92	0.2602		0.0928				
	1793.98 2222.1	B8 G2	1.02 -0.38	0.2601 0.175	-0.1466 0.0408	0.092 -0.0055	-0.1618 -0.098			
	2222.1	u2	-0.30	0.175	0.0400	-0.0000	-0.030			
	< <u> </u>]					>			
	🛃 Automal	tic refresh	when sele	ction chang	ge R	efresh				
	Show Mos	t similar (fi	ed numbe	r) 🔽 Co	unt: 📘	٢				
	Create columr	n with scor	<u>es</u>				Close			

Figure 151: Similarity Browser dialog.

When a new row is selected in the current dataset, the **Similar Rows** list view will be updated with the data points that are most similar to the current selected rows. Notice that one or more rows can be selected in the current dataset - for multiple rows the similarity calculation depends on the settings specified on the **Reference Dataset and Measure** tab page.

The list with similar rows is automatically updated whenever the selection changes. If this is undesirable, (for instance when working with very large datasets), turn off the **Automatic refresh when selection change**. The list may then be manually updated by pressing the **Refresh** button.

Notice that a row is considered to be selected if it contains one or more selected cells (it is not necessary to select all cells in a row - and selecting multiple non-connected cells in the same row also just counts as one selection).

Initially when the **Similarity Browser** is opened, it shows the five most similar rows for the current dataset. It is possible to change this behavior using the **Show [Most Similar (...)]** drop-down combo box. It is possible to show either all rows, a fixed number of rows, or a percentage of all rows in the dataset.

Per default, the **Similarity Browser** will list similar rows from the current dataset (using a Euclidean distance measure). These settings can be changed from the **Reference Dataset and Measure** tab.

It is also possible to calculate a similarity score for every single entry in a dataset, and add it as a new column. This is done by pressing the **Create columns with scores...** button. After choosing a name for the new column, the column will be added to the reference dataset.

When the **Similarity Browser** updates the list view, all columns from the reference dataset are shown. Often this is more information than is needed. By using the **Display** drop-down button in the top-right corner, it is possible to choose to view only a subset of the columns. The following choices are available:

- **All rows** all rows are displayed
- Textual and measure rows all textual rows and all rows that the similarity measure currently use are shown.
- Measure rows Only the rows that the similarity measure currently use are shown.
- Custom Shows a list of descriptors making it possible to choose manually. This menu can also be invoked by using the context menu (click with right mouse button) on the list view.

Customizing the Similarity Browser

The **Reference Dataset and Measure** tab makes it possible to customize the Similarity Browser.

📕 Similarity Browser 🛛 🔀
Similar rows Reference Dataset and Measure
- Show similar rows from
Select dataset: Train60
Select subset: All
Similarity Measure
Measure: Euclidean Distance Squared 💌
For multiple selections: Use mean value
Descriptors used when calculating similarity
Number of descriptors selected: 53
Descriptor
R1
R2
R3
R4
R5
Select All Invert Selection Clear
Create column with scores Close

Figure 152: Customizing Similarity Browser settings.

Per default the rows listed on the **Similar Rows** tab are calculated from the *current* dataset – that is, the dataset currently being displayed and holding the current selection in the main application window.

It is possible to show rows from another dataset by selecting it from the **Select dataset** drop-down box. It is also possible to only work with a subset of the chosen dataset by using the **Select subset** drop-down box.

The similarity measure used is chosen from the **Measure** drop-down box. The measures are described in detail in the 'Similarity Measures' section below.

Multiple Selections

If only a single row is selected on the currently displayed dataset, the similarity measure between the chosen descriptors from this row and all rows in the selected dataset is calculated. If multiple rows are selected, the behavior

depends on the settings for the **For multiple selections** drop-down combobox. The following choices are possible:

- Use mean value. For each row in the chosen reference dataset, the similarity is calculated to each of the rows in the multiple selection. The mean of these similarity values is calculated for each row in the reference dataset. (This means that if five rows are selected in the current dataset, we will calculate five similarity values for each row in the *reference* set. The mean of these five values is the value displayed in the [Similarity] column on the Similar Rows tab.)
- Use minimum value. Same as above, except the lowest of the similarities calculated for the multiple selected rows is used.
- Use maximum value. Same as above, except the highest of the similarities calculated for the multiple selected rows is used.

Choosing Descriptors

The last group (**Descriptors used when calculating similarity**) shows which descriptors are taken into account when calculating the similarity values. For a descriptor to appear on this list, it must exist in both the current dataset and the reference dataset specified at the top of the dialog. It is valid to set the reference to be the same as the current dataset, in which case all descriptors in the dataset are shown (except textual, invalid, and reserved descriptors).

Notice that columns are matched between two dataset based on their names – the actual order of the columns does not matter.

Similarity Measures

The following similarity measures are available in the Data Analyzer:

Euclidean Distance: The Euclidean Distance between two data points x and y in n-dimensional space (where n is the number of numerical descriptors chosen in the wizard):

$$d(x, y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

Euclidean Distance Squared: This measure is the same as the Euclidean Distance measure above except that the square root is omitted.

$$d(x, y) = \sum_{k=1}^{n} (x_k - y_k)^2$$

Manhattan Distance: The Manhattan Distance summarizes the absolute differences between two records with *n* numerical descriptors. If all the numerical descriptors are binary, the Manhattan Distance equals the number of bits that are different between the two records.

$$manhattan(x, y) = \sum_{k=1}^{n} |x_k - y_k|$$

Cosine Similarity: The Cosine Similarity measure returns the cosine of the angle between the data points x and y, i.e., if cos(x,y) = 1, the angle between x and y is 0 degrees and x and y are proportional. If cos(x,y) = 0 the angle between x and y is 90 degrees, which means that x and y are orthogonal.

$$\cos(x, y) = \frac{x \cdot y}{\|x\| \|y\|}$$

Tanimoto Coefficient: The Tanimoto Coefficient (also referred to as the Extended Jaccard Coefficient) is defined as:

$$tanimoto(x, y) = \frac{x \cdot y}{\|x\|^2 + \|y\|^2 - x \cdot y}$$

If all the numerical descriptors are binary, the Tanimoto Coefficient is the proportion of the 1-bits which are shared between data record x and y.

13.26 Data Transformation Dialog Box

The **Data Transformation** dialog box is a tool for transforming existing columns and/or creating new columns from existing ones. The dialog box allows the user to specify an algebraic transformation and apply it to one or more columns. To invoke the dialog box select **Modelling** | **Transform Data...** or use the **CTRL+D** keyboard shortcut.

The Data Transformation dialog box is useful for changing the units of a column, or for creating new derived columns from existing ones – for instance it might make sense to try out multiple linear regression on a set of descriptors where new descriptors have been added by transforming existing ones (e.g. by squaring the values).

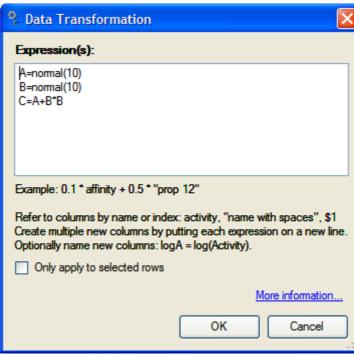


Figure 153: The Data Transformation dialog.

The upper half of the dialog is occupied by a text area named **Expression(s)**. Each line in the text area counts as one single expression.

To transform an existing column, use its name on the left side of the expression, e.g.:

```
Activity = log(Activity)
```

This will replace all values in the 'Activity' column with their natural logarithm. (If the **Only apply to selected rows** check box is checked only rows that are part of a selection in the spreadsheet will be affected)

To create a new column simply use a non-existing name on the left side of the expression, e.g.:

NewActivity = log(Activity)+5

If a 'NewActivity' column does not exist, it will be created.

It is also possible to refer to columns by their header index instead of their name, e.g.:

```
Sum = $1+$2+$3+$4
```

creates a new column 'Sum' (if a 'Sum' column does not already exist) containing the sum of the first four columns.

Notice that column indices are 1-based (the first column is \$1, not \$0)

It is also possible to create 'anonymous' columns, by omitting the equal sign:

\$1*\$2

will create new column with the sum of the first and second column. The system automatically chooses an unique name for the new column.

If a column name contains spaces, it is necessary to enclose the column name in quotes:

Diff = "Hydrogen Donors"-"Hydrogen Acceptors"

Data Transformation Syntax

The algebraic parser understands the following operators:

+,-,*,/,^: standard arithmetic operators. '^' is the power operator.

<,>,<=,>=,!,==,!=,&&,||: boolean operators (numbers are interpreted as boolean values as follows: 0 is *false*, everything else *true*).

cos(arg), **sin**(arg): the argument is specified in radians.

exp(arg), **ln**(arg), **log**(arg): **ln** is the base-e logarithm, and **log** is the base-10 logarithm.

rand(max): returns a uniform distributed number in the interval (-max;max).

normal(var): returns a number from a zero-centered normal distribution with variance 'var'.

abs(arg): returns the absolute (numerical) value of 'arg'.

sigmoid(arg): returns the sigmoid function value of 'arg'.

Min(A,B): returns the minimum of A and B.

Max(A,B): returns the maximum of A and B.

If(condition, ifTrue, ifFalse): evaluates a condition. If the condition is true (different from 0), the function evaluates and returns the 'ifTrue' statement, otherwise 'ifFalse' is returned.

Step(A): returns 0 if A < 0.5 and 1 if A >= 0.5.

Sign(A): returns -1 if A < 0 and 1 if A >= 0.

Refer to columns by their name or by their index (using the \$id syntax). Enclose columns names containing spaces in quotes. The algebraic parser is not case sensitive.

13.27 Exporting Datasets and Derived Regression Models

To export datasets in **Text CSV** format, select **File** | **Export Dataset...** or **Export Dataset...** from the dataset context menu in the **Workspace Explorer** (by right-clicking on a specific dataset). If one or more *predictions* are present in the dataset, they are automatically included in the exported file.

Predictions can be excluded by toggling off the **Include predictions** option in the **Export Dataset...** dialog. Notice that predictions included in **Text CSV** files are parsed as numerical descriptors and not as predictions when imported in the Data Analyzer - the *Molegro Data Modeling* format (MDM) should be used if information about predictions (e.g. name of model used in prediction, evaluation procedure used, descriptors used in model, correlation coefficient, etc.) should be saved.

The **Export Workspace...** dialog can be used to export all (or a selection of) datasets, regression models, and predictions available in the workspace (see Figure 154). Notice: The predictions are not shown in the list since they are associated with the datasets.

🧏 Export Workspace 🚺	<
Workspace	
 Models [2/2] Model1 Model2 Datasets [1/1] selwood [31 records] 	
Export Cancel	
Figure 154: Export Workspace dialog: Select	

Figure 154: Export Workspace dialog: Select which models and datasets to export.

The **Export Workspace** dialog is invoked by selecting **File** | **Export Workspace...** Alternatively, the **Export Models** dialog box can be used if only regression models should be exported (in MDM format). The **Export Models** dialog box is invoked by selecting **File** | **Export Models...**

13.28 Workspace Properties

Workspaces can contain user-specified notes that can be edited using the **Workspace Properties** dialog box. The workspace title and notes will be stored when the workspace is saved.

🎭 Workspace	Properties	×
Workspace title:	Selwood	
Last saved:	not set	
🔽 Show proper	ies window when loading workspace	
-Workspace not	es	
[RT] New reg	ession model added	
	OK Cancel	

Figure 155: Workspace Properties dialog.

The **Workspace Properties** dialog box can be invoked from the **Edit Properties...** context menu on the **Workspace** item in the **Workspace Explorer** or from the **Edit** | **Workspace Properties...** main menu.

13.29 The Chemistry Module

The chemistry module extends the Data Analyzer with several features for working with molecular structures. These features include import of chemical data in the form of either SDF files or SMILES strings, the creation of 2D depictions of molecules, and depictions of molecules in the spreadsheet, in one or more grid views, or in the 2D plotter. By being able to inspect chemical structures visually in the Data Analyzer, it becomes much more easy to interpret and understand chemical data.

The chemistry module is designed to work with small (typically drug-like) organic molecules - it is not designed to work with large macro-molecules such as proteins.

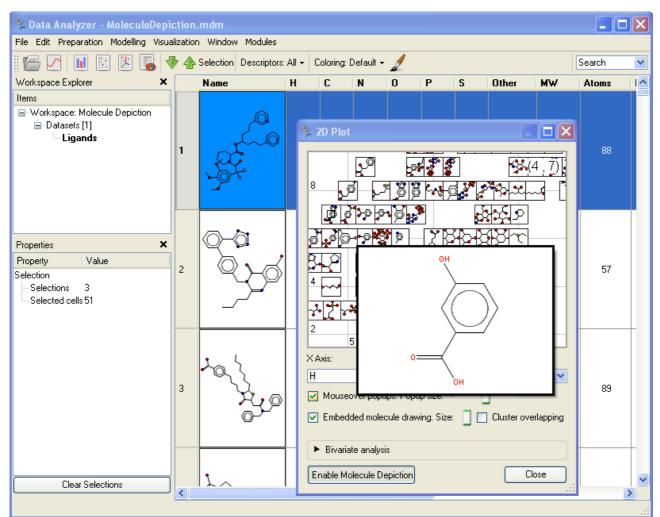


Figure 156: Molecule Depiction in the Data Analyzer.

Importing Chemical Structures

The Data Analyzer supports two ways of importing chemical structures. Either by importing structures from an SDF file or by importing SMILES descriptions. SMILES descriptions are ordinary text strings and can be imported the same way as other text files are imported in the Data Analyzer.

SDF Files

The Data Analyzer supports the parsing of Symyx SDF files (formerly MDL SDF files) which are typically used for storing larger libraries of small molecules. SDF files contain atom and bond (connectivity) information, together with optional 'data' fields for each compound. These data fields may contain arbitrary information, and they are imported as either textual or numerical columns in the Data Analyzer.

SDF files can be imported by choosing **Modules** | **Chemistry** | **Import from SDF...,** or by choosing **File** | **Import Dataset...** (and selecting the '*.sdf' file type), or by dragging and dropping an SDF file onto the spreadsheet window.

An SDF file may contain either three dimensional coordinates for each atom position, two dimensional coordinates (by setting the Z-coordinate to zero), or no coordinate information at all (in which case the coordinates in the file are all zero).

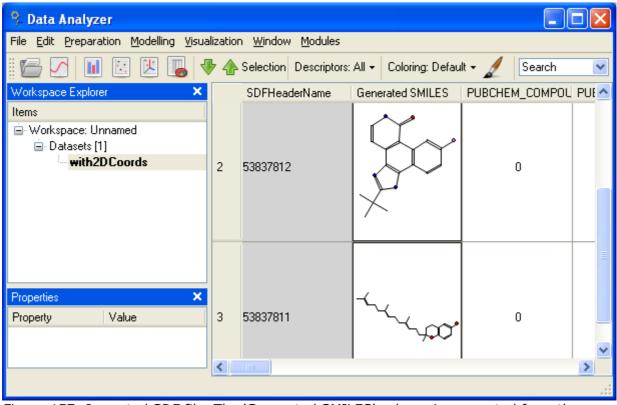
The Data Analyzer does not store the SDF file after it has been imported into a spreadsheet. Instead the molecular structure is represented and stored as a SMILES string. This conversion is done the following way:

- If the SDF file does not contain coordinates, the Data Analyzer will convert the structure to a SMILES string and use its internal layout engine to generate a 2D depiction of the molecule.
- If the SDF file contains 2D coordinates, the importer will ask the user whether to use these coordinates or use its internal layout engine to generate new coordinates. The default choice is use the 2D coordinates specified in the SDF file. Again the Data Analyzer will convert the molecular structure to a SMILES string. However, SMILES strings cannot contain atomic coordinates. Therefore, the Data Analyzer uses a slightly modified notation where the coordinates are appended to the generated SMILES string if the user chooses to preserve the 2D coordinates.
- If the SDF file contains 3D coordinates, it is possible to use the X and Y parts of the 3D coordinates to form a 2D depiction, or to use the layout engine in the Data Analyzer to create a new 2D depiction. The default method is to generate new 2D coordinates (this usually produces better depictions than projecting the 3D structure onto the X-Y plane).

In order to convert from the atom and connectivity data in an SDF file, the Data Analyzer uses its internal SMILES generator. Notice that a given chemical compound may have several equally valid SMILES representations. Several schemes have been proposed for generating unique (sometimes called canonical) SMILES strings for a given molecule, but currently the Data Analyzer does not use any of them. However, it does try to create a somewhat compact and human-readable SMILES string - for instance it will identify and base the SMILES string generation on the longest covalent chain in a given molecule.

The following restrictions apply when importing SDF files:

 The SMILES generator in the Data Analyzer will not take stereochemistry into account, even if it is explicitly given by an SDF file with 3D coordinates. Neither will the layout generator that generates 2D depictions recognize stereochemistry (for instance it will not be possible to recognize cis/trans conformations from the 2D depiction, though this is likely to change in future versions of the Data Analyzer).


- The files must be in V2000 connection table format.
- Disconnected structures (where a 'single' molecule has atoms not covalently connected to some of the other atoms) are not supported. If a single 'Molfile' entry in an SDF file contains multiple, disconnected structures, only the first of the structures is imported.
- The 'SText' and 'Properties' SDF fields are ignored. For storing additional data in an SDF file use the optional 'Data' fields.

After an SDF file has been imported, a new dataset will be present with the following columns:

SDFHeaderName - The name of the compound, as specified in the first line of the SDF header for each compound.

Generated SMILES - The smiles description generated from the structural information in the SDF file. The column is automatically set as a SMILES column, so it will appear as a graphical column with a 2D depiction of the molecule. Notice that it is possible to see and edit the generated SMILES string by double-clicking a cell.

Also any information in the optional 'Data' entry format will appear as either textual or numerical columns in the spreadsheet (multi-line data fields are concatenated into a single line).

Figure 157: Imported SDF file. The 'Generated SMILES' column is generated from the molecule data in the SDF file.

SMILES Strings

In order to create depictions from SMILES strings, simply import or create a text column with the SMILES strings. Any textual column in the Data Analyzer can be interpreted as containing SMILES descriptions. In order to specify that a given column contains SMILES descriptions, choose **Modules** | **Chemistry** | **Setup SMILES Column...** The column will change to the 2D molecule depiction style. Notice that it is possible to continue working with a SMILES column as any other text column – the text may be copied or edited by double clicking a cell in the column.

Working with Molecular Depictions

Whenever a SMILES column has been specified (either manually by choosing **Modules** | **Chemistry** | **Setup SMILES Column...** or automatically when importing SDF files) the column appears as a graphical column with 2D depictions of the molecules. It is possible to show the SMILES string instead of the graphical 2D depiction by toggling **Modules** | **Chemistry** | **Draw Molecules in Spreadsheet**. Working with SMILES strings in text mode makes it possible to see a larger portion of the spreadsheet, and molecules can still be inspected by opening one or more molecule depiction windows (introduced below).

It is possible to change the column size by dragging the cell separators in the row border. If the SMILES parser is unable to parse a SMILES string, the cell will appear with a red background and a short error message.

The context menu for a SMILES column offers a few items not found for ordinary spreadsheet columns (these items are also accessible from the **Modules** | **Chemistry** menu):

- Embed Coordinates in SMILES column. A SMILES string does not specify atom coordinates. After the Data Analyzer has parsed a SMILES string, it uses its internal layout engine to assign 2D coordinates to the structure. These coordinates are calculated whenever the Data Analyzer needs to draw a molecule, and are cached until the Data Analyzer is closed. The generated layout is normally not saved together with the dataset, so it needs to be regenerated when the files is loaded. By embedding the coordinates to the SMILES column, the 2D coordinate may be stored by appending them as a list after the SMILES string. This makes it faster to depict the coordinates when the file is subsequently loaded. This also makes it possible to preserve a 2D layout imported from an SDF file. A SMILES string with embedded coordinates may look like this: CCC {0,0;0.86,0.5;1.73,0}.
- Remove Coordinates from SMILES column. While it may be faster to embed the coordinates in SMILES column, this is not a standard extension, and may cause problems with other software programs when exporting the data. Use this option to remove any coordinates appended to the SMILES column before exporting the data.
- **Open New Molecule Depiction window**. This creates a new molecule depiction window (see the next section).

The Molecule Depiction Window

It is possible to create one or more Molecule Depiction windows for having multiple views of the molecules. A Molecule Depiction window offers more flexibility than the default visualization inside a spreadsheet column does.

A new Molecule Depiction Window may be opened by choosing **Modules** | **Chemistry** | **Open New Molecule Depiction window** or by choosing **Open New Molecule Depiction Window** from the context menu for a cell item in a SMILES column.

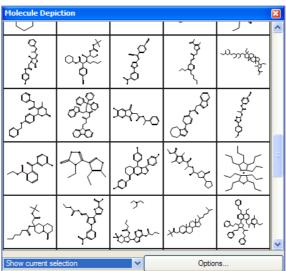
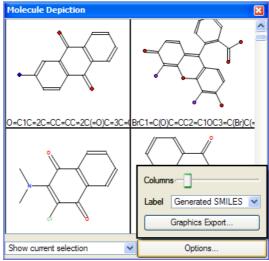



Figure 158: The New Molecule Depiction Window.

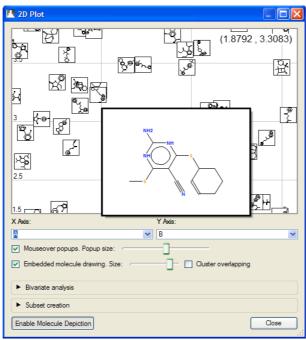
The combo box in the lower left corner toggles whether the window should show the current selection in the spreadsheet (**Show current selection**) or whether the molecules currently viewed should be held fixed (**Freeze current display**). It can be useful to freeze the view when comparing molecules (remember that it is possible to open multiple Molecule Depiction Windows).

Figure 159: The Options popup menu for the Molecule Depiction Window.

The **Options** menu makes it possible to customize the appearance of the molecule window. The **Columns** slider may be used to create a grid view of the selected molecules. The slider determines the number of columns of the grid. It is also possible to label the molecules by the information from any textual or numerical column in the spreadsheet by choosing a column in the **Label** combo box.

Finally, the **Graphics Export...** button can be used to export molecule depictions. It is possible to output either in vector graphics format (SVG) or in bitmap format (either PNG, JPG, or BMP). The bitmap images will be identical to the ones displayed in the molecule depiction window, and the size of the images will be same as displayed on screen. In contrast, images saved in SVG do not suffer quality loss when scaled – notice vector graphics depictions may look slightly different from the bitmap depictions though.

It is possible to store the images in three different ways:


• **Single image file with all molecules**. Generates one large image file with the molecules in the grid layout from the Molecule Depiction window.

• One image file for each molecule (filename by index). The Data Analyzer will prompt for an output directory, and the files will be stored as e.g. 0.PNG, 1.PNG, 2.PNG, 3.PNG.

• One image file for each molecule (filename by label). Same as above except that the files will be labeled with the name specified by their label (notice that this requires that the label names are unique. Also the filename is stripped for characters which are not standard letters, numbers or spaces, and truncated to a maximum file name length of 64 characters).

Depiction in the 2D Plotter

It is also possible to view molecules in the 2D plotter. In order to do this, first make sure that a SMILES column is specified in the spreadsheet and then select **Visualization** | **2D Plot**...

Figure 160: Molecule depictions in the 2D plotter. Here both popup and embedded molecule depictions are shown.

Whenever a SMILES column is present in the spreadsheet the default behavior for the 2D plotter is to enable molecule depictions. This can be toggled by clicking the **Enable Molecule Depiction** button in the lower left corner.

The 2D plotter offers two ways to visualize molecules: popup *visualization* which appears whenever the mouse hovers over a data point, and *embedded visualization* where the molecules are drawn directly on the graph canvas instead of the data points. Both may be used simultaneously.

Popup visualization may be toggled using the **Mouseover popups check box.** The size of the popup window may be adjusted using the **Popup size** slider.

Embedded visualization may be toggled using the **Embedded molecule drawing check box.** The **Size** slider adjust the size of the molecules drawn in the graph window.

Notice that when embedded molecules are drawn, the molecules may overlap. This is in particular likely to occur whenever one of the axis contains *discrete values* (such as hydrogen donor counts or number of rotatable bonds). It is possible to avoid this by enabling the **Cluster overlapping check box.** A cluster is marked by a red border frame.

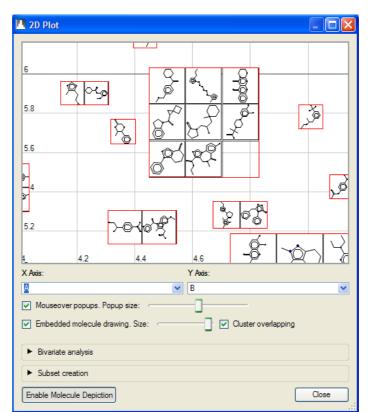


Figure 161: Example of clustered molecules.

A few notes about molecules in the graph plotter:

It is possible to select rows in the spreadsheet by clicking on the relevant molecule.

- A frame with a red background indicates that the SMILES parser encountered an error, and was unable to create a depiction.
- A frame with a yellow background indicates that Layout engine is working on creating a molecule depiction. This is a background task, and the molecules will appear automatically when they are ready.
- A frame with a grey background (and no molecule) indicates that the frame was too small to draw a useful depiction of the molecule. Grey frames may also occur when too many molecules are present at the same time on the graph canvas.

The Layout Engine and Internal Molecule Representation

The layout engine is responsible for creating a 2D depiction for a given molecule.

The layout engine and the molecule representation do have a few caveats:

 It is not always capable of layouting complicated ring structures and large molecules correctly.

- Stereochemistry is not supported. The layout engine will not properly depict cis or trans configurations even if they are present in the SMILES or SDF encoding. 'Up' and 'Down' bond types ('/' and '\') are treated as single bonds and the '@' chiral property is silently ignored.
- Hydrogens atoms are always implicit. Even if hydrogen atoms are explicitly stated in the SMILES string or as individual atoms in the SDF file, they are converted to a property of the heavy atom they are attached to. Normally, this is not a problem, but for instance dihydrogen ('[H][H]' as a SMILES string) cannot be expressed in this implicit model.
- Whenever a molecule is loaded from an SDF file, it is automatically converted into a SMILES string. If the molecule contains explicit hydrogens, the hydrogen count will be deduced from these. If no hydrogens are present, a simple valence model will automatically assign implicit hydrogens for the 'organic' elements (B, C, N,O, P, S, F, Cl, Br, I).
- Notice that when displaying the atom element names, if the size of the letters are below a given threshold, the layout engine will paint the atoms as small colored discs instead of displaying the element abbreviations.

The Molecule Cache

Whenever one or more molecule depictions are needed, the Data Analyzer will send the requests to a background task. The background task will create the depiction and cache it for the rest of the Data Analyzer session. Since the molecule depictions are only calculated when needed there is no initial delay when enabling molecule depiction or when importing SDF files, but there may be a delay if it is necessary to create a lot of depictions simultaneously (for instance in the 2D plotter). Since the molecules are cached, this delay only occurs the first time the molecules are displayed.

By default the molecules stays in a molecule depiction cache for as long as the Data Analyzer is running. Normally, the memory penalty for this is not very large, but it is possible to clear the memory cache in order to release the memory by choosing **Modules** | **Chemistry** | **Clear Molecule Depiction Cache**.

13.30 Getting Started

To explore the features of the Data Analyzer, the Selwood dataset (selwood.csv) is included in the examples directory (located in the MVD installation folder). The Selwood dataset represents a typical 2D-QSAR problem [SELWOOD 1990].

Another interesting application of the Data Analyzer, is to customize the reranking score or affinity measure listed in the **Pose Organizer**. For instance,

if binding affinity data is available for compounds that has been docked with MVD, it can be used to make a more specific affinity estimate. First, import the DockingResults.mvdresults (this file is a tab-separated file containing various numerical descriptors calculated by MVD) into the Data Analyzer. Second, add a new column to the spreadsheet and type in the affinity data (alternatively add the new data to the *DockingResults* file in a spreadsheet application beforehand). Third, create a regression model using the **Regression Wizard** and save the workspace in the *Molegro Data Modeling* format (MDM). Finally, you can estimate affinities of poses listed in the **Pose Organizer** using the new customized affinity measure by adding the new descriptor to the **Pose Organizer** (see Section 7.1 for more details).

14 Molecular Descriptor Calculations

The **Descriptor Calculation Wizard** offers an interface for calculating molecular descriptors for small molecules.

Molecular descriptors are sets of numbers which quantifies and characterizes certain characteristics of a molecule. Several classes of molecular descriptors exists. For instance *molecular weight* is a molecular descriptor which only depends on the molecular formula for a given molecule, but descriptors may also rely on connectivity information (2D or topological descriptors) or may rely on the actual 3D conformation of the molecule (3D descriptors).

Molecular descriptors are typically fast to calculate – for instance the topological CFDM descriptors (described later) can be calculated for more than 1000 compounds per minute. This makes molecular descriptors very useful for e.g. initial filtering or clustering of a molecule library.

MVD is able to calculate molecular descriptors for all types of structural files that can be imported into the GUI or read from a Data Source (e.g., PDB, Mol2, MVDML, SDF, ...). As of now MVD does not parse SMILES strings or other 2D representations of molecules, even though the molecular descriptors in MVD are dependent only on the 2D properties of the molecule.

14.1 Using the Descriptor Calculation Wizard

The descriptor calculation wizard can be invoked from the main menu, by choosing **Tools** | **Descriptors Calculation Wizard**.

The first step is to specify which molecules the descriptors should be calculated for. This selection interface is identical to the one in the Docking Wizard. It is possible to calculate descriptors for molecules in the current workspace or from a chosen Data Source.

9- D	escriptor Calculation		
Step 1/3 - Choose Molecules			
⊙ F	rom workspace		
	Cofactors [0/2] Proteins [0/2] Uigands [1/1]		
O F	rom external data source		
[Datasource	Setup	
	< Back Next >	Cancel	

Figure 162: Choosing molecules in the Descriptor Calculation Wizard.

When calculating molecular descriptors for a large set of molecules, it is always advisable to use the data source import, since importing large molecule libraries into the graphical user interface requires all molecules to be present in memory at once and will slow the system.

Most of the molecular descriptors in MVD can only be calculated for small molecules, and will automatically skip the calculation for proteins. Also notice that when importing molecules from an external data source in PDB format, only the ligands in the file are imported – protein, cofactors, and water molecules are ignores.

14.2 Descriptors in MVD

The next step is to choose which descriptors to calculate.

9, C	Descriptor Calculation	x
Step	2/3 - Choose Which Descriptors	to Calculate (76 chosen)
De	scriptors	Count
	Ligand Name	1
	SMILES	1
	Element Count	9
	Simple Descriptors Andrews Affinity Terms	12
	Chemical Feature Distance Matrix	
	Wiener Index	1
SN	IILES	
pos	ates a SMILES representation of a sible to visualize the molecule in t legro Data Modeller (MDM).	-
		Configure
	< <u>B</u> ack <u>N</u> ext >	Cancel

Figure 163: Choosing descriptors in the Descriptor Calculation Wizard.

The following categories of descriptors are available:

Category	Details
Ligand Name	Not a numerical descriptor, simply adds a column with the name of the compound to the output.
SMILES	Creates a SMILES string suitable for 2D representations. SMILES strings can be visualized as 2D molecule depictions in the Data Analyzer and in Molegro Data Modeller.
Element Count	Counts the number of atoms for a given element.
	By default H,C,N,O,P, and S are counted. All other elements are counted as 'other'.
	The elements may be customized using the Configure button.
Simple Descriptors	A set of common descriptors including molecular weight, hydrogen donor / acceptor count, and other simple descriptors.

	The available descriptors are:
	MW - Molecular Weight
	Atoms - Atom count (including hydrogens)
	HeavyAtoms - Atom count (excluding hydrogens)
	Rot - The number of rotatable bonds
	Rot2 - The number of rotatable bonds – but excluding any bonds which only rotates terminal hydrogen atoms.
	HD - The number of hydrogen donors
	HA - The number of hydrogen acceptors
	Rings - The number of rings
	Aro - The number of aromatic rings
Andrews Affinity Terms	An Andrews Affinity measure together with the terms needed for the calculation.
	These terms are described in: 'Functional goup contributions to drug-receptor interactions' PR Andrews, DJ Craik, JL Martin Journal of medicinal chemistry 27:1212, 1648-1657, American Chemical Society, 1984.
Chemical Feature Distance Matrix	The CFDM descriptors were created by Molegro and are described in details in the last section ('Chemical Feature Distance Matrix Descriptors') of this chapter.
	The CFDM descriptors are obtained by calculating the minimum, maximum, and mean topological distance between all pairs of chemical features. The topological distance is defined as the smallest number of covalent bonds between the two features.
	The following chemical features are investigated: hydrogen acceptors, hydrogen donors, positively and negatively charged atoms, and ring systems. Notice that a minimum charge of ± 0.2 is required for an atom to be considered charged (this threshold may be changed in the settings dialog).
Wiener Index	The Wiener Index is the sum of the topological distance between all heavy atom pairs.

14.3 Choosing an Output Format

The final step is to choose an output format.

output format.

The are two possibilities:

- **Open In Data Analyzer**. The resulting output is directly opened as a dataset in the built-in Data Analyzer for further analysis.
- Save as CSV text file. This will save the output as a tab-separated text file. This kind of output can be read by virtually all data processing software products.

14.4 Working with Molecular Descriptors.

There are several potential uses for molecular descriptors:

Similarity Screening

Molecular descriptors can be used to quickly screen a molecule library for compounds similar to one or more reference molecules – for instance the reference molecules could be compounds known to bind strongly to a target receptor under investigation.

It is easy to search for similar compounds in the Data Analyzer using the builtin Similarity Browser (described in Section 13.25).

Regression Models (QSAR)

If a quantitative measure is known (for instance the experimental binding affinity), these values may be added as a column in the Data Analyzer. It is

then possible to create a regression model, where the molecular descriptors are used as the independent variables and the measured quantity as the target variable.

The built-in Data Analyzer provides Multiple Linear Regression and Neural Networks (both with features selection and cross-validation) for building regression models, while the Molegro Data Modeller provides additional techniques for building regression models (including Partial Least Squares, Support Vector Machines, and dimensionality reduction techniques.)

Clustering and Classification

It is also possible to cluster or classify molecules (for example for predicting whether a compound is toxic or not) based on molecular descriptors. The Data Analyzer offers no direct clustering or classification techniques, but it possible to perform *binary* classification by training a MLR or Neural Network model on a column where the two classes have been numerically encoded (e.g. 1 for 'toxic' and 0 for 'non-toxic').

Other Uses

Molegro Data Modeller offers more advanced methods for clustering (including k-nearest neighbours and a density based clustering scheme), and methods for detecting outliers and creating diverse subsets. Since Molegro Data Modeller uses the same internal XML based storage format as the Data Analyzer in MVD it is easy to transfer data between these applications.

14.5 Chemical Feature Distance Matrix Descriptors

The CFDM descriptor is an unique set of descriptors created by Molegro with the following properties:

- Independence of the conformation of the molecule. They are based on the topological properties of the molecule.
- A small set of descriptors. Having a small number of descriptors makes it easier to avoid overfitting and chance correlation in the subsequent data processing.
- Based on chemical reasoning. The descriptors are based on properties which are believed to be chemically important, not on abstract graph teoretical measures.

The descriptors are calculated using the following method:

Settings for CFDM Descriptor	
Statistics Chemical Features	
Steric (ALL)	Default
Hydrogen Donors (HD)	Default
Hydrogen Acceptors (HA)	Default
Positively charged (POS)	Default
✓ Negatively charged (NEG)	Default
Rings (RING)	Default
Charge threshold 0.2	Default
Reset All to Defaults OK Apply	Cancel

Figure 165: The CFDM descriptors can be configured by pressing the Configure... button and choosing the tab Chemical Features in the Descriptor Calculation Wizard.

First, all heavy atoms in the molecule are classified in one or more of the following chemical classes:

Steric – All atoms belong to this class. By default this class is not included in the CFDM calculation.

HD – All atoms with hydrogen donor capabilities.

HA – All atoms with hydrogen acceptor capabilities.

POS – All atoms with a positive charge greater than the specified threshold (default 0.2).

NEG – All atoms with a negative charge lesser than the specified threshold (default -0.2).

RING – All atoms which are part of a ring system.

Then the *topological distances* between every pair of atoms are calculated. The topological distance is the minimum number of covalent bonds connecting two atoms. This way we can extract a list of the topological distance between any two pairs of chemical classes. For instance we will have a list of distances between any atom from the **HD** class to any atom in the **HA** class.

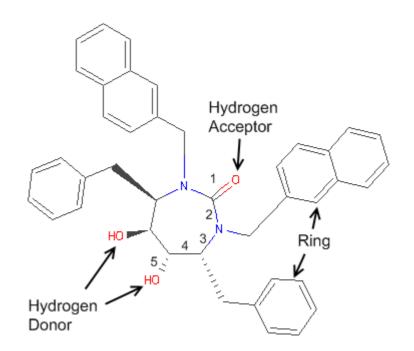


Figure 166: CFDM Calculation: the atoms in the molecule are assigned to one or more classes such as ring atom or hydrogen donor. Then all topological distances (the minimum number of covalent bonds) between any two classes are measured. For instance the minimum distance between the hydrogen acceptor atom and one of the hydrogen donor atoms is 5 as indicated on the figure. This information is summarized in a number of matrices.

This information may be summarized in a number of distance matrices. We can construct a matrix with minimum distances between any two classes, a matrix with mean distances, and a matrix with maximum distances:

	HD	HA	POS	NEG	RING
HD	3	5	0	0	1
HA		0	0	0	1
POS			0	0	0
NEG				0	0
RING					2

Table 3: Example of distance matrix.

This way we end up a total of $M \times (N \times (N+1)/2)$ numbers, where N is number of chemical classes included (per default 5: HD, HA, POS, NEG, and RING), and

M is the number of matrices (per default 3: MIN, MEAN, and MAX) giving a default of 45 descriptors. The organization of the descriptors into matrices is purely conceptual – they will be output as 45 numbers in a row vector.

Settings for CFDM Descriptor	×
Statistics Chemical Features	
Calculate minimum topological distance (MIN)	
Calculate average topological distance (MEAN)]
Calculate maximum topological distance (MAX)]
Calculate sum of topological distances (SUM)]
Reset All to Defaults OK Apply Cancel	
Figure 167: Choosing which matrices to include.	

5

Finally the descriptors are named using the following convention: for instance 'HA-POS-MEAN' means the mean topological distance between any HA and POS atom.

15 Molegro Virtual Grid

Molegro Virtual Grid is a framework for distributing docking runs. It can be used for running large jobs on multiple machines in a network, or for running smaller jobs using all the available cores on a single machine. The Virtual Grid consists of two components:

- *The Controller* is a graphical application which loads a job description, and distributes the individual job units to the available resources. The controller is also able to retrieve, combine, and filter the resulting data.
- *The Agent* is a small, lightweight application that runs in the background and listens for work requests. One agent must be installed on each computer on the virtual grid. The agents receive job unit descriptions and spawn the Molegro Virtual Docker application. Notice that Molegro Virtual Docker must be installed on the agent machine together with a valid license file.

Preparing a job for distributed execution can be done automatically by MVD for certain types of jobs. A requirement is that the docking setup uses a DataSource for loading ligands (see Chapter 5). A job unit is then created for each individual ligand in the DataSource. This is a setup typical used for virtual screening. MVD cannot automatically distribute all kinds of jobs (such as docking a single ligand against multiple receptors), but it is still possible to manually create a custom grid job file that can be distributed (see Section 15.11).

Molegro Virtual Docker is a single-threaded program. This means, that when running MVD on a computer with multiple cores (as nearly all modern CPUs features) only a single core is used. However, Molegro Virtual Grid is able to run an instance of Molegro Virtual Docker for each core on the computer. Therefore it may make sense to run Molegro Virtual Grid, even if only a single computer is part of the grid. No virtual grid license is necessary to run Molegro Virtual Grid on a single machine. Running Molegro Virtual Grid on multiple machines requires an extended license (more details about licensing can be found in Section 15.3 and Section 15.10).

We have designed Molegro Virtual Grid to be as easy as possible to install and operate. However, as with all networked software, it is important to understand a few things about network security and firewall setup.

15.1 Security Considerations

Data is transferred unencrypted between the agent and the controller.

This means that sensitive molecular data should never be transferred on the internet, since it is possible to intercept the data.

The Molegro Virtual Grid infrastructure is designed for a trusted private intranet network. If both your controllers and agents IP-numbers are in the range 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255, or 192.168.0.0–192.168.255.255, you are using a private network.

If you need to connect to Molegro Virtual Grid on another private network or over the internet, we strongly suggest using VPN to secure the connection (most likely this is already a requirement for accessing the private network). If you are in doubt whether your network is safe to use, please contact your network administrator. Molegro Virtual Grid use unencrypted traffic over TCP/UDP Port 45454.

15.2 Network and Firewall Issues

Molegro Virtual Grid automatically tries to detect other machines on the local network. This is done using UDP pings. If you are connecting to another network or using VPN, UDP might be blocked. In this case it is necessary to specify the IP-numbers or DNS names of the machines that make up the grid manually (see Section 15.8 for more information).

After the machines in the grid have been detected or manually specified, the actual communication between the controller and agent takes place via TCP traffic on port 45454. Notice that many modern operating systems provide some kind of firewall, which prevents software from receiving requests on arbitrary ports. The Virtual Grid Agent acts like a web server which listens for requests on port 45454. This means if a firewall is present, it must allow incoming connections for this port.

The actual details on how to configure firewall access depends on the specific operating system. For instance, on Windows Vista, the firewall can be configured using **Start Menu | Control Panel | Security | Allow a program though Windows Firewall** and choosing **Add port...** The following settings

can then be used: **Name**=Virtual Grid, **Port number**=45454, and **protocol**=TCP).

The physical network the machine belongs to may also have a firewall which prevents communication with other networks. If you need to communicate with a Molegro Virtual Grid on another network, we strongly suggest that you use VPN to setup the connection. Please see the previous section for more details.

15.3 Licensing

All licenses for Molegro Virtual Docker include a basic license for Molegro Virtual Grid.

The basic license makes it possible to run jobs on only one (1) agent at a time. It is possible to use any number of cores on this single machine, but only one physical machine can be used at a time. This machine can either be the same machine as Molegro Virtual Docker and the MVG controller is running on (this is useful in order to take advantage of the multiple cores), or another machine (for instance, the MVD GUI can be run on a laptop while the docking runs are executed on a more powerful desktop computer).

The extended license (which is licensed as an additional product) has no restrictions on the number of machines it controls. Together with the features in the MVG controller for combining and filtering docking results, it is possible to run very large docking runs.

15.4 Running the Agents

In order for a machine to participate in the grid and receive job units it must run the Molegro Virtual Grid Agent (and have copy of Molegro Virtual Docker together with a valid license installed). In order to start an agent on a machine, run the Virtual Grid executable:

On Windows this file is called 'virtualgrid.exe' and is located in the 'bin' directory of the Molegro Virtual Docker installation. On Linux and Mac the file is called 'virtualgrid'.

The agent writes a log file to its working directory while running. The filename for this log file is auto generated. A typical filename will be 'Log-24.11.2009-16.27.28.153.txt'. The log file is useful for detecting docking run errors and configuration errors. The log file can also be retrieved using a web-interface (see below).

15.5 The Agent GUI

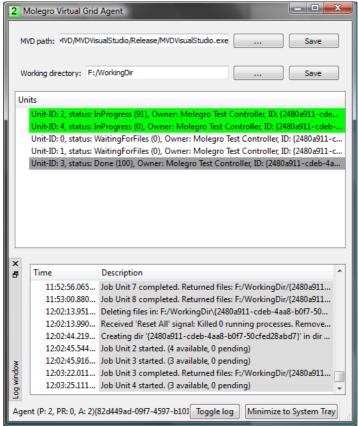


Figure 168: The Virtual Grid Agent GUI

In order for the agent to execute docking runs, it must know the location of the MVD executable. Either type a location in the **MVD path** settings box, or browse to the location using the ... button. If you manually type a location, use the **Save** button to make the setting persistent.

The agent also requires some space for temporary files (files received from the controller, or docking result files). Specify a directory as above.

After the MVD path and working directory has been specified, the agent is ready to receive jobs. It can be minimized to the system tray, by pressing the button in the lower right corner. The icon (both the application icon and the system tray icon) will show the number of job units being executed. If any errors or warnings are encountered, a notification message will be shown from the tray icon. Notice that the Growl notification system (<u>http://growl.info/</u>) must be installed for this to work on Mac OS X.

Figure 169: Example of an Agent running in the task tray on Windows Vista. The red icon indicates that an error has occurred. The number shows the number of executing job units. The green icon is the controller icon.

The **Units** list view shows the job units currently being executed (in green), job units that are pending execution (white), and job units that are completed, but not collected from the controller yet (grey). Completed job units will be removed from the list when the controller has collected the results.

15.6 Console Mode

Per default, the agent starts up as a graphical application, but it is possible to run it as a console application as well. This is done by specifying the command-line option '-nogui'.

The following command line options are available:

-nogui	Starts the agent without a graphical user interface. This makes it possible to run the agent in the background on systems without a graphical user interface - for instance running the agent on a remote Linux system using a shell. Notice, the web interface (see Section 15.7) makes it easy to see the status and error log of the running agent.
-mvdpath	Specifies the path of the MVD executable. Example: virtualgrid -mvdpath "C:\program files\Molegro\MVD\bin\mvd.exe". The path is stored by the OS, so it only necessary to set it once. The path can also be set in the GUI.

Specifies the directory the grid agent use for temporary files (files received from the controller, or docking result files).
Example:
virtualgrid -workingdir "C:\tempdir".
The path is stored by the OS, so it only necessary to set it once. The path can also be set in the GUI.
Specifies the process priority when launching MVD instances. Notice that the process priority is normally set by the controller. Specifying an agent priority overrides the controller settings. In most cases is not necessary to set this value. The process priority specifies how the OS schedules its time when multiple processes are running simultaneously. Per default, Molegro Virtual Grid runs processes with 'below normal' priority. This means, that when running other applications on a machine with a running agent, the other applications get more CPU time, resulting in a more responsive system. It is also possible to set the priority even lower, to 'lowest (idle)', for instance to make it possible to run the agent on a desktop computer which is also used for normal work - the running jobs will only get CPU time when no processes request it. Notice that we strongly recommend against setting the priority higher than 0. The jobs will most likely not run faster, but might instead make the operating system unresponsive.
The following values are available:
10 highest (real-time)
0 normal
-1 below normal
-10 lowest (idle)
Notice that different OS's may use other process priority values internally. The values are translated by the Virtual Grid agent, so -10 is always the lowest priority no matter what OS the agent is running on.

15.7 Agent Web Interface

The log file for the agent can be retrieved using a web browser. Open a browser and specify the IP-number or DNS-name of the agent on port 45454: e.g. http://192.168.1.101:45454.

This will show the status and the log of the running agent. It is also possible to obtain more verbose information by appending '/debug' to the URL: e.g. http://192.168.1.101:45454/debug. Notice that the log file is also stored as a text file in the 'workingdir' directory.

The web interface can be useful for obtaining information from an agent running without a GUI, or to check if the communication between machines is being blocked by a firewall.

15.8 The Virtual Grid Controller

The controller loads a grid job description, keeps track of the available resources (the agents), and distributes the individual job units to the agents. It is also able to combine and filter the results collected from the agents.

Normally the grid controller is started directly from the docking wizard or **Tools** | **Virtual Grid Controller** menu in MVD. It is also possible to start the grid controller using the command line using the '-controller' argument, e.g. 'virtualgrid.exe -controller'. Optionally a grid job can be specified as well: e.g. 'virtualgrid.exe myjob.gridjob -controller'. If the controller is started from the docking wizard, the automatically generated grid job will be loaded on startup.

The controller must be kept running in order to distribute jobs to the agents. If the controller is closed, no further jobs are sent to the agents. It is possible to restart the job after the controller has been closed. In order to do this start the controller (e.g. from MVD using the **Tools** | **Virtual Grid Controller** or using the command line 'virtualgrid.exe -controller'). The controller is able to resume the execution of pending units and completed units are not lost.

It is also possible to set a Controller ID. This is useful if several people are running Molegro Virtual Grid controllers on the same network. The Controller

ID is a simple text label that identifies the controller user to the rest of the network. For instance, when inspecting the running job units on an agent, the controller ID is listed as the owner.

C Molegro Virtual Grid Controller								
<u> </u>	e <u>A</u> gents	Job	<u>H</u> elp					
			Status Processing 2 units. Idle.	Job: F:/Gridtests/SampleDocking.GridJob Units: 0/85				
	Auto discover	Add a	gents manually)		Unit 0 1 2 3 4 5 6 7 7 8 9 10 Pause jo	Job ha In proj Pendir Pendir Pendir Pendir Pendir Pendir Pendir	is requested files. is requested files. gress. 19. 19. 19. 19. 19. 19. 19. 19	+
× P			Description Removed previous results: F://WorkingDir/(2480a911-cdeb-4aa8-b0f7-50cfed28abd7)/[04] 1					
Log window	 12:02:44.171 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/Unit 2 12:02:44.172 Sending Job Unit 3 to agent 192.168.1.152 (ID: {82d449ad-09f7-4597-b101-7a9f7710148e}). 12:02:44.174 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/Unit 3 12:02:44.176 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/[01] 1 12:02:44.177 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/[02] 1 12:02:44.178 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/[03] 1 12:02:44.179 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/[04] 1 12:02:44.180 Removed previous results: F:/WorkingDir/{2480a911-cdeb-4aa8-b0f7-50cfed28abd7}/[04] 1 							
						Toggle log	Minimize to System Tr	ay

Figure 170: The Molegro Virtual Grid Controller GUI.

On Figure 170, the left panel shows a list of the agents that are currently available for processing job units. If **Auto Discover** is enabled, this list will be automatically populated with agents that can be recognized on the local network. Not all network and firewall configurations allow automatic discovery of agents: in this case it is necessary to manually add agents: this is done using the **Add agents manually...** button. It is possible to enter a list with IP-numbers or DNS-names of computers to be added, or to load a list from a text file.

When an agent appears on the list, the following actions are available using the context menu:

- **Show status**. Display statistics about the currently running jobs.
- Reset agent. This terminates all running jobs on the agent, and removes all temporary files produced. Notice that this will also cancel all jobs and delete all files belonging to another user. Resetting the agent can be useful in order to cancel jobs on the agent or to clean up temporary files.

Remove from list. Removes the agent (useful for instance if the agent belongs to or is used by another user on the same network). If **Auto discover** is enabled, the agent might re-appear. Notice that the **Agents** menu contains an option for removing all non-responding agents.

The **Agent** menu offers a few additional options for setting the process priority: normally agents execute job units with a process priority just below the 'normal' priority. It is possible to adjust the priority to either 'normal', which is the typical priority user processes on an OS is assigned, or to 'idle' which means the job will only execute if no other process requests CPU time. Notice that the controller process priority may be overruled by the agent 'priority' command-line option.

The right panel shows the job units of the currently loaded job (only one job can be loaded at a time). Jobs created by the Docking Wizard are automatically loaded when the controller is started. It is also possible to load jobs using the **File** | **Open Job...** dialog, or by dragging a job description file onto the GUI. When **Start job** is pressed, the controller will begin dispatching units to the available agents. The **Remove job** button removes the currently loaded job from the controller. This action does not delete any files. All results are still stored on the controller computer. From the **Job** menu it is also possible to perform the **Reset job** action. Resetting a job sets all units to the 'pending' state. All produced log-files and results are deleted from disk and lost.

The following additional actions are available using either the context menu or the **Job** menu:

- **Show log file**. This will show a log file for the unit. This includes any log messages produced by running MVD on the remote agent.
- Retry unit. Occasionally units fail. This might be due to invalid molecule structures, MVD settings or network transmission errors. Since some types of errors (such as invalid molecule structures) can not be corrected, the controller will not automatically retry a failed unit. However, it is possible to use the 'retry unit' action to rerun the unit. Notice that the job menu also contains an option for retrying all noncompleted units.

15.9 Combining Results

A distributed job will create one 'MVD results file' and a number of poses for each job unit.

The Combine Results
Combine the results from 6 'MVD results' files.
Output filename: combined.mvdresults
Limit the number of poses
Maximum count: 1000
Filter by lowest 👻 values in RerankScore 👻 column.
OK Cancel

Figure 171: The interface for combining results.

Even though MVD is able to import multiple MVD results files at the same time using the Pose Organizer, larger jobs quickly become difficult to handle this way. Therefore the controller is able to combine multiple MVD results files into a single file. For larger runs (>1000 ligands) it is also possible to filter the combined results before importing them into the Pose Organizer. This is done by enabling **Limit the number of poses**, and choosing a desired number of poses. Normally the best choice would be to filter by lowest **RerankScore** or **PoseEnergy**, but it is possible to choose between all terms available in the MVD results file. Using filtering makes it possible to handle very large virtual screening runs.

When the combination and filtering has completed, a new combined MVD results file is written to the chosen location. It is possible to drag the yellow label directly onto the MVD GUI to inspect the poses with the Pose Organizer or manually import the results file in MVD.

15.10 License Management

As mentioned in the License section, the basic license makes it possible to run jobs on only one agent at a time. If an extended license has been obtained, install it by going to the **Help** menu, and choose **Install license** and specify the location of a valid Molegro Virtual Grid license file. Notice that is possible to see information about the current license by choosing **Help** | **About Molegro Virtual Grid**.

15.11 How Virtual Grid Works

The Docking Wizard in MVD makes it possible to create MVG jobs automatically when docking a DataSource with multiple ligands against a single protein

target. Other cases, such as docking a number of ligands against different receptors, require manual creation of MVG job file.

A MVG job is an XML file that describes a number of job units. The typical format is:

```
<Job id="{63647969-d2c5-496a-944a-3edcbac43d8c}" description="Job">
<Before uploadFiles="Unnamed complex.mvdml">
 DOCKSETTINGS maxIterations=1500;runs=10;...
 EVALUATORTYPE MolDockGrid
 EVALUATOR cropdistance=0;gridresolution=0.30;...
 OPTIMIZERTYPE MSE
 OPTIMIZER populationsize=50; cavity=true; ...
 LOAD "Unnamed complex.mvdml"
</Before>
<Unit id="0" uploadFiles="ZINC02000919.mvdml">Dock
[File=ZINC02000919.mvdml]</Unit>
<Unit id="1" uploadFiles="ZINC03775575.mvdml">Dock
[File=ZINC03775575.mvdml]</Unit>
<Unit id="2" uploadFiles="ZINC00006989.mvdml">Dock
[File=ZINC00006989.mvdml]</Unit>
. . .
. . .
<After>
DONE
</After>
</Job>
```

The Job id tag is a simple identifier. It can be any text string, but it must be unique. The **description** tag can be used for arbitrary remarks - it is not used by the Virtual Grid infrastructure. The grid job description consists of a <Before> element, any number of <Unit> elements, and an <After> element. The content of these tags are script commands for the MVD script parser. An agent will execute one unit per processing thread (per default an agent simultaneously execute one unit per physical CPU-core). Whenever an unit is executed on an agent, the script content in the **<Before>** element is executed, followed by the content in the particular **Unit** element being executed, finally followed by the content in the < After> element. The <Before> and <Unit> elements also specify an uploadFiles attribute, which list the files that must be uploaded to the agent before starting the job. The agent will automatically keep track of which files are produced by MVD and return them to the controller. The easiest way to create a custom grid job file is to setup a MVG job using the Docking Wizard and manually edit the saved script.

The grid job file must be saved in a file with a *.gridjob extension. All inputfiles must be located in a folder named 'InputFiles'. The 'InputFiles' folder must be located in the same folder as the grid job file. Notice that the 'InputFiles' cannot contain sub-folders - all molecule files must be located at the root of the 'InputFiles' folder.

When the job file is executed by the controller, two additional directories are

created. The 'JobState' directory contains one file per job unit. The extension of the file shows the current state of the job unit: e.g. "Unit1.Pending" is a job unit waiting for execution, and "Unit47.DoneAndCollected" is a job unit which has completed, and the results have been transferred from the agent back to the controller. The content of these files is the log file (including any log messages produced by MVD during the docking run).

The 'OutputFiles' directory contains the files that have been transferred from the different agents and back to the controller. This includes the molecular structure files (the poses) and the MVD docking results.

16 Help

16.1 PDF Help

The documentation for Molegro Virtual Docker is available as a PDF file. In order to invoke the PDF help using the built-in PDF reader, choose **Help** | **MVD Help** from the menu bar. The executable for the PDF reader can be specified in the Preferences.

16.2 Tip of the Day

A 'Tip-of-the-Day' dialog (see Figure 172) providing useful tips on how to use Molegro Virtual Docker is available.

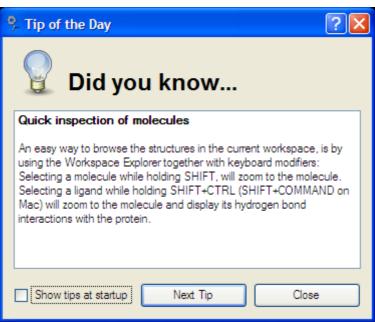


Figure 172: 'Tip of the Day' dialog.

The dialog can be manually invoked from the **Help** menu or automatically shown on startup. The automatic startup setting can be toggled in the dialog or from the general **Preferences** dialog.

16.3 The Molegro Website

The Molegro website also offers certain help facilities. Please visit <u>www.molegro.com</u> to see our FAQs and other information available.

16.4 Technical Support

Technical support is available for commercial licenses (industrial and academic) only. To obtain additional support, send an email to support@molegro.com.

17 Script Interface

17.1 Using the Script Interface

The default behavior for docking molecules in Molegro Virtual Docker, is to start the application, load and prepare the molecules, and invoke the **Docking Wizard**.

The **Docking Wizard** guides the user through the different settings for the simulation, and then creates a small script file which contains instructions on how the docking should proceed.

The default behavior for the **Docking Wizard** is then to spawn a script interpreter (in another process – the script interpreter and the main application runs completely separated) and execute the script.

However greater flexibility is possible by writing custom scripts: for instance this makes it possible to dock a number of ligands against several distinct targets. It is also possible to split large docking runs into several scripts and run them on different machines.

Notice: A MVD script job basically runs in a single thread. This means that as such, MVD will not utilize multiple CPU's (or dual-core processors). However by splitting the job into two (or more) jobs and running them concurrently all available CPU's can be utilized.

17.2 Running a Text-file Script

Text-file scripts are ordinary text files saved with the mvdscript file extension.

In order to run a text-file script, simply start MVD with the text-file script name as the argument:

Example: mvd docktest.mvdscript

This will spawn the Script Progress GUI with information on how the script parsing is progressing:

🗖 Molegro Virtual Docker Batchjob (Running)				
Batchjob started: to 4. maj 10:46:28 2006. Elapsed: 00:00:13 Skip ligand Finish (estimated): 10:50:58. Remaining: 00:03:45 Simple <<< Working path: c:/Program Files/Molegro/MVD2006/ScriptOutput Simple <<< Current ligand (1 / 1 runs) 5%				
Log Poses (current ligand) Poses (all) Graph				
TimeDescription10:46:29.304Found grid in workspace.10:46:29.304Setting evaluator init string:cropdistance=0;hbond90=true10:46:29.304Setting optimizer init string:cavity=true;popsize=50;scalingfa10:46:29.314The random seed used for this session is: 171009760010:46:29.314Optimizer: PopSize:50 ScaleF:0.5 PC:0.9 OffStrategy:1 ear10:46:29.314Evaluator: TorsionScheme:1 dampFactor:1 cropDistance:10:46:29.314Creating Docking Results file: c:/Program Files/Molegro/M10:46:29.344Docking ligand: XK2_26310:46:29.384Source Ligand was randomized. This will destroy its origina10:46:34.151Paused script.10:46:34.57Resumed script.10:47:06.357Evaluations #/s: 55.0888 [Accumulated: 2039] -	tyTerm:0.01 SW:0 ForceCa 0 [useEPenal] [useEIntra] IVD2006/ScriptOutput/Docki			
Status: Running.	Pause Stop batchjob			

Figure 173: Script Progress GUI.

Notice: MVD scripts need to have the .mvdscript file extension. Otherwise, the script file will not be recognized (and parsed) by MVD.

It is also possible to start a script job with no graphical user interface (without the script parsing progress dialog). This can done by using the -nogui command line argument:

Example: mvd docktest.mvdscript -nogui

Notice: If you intend to run background jobs on remote Linux/X11 systems, use the -nogui argument. Otherwise the system might kill the process when the user logs off (because the X11 server might be shutdown).

17.3 Examples of Common Script Jobs

This section contains some examples of common script jobs. Another useful way of exploring the MVD script syntax is to inspect the script files generated

by the **Docking Wizard**: these files are stored as ordinary MVD script files in the specified directory and can be opened using a standard text editor.

A complete list of commands can be found in Appendix XI: Script Commands.

Docking a Single Complex

```
// Init
DOCKSETTINGS maxIterations=1000;runs=1;MaxPoses=5
EVALUATOR cropdistance=0;hbond90=true
OPTIMIZER cavity=true;popsize=50;crossoverrate=0.9;keepmaxposes=5
// Dock
LOAD 3PTB.MVDML
RMSD ligand[0]
DOCK
```

Docking Multiple Complexes

```
// Init
DOCKSETTINGS maxIterations=1000;runs=1;MaxPoses=5
EVALUATOR cropdistance=0;hbond90=true
OPTIMIZER cavity=true;popsize=50;crossoverrate=0.9;keepmaxposes=5
// Dock
FOR $MVDML IN 3PTB,1HVR,1LIC,1TMN
    // $MVDML will be replaced by the appropriate value in the loop
    LOAD C:\BENCHMARK\$MVDML.mvdml
    RMSD ligand[0]
    DOCK
    NEW
ENDFOR
```

Splitting Docking Runs Into Multiple Runs

This script can be used to divide the workload between different machines.

```
// Init with appropriate settings first...
DOCKSETTINGS maxIterations=1000;runs=10;MaxPoses=5
EVALUATOR cropdistance=0;hbond90=true
OPTIMIZER cavity=true;popsize=50;crossoverrate=0.9;keepmaxposes=5
// For machine 1:
LOAD C:\BENCHMARK\1HVR.mvdml
IMPORT LIGAND[0-99] FROM DB.sdf
DOCK
// For machine 2:
LOAD C:\BENCHMARK\1HVR.mvdml
IMPORT LIGAND[100-199] FROM DB.sdf
DOCK
```

17.4 Running the Script Interface Interactively

MVD can also run in interactive mode.

In this mode the MVD application starts and waits for user input from the command line (i.e. it reads and writes from the standard input and output which can be piped).

To start MVD in interactive mode, use the following syntax:

Example: mvd -interactive

The purpose of the interactive mode is to allow scripting languages capable of writing to and from the standard input and output of a program to control the docking process. This can be useful for automating larger docking runs.

When in interactive mode, MVD will send an '[DONE]: <command>' after each command has been interpreted.

17.5 Running the Script Interface From Python

A small Python wrapper is provided in:

MVD/Scripting/Python/MvdWrapper.py

The wrapper encapsulates the various script commands in a small object, MVDWrapper.

The wrapper spawns a new MVD process when the object is instantiated and runs MVD in interactive mode to pass commands to it.

The process can be terminated by calling ${\tt exit}$ on it.

In order to use the wrapper, copy the MvdWrapper.py file to the same location as your Python-script (or install it in a globally accessible location) and import it at the top of you script.

Notice: The Python wrapper requires Python 2.4 (or above).

The following example is taken from:

MVD/Scripting/PythonWrapper/SimpleDockingTest.py

```
import os
import MvdWrapper
# create an output dir
outputPath = 'outputData'
complex = 'lhvr'
if (not os.path.exists( outputPath )):
    os.mkdir( outputPath )
if os.path.exists( outputPath ) and os.path.isdir( outputPath ):
    print 'Created outputPath: ' + outputPath
else:
    raise IOError, 'could not create path' + outputPath
```

Now start the wrapper... # Remember to change the path to the executable in the line below: mvd = MvdWrapper.MvdWrapper("C:/Program Files/Molegro/MVD/bin/mvdconsole.exe", gui=True) mvd.info("testing") mvd.random(123232) # set the seed mvd.cd(outputPath) # change to output path mvd.download(complex, complex + ".pdb") # download from pdb.org mvd.importFrom("All", complex + ".pdb") # import into workspace mvd.rmsd("ligand[0]") # set a ligand as a rmsd reference mvd.dock("") # start the docking mvd.exit()

Notice for Windows Users:

In order to use the Python wrapper you must install the "Python for Windows extensions" which can be downloaded from:

http://sourceforge.net/project/showfiles.php?group id=78018

Notice that you must download the version which targets your specific Python version. Also notice that in order to communicate through pipes with the MVD application be sure to instantiate with a reference to the 'MVDConsole.exe' instead of the standard 'MVD.exe' application. Use:

mvd = MvdWrapper.MvdWrapper("C:\Program Files\Molegro\MVD\Bin\MVDConsole.exe")

instead of: mvd = MvdWrapper.MvdWrapper("C:\Program Files\Molegro\MVD\Bin\MVD.exe")

18 Appendix I: MolDock Scoring Function

The MolDock scoring function (MolDock Score) used by MVD is derived from the PLP scoring functions originally proposed by Gehlhaar et al. [GEHLHAAR 1995,1998] and later extended by Yang et al. [YANG 2004]. The MolDock scoring function further improves these scoring functions with a new hydrogen bonding term and new charge schemes. The docking scoring function, E_{score} , is defined by the following energy terms:

$$E_{score} = E_{inter} + E_{intra}$$

where *E*_{inter} is the ligand-protein interaction energy:

$$E_{inter} = \sum_{i \in ligand} \sum_{j \in protein} \left[E_{PLP}(r_{ij}) + 332.0 \frac{q_i q_j}{4r_{ij}^2} \right]$$

The summation runs over all heavy atoms in the ligand and all heavy atoms in the protein including any cofactor atoms and water molecule atoms that might be present. The E_{PLP} term is a piecewise linear potential described below. The second term describes the electrostatic interactions between charged atoms. It is a Coulomb potential with a distance-dependent dielectric constant given by: D(r) = 4r. The numerical value of 332.0 fixes the units of the electrostatic energy to kilocalories per mole. To ensure that no energy contribution can be higher than the clash penalty the electrostatic energy is cut-off at the level corresponding to a distance of 2.0 Å for distances less than 2.0 Å. Notice that although the electrostatic energy contribution has the theoretically predicted

magnitude, the other energy terms are empirically motivated and the total energy does not necessarily correlate with the true binding affinity. The charges are set according to the scheme listed in Table 4. Metal ions are assigned a charge of +1 (e.g. *Na*) or +2 (e.g. *Zn*, *Ca*, *Fe*).

charge	ligand atoms	protein atoms
0.5	N atoms in $-C(NH_2)_2$	His (ND1/NE2)
		Arg (NH1/NH2)
1.0	N atoms in -N(CH ₃) ₂ , - (NH ₃)	Lys (N)
-0.5	0 atoms in -COO, -SO ₄ ,	Asp (OD1/OD2)
	-PO ₂ , -PO ₂ -	Glu (OE1/OE2)
-0.66	O atoms in $-PO_3$	
-0.33	O atoms in $-SO_3$	
-1.0	N atoms in $-SO_2NH$	

Table 4: Charge templates.

 E_{PLP} is a "piecewise linear potential" using two different sets of parameters: One set for approximating the steric (Van der Waals) term between atoms, and another stronger potential for hydrogen bonds. The linear potential is defined by the following functional form:

$$E_{PLP}(0) = A_0, E_{PLP}(R_1) = 0, E_{PLP}(R_2) = E_{PLP}(R_3) = A_1, E_{PLP}(r) = 0$$
 for $r \ge R_4$

and is linearly interpolated between these values. The parameters used here (see Table 5) were adopted from GEMDOCK [YANG 2004].

	A_0	A_1	R_1	R_2	R ₃	R_4
hydrogen bond	20.0	-2.5	2.3	2.6	3.1	3.6
steric	20.0	-0.4	3.3	3.6	4.5	6.0

Table 5: PLP parameters.

A bond is considered a hydrogen bond if one of the atoms can *donate* a hydrogen atom and the other atom can *accept* it. The atom types are assigned according to the scheme shown in Table 6.

type	atoms
acceptor	N and O (with no Hs attached)
donor	N and S (with one or more Hs attached)
both	O (with one H attached) or O in water molecules
nonpolar	all other atoms

Table 6: Hydrogen bond types.

The PLP hydrogen bond term mentioned above only depends on the distance between atoms. In order to take into account the directionality of the hydrogen bonding, the geometry of the hydrogen bond is examined and the following factor H_{factor} is multiplied to the PLP hydrogen bond strength:

$$H_{factor} = \Phi(\angle_{D-H-A}; 90^{\circ}; 150^{\circ}) \cdot \Phi(\angle_{H-A-AA}; 90^{\circ}; 100^{\circ}) \cdot \Phi(\angle_{D-A-AA}; 90^{\circ}; 100^{\circ})$$

Here AA (Acceptor Antecedent) denotes a heavy atom connected to the acceptor (A), D denotes the donor and H is the donated hydrogen atom. The ramp function Φ is defined as $\Phi(A;A_{min};A_{max}) = 0$ for $A \le A_{min}$ and $\Phi(A;A_{min};A_{max}) = 1$ for $A \ge A_{max}$ and is linearly interpolated between these values for $A_{min} < A < A_{max}$. If it is not possible to calculate one of these factors it is omitted. This is for example the case for hydroxyl rotors where the exact location of the hydrogen is not investigated during docking, and the two first factors cannot be calculated. The angle checks above were motivated by the approach taken by McDonald and Thornton [MCDONALD 1994].

 E_{intra} is the internal energy of the ligand:

$$E_{intra} = \sum_{i \in ligand} \sum_{j \in ligand} E_{PLP}(r_{ij}) + \sum_{flexible \ bonds} A[1 - \cos(m \cdot \theta - \theta_0)] + E_{clash}$$

The double summation is between all atom pairs in the ligand excluding atom pairs which are connected by two bonds or less. The second term is a torsional energy term, parameterized according to the hybridization types of the bonded atoms (see Table 7). θ is the torsional angle of the bond. Notice that this angle is not necessarily uniquely determined. The average of the torsional energy bond contribution was used if several torsions could be determined. The last

term, E_{clash} , assigns a penalty of 1000 if the distance between two heavy atoms (more than two bonds apart) is less than 2.0 Å. Thus, E_{clash} term punishes infeasible ligand conformations. Finally, if a ligand heavy atom is located outside the binding site region (defined by the search space sphere) a constant penalty of 10000 is assigned to the total energy (notice: this penalty scheme is only used for the grid-based version of the MolDock Score).

	θ_{0}	m	А
sp ² -sp ³	0.0	6	1.5
sp ³ -sp ³	Π	3	3.0
*sp ² -sp ²	0	2	3.0

Table 7: Torsional parameters.

Terms in the '.mvdresults' file

After MVD has predicted one or more promising poses using the MolDock score, it calculates several additional energy terms. All of these terms are stored in the 'DockingResults.mvdresults' file at the end of the docking run.

The 'rerank score' is a linear combination of these terms, weighted by the coefficients given in the 'RerankingCoefficients.txt'.

A '.mvdresults' file is not meant to be interpreted or inspected manually. Instead it should be opened in MVD (either by dragging it onto the workspace or by selecting 'File | Import Docking Results (*.mvdresults)...'. It is also possible to open the file in the Data Analyzer in order to create new regression models based on the energy terms in the file.

Textual Information	
Ligand	The name of the ligand the pose was created from.
Name	The internal name of the pose (a concatenation of the pose id and ligand name).
Filename	The file containing the pose.
Workspace	The workspace (.mvdml-file) containing the protein. (Notice: This entry appears in the header of the mvdresults file)
Run	When running multiple docking runs for each ligand, this field contains the docking run number.
Energy terms	

The following table explains the different terms in a '.mvdresults' file:

18 Appendix I: MolDock Scoring Function

(total)			
Energy	The MolDock score (arbitrary units). Notice that this value is always calculated using the non-optimized MolDock score (and hence may differ from the PoseEnergy below which may use interpolation on precalculated grids).		
RerankScore	The reranking score (arbitrary units).		
PoseEnergy	The score actually assigned to the pose during the docking. Notice that since the score is calculated by the scoring function chosen in the Docking Wizard, there may be small differences to the MolDock score reported in the 'Energy' entry (for instance when using the grid-based version of the MolDock score the grid interpolation may result in slighty different energies as compared to the non-grid MolDock score version)		
SimilarityScore	Similarity Score (if docking templates are enabled).		
LE1	Ligand Efficiency 1: MolDock Score divided by Heavy Atoms count.		
LE3	Ligand Efficiency 3: Rerank Score divided by Heavy Atoms count.		
Energy terms (contributions)			
E-Total	The total MolDock Score energy is the sum of internal ligand energies, protein interaction energies and soft penalties.		
E-Inter total	The total MolDock Score interaction energy between the pose and the target molecule(s).		
E-Inter (cofactor - ligand)	The total MolDock Score interaction energy between the pose and the cofactors. (The sum of the steric interaction energies calculated by PLP, and the electric and hydrogen bonding terms below)		
Cofactor (VdW)	The steric interaction energy between the pose and the cofactors calculated using a LJ12-6 approximation. <i>Notice: This term is not used by the MolDock score</i>		
Cofactor (elec)	The electrostatic interaction energy between the pose and the cofactors.		
Cofactor (hbond)	The hydrogen bonding interaction energy between the pose and the cofactors (calculated by PLP).		
E-Inter (protein - ligand)	The MolDock Score interaction energy between the pose and the protein. (Equal to Steric+HBond+Electro+ElectroLong below)		
Steric	Steric interaction energy between the protein and the ligand (calculated by PLP).		
HBond	Hydrogen bonding energy between protein and ligand (calculated by PLP).		
Electro	The short-range (r<4.5Å) electrostatic protein-ligand interaction energy.		
ElectroLong	The long-range (r>4.5Å) electrostatic protein-ligand interaction energy.		
NoHBond90	This is the hydrogen bonding energy (protein-ligand) as calculated if the directionality of the hbond was not taken into account. Notice: This term is not used by the MolDock score		
VdW (LJ12-6) Protein steric interaction energy from a LJ 12-6 VdW potential approx Notice: This term is not used by the MolDock score			

E-Inter (water - ligand)	The MolDockScore interaction energy between the pose and the water molecules.	
E-Intra (tors, ligand atoms)	The total internal MolDockScore energy of the pose.	
E-Intra (steric)	Steric self-interaction energy for the pose (calculated by PLP).	
E-Intra (hbond)	Hydrogen bonding self-interaction energy for the pose (calculated by PLP).	
	<i>Notice:</i> This is a non-standard term and is zero by default – it must be enabled by specifying the "internalhbond=true" option to the EVALUATOR initializer list in a MVDScript file or by enabling the 'Internal HBond' option in the Docking Wizard.	
E-Intra (elec)	Electrostatic self-interaction energy for the pose.	
	Notice: This is a non-standard term and is zero by default – it must be enabled by specifying the 'ligandes=true' option to the EVALUATOR initializer list in a MVDScript file or by enabling the 'Internal ES' option in the Docking Wizard.	
E-Intra (tors)	Torsional energy for the pose.	
E-Intra (sp2-sp2)	Additional sp2-sp2 torsional term for the pose .	
	Notice: This is a non-standard term and is zero by default – it must be enabled by specifying the 'sp2sp2bond=true' option to the EVALUATOR initializer list in a MVDScript file or by enabling the 'Sp2-Sp2 Torsions' option in the Docking Wizard. Also notice that only bonds that are chosen rotatable are taken into account when calculating the torsional terms for the ligand – and sp2-sp2 bonds are most often double bonds which per default are held fixed in the docking simulation.	
E-Intra (vdw)	Steric self-interaction energy for the pose (calculated by a LJ12-6 VdW approximation).	
	Notice: This term is not used by the MolDock score	
E-Solvation	The energy calculated from the implicit solvation model.	
	Notice: This energy term is considered to be an experimental feature only. Per default it is NOT calculated. In order to try this feature, the protein must be prepared by calling the 'prep solvation' command from the console. As of now, we recommend not to use it.	
E-Soft Constraint Penalty	The energy contributions from soft constraints.	
Static terms		
Torsions	The number of (chosen) rotatable bonds in the ligand.	
HeavyAtoms	Number of heavy atoms.	
MW	Molecular weight (in dalton).	
C0	Obsolete constant term. This value is always 1. (Older versions of the Data Analyser required an explicit constant column, in order to include a constant term in the fit – it is only included for backward compatibility)	
CO2minus	Number of Carboxyl groups in ligand.	
Csp2	Number of Sp2 hybridized carbon atoms in ligand.	
Csp3	Number of Sp3 hybridized carbon atoms in ligand.	
DOF	Degrees of internal rotational freedom. As of now this is the number of chosen rotatable bonds in the ligand and is thus equal to the 'Torsions' term. It is supposed to reflect how many rotational degrees of freedom are lost upon binding. Future work may include a more advanced model where the actual conformation is	

	inspected in order to determine whether rotational degrees of freedom are lost.
N	Number of nitrogen atoms in ligand.
Nplus	Number of positively charged nitrogen atoms in ligand.
ОН	Number of hydroxyl groups in ligand.
OPO32minus	Number of PO ₄ ² groups in ligand.
OS	Number of ethers and thioethers in ligand.
carbonyl	Number of Carbonyl groups in ligand.
halogen	Number of Halogen groups in ligand.
Other terms	
RMSD	The RMS deviation from a reference ligand (if available).

19 Appendix II:PLANTS Scoring Function

The PLANTS scoring function (PLANTS Score) used by MVD is derived from the PLANTS scoring function originally proposed by Korb et al. [KORB 2009].

The MolDock scoring function further improves these scoring functions with a new hydrogen bonding term and new charge schemes.

The docking scoring function, $E_{plantsscore}$, is defined by the following energy terms:

$$E_{plantsscore} = f_{PLP} + f_{clash} + f_{tors} + c_{site} - 20$$

where f_{PLP} is a piecewise linear potential taking into account protein-ligand interactions. The PLP potential is similar to the one used by MolDock Score but here more interaction types (repulsive, buried, nonpolar, hydrogen bonding and metal) are taken into account whereas MolDock Score only has two – one for steric interactions and one for hydrogen bonding interactions. The PLP interaction parameters used by MVD are: $w_{plp-hb} = -2$, $w_{plp-met} = -4$, $w_{plp-bur} =$ -0.05, $w_{plp-nonp} = -0.4$, $w_{plp-rep} = 0.5$, $w_{tors} = 1$ (see [KORB 2009] for details).

The ligand clash and torsional potentials, f_{clash} and f_{tors} take into account internal ligand clashes and torsional contributions for the flexible bonds in the ligand (see [KORB 2009] for specific implementation details).

The c_{site} term specifies a penalty that is calculated if a ligand conformation (pose) is located outside the binding site (defined by the search space sphere). For each heavy atom located outside the binding site, a constant value of 50 is added to the c_{site} term. In addition, a quadratic penalty is added if the ligands reference point (i.e. the origin of the ligand's coordinate system) is located outside the search space sphere [KORB 2009].

The -20 energy offset was originally needed for the PLANTS search algorithm

and is included here in order for PLANTS scores to be comparable with the original PLANTS implementation.

Implementation Details

The implementation of the PLANTS scoring function in MVD differs from the original PLANTS implementation in the following two cases:

- 1) The original PLANTS implementation ignores default parameters for the Tripos torsional potential when handling 'dummy' or 'S.o2' typed atoms. This means that contributions for these atom types are not taken into account in the torsional potential. By default, the MVD implementation takes all atom types into account (non matching types will use default settings as described by Clark et al. [CLARK 1989].
- 2) The penalty term, *c*_{site}, used by PLANTS is not well-suited for the MolDock Optimizer or the MolDock SE search algorithms. By default, this penalty term is replaced by penalty scheme where a constant penalty of 10000 is assigned to the total energy if a ligand heavy atom is located outside the binding site region (defined by the search space sphere).

The settings for original PLANTS implementation can be used in MVD by adding the 'originalplants=true' parameter option to the EVALUATOR script command (see Appendix XI: Script Commands for more details).

Usage From GUI

In order to use the PLANTS scoring function choose '**Scoring function** -> **Score** -> **PLANTS Score**' from the **Docking Wizard**.

The following parameter can be set:

Include hydrogens in torsion term toggles whether or not hydrogens should be included when calculating the Tripos torsion potential, f_{tors}

Usage When Scripting

To use the PLANTS scoring function, the EVALUATORTYPE script command has to be set. Moreover, specific scoring function parameters are set by the EVALUATOR script command (see Appendix XI: Script Commands for more details).

20 Appendix III: MolDock Optimizer

The MolDock Optimizer search algorithm (MolDock Optimizer) used in MVD is based on an *evolutionary algorithm* [MICHALEWICZ 1992,2000].

Evolutionary algorithms (EAs) are iterative optimization techniques inspired by Darwinian evolution theory. In EAs, the evolutionary process is simplified and thus it has very little in common with real world evolution. Nevertheless, during the last fifty years EAs have proved their worth as powerful optimization techniques that can assist or replace traditional techniques when these fail or are inadequate for the task to be solved.

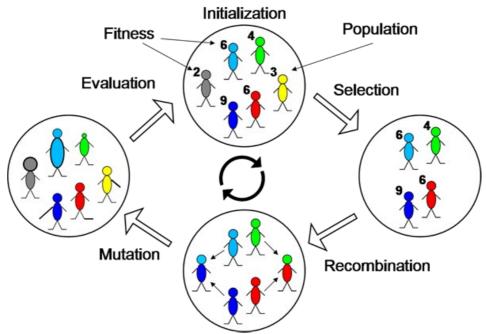


Figure 174: Outline of evolutionary algorithm.

Basically, an EA consists of a population of individuals (candidate solutions), which is exposed to random variation by means of variation operators, such as mutation and recombination. The individual being altered is often referred to as the *parent* and the resulting solution after modification is called the *offspring*. Sometimes more than one parent is used to create the offspring by recombination of solutions, which is also referred to as *crossover*. Figure 174 below shows an outline of the *evolutionary process* taking place in EAs.

Guided Differential Evolution

The guided differential evolution algorithm (MolDock Optimizer) used in MVD is based on an EA variant called differential evolution (DE). The DE algorithm was introduced by Storn and Price in 1995 [STORN 1995]. Compared to more widely known EA-based techniques (e.g. genetic algorithms, evolutionary programming, and evolution strategies), DE uses a different approach to select and modify candidate solutions (individuals). The main innovative idea in DE is to create offspring from a weighted difference of parent solutions.

The DE works as follows: First, all individuals are initialized and evaluated according to the docking scoring function (fitness function) used. Afterwards, the following process will be executed as long as the termination condition is not fulfilled: For each individual in the population, an offspring is created by adding a weighted difference of the parent solutions, which are randomly selected from the population. Afterwards, the offspring replaces the parent, if and only if it is more fit. Otherwise, the parent survives and is passed on to the next generation (iteration of the algorithm).

Additionally, guided differential evolution may use a cavity prediction algorithm (introduced in Appendix IV: Cavity Prediction) to constrain predicted conformations (poses) during the search process. More specifically, if a candidate solution is positioned outside the cavity, it is translated so that a randomly chosen ligand atom will be located within the region spanned by the cavity. Naturally, this strategy is only applied if a cavity has been found. If no cavities are reported, the search procedure does not constrain the candidate solutions.

One of the reasons why DE works so well is that the variation operator exploits the population diversity in the following manner: Initially, when the candidate solutions in the population are randomly generated the diversity is large. Thus, when offspring are created the differences between parental solutions are big, resulting in large step sizes being used. As the algorithm converges to better solutions, the population diversity is lowered, and the step sizes used to create offspring are lowered correspondingly. Therefore, by using the differences between other individuals in the population, DE automatically adapts the step sizes used to create offspring as the search process converges toward good solutions.

Representation

Only ligand properties are represented in the individuals since the protein remains rigid during the docking simulation. Thus, a candidate solution is encoded by an array of real-valued numbers representing ligand position, orientation, and conformation as Cartesian coordinates for the ligand translation, four variables specifying the ligand orientation (encoded as a rotation vector and a rotation angle), and one angle for each flexible torsion angle in the ligand (if any).

Initialization

Each individual in the initial population is assigned a random position within the search space region (defined by the user).

Initializing the orientation is more complicated: By just choosing uniform random numbers for the orientation axis (between -1.0 and 1.0 followed by normalization of the values to form a unit vector) and the angle of rotation (between -180° and +180°), the initial population would be biased towards the identity orientation (i.e. no rotation). To avoid this bias, the algorithm by Shoemake et al. [SHOEMAKE 1992] for generating uniform random quaternions is used and the random quaternions are then converted to their rotation axis/rotation angle representation.

The flexible torsion angles (if any) are assigned a random angle between -180° and $+180^{\circ}$.

Algorithmic Settings

In MVD, the following default parameters are used for the guided differential evolution algorithm: *population size* = 50, *crossover rate* = 0.9, and *scaling factor* = 0.5. These settings have been found by trial and error, and are generally found to give the best results across a test set of 77 complexes.

21 Appendix IV: Cavity Prediction

In order to determine the potential binding sites, a grid-based cavity prediction algorithm has been developed. The cavity prediction algorithm works as follows:

First, a discrete grid with a resolution of 0.8 Å covering the protein is created. At every grid point a sphere of radius 1.4 Å is placed. It is checked whether this sphere will overlap with any of the spheres determined by the Van der Waals radii of the protein atoms. Grid points where the probe clashes with the protein atom spheres will be referred to as part of the inaccessible volume, all other points are referred to as accessible.

Second, each accessible grid point is checked for whether it is part of a cavity or not using the following procedure: From the current grid point a random direction is chosen, and this direction (and the opposite direction) is followed until the grid boundaries are hit, checking if an inaccessible grid point is hit on the way. This is repeated a number of times, and if the percentage of lines hitting an inaccessible volume is larger than a given threshold, the point is marked as being part of a cavity. By default 16 different directions are tested, and a grid point is assumed part of a cavity if 12 or more of these lines hit an inaccessible volume. The threshold can be tuned according to how enclosed the found cavities should be. A value of 0% would only be possible far from the protein as opposed to a value of 100% corresponding to a binding site buried deeply in the protein.

The final step is to determine the connected regions. Two grid points are connected if they are neighbours. Regions with a volume below 10.0 Å³ are discarded as irrelevant (the volume of a connected set of grid points is estimated as the number of grid point times the volume of a unit grid cell). The cavities found are then ranked according to their volume.

22 Appendix V: Clustering Algorithm

The multiple poses returned from a docking run are identified using the following procedure:

- During the docking run, new candidate solutions (poses) scoring better than parental solutions (see Appendix III: MolDock Optimizer for details) are added to a temporary pool of docking solutions.
- If the number of poses in the pool is higher than 300, a clustering algorithm is used to cluster all the solutions in the pool (see below). The clustering is performed on-line during the docking search and when the docking run terminates. Because of the limit of 300 poses, the clustering process is fast. The members of the pool are replaced by the new cluster representatives found (limited by the Max number of poses returned option).

The clustering procedure works as follows:

- 1. The pool of solutions is sorted according to energy scores (starting with the best-scoring pose).
- 2. The first member of the sorted pool of solutions is added to the first initial cluster and the member is assigned to be the cluster representative.
- 3. The remainder of the pool members are added to the most similar cluster available (using the common RMSD measure) if and only if the RMSD between the representative of the most similar cluster and the member is below a user-specified RMSD threshold. Otherwise, a new cluster is created and the member is assigned to be the cluster representative.
- 4. The clustering procedure is terminated when the total number of clusters created exceeds **Max number of poses returned** (user-defined

parameter) or when all members of the pool have been assigned to a cluster.

5. When the cluster procedure has terminated, the set of representatives (one from each cluster) is returned.

23 Appendix VI: Supported File Formats

MVD accepts the following molecular structure formats:

- PDB (Protein Data Bank). Supported file extensions: *pdb/ent*.
- Mol2 (Sybyl Mol2 format). Supported file extensions: *mol2*.
- SDF (MDL format). Supported file extensions: *sdf/sd* (for multiple structures) and *mol/mdl* (for a single molecular structure).

Currently, the following information is ignored during import of molecular structures:

- Lone pairs and dummy atoms (all file formats).
- When alternative atoms are reported, only the first alternative is used. The remainder is ignored (all file formats). If one of the other alternatives should be used, change the order of occurrence in the file before import.
- CONNECT records (PDB format).
- SUBSTRUCTURE records are ignored during import but created when structures are exported (Mol2 format).

Notice: Although extensive testing and validation of the import and export of these file formats have been conducted, parsing errors may occur. Compliance with the file format standards/protocols will reduce parsing problems significantly. The import/export routines used have been extended to handle deviations from the file format protocols, but parsing errors may still occur. Found parsing errors can be reported (contact Technical Support or send email to <u>bugs@molegro.com</u>).

Additionally, Molegro Virtual Docker uses its own MVDML file format. MVDML is a shorthand notation for *Molegro Virtual Docker Markup Language* and is an

XML-based file format. In general, MVDML can be used to store the following information:

- Molecular structures (atom coordinates, atom types, partial charges, bond orders, hybridization states, ...)
- Constraints (location, type, and constraint parameters)
- Search space (center and radius)
- State information (workspace properties, ...)
- Cavities (location, cavity grid points)
- Camera settings (position and angle)
- Visualization settings (e.g. style and color of molecules, rendering options, hydrogen bonds and electrostatic interactions. See description of Visualization Settings dialog for an overview of all settings).

Notice: Purely graphical objects (e.g. labels, interactions, annotations, backbones, and surfaces) are not saved.

24 Appendix VII: Automatic Preparation

The principles behind automatic preparation in MVD are described below.

Aromaticity

- All rings (closed loops) are identified.
- These rings are 'weeded out', until a 'smallest subset' (capable of covering all ring bonds) remains.
- These rings are considered aromatic if:
 - 1) For 5-cycles: the mean torsion angle is less then 9.5°
 - 2) For 6-cycles: the mean torsion angle is less then 12°
- If the aromatic ring contains an atom which has out-of-plane bonds, it is degraded to be non-aromatic.

Notice that this is only a geometrical check for aromacity. It does not include more advanced checks such as Hückel's rule, and may fail on overlapping ring systems.

Assign Hybridization

- All atoms with average bond angles > 155°, are marked as SP1
- All atoms with average bond angles > 115°, are marked as SP2
- All remaining atoms are marked SP3.
- All atoms part of aromatic rings are marked as SP2.
- Ensure that if an atom is SP2 or SP, it must be connected to another SP or SP2 or a terminal atom. Otherwise the atom is degraded (i.e. SP2 -> SP3)

 Lastly the geometry surrounding a SP2 atom should be planar, otherwise it is degraded to SP3.

Bond Order

- All atom bonds are set to 'unknown'. All implicit hydrogens are set to '-1'.
- All bonds to SP3 atoms are set to 'single' order.
- Next, a template file containing standard chemical motifs (-POO-, C(NH2)(NH2), ...) is processed. The templates are located in the file: \misc\data\preparationTemplates.xml
- All unset SP2-SP2 bonds involved in a planar geometry (less than 10 degrees) are set to 'double'.
- Next all SP2 atoms are checked to see if a double bond to a neighbour atom is possible. If several atom bonds are possible, the atom with highest electro negativity is chosen. If this still results in several possibilities, the atom closest to the current one will be chosen.

25 Appendix VIII: Third Party Copyrights

MD5

MVD uses a derivate of the MD5 hash algorithm "RSA Data Security, Inc. MD5 Message-Digest Algorithm", under the following license:

You may use this software free of any charge, but without any warranty or implied warranty, provided that you follow the terms of the original RSA copyright, listed below.

Original RSA Data Security, Inc. Copyright notice

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function. License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work. RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind. These notices must be retained in any copies of any part of this documentation and/or software.

Icons

The icon set used in MVD is taken from:

The Tango Icon Library: http://tango.freedesktop.org/Tango_Desktop_Project

They are released under the 'Creative Commons Share-Alike license': <u>http://creativecommons.org/licenses/by-sa/2.5/</u>

26 Appendix IX: Keyboard Shortcuts

The following list contains the keyboard shortcuts available in MVD. On Mac OS X, the CTRL key is replaced by the command key.

- CTRL-O Import Molecules
- CTRL-SHIFT-O Open Workspace
- CTRL-SHIFT-C Clear Workspace
- CTRL-S Save Workspace
- CTRL-F Toggle full screen
- CTRL-H Toggle dockable windows
- CTRL-C Toggle Cofactors category on/off
- CTRL-L Toggle Ligands category on/off
- CTRL-P Toggle Proteins category on/off
- CTRL-W Toggle Water category on/off
- CTRL-Q Quit MVD
- CTRL-1 to 8 Invoke misc. visualization views
- F1 to F9 Invoke misc. dialogs

Notice: Some of the shortcuts can be modified from the **Macro and Menu Editor** and additional shortcuts can be defined for macro commands.

27 Appendix X: Console and Macro Commands

When using the **Macro and Menu Editor**, or entering commands in the console, the following commands can be used.

Notice: Some commands require a *molecule target*: these can be described using the following syntax:

Ligand[0] – the ligand with ID 0.

Ligand[4,5,6] – the Ligands with IDs 4,5 and 6. Multiple IDs are separated by comma.

Ligands – All ligands. By using the plural form of a category, all molecules in it are selected. The categories are: Pose, Cofactor, Protein, Water, Ligand.

Poses;Cofactors;Proteins;Ligands;Water[0] – All Poses, Cofactors, Proteins, Ligands and the first Water molecule. Multiple targets can be concatenated using a semi-colon.

Notice: The IDs of molecules are based on the order of occurrence in the corresponding **Workspace Explorer** category. For instance, ligand molecules listed in the **Ligands** category, begins with index 0 with increments of 1 (i.e. 0,1,2,3,...). If molecules are removed from the workspace, the IDs of the molecules are changed to follow the new order of occurrence in the list.

Command	Description
EXPORT [moleculetarget]	Export as Mol2 or PDB. A File export dialog is opened for selection of a filename.
SURFACEDIALOG	Shows the Surface dialog.
PREPAREDIALOG	Shows the Preparation wizard.
DISTANCECONSTRAINT	Shows the Distance constraint dialog.
LABELDIALOG	Shows the Label dialog.
DOCKINGWIZARD	Shows the Docking Wizard.
GETPDB <key></key>	Downloads PDB with 'key' (4 letter code) from the Protein Data Bank.
ALIGN [MoleculeTarget1] [id1][id2] [id3] [MoleculeTarget2] [id1][id2] [id3]	Aligns atom id1,id2,id3 in MoleculeTarget1 with atom id1,id2,id3 in MoleculeTarget2.
SHOW CATEGORY <category></category>	Shows or hides Workspace Explorer category with given name:
HIDE CATEGORY <category></category>	i.e. SHOW CATEGORY water
CD	Print current directory.
DIR	Shows dir of MVDML files in current directory.
MKDIR <directory></directory>	Make a new directory named 'directory'.
RM <directory></directory>	Remove directory named 'directory'.
PREV	Loads previous MVDML file in current directory.
NEXT	Loads next MVDML file in current directory.
RMSD	Invokes RMSD dialog.
CAV	Invokes Cavity detection dialog.
	Selection of objects:
SELECT ID <id> SELECT ATOM <x y="" z=""> SELECT RESIDUE <id> SELECT RESIDUEID <id></id></id></x></id>	'SELECT ID' selects all atoms with id = 'id'. 'SELECT ATOM' selects closest atom to specified x, y, z position.

	'SELECT RESIDUE' selects residue with residue index = 'id'.
	'SELECT RESIDUEID' selects residue with internal residue index = 'id'.
SEED [number]	Sets random seed. It shows the current random seed if called without arguments.
STATUS	Shows info about the objects in the workspace and Visualization Window. Loaded modules are also listed.
SAVE [filename]	Saves a MVDML file. Do not include extension in filename.
LOAD [filename]	Loads a MVDML file. Do not include extension in filename.
CLS	Clears console log.
CLEAR [workspace selection]	'CLEAR workspace' removes all items in the current workspace. 'CLEAR selection' clears current selection.
HIDE [hydrogens labels]	Hides either hydrogens or labels.
SHOW [hydrogens labels]	Shows either hydrogens or labels.
FITTOSCREEN	Fit all molecules in the visualization window.
ADDLABEL	Used for labeling objects. This command is described in detail in the paragraph below.
	<i>Notice: It is much easier to use the Label dialog in the GUI.</i>
GUI Commands	
SLAB [near] [far]	Creates a slab (slicing) of the 3D world.
	Notice: The Clipping Planes dialog is easier to use.
QUALITY [value]	Sets OpenGL rendering quality from 0 to 10.
LIGHT [number] [on off] [ambient] [diffuse] [specular] {[x] [y] [z]}	Sets OpenGL light sources.
FOG LINEAR [near] [far]	Sets OpenGL fog.
FOG [EXP EXP2] [exponent]	

FOG OFF

FUG UFF	
COLOR [protein pose ligand water cofactor] [fixed cpk hbond hbond2 interaction interaction2] {r g b}	Sets the color style of specified object.
	For more information about color styles, see the 'Visualization Settings' dialog section.
STYLE [protein pose ligand water cofactor] [vdw, fixed, stick, wireframe, none] atomScale bondScale lineWidth	Sets the visualization style of specified object.
	The last parameter lineWidth is only used in wireframe mode, and is the line width in pixels.
	For more information about graphical styles, see the 'Visualization Settings' dialog section.
PROJECTION [perspective] orthogonal] angle	Determines perspective projection mode. Angle is the field-of-view angle for perspective projection.
	For more information see the 'Visualization Settings' dialog section.
BACKGROUNDCOLOR rgb	Sets the background color
LABELCOLOR r g b	Sets the label color
CAVITYCOLOR r g b	Sets the cavity color
REBUILD	Rebuilds all objects in the Visualizer Window.
	This command is necessary to call after the visualization styles or coloring schemes have been updated. Otherwise graphical changes will not be reflected in the GUI.

The addlabel command works in the following way: it scans the input-string for known variables (like ID, HYB, ELE - see below) and replaces them with their value. That is, the command 'label bond bond_number:id' will add a label of type 'bond number x' to every bond (underscores are replaced with spaces). To clear all labels use 'label' without any argument.

Variable	Description	
Atom labels. Syntax: ' Addlabel <i>string</i>'		
ID	Internal atom index	
Туре	Hydrogen bond type: non-polar, acceptor, donor, both. The HBOND variable below is probably of more use.	
PC	Partial Charge.	

27 Appendix X: Console and Macro Commands

PC!	PC! ignores atoms with no partial charge.	
НҮВ	Hybridization.	
HYB!	HYB! only displays hybridization for atoms with other hybridizations than SP3 or unknown.	
SP2	Labels SP2 hybridized atoms	
SYM	Element symbol. (H, C, N,)	
ELE	Element number.	
IH	Number of implicit hydrogens.	
HBOND	Hydrogen bond type shown as : D, A, D+A, - (non-polar)	
HBOND!	HBOND! ignores non-polar atoms.	
ЕТОТ	Shows the total energy of the atom.	
	This requires that the energy has been evaluated using the 'eval' command.	
PDB Atom Name	Show PDB Atom Name	
PDB Index	Show PDB atom index	
Bond labels. Syntax: 'Addlabel bond string'		
ID	Internal bond index.	
Туре	Bond order: single, double, triple, aromatic,	
ETOT	Shows the total energy of the bond.	
	This requires that the energy has been evaluated using the 'eval' command.	
Residue Labels. Syntax: 'Addlabel residue string'		
ID	Internal residue index	
LONGNAME	Full residue name ('histidine', 'cysteine',)	
NAME	3-letter abbreviation ('HIS', 'CYS',)	
LETTER	1-letter abbreviation.	

28 Appendix XI: Script Commands

This appendix describes all the script commands that are available in MVD.

Some script commands require a *molecule target*: these can be described using the following syntax:

Ligand[0] – the ligand with ID 0.

Ligand[4,5,6] – the Ligands with IDs 4,5 and 6. Multiple IDs are separated by comma.

Ligand[50-60] – the Ligands with IDs from 50 to 60 (both included). Ligand ranges are specified by a "-".

Ligands – All ligands. By using the plural form of a category, all molecules in it are selected. The categories are: Pose, Cofactor, Protein, Water, Ligand.

Poses;Cofactors;Proteins;Ligands;Waters – All Poses, Cofactors, Proteins, Ligands and all Water molecules. Multiple targets can be concatenated using a semi-colon.

All – imports all structures.

Notice: The IDs of molecules are defined by their order of occurrence in the workspace. All indices are zero-based, meaning that the first ligand will have index 0, the second index 1, and so forth.

28.1 List of Script Commands Available

Comments in MVD script files

It is possible to add comments to MVD script files using either // for a one line comment or /* */ to span more line.

Notice: Currently, it is not possible to add comments after script commands.

Examples:

// This is a one line comment

```
/* This is a comment spanning more than one line which can be useful when describing what is going on \ast/
```

CD <path>

Changes the current working directory to the given path.

INFO <output>

Writes "output" to the console.

Can be useful for debugging loops.

Example:

```
INFO Variable a is $a
// Outputs the value of ``$a"
```

CUDADEVICE <id>

Sets the active CUDA device "id" (see Section 6.4 for more details).

IMPORT <targets> FROM <file>

The IMPORT command reads molecular data from either PDB, ENT, Mol2, Mol, SDF, SD files.

<targets> is the usual syntax for specifying the molecules to import.

Notice:

- Files imported using the IMPORT command are always parsed using the currently set parser-settings (see PARSERSETTINGS command) and prepared using the currently set preparation-settings (see PREPARE command).
- Files are always appended to the workspace. (The workspace is not cleared). You can clear the workspace using the NEW command.
- If you want to import MVDML files, use the LOAD command.
- If a complete file path is not specified, the current working directory is used to search for the files (see the CD command).
- The importer is able to read UTF-8 or UTF-16 Unicode encoded files. It
 is also able to read 8-bit Local encoded files, but will not parse special
 national characters correctly. If errors are encountered with special
 characters (for instance in the name of the ligands), try converting the
 files to Unicode.

Examples:

IMPORT Ligand[1,3] FROM testdock.mol2

IMPORT All FROM testdock.mol2

IMPORT Proteins;Waters;Cofactors FROM 1hvr.pdb

PREPARE < settings-string>

Determines how molecules imported using the IMPORT command are prepared.

The settings-string is composed of semi-colon separated pairs of a preparation-type and its preparation scheme:

Preparation Types: Bonds, BondOrders, Hydrogens, Charges, or TorsionTrees

Preparation Schemes: IfMissing, Always, Never, or Remove

The default setting is:

```
PREPARE Bonds=IfMissing;BondOrders=IfMissing;Hydrogens=IfMissing;Charges=
Always; TorsionTrees=Always
```

It is not necessary to specify all of the PREPARE settings. If only some of them are specified the default parameters will be used for the remainder.

Examples:

```
PREPARE Bonds=Always // Ensures that we use the built-in algorithm to determine atom connectivity.
```

```
PREPARE Charges=IfMissing // Uses the charges from the molecular input file (default is to overwrite them).
```

LOAD <mvdml-filename>

Loads a workspace from a MVDML file.

Notice that this command will replace the current workspace.

No preparation is done on the workspace, since it is assumed that files saved in MVDML format are prepared already.

Notice: LOAD clears the current workspace (if any).

SAVE <mvdml-filename>

Save the current workspace as a MVDML file.

All molecular structures in the workspace are saved.

EXIT

Causes the MVD process to terminate.

This can be useful if running several docking simulations of different proteins automated from a scripting language (i.e. using the Python wrapper.)

Do not use this command when parsing a text-file script as it will terminate the script and not parse anything after the EXIT command.

DOCK <molecules>

The DOCK command initiates the docking process. <molecules> is a list of ligands (notice only ligands are allowed here) to be docked. <molecules> is specified in the usual target format.

The settings for the docking can be modified using the DOCKSETTINGS command. The docking scoring function and search algorithm can be modified using the EVALUATOR and OPTIMIZER commands.

It is also possible to specify a Data Source using bracket syntax:

DOCK [File=/molecules/test.sdf]

See the Data Source chapter for more information. Notice that data source parser is able to read UTF-8 or UTF-16 Unicode encoded files. It is also able to read 8-bit Local encoded files, but will not parse special national characters correctly. If errors are encountered with special characters (for instance in the name of the ligands), try converting the files to Unicode.

Examples:

```
DOCK Ligand[50-60]
// Docks ligand from number 50 to number 60 (both included) in the current
workspace
```

DOCK Ligand[0] // Docks first ligand in the current workspace

DOCK Ligands // Docks ALL ligands in workspace

EVALUATOR <initstring>

Sets the settings for the evaluator (the docking score function).

There is normally no need to change these.

The **<initstring>** is semi-colon separated string of parameter-value pairs.

The following parameters are available. Their default setting is marked in bold face:

General parameters available to MolDock Score and Plants Score:

cropdistance [double]. Determines whether the protein should be cropped (meaning protein atoms outside a given distance is not taken into account). If crop distance is 0 (the default settings) the size of the active search space is used. For other values, the crop distance is defined from the center of the current reference ligand. Crop distance is measured in Ångstrom. If crop distance is negative, all atoms in the protein will be taken into account. Notice that the docking duration increases with the number of atoms. It is advised to keep the default settings of 0.

tabuclustering = [enabled,rmsd-threshold,score-penalty,rmsd-evalution-mode].

- 'Enabled' turns Tabu-clustering on or off. The possible values are [true] false].
- 'rmsd-threshold' determines how close two poses must be before being punished. It is measured in Ångstrom with a default value of 2.0.
- The 'score-penalty' decides the amount that will added to the scorefunction to punish poses which are close (in terms of RMSD). The value should be positive and has a default value of 100.
- The 'rmsd-evaluation-mode' is either 'id' or 'automorphisms' depending on whether the RMSD should be calculated using matching ids (the fastest) or by taking all automorphisms of the ligand into account (more accurate, but slower). The default is 'id'. When tabu-clustering is enabled in the Docking Wizard with default settings it creates the following initialization fragment: tabuclustering=true,2,100,id.

DisplaceWater = [true | **false**]. Determines whether displaceable water evaluation should be included or not.

DisplaceWaterReward = [**0.0**-10.0]. The entropy reward for displacing a water molecule (only applies when the DisplaceWater option is enabled).

The following parameters are available to MolDock Score and MolDock Score [Grid]:

EVALUATOR <initstring>

ligandes = [true | **false**]. Determines whether the internal electro static energy of the ligand should be included.

internalhbond = [true | **false**]. Determines whether internal hydrogen bonds in the ligand are allowed.

torsion = first, **mean**, all. Determines how torsion terms are evaluated (if several torsion angles are available for a bond).

sp2sp2bond = [true | **false**]. Determines if sp2-sp2 bonds should be taken into account.

eintra = [**true** | false]. Determines whether ligand self-interaction energy should be taken into account.

skiptorsionterm = [true | **false**]. Determines whether ligand torsions are taken into account.

hbond90 = [**true**|false]. Determines whether hydrogen bonding directionality should be taken into account. *Notice:* The **hbond90** option is not available for the grid evaluator or for the PLANTS scoring functions.

The following parameters are available to PLANTS Score and PLANTS Score [Grid]:

ignorehtors = [true | **false**] toggles whether or not hydrogens should be included when calculating the Tripos torsion potential.

Originalplants = [true | **false**] toggles between original Plants setup (using PLANTS specific binding penalty terms and ignoring entries with 'dummy' Tripos atom types in Tripos torsion potential) and MVD implementation of PLANTS score (using another binding penalty term and including 'dummy' Tripos atom types in Tripos torsion potential). See Appendix II:PLANTS Scoring Function for details about the different binding penalty terms available for the PLANTS scoring function.

The gridresolution option is only available to grid-based evaluators:

gridresolution = [double]. Sets the grid spacing, where the grid resolution is specified in Ångstrom.

The **SoftenPotential** option is only available for the MolDock Score [Grid]: **SoftenPotential**=[true]**false**]. Default is 'false'

Allows you to soften the potential during docking (adjust the treshold and

EVALUATOR <initstring>

strength for the atomic pairwise potentials).

In order to enable softening the project (MVDML-file) must contain a description of the softened sidechains.

This can be made by choosing "**Docking** | **Setup Sidechain Flexibility**" in the GUI.

The default settings from the Docking Wizard will generate the following evaluator string:

EVALUATOR cropdistance=0;hbond90=true

Notice: an easy way to generate a suitable initstring is to use the Docking Wizard to generate and save a generated script.

EVALUATORTYPE <type>

The EVALUATORTYPE command set the evaluator (scoring function) used while docking.

<type> is one of the following values:

- **MolDockGrid** for the grid version of the MolDock evaluator.
- **MolDock** for the standard version of the MolDock evaluator.
- **PlantsGrid** for the grid version of the PLANTS evaluator.
- **Plants** for the standard version of the PLANTS evaluator.
- **Ligand** for an evaluator only taking the ligands internal energy into acoount (for when docking with templates)

Notice: MolDock is set automatically as the default evaluator.

Example:

EVALUATORTYPE MolDockGrid

MKDIR <path>

Creates a new directory.

OPTIMIZER <initstring>

Sets the settings for the optimizer (the docking search algorithm).

The **<initstring>** is semi-colon separated string of parameter-value pairs.

The following parameters are available. Their default setting is marked in bold. For more information about the parameters see Appendix III: MolDock Optimizer, Appendix XII: MolDock SE, Appendix XIII: Iterated Simplex, or the Docking Wizard section where some of the parameters are described.

popsize [integer=**50**]. Determines the number of individuals in the population.

cavity [**true** | false]. Determines whether poses should be forced to be in cavities.

randomizeligand [**true** | false]. Determines whether the ligand orientation should be randomized before each docking run.

keepmaxposes [int=5]

excludeenergythreshold [double=10000]

clusterthreshold [double= 0.0]

The following parameters are used by the MolDock Optimizer algorithm:

scalingfactor [double=0.50].

crossoverrate [double=0.90].

offspringstrategy [int=1]

earlytermination [double=0.01]

terminationscheme [int=0]

The following parameters are used by the MolDock SE algorithm:

creationenergythreshold=[double]. Default is **100.0**. Poses are only added to the population if the value is this threshold. Notice that when half of the iterations in the docking run have been used, this threshold is automatically turned off in order to ensure that enough poses are created for the simplex evolution phase.

posegenerator=[int,int,int]. Set the Min, Quick, Max number of tries. Default is **10,10,30**. At each step at least 'min' torsions/translations/rotations are tested and the one giving lowest energy is chosen. If the energy is positive (i.e. because of a clash or unfavorable electrostatic interaction) then additional 'max' positions will be tested. If at one time it has not been possible to construct a component which do not clash, the 'max' tries number is

OPTIMIZER <initstring>

lowered to the 'quick' try value.

simplexsteps=[int (default:300)]. The number of iterations of the Nelder-Mead simplex minimization procedure performed at each step of the MolDock SE algorithm.

simplexdistancefactor=[double]. Default is **1.0**. This factor determines how close the point of the initial simplex will be to the other randomly selected individuals in the population. A factor of 1.0 causes the initial simplex to span the neighbour points exactly, while a factor of 0.5 would correspond to simplex points being created halfway between the individuals chosen for optimization and its randomly chosen neighbours. Notice that a factor less than 1.0 will converge slowly. Typical values should be in the range of 0.95 to 3.0.

recombine=[**true** | false]. Allows for turning off the Simplex Evolution phase.

The following parameters are used by the Iterated Simplex algorithm:

maxsimplexsteps [int=**2000**]. Maximum number of steps in Simplex local search performed for each individual.

simplextolerance [double=**0.01**]. The tolerance threshold used to terminate Simplex local search when refining an individual.

simplextolerancebest [double=**0.0001**]. The tolerance threshold used to terminate Simplex local search when refining the best found individual in the current iteration.

usepheromones [true | **false**]. Allows for turning on adaptive sampling using Ant Colony Optimization.

diversify [true | **false**]. Allows for turning on search diversification strategy (see [KORB 2009] for details).

pbest [double=**0.5**]. Probability of best individual. Used by Min-Max strategy for updating pheromone limits (see [KORB 2009] for details).

evaporationrate [double=**0.15**]. Evaporation rate used to adjust pheromone trails (see [KORB 2009] for details).

iterationsdbupdate [int=**5**]. If the best found solution in the last **iterationsdbupdate** number of iterations has higher energy score than the the best solution found since the last diversification event (diversification solution), the diversification solution is used to update the pheromone trails (see KORB 2009] for details). This setting requires that **diversify=true**.

iterationsgbterminate [int=**-1**]. The algorithm is terminated if the global

OPTIMIZER <initstring>

best found solution has not been improved for the last **iterationsgbterminate** number of iterations. The best found solution found is returned.

The default settings (using the MolDock search algorithm) from the Docking Wizard will generate the following optimizer string:

```
OPTIMIZER cavity=false;popsize=50;scalingfactor=0.50;crossoverrate=0.90;
offspringstrategy=1;terminationscheme=0;earlytermination=0.01;
clusterthreshold=1.00;keepmaxposes=5
```

Another example using the MolDock SE search algorithm:

```
OPTIMIZER
populationsize=50;cavity=true;creationenergythreshold=100;posegenerator=10,10
,30;maxsimplex=750;simplexsteps=300;simplexdistancefactor=1
```

Notice: an easy way to generate a suitable initstring is to use the Docking Wizard to generate and save a generated script.

NEW

Clears the current workspace:

All molecules are removed from the workspace.

PARSERSETTTINGS <initstring>

Determines the settings for the molecular parsers used to import the molecules.

The settings-string is composed of semi-colon separated pairs of a parameter key and its corresponding value. The different parameters are:

breakUnrealisticBonds: if enabled this option will break/ignore unrealistic bonds parsed from the molecular file (for SDF and Mol2 files only). Default value is 'false'

combineMoleculeFragments: if enabled this option will combine molecular fragments (Mol2 substructures or small PDB molecules with same chain ID) instead of importing them as independent molecules. Default value is 'true'

useSybylForHybridization: if enabled, Sybyl atom types will be used to determine hybridization (if they are available during import). Otherwise, the default geometric heuristic is used (see Appendix VII: Automatic Preparation for details).

moleculeNameField: if a text string is specified (e.g.

moleculeNameField=id), SDF molecules containing a data header with the given name will use the content of this header when naming the molecule instead of using the first line in the SDF header. The first header line will also be used if the file does not contain the specified data header.

The default settings corresponds to the following script command:

```
PARSERSETTINGS
breakUnrealisticBonds=false;combineMoleculeFragments=true;useSybylForHybridiz
ation=true;
```

DOCKSETTTINGS <initstring>

Determines the behavior of the docking engine.

The settings-string is composed of semi-colon separated pairs of a parameter key and its corresponding value. The different parameters are:

maxIterations: the value must be an integer describing the maximum number of iterations by the MolDock engine. The default value is 2000.

runs: the number of runs performed for each ligand. Multiple runs will giver higher docking accuracy. The default number is 1. Typically 5 to 10 runs are recommended.

ignoreSimilarPoses: when running multiple runs, several poses are returned for each ligand. Set this to 'true' to weed out similar poses by clustering according to their RMS deviation. Default value is 'true'

IgnoreSimilarPosesThreshold: This is the RMSD treshold value in Ångstrom for the clustering described above. Default value is 'true'.

MaxPoses: Determines the maximum number of poses returned by the clustering described above. Default value is 5

MinimizeReceptor=[LocalSteps,GlobalSteps]. Default is LocalSteps=0,GlobalSteps=0 corresponding to no minimization. Enables minimization of the proteins in the workspace, after each pose returned by the docking engine. For each residue 'LocalSteps' iterations of energy minimization (using a Nelder-Mead Simplex algorithm) is performed for each residue. After that 'GlobalSteps' iterations are performed on all residues at once (again using the Nelder-Mead Simplex algorithm). Receptor minimization is normally used together with a softening of the potentials and Tabu Clustering. If Receptor minimization is enabled a copy of the minimized receptor configuration is saved together with the pose, for each found solution. The receptor configurations will be saved as 'ligandname.receptorConfiguration' and are most easily inspected using the

Pose Organizer.

postMinimize: Perform short energy minimization of final poses found after docking. See Section 6.3 for details. Default value is 'false'

postOptimizeHBonds: Optimize hydrogen donor positions (both for pose and protein target atoms). See Section 6.3 for details. Default value is 'true'

The default settings corresponds to the following script command:

```
DOCKSETTINGS maxIterations=2000;runs=1;ignoreSimilarPoses=true;
IgnoreSimilarPosesThreshold=1.0;MaxPoses=5;postMinimize=false;
poseOptimizeHBonds=true
```

It is not necessary to specify all of the parameters. If only some of them are

DOCKSETTTINGS <initstring>

specified the default parameters will be used for the remainder.

Examples:

```
PREPARE maxIterations=4000
// Use a higher number of iterations
```

```
PREPARE runs=10
// Multiple runs increases the accuracy of the poses found.
```

OPTIMIZERTYPE <type>

The OPTIMIZERTYPE command sets the optimizer (search function) used while docking.

<type> is one of the following values:

- **MSE** for the MolDock SE algorithm.
- **MolDock** for the standard MolDock algorithm.
- **Simplex** for the Iterated Simplex algorithm.

Notice: MolDock SE is automatically set as the default optimizer.

Example:

OPTIMIZERTYPE MSE

RANDOM <seed>

Sets the seed used by the random number generator.

Normally this is not recommended, since a random seed always is generated on startup, but it can be used to reproduce docking runs, since the seed is always recorded in the docking log.

```
RANDOM 123 \ensuremath{//} Ensures that the simulation will always return the exact same results.
```

SEARCHSPACE <radius center>

Create a 'searchspace' with a given radius and center position. The center is based on a given molecule (ligand, cofactor, pose) or existing cavity.

Example:

```
SEARCHSPACE radius=12;center=ligand[0]
```

CONSTRAINTS <integer list>

Per default all constraints defined in a MVD workspace are used.

The CONSTRAINTS command enables a subset of the constraints in the workspace. All constraints not specified in the list are not used during the docking run.

To disable all constraints, set "integer list" = "NONE".

It is possible to specify ranges, or to just enable all constraints by setting "integer list" = "ALL".

Notice: the numbering of constraints is zero-based, meaning that the first constraint in a workspace will have number 0, the second number 1 and so forth.

Examples:

```
CONSTRAINTS 1,2
/* Enables the second and third constraint in the workspace
All other constraints are disabled */
```

```
CONSTRAINTS 1,3-5
/* Enables the second, fourth, fifth and sixth constraint in the workspace
All other constraints are disabled */
```

CONSTRAINTS NONE // Disables all constraints in the workspace

CONSTRAINTS ALL // Enables all constraints in the workspace (default behavior)

RMSD <targetligand>

The RMSD can be used to set a ligand to compare docking results with.

The Root-Mean-Square-Deviation between heavy atoms will be calculated for all returned poses.

Notice: the ligand used as reference for RMSD calculations must have the same number of heavy atoms as the ligands that are docked, otherwise the RMSD calculation will just return -1.

Examples:

```
LOAD 3PTB.MVDML
RMSD ligand[1]
DOCK
// Docks the ligands in 3PTB.MVDML and calculate their RMSD deviation from
ligand[1], which is the second ligand present in the workspace
```

TEMPLATE parameters

The TEMPLATE command is used to specify parameters for template docking.

The following parameters are available:

strength – the normalization constant for a perfect match to the template. Default value is -500.

useGrid – determines if template force field should be precalculated on a grid. Default is true

gridResolution – the resolution of the template force field grid. Default is 0.4 (measured in Å)

Example:

TEMPLATE strength=-500;useGrid=true;gridResolution=0.4

ADDWATER <x y z>

The ADDWATER command is used to create a water molecule at the position specified and add it to the current workspace.

Example:

AddWater 2.4 1.5 7.8

DOWNLOAD <PDB code> AS <filename.pdb>

The DOWNLOAD command can be used to download a PDB file from the Protein Data Bank. The downloaded file will be saved as <filename.pdb>.

The downloaded PDB file is not automatically imported to the current workspace. This should be done using the IMPORT command.

Notice: the <PDB code> is a 4-letter PDB identifier and that the filename should include the pdb file extension.

Moreover, the DOWNLOAD command overwrites existing filenames named <filename.pdb>.

Examples:

```
DOWNLOAD 3ptb AS 3ptb.pdb
IMPORT All FROM 3ptb.pdb
DOCK
```

28.2 Flow Control

MVD also provides a couple of simple commands for controlling the script flow. If more complex execution control is needed consider using the Python wrapper to control to scripting engine.

Notice: The variable system in the script parser is strictly string based which means that the script parser simply substitutes occurrences of variable names with the current value before parsing the string.

Also notice that this means that it is important to be careful when defining variable names and ensure that they do not overlap: e.g. do not define two variables named \$PDB and \$PDBS since the script parser will substitute part of the variable name \$PDBS with the value of \$PDB.

FOR <\$VAR> IN <VALUELIST> ENDFOR

The FOR command can be used to iterate though a set of possible values.

The VALUELIST must be a comma separated list of values.

FOR commands can be nested (it is possible to have a FOR command inside another FOR loop).

Variables must start with a "\$" identifier.

Example (docking multiple complexes):

```
FOR $PDB IN 3PTB,1HVR,1LIC,1TMN
    // $PDB will be replaced by the appropriate value in the loop
    LOAD C:\BENCHMARK\$PDB.mvdml
    RMSD ligand[0]
    DOCK
    NEW
ENDFOR
```

```
Example (docking with different population sizes):
```

```
FOR $popsize IN 10,20,30,40,50
    OPTIMIZER cavity=true;popsize=$popsize;crossoverrate=0.9;
    LOAD C:\BENCHMARK\3PTB.mvdml
    RMSD ligand[0]
    DOCK
    NEW
ENDFOR
```

SET <\$VAR> = <VALUE>

The SET command can be used to set a variable to a given value.

Variables must start a "\$" identifier.

Example:

```
SET $PDB = 3PTB
LOAD C:\BENCHMARK\$PDB.mvdml
RMSD ligand[0]
DOCK
```

29 Appendix XII: MolDock SE

MolDock SE (simplex evolution) is an alternative search heuristic which can be used together with either the *MolDock* or *MolDock* [*Grid*] scoring functions.

It is known to perform better on some complexes where the standard MolDock algorithm fails. This is usually the case when the ligand has lots of internal degrees of freedom (many torsion angles).

While other algorithms based on parallel simplex search exist, our implementation has been modified to be suitable for docking (by the inclusion of the pose generation step, and the way the initial simplices are created).

The algorithm works as follows:

Pose Generation

First an initial population of poses is created. The initial number of poses is determined by the 'population size' parameter.

These poses are built incrementally from their rigid root point: The pose generator tests a number of different torsions angles, rotations and translations, evaluates the affected part of the molecule and chooses the value which results in the lowest energy contribution.

The torsion angles are chosen from one of three distributions depending on the hybridization of the atoms the bond connects (either sp2-sp2, sp2-sp3 or sp3-sp3).

If the generated pose has an energy below 'energy threshold' it is accepted into the initial population for the 'simplex evolution' algorithm.

Simplex Evolution

The simplex evolution algorithm performs a combined local / global search on the poses generated by the pose generator. The local search is performed using the Nelder-Mead local search algorithm, but unlike Nelder-Mead's original scheme, the algorithm has been extended to take the position of the other individuals in the population into account. At each iteration a random individual is chosen. The representation of this individual determines the first point of the simplex in the N-dimensional search space. Then N additional individuals are chosen and their representations define the remaining N points of the simplex (a simplex in N dimensions has N+1 points). Notice that 'Neighbour distance factor' parameter determines how much the initial simplex should be enlarged or shrinked (see below).

Usage From GUI

In order to use the search algorithm choose 'Search algorithm -> Algorithm -> MolDock SE' from the Docking Wizard.

The following parameters can be set:

Max iterations: (default=1500) The number of steps per run. These steps are evenly divided between the pose generator and the simplex evolution algorithm (even though both of these may terminate before the number of iterations has been used).

Max population size: (default=50) The number of individuals in the simplex evolution phase. Notice that this number must be higher than the number of degrees of freedom (7 spatial degrees of freedom plus the number of chosen rotatable torsion bonds).

Pose Generation Parameters

Energy threshold: (default=100.00) Poses are only added to the population if the value is below this threshold. Notice that when half of the iterations in the docking run have been used, this threshold is automatically turned off in order to ensure that enough poses are created for the simplex evolution phase.

Tries: Min, Quick, Max.

At each step at least 'min' torsions/translations/rotations are tested and the one giving lowest energy is chosen. If the energy is positive (i.e. because of a clash or an unfavorable electrostatic interaction) then additional 'max' positions will be tested. If it is not possible to construct a component which do not clash, the 'max' tries number is lowered to the 'quick' try value.

Simplex Evolution Parameters

Max Steps: (default=300). The number of iterations of the Nelder-Mead

simplex minimization procedure performed at each step of the MolDock SE algorithm.

Neighbour distance factor: (default=1.0). This factor determines how close the point of the initial simplex will be to the other randomly selected individuals in the population. A factor of 1.0 causes the initial simplex to span the neighbour points exactly, while a factor of 0.5 would correspond to simplex points being created halfway between the individuals chosen for optimization and its randomly chosen neighbours. Notice that a factor less than 1.0 will converge slowly. Typical values should be in the range of 0.95 to 3.0.

Usage When Scripting

To use the MolDock SE search algorithm, the OPTIMIZERTYPE script command has to be set. Moreover, specific search algorithm parameters are set by the OPTIMIZER script command (see Appendix XI: Script Commands for more details).

30 Appendix XIII: Iterated Simplex

Iterated Simplex is an alternative search heuristic which can be used together with the *MolDock* and *PLANTS* docking scoring functions.

The algorithm works as follows: First an initial population of poses is created (initial number of poses is determined by the **population size** parameter). Afterwards, the following process will be executed until **max iterations** have occurred: Each individual in the population will be refined using the Simplex local search algorithm (also called Nelder-Mead). The Simplex algorithm will run for **maximum steps** or until the fractional difference between the best and worst vertices in the Simplex (w.r.t. the docking scoring function used) is below a given **tolerance**. When all individuals have been refined, the best found individual (named: iteration best solution) will be further refined using the same Simplex algorithm again but with a lower tolerance (**Tolerance (iteration best solution)**). When **max iterations** have occurred the algorithm terminates and returns the best found solution(s).

By enabling the **Constrain poses to cavity** option in the Docking Wizard, the Iterated Simplex algorithm uses a cavity prediction algorithm (introduced in Appendix IV: Cavity Prediction) to constrain predicted conformations (poses) during the search process. More specifically, if a candidate solution is positioned outside the cavity, it is translated so that a randomly chosen ligand atom will be located within the region spanned by the cavity. Naturally, this strategy is only applied if a cavity has been found. If no cavities are reported, the search procedure does not constrain the candidate solutions.

The Iterated Simplex algorithm is generally more robust (w.r.t. reproducing docking results with similar scores) than the MolDock SE and MolDock Optimizer. Therefore, the default number of runs in the Docking Wizard is set to 1. In some cases more runs (e.g. 5) might be necessary to identify good binding modes - in particular when docking very flexible ligands.

Usage From GUI

In order to use the search algorithm choose 'Search algorithm -> Algorithm -> Iterated Simplex' from the Docking Wizard.

The following parameters can be set:

Max iterations: (default=100) The number of steps per run.

Population size: (default=20) The number of individuals sampled during each iteration of the algorithm.

Maximum Steps: (default=2000). The number of iterations of the Nelder-Mead simplex minimization procedure performed for each individual in the population.

Tolerance: (default=0.01).

Tolerance (iteration best solution): (default=0.0001).

Adaptive Sampling

The Iterated Simplex algorithm can use an adaptive sampling strategy based on Ant Colony Optimization (ACO). The idea in ACO is to use pheromone trails to bias the initialization of individuals towards regions previously resulting in good solutions. The pheromone trails are updated in each iteration of the search algorithm based on the currently best found solution. The parameters **Evaporation rate** and **Probability of best ant (pBest)** are used to control how much the pheromones are modified. For more details about ACO and the parameters, see [KORB 2009].

By default, adaptive sampling is not enabled in MVD since it did not produce better docking results when including pheromone trails (benchmarked on 85 complexes).

Evaporation rate: (default: 0.15)

Probability of best ant (pBest): (default: 0.5)

Usage When Scripting

To use the Iterated Simplex search algorithm, the OPTIMIZERTYPE script command has to be set. Moreover, specific search algorithm parameters are set by the OPTIMIZER script command (see Appendix XI: Script Commands for more details).

31 Appendix XIV: Grid-based Scores

'MolDock Score [Grid]' and 'PLANTS Score [Grid]' are grid based versions of the MolDock Score and Plants Score functions, respectively.

The grid based scoring functions precalculate potential-energy values on an evenly spaced cubic grid in order to speed up calculations. The energy potential is evaluated by using tri-linear interpolation between relevant grid points. The rest of the terms in the Grid based versions (i.e. internal ligand energy contributions and constraint penalties) are identical to the standard version of the scoring functions.

Notice that unlike the standard MolDock Score, the grid version of MolDock Score does not take hydrogen bond directionality into account (hydrogen bonding is determined solely on distance and hydrogen bonding capabilities)

Grids are not stored permanently - they are calculated when needed. (Grid generation is relatively fast. Typically \sim 15 seconds for the standard settings). Grids will automatically be reused while running docking scripts as long as the target protein does not change.

Notice that large energy grids with high resolution can consume a lot of memory. Grid resolutions of 0.3 Å -0.4 Å will be adequate in most cases. Look out for the estimated memory usage in the Docking Wizard. As a rule of thumb it should never exceed more than half of the physical memory available in the computer. Also notice that if several instances (processes) of MVD is running, each process will need to generate its own grid.

Usage From GUI

In order to use the MolDock Score grid version, select it as the evaluation function in the **Docking Wizard** ('Scoring Function -> Score -> MolDock Score [GRID]').

In order to use the PLANTS Score grid version, select it as the evaluation function in the **Docking Wizard** ('Scoring Function -> Score -> PLANTS Score [GRID]').

Usage When Scripting

To use the grid-based scoring function, the EVALUATORTYPE script command has to be set. Moreover, specific grid parameters are set by the EVALUATOR script command (see Appendix XI: Script Commands for more details).

32 Appendix XV: Statistical Measures

This appendix defines the statistical measures used in the Data Analyzer.

32.1 General Symbols Used

- *N* : Number of data points (e.g. records/observations) in a dataset.
- x_i : The value of variable x for data point i.
- \overline{x} : The mean of variable *x*.

32.2 Univariate Analysis

Mean

The *mean* is the arithmetic average of a set of values. The mean of variable x is defined by:

$$\overline{x} = \frac{\sum_{i=1}^{N} x_{i}}{N}$$

Median

The *median* is a number dividing the higher half of a distribution from the lower half, i.e., at most half the data points in the distribution have values less than the median and at most half have values greater than the median.

The median can be found by numerically sorting all records and picking the middle one. If there is an even number of records, the median is taken as the mean of the two middle values.

Sample Variance

The *sample variance* measures the spread of values in a sample about the mean and is defined as:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}$$

Standard Deviation

The *standard deviation* describes the spread of a distribution and is defined as the square root of the variance. (If the values are close to the mean, the standard deviation is small).

Skewness

Skewness is a measure of the asymmetry of a distribution.

The Skewness measure is defined as:

$$\mu = \frac{\sum_{i}^{N} (x_i - \overline{x})^3 / N}{RMSD^3}$$

where

$$RMSD = \sqrt{\frac{\sum_{i}^{N} (x_i - \overline{x})^2}{N}}$$

Negative skewness implies that the "mass" of the distribution is shifted to the right whereas a positive skewness implies that the "mass" of the distribution is shifted to the left. Normal distributions have a skewness of zero as they are symmetrical around the mean.

Kurtosis

Kurtosis is a measure of the "peakedness" of a distribution. Kurtosis is defined as:

$$kurtosis = \frac{\sum_{i}^{N} (x_i - \overline{x})^4 / N}{RMSD^4} - 3$$

(which strictly speaking is the *excess kurtosis*).

The -3 at the end of the formula is a correction to make the kurtosis of the normal distribution equal to zero.

32.3 Bivariate Analysis

Pearson Correlation Coefficient

The *Pearson correlation coefficient* (r) is a measure of the correlation of two variables x and y (i.e. a measure of the tendency of the variables to increase or decrease together). The Pearson correlation coefficient is defined as:

$$r = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

where

$$cov(x, y) = \frac{\sum_{i}^{N} (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

is the *covariance* between variables *x* and *y*.

The range of *r*-values is between -1 and 1. A value of 1 shows that a linear equation describes the relationship perfectly with all data points lying on the same line and with y increasing with x. A value of -1 shows that all data points lie on a single line, but that y increases as x decreases. A value of 0 shows that there is no linear relationship between the two variables.

Often, r^2 is used instead of r where the range of r^2 values is between 0 and 1. A value of 0 indicates that the two variables are not correlated and a value of 1 indicates that the two variables are perfectly correlated.

Adjusted r^2

Adjusted r^2 is a modification of the Pearson correlation coefficient that adjusts for the number of explanatory terms in a model (e.g. number of descriptors in a *multiple linear regression* model). Adjusted r^2 values can be negative and will always be less than or equal to the Pearson correlation coefficient. Adjusted r^2 is defined as:

Adjusted
$$r^2 = 1 - (1 - r^2) \frac{N - 1}{N - P - 1}$$

where N is the number of data points and P is the number of descriptors used in the model.

Spearman's Rank Correlation Coefficient

The Spearman's Rank Correlation Coefficient (ρ) is a rank-ordered correlation coefficient that uses the ranking of the data points instead of the raw data points. The Spearman's Rank Correlation Coefficient is defined as:

$$\rho = 1 - \frac{6\sum_{i}^{N} d_{i}^{2}}{N(N^{2} - 1)}$$

where the raw data points are converted to ranks. d_i is the difference between the ranks of corresponding values of x and y and N is the number of data points.

Notice that data points with identical values are assigned a rank which is the mean of the respective ranks that would be assigned if they were not identical.

Predictive Sum of Squares

The Predictive sum of squares (PRESS) is defined as:

$$PRESS = \sum_{i}^{N} (x_{pred,i} - x_{obs,i})^{2}$$

where $x_{pred,i}$ and $x_{obs,i}$ refer to the predicted and observed values of variable x_i , respectively.

Notice that *PRESS* is only applicable when performing cross validation experiments, i.e. the predicted values are calculated for the hold-out dataset using a regression model trained on the remainder of the dataset.

Cross Validated Correlation Coefficient

The *Cross validated correlation coefficient* is the cross validated equivalent of r^2 . The Cross validated correlation coefficient is often denoted Q^2 or q^2 and is defined as:

$$q^{2} = 1 - \frac{PRESS}{\sum_{i}^{N} (x_{obs,i} - \overline{x_{obs,i}})^{2}}$$

The closer the value of q^2 is to 1.0, the better is the predictive power of the regression model being evaluated. If q^2 is much lower than r^2 , the regression model is likely to be over-fitted and the predictive power of the regression model will be limited.

Notice that q^2 is only applicable when performing cross validation experiments, i.e., predicted values are calculated for the hold-out dataset using a regression model trained on the remainder of the dataset.

33 Appendix XVI: References

[THOMSEN 2006] Thomsen, R.; Christensen, M. H. MolDock: A New Technique for High-Accuracy Molecular Docking. *J. Med. Chem.*, 2006, 49(11), 3315-3321.

[CCG] Chemical Computing Group, <u>www.chemcomp.com</u>

[SCHRODINGER] Schrödinger, LLC, www.schrodinger.com

[GEHLHAAR 1995] Gehlhaar, D. K.; Verkhivker, G.; Rejto, P. A.; Fogel, D. B.; Fogel, L. J.; Freer, S. T. Docking Conformationally Flexible Small Molecules Into a Protein Binding Site Through Evolutionary Programming. *Proceedings of the Fourth International Conference on Evolutionary Programming*, 1995, 615-627.

[GEHLHAAR 1998] Gehlhaar, D. K.; Bouzida, D.; Rejto, P. A. Fully Automated And Rapid Flexible Docking of Inhibitors Covalently Bound to Serine Proteases. *Proceedings of the Seventh International Conference on Evolutionary Programming* 1998, 449-461.

[YANG 2004] Yang, J-M.; Chen, C-C. GEMDOCK: A Generic Evolutionary Method for Molecular Docking. *Proteins*, 2004, *55*, 288-304.

[MCDONALD 1994] McDonald, I. K.; Thornton, J. M. Satisfying Hydrogen Bonding Potential in Proteins. *J. Mol. Biol.*, 1994, *238*, 777-793.

[MICHALEWICZ 1992] Michalewicz, Z. *Genetic Algorithms* + *Data Structures* = *Evolution Programs*; Springer-Verlag: Berlin, 1992.

[MICHALEWICZ 2000] Michalewicz, Z.; Fogel, D. B. *How to Solve It: Modern Heuristics*; Springer-Verlag: Berlin, 2000.

[STORN 1995] Storn, R.; Price, K. Differential Evolution - A Simple And Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Tech-report, International Computer Science Institute, Berkley, 1995.

[SHOEMAKE 1992] Shoemake, K. Uniform Random Rotations. In *Graphics Gems III*, 1st ed.; Kirk, D., Ed.; AP Professional (Academic Press); Boston, 1992; pp. 124-132.

[HAYKIN 1999] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Inc.: New Jersey, 1999.

[SELWOOD 1990] Selwood, D. L.; Livingstone, D. J.; Comley, J. C. W.; O'Dowd, A. B. ; Hudson, A. T.; Jackson, P.; Jandu, K. S.; Rose, V. S.; Stables, J. N. Structure-Activity Relationships of Antifilarial Antimycin Analogues: A Multivariate Pattern Recognition Study, *J. Med. Chem.*, 1990, 33(1), 136-142.

[KORB 2009] Korb, O.; Stutzle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS, *J. Chem. Inf. Model.*, 2009, 49(1), 84-96.

[CLARK 1989] Clark, M.; Cramer III, R. D.;Opdenbosch, N. Van. Validation of the General Purpose Tripos 5.2 Force Field, *J. Comp. Chem.*, 1989, 10(8), 982-1012.