

 © 2009 Oregon State University ECE375 Manual Page i

EECCEE 337755::
IINNTTRROODDUUCCTTIIOONN TTOO CCOOMMPPUUTTEERR OORRGGAANNIIZZAATTIIOONN AANNDD

AASSSSEEMMBBLLYY
A TekBots Course

 © 2009 Oregon State University ECE375 Manual Page ii

Copyright Information

Copyright © 2009
Oregon State University
School of Electrical Engineering & Computer Science (EECS)

This document is the property of Oregon State University and the School of EECS. Limited use of this document is allowed,
according to the following criteria:
Materials are free to use, except for the cost of reproduction, and must always bear this statement in any reproduction.

Materials created using this information may not be labeled as TekBots’ materials, without the prior written consent of both
Oregon State University and the School of EECS.

Disclaimer of Liability

Oregon State University, Platforms for Learning, TekBots and other partner schools are not responsible for special,
consequential, or incidental damages resulting from any breach of warranty, or under any legal theory, including lost profits,
downtime, goodwill, damage to, or replacement of equipment or property, or any costs of recovering, reprogramming, or
reproducing any data stored in or used with our products.

The aforementioned parties are also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your product/ application, no matter how
life-threatening it may be.

Internet Access

We maintain Internet systems for your use. They can be used to obtain free TekBots’ software and documentation
and also to purchase TekBots’ products. These systems may also be used to communicate with members of
TekBots and other customers. Access information is shown below:

E-mail: tekbots@eecs.oregonstate.edu
Web: http://eecs.oregonstate.edu/education/tekbots.html

 © 2009 Oregon State University ECE375 Manual Page 3

TABLE OF CONTENTS

ECE 375: INTRODUCTION TO COMPUTER ORGANIZATION AND ASSEMBLY I
PREFACE .. 7

HHOOWW TTOO UUSSEE TTHHIISS MMAANNUUAALL .. 88
IIMMPPOORRTTAANNTT SSYYMMBBOOLLSS .. 88
LLAABB SSTTRRUUCCTTUURREE .. 99
LLAABB SSAAFFEETTYY .. 99

Personal Safety .. 9
Component Safety ... 9

SECTION ONE INTRODUCTION TO AVR DEVELOPMENT TOOLS 10
SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 1111
PPRREELLAABB .. 1111
PPRROOCCEEDDUURREE .. 1111

Looking at some AVR Source Code .. 12
SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 1144

Study Questions: ... 14
CCHHAALLLLEENNGGEE .. 1155

SECTION TWO C → ASSEMBLER → MACHINE CODE → TEKBOT 17
SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 1188
PPRREELLAABB .. 1188
PPRROOCCEEDDUURREE .. 1188

Looking at C Code and the AVRStudio4 .. 18
Compiling C Code and Downloading .. 22
Your Own Code... 22

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 2222
Study Questions ... 23

CCHHAALLLLEENNGGEE .. 2233
SECTION THREE DATA MANIPULATION AND THE LCD DISPLAY 25

 © 2009 Oregon State University ECE375 Manual Page 4

SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 2266
PPRREELLAABB .. 2266
PPRROOCCEEDDUURREE .. 2266

Introduction ... 26
Initialization .. 26

LCD Driver User Manual ... 27
LCDInit .. 27
LCDWrite ... 27
LCDWrLn1 .. 27
LCDWrLn2 .. 28
LCDClear ... 28
LCDClrLn1 .. 28
LCDClrLn2 .. 28
LCDWriteByte ... 28
Bin2ASCII.. 29

Data Manipulation .. 29
Writing Your Name .. 30

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 3311
Study Questions: ... 31

CCHHAALLLLEENNGGEE .. 3311
SECTION FOUR LARGE NUMBER ARITHMETIC .. 33

SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 3344
PPRREELLAABB .. 3344
PPRROOCCEEDDUURREE .. 3344
AASSSSIIGGNNMMEENNTT .. 3366
SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 3366

Study Questions ... 36
CCHHAALLLLEENNGGEE .. 3366

SECTION FIVE SIMPLE INTERRUPTS ... 41
SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 4422
PPRREELLAABB .. 4422
PPRROOCCEEDDUURREE .. 4422

Introduction ... 43

 © 2009 Oregon State University ECE375 Manual Page 5

Interrupting a TekBot .. 43
SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 4433

Study Questions ... 43
Challenge ... 44

SECTION SIX EXTREMELY SIMPLE COMPUTER (ESC) ... 45
SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 4466

Note: ... 46
PPRREELLAABB .. 4466
PPRROOCCEEDDUURREE .. 4466

Specifications ... 46
Data .. 47
Registers .. 47
Memory .. 48
Data Memory ... 49
Program Memory .. 49
Instructions ... 50

Assignment... 51
Test Program Description .. 51

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 5511
CCHHAALLLLEENNGGEE .. 5522

SECTION SEVEN REMOTELY OPERATED VEHICLE V2.0 53
SSEECCTTIIOONN OOVVEERRVVIIEEWW .. 5544
PPRREELLAABB .. 5544
PPRROOCCEEDDUURREE .. 5544

Problem .. 54
Specifications ... 54

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT .. 5566
CCHHAALLLLEENNGGEE:: FFRREEEEZZEE TTAAGG .. 5566

APPENDIX A PARTS LISTS ... 58
PPAARRTTSS LLIISSTT .. 5599

APPENDIX B SCHEMATICS ... 60
MMEEGGAA112288..22 .. 6611

 © 2009 Oregon State University ECE375 Manual Page 6

Figure 51: Block diagram of the charger board... 61
AAVVRR--IISSPP .. 6622

Figure 54: Block diagram of the analog board .. 62
APPENDIX C SUPPLIERS ... 63

 © 2009 Oregon State University ECE375 Manual Page 7

PPRREEFFAACCEE

 © 2009 Oregon State University ECE375 Manual Page 8

HHOOWW TTOO UUSSEE TTHHIISS MMAANNUUAALL
During this course, you will work with components and circuits that you will use in your own engineering careers. The objective is to show the
non-electrical engineer how electronics is important to other engineering fields. You will be designing sensors and sensor circuits to measure
real phenomena—not just arbitrary circuits.
Everything learned in lecture has relevance and is useful in later courses and future careers. As various tasks are performed in these labs, pay
attention to how lecture material relates to the tasks. Understanding how the lecture material is used and applied will greatly improve
understanding of the topics.

IIMMPPOORRTTAANNTT SSYYMMBBOOLLSS

This symbol indicates an important note that should be remembered. Paying attention to
notes like these will make tasks easier and more efficient.

This symbol designates information that must be followed. If caution is ignored the task
may appear impossible. Ignored caution symbols can lead to damaged systems.

This symbol represents something that should not be forgotten. Reminder symbols are
used to make sure an important step has been completed before continuing.

The innovation symbol indicates an opportunity to advance beyond what is required. These
sections will give more insight into the what, why, and how of a certain topic. Use these to
learn more or get ideas for nifty innovations.

 © 2009 Oregon State University ECE375 Manual Page 9

LLAABB SSTTRRUUCCTTUURREE
Section
Overview

The section overview will describe briefly what will be learned in the
section and what will be done.

Procedure
The procedure portion of each section contains all of the tasks to be
completed. All tasks are related to lecture. Keeping this in mind will help in
better understanding the lecture and lab material.

Study
Questions

The study questions are intended to give more practice and insight into
what has been learned in lab and lecture. The study questions will be due in
the next week’s lab.

Challenges
The challenge sections of labs are extra credit. Performing the tasks in the
challenge sections will improve understanding of what is being learned and
will result in some really cool innovations.

LLAABB SSAAFFEETTYY
Safety is always important when working with electricity and electronics. This includes both the safety for you as well as safety for
the circuit components you are working with. Concerns such as high voltage or currents can affect the human body, while static
safety and proper component use can affect the life of your circuits.

Personal Safety
When working with high voltages and currents, it is important that you remember that you can be hurt, if your body
becomes the 'circuit', since the human body is a conductor of electricity.. This issue has long been combated by using the
'one hand rule.' Whenever you are working with a potentially dangerous circuit, turn it off, but if it cannot be turned off, use
only one hand when working on it. This will prevent a circuit from being made through your heart, which could be potentially
fatal.

Component Safety
Many electrical components are likely to be damaged by static electricity. Static charge can build up to many thousands of volts, but
with little energy. This cannot harm humans, but it can easily damage electronic components. To ensure static-safe handling, the best
practice is to wear an anti-static strap and connect it to an earth ground such as a computer case or a water pipe. If you do not have an
anti-static wristband, you can instead touch a ground every few minutes to discharge your static build up.

Section One: Introduction to AVR Development Tools

 © 2009 Oregon State University ECE375 Manual Page 10

SSEECCTTIIOONN OONNEE
IINNTTRROODDUUCCTTIIOONN TTOO AAVVRR DDEEVVEELLOOPPMMEENNTT TTOOOOLLSS

Section One: Introduction to AVR Development tools

 © 2009 Oregon State University ECE375 Manual Page 11

SSEECCTTIIOONN OOVVEERRVVIIEEWW
Complete the following objectives:

• Connect your AVR microcontroller board to a TekBot.
• Create a new AVRStudio4 project.
• Download and compile the sample AVR Assembly source code.
• Understand how to run and operate the Universal Programmer.
• Upload and run the sample program on the TekBots AVR microcontroller board.

PPRREELLAABB
In labs to come you will be required to complete a prelab for each lab. The prelab will cover concepts and knowledge that is required for the
lab. The prelabs are due at the beginning of your lab section each week. If you do not have your prelab done at the beginning of the lab period
you will receive no credit for the prelab. Prelabs are to be submitted on paper, not by email.
For this lab, no prelab is required.

PPRROOCCEEDDUURREE
Wiring Your TekBot

1. The first step is to look at the wiring diagrams available on the TekBots webpage.
To make the wires for connecting your TekBot boards together you will need to use the ribbon cable that came with your kit with male
headers soldered to the ends and a bit of heat shrink tubing on the connections. There is a short tutorial on the web that explains this
process in detail.
2. Because we are working with a modular programmable AVR microcontroller board, you can connect the whisker inputs and motor
controller outputs to any pins on any port on the board. But for the demo lab to work properly, these cables need to be connected in a
certain way. This configuration should be used throughout the course. It uses the pin’s alternative functions rather than its primary
functions. As the course progresses, you will learn what both of these functions are. Table 1 (next page) shows the proper pin
connections.

Section One: Introduction to AVR Development Tools

 © 2009 Oregon State University ECE375 Manual Page 12

Connection Port Pin Alternative Function

Right Whisker E 4 External Interrupt 4
Left Whisker E 5 External Interrupt 5

Right Motor Enable B 4 PWM Output for
Timer/Counter0

Right Motor
Direction

B 5 PWM Output A for
Timer/Counter1

Left Motor Direction B 6 PWM Output B for
Timer/Counter1

Left Motor Enable B 7 PWM Output for
Timer/Counter2

Table 1: TekBots Connections to AVR Microcontroller Board

3. When you have completed the wiring, be sure to ask your TA to look it over before you turn the power on. If you have wired
things incorrectly (especially if you have switched Vcc and ground), you WILL destroy parts of your TekBot. Please have the TA
initial in the space below that you have shown your TekBot to them.

TA Initials: _________

Looking at some AVR Source Code
1. Download the sample code available on the webpage. This is a simple AVR source code that will run your TekBot in the

simple BumpBot fashion. All code that you produce should be as well commented as this sample code. Save this code where
you can find it in your UNIX file share network drive (commonly called drive Z:)

2. AVRStudio4 is the Integrated Development Environment (IDE) that you will be using to develop your AVR assembly code
throughout the remainder of the course (with the exception of Lab 2). AVRStudio4 is a powerful IDE created by Atmel for
their line of AVR microcontrollers. You will be using it to write assembly programs for your AVR microcontroller board that
uses an ATmega128 microcontroller. Section 2 of the AVR Starter Guide, which can be found on the TekBots website,
contains a good overview on how to use the program as well as some step-by-step tutorials. Briefly read through this section to
gain a basic understanding of the IDE.

(Optional) If the IDE is not already installed on the computer, or if you are doing this lab from home, read through and follow
the steps in Section 2.1.1 of the AVR Starters Guide to download and install AVRStudio4 on your computer.

Section One: Introduction to AVR Development tools

 © 2009 Oregon State University ECE375 Manual Page 13

3. Follow the steps in Section 2.1.2 in the AVR Starters Guide to create a new project. In most IDE tools, a project is the base
starting area to your program. It consists of all files you use and any settings for the program. When following this tutorial,
you’ll want to use the AVR assembly source code you downloaded from the web in step 1.

4. With the current project activated in step 4, follow the Project Simulation tutorial in Section 2.1.3 of the AVR Starters Guide to
learn how to compile and simulate your program. By the end of this step, you should know how to successfully create an AVR
project from scratch and be able to compile it into usable program hex code.

5. When assembly source code is compiled, it creates a binary program file (called a HEX file with a .hex extension). This HEX
file contains the actual binary instructions that are used by the ATmega128 and is what needs to be uploaded onto the AVR
Microcontroller Board. Unfortunately, AVRStudio4 does not have the ability to program the actual chip. To do this, you will
need to run the Universal Programmer. This is an open source program that can upload the AVR HEX programs to the various
AVR microcontrollers.

6. Follow the tutorials in Section 3 of the AVR Starter to install PonyProg and upload the AVR program into the ATmega128.
Use the HEX file that was generated by AVRStudio4 from the previous steps.

HINT: When testing and debugging a program, it is useful to keep both AVRStudio4 and PonyProg running at the same time.
Load only the HEX file the first time you start PonyProg. If you make changes to the code, simple recompile and then ALT-TAB
over to PonyProg and hit the Reload files button. This will update the HEX file within PonyProg to reflect any changes made to
the program. Then upload the code to the chip again.

Section One: Introduction to AVR Development Tools

 © 2009 Oregon State University ECE375 Manual Page 14

7. With the program uploaded into the microcontroller, unplug the TekBot from the computer and turn it on. Observe the
behavior; the TekBot should be operating in the similar BumpBot fashion. Demonstrate your TekBot to your TA.

TA Initials: __________

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
For this lab, there will be no write up. This lab is simply for familiarization and introduction to AVR Studio and PonyProg. You will
automatically get 20 points for this lab for obtaining the TA’s initials as indicated.
For all other labs, you will write up short summaries that detail what you did and why you did it. Explain any problems you may have had,
and answers some questions that are specific to each lab. The hard copy of write up, along with your code should, be submitted to your TA by
the beginning of class the week following the lab. NO LATE WORK IS ACCEPTED.

The write up should be typed. It should be neat and free of misspelled words. Be sure you have used sufficient comments for ANOTHER
STUDENT to be able to understand your code. Code that is not well documented will be penalized severely.

If you are interested in an example of what this might look like, look at the TekBots web page or the code you just downloaded.

Study Questions:
Labs will commonly have study questions for you to think about while performing the lab. You will need to answer these questions
within your lab write up. This lab has no lab write up so there are no study questions.

Theory of Operation for Lab 1 AVR Assembly Code.

• Initializes key components of the ATmega128
• Starts the TekBot moving forward
• Polls the whiskers for input
• If right whisker is hit

o Backs up for a second
o Turns left for a second
o Continues Forward

• If left whisker is hit
o Backs up for a second
o Turns right for a second
o Continues Forward

Section One: Introduction to AVR Development tools

 © 2009 Oregon State University ECE375 Manual Page 15

CCHHAALLLLEENNGGEE
Challenge problems are additional tasks that can be preformed for the labs. By successfully completing a challenge problem you can get extra
credit for your lab. To get credit for the challenge problem you must successfully demonstrate it to your TA as well as document it in your lab
write up.

1. You have learned to use a simple tool to download a program into your TekBot. Modify the program so the TekBot reverses twice as
long before turning away and resuming forward motion. Demonstrate this to your TA and be turn in a copy of you modified assembler
program

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 17

SSEECCTTIIOONN TTWWOO CC →→

AASSSSEEMMBBLLEERR →→ MMAACCHHIINNEE CCOODDEE →→ TTEEKKBBOOTT

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 18

SSEECCTTIIOONN OOVVEERRVVIIEEWW
Complete the following objectives:

• Look at a sample C program
• Write a sample C program for the AVR microcontroller
• Compile the code using the CodeVision IDE and compiler
• Download this code to your AVR board and verify its function

PPRREELLAABB
Remember—no late prelabs will be accepted.

Write a pseudo code program for making your TekBot move the way it did in Lab 1. Your robot should detect objects using its whiskers,
reverse, and turn away from the object.

PPRROOCCEEDDUURREE
Looking at C Code and the CodeVision Studio

1. Download the sample code available on the web page. This is simple C code that is well commented and ready to compile. All
code that you produce should be as well commented as this code. Save this code where you can find it in your UNIX file share
network drive (commonly called drive Z:) There are two different programs on the web; be sure to get the correct one for your
TekBot.

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 19

2. Open the CodeVision Integrated Development Environment (IDE) and select ‘New Project.’ You have two options here,
either run the ‘Wizard’ or don’t. The wizard for CodeVision will quickly generate values to be stored in specific places in the
AVR to setup peripheral devices like the A/D converters and the serial port. We don’t need to do this, so don’t use the wizard.
You are asked to name your project. Put the project file in its own directory with the source code you got from the web.
CodeVision creates a lot of files so you don’t want to put it just anywhere. After you have named the file, a short ‘selection’
screen pops up, as shown in Figure 1. Click ‘Add’ and add the code you downloaded. Click the top tab called ‘Compiler’ to
bring up the compiler options.

Figure 1: Project Setup Screen

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 20

3. Figure 2 shows a properly configured compiler screen. All values are specific for the AVR board you have. This configuration

will not necessarily work on other chips or boards. The part is the ATMega128, running at 16Mhz. You are using a ‘small’
memory model with 32768 bytes of external RAM. The RAM requires a wait state. Everything else is left in its default.

Figure 2: Compiler Settings

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 21

4. Figure 3 shows the ‘After Make’ settings. You want to program the chip after make, and you don’t want to verify erasure. DO

NOT MESS WITH THE FUSE BITS. Your AVR board can become unusable if you write to the wrong fuse bit without
knowing what you are doing.

Figure 3: ‘After Make’ Settings

5. Click OK, and CodeVision should open the source file. Examine this file so you understand what is happening. It is written in

‘C’ (you should have learned C in CS151, CS261, or elsewhere). If you are having difficulties, check the web and teach
yourself or ask for assistance from your TA.

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 22

Compiling C Code and Downloading
1. Now that you understand the code and have connected your TekBot as expected, you will want to compile and download your

code to your TekBot. This is where the beauty of an IDE is. In an IDE all you need to do is click a single button rather than use
a separate program to compile your code. Select Project → Compile, or press F9. The code will compile and give you a
summary. If there are any errors or warnings, ask your TA for help.

2. After you have compiled your code, it is time to ‘make’ the files to be downloaded. Select Project → Make or press shift +
F9. Again, a window will appear showing if there were any errors or warnings. If you set up your project as asked, you should
just need to press the enter key to program your TekBot. Of course your TekBot needs to be connected to your PC and
powered on first.

Your Own Code
You need to write a simple C program that will make your TekBot act like it did in Lab 1. Your TekBot should travel forward until it
encounters and object, then back up and turn away from the object. If for some reason both whiskers are triggered at the same time,
your TekBot needs to back up and turn to the RIGHT. HINT: Use the ‘delay_ms()’ function.

1. Write a simple C program that performs this function. You will probably want to use the skeleton code available on the web
and modify it as needed. Remember which version of the TekBot you have when designing the motor control logic. It is
recommended that you use the pin out in the skeleton file, but it is not necessary.

2. Demonstrate the operation of your TekBot to your TA for credit. Have him/her sign below.

 TA Signature: ________________________

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
Write a short summary that details what you did and why, explain any problems you may have encountered, and answer the questions
below. Your write up and code must be submitted to your TA via email by the beginning of class the week following the lab. NO LATE
WORK IS ACCEPTED.

Pseudo Code for Lab 2 ‘Dance’ C Code.
• Initialize Port(s)
• Loop Forever

o Forward for 500mS
o Reverse for 500mS
o Right for 1000mS
o Left for 2000mS
o Right for 1000mS

Section Two: C → Assembler → Machine Code → TekBot

 © 2009 Oregon State University ECE375 Manual Page 23

Study Questions
1. This lab required you to begin using new tools for compiling and downloading code to your AVR-enabled TekBot using the C

language. Explain why it is beneficial to write code in a language that can be ‘cross compiled.’ Also explain some of the
problems of writing in this way.

2. Your program does essentially the same thing as the assembly program you downloaded for Lab 1. Compare the size of the
output bin files and explain the differences in size between them.

CCHHAALLLLEENNGGEE
1. Modify your TekBot so it can move objects across a table top. Your TekBot needs to push objects that it touches a short distance. An

example of how your TekBot should work is:

 a. TekBot hits object.
 b. TekBot continues forwards for a short period of time.
 c. TekBot backs up slightly.
 d. TekBot turns slightly towards the object.
 e. TekBot repeats steps a through d.

There are several ways to approach this problem, but you must accomplish it by revising your firmware (change the C program or rewrite it).
To get credit for this challenge, you must demonstrate the operation of your TekBot to your TA and submit a copy of the code used.

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 25

SSEECCTTIIOONN TTHHRREEEE DDAATTAA
MMAANNIIPPUULLAATTIIOONN AANNDD TTHHEE LLCCDD DDIISSPPLLAAYY

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 26

SSEECCTTIIOONN OOVVEERRVVIIEEWW
Complete the following objectives:

• Understand the basics of data manipulation
• Initialize a program (i.e. stack, registers, LCD, etc)
• Use indirect addressing with the X, Y, and Z-pointers
• Read data from program memory
• Move data around in data memory
• Setup and successfully call functions and subroutines

PPRREELLAABB
The answers to the prelab questions can be found in the AVR Starters Guide and the AVR Instruction Set.

• What is the stack pointer? How is the stack pointer used and how do you initialize it? Provide pseudo-code (NOT actual assembly
code) that illustrates how to initialize the stack pointer.

• What does the AVR instruction LPM do and how do you use it? Provide pseudo-code that shows how to use the LPM instruction.

• Look at the definition file m128def.inc. What is contained within this definition file? What are the benefits of using this definition file?
How would you include it into your AVR Assembly program?

PPRROOCCEEDDUURREE
Introduction
For this lab, you will learn to use the LCD Display on the AVR microcontroller board. In order to use the LCD display, you will need
to learn to properly initialize your program. You will also learn how to move data from your program memory into your data memory.
This data is what will be displayed on the LCD display. To help you along the way, a project skeleton file will be provided. This file
will contain some code and comments directing you to what code to write and where. The file will also give you a basis for writing
well-structured code as defined in the AVR Starters Guide.

Initialization
A program initialization consists of any code that is only run once at the beginning of the program. This code does not belong in the
MAIN program, this is why most Assembly programs begin with INIT and not MAIN. The INIT function is not a function in the
classic sense but rather a function that is called at reset (and at power on) and jumps to the main program once it is finished.

There are several things that should be contained in the INIT function. The first and foremost is the initialization of the stack pointer.
The stack in AVR operates in a higher to lower address fashion, meaning that newest element on the stack is in a lower address space
than the previous element. Therefore the stack should be initialized to the highest data address space available. See the AVR Starters
Guide for more information about the stack.

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 27

Other things that are initialized within the INIT function are ports, timers, interrupts, and other peripherals. For this lab, you will need
to initialize the LCD display. Making a function call to the LCD Initialization Subroutine does the LCD initialization. You will also
need to move data from the program memory to data memory in the INIT function.

LCD Driver User Manual
To successfully use the LCD display for this lab, you will need to properly setup and call the functions in the LCD driver. To
do this, you must first include it into your program. Unlike the definition file, the LCD driver contains actual assembly code
and thus cannot be included at the beginning of the program file like the definition file. A quick look at the AVR Starters
Guide under proper coding structure tells us that any include code file is included at the end of the program, i.e. the last lines.
The actual LCD driver file is called LCDDriver.asm and can be downloaded from the lab website. There will also be another
program file called LCDTest.asm that utilizes every function described below. You can download it for a sample of using the
LCD.

The following are the LCD driver function definitions. In order for any function call to work, the stack pointer must be
initialized prior to the function call.

LCDInit
This subroutine initializes the serial interface that is used to communicate with the LCD display, initializes the ‘Hitachi
Display Chips with 8-bit Incremental DD-RAM Pointer with no features,’ and sets the display to 2x16 characters.

rcall LCDInit ; Call LCD Init Subroutine
LCDWrite
This is a generic function that will write out both lines of text to the LCD display. The line data is fetched from the following
AVR data memory addresses:

 Line 1: $0100 - $010F
 Line 2: $0110 - $011F

In order to use this function you must first put the data (i.e., ASCII string) that you want displayed on the LCD in the
appropriate line address in data memory. Then call the function.

; Move ASCII string to line addresses $0100-$011F
rcall LCDWrite ; Write string to LCD
LCDWrLn1
This function will write the ASCII string in the first line AVR data memory address ($0100-$010F) to the first line of the LCD
Display.

In order to use this function you must first put the data (i.e., ASCII string) that you want displayed on the LCD display line 1 in
the line 1 addresses in the data memory and call the function.

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 28

; Move ASCII string to line addresses $0100-$010F
rcall LCDWrLn1 ; Write string to LCD
LCDWrLn2
This function will write the ASCII string in the second line AVR data memory address ($0110-$011F) to the second line of the
LCD display.

In order to use this function you must first put the data (i.e. ASCII string) that you want displayed on the LCD display line 2 in
the line 2 addresses in the data memory and call the function.

; Move ASCII string to line addresses $0110-$011F
rcall LCDWrLn2 ; Write string to LCD
LCDClear
This subroutine will clear both lines of the LCD display and the lines in AVR data memory will be cleared to the ASCII value
of ‘ ’ (space). No prior setup is required.

rcall LCDClear ; Clear both lines of LCD
LCDClrLn1
This subroutine will clear line 1 of the LCD Display and line 1 in the AVR data memory in the same fashion as LCDClear. No
prior setup is required.

rcall LCDClrLn1 ; Clear line 1
LCDClrLn2
This subroutine will clear line 2 of the LCD display and line 2 in the AVR data memory in the same fashion as LCDClear. No
prior setup is required.

rcall LCDClrLn2 ; Clear line 2
LCDWriteByte
This function allows you to write a single ASCII character or byte anywhere on the LCD display. This allows complete control
over where things go within the display and does not require the AVR data memory lines as in the previous functions. There
are three registers that need to be initialized prior to calling this function.

count – Holds the index value of the line to where the ASCII Char will be written, 0 – 15 (of 39). Indexes 0 – 15 are visible on
the display, but can be up to 39, thus indexes 16 – 39 are off screen. If count has a value of 3 then the ACSII char will be
written to the 3rd element on the LCD display.

line – Holds the line number that the char is going to be written to, 1 or 2.

mpr – Contains the value of the ASCII char to be written, 0-255.

; Example of writing ‘D’ to Line 2 slot 7

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 29

ldi mpr, ‘D’ ; mpr <- ‘D’
ldi line, 2 ; line <- 2
ldi count, 7 ; count <- 7
rcall LCDWriteByte ; Write Byte to LCD Display
Bin2ASCII
This function will convert an unsigned 8-bit binary number into the numerically equivalent ASCII string, i.e. 186 -> “186”. For
this function, three registers are needed:

mpr – Contains the 8-bit binary number to be converted.

X-Pointer – Contains the start address to AVR data memory when the ASCII string will be stored.

count – Will contain the number of characters that are written once the function has completed.

This function is useful for printing a number that you don’t always know what the value will be (i.e., not a constant value such
as a counter). When using this function, be aware that up to three characters could be written. For example, if you had the
value 138 in the mpr and the address of $0112 in the X-pointer, you would get the following after calling this function:

 DataMem($0112) Å ‘1’
 DataMem($0113) Å ‘3’
 DataMem($0114) Å ‘8’
 count Å 3

Here is an example of calling the function described above.

ldi mpr, 138 ; mpr <- 138
ldi XL, low($0112) ; X <- $0112
ldi XH, high($0112) ; X <- $0112
rcall Bin2ASCII ; Call Bin2ASCII

There are many other functions within the LCD driver, but they are support functions for those described above and should not
be called individually. Modifying any function within the driver is not recommended as it could damage the performance of
the function, but feel free to play around if you like. With that said, if you do modify the driver or add another function that
improves the performance, let your TA know what you did and how it works or why it is better and we might add it to future
versions of the driver.

Data Manipulation
To be able to move data from one memory to another, you first must understand the memory. The ATmega128 is an 8-bit AVR
architecture. This means all data is moved around 8-bits or 1-byte at a time, thus all register and data memory are 8-bit wide.

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 30

However, the AVR Op-Code is 16 or 32-bits and for efficiency reasons the program memory is 16-bits or 2-bytes wide. This means
that when you read from the program memory, you will have to read 2-bytes for every address space in the program memory.

When writing a program, it is often necessary to include data directly into program memory instead of entering it into the data
memory each a time a simulation is run. The .DB (Data Byte) directive allows data to be written directly to the program memory
during compilation. For example, the following code demonstrates how to create data in program space:

DATA:
.DB $05, $F4

When the program is compiled, the hex data 0x05 and 0xF4 will be located in the program memory at the address specified by the
label DATA. To read this data, use the LPM (Load Program Memory) instruction.

The movement within data memory is accomplished with the different variations of Load and Store commands. There are two main
addressing modes to move the data: direct addressing and indirect addressing. Direct addressing is best when you want to move data to
and from a single memory location, like an extended I/O register. Indirect addressing uses the X, Y, and Z-pointers and is useful for
moving data to multiple areas of data memory. For example, using indirect addressing in conjunction with a while-loop, you could
move ‘blocks’ of data around in memory. See the AVR Starters Guide for more information on pointers and indirect addressing. The
following is some pseudo-code you can use to properly read a bunch of data from program memory

 Z <- Beginning Address of string in Program Memory
 Y <- Beginning Address in Data Memory for string
 do {
 mpr <- ProgMem(Z), Z++
 DataMem(Y) <- mpr, Y++
 } while (Z != End Address of string in Prog Memory)
Writing Your Name
You are to write your name on the first line of the LCD Display and a simple phrase, such as “Hello World!” on the second line of the
LCD Display. In order to accomplish this, you must have you two strings in program memory using the .DB directive. Then read the
data from program memory and store it into the appropriate spots in data memory that are used for Line 1 and Line 2. Then make a
simple call to the correct function to display the two lines on the LCD display. You must first correctly initialize your program.

To help you along the process, skeleton code is provided. Use this as a starting point. When you are finished, demonstrate your LCD
Display to the TA to get credit. Have them sign below.

Note: Since the program memory is 16-bits wide, the data after the .DB directive needs to be in
multiples of 16-bits. Otherwise, the compiler will insert an extra byte of data, usually $FF.

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 31

 TA Signature: ______________________

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
Write a short summary that details what you did and why, explain any problems you may have encountered, and answer the questions
below. Submit your write up and code to your TA via email by the beginning of class the week following the lab. NO LATE WORK IS
ACCEPTED.

Study Questions:
1. In this lab, you were asked to manipulate data by moving it around in memory. In fact, the AVR architecture has two different

memories, a program memory and data memory. Briefly explain the differences and purposes of these memories within your
write up.

2. You also learned how to make function calls. Explain how the function call works, its connection to the memory stack, and
why a RET instruction must be called to return from a function. To help you understand, comment out the stack pointer
initialization in the beginning of the code and try running the program. Observe and comment on this behavior.

CCHHAALLLLEENNGGEE
Not being content with displaying a static message, you would like to add some flare by creating a scrolling marquee style message. Your text
will scroll across the lines from left to right. When a character is at the end a line, it will be displayed at the beginning of the opposite line, i.e.
a character on slot 16 of line 1 will go to slot 1 of line 2 and a character on slot 16 of line 2 will go to slot 1 of line 1. You will also want to
add a wait loop after all the characters have moved one slot so that you can read the characters. Below is an example of the display and
motion where ‘_’ signifies a space:

1: Line 1 – “_____My_Name_is_”
 Line 2 – “_______John_Doe_”
wait(.25sec)
2: Line 1 – “______My_Name_is”
 Line 2 – “________John_Doe”
wait(.25sec)
3: Line 1 – “e______My_Name_i”
 Line 2 – “s________John_Do”
wait(.25sec)

Section Three: Data Manipulation and the LCD Display

 © 2009 Oregon State University ECE375 Manual Page 32

4: Line 1 – “oe______My_Name_”
 Line 2 – “is________John_D”
wait(.25sec)
etc...

Use the strings that are required for the lab to scroll. Submit this code with your report. Demonstrate the challenge problem to the TA for
credit.

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 33

SSEECCTTIIOONN FFOOUURR LLAARRGGEE
NNUUMMBBEERR AARRIITTHHMMEETTIICC

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 34

SSEECCTTIIOONN OOVVEERRVVIIEEWW
• Understand and use arithmetic and ALU operations
• Manipulate and handle large numbers
• Create and handle functions and subroutines

PPRREELLAABB
• For this lab, you will be asked to perform arithmetic operations on numbers that are larger than 8-bits. To do this, you should

understand the different arithmetic operations supported by the AVR Architecture. List and describe all the different forms of ADD,
SUB, and MUL (i.e. ADC, SUBI, MULF, etc.).

• Write pseudo-code that describes a function that will take two 16-bit numbers in data memory addresses $0110-$0111 and $0121-
$0122 and add them together. The function will then store the resulting 16-bit number at the address $0100-$0101. (Hint: The upper
address in the high byte of the number and don’t forget about the carry in bit.)

PPRROOCCEEDDUURREE
Arithmetic calculations like addition and subtraction are fundamental operations in many computer programs. Most programming languages
support several different data types that can be used to perform arithmetic calculations.
The ATmega128 uses 8-bit registers and has several different instructions to perform basic arithmetic operations on 8-bit operands. Examples
of instructions that add or subtract 8-bit registers are:

 ADD R0, R1 ; R0 Å R0 + R1
 ADC R0, R1 ; R0 Å R0 + R1 + Carry Bit
 SUB R0, R1 ; R0 Å R0 – R1

If we are required to manipulate data with 16 or more bits with AVR instructions then we need to perform intermediate steps to manipulate 8-
bit registers to produce the correct result. The following figure demonstrates the addition of two 16-bit numbers. One of the 16-bit numbers is
located in registers R0 and R1 and the other number is in R2 and R3. The operation result is placed in the registers R4, R5, and R6.

(1) (1) Å Possible Carry-In Bit
R0 R1

Possible Carry-Out Bit Æ (1) R2 R3
 + -----------------------
 R4 R5 R6

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 35

As this calculation demonstrates, we need to add R1 to R3 and accommodate for any carry-in bit. The result of this operation is stored in R6.
Next, we add R0 to R2 and accommodate for any carry-in bit from the previous operation. If there is a final carry-bit, then it is stored in R4.
Note that since we want to reserve the carry out bit from the operation, we actually get a 17-bit result: 16-bit plus the carry. But since the
AVR architecture inherently supports 8-bit numbers and we use 3 registers, we treat the result as a 24-bit number, where the most significant
byte has the value of either 1 or 0 depending on the carry out bit.

The AVR instruction set contains a special instruction to perform multiplication, MUL. This instruction multiplies two registers and stores the
result in registers R0 and R1. Therefore a multiplication of 2 single byte registers generates a 2-byte result. This instruction can be used as a
fast and efficient way to multiply two 8-bit numbers. Unfortunately, it can be very complicated to use when multiplying 16 or more bit
numbers.

The easiest way to understand how to multiply large numbers is to visualize it like using the paper method to multiply, this method is also
known as the sum of products technique. The following figure illustrates the typical paper method.

 24
 * 76

 24 (4x6=24)
12- (2x6=12, shifted by one)

 28- (4x7=28, shifted by one)
 + 14-- (2x7=14, shifted by two)

 1824

As you can see, the paper method multiplies small numbers (numbers less than 10) and then adds all the products to get the final result. We
can use this same technique for large binary numbers. Since there is an instruction that supports multiply, MUL, we can multiply two 8-bit
numbers at a time and then add up all the products. Below is an example of how to multiple two 16-bit numbers.

 A1 A2
 * B1 B2

 H22 L22
 H21 L21
 H12 L12
+ H11 L11

 P1 P2 P3 P4

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 36

As you can see, the result of multiplying two 16-bit (or 2 byte) numbers gives a 32-bit (or 4 byte) result. In general, when multiplying to
binary numbers, the result will be twice the size of the operands. For reference, the H and the L signify the high and low byte of the result of
each multiplication and numbers signify which values where multiplied, B and A. For example, L21 is the resulting low byte of multiplying
B2 and A1 together. Also note that the four results are just the following:

P1 <= H11 + carry from P2
P2 <= H21 + H12 + L11 + carry from P3
P3 <= H22 + L21 + L12
P4 <= L22

The skeleton code provided for the lab will contain an algorithm that multiplies 2 16-bit numbers in the fashion described above. You will
need to expand on this function for the lab assignment.

AASSSSIIGGNNMMEENNTT
Write a program in AVR Assembly that calculates the result of (A + B)^2. A and B are 16-bit numbers or 2 bytes, thus A + B will produce a
3-byte result since we want to save the carry bit. That result will then be multiplied by itself to produce a final 6-byte result. To do this, you
will need to write two functions, a function that adds two 16-bit numbers and produces a 24-bit result and a function that multiplies two 24-
bit numbers.
The two operands will be entered in data memory during simulation time. Operand A is at the data memory location $0100 and $0101.
Operand B is at data memory location $0102 and $0103. The 6-byte result will be stored in the data memory locations $0104 - $0109.

This lab will not use the TekBot platform or the AVR board. It is purely a simulation-based lab. Write and assemble the program, test it, and
demonstrate the program to your TA. The TA will provide two numbers for you to run the simulation on when you submit the assignment.
Turn in the write up and the source code to your TA.

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
Write a short summary that details what you did and why, explain any problems you may have encountered, and answer the questions below.
This write up and your code should be submitted to your TA by the beginning of class the week following the lab. NO LATE WORK IS
ACCEPTED.

Study Questions
No additional questions for this lab assignment.

CCHHAALLLLEENNGGEE
Complete the assignment with the following shift-and-add multiplication technique instead of sum of products technique described above. If
you complete the challenge section, it will count for both the lab assignment and challenge portion.

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 37

Although the sum-of-products technique is easier for humans to perform multiplications, it is not the most efficient way for multiplying
binary numbers, especially very large numbers like 1024-bit numbers. Also, it is very difficult to implement a sum-of-products multiplier in
hardware. So a variation to the technique was created and used the inherent properties of a base-2 number system. This technique is known as
the shift-and-add multiplier.

Referring back to the basic concepts of mathematics, multiplication has two operands, the multiplicand (or the operand to be multiplied) and
the multiplier. When a decimal number is multiplied, it essentially adds the multiplicand to itself for the amount specified by the multiplier.
This seems pretty obvious, until you use binary. In binary, the multiplier is used to determine whether the multiplicand is added or not. The
figure below will demonstrate both decimal and binary multiplications.

Decimal: 23 Å Multiplicand
* 16 Å Multiplier

 138 Å 6 * 32 = 138

 + 230 Å 1 * 23 = 23 and then shift 23 left one = 230

 368 Å Final Multiplication Product

Now, we apply this same knowledge to a binary system that uses 4-bit values. The basic principle is that we shift through the multiply. When
a 1 is received, we add the multiplicand to the low bit of the result, if a zero is received we do nothing. We then shift the entire result one bit
to the left, thus essentially multiplying the result by 2 and repeat the process. Below is an example.

Binary(4-bit): 1011 Å Multiplicand
 * 1101 Å Multiplier
 Multiplier ----------------
 (LSB) 1 0000 1011 Å 1 * 1011 =1011; 1011 shift left zero = 00001011
 0 0000 0000 Å 0 * 1011 =0000; 0000 shift left one = 00000000

 0000 1011 Å Add results together
 1 0010 1100 Å 1 * 1011 =1011; 1011 shift left two = 00101100

 0011 0111 Å Add results together
 (MSB) 1 0101 1000 Å 1 * 1011 =1011; 1011 shift left three = 01011000

 1000 1111 Å Add results together to get final product

 Proof: Multiplicand Multiplier Product
 Bin 1011 * 1101 = 1000 1111

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 38

 Dec 11 * 13 = 143 Å Correct

Although the method above is sound and easily understandable, there is a more efficient method. For the purpose of this example, assume you
are running on a 4-bit system where the registers are 4-bits. It would take 4 registers to do the method above. A better way would be to share
the low result registers with the multiplier registers so you can shift all the registers at once and only use 3 registers. In order to do this, you
would shift everything to the right instead of to the left and also rotate through the carry. So if the carry bit is set after the shift, add the
multiplicand to the high register of the result and shift again; otherwise, just shift. Note that when shifting to the right, you need to rotate
through the carry; this means that whatever is in the carry bit will be shifted in the most significant bit and the least significant bit will be
shifted out into the carry bit. For example:

C Æ MSB LSB Æ C
 Æ

Rotate Right Through Carry Bit

The following figure demonstrates this:

Multiply 1011 Å Multiplicand
 * 1101 Å Multiplier
 Carry ---------------
 0000 1101 Å Load Multiplier into low register
 1 0000 0110 Å Shift right through carry
 1011 Å Carry is set, so add multiplicand

 0 1011 0110 Å Result of addition
 0 0101 1011 Å Shift right through carry
 ----- Å Don’t add since carry is 0

 0 0101 1011 Å Result thus far
 1 0010 1101 Å Shift right through carry
 1011 Å Add multiplicand since carry is set

 0 1101 1101 Å Result of carry
 1 0110 1110 Å Rotate right through carry
 1011 Å Add multiplicand since carry is set

Section Four: Large Number Arithmetic

 © 2009 Oregon State University ECE375 Manual Page 39

 1 0001 1110 Å Result of addition
 0 1000 1111 Å Result after final shift, note that a ‘1’ was shifted
 in, because it was the carry that was set from
 the last addition.

As you can see, the shift and add technique can be easily created with a simple for loop that loops a specific amount of times depending on
the size of the data, for the case above we used 4-bit numbers so we looped 4 times. In the loop there is a simple rotate left and an add
depending on the carry bit. This technique can be easily used for any sized number with minimal effort and is used internally for
multiplications with most micro architectures.

Section Five: Simple Interrupts

 © 2009 Oregon State University ECE375 Manual Page 41

SSEECCTTIIOONN FFIIVVEE SSIIMMPPLLEE
IINNTTEERRRRUUPPTTSS

Section Five: Simple Interrupts

 © 2009 Oregon State University ECE375 Manual Page 42

SSEECCTTIIOONN OOVVEERRVVIIEEWW
• Understand how and when interrupts can be used
• Demonstrate the use of simple interrupts
• Explore how to configure interrupts on a microcontroller

PPRREELLAABB
Be sure to have completed these prelab questions before your lab. They will help you to perform the tasks in this lab and hopefully give you
more time to experiment.

1. In computing there are traditionally two ways for a microprocessor to listen to other devices and communicate. These two methods are
commonly called ‘polling’ and ‘interrupts.’ A large amount of information about these two methods exists. Please describe what each
of them is and a few examples where you would choose one over the other.

2. What is the function for each bit in the following registers in the ATMega128? EICRA, EICRB, and EIMSK. You can find this
information from either the AVR Instruction Set guide, or the ATMega128 Reference Manual. You can find both of these on the
TekBots webpage for the ECE375 course. HINT: These registers are related to ‘external interrupts.’

3. The AVR microcontroller uses ‘interrupt vectors’ to run code when an interrupt is triggered. What is an interrupt vector? List the
memory locations for the following vectors in the AVR microcontroller: Timer/Counter2 Comparison Match, External Interrupt 2, and
USART1-Rx Complete.

4. In the AVR microcontroller like with many others, there are several different ways of triggering interrupts. Below is a sample signal
being input onto one of the external interrupt pins. List where the interrupt would trigger on this waveform if the interrupt was set up
as: a.) rising edge, b.) Falling Edge, c.) Level High, and d.) Level Low.

Figure 1: Sample Input to External Interrupt

PPRROOCCEEDDUURREE

Section Five: Simple Interrupts

 © 2009 Oregon State University ECE375 Manual Page 43

Introduction
Most modern day computing systems use interrupts to communicate with peripheral devices. This lets the microprocessor(s) function
and perform calculations until a peripheral device needs attention. Some examples of this are how PC hardware used to have
‘interrupts’ that a user would have to define so that maybe a sound card or joystick could ask the microprocessor for attention.
Using interrupts can be tricky and sometimes wasteful. When an interrupt request comes in, the microprocessor has to stop what it is
doing, store any special variables and then service the interrupt. Once the interrupt is done, the processor then must reload its original
special variables and restart what it was doing. For example if a peripheral wants the microprocessor to store a single byte of data
every couple of clock cycles it may try to interrupt the microprocessor every couple of clock cycles. This would force the
microprocessor to spend all of its time storing its special variables, servicing the interrupt, reloading the special variables and then
starting all over again when the next interrupt comes in. The cost of servicing an interrupt in this manner is called a ‘context switch.’
This is why many modern computers have coprocessors and peripheral controllers (like DMA for example) to handle these frequent
requests.

Interrupting a TekBot
You will need to write a short assembly program that causes your TekBot to move forward. Then when either its right or left whisker
is hit it will need to react by interrupting the AVR microcontroller to back up and turn away from the point of impact. This will make
your TekBot function as it has before in Lab 1 and Lab 2, but using a different method in code. This is an important point to note.
There is ALWAYS more than one option/solution. Your job as an engineer is to be able to choose the BEST option based on all
pertinent information.

Write your assembly program and download it to your TekBot. Show your TA the operation and the code and have them sign below
for credit. Be sure your code is well commented. Skeleton code is available on the webpage.

 TA Signature: ___

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
Write a short summary that details what you did and why, explain any problems you may have encountered, and answer the questions below.
Submit your write up and code to your TA via email by the beginning of class the week following the lab. NO LATE WORK IS
ACCEPTED.

Study Questions
1. As an engineer you should be able to justify your design and testing choices. You have implemented this bumper TekBot in

three ways now. Explain the benefits and costs of all three implementations. Some important areas of interest include, but are
not limited to, efficiency, speed, cost of context switching, time to code, understandability, etc.

Section Five: Simple Interrupts

 © 2009 Oregon State University ECE375 Manual Page 44

2. Now that you have a basic understanding of interrupts would work, would it be possible to use a timer/counter interrupt to
perform the wait loop while the robot is between transitions within the external interrupt? (HINT: The order in which the
interrupt is located within the interrupt vector list is also the priority, the lower on the list, the higher the priority.) Give a
reasonable argument either way.

Challenge
1. Sometimes your TekBot can get caught in a loop where it is stuck in a corner and it continually backs up, hits the right whisker,

then backs up and hits the left whisker, then the right, then left, and so on. Add a ‘memory’ to your TekBot so that it can detect
this problem and when it has hit alternating whiskers five times, it will stop, turn around 180 degrees, and resume forward motion
to get out of the corner.

In addition, correct the simple problem of the TekBot hitting the same wall several times. In this scenario the TekBot hits one of its
whiskers, backs up and turns away, but does not turn far enough and hits the same object. In this case you need to make the TekBot
backup and turn away twice as far as if the whisker has been hit twice in a row.

Write your program and keep it well documented. Turn in your code along with your write up and have you TA sign below that they
have seen your functioning code.

 TA Signature: ____________________

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 45

SSEECCTTIIOONN SSIIXX
EEXXTTRREEMMEELLYY SSIIMMPPLLEE CCOOMMPPUUTTEERR ((EESSCC))

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 46

SSEECCTTIIOONN OOVVEERRVVIIEEWW
• Review and utilize all knowledge about computer organization
• Create the link between hardware and software
• Develop and simulate a functional simulator
• Enhance knowledge about functions and subroutines
Note:
• This is a group project. You can work in groups of two.

PPRREELLAABB
No prelab is required.

PPRROOCCEEDDUURREE

Specifications
The details of your extremely simple computer (from here on out referred to as ESC) are as follows.

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 47

Figure 1: ESC Architecture Diagram

Data
8 bits (signed)

Registers
There are only 4 special registers in the ESC.

1. Accumulator (ACC)

The accumulator is not addressable. It is used in some ESC instructions, but its address does not appear in these ESC
instruction bit vectors. Instead with the operations that use the accumulator, it is built in that the accumulator should be used.
The ESC accumulator should be located in the ATmega128 data memory location $0100.

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 48

2. Program Counter (PC)

The use of the PC is transparent to the ESC user. The PC is initialized to $00 the beginning of the program memory space and
incremented after each ESC instruction. The PC should be located in ATmega128 data memory location $0101. Although the
ESC program memory only needs 5 bits to address, we need to set this to correspond to AVR data memory; this means you
will have to write a function that converts the 5-bit ESC program memory address into the corresponding 16-bit AVR data
memory address.

3. Instruction Register (IR)

The use of the IR is also transparent to the ESC user. The current ESC instruction (as a binary code) is stored in the IR. The
ESC simulator will read the instruction that is in the IR register to know what operations to do. The ESC IR should be located
at ATmega128 data memory location $0102. The IR should be initialized to $00.

4. Memory Address Register (MAR)

The MAR will be used to access data memory in ESC. This register is very similar to the PC. It contains the address in ESC
data memory where data is being loaded and stored. This register should be located at ATmega128 data memory location
$0103. When accessing the ESC data memory, the address of the ESC data memory must be put into this register. A function
is then called that converts the 5-bit ESC data memory address into the corresponding 16-bit AVR data memory address. The
MAR should be initialized to $00.

5. Memory Data Register (MDR)

The MDR is used to hold the input and output data from the data memory in the ESC. All data must go through this register
before coming from or going to ESC data memory. This register should be located at the ATmega128 data memory location
$0104. An example of usage for getting memory from data would be as follows. The data memory address is stored in the
MAR. Then the data from the address in the MAR is stored within the MDR. Finally, the data from the MDR can be moved to
the IR or ACC, depending on the instruction. This works vice versa for moving data to data memory. Data from the ACC is
moved to the MDR, the data address is put into the MAR, and finally, the data within the MDR can be stored into ESC Data
Memory at the memory address located in the MAR.

Memory
Direct, immediate, and indirect addressing modes are allowed in ESC.

AVR
Data

Memory
Address

 ESC
Addresses

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 49

$0100 Acc

$0101 PC

$0102 IR

$0103 MAR

$0104 MDR

$0110 ESC
Data

Memory

$00

$012F $1F

$0130 ESC
Program
Memory

$00

$014F $1F

Figure 2: ESC->AVR Memory Map
Data Memory
Since data address space is 5 bits, there are 2^5 = 32 bytes RAM in ESC (data address space is $00 – $1F). 5 bits in the ESC
instruction specify a direct memory address. You will store the ESC data memory in the ATmega128 data memory locations
$0110-$012F. Be aware of the conversion between 5-bit ESC memory addresses to 16-bit AVR memory addresses. For
example, ESC memory location $07 corresponds to the ATmega128 data memory location $0117.

Program Memory
ESC instructions are stored in ESC program memory. You should use the ATmega128 data memory locations $0130 – $014F
as the ESC program memory.

Op-code
76543210

Mnemonic Range
of

Instruction Description

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 50

Data
000xxddd This op-code identifies a group

of instructions that does not
need an address (or data) in
LSB bits.

00000ddd STMI -4 ≤ d
≤ 3

Store immediate data (3 LSB
sign extended) into address
specified by the accumulator.

00001000 CLRA Clear the accumulator
00010000 LDMI Load indirect, read into the

accumulator the value at the
address specified by the
contents currently in
accumulator.

00011000 HALT ESC simulator stops execution.
001aaaaa ADDM 0 ≤ a

≤ 31
Add direct memory location
content to accumulator and
place result in the accumulator.

010aaaaa SUBM 0 ≤ a
≤ 31

Subtract direct memory location
content from accumulator.

011aaaaa LDM 0 ≤ a
≤ 31

Move the contents of a direct
memory location to the
accumulator.

100aaaaa STM 0 ≤ a
≤ 31

Store the contents of
accumulator into a memory
location.

101ddddd JUMP -16 ≤
d ≤ 15

Jump unconditional.

110ddddd JMPZ -16 ≤
d ≤ 15

Jump if accumulator = $00.

111ddddd MOVI -16 ≤
d ≤ 15

Move immediate to
accumulator.

Figure 3: Instructions for the ESC Simulator
Instructions

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 51

All instruction codes in ESC are 8-bits. There are three separate formats for the groups of instructions.

1. The first group consists of ADDM, SUBM, MOVI, LDM, STM, JUMP, and JMPZ instructions. For these, the most
significant 3-bits are used for the op-code, and the other 5 are used for the direct address to specify an ESC Data
Memory address or signed data. The format for these instructions will be:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
|=== OPCODE ===| Address or Data

2. The second group consists of the HALT, CLRA, LDMI, and STMI. For the HALT, CLRA, and LDMI instruction, the
most significant 5 bits are used to the op-code. They do not use the other 3 bits except that STMI uses the least
significant 3 bits (sign extended to occupy 8 bits) as the immediate data to be stored.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
|======== OPCODE =========| X X X |

Note the exception when the instruction is STMI, bits <2, 1, 0> will contain signed immediate data (limited to the range 000 to
111 (-4 – 3) when using indirect addressing mode).

NOTE: For all signed data, you will need to sign extend the signed data values to fill the 8 bits (i.e., JMP -13 = 10110011, Data
value Æ 00010011, Sign Extended Æ 11110011).

Assignment
You will be working in groups of two. You are to write, assemble, and simulate the ESC using AVR assembly language according to
the specifications described above. In order to demonstrate to your TA that your ESC is properly working, you will need to write a test
program (described below) and run it on your simulator. In addition, your TA will provide you with some other ESC code to test other
instructions not used in your test program. NOTE: Feel free to write your own ESC program that will test all the various functionality
of ESC.

Test Program Description
You are to write a program using ESC mnemonics and convert it to binary form (fill the ESC program memory area with this
program). This program should scroll the contents of 5 locations in ESC data memory in the following way: “TOM__” Æ “_TOM_”
Æ “__TOM” Æ “M__TO” Æ “OM__T” Æ “TOM__” (Note that the “_” character indicates a blank space). Assemble the program by
hand and load it into ESC program memory. Initialize by hand in ESC simulator for the first 5 ESC data memory locations with the
first 3 letters of your name following by two space characters. Execute your simulator and show your TA that the program is working
in ESC data memory using fixed memory locations.

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT

Section Six: Extremely Simple Computer (ESC)

 © 2009 Oregon State University ECE375 Manual Page 52

Write up a short summary that details what you did and why, explain any problems you may have encountered, and answer the below. Your
write up and code must be submitted to your TA by the beginning of class the week following the lab. NO LATE WORK IS ACCEPTED.
Since this is a group project, only one lab report needs to be submitted per group. Make sure both the group members’ names are on the
report.

CCHHAALLLLEENNGGEE
Since this extra credit is worth quite a bit in the overall lab scheme, you are going to have to work for it. Create an ESC compiler. This means
you need to create a simple program in any language you choose that reads in an ‘.asm’ file containing your ESC Assembly program in it.
The ESC compiler will then parse through the ‘.asm’ file, converting all the assembly mnemonic instructions (i.e. ADDM $04) into the
appropriate binary op-code (i.e., 00100100 or $24). This new op-code is then written out to an ‘.obj’ file. With this output file, you can very
easily program your ESC simulator by cutting and pasting the op-codes into a .DB statement and using the LPM command to initialize the
ESC program memory with it. ☺ To get credit, you must demonstrate this program to your TA and turn in a copy of the source code with
your report.
NOTE: You can write this in any language you want. C/C++ is a good choice since you don’t get enough of it in your undergrad curriculum
and all TAs are proficient at C/C++ so they should be able to help you. If VB is more to your taste, go ahead. But if you are really
courageous, write your program in PERL. PERL is a good language for text manipulation and parsing, although it is not really user friendly.

Section Seven: Remotely Operated Vehicle v2.0

 © 2009 Oregon State University ECE375 Manual Page 53

 SSEECCTTIIOONN SSEEVVEENN
RREEMMOOTTEELLYY OOPPEERRAATTEEDD VVEEHHIICCLLEE VV22..00

Section Seven: Remotely Operated Vehicle v2.0

 © 2009 Oregon State University ECE375 Manual Page 54

SSEECCTTIIOONN OOVVEERRVVIIEEWW
• Use your knowledge of computer architecture to create a real system as a proof of concept for a possible consumer product
• Improve your knowledge of interrupts and ability to use them
• Learn how to use the Universal Synchronous Asynchronous Receive Transmit (USART) on the mega128

PPRREELLAABB
1. In this project you are going to be given a set of functions that you need to have your ‘toy’ perform. Find another toy that uses a

microcontroller and describe the functions that it performs. For each function, explain the interesting code (mega128 specific – setup
registers ext.), mechanics, and/or electronics needed.

PPRROOCCEEDDUURREE
Problem
You work for TekToy Co., a global subsidiary of TekBots International. You are working on designing a new toy for the ‘remotely
controlled’ line of products. You want to build a simple robot that can be controlled using IR. You want to use IR because it is cheaper
and requires less design than an equivalent RF system.

Your first step is to build a proof of concept model so that you can sell the idea to management. You dig through your desk and come
across your TekBots base from when you were in school and a couple of AVR microcontroller boards for the TekBot. Since you know
how to use these parts you decide to build your proof of concept model with them.

Specifications
Below is a list of things to consider while creating your design.

1. You would like to have multiple robots running at the same time so you need to somehow make a robot respond only to its
own remote control. You decide to do this by assigning each robot a distinct address. The remote should transmit this address
each time a command is transmitted. You have decided to send two eight bit codes, one address and one data. Address code
must start with a ‘0’ and data codes must start with a ‘1.’ Figure 1 shows an example.

Figure 1: Example command structure

Section Seven: Remotely Operated Vehicle v2.0

 © 2009 Oregon State University ECE375 Manual Page 55

2. The AVR boards you are using have a built in IR transmitter and receiver connected to one of the serial UARTs. You

feel that the UART is a good option for communicating to the robot. You will need to setup the UART on both the
robot and the remote.

The AVR can set up the UART to communicate at high speeds, but you know that the IR transmitter and receiver cannot
work this fast. You should use a baud rate of 2400.

3. For your simple proof of concept model, you only need a few actions: forward, stop, reverse, left, and right. To make
your life easier you decide to spec out what the different commands are before you start coding. These commands are
shown below in Table 1.

Command Action
Code

Forward 0b10110000

Backward 0b10000000

Turn
Right

0b10100000

Turn Left 0b10010000

Halt 0b11001000

Future
Use

0b11111000

Table 1: Action codes for proof of concept model
4. You can take advantage of a built in ‘loop back’ for the IR system on the AVR boards. When something is transmitted

using the IR, the receiver can see this signal and will receive the same data. This means you can compare what you sent
with what you receive to see if there has been an error in transmission. This error could be because there are multiple
remotes running at one or a possible programming error.

5. You would like to have some minimal intelligence on the robot. When either of the front whiskers is triggered, the
robot should reverse and turn away from the point of contact, ignoring any input from the remote control. After the
robot has avoided the object it should resume what it was doing before the impact.

There is a piece of sample skeleton code available on the web. If you would like to use it go ahead. If not, feel free to do your own
design.

Section Seven: Remotely Operated Vehicle v2.0

 © 2009 Oregon State University ECE375 Manual Page 56

SSTTUUDDYY QQUUEESSTTIIOONNSS// RREEPPOORRTT
Write up a short summary that details what you did and why, explains any problems you may have encountered, and answer the questions
below. Be sure to explain the operation of your code in the document. Do not rely only on the comments in your code to describe the function
of the code. This write up is due by 4pm on Friday of dead week. One of the TAs will be available in the lab to take your submissions. NO
LATE WORK IS ACCEPTED.

CCHHAALLLLEENNGGEE:: FFRREEEEZZEE TTAAGG
Since you are going to be showing your proof of concept to upper management, you feel you need to have something that can generate some
‘real excitement.’ The idea of having two robots play freeze tag with each other sounds like a good idea.

You think the best way to do this is to have each robot emit a certain code when the user with the remote presses a certain button. This code
would then be detected by any robot that could see it (except the one ‘firing’) and cause the robot to ‘freeze’ for five seconds. When the robot
unfreezes it should immediately resume what it was doing. After three freezes, the robot should stop working until it is reset.

The code your robot should transmit to freeze other robots is shown in Figure 2. The robot—not the remote— transmits this code. Make one
of the buttons on the remote transmit a code to the robot that has the robot transmit the freeze code. The freeze command code from your
remote should be 0b11111000.

Figure 2: Freeze Tag Operation

To show your design you will need to work with another team to have the two robots compete. Show your TA and have each team turn in a
copy of their code with a written description.

 TA Signature: _____________________

Section Seven: Remotely Operated Vehicle v2.0

 © 2009 Oregon State University ECE375 Manual Page 57

Appendix A: Parts Lists

 © 2009 Oregon State University ECE375 Manual Page 58

AAPPPPEENNDDIIXX AA PPAARRTTSS
LLIISSTTSS

Appendix A: Parts Lists

 © 2009 Oregon State University ECE375 Manual Page 59

PPAARRTTSS LLIISSTT
t
y

cription
ig
ur
e

Supplier plier # Fig. A

Fig. B

ga128.2 TekBots ga128.2

isp TekBots isp

gramming table TekBots isp cable Fig. C

male Jumper Blocks Digikey 6228-ND

pendix B: Schematics

© 2009 Oregon State University ECE375 Manual Page 60

AAPPPPEENNDD
SSCCHHEEM

pendix B: Schematics

© 2009 Oregon State University ECE375 Manual Page 61

EEGGAA112288..22

Figure 51: Block diagram of the charger board

pendix B: Schematics

© 2009 Oregon State University ECE375 Manual Page 62

VVRR--IISSPP

Figure 54: Block diagram of the analog board

© 2006 Oregon State University ECE375 Manual Page 63

AAPPPPEENNDDIIXX CC
SSUUPPPPLLIIEERRSS

Appendix C: Suppliers

Page 64 ECE375 Manual © 2006 Oregon State University

DigiKey 701 Brooks Ave. South

Thief River Falls, MN 56701-0677
(800) 344-4539
http://www.digikey.com

Mouser Electronics 1000 N. Main Street,
Mansfield, TX 76063
(800) 346-6873
http://www.mouser.com

TekBots 220 Owen Hall
Oregon State University
Corvallis, OR 97331
tekbots_support@eecs.oregonstate.edu
http://eecs.oregonstate.edu/tekbots

Solarbotics 179 Harvest Glen Way N.E.
Calgary, Alberta, Canada T3K 4J4
(866) B-ROBOTS
http://www.solarbotics.com

McMaster-Carr P.O. Box 7690,
Chicago, IL 60680-7684
(562) 692-5911
http://www.mcmaster.com

Jameco Electronics 1355 Shoreway Rd,
Belmont, CA 94002
(800) 831-4242
http://www.jameco.com

