LabBase User Manual, Version 1.0

Steve Rozen Lincoln Stein
Nathan Goodman

{steve,lstein}@genome.wi.mit.edu

Whitehead Institute for Biomedical Research

One Kendall Square
Cambridge MA 02139

April 3, 1997

Abstract

LabBase is a generic database management system for implementation of laboratory
information systems. This manual constitutes both a tutorial introduction to and a

reference manual for LabBase.

1 Data Model

The primary abstractions supplied by LabBase are materials and steps: materials are things
one works on in the laboratory, such as genetic markers or expressed sequence tags, and steps
record both actions taken on a material and the information they generate. For example, at
the Whitehead/MIT Center for Genome Research (CGR), the discovery of a mouse genetic

marker involves many steps:
1. sequencing a small DNA fragment,
2. determining if it contains a simple repeat (microsatellite),
3. checking to see that we have not already used this sequence,
4. selecting polymerase chain-reaction (PCR) primers,

and so on. In this example, the material is the potential genetic marker, and the steps
correspond to the actions 1 through 4. Our experiences with MapBase [3, 4, 2], as well as

other literature on laboratory information systems [5, 6], suggest that the notions of material
and step are ubiquitous in these systems.

Additional material describing LabBase appears in [8] (which discusses the user view
of LabBase), and [7] (which focuses on LabBase’s implementation). The CGR’s approach
to workflow management and CGR’s workflow-management software are described in [9].
Documentation on the perl API to LabBase is found with the LabBase distribution.

In LabBase, almost all information about a material is stored as part of a step. In our
work with MapBase we found this to be a robust organization, because we want almost all
attributes of a material to be associated with information about the processing step that
produced them. For example, when we record the sequence of a potential marker, we also
record the file that contains the output of the automated DNA sequencer, as well as the user
that entered the sequence and the time a which the sequence was entered.

In LabBase, each material is associated with

e a material kind, such as marker or est (expressed sequence tag), and

e a history (list) of steps that record the chronology of real-world operations performed
on that material.

A step is associated with a step kind. For example, step 1 above might have the step kind
sequence_step. In addition to its step kind, a step consists of a set of tag/value pairs, for
example sequence=’ACCG. ..’ or sequence file=’/usr/local/seqoutput/3851°. Tags
serve as attribute names, and each tag has a unique type that defines the values that can be
associated with that tag. Examples of types for a tag are *STRING’ or’ SET’ (’ INTEGER’).

The current version of LabBase does not automatically support ordering constraints
among steps, though this is a capability that would probably be useful.

In addition to materials and steps, LabBase provides data-dictionary entries that record
what sorts of materials, steps, and tags are known to the system.

The remainder of this manual is organized so that the information most users will re-
quire appears first, followed by information that is of interest to smaller numbers of users.
Therefore, the next section describes how to pose read-only LabBase queries. Subsequent
sections describe how to pose queries that update the database and how to define new kinds
of materials and steps. Sections 4 and 5 act as a reference manual: they describes all the
predicates available in LabBase and define the grammar of the LabBase query language.

2 Queries

Queries (and updates) are posed in a non-recursive logic programming language: the syntax
and semantics are essentially those of a subset of Prolog [1]. The essential idea is that Lab-
Base automatically defines certain predicates over the materials, steps, and tags constituting
the state of a LabBase database. For example, if ¢ is a tag, then the predicate ¢(M,S) binds
S to the most recent value associated with ¢ in the step history associated with the material
bound to M.

Each query is a non-empty sequence of comma-separated terms, terminated by a period.
For example

marker (M) ,sequence(M,Seq) .

This query prints, for each marker, M, that has a sequence, the most recent sequence recorded
for M. The two terms in this query are marker (M) and sequence(M,Seq) . To answer this
query, each marker in the database is successively bound (assigned) to M, and then the
sequence predicate binds S to the value associated with the most recent sequence tag in
any step belonging to that particular marker.

Assuming there are four markers in the database, the output would look something like
this:

M=B123,Seq=ACTTG. ..
M=Q443,Seq=GGATTG. ..
M=Z1N4,Seq=CCAAG. ..
M=L96,3eq=CTTTA. ..
YES

In this output, each variable is printed with a binding that made the query true. (A
variable is an alphanumeric identifier beginning with a upper-case letter.) If the query has
any bindings that make it true, LabBase prints YES after printing out the bindings. This is
the default output. It is possible to tailor the form of the output by using the only predicate.

In the query above, marker is a material kind, and sequence is a tag. For any material
kind k, the predicate k(X) binds X to each material of kind k. For any tag, ¢, the predicate
t(M,V) requires M to be bound to a material. Then the predicate ¢ binds V to each value
associated with ¢ in the most recent step of M that has an instance of . Because the first
argument to the predicate ¢ must be bound, and the second argument can be free, we say
that its adornment is [bf]*

Tags can be set- (or list-) valued. For example, in the mouse genetic mapping schema
at CGR, the tag duplicate_id_set is associated with a set of (string, integer) pairs, where
each of the strings is the id of a marker, and each of the integers is a measure similarity
between two sequences.

Sometimes many steps have the same tag; for example, every step has a when and a who
tag. To restrict LabBase to the most recent step of a particular step kind, one can pose a
query such as the following:

marker (M) ,sequence step(material=M, sequence=Seq,when=W) .

In this query, sequence_step is a step kind, and Seq and W are bound to the values of the
sequence and when tag (respectively) of the most recent sequence_step. If, for example,
there were no sequence tag associated with marker m’s most recent sequence step, m
would not appear as a binding for M in the output of from this query.

Error Reporting When LabBase detects a syntax or evaluation error it prints out a string
of the form

!Some Prolog manuals label an argument with -’ to indicate that it can be free (corresponding to
LabBase’s 'f’), and with '+’ to indicate that it must be bound (corresponding to LabBase’s ’b’).

ERROR=message near line n, column m.

where message tries to explain what went wrong, n is a line number near the error, and
m is the column position near the error. If you keep each term in a query to single line, n
should be accurate. For evaluation errors, m is often at the end of the term which could not
be evaluated. For a single query, it is possible, for some valid bindings to be printed before
LabBase detects an evaluation error.

Queries can be interrupted with control-C (SIGINT), in which case an error message is
printed. However, the SIGINT must directed to either the 1bserv or 1bback process. For
more details see the man pages for these programs and also [7].

It is often desirable to have a query print out an error message when no bindings can be
found to make a term true. The insist predicate can do this. For example

marker (M), sequence step(material=M),
insist(sequence step(material=M, sequence=Seq,when=W)).

which prints an error for those markers that have no sequence or when tag on in their
most recent sequence_step. The insist predicate succeeds each time its argument succeeds,
put prints out an error message if its argument does not succeed at least once.

Example Queries We close the section on queries with a few more example queries:

e Print all markers and selected typing _step information for those markers that have
been typed on more than 2 typing panels.

marker (M),
count (typing_step(material=M,the_typing_panel=P), C),
C > 2,typing_step(material=M,the_typing_panel=Q).
e Print the number of markers that have been typed on more than 3 typing panels.
count (marker (M),
count (typing_panel (P), typing_string(M,P,S), C),
C>3,D).
e Find all markers with no step with a sequence tag.
marker (M) ,not (sequence(M,D)).

e Find all markers whose most recent typing step follows a mapmaker_step (two ver-
sions).

marker (M) ,next (M,typing_step,mapmaker_step),
mapmaker_step(material=M).

marker (M), mapmaker_step(material=M,when=W1),
typing_step(material=M,when=W2), W2 > W1.

e Print all markers that have any typing step following a mapmaker step.

marker (M) ,all_steps(M,S1),all_steps(M,S2),
mapmaker_step(S1) ,typing_step(S2) ,when(S1,W1),
when(S2,W2) ,W2 > W1.

3 Writes

Tag associations are a key concept in the expression of writes to LabBase. A tag associations
is a syntactic representation of a tag/value pair to be inserted into the database, and is of
the form

t=v

where ¢ is a tag (as determined by the set of tags in data dictionary), and v is a single value.

3.1 Inserts

Inserts of a new instance of a material have the form
insert (z(args))

where = is a material kind, and args is a comma-separated list of tag associations. The
args must contain tag associations with tags x_id (whose value becomes the id of the newly
created material) and who. The result is the creation of a new material with a first step of
kind create with the specified tag/value pairs, and, in addition the a created material
tag associated with the newly created material itself.

Here is code to insert a new marker:

insert (marker(marker_id=’A1’, who=’’, when=1991:06:12:09:23:47)).

Here is code to create a screening panel:

insert(
screening_panel (
screening_panel_id=’standard mouse screening panel’,
who=steve, when=1991:01:01:00:00:00
screening_panel_abbreviations
=[ob, cast, spr, a, b6, c3h, dba, balb, akr, non, nod, lp],
screening_panel_members
=[’C57/6J-0b/0b’, ’Castaneus’, ’Spretus’, ’A/J’,
>C57bl/6J°, *C3H/HEJ’, *DBA/2J’, ’BALB/CJ’, ’AKR/J’,
'NON’, ’NOD’, 'LP/J’ 1)).

Inserts of a new step have the same form as insert of a new material instance, except
that # must a step kind; args must contain a who tag, and must contain at least one tag of
type "MATERIAL POINTER’.

Here is an example of inserting a step of kind external choice_step.

insist (marker_id(M,’L59°)),

insert (external_choice_step(
material=M,who="’,when=1991:07:09:10:45:08,
left_primer=’ATGGGTACCACCCTATCATACCTA’,
right_primer=’TTATACACTGATATCTTGATAGCC’ ,
product_length=48,
external_choice_source='First WIBR Bluescript Library’)).

3.2 Value Sets

Value sets (also called “material sets” for historical reasons) are sets of values that occur
“at the top level”—mnot as part of a step. They are often used to hold partial results of a
multi-statement query, or to represent the state of materials in a laboratory production line.

The predicates value_set and temp_value_set allow one to manipulate permanent and
temporary value sets. Currently value_set’s are completely persistent: they survive the
shutdown and restart of the database server, while temp value set’s disappear when the
database server is shut down. The predicates material set and temp material set are
retained for backward compatibility with earlier releases of LabBase; they are synonyms for
value_set and temp_value_set, respectively. In addition lbserv (see the 1bserv man page)
provides temp material set’s that are visible only within a single database session.

Section 4.2 describes how to use value set and temp_value_set to query value sets. To
insert a value into a value set one would write something like

marker_id(M,’D1118’) ,insert(value_set(’My Set’,M)).

which inserts the marker with id D1118 into value set "My Set’. To create a temporary
value set containing all markers with no sequence write

marker (M) ,not (sequence(M,S)) ,insert(temp_value_set (no_sequence,M)).

Here is an example of deleting a particular value from a material set
hybrid_screening_panel (P,panel_X) ,delete(value_set(good_panels,P)).

This query deletes the panel with panel X from the set good_panels.
It will soon be impossible to delete an entire value set (or temporary value set) with
name X using the form

delete(value set (X))
Instead, use
delete entire value set(X).
and
delete entire temp value set(X).

It is safe to insert to or delete from a value set while iterating over it. LabBase makes a
copy of the value set before finding bindings for value_set [bf] or temp_value set [bf].

3.3 Deletes and Updates

We expect deletes and updates to be rare, and used only to make corrections to data when no
workflow step is needed to record the correction. Since MapBase currently offers no facilities
for updates or deletes, their implementation in LabBase (except for value sets) has been
deferred. Current practice is to edit the ASCII roll-forward logs to perform the updates and
deletes when they are absolutely required.

4 Reference Manual

4.1 Types

The legal atomic types are: ’STRING’, ’INTEGER’, *FLOAT’, *DATE’, ’DNA_SEQUENCE’,
’BOOLEAN’, MATERIAL POINTER’, ’STEP_POINTER’, and ’TERM’. Every atomic type is a
legal type. The legal type constructors are: ’*LIST’, ’SLIST’ and ’SET’. ’SLIST’ is a
space-efficient representation for lists that have mostly zero elements. (The zero elements
are the empty string for >STRING’, 0 for INTEGER’ and BOOLEAN, 0.0 for *FLOAT’, the date
corresponding to the Unix time_t 0 for ’DATE’, the empty sequence for ’DNA_SEQUENCE’,
the empty set for ?SET’, and the empty list for *LIST’ and ’SLIST’. An ’SLIST’ cannot
have "MATERIAL POINTER’, *TERM’, or ’STEP _POINTER’ elements.)

For any legal types t1, ..., tn, n>0, and for any legal type constructor U, U(t1,..., tn) is
a legal type. Neither >STEP_POINTER’ nor ’TERM’ can be used as part of the type of a tag.

4.2

Predicates

The available predicates are either built in (like insert and not), or are defined by the
contents of the data dictionary.

As of April, 1997, it is possible to logically delete steps. The effect is to simply mark a
step as deleted; no storage space is released, and no index entries for associated identifier tags
are removed. It is possible to see logically deleted steps if the predicate see_ deleted steps

has previously been evaluated in the current query.
Definition: A step is wvistble unless it is logically deleted or see_deleted _steps has been

evaluated in the current query.

material_kind(X) [f],[b] True if X is a material with kind material_kind.

tag(R,Id) [tb], [bb] Provided tag is an identifier-tag, true if R is a material with Id
associated with tag at some step. (An identifier-tag is one with the tag id_tag set to
1 in its data-dictionary entry.)

tag(M1,...,ME, V) [b..bf] (For cases not subsumed by the previous entry.) We must
have k>0. Each Mi must be bound to a value of type ’MATERIAL POINTER’. Search the
intersection of the histories of M1,...,Mk from the most recent step backward, until a
visible step is found with tag tag. Bind V to the corresponding associated value. (The
tag tag must not be a data-dictionary tag—one with the tag id_tag set to 1 in its
data-dictionary entry).

tag(S,V) [bf] Bind V to the value associated with tag in step S. (tag must not be a
data-dictionary tag.)

step_kind(S) [b], True if Sis a step of kind step_kind.

step_kind(ti=x1,...,tn=an) [b...b] Predicates of this form allow greater precision than
those based on tags: step_kind predicates can determine which tags are collected in a
particular step, and can determine the tags with which materials are associated, thereby
differentiating the roles of the materials. At least one t¢ must have type MATERIAL_
POINTER’ and the associated xi must be bound. In the current implementation there
can be no more than one unbound #; with type *MATERIAL POINTER’. Bindings for
unbound zi’s are found as follows:

— Let S be the set containing exactly those steps, s, such that all of the following
obtain:
* s 1s visible.
* The step kind of s is step_kind.

* For all the ti’s of type "MATERIAL POINTER’, s is the most recent step with
any particular mapping of the #’s to material pointers.

* For every bound w1, i is associated with zi’s value.

— For each s1in S do:

* Bind each free xi to the value associated with #7 in s and return true.

+, =, *, / These symbols are not the names of predicates, but can be the principal
functor of a term argument to the is predicate.

>.<,>=, <=, <>, == [bb] Binary comparison operators. <> is the inequality predicate,
and == is the equality predicate, needed because underbound methods are not yet
supported. May be used as infix operators.

Pattern™ String [bb] True if String contains the regular expression Pattern. Pattern and
String must have type >STRING’. The syntax of Pattern is that of the Unix editor ed(1),
except that newlines are allowed in Pattern; for documentation use the Unix command
man ed. Please note that in order to get a backslash into Pattern, is necessary to
use two backslashes in the quoted string. For example, > ~\\(.) .*\\1$’> ~ uveweru.
(The pattern matches any string of length at least 2 with the same character at the
beginning and the end.)

term0; ; terml [bb] Evaluate term0. If there are any bindings that make it true, then
return true for every binding that makes term(true. If term0 is never true, then return
true for every binding that makes term/ true. (;; is a short-circuit or operator.) In
the query-language grammar, ;; binds more tightly than ,.

all_steps(R,S) [bf],[fb] True if S is a visible step associated with material R. The
bindings are guaranteed to produced in the order in which the steps appear in R’s step
history.

baseline rusage [| Create a baseline for measuring resource usage. (Resource usage
is measured in lbback only.) See incremental rusage.

cardinality(Set,Cardinality) [bf] True if Cardinality is the cardinality of Set.
commit [| Execute a commit in the underlying storage manager.

count(terml,..., termn,C) [b..bf] Binds C to the number of times
terml,....,termn is true. Any bindings produced in evaluating
terml,...,termn are undone before evaluating the term following the count term.

db_size(Bytes, Blocks) [ff] Bind Bytes to the number of bytes in the database, and
Blocks to the number of blocks (as returned by Unix stat). Only the main database
file or files are considered. Log files are excluded.

delete(term) [b]

The only legal argument is a term of the form value_set(string,value) (or material_set(string,valu
)), where both string and value are bound. The result is to delete value from the value

set with name string.

delete entire material set(Set_name) [b]
Delete the material set with name Set_name (which must be a >STRING’). Always true
(whether or not there is material set named Set_name).

delete entire temp material_set(Set_name) [b]
Like delete_entire material _set, except or temporary material sets.

delete_step(Step) [b]
Logically delete Step. (No error is raised if Step is already deleted.) See also undelete_step.

element(collection,V1,...,Vn) [bx...a], xin {b,f} The collection must be of type *LIST’,
’SLIST’, or *SET’. If n=1, each element of collection is bound (in order, if collection
is of type LIST’ or *SLIST’) to VI. If n>1, each element of collection must be a list,
[x1,...,en] containing exactly n elements. For each element of collection (in order, if
collection is of type *LIST’) bind Vj to xj.

exists(terml,..., termn) [b...] True if termi,..., termn evaluated as a query (using
any already-established bindings) is true. The argument query is not evaluated after
one set bindings is found which makes it true; thus using exists might be more
efficient than evaluating the argument query directly. It is an error to use the second
kind of step_kind query within the argument of an exists predicate. In the current
implementation the exists predicate can cause some storage leakage in the 1bback
server, so it should be used only when there is a compelling efficiency rationale.

gather_in list(terml,..., termn,Element,List) [b...bff] For each set of bindings for
which term1,..., termn is true, take the value bound to Flement and make it an element
of List. The order of elements in List is determined by the order in which they are
bound to Element by evaluating termi,..., termn.

gather_in_set(terml,..., termn,FElement,Set) [b...bff]

For each set of bindings for which termi,..., termn is true, take the value bound to
Element and make it an element of Set. All the values bound to Flement must be
comparable as if by ==.

hex_escape(c¢) [b] Please use hex_escape_and_quote for all future coding. hex_escape
is maintained only for backward compatibility. When printing out strings from the
database, replace the characters

[,1,{,},comma,newline,

and citself by ¢ followed by the character’s 2-digit hex code. The intent of this predicate
is to make it easy to parse LabBase output by means of simple regular expressions.
The effect of evaluating this predicate is limited to the current query.

hex_escape_and_quote(c) [b] When printing out strings from the database, replace the
characters

10

[,1,{,},(,),comma,newline,single quote,

and c itself by ¢ followed by the character’s 2-digit hex code. In addition enclose all
strings in single quotes (including material-kind names and principal material ids when
printing a MATERIAL POINTER and step-kind names when printing a STEP_POINTER).

The intent of this predicate is to make it easy to parse LabBase output by means of
simple regular expressions. The effect of evaluating this predicate is limited to the
current query. The local perl module ../site 1isp/LabBase.pm is designed to turn
the output of a query produced using this predicate into a normal perl5 data structure.

The format in which step “identifiers” are printed out is designed to make parsing by
../site lisp/LabBase.pm reliable; they are printed out in the form

step(’<kind>’’%2c’ (when=<timestamp>)) (%2c is the hex code for comma) (or
step(’<kind>’’%2c’ (when=<timestamp>’ %5bdeleted’,5d’)) if the step is logically
deleted).

incremental rusage(List) [f] Bind List to a list of triples. The first element of each
triple is a string describing the resource. The second element is the amount of resource
used since the most recent evaluation of baseline rusage, and the third element
is (ususally) the amount of resource used since lbback was invoked. The first three
elements of List are user CPU time, system CPU time, and elapsed time (as in the
default for csh’s time command). Remaining elements (if any) are from getrusage(2).

insert(term) [b] The insert predicate is discussed in various sections above.

insist(term) [b] True whenever term is true. If there are no bindings that make term
true, then insist prints out an error message.

V is expression [fb] If expression is a non-term value, binds V to expression. If ex-
pression is a term with one of principal functors +, =, *, or / is evaluates expression
according to C-like rules of arithmetic. In particular, / operating on INTEGER’s
yields an INTEGER’, and the result of any expression containing a "FLOAT” will be
a 'FLOAT". For the current implementation, you must use the standard (i.e. parenfix)
syntax for +, -, *, and /, which are all binary operators.

ith(List,[, V) [bbf], [bff] For adornment [bbf] the second bound argument must be of
type INTEGER’. List must be of type *LIST’, >SLIST’, or *SET’. Bind each element,
ei, in List (in order) to V, and bind i to L.

Simple array subscription is performed by ith. For example, ith([a,b,c],0,Z) binds
Z to a. Some more examples are:

1> ith([a,b,c],I,Z).

I=0,Z=a
I=1,Z=b

11

1=2,Z=c
YES

2> ith([[a,b],[1,21],1,Z).
Z=[1,2]

YES

3> ith([[a,b]l,[1,211,1,Z)
I1=0,Z=[a,b]

I=1,Z=[1,2]

YES

o {left,right} primer_sequence(M,Primer_sequence) [bf]
Special-purpose predicates for the CGR. Primer_sequence becomes bound to the left
or right primer sequence of M (a MATERIAL POINTER’) according to the rules detailed
below. (Also see pcr_product length.) These predicates signal an error in database

state by binding Primer_sequence to the empty string. They signal an incompati-
ble database schema by the usual LabBase error mechanism (which aborts all query

processing for the current query).

— Let A be 1left or right.

— Let s be an arbitrary step in the history of M such that s contains either the
A_start or the A _primer tag, and such that no later step contains either tag.

Signal an error in database state if s contains both A_start and A_primer.

— If s contains A_start then

*

Let ¢ be the value associated with A_start, and let j be the value associated
with A_length tag in s. Signal an error in database state if A_length is
absent in s.

Find the most recent insert_start, insert_length and sequence tags in
any step at or before s. If any of these tags is missing signal an error in
database state.

Let ¢ be the value associated with insert_start, let r be the value associated
with insert_length, and let, S, bet the value associated with the sequence
tag, respectively.

For left primer_sequence, bind Primer_sequence to the substring of .S start-
ing at position i (0-based) and of length j.

For right _primer_sequence, bind Primer_sequence to the reverse comple-
ment of the substring of S starting at ¢j+1 and of length j.

— Otherwise, if s contains an A_primer tag, bind its value to Primer_sequence.

e length(X,Length) [bf] Trueif Length is the length of X (which must be of type *LIST’,
’>SLIST’, ’STRING’, or ’DNA_SEQUENCE’.

e make list(V1,...,Vn,L) [b...bf] Bind L to the list containing V1,..., Vn, where n must
be greater than 0 and each Vi must be a value or a variable bound to a value.

12

material set(Set_name) [f],[b] True if Set_name (which must be a >STRING’) is a
material set.

material set(Set_name, R) [bf],[bb] True if material R is in permanent material set
Set_name (a > STRING’). With adornment bb, can also be the argument to insert and
delete.

next (M, Step_kindl1, Step_kind2) [bbb] True iff the step history of material M contains
a step of Step_kindl and the most recent step of kind Step_kind! in the history is not
followed by a step of kind Step_kind2. The value of next is false if the most recent
steps of both kinds have the same when value

not (terml,..., termn) [b...b] True if term1,..., termn has no true bindings. Any bind-
ings produced in evaluating termi,..., termn are undone before evaluating the term
following the not term.

only (Variablel,..., Variablen) (Adornment is irrelevant.) Cause the binding of only
the argument variables to be printed. The effects of the side-effecting predicate persist
during the evaluation of the query. Multiple evaluations cause the union of the variables
in all the evaluations to be printed.

pcr_product length(M,Length) [bf] A special-purpose predicate for the CGR. Length
becomes bound to the PCR product size (in base pairs) of M (a *MATERIAL POINTER’)
according to the rules detailed below.

(Also see left primer_sequence, and right primer_sequence.)

pcr_product_length binds Length to either:

— The value associated with the most recent product_length tag in M’s history,
provided that there is no more or equally recent left_start or right_start tag.

— Otherwise the PCR product length computed from the most recent left_start
and right_start tags in M’s history.

pcr_product_length binds Length to -1 if there is a left_start (or right_start)
tag at least as recent as the most recent product_length tag, but no right_start (or,
respectively, left_start) tag. pcr_product_length signals an incompatible database
schema by the usual LabBase error mechanism (which aborts all query processing for
the current query). pcr_product_length does not treat as an error nonsensical values
for left_start and right_start; for example if right_start is less than left_start
pcr_product_length will silently bind Length to a non-positive value.

polymorphic(Avg_allele_sizes, 10,11, Delta) [bbbb] Avg_allele_sizes is a list of integers,
each at least -1. Yield true if the [0th and [7/th (0-based) elements of Avg_allele_sizes
differ by at least Delta and neither element is -1, or if one but not both of /0 and 1 is

-1. (See also strictly_polymorphic).

13

e reversec(X,Y) [bf] [fb] Bind the free argument to the reverse complement of the bound
argument. The bound argument must have type ’STRING’ or ’DNA_SEQUENCE’, and
an error is reported if a STRING’ argument contains any character other than A, T,
G, C, or N. The free argument becomes bound to a value of type *DNA_SEQUENCE"’.

e right _primer_sequence(M, Primer_sequence) [bf] A special-purpose predicate for the
CGR. Documented under left_primer_sequence.

e sce deleted steps [b]
Make logically deleted steps visible for the remainder of the current query.

e strictly polymorphic(Awvg_allele_sizes, 10,11, Delta) [bbbb] Avg_allele_sizes is a list of

integers, each at least -1. Yield true if the [0th and [Iith (0-based) elements of
Avg_allele_sizes differ by at least Delta and neither element is -1. (See also poly-
morphic).

e substring(String,Start, Length,Substring) [bbbf] Bind Substring to the substring of
String starting at (0-based) index Start and of length Length. It is an error if any
part of the specified Substring falls outside of String. String must be bound to a value
of type ?STRING’ or ’DNA_SEQUENCE’, and Substring becomes bound to a value of the
same type as that of String.

e tag value(step,List) [bf] Bind List to a list containing all the tag-and-value pairs (each
represented as a list) in ?STEP_POINTER’ step.

e tag value(material,List) [bf] Bind List to a list containing all the most-recent tag-and-
value pairs (each represented as a list) in *"MATERIAL POINTER’ material.

e temp material set(Set_name) [f],[b] True if Set_name (which must be a >STRING’) is
a temporary material set.

e temp value_set(Set_name, R) [bf],[bb] Same as material_set, except that the mate-
rial set dissappears at the end of a database session—that is, when 1bserv is used to
shut down the database server.

e undelete step(Step) [b]
Undo the logical deletion of Step. (No error is raised if Step is not logically deleted.)

e var(X) [b],[f] True iff X is an unbound variable.

4.3 Built-In Tags and Step Kinds

Built-In Tags Certain tags are required by LabBase, and are built-in. Some are data-
dictionary tags, because they are tags in data-dictionary entries. These are dd_identifier,
type, dd_tag, id_tag. The other built-in tags are: who, when, created material,material.

Built-In Step Kinds The step kind create is built-in.

14

4.4 Proposed but Unimplemented Predicates

LabBase users who require predicates not available above should contact:

steveQgenome.wi.mit.edu.

5 Grammar

The grammar of the LabBase query language is similar to those of standard Prologs, with
some execeptions. The most notable exceptions are:

e LabBase does not support the definition of rules.

o All infix operators are right associative and all have the same precedence, and paren-
theses cannot be used to group. When in doubt, use the parenfix syntax: for example,
;(3 < 5, foo(X)) rather than 3 < 5 ; foo(x) (equivalent to <(3,;(5,foo0(x)))).
The infix operator = plays a special role in LabBase, in arguments to the insert
predicate and in certain queries based on step kinds. It is not possible to define new
operators in the LabBase query language; they are all built in.

o Beware of the following:

3 < 4.

The term above compares the integer 3 with the float 4. The dot does not end a query.

5.1 Lexical Elements

Null characters (ASCII code 0) are illegal anywhere in the input. Control-A (ASCII code 1)
is used as a synchronization character between clients and the LabBase server: it terminates
the current query in any context. The perl API sees to it that each query sent from a client
is terminated with a control-A.

5.1.1 String Literals

A string literal is one of the following:

e A (maximal) sequence of the characters [a-zA-Z0-0_] beginning with a lower-case
letter ([a-z]).

o A sequence of the characters from the set +-*\"<>=‘": 70#$&.

o A sequence of characters enclosed in single quotes.

15

Escapes are available within quoted strings: \t, \n, \b expand to tab, newline, and back
space, respectively, \ ¢ causes the whitespace character ¢ to be ignored, for example >ab\
c’ is another way of writing ’*abc’. Every other character preceded by a \ is replaced by
itself, so ’\foo’ is another way of writing *foo’. To write a the string ab’c write ’ab’ ’c’
or ab\’c’. Octal escapes are not yet implemented—you cannot write >\1’ to get a string
consisting of the character control-A, but they can be implemented quickly on request.

6 User Extension

It is possible to extend LabBase by adding new builtin predicates or new types to LabBase
executable. Please refer to [7] for an overview of LabBase’s system architecture before reading
the material in this section.

6.1 Adding New Builtin Predicates

It you want to add a builtin that takes terms as arguments, you can find examples in
builtinl.C. The remainder of this section discusses a simple interface for adding builtins
that use only values (as opposed to terms) as input or output arguments. Examples can be
found in builtin2.C.

To add a builtin predicate one must write a single function if the predicate produces no
more than 1 set of bindings for a single input, or two functions if the predicate can produce
more than 1 set of bindings for a single input.

To write a single-function predicate:

1. Let first be the name of the function implementing the predicate. (The name of the
predicate is determined later, and need not be the same.) This function will set up
the first bindings (if any). It returns an object of type QL_Iterator Statex, but
a l-function predicate should return 0 or 1 (suitably cast), to indicate whether the
predicate is true or not.

2. Put the following line in a header file to be included by dd_ops.C (and which must
also include builtin.H).

BUILTIN FIRST EXTERN(first) ;

3. In the file that will contain the function definition, create a static, file-global array
variable, types, that contains the types expected of an initial segment of the bound
arguments:

static Value::tv_type_id types[] = {Value::T1,...,Value:: Tk};

Each Tiis a type from the enum tv_type_id defined in value.H. The variable types
must contain at least one value.

4. Use the macro (defined in builtin.H):
BUILTIN FIRST DEFINITION (ﬁ?“St,

16

bound_number, free_number, types, type_number, unused)

{

function_body

}

The arguments to BUILTIN FIRST DEFINITION are:

(a) first The C++ identifier for a global function to be created.

(b) bound_number The number of bound arguments expected. Use -1 to indicate a
variable number of bound arguments.

(c) free_number The number of free arguments expected. Use -1 to indicate a variable
number of free arguments.

(d) types The array of Value::tv_type_ids defined above. Use Value::UNDEFINED
to indicate that any type is acceptable. Otherwise an error will be generated if
the corresponding bound argument is of a different type.

(e) type_number The number of elements in types, which must at least 1 unless
bound_number=0. If type_number is less than the number of bound arguments
found at run time, the last element in types is taken to specify the required type
of the remaining bound arguments.

(f) function_body Computes whether the predicate is true or false, and produces bind-
ings for any unbound arguments. The following variables are available in function_
body:

i. QL_Term#* t is the term being evaluated; t would be the first argument in a
call to ql_eval error, which is how first should report a user error.
il. int m is the number of bound arguments.
iii. int n is the number of free arguments.

iv. const Value in_tv[] has length m. The contents are the bound arguments.
It is guaranteed that each element of in_tv is the address of a legal Value.

v. Value out_tv[] has length m. The elements of this array must be assigned
to create the update bindings if first returns a non-0 result.
5. Add the following line to function DD_Ops: :add builtins() in dd_ops.C:
add_builtin(predicate_name, predicate_adornment, first);
where
o predicate_name is of type char*, and is the name by which the predicate will be
known in the LabBase query language.

o predicate_adornment is either the C++ string "*", indicating a variadic predicate,
or a (possibly empty) string accepted by the regular expression [bf]l*, which
denotes the expected adornment of a predicate of fixed arity.

o first is the C++ identifier discussed above.

17

6. Garbage Collection Values produced using the static member functions
Value_Class: :make are automatically garbage collected. The constructors for Value
classes are not public.

7. Reporting User Errors Use ql _eval error(QL Term*, char*ml,...) to report
user errors. (There can be up to a total of 5 char* arguments.) The error message
reported to the user is the concatenation of the char* arguments, followed by the text
" predicate ’name’ near line line_number, column column_number". As a con-
sequence, most error messages should end in a preposition, such as “in” or “for”. For
example, calling ql _eval error with char* arguments "a total " and "disaster
occurred in", the user will see ERROR=a total disaster occurred in predicate
name near line [line_number, column column_number. Do not end the error mes-
sage with a period.

8. Stick with class Value You should be able to do everything you need to do in
class Value. For most elements, X of the enum Value: :tv_type_id there is a member
function down_to_X that should be used for down-casts. These functions will call abort
if the downcast is illegal based on the type of the Value. Also, for collection classes (lists
and sets), stick with the class TV_Collection Value, (which is a Collection Value
of Values). Lists and sets have the same C++ class! but do differ in how they respond
to Value: :tv_type(), and some member functions raise run-time errors if invoked on
sets as opposed to lists (a la Smalltalk).

To write a two-function predicate, follow all steps for writing a one-function predicate,
except step 5. In addition:

1. Let next be the name of the second function implementing the predicate. The first
function must return some state that the next function receives as an argument, and
that allows next to set up the next set of bindings (if any).

2. Put the following line in a header file to be included by dd_ops.C (and which must
also include builtin.H).

BUILTIN NEXT EXTERN(next) ;

3. Place the macro
BUILTIN NEXT DEFINITION(next, unused) { function_body }
in the same file as the use of the macro BUILTIN FIRST DEFINITION. Within func-
tion_body the variables t, n, and out_tv have the same types and semantics as for
the function_body argument of BUILTIN FIRST DEFINITION. In addition, variable s has
type QL_Iterator_State*, and contains state information returned by a call to first
or a previous call to next.

4. Add the following line to function DD Ops: :add builtins() in dd_ops.C:
add_builtin(predicate_name, predicate_adornment, first, next);

where

18

o predicate_name, predicate_adornment, and first are as for the 1-function case, and

e next is the C4++4 identifier introduced above.

Please add appropriate regression tests to the directory $LABBASE ROOTDIR/src/lbback/
tests, and add a description of the new builtin to this document. Regression tests end in
extension .test, and the baseline output is stored files with the same name and extension
.last.

6.2 Adding New Types

This section is still incomplete and has not been debugged much. Please contact the authors
for help in adding a new type.

All new types must be derived (in the C++ sense) from class Value. Let the new class be
New_Class, and let the corresponding enum value for Value: :tv_type_id be NEW_CLASS.
For consistency with existing LabBase types, the enum name should be all upper-case, since
the LabBase user will see this as the type name.

e In value.H:

— Add the forward declaration “class New_Class;” just before the definition of
class value.

— In the definition of class Value:

* Add the enum value named NEW_CLASS to the definition of enum tv_type_
id.
* Add the declaration “New_Class *down_to NEW_CLASS() const;”
— Add the necessary declaration of New_Class. This declaration should offer the
following public member functions:
* compare [more to come]
* print [more to come]
* zero [more to come]
* make [more to come]
* save [more to come]

* [more to come]
e In value.C:

— Define the function down_to_New_Class() by the top-level macro call DEFINE_
DOWNTO_FUNCTION(STEP_POINTER,Step)
— Add the macro call V_PRINT(New_Class) to the body of Value: :print ().

— Add the macro call V_.SAVE (New_Class) to the body of Value: :save() (assuming
you want to save values of type New_Class in the database).

— Add the macro call V_.COMPARE (New_Class) to the body of Value: :compare().

19

— Add an appropriate branch to the switch in the body of delete_value() to call
the correct destructor for New_Class.

— As necessary, add definitions for the member functions of New_Class. (These
definitions can also be in a separate file, of course.)

e In dd_ops.C:

— Add the appropriate call to add_type_constructor to the body of DD _Ops: :add_
type_constructors, to enable lbback to parse type expressions. The optional
second argument to add_type_constructor, if non-0, indicates that the new type
is in fact a type constructor that takes arguments.

e In gl term.C:
Fix the type-checking routines as necessary.

e In the implementations of builtin predicates:
If any existing builtin predicates should operate on the new type, their implementations
must be changed.

You will probably want to add a new set of regression tests for the new type.

References

1]
2]

W. F. Clocksin and C. 5. Mellish. Programming in Prolog. Springer-Verlag, 1987.

N. Goodman. An object oriented DBMS war story: Developing a genome mapping
database in C4++. In W. Kim, editor, Modern Database Management: Object-Oriented
and Multidatabase Technologies. ACM Press, 1994.

N. Goodman, M.-P. Reeve, and L. Stein. The design of MapBase: An object oriented
database for genome mapping, Dec. 1992. Whitehead Institute for Biomedical Research,
technical report.

N. Goodman, S. Rozen, and L. Stein. Requirements for a deductive query language in
the MapBase genome-mapping database. In R. Ramakrishnan, editor, Applications of
Logic Databases, pages 259-278. Kluwer, 1994. Available at ftp://genome.wi.mit.edu/
pub/papers/Y1994/requirements.ps.

A. R. Kerlavage, M. D. Adams, J. C. Kelly, M. Dubnick, J. Powell, P. Shanmugam,
J. C. Venter, and C. Fields. Analysis and management of data from high-throughput
expressed sequence tag projects. In T. N. Mudge, V. Milutinovic, and L. Hunter, editors,

Proceedings of the 26th Annual Hawati International Conference on System Sciences,
volume 1, pages 585-594. IEEE. Computer Society Press, Jan. 1993.

20

[6]

A. R. Kerlavage, W. FitzHugh, A. Glodek, J. Kelley, J. Scott, R. Shirley, G. Sut-
ton, M. Wai-Chiu, O. White, and M. D. Adams. Data management and analysis for

high-throughput DNA sequencing projects. I[EEE Engineering in Medicine and Biology,
Nov./Dec. 1995.

S. Rozen, L. Stein, and N. Goodman. Constructing a domain-specific DBMS using a
persistent object system. In M. Atkinson, V. Benzaken, and D. Maier, editors, Persistent
Object Systems. Springer-Verlag and British Computer Society, Workshops in Computing
Series, 1995. Presented at POS-VI, Sep. 1994. Available at ftp://genome.wi.mit.edu/
pub/papers/Y1994/labbase-design.ps.Z.

S. Rozen, L. Stein, and N. Goodman. LabBase: A database to manage laboratory
data in a large-scale genome-mapping project. IFEE Engineering in Medicine and Bi-
ology, 14(6):702-709, Nov./Dec. 1995. Preprint available at ftp://genome.wi.mit.edu
/pub/papers/Y1995/labbase.ps.gz.

L. Stein, 5. Rozen, and N. Goodman. Managing laboratory workflow with LabBase.
In Proceedings of the 199/ Conference on Computers in Medicine (CompMed94). World
Scientific Publishing Company, 1995. In press. Available at ftp://genome.wi.mit.edu
/pub/papers/Y1995/workflow.ps.Z.

21

