
LabBase User Manual� Version ���

Steve Rozen Lincoln Stein

Nathan Goodman

fsteve�lsteing�genome�wi�mit�edu

Whitehead Institute for Biomedical Research

One Kendall Square

Cambridge MA �����

April �� ����

Abstract

LabBase is a generic database management system for implementation of laboratory

information systems� This manual constitutes both a tutorial introduction to and a

reference manual for LabBase�

� Data Model

The primary abstractions supplied by LabBase are materials and steps� materials are things
one works on in the laboratory� such as genetic markers or expressed sequence tags� and steps
record both actions taken on a material and the information they generate� For example� at
the Whitehead�MIT Center for Genome Research �CGR�� the discovery of a mouse genetic
marker involves many steps�

�� sequencing a small DNA fragment�

�� determining if it contains a simple repeat �microsatellite��

�� checking to see that we have not already used this sequence�

	� selecting polymerase chain
reaction �PCR� primers�

and so on� In this example� the material is the potential genetic marker� and the steps
correspond to the actions � through 	� Our experiences with MapBase ��� 	� ��� as well as

�



other literature on laboratory information systems �
� ��� suggest that the notions of material
and step are ubiquitous in these systems�

Additional material describing LabBase appears in ��� �which discusses the user view
of LabBase�� and ��� �which focuses on LabBase�s implementation�� The CGR�s approach
to work�ow management and CGR�s work�ow
management software are described in ����
Documentation on the perl API to LabBase is found with the LabBase distribution�

In LabBase� almost all information about a material is stored as part of a step� In our
work with MapBase we found this to be a robust organization� because we want almost all
attributes of a material to be associated with information about the processing step that
produced them� For example� when we record the sequence of a potential marker� we also
record the �le that contains the output of the automated DNA sequencer� as well as the user
that entered the sequence and the time a which the sequence was entered�

In LabBase� each material is associated with

� a material kind� such as marker or est �expressed sequence tag�� and

� a history �list� of steps that record the chronology of real
world operations performed
on that material�

A step is associated with a step kind� For example� step � above might have the step kind
sequence step� In addition to its step kind� a step consists of a set of tag�value pairs� for
example sequence��ACCG���� or sequence file���usr�local�seq output������� Tags
serve as attribute names� and each tag has a unique type that de�nes the values that can be
associated with that tag� Examples of types for a tag are �STRING� or�SET���INTEGER�	�

The current version of LabBase does not automatically support ordering constraints
among steps� though this is a capability that would probably be useful�

In addition to materials and steps� LabBase provides data�dictionary entries that record
what sorts of materials� steps� and tags are known to the system�

The remainder of this manual is organized so that the information most users will re

quire appears �rst� followed by information that is of interest to smaller numbers of users�
Therefore� the next section describes how to pose read
only LabBase queries� Subsequent
sections describe how to pose queries that update the database and how to de�ne new kinds
of materials and steps� Sections 	 and 
 act as a reference manual� they describes all the
predicates available in LabBase and de�ne the grammar of the LabBase query language�

� Queries

Queries �and updates� are posed in a non
recursive logic programming language� the syntax
and semantics are essentially those of a subset of Prolog ���� The essential idea is that Lab

Base automatically de�nes certain predicates over the materials� steps� and tags constituting
the state of a LabBase database� For example� if t is a tag� then the predicate t�M
S	 binds
S to the most recent value associated with t in the step history associated with the material
bound to M�

Each query is a non
empty sequence of comma
separated terms� terminated by a period�
For example

�



marker�M	
sequence�M
Seq	�

This query prints� for each marker� M� that has a sequence� the most recent sequence recorded
for M� The two terms in this query are marker�M	 and sequence�M
Seq	� To answer this
query� each marker in the database is successively bound �assigned� to M� and then the
sequence predicate binds S to the value associated with the most recent sequence tag in
any step belonging to that particular marker�

Assuming there are four markers in the database� the output would look something like
this�

M�B���
Seq�ACTTG���

M�Q���
Seq�GGATTG���

M�Z�N�
Seq�CCAAG���

M�L
�
Seq�CTTTA���

YES

In this output� each variable is printed with a binding that made the query true� �A
variable is an alphanumeric identi�er beginning with a upper
case letter�� If the query has
any bindings that make it true� LabBase prints YES after printing out the bindings� This is
the default output� It is possible to tailor the form of the output by using the only predicate�

In the query above� marker is a material kind� and sequence is a tag� For any material
kind k� the predicate k�X	 binds X to each material of kind k� For any tag� t� the predicate
t�M
V	 requires M to be bound to a material� Then the predicate t binds V to each value
associated with t in the most recent step of M that has an instance of t� Because the �rst
argument to the predicate t must be bound� and the second argument can be free� we say
that its adornment is �bf��

Tags can be set
 �or list
� valued� For example� in the mouse genetic mapping schema
at CGR� the tag duplicate id set is associated with a set of �string� integer� pairs� where
each of the strings is the id of a marker� and each of the integers is a measure similarity
between two sequences�

Sometimes many steps have the same tag� for example� every step has a when and a who

tag� To restrict LabBase to the most recent step of a particular step kind� one can pose a
query such as the following�

marker�M	
sequence step�material�M
sequence�Seq
when�W	�

In this query� sequence step is a step kind� and Seq and W are bound to the values of the
sequence and when tag �respectively� of the most recent sequence step� If� for example�
there were no sequence tag associated with marker m�s most recent sequence step� m
would not appear as a binding for M in the output of from this query�

Error Reporting When LabBase detects a syntax or evaluation error it prints out a string
of the form

�Some Prolog manuals label an argument with ��� to indicate that it can be free �corresponding to
LabBase�s �f��� and with ��� to indicate that it must be bound �corresponding to LabBase�s �b���

�



ERROR�message near line n
 column m�

where message tries to explain what went wrong� n is a line number near the error� and
m is the column position near the error� If you keep each term in a query to single line� n
should be accurate� For evaluation errors� m is often at the end of the term which could not
be evaluated� For a single query� it is possible� for some valid bindings to be printed before
LabBase detects an evaluation error�

Queries can be interrupted with control
C �SIGINT�� in which case an error message is
printed� However� the SIGINT must directed to either the lbserv or lbback process� For
more details see the man pages for these programs and also ����

It is often desirable to have a query print out an error message when no bindings can be
found to make a term true� The insist predicate can do this� For example

marker�M	
 sequence step�material�M	


insist�sequence step�material�M
sequence�Seq
when�W		�

which prints an error for those markers that have no sequence or when tag on in their
most recent sequence step� The insist predicate succeeds each time its argument succeeds�
put prints out an error message if its argument does not succeed at least once�

Example Queries We close the section on queries with a few more example queries�

� Print all markers and selected typing step information for those markers that have
been typed on more than � typing panels�

marker�M	


count� typing�step�material�M
the�typing�panel�P	
 C	


C � �
typing�step�material�M
the�typing�panel�Q	�

� Print the number of markers that have been typed on more than � typing panels�

count� marker�M	


count�typing�panel�P	
 typing�string�M
P
S	
 C	


C � �
 D 	�

� Find all markers with no step with a sequence tag�

marker�M	
not�sequence�M
D		�

� Find all markers whose most recent typing step follows a mapmaker step �two ver

sions��

	



marker�M	
next�M
typing�step
mapmaker�step	


mapmaker�step�material�M	�

marker�M	
 mapmaker�step�material�M
when�W�	


typing�step�material�M
when�W�	
 W� � W��

� Print all markers that have any typing step following a mapmaker step�

marker�M	
all�steps�M
S�	
all�steps�M
S�	


mapmaker�step�S�	
typing�step�S�	
when�S�
W�	


when�S�
W�	
W� � W��

� Writes

Tag associations are a key concept in the expression of writes to LabBase� A tag associations
is a syntactic representation of a tag�value pair to be inserted into the database� and is of
the form

t�v

where t is a tag �as determined by the set of tags in data dictionary�� and v is a single value�

��� Inserts

Inserts of a new instance of a material have the form

insert�x�args		

where x is a material kind� and args is a comma
separated list of tag associations� The
args must contain tag associations with tags x id �whose value becomes the id of the newly
created material� and who� The result is the creation of a new material with a �rst step of
kind create with the speci�ed tag�value pairs� and� in addition the a created material

tag associated with the newly created material itself�
Here is code to insert a new marker�

insert�marker�marker�id��A��
 who���
 when��

���������
������		�

Here is code to create a screening panel�






insert�

screening�panel�

screening�panel�id��standard mouse screening panel�


who�steve
 when��

����������������

screening�panel�abbreviations

��ob
 cast
 spr
 a
 b�
 c�h
 dba
 balb
 akr
 non
 nod
 lp�


screening�panel�members

���C����J�Ob�Ob�
 �Castaneus�
 �Spretus�
 �A�J�


�C��bl��J�
 �C�H�HEJ�
 �DBA��J�
 �BALB�CJ�
 �AKR�J�


�NON�
 �NOD�
 �LP�J� � 		�

Inserts of a new step have the same form as insert of a new material instance� except
that x must a step kind� args must contain a who tag� and must contain at least one tag of
type �MATERIAL POINTER��

Here is an example of inserting a step of kind external choice step�

insist�marker�id�M
�L�
�		


insert�external�choice�step�

material�M
who���
when��

������
���������


left�primer��ATGGGTACCACCCTATCATACCTA�


right�primer��TTATACACTGATATCTTGATAGCC�


product�length���


external�choice�source��First WIBR Bluescript Library�		�

��� Value Sets

Value sets �also called �material sets� for historical reasons� are sets of values that occur
�at the top level��not as part of a step� They are often used to hold partial results of a
multi
statement query� or to represent the state of materials in a laboratory production line�

The predicates value set and temp value set allow one to manipulate permanent and
temporary value sets� Currently value set�s are completely persistent� they survive the
shutdown and restart of the database server� while temp value set�s disappear when the
database server is shut down� The predicates material set and temp material set are
retained for backward compatibility with earlier releases of LabBase� they are synonyms for
value set and temp value set� respectively� In addition lbserv �see the lbservman page�
provides temp material set�s that are visible only within a single database session�

Section 	�� describes how to use value set and temp value set to query value sets� To
insert a value into a value set one would write something like

marker�id�M
�D�����	
insert�value�set��My Set�
M		�

which inserts the marker with id D���� into value set �My Set�� To create a temporary
value set containing all markers with no sequence write

marker�M	
not�sequence�M
S		
insert�temp�value�set�no�sequence
M		�

�



Here is an example of deleting a particular value from a material set

hybrid�screening�panel�P
panel�X	
delete�value�set�good�panels
P		�

This query deletes the panel with panel X from the set good panels�
It will soon be impossible to delete an entire value set �or temporary value set� with

name X using the form

delete�value set�X		

Instead� use

delete entire value set�X	�

and

delete entire temp value set�X	�

It is safe to insert to or delete from a value set while iterating over it� LabBase makes a
copy of the value set before �nding bindings for value set �bf� or temp value set �bf��

��� Deletes and Updates

We expect deletes and updates to be rare� and used only to make corrections to data when no
work�ow step is needed to record the correction� Since MapBase currently o�ers no facilities
for updates or deletes� their implementation in LabBase �except for value sets� has been
deferred� Current practice is to edit the ASCII roll
forward logs to perform the updates and
deletes when they are absolutely required�

� Reference Manual

��� Types

The legal atomic types are� �STRING�� �INTEGER�� �FLOAT�� �DATE�� �DNA SEQUENCE��
�BOOLEAN�� �MATERIAL POINTER�� �STEP POINTER�� and �TERM�� Every atomic type is a
legal type� The legal type constructors are� �LIST�� �SLIST� and �SET�� �SLIST� is a
space
e�cient representation for lists that have mostly zero elements� �The zero elements
are the empty string for �STRING�� � for �INTEGER� and BOOLEAN� ��� for �FLOAT�� the date
corresponding to the Unix time t � for �DATE�� the empty sequence for �DNA SEQUENCE��
the empty set for �SET�� and the empty list for �LIST� and �SLIST�� An �SLIST� cannot
have �MATERIAL POINTER�� �TERM�� or �STEP POINTER� elements��

For any legal types t�� ���� tn� n��� and for any legal type constructor U� U�t������ tn	 is
a legal type� Neither �STEP POINTER� nor �TERM� can be used as part of the type of a tag�

�



��� Predicates

The available predicates are either built in �like insert and not�� or are de�ned by the
contents of the data dictionary�

As of April� ����� it is possible to logically delete steps� The e�ect is to simply mark a
step as deleted� no storage space is released� and no index entries for associated identi�er tags
are removed� It is possible to see logically deleted steps if the predicate see deleted steps

has previously been evaluated in the current query�
De�nition� A step is visible unless it is logically deleted or see deleted steps has been

evaluated in the current query�

� material kind�X� �f���b� True if X is a material with kind material kind�

� tag�R�Id� �fb�� �bb� Provided tag is an identi�er
tag� true if R is a material with Id
associated with tag at some step� �An identi�er
tag is one with the tag id tag set to
� in its data
dictionary entry��

� tag�M������Mk�V� �b���bf� �For cases not subsumed by the previous entry�� We must
have k��� Each Mi must be bound to a value of type �MATERIAL POINTER�� Search the
intersection of the histories of M������Mk from the most recent step backward� until a
visible step is found with tag tag� Bind V to the corresponding associated value� �The
tag tag must not be a data
dictionary tag�one with the tag id tag set to � in its
data
dictionary entry��

� tag�S�V� �bf� Bind V to the value associated with tag in step S� �tag must not be a
data
dictionary tag��

� step kind�S� �b�� True if S is a step of kind step kind�

� step kind�t��x������tn�xn� �b���b� Predicates of this form allow greater precision than
those based on tags� step kind predicates can determine which tags are collected in a
particular step� and can determine the tags with which materials are associated� thereby
di�erentiating the roles of the materials� At least one ti must have type �MATERIAL

POINTER� and the associated xi must be bound� In the current implementation there
can be no more than one unbound ti with type �MATERIAL POINTER�� Bindings for
unbound xi�s are found as follows�

� Let S be the set containing exactly those steps� s� such that all of the following
obtain�

� s is visible�

� The step kind of s is step kind�

� For all the ti�s of type �MATERIAL POINTER�� s is the most recent step with
any particular mapping of the ti�s to material pointers�

� For every bound xi� ti is associated with xi�s value�

� For each s in S do�

�



� Bind each free xi to the value associated with ti in s and return true�

� �� �� �� � These symbols are not the names of predicates� but can be the principal
functor of a term argument to the is predicate�

� ������� ��� ��� �� �bb� Binary comparison operators� �� is the inequality predicate�
and �� is the equality predicate� needed because underbound methods are not yet
supported� May be used as in�x operators�

� Pattern�String �bb� True if String contains the regular expression Pattern� Pattern and
String must have type �STRING�� The syntax of Pattern is that of the Unix editor ed����
except that newlines are allowed in Pattern� for documentation use the Unix command
man ed� Please note that in order to get a backslash into Pattern� is necessary to
use two backslashes in the quoted string� For example� ������	������� � uveweru�

�The pattern matches any string of length at least � with the same character at the
beginning and the end��

� term��� term� �bb� Evaluate term�� If there are any bindings that make it true� then
return true for every binding that makes term� true� If term� is never true� then return
true for every binding that makes term� true� ��� is a short
circuit or operator�� In
the query
language grammar� �� binds more tightly than 
�

� all steps�R
S	 �bf���fb� True if S is a visible step associated with material R� The
bindings are guaranteed to produced in the order in which the steps appear in R�s step
history�

� baseline rusage �� Create a baseline for measuring resource usage� �Resource usage
is measured in lbback only�� See incremental rusage�

� cardinality�Set�Cardinality� �bf� True if Cardinality is the cardinality of Set�

� commit �� Execute a commit in the underlying storage manager�

� count�term������ termn�C� �b���bf� Binds C to the number of times
term������termn is true� Any bindings produced in evaluating
term������termn are undone before evaluating the term following the count term�

� db size�Bytes� Blocks� ��� Bind Bytes to the number of bytes in the database� and
Blocks to the number of blocks �as returned by Unix stat�� Only the main database
�le or �les are considered� Log �les are excluded�

� delete�term� �b�
The only legal argument is a term of the form value set�string�value � �or material set�string�value
��� where both string and value are bound� The result is to delete value from the value
set with name string�

�



� delete entire material set�Set name� �b�
Delete the material set with name Set name �which must be a �STRING��� Always true
�whether or not there is material set named Set name��

� delete entire temp material set�Set name� �b�
Like delete entire material set� except or temporary material sets�

� delete step�Step� �b�
Logically delete Step� �No error is raised if Step is already deleted�� See also undelete step�

� element�collection�V������Vn� �bx���x�� x in fb�fg The collection must be of type �LIST��
�SLIST�� or �SET�� If n��� each element of collection is bound �in order� if collection
is of type �LIST� or �SLIST�� to V�� If n��� each element of collection must be a list�
�x������xn� containing exactly n elements� For each element of collection �in order� if
collection is of type �LIST�� bind Vj to xj�

� exists�term������ termn� �b���� True if term������ termn evaluated as a query �using
any already
established bindings� is true� The argument query is not evaluated after
one set bindings is found which makes it true� thus using exists might be more
e�cient than evaluating the argument query directly� It is an error to use the second
kind of step kind query within the argument of an exists predicate� In the current
implementation the exists predicate can cause some storage leakage in the lbback

server� so it should be used only when there is a compelling e�ciency rationale�

� gather in list�term������ termn�Element�List� �b���b�� For each set of bindings for
which term������ termn is true� take the value bound to Element and make it an element
of List� The order of elements in List is determined by the order in which they are
bound to Element by evaluating term������ termn�

� gather in set�term������ termn�Element�Set� �b���b��
For each set of bindings for which term������ termn is true� take the value bound to
Element and make it an element of Set� All the values bound to Element must be
comparable as if by ���

� hex escape�c� �b� Please use hex escape and quote for all future coding� hex escape

is maintained only for backward compatibility� When printing out strings from the
database� replace the characters

�
�
�
 
comma
newline


and c itself by c followed by the character�s �
digit hex code� The intent of this predicate
is to make it easy to parse LabBase output by means of simple regular expressions�
The e�ect of evaluating this predicate is limited to the current query�

� hex escape and quote�c� �b� When printing out strings from the database� replace the
characters

��



�
�
�
 
�
	
comma
newline
single quote


and c itself by c followed by the character�s �
digit hex code� In addition enclose all
strings in single quotes �including material
kind names and principal material ids when
printing a MATERIAL POINTER and step
kind names when printing a STEP POINTER��

The intent of this predicate is to make it easy to parse LabBase output by means of
simple regular expressions� The e�ect of evaluating this predicate is limited to the
current query� The local perl module ���site lisp�LabBase�pm is designed to turn
the output of a query produced using this predicate into a normal perl
 data structure�

The format in which step �identi�ers� are printed out is designed to make parsing by
���site lisp�LabBase�pm reliable� they are printed out in the form
step���kind���!�c��when��timestamp�		 ���c is the hex code for comma� �or
step���kind���!�c��when��timestamp�� !�bdeleted!�d�		 if the step is logically
deleted��

� incremental rusage�List� �f� Bind List to a list of triples� The �rst element of each
triple is a string describing the resource� The second element is the amount of resource
used since the most recent evaluation of baseline rusage� and the third element
is �ususally� the amount of resource used since lbback was invoked� The �rst three
elements of List are user CPU time� system CPU time� and elapsed time �as in the
default for csh�s time command�� Remaining elements �if any� are from getrusage����

� insert�term� �b� The insert predicate is discussed in various sections above�

� insist�term� �b� True whenever term is true� If there are no bindings that make term
true� then insist prints out an error message�

� V is expression �fb� If expression is a non
term value� binds V to expression� If ex�
pression is a term with one of principal functors �� �� �� or � is evaluates expression
according to C
like rules of arithmetic� In particular� � operating on �INTEGER�s
yields an �INTEGER�� and the result of any expression containing a �FLOAT� will be
a �FLOAT�� For the current implementation� you must use the standard �i�e� paren�x�
syntax for �� �� �� and �� which are all binary operators�

� ith�List�I�V� �bbf�� �b�� For adornment �bbf� the second bound argument must be of
type �INTEGER�� List must be of type �LIST�� �SLIST�� or �SET�� Bind each element�
ei� in List �in order� to V� and bind i to I�

Simple array subscription is performed by ith� For example� ith��a
b
c�
�
Z	 binds
Z to a� Some more examples are�

�� ith��a
b
c�
I
Z	�

I��
Z�a

I��
Z�b

��



I��
Z�c

YES

�� ith���a
b�
��
���
�
Z	�

Z���
��

YES

�� ith���a
b�
��
���
I
Z	

I��
Z��a
b�

I��
Z���
��

YES

� fleft
rightg primer sequence�M�Primer sequence� �bf�
Special
purpose predicates for the CGR� Primer sequence becomes bound to the left
or right primer sequence of M �a �MATERIAL POINTER�� according to the rules detailed
below� �Also see pcr product length�� These predicates signal an error in database
state by binding Primer sequence to the empty string� They signal an incompati

ble database schema by the usual LabBase error mechanism �which aborts all query
processing for the current query��

� Let A be left or right�

� Let s be an arbitrary step in the history of M such that s contains either the
A start or the A primer tag� and such that no later step contains either tag�

� Signal an error in database state if s contains both A start and A primer�

� If s contains A start then

� Let i be the value associated with A start� and let j be the value associated
with A length tag in s� Signal an error in database state if A length is
absent in s�

� Find the most recent insert start� insert length and sequence tags in
any step at or before s� If any of these tags is missing signal an error in
database state�

� Let q be the value associated with insert start� let r be the value associated
with insert length� and let� S� bet the value associated with the sequence
tag� respectively�

� For left primer sequence� bind Primer sequence to the substring of S start

ing at position i ��
based� and of length j�

� For right primer sequence� bind Primer sequence to the reverse comple

ment of the substring of S starting at i
j�� and of length j�

� Otherwise� if s contains an A primer tag� bind its value to Primer sequence�

� length�X�Length� �bf� True if Length is the length of X �which must be of type �LIST��
�SLIST�� �STRING�� or �DNA SEQUENCE��

� make list�V������Vn�L� �b���bf� Bind L to the list containing V������Vn� where n must
be greater than � and each Vi must be a value or a variable bound to a value�

��



� material set�Set name� �f���b� True if Set name �which must be a �STRING�� is a
material set�

� material set�Set name� R� �bf���bb� True if material R is in permanent material set
Set name �a �STRING��� With adornment bb� can also be the argument to insert and
delete�

� next�M
Step kind�
Step kind�	 �bbb� True i� the step history of material M contains
a step of Step kind� and the most recent step of kind Step kind� in the history is not
followed by a step of kind Step kind�� The value of next is false if the most recent
steps of both kinds have the same when value

� not�term������ termn	 �b���b� True if term������ termn has no true bindings� Any bind

ings produced in evaluating term������ termn are undone before evaluating the term
following the not term�

� only�Variable������Variablen	 �Adornment is irrelevant�� Cause the binding of only
the argument variables to be printed� The e�ects of the side
e�ecting predicate persist
during the evaluation of the query� Multiple evaluations cause the union of the variables
in all the evaluations to be printed�

� pcr product length�M�Length� �bf� A special
purpose predicate for the CGR� Length
becomes bound to the PCR product size �in base pairs� of M �a �MATERIAL POINTER��
according to the rules detailed below�

�Also see left primer sequence� and right primer sequence��

pcr product length binds Length to either�

� The value associated with the most recent product length tag in M�s history�
provided that there is no more or equally recent left start or right start tag�

� Otherwise the PCR product length computed from the most recent left start

and right start tags in M�s history�

pcr product length binds Length to 
� if there is a left start �or right start �
tag at least as recent as the most recent product length tag� but no right start �or�
respectively� left start� tag� pcr product length signals an incompatible database
schema by the usual LabBase error mechanism �which aborts all query processing for
the current query�� pcr product length does not treat as an error nonsensical values
for left start and right start� for example if right start is less than left start

pcr product length will silently bind Length to a non
positive value�

� polymorphic�Avg allele sizes�I��I��Delta� �bbbb� Avg allele sizes is a list of integers�
each at least 
�� Yield true if the I�th and I�th ��
based� elements of Avg allele sizes
di�er by at least Delta and neither element is 
�� or if one but not both of I� and I� is

�� �See also strictly polymorphic��

��



� reversec�X�Y� �bf� �fb� Bind the free argument to the reverse complement of the bound
argument� The bound argument must have type �STRING� or �DNA SEQUENCE�� and
an error is reported if a �STRING� argument contains any character other than A� T�
G� C� or N� The free argument becomes bound to a value of type �DNA SEQUENCE��

� right primer sequence�M� Primer sequence� �bf� A special
purpose predicate for the
CGR� Documented under left primer sequence�

� see deleted steps �b�
Make logically deleted steps visible for the remainder of the current query�

� strictly polymorphic�Avg allele sizes�I��I��Delta� �bbbb� Avg allele sizes is a list of
integers� each at least 
�� Yield true if the I�th and I�th ��
based� elements of
Avg allele sizes di�er by at least Delta and neither element is 
�� �See also poly�

morphic��

� substring�String�Start�Length�Substring� �bbbf� Bind Substring to the substring of
String starting at ��
based� index Start and of length Length� It is an error if any
part of the speci�ed Substring falls outside of String� String must be bound to a value
of type �STRING� or �DNA SEQUENCE�� and Substring becomes bound to a value of the
same type as that of String�

� tag value�step�List� �bf� Bind List to a list containing all the tag
and
value pairs �each
represented as a list� in �STEP POINTER� step�

� tag value�material�List� �bf� Bind List to a list containing all the most�recent tag
and

value pairs �each represented as a list� in �MATERIAL POINTER� material�

� temp material set�Set name� �f���b� True if Set name �which must be a �STRING�� is
a temporary material set�

� temp value set�Set name� R� �bf���bb� Same as material set� except that the mate

rial set dissappears at the end of a database session�that is� when lbserv is used to
shut down the database server�

� undelete step�Step� �b�
Undo the logical deletion of Step� �No error is raised if Step is not logically deleted��

� var�X� �b���f� True i� X is an unbound variable�

��� Built�In Tags and Step Kinds

Built�In Tags Certain tags are required by LabBase� and are built
in� Some are data�
dictionary tags� because they are tags in data
dictionary entries� These are dd identifier�
type� dd tag� id tag� The other built
in tags are� who� when� created material� material�

Built�In Step Kinds The step kind create is built
in�

�	



��� Proposed but Unimplemented Predicates

LabBase users who require predicates not available above should contact�

steve"genome�wi�mit�edu�

� Grammar

The grammar of the LabBase query language is similar to those of standard Prologs� with
some execeptions� The most notable exceptions are�

� LabBase does not support the de�nition of rules�

� All in�x operators are right associative and all have the same precedence� and paren

theses cannot be used to group� When in doubt� use the paren�x syntax� for example�
��� � �
 foo�X		 rather than � � � � foo�x	 �equivalent to ���
���
foo�x			��
The in�x operator � plays a special role in LabBase� in arguments to the insert

predicate and in certain queries based on step kinds� It is not possible to de�ne new
operators in the LabBase query language� they are all built in�

� Beware of the following�

� � ��

The term above compares the integer � with the �oat 	� The dot does not end a query�

��� Lexical Elements

Null characters �ASCII code �� are illegal anywhere in the input� Control
A �ASCII code ��
is used as a synchronization character between clients and the LabBase server� it terminates
the current query in any context� The perl API sees to it that each query sent from a client
is terminated with a control
A�

����� String Literals

A string literal is one of the following�

� A �maximal� sequence of the characters �a�zA�Z��� � beginning with a lower
case
letter ��a�z���

� A sequence of the characters from the set ��������#���$"%�&�

� A sequence of characters enclosed in single quotes�

�




Escapes are available within quoted strings� �t� �n� �b expand to tab� newline� and back
space� respectively� �c causes the whitespace character c to be ignored� for example �ab�
c� is another way of writing �abc�� Every other character preceded by a � is replaced by
itself� so ��foo� is another way of writing �foo�� To write a the string ab�c write �ab��c�
or �ab��c�� Octal escapes are not yet implemented�you cannot write ���� to get a string
consisting of the character control
A� but they can be implemented quickly on request�

� User Extension

It is possible to extend LabBase by adding new builtin predicates or new types to LabBase
executable� Please refer to ��� for an overview of LabBase�s system architecture before reading
the material in this section�

��� Adding New Builtin Predicates

If you want to add a builtin that takes terms as arguments� you can �nd examples in
builtin��C� The remainder of this section discusses a simple interface for adding builtins
that use only values �as opposed to terms� as input or output arguments� Examples can be
found in builtin��C�

To add a builtin predicate one must write a single function if the predicate produces no
more than � set of bindings for a single input� or two functions if the predicate can produce
more than � set of bindings for a single input�

To write a single
function predicate�

�� Let �rst be the name of the function implementing the predicate� �The name of the
predicate is determined later� and need not be the same�� This function will set up
the �rst bindings �if any�� It returns an object of type QL Iterator State�� but
a �
function predicate should return � or � �suitably cast�� to indicate whether the
predicate is true or not�

�� Put the following line in a header �le to be included by dd ops�C �and which must
also include builtin�H��

BUILTIN FIRST EXTERN��rst	�

�� In the �le that will contain the function de�nition� create a static� �le
global array
variable� types� that contains the types expected of an initial segment of the bound
arguments�

static Value��tv type id types�� � fValue��T�
���
Value��Tkg�

Each Ti is a type from the enum tv type id de�ned in value�H� The variable types
must contain at least one value�

	� Use the macro �de�ned in builtin�H��
BUILTIN FIRST DEFINITION��rst


��



bound number
 free number
 types
 type number
 unused	
f
function body
g

The arguments to BUILTIN FIRST DEFINITION are�

�a� �rst The C�� identi�er for a global function to be created�

�b� bound number The number of bound arguments expected� Use 
� to indicate a
variable number of bound arguments�

�c� free number The number of free arguments expected� Use 
� to indicate a variable
number of free arguments�

�d� types The array of Value��tv type ids de�ned above� Use Value��UNDEFINED

to indicate that any type is acceptable� Otherwise an error will be generated if
the corresponding bound argument is of a di�erent type�

�e� type number The number of elements in types� which must at least � unless
bound number��� If type number is less than the number of bound arguments
found at run time� the last element in types is taken to specify the required type
of the remaining bound arguments�

�f� function body Computes whether the predicate is true or false� and produces bind

ings for any unbound arguments� The following variables are available in function
body�

i� QL Term� t is the term being evaluated� t would be the �rst argument in a
call to ql eval error� which is how �rst should report a user error�

ii� int m is the number of bound arguments�

iii� int n is the number of free arguments�

iv� const Value in tv�� has length m� The contents are the bound arguments�
It is guaranteed that each element of in tv is the address of a legal Value�

v� Value out tv�� has length m� The elements of this array must be assigned
to create the update bindings if �rst returns a non
� result�


� Add the following line to function DD Ops��add builtins�	 in dd ops�C�

add builtin�predicate name
 predicate adornment
 �rst	�

where

� predicate name is of type char�� and is the name by which the predicate will be
known in the LabBase query language�

� predicate adornment is either the C�� string '�'� indicating a variadic predicate�
or a �possibly empty� string accepted by the regular expression �bf��� which
denotes the expected adornment of a predicate of �xed arity�

� �rst is the C�� identi�er discussed above�

��



�� Garbage Collection Values produced using the static member functions
Value Class��make are automatically garbage collected� The constructors for Value

classes are not public�

�� Reporting User Errors Use ql eval error�QL Term�
 char�m�
���	 to report
user errors� �There can be up to a total of 
 char� arguments�� The error message
reported to the user is the concatenation of the char� arguments� followed by the text
' predicate �name� near line line number
 column column number'� As a con

sequence� most error messages should end in a preposition� such as �in� or �for�� For
example� calling ql eval error with char� arguments 'a total ' and 'disaster

occurred in'� the user will see ERROR�a total disaster occurred in predicate

name near line line number
 column column number� Do not end the error mes

sage with a period�

�� Stick with class Value You should be able to do everything you need to do in
class Value� For most elements� X of the enum Value��tv type id there is a member
function down to X that should be used for down
casts� These functions will call abort
if the downcast is illegal based on the type of the Value� Also� for collection classes �lists
and sets�� stick with the class TV Collection Value� �which is a Collection Value

of Values�� Lists and sets have the same C�� class� but do di�er in how they respond
to Value��tv type�	� and some member functions raise run
time errors if invoked on
sets as opposed to lists � a la Smalltalk��

To write a two
function predicate� follow all steps for writing a one
function predicate�
except step 
� In addition�

�� Let next be the name of the second function implementing the predicate� The �rst
function must return some state that the next function receives as an argument� and
that allows next to set up the next set of bindings �if any��

�� Put the following line in a header �le to be included by dd ops�C �and which must
also include builtin�H��

BUILTIN NEXT EXTERN�next	�

�� Place the macro
BUILTIN NEXT DEFINITION�next� unused	 f function body g
in the same �le as the use of the macro BUILTIN FIRST DEFINITION� Within func�
tion body the variables t� n� and out tv have the same types and semantics as for
the function body argument of BUILTIN FIRST DEFINITION� In addition� variable s has
type QL Iterator State�� and contains state information returned by a call to �rst
or a previous call to next�

	� Add the following line to function DD Ops��add builtins�	 in dd ops�C�

add builtin�predicate name
 predicate adornment
 �rst
 next	�

where

��



� predicate name� predicate adornment� and �rst are as for the �
function case� and

� next is the C�� identi�er introduced above�

Please add appropriate regression tests to the directory �LABBASE ROOTDIR�src�lbback�

tests� and add a description of the new builtin to this document� Regression tests end in
extension �test� and the baseline output is stored �les with the same name and extension
�last�

��� Adding New Types

This section is still incomplete and has not been debugged much� Please contact the authors
for help in adding a new type�

All new types must be derived �in the C�� sense� from class Value� Let the new class be
New Class� and let the corresponding enum value for Value��tv type id be NEW CLASS�
For consistency with existing LabBase types� the enum name should be all upper
case� since
the LabBase user will see this as the type name�

� In value�H�

� Add the forward declaration �class New Class�� just before the de�nition of
class value�

� In the de�nition of class Value�

� Add the enum value named NEW CLASS to the de�nition of enum tv type

id�

� Add the declaration �New Class �down to NEW CLASS�	 const��

� Add the necessary declaration of New Class� This declaration should o�er the
following public member functions�

� compare �more to come�

� print �more to come�

� zero �more to come�

� make �more to come�

� save �more to come�

� �more to come�

� In value�C�

� De�ne the function down to New Class�	 by the top
level macro call DEFINE
DOWNTO FUNCTION�STEP POINTER�Step�

� Add the macro call V PRINT�New Class	 to the body of Value��print�	�

� Add the macro call V SAVE�New Class	 to the body of Value��save�	 �assuming
you want to save values of type New Class in the database��

� Add the macro call V COMPARE�New Class	 to the body of Value��compare�	�

��



� Add an appropriate branch to the switch in the body of delete value�	 to call
the correct destructor for New Class�

� As necessary� add de�nitions for the member functions of New Class� �These
de�nitions can also be in a separate �le� of course��

� In dd ops�C�

� Add the appropriate call to add type constructor to the body of DD Ops��add

type constructors� to enable lbback to parse type expressions� The optional
second argument to add type constructor� if non
�� indicates that the new type
is in fact a type constructor that takes arguments�

� In ql term�C�
Fix the type
checking routines as necessary�

� In the implementations of builtin predicates�
If any existing builtin predicates should operate on the new type� their implementations
must be changed�

You will probably want to add a new set of regression tests for the new type�

References

��� W� F� Clocksin and C� S� Mellish� Programming in Prolog� Springer
Verlag� �����

��� N� Goodman� An object oriented DBMS war story� Developing a genome mapping
database in C��� In W� Kim� editor� Modern Database Management� Object�Oriented
and Multidatabase Technologies� ACM Press� ���	�

��� N� Goodman� M�
P� Reeve� and L� Stein� The design of MapBase� An object oriented
database for genome mapping� Dec� ����� Whitehead Institute for Biomedical Research�
technical report�

�	� N� Goodman� S� Rozen� and L� Stein� Requirements for a deductive query language in
the MapBase genome
mapping database� In R� Ramakrishnan� editor� Applications of
Logic Databases� pages �
�!���� Kluwer� ���	� Available at ftp���genome�wi�mit�edu�
pub�papers�Y�

��requirements�ps�

�
� A� R� Kerlavage� M� D� Adams� J� C� Kelly� M� Dubnick� J� Powell� P� Shanmugam�
J� C� Venter� and C� Fields� Analysis and management of data from high
throughput
expressed sequence tag projects� In T� N� Mudge� V� Milutinovic� and L� Hunter� editors�
Proceedings of the �	th Annual Hawaii International Conference on System Sciences�
volume �� pages 
�
!
�	� IEEE Computer Society Press� Jan� �����

��



��� A� R� Kerlavage� W� FitzHugh� A� Glodek� J� Kelley� J� Scott� R� Shirley� G� Sut

ton� M� Wai
Chiu� O� White� and M� D� Adams� Data management and analysis for
high
throughput DNA sequencing projects� IEEE Engineering in Medicine and Biology�
Nov��Dec� ���
�

��� S� Rozen� L� Stein� and N� Goodman� Constructing a domain
speci�c DBMS using a
persistent object system� In M� Atkinson� V� Benzaken� and D� Maier� editors� Persistent
Object Systems� Springer
Verlag and British Computer Society� Workshops in Computing
Series� ���
� Presented at POS
VI� Sep� ���	� Available at ftp���genome�wi�mit�edu�
pub�papers�Y�

��labbase�design�ps�Z�

��� S� Rozen� L� Stein� and N� Goodman� LabBase� A database to manage laboratory
data in a large
scale genome
mapping project� IEEE Engineering in Medicine and Bi�
ology� �	�������!���� Nov��Dec� ���
� Preprint available at ftp���genome�wi�mit�edu
�pub�papers�Y�

��labbase�ps�gz�

��� L� Stein� S� Rozen� and N� Goodman� Managing laboratory work�ow with LabBase�
In Proceedings of the �

� Conference on Computers in Medicine �CompMed
�
� World
Scienti�c Publishing Company� ���
� In press� Available at ftp���genome�wi�mit�edu
�pub�papers�Y�

��workflow�ps�Z�

��


