

 iii

PI Interface for Metso maxDNA

Version 1.5.1.x

OSIsoft, LLC

777 Davis St., Suite 250
San Leandro, CA 94577 USA

Tel: (01) 510-297-5800
Fax: (01) 510-357-8136
Web: http://www.osisoft.com

OSIsoft Australia • Perth, Australia

OSIsoft Europe GmbH • Frankfurt, Germany

OSIsoft Asia Pte Ltd. • Singapore

OSIsoft Canada ULC • Montreal & Calgary, Canada

OSIsoft, LLC Representative Office • Shanghai, People’s Republic of China

OSIsoft Japan KK • Tokyo, Japan

OSIsoft Mexico S. De R.L. De C.V. • Mexico City, Mexico

OSIsoft do Brasil Sistemas Ltda. • Sao Paulo, Brazil

OSIsoft France EURL • Paris, France

PI Interface for Metso maxDNA

Copyright: © 1997-2014 OSIsoft, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft, LLC.

OSIsoft, the OSIsoft logo and logotype, PI Analytics, PI ProcessBook, PI DataLink, ProcessPoint, PI Asset Framework (PI AF), IT
Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI BatchView, PI Coresight, PI Data Services, PI
Event Frames, PI Manual Logger, PI ProfileView, PI WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM,
RtReports and RtWebParts are all trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of
their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft, LLC license agreement and
as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as applicable. OSIsoft, LLC.

Published: 01/2014

PI Interface for Metso maxDNA iii

Table of Contents

Chapter 1. Introduction .. 1

Reference Manuals ... 2
Supported Operating Systems .. 2
Supported Features... 3
Diagram of Hardware Connection ... 5

Chapter 2. Principles of Operation .. 7

Chapter 3. Installation Checklist .. 9

Data Collection Steps .. 9
Interface Diagnostics ... 10
Advanced Interface Features .. 10

Chapter 4. Interface Installation on Windows ... 11

Naming Conventions and Requirements .. 11
Interface Directories .. 12

PIHOME Directory Tree .. 12
Interface Installation Directory .. 12

Interface Installation Procedure .. 12
Installing Interface as a Windows Service... 12
Installing Interface Service with PI Interface Configuration Utility 13

Service Configuration ... 13
Installing Interface Service Manually... 15

Chapter 5. Digital States ... 17

Chapter 6. PointSource .. 19

Chapter 7. PI Point Configuration .. 21

maxDNA Tag Address Format .. 21
General PI Tag Configuration Information .. 21
Point Attributes .. 21

Tag .. 22
PointSource .. 22
PointType .. 22
Location1 .. 22
Location2 .. 23
Location3 .. 23
Location4 .. 23
Location5 .. 23
InstrumentTag ... 24
ExDesc .. 24
Scan .. 25
Shutdown .. 25

Table of Contents

iv

Output Points ... 26
Trigger Method 1 (Recommended)... 26
Trigger Method 2... 27
Quality Points .. 27
Watchdog Points ... 27

Chapter 8. Startup Command File ... 29

Configuring the Interface with PI ICU .. 29
maxDNA Interface Page ... 32

Command-line Parameters ... 35
Sample PIMax.bat File .. 41

Chapter 9. UniInt Failover Configuration .. 43

Introduction .. 43
Quick Overview ... 44

Synchronization through a Shared File (Phase 2) .. 45
Configuring Synchronization through a Shared File (Phase 2) 46
Configuring UniInt Failover through a Shared File (Phase 2) 49

Start-Up Parameters ... 49
Failover Control Points ... 51
PI Tags .. 52

Detailed Explanation of Synchronization through a Shared File (Phase 2) 56
Steady State Operation .. 57

Failover Configuration Using PI ICU ... 59
Create the Interface Instance with PI ICU ... 59
Configuring the UniInt Failover Startup Parameters with PI ICU 59
Creating the Failover State Digital State Set .. 60

Using the PI ICU Utility to create Digital State Set 60
Using the PI SMT 3 Utility to create Digital State Set 61

Creating the UniInt Failover Control and Failover State Tags (Phase 2) 64

Chapter 10. Interface Node Clock .. 65

Windows .. 65

Chapter 11. Security ... 67

Chapter 12. Starting / Stopping the Interface on Windows 69

Starting Interface as a Service .. 69
Stopping Interface Running as a Service .. 69

Chapter 13. Buffering ... 71

Which Buffering Application to Use ... 71
How Buffering Works... 72
Buffering and PI Server Security ... 72
Enabling Buffering on an Interface Node with the ICU 73

Choose Buffer Type .. 73
Buffering Settings.. 74
Buffered Servers ... 76
Installing Buffering as a Service ... 79

PI Interface for Metso maxDNA v

Chapter 14. Interface Diagnostics Configuration ... 83

Scan Class Performance Points ... 83
Performance Counters Points ... 86

Performance Counters .. 87
Performance Counters for both (_Total) and (Scan Class x) 87
Performance Counters for (_Total) only ... 88
Performance Counters for (Scan Class x) only 91

Interface Health Monitoring Points .. 92
I/O Rate Point .. 97
Interface Status Point .. 99

Appendix A. Error and Informational Messages ... 101

Message Logs ... 101
Messages .. 101

Interface Informational Messages ... 101
Interface Warning Messages .. 102
Interface Error Messages ... 102

System Errors and PI Errors ... 102
UniInt Failover Specific Error Messages ... 102

Informational ... 102
Errors (Phase 1 & 2) ... 104
Errors (Phase 2) .. 105

Appendix B. PI SDK Options .. 107

Appendix C. Communication Error Recovery .. 108

Appendix D. Troubleshooting .. 108

Frequently Asked Questions ... 108
Message Logging .. 109
Run Time Logging Configuration .. 110

Appendix E. Terminology ... 111

Appendix F. Technical Support and Resources ... 115

Appendix G. Revision History .. 117

PI Interface for Metso maxDNA 1

Chapter 1. Introduction

The PI Interface for Metso maxDNA (formally known as the Max Controls Max1000 Plus+

Interface) collects data from the maxDNA members of a maxDNA system. This interface will

be referred to as the maxDNA interface or, simply, the interface for the remainder of this

document.

Note: The interface requires that the maxDNA software be present on the same PC
as the interface and the PC have network access to the SBP.

Migration interfaces are available to connect the PI System to all generations of MAX

systems.

Note: Contact Metso Automation to run a system analysis to determine available
throughput on older systems.

For proper interface operation, configure points (tags) on the home node (the words "point"

and "tag" are used interchangeably in this manual). Tags are used to update and receive data

from maxDNA members. A single interface can collect data from one or more maxDNA

members at a time. Data is received at a given frequency. All values that are written to the

snapshot or archive use the system time from the PI Server node.

At startup, the interface scans the PI Point Database for all associated points and builds its

own point list. During runtime, the interface continues to check the PI Point Database for

point updates and modifies its point list accordingly. If the Scan field of any point on the

point list is set to off, the point is removed from the point list. The point is added once again

after the Scan field is turned back on. If a fixed scan rate cannot be found for a given point,

the point will be removed from or will not be added to the point list.

Note: The value of [PIHOME] variable for the 32-bit interface will depend on whether the

interface is being installed on a 32-bit operating system (C:\Program Files\PIPC) or

a 64-bit operating system (C:\Program Files (x86)\PIPC).

The value of [PIHOME64] variable for a 64-bit interface will be C:\Program Files\PIPC on
the 64-bit operating system.

In this documentation [PIHOME] will be used to represent the value for either [PIHOME]
or [PIHOME64]. The value of [PIHOME] is the directory which is the common location for
PI client applications.

Note: Throughout this manual there are references to where messages are written
by the interface which is the PIPC.log. This interface has been built against a UniInt

Introduction

2

version (4.5.0.59 and later) which now writes all its messages to the local PI
Message log.

Please note that any place in this manual where it references PIPC.log should now
refer to the local PI message log. Please see the document UniInt Interface

Message Logging.docx in the %PIHOME%\Interfaces\UniInt directory for more

details on how to access these messages.

Reference Manuals

OSIsoft

 PI Server manuals

 PI API Installation Instructions manual

 UniInt Interface User Manual

Vendor

 maxDNA Installation Instructions

Supported Operating Systems

Platforms 32-bit application 64-bit application

Windows XP
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2003 Server
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows Vista
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2008 32-bit OS Yes No

Windows 2008 R2 64-bit OS Yes (Emulation Mode) No

Windows 7
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 8 32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2012 64-bit OS Yes (Emulation Mode) No

The interface is designed to run on the above-mentioned Microsoft Windows operating

systems. Because it is dependent on vendor software, newer platforms may not yet be

supported.

The version 4.x series maxDNA software requires Windows XP SP2 to run.

Please contact OSIsoft Technical Support for more information.

PI Interface for Metso maxDNA 3

Supported Features

Feature Support

Interface Part Number PI-IN-MCS-PLUS-NTI

Auto Creates PI Points No

Point Builder Utility No

ICU Control Yes

PI Point Types float16, float32, float64, int16, int32, digital

Sub-second Timestamps No

Sub-second Scan Classes No

Automatically Incorporates PI Point
Attribute Changes

Yes

Exception Reporting Yes

Outputs from PI Yes

Inputs to PI: Unsolicited

Supports Questionable Bit No

Supports Multi-character PointSource Yes

Maximum Point Count Unlimited

* Uses PI SDK No

PINet String Support N/A

* Source of Timestamps PI Server

History Recovery No

* UniInt-based

 * Disconnected Startup

 * SetDeviceStatus

Yes

Yes

Yes

* Failover UniInt Failover (Phase 2- Warm, Cold);

Software Backplane Failover

* Vendor Software Required on
Interface Node / PINet Node

Yes

Vendor Software Required on Foreign
Device

Yes

Vendor Hardware Required Yes

Additional PI Software Included with
interface

No

Device Point Types int16, int32, float16, float32, float64, digital

Serial-Based interface No

* See paragraphs below for further explanation.

Uses PI SDK

The PI SDK and the PI API are bundled together and must be installed on each interface

node. This interface does not specifically make PI SDK calls.

Source of Timestamps

Timestamps are generated on PI Server.

Introduction

4

UniInt-based

UniInt stands for Universal Interface. UniInt is not a separate product or file; it is an

OSIsoft-developed template used by developers and is integrated into many interfaces,

including this interface. The purpose of UniInt is to keep a consistent feature set and behavior

across as many of OSIsoft’s interfaces as possible. It also allows for the very rapid

development of new interfaces. In any UniInt-based interface, the interface uses some of the

UniInt-supplied configuration parameters and some interface-specific parameters. UniInt is

constantly being upgraded with new options and features.

The UniInt Interface User Manual is a supplement to this manual.

Disconnected Start-Up

The maxDNA interface is built with a version of UniInt that supports disconnected start-up.

Disconnected start-up is the ability to start the interface without a connection to the PI Server.

This functionality is enabled by adding /cachemode to the list of start-up parameters or by

enabling disconnected startup using the ICU. Refer to the UniInt Interface User Manual for

more details on UniInt disconnected startup.

SetDeviceStatus

Failover

 Software Backplane Failover

o The Software Backplane handles failover from one DPU to another. In most

cases, the interface needs to re-subscribe its points after a failover. Virtual

DPU as well as physical DPU failover have been tested.

Note: When recovering a failed virtual DPU in primary/backup mode, make
sure the backup DPU is started completely before starting the primary DPU.
This is to make sure the primary DPU is able to load its point list correctly.
Otherwise, re-subscribe attempts will fail.

 UniInt Failover Support

UniInt Phase 2 Failover provides support for cold, warm, or hot failover

configurations. The Phase 2 hot failover results in a no data loss solution for bi-

directional data transfer between the PI Server and the Data Source given a single

point of failure in the system architecture similar to Phase 1. However, in warm and

cold failover configurations, you can expect a small period of data loss during a

single point of failure transition. This failover solution requires that two copies of the

interface be installed on different interface nodes collecting data simultaneously from

a single data source. Phase 2 Failover requires each interface have access to a shared

data file. Failover operation is automatic and operates with no user interaction. Each

interface participating in failover has the ability to monitor and determine liveliness

and failover status. To assist in administering system operations, the ability to

manually trigger failover to a desired interface is also supported by the failover

scheme.

The failover scheme is described in detail in the UniInt Interface User Manual,

which is a supplement to this manual. Details for configuring this interface to use

failover are described in the UniInt Failover Configuration section of this manual.

PI Interface for Metso maxDNA 5

Vendor Software Required

Software Backplane is the generic name given to the software that runs between the interface

and the DPUs. It consists of several parts. The relevant ones for this interface are maxAPPS

and maxSTATION. maxSTATION is the full version of the software distributed by Metso

Automation (formerly MAX Controls). It runs on its own machine. maxAPPS is the software

that is needed on the interface node.

Vendor Hardware Required

The Software Backplane connects to the DPUs that are used to collect plant data. The DPUs

can be physical DPUs or virtual DPUs (software emulation of hardware).

Device Point Types

The Software Backplane supports int16, int32, float16, float32, and float64 point types for

data, and digital types for quality reporting.

Diagram of Hardware Connection

PI Interface for Metso maxDNA 7

Chapter 2. Principles of Operation

The maxDNA SBP uses “subscriptions” to mark data points for frequent update. The interval

between updates is configurable on a point-by-point basis. The maxDNA system only sends

data to a client when an exception has occurred. An exception occurs if the value changes by

more than the given dead band, or the exception maximum time has expired and the dead

band (exception deviation) has not been exceeded.

When the Interface first starts up, it establishes communication with PI Server. A connection

to the local maxDNA server is then established. The connection is uniquely identified by the

client with a “user name” parameter, and uniquely identified to the server by an identification

number. The interface to the maxDNA system can subscribe, unsubscribe, and read from

specific data points. It also has the ability to write to a designated WatchDog tag on the

maxDNA system, which can be optionally configured by the user. All data handled by the

maxDNA SBP is done with variant data types. This means that when data is assigned to a

tag, the data is automatically handled using the most compatible type. The maxDNA SBP

has comparable data types to handle all types supported by the PI System.

Exception reporting is done on the maxDNA system using the PI exception parameters which

are passed to it during subscription. As each point belonging to the interface is identified, the

interface subscribes the maxDNA point (specified in the InstrumentTag and/or the ExDesc)

on the SBP. The exception minimum (ExcMin), exception maximum (ExcMax), and

exception deviation (ExcDev) (in engineering units) are also sent to the SBP. The maxDNA

system will check to see if the point subscribed is valid, and if it is valid, can it be accessed.

An error code is returned if the point is invalid or cannot be accessed and the interface will

print a message that it could not be subscribed.

Note: Some points may not be accessible at interface startup, but once they do
become accessible, data will automatically start being collected for them. Prior to
data collection, the digital state CONFIGURE is written to all points. This allows the
user to easily determine which points have not begun collecting data. If connection
is lost to the maxDNA system, I/O Timeout is written to all the input tags. BAD
INPUT is written to points when any other error is returned from the maxDNA
system.
UniInt Failover Note: UniInt Failover Control Tags behave slightly different from the
description above. The interface does not write CONFIGURE status to Failover
Control Tags prior to data collection.

Principles of Operation

8

The maxDNA system uses the PI exception specifications that are passed for a point to

determine when to check for an exception and determine when an exception has occurred.

An exception occurs when the maxDNA tag exceeds the ExcDev for the point or the ExcMax

time has been exceeded with no exception occurring. The ExcMin time controls the

frequency at which exceptions are checked. The minimum exception minimum time passed

to the maxDNA system is 1 second. If a tag has its ExcMin parameter set to 0, then a value of

1 will be passed to the maxDNA system. The maximum exception maximum time passed to

the maxDNA system is 30 seconds if the /excmax parameter is not used. The /excmax

parameter can be used in the interface startup file to set the maximum exception maximum

parameter for all tags to a value greater than 30 seconds. If /excmax is not set in the interface

startup file and a tag has its ExcMax parameter set greater than 30 seconds, then a value of 30

will be passed to the maxDNA system. If /excmax is set in the interface startup file and a tag

has its ExcMax parameter set greater than /excmax, then the /excmax value will be passed

to the maxDNA system. Consult your Metso Automation representative for recommendations

for exception maximum settings. Typical systems will be able to handle ExcMax times of 30

seconds for all tags. However older systems may not.

Since exception reporting is done on the maxDNA side no further exception reporting is done

within the interface. Value and quality data are sent to PI Server when they are received by

the interface. Although the scan frequency is not used, the Location4 parameter for all input

points must still be set to one.

UniInt Failover

This interface supports UniInt failover. Refer to the UniInt Failover Configuration chapter of

this document for configuring the interface for failover.

PI Interface for Metso maxDNA 9

Chapter 3. Installation Checklist

If you are familiar with running PI data collection interface programs, this checklist helps you

get the interface running. If you are not familiar with PI interfaces, return to this section after

reading the rest of the manual in detail.

This checklist summarizes the steps for installing this interface. You need not perform a

given task if you have already done so as part of the installation of another interface. For

example, you only have to configure one instance of Buffering for every interface node

regardless of how many interfaces run on that node.

The Data Collection Steps below are required. Interface Diagnostics and Advanced Interface

Features are optional.

Data Collection Steps

1. Verify that the maxAPPS software is installed and is working correctly.

2. Confirm that you can use PI SMT to configure the PI Server. You need not run PI

SMT on the same computer on which you run this interface.

3. If you are running the interface on an interface node, edit the PI Server’s Trust Table

to allow the interface to write data.

4. Run the installation kit for the PI Interface Configuration Utility (ICU) on the

interface node if the ICU will be used to configure the interface. This kit runs the PI

SDK installation kit, which installs both the PI API and the PI SDK.

5. Run the installation kit for this interface. This kit also runs the PI SDK installation kit

which installs both the PI API and the PI SDK if necessary.

6. If you are running the interface on an interface node, check the computer’s time zone

properties. An improper time zone configuration can cause the PI Server to reject the

data that this interface writes.

7. Run the ICU and configure a new instance of this interface. Essential startup

parameters for this interface are:

Point Source (/PS=x)

Interface ID (/ID=#)

PI Server (/Host=host:port)

Scan Class (/F=##:##:##,offset)

8. If you will use digital points, define the appropriate digital state sets.

9. Define digital states if quality tags are being used.

10. Build input tags and, if desired, output tags for this interface. Important point

attributes and their purposes are:

Installation Checklist

10

Location1 specifies the interface instance ID.

Location2 specifies whether the tag is an input (0), output (1), or watchdog (2) tag.

Location3 specifies whether the tag is a value (0) or quality (1).

Location4 specifies the scan class.

Location5 is not used.

ExDesc is not used unless the member portion of the point address is omitted in the

InstrumentTag.

InstrumentTag specifies the point address on the Software Backplane.

11. Start the interface interactively and confirm its successful connection to the PI Server

without buffering.

12. Confirm that the interface collects data successfully.

13. Stop the interface and configure a buffering application (either Bufserv or PIBufss).

When configuring buffering use the ICU menu item Tools Buffering…

Buffering Settings to make a change to the default value (32678) for the Primary and

Secondary Memory Buffer Size (Bytes) to 2000000. This will optimize the throughput

for buffering and is recommended by OSIsoft.

14. Start the buffering application and the interface. Confirm that the interface works

together with the buffering application by either physically removing the connection

between the interface node and the PI Server Node or by stopping the PI Server.

15. Configure the interface to run as a Service. Confirm that the interface runs properly

as a Service.

16. Restart the interface node and confirm that the interface and the buffering application

restart.

Interface Diagnostics

1. Configure Scan Class Performance points.

2. Install the PI Performance Monitor Interface (Full Version only) on the interface

node.

3. Configure Performance Counter points.

4. Configure UniInt Health Monitoring points

5. Configure the I/O Rate point.

6. Install and configure the Interface Status Utility on the PI Server Node.

7. Configure the Interface Status point.

Advanced Interface Features

1. Configure the interface for disconnected startup. Refer to the UniInt Interface User

Manual for more details on UniInt disconnected startup.

2. Configure UniInt failover; see the UniInt Failover Configuration chapter in this

document for details related to configuring the interface for failover.

PI Interface for Metso maxDNA 11

Chapter 4. Interface Installation on Windows

OSIsoft recommends that interfaces be installed on interface nodes instead of directly on the

PI Server node. An interface node is any node other than the PI Server node where the

PI Application Programming Interface (PI API) is installed (see the PI API manual). With

this approach, the PI Server need not compete with interfaces for the machine’s resources.

The primary function of the PI Server is to archive data and to service clients that request

data.

After the interface has been installed and tested, Buffering should be enabled on the interface

node. Buffering refers to either PI API Buffer Server (Bufserv) or the PI Buffer Subsystem

(PIBufss). For more information about Buffering see the Buffering chapter of this manual.

In most cases, interfaces on interface nodes should be installed as automatic services.

Services keep running after the user logs off. Automatic services automatically restart when

the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the PI Server node. In this case, the

typical procedure is to install the PI Server as an automatic service and install the interface as

an automatic service that depends on the PI Update Manager and PI Network Manager

services. This typical scenario assumes that Buffering is not enabled on the PI Server node.

Bufserv or PIBufss can be enabled on the PI Server node so that interfaces on the PI Server

node do not need to be started and stopped in conjunction with the PI Server, but it is not

standard practice to enable buffering on the PI Server node. The PI Buffer Subsystem can

also be installed on the PI Server. See the UniInt Interface User Manual for special

procedural information.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is

PIMax.exe and that the startup command file is called PIMax.bat.

When Configuring the Interface Manually

It is customary for the user to rename the executable and the startup command file when

multiple copies of the interface are run. For example, PIMax1.exe and PIMax.bat would

typically be used for instance 1, PIMax2.exe and PIMax2.bat for instance 2, and so on.

When an interface is run as a service, the executable and the command file must have the

same root name because the service looks for its command-line parameters in a file that has

the same root name.

Interface Installation on Windows

12

Interface Directories

PIHOME Directory Tree

32-bit Interfaces

The [PIHOME] directory tree is defined by the PIHOME entry in the pipc.ini configuration

file. This pipc.ini file is an ASCII text file, which is located in the %windir% directory.

For 32-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files\PIPC

For 64-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files (X86)\PIPC

The above lines define the root of the PIHOME directory on the C: drive. The PIHOME

directory does not need to be on the C: drive. OSIsoft recommends using the paths shown

above as the root PIHOME directory name.

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\ Max1000pp\

PIHOME is defined in the pipc.ini file.

Interface Installation Procedure

The maxDNA interface setup program uses the services of the Microsoft Windows Installer.

Windows Installer is a standard part of Windows 2000 and later operating systems. To install,

run the appropriate installation kit.

maxDNA_#.#.#.#_.exe

Installing Interface as a Windows Service

The maxDNA interface service can be created, preferably, with the

PI Interface Configuration Utility, or can be created manually. The service should be run

under Engineer user account.

PI Interface for Metso maxDNA 13

Installing Interface Service with PI Interface Configuration Utility

The PI Interface Configuration Utility provides a user interface for creating, editing, and

deleting the interface service:

Service Configuration

Service name

The Service name box shows the name of the current interface service. This service name is

obtained from the interface executable.

ID

This is the service ID used to distinguish multiple instances of the same interface using the

same executable.

Display name

The Display name text box shows the current Display Name of the interface service. If there

is currently no service for the selected interface, the default Display Name is the service name

with a “PI-” prefix. Users may specify a different Display Name. OSIsoft suggests that the

prefix “PI-” be appended to the beginning of the interface name to indicate that the service is

part of the OSIsoft suite of products.

Interface Installation on Windows

14

Log on as

The Log on as text box shows the current “Log on as” Windows User Account of the

interface service. If the service is configured to use the Local System account, the Log on as

text box will show “LocalSystem.” Users may specify a different Windows User account for

the service to use.

Password

If a Windows User account is entered in the Log on as text box, then a password must be

provided in the Password text box, unless the account requires no password.

Confirm password

If a password is entered in the Password text box, then it must be confirmed in the Confirm

password text box.

Dependencies

The Installed services list is a list of the services currently installed on this machine. Services

upon which this interface is dependent should be moved into the Dependencies list using the

 button. For example, if API Buffering is running, then “bufserv” should be selected

from the list at the right and added to the list on the left. To remove a service from the list of

dependencies, use the button, and the service name will be removed from the

Dependencies list.

When the interface is started (as a service), the services listed in the dependency list will be

verified as running (or an attempt will be made to start them). If the dependent service(s)

cannot be started for any reason, then the interface service will not run.

Note: Please see the PI Log and Windows Event Logger for messages that may
indicate the cause for any service not running as expected.

 - Add Button

To add a dependency from the list of Installed services, select the dependency name, and

click the Add button.

 - Remove Button

To remove a selected dependency, select the service name in the Dependencies list, and click

the Remove button.

The full name of the service selected in the Installed services list is displayed below the

Installed services list box.

Startup Type

The Startup Type indicates whether the interface service will start automatically or needs to

be started manually on reboot.

PI Interface for Metso maxDNA 15

 If the Auto option is selected, the service will be installed to start automatically when

the machine reboots.

 If the Manual option is selected, the interface service will not start on reboot, but will

require someone to manually start the service.

 If the Disabled option is selected, the service will not start at all.

Generally, interface services are set to start automatically.

Create

The Create button adds the displayed service with the specified Dependencies and with the

specified Startup Type.

Remove

The Remove button removes the displayed service. If the service is not currently installed, or

if the service is currently running, this button will be grayed out.

Start or Stop Service

The toolbar contains a Start button and a Stop button . If this interface service is not

currently installed, these buttons will remain grayed out until the service is added. If this

interface service is running, the Stop button is available. If this service is not running, the

Start button is available.

The status of the interface service is indicated in the lower portion of the PI ICU dialog.

Installing Interface Service Manually

Help for installing the interface as a service is available at any time with the command:

PIMax.exe /help

Open a Windows command prompt window and change to the directory where the

PIMax.exe executable is located. Then, consult the following table to determine the

appropriate service installation command.

Note: In the following Windows Service Installtation Commands you may use either a
slash (/) or dash (-) as the delimiter.

Windows Service Installation Commands on an Interface Node or a PI Server Node with
Bufserv implemented

Manual service PIMax.exe /install /depend "tcpip bufserv"

Status of

the ICU

Service

installed or

uninstalled

Status of the

Interface

Service

Interface Installation on Windows

16

Automatic service PIMax.exe /install /auto /depend "tcpip bufserv"

*Automatic service with
service ID

PIMax.exe /serviceid X /install /auto /depend "tcpip bufserv"

Windows Service Installation Commands on an Interface Node or a PI Server Node
without Bufserv implemented

Manual service PIMax.exe /install /depend tcpip

Automatic service PIMax.exe /install /auto /depend tcpip

*Automatic service with
service ID

PIMax.exe /serviceid X /install /auto /depend tcpip

*When specifying service ID, the user must include an ID number. It is suggested that this

number correspond to the interface ID (/id) parameter found in the interface .bat file.

Check the Microsoft Windows Services control panel to verify that the service was added

successfully. The services control panel can be used at any time to change the interface from

an automatic service to a manual service or vice versa.

PI Interface for Metso maxDNA 17

Chapter 5. Digital States

For more information regarding Digital States, refer to the PI Server documentation.

Digital State Sets

PI digital states are discrete values represented by strings. These strings are organized in PI as

digital state sets. Each digital state set is a user-defined list of strings, enumerated from 0 to n

to represent different values of discrete data. For more information about PI digital tags and

editing digital state sets, see the PI Server manuals.

An interface point that contains discrete data can be stored in PI as a digital point. A

digital point associates discrete data with a digital state set, as specified by the user.

Creation of Quality Digital State Set

You must create a digital state set for use with quality tags. A suggested name is

maxDNA_QUALITIES. The digital state set must contain the states shown exactly in the

order as they appear below.

OTHER, GOOD, NOT KNOWN, DOUBTFUL, SUBSTITUTED, BAD, BAD REF, NO VALUE

The value of OTHER will be given if the returned quality is not one of the other qualities

shown above.

An example digital set file, PI_maxDNA_Qualities.csv, is provided with the interface

installation kit.

System Digital State Set

Similar to digital state sets is the system digital state set. This set is used for all points,

regardless of type, to indicate the state of a point at a particular time. For example, if the

interface receives bad data from the data source, it writes the system digital state Bad Input

to PI instead of a value. The system digital state set has many unused states that can be used

by the interface and other PI clients. Digital States 193-320 are reserved for OSIsoft

applications.

PI Interface for Metso maxDNA 19

Chapter 6. PointSource

The PointSource is a unique, single or multi-character string that is used to identify the PI

point as a point that belongs to a particular interface. For example, the string Boiler1 may be

used to identify points that belong to the MyInt interface. To implement this, the PointSource

attribute would be set to Boiler1 for every PI point that is configured for the MyInt

interface. Then, if /ps=Boiler1 is used on the startup command-line of the MyInt interface,

the interface will search the PI Point Database upon startup for every PI point that is

configured with a PointSource of Boiler1. Before an interface loads a point, the interface

usually performs further checks by examining additional PI point attributes to determine

whether a particular point is valid for the interface. For additional information, see the /ps

parameter. If the PI API version being used is prior to 1.6.x or the PI Server version is prior

to 3.4.370.x, the PointSource is limited to a single character unless the SDK is being used.

Case-sensitivity for PointSource Attribute

The PointSource character that is supplied with the /ps command-line parameter is not case

sensitive. That is, /ps=P and /ps=p are equivalent.

Reserved Point Sources

Several subsystems and applications that ship with PI are associated with default PointSource

characters. The Totalizer Subsystem uses the PointSource character T, the Alarm Subsystem

uses @ for Alarm Tags, G for Group Alarms and Q for SQC Alarm Tags, Random uses R,

RampSoak uses 9, and the Performance Equations Subsystem uses C. Do not use these

PointSource characters or change the default point source characters for these applications.

Also, if a PointSource character is not explicitly defined when creating a PI point; the point is

assigned a default PointSource character of Lab (PI 3). Therefore, it would be confusing to

use Lab as the PointSource character for an interface.

Note: Do not use a point source character that is already associated with another
interface program. However it is acceptable to use the same point source for multiple
instances of an interface.

PI Interface for Metso maxDNA 21

Chapter 7. PI Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Server. A

single point is configured for each measurement value that needs to be archived.

maxDNA Tag Address Format

The PI-maxDNA Interface uses a "reference-member" (RefMem) identifier to reference a

specific point in maxDNA. The reference represents the maxDNA tag group (or service) in

which the tag resides. Member references the actual tag within the specified reference.

General PI Tag Configuration Information

One PI point (PI tag) must be configured for each maxDNA member you want to read from

or write to. The points can be configured on a PI 2 or PI 3 home node. Each tag from the

maxDNA system may also have quality along with a value. You can choose to store the

quality that comes with each value in a separate PI tag.

The following describes the PI point attributes that have specific meaning for use with the PI-

maxDNA Interface. Other fields may also need to be specified for proper configuration of the

PI point. Some of these fields include typical value, engineering units, resolution code (PI 2

only), filter code, etc. You may also want to create I/O Rate Tags for each interface.

The attribute names used below are consistent with the names in the Data Archive Manual for

PI 3.

Point Attributes

Use the point attributes below to define the PI point configuration for the interface, including

specifically what data to transfer.

This document does not discuss the attributes that configure UniInt or PI Server processing

for a PI point. Specifically, UniInt provides exception reporting and the PI Server provides

data compression. Exception reporting and compression are very important aspects of data

collection and archiving, which are not discussed in this document.

Note: See the UniInt Interface User Manual and PI Server documentation for
information on other attributes that are significant to PI point data collection and
archiving.

PI Point Configuration

22

Tag

The Tag attribute (or tag name) is the name for a point. There is a one-to-one correspondence

between the name of a point and the point itself. Because of this relationship, PI

documentation uses the terms “tag” and “point” interchangeably.

Follow these rules for naming PI points:

 The name must be unique on the PI Server.

 The first character must be alphanumeric, the underscore (_), or the percent sign (%).

 Control characters such as linefeeds or tabs are illegal.

 The following characters also are illegal: * ’ ? ; { } [] | \ ` ' "

Length

Depending on the version of the PI API and the PI Server, this interface supports tags whose

length is at most 255 or 1023 characters. The following table indicates the maximum length

of this attribute for all the different combinations of PI API and PI Server versions.

PI API PI Server Maximum Length

1.6.0.2 or higher 3.4.370.x or higher 1023

1.6.0.2 or higher Below 3.4.370.x 255

Below 1.6.0.2 3.4.370.x or higher 255

Below 1.6.0.2 Below 3.4.370.x 255

If the PI Server version is earlier than 3.4.370.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum tag length of 1023, you need to enable the PI SDK. See

Appendix B for information.

PointSource

The PointSource attribute contains a unique, single or multi-character string that is used to

identify the PI point as a point that belongs to a particular interface. For additional

information, see the /ps command-line parameter and the PointSource chapter.

PointType

Typically, device point types do not need to correspond to PI point types. For example,

integer values from a device can be sent to floating-point or digital PI tags. Similarly, a

floating-point value from the device can be sent to integer or digital PI tags, although the

values will be truncated.

Float16, float32, float 64, int16, int32 and digital point types are supported. For more

information on the individual PointTypes, see PI Server manuals.

Location1

Location1 indicates to which copy of the interface the point belongs. The value of this

attribute must match the /id command-line parameter.

PI Interface for Metso maxDNA 23

Location2

The Location2 attribute is used to specify whether this tag is an input, output or watchdog

tag. Possible values are:

0 = Input Tag

1 = Output Tag

2 = Watchdog Tag.

Location3

This attribute is used to indicate whether the PI tag will hold a value or a quality.

0 = Value tag

1 = Quality tag

Location4

Input and Output Tags

Location4 should be set to 1.

Note: This interface does not support the standard trigger-based scanning that
UniInt supports since all data comes from the maxDNA system on an exception
basis.

Watchdog Tags

Location4 determines the frequency at which a watchdog tag will send data to the SBP. The

possible scanning frequencies for a given interface are specified by the user on the command

line in the PIMAX#.bat file (see section Startup Command File). For example, the command

line is as follows:

/f=00:00:05 /f=00:00:15 /f=00:01:00,00:00:10

Then, the point can be configured to send a “heartbeat” to the SBP every 5 seconds, every 15

seconds, or every minute. For the 5-second and 15-second periods, heartbeats will begin on

the hour or at a multiple of 5 or 15 seconds after the hour. For the 1-minute period,

heartbeats will begin 10 seconds after the hour or at a multiple of 1 minute and 10 seconds

after the hour. If Location4 is 1 for the above command line, then the watchdog tag will

update every 5 seconds. If Location4 is 2, then the tag will update every 15 seconds, and so

on.

Location5

Location5 is not used by this interface.

PI Point Configuration

24

InstrumentTag

This attribute is used to specify the RefMem address for maxDNA. RefMem stands for

Reference-Member, and is used to address a specific tag within maxDNA. Each entry in the

RefMem must be separated with a period, with no spaces between the period and text. For

example, the InstrumentTag attribute for a PI tag would contain:

[domain]service.member.ext.ext

Typically only the service and member need to be specified. An example of this type of

address is: FIC101.PV where FIC101 is the service and PV is the member of interest.

Length

Depending on the version of the PI API and the PI Server, this interface supports an

InstrumentTag attribute whose length is at most 32 or 1023 characters. The following table

indicates the maximum length of this attribute for all the different combinations of PI API

and PI Server versions.

PI API PI Server Maximum Length

1.6.0.2 or higher 3.4.370.x or higher 1023

1.6.0.2 or higher Below 3.4.370.x 32

Below 1.6.0.2 3.4.370.x or higher 32

Below 1.6.0.2 Below 3.4.370.x 32

If the PI Server version is earlier than 3.4.370.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum InstrumentTag length of 1023, you need to enable the PI

SDK. See Appendix B for information.

ExDesc

The ExDesc (Extended Descriptor) is used to specify the member portion of the maxDNA

point address if not given in the InstrumentTag.

The member name is placed at the end of the ExDesc attribute in the following format:

RM=MemberName

This string, if required, must appear the end of the ExDesc attribute. The RM= must be given

with capital letters; however the actual member name should match that given in maxDNA.

Length

Depending on the version of the PI API and the PI Server, this interface supports an ExDesc

attribute whose length is at most 80 or 1023 characters. The following table indicates the

maximum length of this attribute for all the different combinations of PI API and PI Server

versions.

PI API PI Server Maximum Length

1.6.0.2 or higher 3.4.370.x or higher 1023

1.6.0.2 or higher Below 3.4.370.x 80

Below 1.6.0.2 3.4.370.x or higher 80

Below 1.6.0.2 Below 3.4.370.x 80

PI Interface for Metso maxDNA 25

If the PI Server version is earlier than 3.4.370.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum ExDesc length of 1023, you need to enable the PI SDK. See

Appendix B for information.

Performance Points

For UniInt-based interfaces, the extended descriptor is checked for the string

“PERFORMANCE_POINT”. If this character string is found, UniInt treats this point as a

performance point. See the section called Scan Class Performance Points.

Scan

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the

point. Setting the scan attribute to 0 turns scanning off. If the scan attribute is 0 when the

interface starts, a message is written to the pipc.log and the tag is not loaded by the

interface. There is one exception to the previous statement.

If any PI point is removed from the interface while the interface is running (including setting

the scan attribute to 0), SCAN OFF will be written to the PI point regardless of the value of

the Scan attribute. Two examples of actions that would remove a PI point from an interface

are to change the point source or set the scan attribute to 0. If an interface-specific attribute is

changed that causes the tag to be rejected by the interface, SCAN OFF will be written to the PI

point.

Shutdown

The Shutdown attribute is 1 (true) by default. The default behavior of the PI Shutdown

subsystem is to write the SHUTDOWN digital state to all PI points when PI is started. The

timestamp that is used for the SHUTDOWN events is retrieved from a file that is updated by the

Snapshot Subsystem. The timestamp is usually updated every 15 minutes, which means that

the timestamp for the SHUTDOWN events will be accurate to within 15 minutes in the event of

a power failure. For additional information on shutdown events, refer to PI Server manuals.

Note: The SHUTDOWN events that are written by the PI Shutdown subsystem are

independent of the SHUTDOWN events that are written by the interface when

the /stopstat=Shutdown command-line parameter is specified.

SHUTDOWN events can be disabled from being written to PI when PI is restarted by setting the

Shutdown attribute to 0 for each point. Alternatively, the default behavior of the PI Shutdown

Subsystem can be changed to write SHUTDOWN events only for PI points that have their

Shutdown attribute set to 0. To change the default behavior, edit the

\PI\dat\Shutdown.dat file, as discussed in PI Server manuals.

Bufserv and PIBufss

It is undesirable to write shutdown events when buffering is being used. Bufserv and PIBufss

are utility programs that provide the capability to store and forward events to a PI Server,

allowing continuous data collection when the PI Server is down for maintenance, upgrades,

backups, and unexpected failures. That is, when the PI Server is shutdown, Bufserv or

PIBufss will continue to collect data for the interface, making it undesirable to write

PI Point Configuration

26

SHUTDOWN events to the PI points for this interface. Disabling Shutdown is recommended

when sending data to a Highly Available PI Server Collective. Refer to the Bufserv or

PIBufss manuals for additional information.

Output Points

Output points control the flow of data from the PI Server to any destination that is external to

the PI Server, such as a PLC or a third-party database. For example, to write a value to a

register in a PLC, use an output point. Each interface has its own rules for determining

whether a given point is an input point or an output point. There is no de facto PI point

attribute that distinguishes a point as an input point or an output point.

Outputs are triggered for UniInt-based interfaces. That is, outputs are not scheduled to occur

on a periodic basis. There are two mechanisms for triggering an output.

As of UniInt 3.3.4, event conditions can be placed on triggered outputs. The conditions are

specified using the same event condition keywords in the extended descriptor as described

below. The only difference is that the trigger tag is specified with the SourceTag attribute

instead of with the “event” or “trig” keywords. For output points, event conditions are

specified in the extended descriptor as follows:

event_condition

The keywords in the following table can be used to specify trigger conditions.

Event
Condition

Description

Anychange Trigger on any change as long as the value of the current event is different than
the value of the previous event. System digital states also trigger events. For
example, an event will be triggered on a value change from 0 to “Bad Input,” and
an event will be triggered on a value change from “Bad Input” to 0.

Increment Trigger on any increase in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 0 to 1, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Decrement Trigger on any decrease in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 1 to 0, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Nonzero Trigger on any non-zero value. Events are not triggered when a system digital
state is written to the trigger tag. For example, an event is triggered on a value
change from “Pt Created” to 1, but an event is not triggered on a value change
from 1 to “Bad Input.”

Trigger Method 1 (Recommended)

For trigger method 1, a separate trigger point must be configured. The output point must have

the same point source as the interface. The trigger point can be associated with any point

source, including the point source of the interface. Also, the point type of the trigger point

does not need to be the same as the point type of the output point.

The output point is associated with the trigger point by setting the SourceTag attribute of the

output point equal to the tag name of the trigger point. An output is triggered when a new

value is sent to the Snapshot of the trigger point. The new value does not need to be different

than the previous value that was sent to the Snapshot to trigger an output, but the timestamp

PI Interface for Metso maxDNA 27

of the new value must be more recent than the previous value. If no error is indicated, then

the value that was sent to the trigger point is also written to the output point. If the output is

unsuccessful, then an appropriate digital state that is indicative of the failure is usually written

to the output point. If an error is not indicated, the output still may not have succeeded

because the interface may not be able to tell with certainty that an output has failed.

Trigger Method 2

For trigger method 2, a separate trigger point is not configured. To trigger an output, write a

new value to the Snapshot of the output point itself. The new value does not need to be

different than the previous value to trigger an output, but the timestamp of the new value

must be more recent than the previous value.

Trigger method 2 may be easier to configure than trigger method 1, but trigger method 2 has

a significant disadvantage. If the output is unsuccessful, there is no tag to receive a digital

state that is indicative of the failure, which is very important for troubleshooting.

Quality Points

Quality tags are declared by setting the tag’s Location3 field to a 1. An input tag can then

specify this quality tag in its SourceTag field. When data is sent from the SBP, its quality is

then written to this quality tag.

Quality tags must be of Digital data type. Also, the DigitalSet field of a quality tag must

match the digital set created for qualities as described above. Failure to meet these

requirements will cause the quality tag to report erroneous data.

Watchdog Points

A watchdog tag is used as a software “heartbeat.” It creates a timer in the local status server

set for a 60-second timeout.

For the tag to function correctly it needs two things. The first is a service name to use as the

destination. This is specified in the tag’s InstrumentTag field. On startup, the interface will

create a service in the local status server using the name given in this field. The second thing

the tag needs is a heartbeat interval. Location4 corresponds with the desired heartbeat

interval. See the description of Location4 above for a detailed explanation of specifying

heartbeat intervals.

While operational, the tag automatically sets the timer to 60 seconds at the interval given in

Location4. Therefore, the interval referenced by Location4 should be considerably less than

60 seconds. In the event that the interface fails to reset the timer before the 60-second time

limit, an alarm will be raised in the newly created service.

The actual value stored in the PI tag when it is fully operational is the digital state Good.

Should the target SBP item become unreachable, the digital state I/O Timeout is written to

the watchdog tag.

While the watchdog tag is operational, one can view the current state of the timer by

subscribing to the SBP item ServiceName.time left. However, you must ensure that this

subscription does not occur before the service is created. Failure to meet this requirement

would cause the subscription attempt to fail.

PI Interface for Metso maxDNA 29

Chapter 8. Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=M and

-ps=M command-line parameters are equivalent.

For Windows, command file names have a .bat extension. The Windows continuation

character (^) allows for the use of multiple lines for the startup command. The maximum

length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited,

and the maximum length of each parameter is 1024 characters.

The PI Interface Configuration Utility (PI ICU) provides a tool for configuring the interface

startup command file.

Configuring the Interface with PI ICU

Note: PI ICU requires PI 3.3 or greater.

The PI Interface Configuration Utility provides a graphical user interface for configuring PI

interfaces. If the interface is configured by the PI ICU, the batch file of the interface

(PIMax.bat) will be maintained by the PI ICU and all configuration changes will be kept in

that file and the module database. The procedure below describes the necessary steps for

using PI ICU to configure the maxDNA interface.

From the PI ICU menu, select Interface, then NewWindows Interface Instance from EXE...,

and then Browse to the PIMax.exe executable file. Then, enter values for Host PI System,

Point Source, and Interface ID#. A window such as the following results:

Startup Command File

30

Interface name as displayed in the ICU (optional) will have PI- pre-pended to this name and

it will be the display name in the services menu.

Click Add.

The following message should appear:

Note that in this example the Host PI Server is w2003hrmsingle. To configure the interface to

communicate with a remote PI Server, select Connections…from the PI ICU Interface menu

and select the default server. If the remote node is not present in the list of servers, it can be

added.

Once the interface is added to PI ICU, near the top of the main PI ICU screen, the interface

Type should be maxDNA. If not, use the drop-down box to change the interface Type to be

maxDNA.

Click on Apply to enable the PI ICU to manage this instance of the maxDNA interface.

PI Interface for Metso maxDNA 31

The next step is to make selections in the interface-specific page (that is, “maxDNA”) that

allows you to enter values for the startup parameters that are particular to the maxDNA

interface.

Since the maxDNA interface is a UniInt-based interface, in some cases the user will need to

make appropriate selections in the UniInt page. This page allows the user to access UniInt

features through the PI ICU and to make changes to the behavior of the interface.

Startup Command File

32

To set up the interface as a Windows Service, use the Service page. This page allows

configuration of the interface to run as a service as well as to starting and stopping of the

interface service. The interface can also be run interactively from the PI ICU. To do that,

select Start Interactive on the Interface menu.

For more detailed information on how to use the above-mentioned and other PI ICU pages

and selections, please refer to the PI Interface Configuration Utility user guide. The next

section describes the selections that are available from the maxDNA page. Once selections

have been made on the PI ICU GUI, press the Apply button in order for PI ICU to make these

changes to the interface’s startup file.

maxDNA Interface Page

Since the startup file of the maxDNA interface is maintained automatically by the PI ICU,

use the maxDNA page to configure the startup parameters and do not make changes in the file

manually. The following is the description of interface configuration parameters used in the

PI ICU Control and corresponding manual parameters.

maxDNA

The PI Interface for Metso maxDna – ICU Control has 2 sections. A yellow text box indicates

that an invalid value has been entered or that a required value has not been entered.

Maximum ExcMax Time

This field specifies the maximum exception time, which is the maximum value that a tag’s

excmax attribute can be set to in seconds. If the /excmax parameter is not set, the maximum

exception maximum time is 30 seconds. Consult your Metso Automation representative for

recommendations for exception maximum settings, usually this value should be 30.

PI Interface for Metso maxDNA 33

Time to Wait Between Unsuccessful Subscription Attempts

This field specifies the amount of time (in seconds) the interface should wait between

unsuccessful subscription attempts. Setting this too low will cause unnecessary network

traffic and will use more processor time

Logging section

Log File

This field is used to specify the name and location of the logging file. Clicking the Browse

button displays a dialog box that you can use to browse to an existing or create a new logging

file.

Logging detail

This combo box is used to configure the detail in logging occurs. The available selections are:

 Low

 Medium

 High

 None

 Maximum

Maximum file size

This field is used to control the maximum size, in bytes, that the logging file is allow to grow

to.

Save log file after each write

If this option is selected, the interface will commit each log message to disc as it is created. If

the logging level is set to High or Maximum this may create substantial overhead on the

system so it is suggested to be used with care.

Echo log messages to screen

Select this option to cause the interface to echo all logging messages to the screen. The

interface must be run interactively in order for this to work.

Overwrite / Append to existing log file

This field is used to specify the overwrite / append options for the logging file. If Overwrite is

selected a new log file is created each time the interface starts. If append is selected, the

interface will append any new message to the previous log file.

Manage Logging Tags

You can change the operation of the logging facilities at runtime by creating several Logging

Tags. The logging tags provide a mechanism for changing the logging configuration during

run-time. When the logging configuration needs to be changed, a value can be written to the

appropriate tag. For each possible logging configuration change, there is a specific PI tag.

This screen allows the runtime logging tags to be created, deleted and modified.

Startup Command File

34

Build Tags

This section allows the logging control tags to be created if they do not already exist or

deleted if they do exist. Select the desired tag and then click Build or Delete next to the tag.

Write Values to PI

This section allows the logging options to be controlled via the logging control tags. Select

the logging tag to be modified and the select the desired value via the combo box and then

click the Write to PI button on the right.

Additional Parameters

This section is provided for any additional parameters that the current ICU Control does not

support.

Note: The UniInt Interface User Manual includes details about other command-line
parameters, which may be useful.

PI Interface for Metso maxDNA 35

Command-line Parameters

Parameter Description

/CacheMode

Required when using
disconnected startup

Default: Not Defined

Required for disconnected startup operation. If defined, the
/CacheMode startup parameter indicates that the interface will

be configured to utilize the disconnected startup feature.

/CachePath=path

Optional

Default: Not Defined

Used to specify a directory in which to create the point caching
files. The directory specified must already exist on the target
machine. By default, the files are created in the same location as
the interface executable.

If the path contains any spaces, enclose the path in quotes.

Examples:

/CachePath=D:\PIPC\Interfaces\CacheFiles

/CachePath=D:/PIPC/Interfaces/CacheFiles

/CachePath=D:/PIPC/Interfaces/CacheFiles/

Examples with space in path name:

/CachePath="D:\Program Files\PIPC\MyFiles"

/CachePath="D:/Program Files/PIPC/MyFiles"

/CachePath="D:/Program Files/PIPC/MyFiles/"

/CacheSynch=#

Optional

Default: 250 ms

NOTE: Care must be taken when modifying this parameter. This

value must be less than the smallest scan class period defined with
the /f parameter. If the value of the /CacheSynch parameter

is greater than the scan class value, input scans will be missed
while the point cache file is being synchronized.

The optional /CacheSynch=# startup parameter specifies the

time slice period in milliseconds (ms) allocated by UniInt for
synchronizing the interface point cache file with the PI Server. By
default, the interface will synchronize the point cache if running in
the disconnected startup mode. UniInt allocates a maximum of
ms each pass through the control loop synchronizing the
interface point cache until the file is completely synchronized.

Synchronization of the point cache file can be disabled by setting
the value /CacheSynch=0. The minimum synchronization

period when cache synchronization is enabled is 50ms Whereas,
the maximum synchronization period is 3000ms (3s). Period
values of 1 to 49 will be changed by the interface to the minimum
of 50ms and values greater than 3000 will be set to the maximum
interval value of 3000ms.

Default: 250 ms

Range: {0, 50 – 3000} time in milliseconds

Example: /CacheSynch=50 (use a 50ms interval)

 /CacheSynch=3000 (use a 3s interval)

 /CacheSynch=0 (do not synchronize the cache)

/D=#

Optional

Default: 2

The /D parameters specify the detail level for logging. Medium

detail logging is set by default.

Supported values:

9 = All logs

8 = No logs

3 = High detail

2 = Medium detail

1 = Low detail

Startup Command File

36

Parameter Description

/ec=#

Optional

The first instance of the /ec parameter on the command-line is

used to specify a counter number, #, for an I/O Rate point. If the #

is not specified, then the default event counter is 1. Also, if the /ec

parameter is not specified at all, there is still a default event
counter of 1 associated with the interface. If there is an I/O Rate
point that is associated with an event counter of 1, every interface
that is running without /ec=# explicitly defined will write to the

same I/O Rate point. Either explicitly define an event counter other
than 1 for each instance of the interface or do not associate any I/O
Rate points with event counter 1. Configuration of I/O Rate points
is discussed in the section called I/O Rate Point.

For interfaces that run on Windows nodes, subsequent instances
of the /ec parameter may be used by specific interfaces to keep

track of various input or output operations. Subsequent instances
of the /ec parameter can be of the form /ec*, where * is any

ASCII character sequence. For example, /ecinput=10,

/ecoutput=11, and /ec=12 are legitimate choices for the

second, third, and fourth event counter strings.

/excmax=#

default: 30 seconds

Specifies the maximum exception time, which is the maximum
value that a tag’s excmax attribute can be set to in seconds. If the
/excmax parameter is not set, the maximum exception maximum

time is 30 seconds. Consult your Metso Automation representative
for recommendations for exception maximum settings, usually this
value should be 30.

/f=SS.##

 or

/f=SS.##,ss.##

or

/f=HH:MM:SS.##

or

/f=HH:MM:SS.##,

hh:mm:ss.##

Required for reading scan-
based inputs

The /f parameter defines the time period between scans in terms

of hours (HH), minutes (MM), seconds (SS) and sub-seconds (##).

The scans can be scheduled to occur at discrete moments in time

with an optional time offset specified in terms of hours (hh),

minutes (mm), seconds (ss), and sub-seconds (##). If HH and MM

are omitted, then the time period that is specified is assumed to be
in seconds.

Each instance of the /f parameter on the command-line defines a

scan class for the interface. There is no limit to the number of scan
classes that can be defined. The first occurrence of the /f

parameter on the command-line defines the first scan class of the
interface; the second occurrence defines the second scan class,
and so on. PI Points are associated with a particular scan class via
the Location4 PI Point attribute. For example, all PI Points that
have Location4 set to 1 will receive input values at the frequency
defined by the first scan class. Similarly, all points that have
Location4 set to 2 will receive input values at the frequency
specified by the second scan class, and so on.

Two scan classes are defined in the following example:

/f=00:01:00,00:00:05 /f=00:00:07

or, equivalently:

/f=60,5 /f=7

The first scan class has a scanning frequency of 1 minute with an
offset of 5 seconds, and the second scan class has a scanning
frequency of 7 seconds. When an offset is specified, the scans
occur at discrete moments in time according to the formula:

scan times = (reference time) + n(frequency) + offset

where n is an integer and the reference time is midnight on the day
that the interface was started. In the above example, frequency is
60 seconds and offset is 5 seconds for the first scan class. This
means that if the interface was started at 05:06:06, the first scan
would be at 05:07:05, the second scan would be at 05:08:05, and

so on. Since no offset is specified for the second scan class, the

PI Interface for Metso maxDNA 37

Parameter Description

absolute scan times are undefined.

The definition of a scan class does not guarantee that the
associated points will be scanned at the given frequency. If the
interface is under a large load, then some scans may occur late or
be skipped entirely. See the section “Performance Summaries” in
UniInt Interface User Manual.doc for more information on skipped
or missed scans.

Sub-second Scan Classes

Sub-second scan classes can be defined on the command-line,
such as

/f=0.5 /f=00:00:00.1

where the scanning frequency associated with the first scan class
is 0.5 seconds and the scanning frequency associated with the
second scan class is 0.1 of a second.

Similarly, sub-second scan classes with sub-second offsets can be
defined, such as

/f=0.5,0.2 /f=1,0

Wall Clock Scheduling

Scan classes that strictly adhere to wall clock scheduling are now
possible. This feature is available for interfaces that run on
Windows and/or UNIX. Previously, wall clock scheduling was
possible, but not across daylight saving time. For example,

/f=24:00:00,08:00:00 corresponds to 1 scan a day starting

at 8 AM. However, after a Daylight Saving Time change, the scan
would occur either at 7 AM or 9 AM, depending upon the direction
of the time shift. To schedule a scan once a day at 8 AM (even
across daylight saving time), use
/f=24:00:00,00:08:00,L. The ,L at the end of the scan

class tells UniInt to use the new wall clock scheduling algorithm.

/force

Optional

The /force parameter enabling forced writes to the log file. When

enabled commits all data to the drive after each write (slows the
process significantly).

/host=host:port

Required

The /host parameter is used to specify the PI Home node. Host

is the IP address of the PI Server node or the domain name of the
PI Server node. Port is the port number for TCP/IP
communication. The port is always 5450. It is recommended to
explicitly define the host and port on the command-line with the
/host parameter. Nevertheless, if either the host or port is not

specified, the interface will attempt to use defaults.

Examples:

The interface is running on a interface node, the domain name of
the PI home node is Marvin, and the IP address of Marvin is
206.79.198.30. Valid /host parameters would be:

/host=marvin

/host=marvin:5450

/host=206.79.198.30

/host=206.79.198.30:5450

Startup Command File

38

Parameter Description

/id=x

Highly Recommended

The /id parameter is used to specify the interface identifier.

The interface identifier is a string that is no longer than 9
characters in length. UniInt concatenates this string to the header
that is used to identify error messages as belonging to a particular
interface. See Appendix A Error and Informational Messages for
more information.

UniInt always uses the /id parameter in the fashion described

above. This interface also uses the /id parameter to identify a

particular interface instance number that corresponds to an integer
value that is assigned to one of the Location code point attributes,
most frequently Location1. For this interface, use only numeric
characters in the identifier. For example,

/id=1

/L=xxx

Optional

The /L specifies the file for logging.

If the parameter is not specified, the default log file is used:
“C:\Users\<USERNAME>\AppData\Roaming\MaxDna.log”

/M=#

Optional

Default: 50000

The /M specifies the max log file size in bytes. When the log file

size reach the limit older messages are overwritten.

/N=x

Optional

Default:1(True)

The /N specify how the interface write to the log form the start.

When the parameter is 1, the new log file is created. When the
parameter is 0 log messages are appended to the current file.

/ps=x

Required

The /ps parameter specifies the point source for the interface. X

is not case sensitive and can be any single/multiple character
string. For example, /ps=P and /ps=p are equivalent. The

length of X is limited to 100 characters by UniInt. X can contain any

character except ‘*’ and ‘?’.

The point source that is assigned with the /ps parameter

corresponds to the PointSource attribute of individual PI Points.
The interface will attempt to load only those PI points with the
appropriate point source.

If the PI API version being used is prior to 1.6.x or the PI Server
version is prior to 3.4.370.x, the PointSource is limited to a single
character unless the SDK is being used.

/s

Optional

The /s parameter enable screen logging.

/sio

Optional

The /sio parameter stands for “suppress initial outputs.” The

parameter applies only for interfaces that support outputs. If the
/sio parameter is not specified, the interface will behave in the

following manner.

When the interface is started, the interface determines the current
Snapshot value of each output tag. Next, the interface writes this
value to each output tag. In addition, whenever an individual output
tag is edited while the interface is running, the interface will write
the current Snapshot value to the edited output tag.

This behavior is suppressed if the /sio parameter is specified on

the command-line. That is, outputs will not be written when the
interface starts or when an output tag is edited. In other words,
when the /sio parameter is specified, outputs will only be written

when they are explicitly triggered.

PI Interface for Metso maxDNA 39

Parameter Description

/stopstat=digstate

or

/stopstat

/stopstat only is

equivalent to

/stopstat="Intf

Shut"

Optional

Default = no digital state
written at shutdown.

If /stopstat=digstate is present on the command line, then

the digital state, digstate, will be written to each PI point when

the interface is stopped. For a PI3 Server, digstate must be in

the system digital state table. . UniInt will use the first occurrence of

digstate found in the table.

If the /stopstat parameter is present on the startup command

line, then the digital state Intf Shut will be written to each PI

point when the interface is stopped.

If neither /stopstat nor /stopstat=digstate is specified

on the command line, then no digital states will be written when the
interface is shut down.

Note: The /stopstat parameter is disabled if the

interface is running in a UniInt failover configuration as
defined in the UniInt Failover Configuration chapter of this
manual. Therefore, the digital state, digstate, will not be
written to each PI point when the interface is stopped. This
prevents the digital state being written to PI points while a
redundant system is also writing data to the same PI points.
The /stopstat parameter is disabled even if there is only

one interface active in the failover configuration.

Examples:

/stopstat=shutdown

/stopstat="Intf Shut"

The entire digstate value must be enclosed within double quotes
when there is a space in digstate.

/subchk=x

default: 30 seconds

Specifies the amount of time (in seconds) the interface should wait
between unsuccessful subscription attempts. Setting this too low
will cause unnecessary network traffic and will use more processor
time.

/UFO_ID=#

Required for UniInt
Failover Phase 1 or 2

Failover ID. This value must be different from the Failover ID of the
other interface in the failover pair. It can be any positive, non-zero
integer.

/UFO_Interval=#

Optional

Default: 1000 for

Phase 1 Failover

Default: 5000 for Phase 2

Failover

Valid values are 50-20000.

Failover Update Interval

Specifies the heartbeat Update Interval in milliseconds and must
be the same on both interface computers.

This is the rate at which UniInt updates the Failover Heartbeat tags
as well as how often UniInt checks on the status of the other copy
of the interface.

/UFO_OtherID=#

Required for UniInt
Failover Phase 1 or 2

Other Failover ID. This value must be equal to the Failover ID
configured for the other interface in the failover pair.

Startup Command File

40

Parameter Description

/UFO_Sync=path/[fi

lename]

Required for UniInt
Failover Phase 2
synchronization.

Any valid pathname / any
valid filename

The default filename is
generated as
executablename_pointsour
ce_interfaceID.dat

The Failover File Synchronization file path and optional filename

specify the path to the shared file used for failover synchronization
and an optional filename used to specify a user defined filename in
lieu of the default filename.

The path to the shared file directory can be a fully qualified
machine name and directory, a mapped drive letter, or a local path
if the shared file is on one of the interface nodes. The path must be

terminated by a slash (/) or backslash (\) character. If no d

terminating slash is found, in the /UFO_Sync parameter, the

interface interprets the final character string as an optional
filename.

The optional filename can be any valid filename. If the file does not
exist, the first interface to start attempts to create the file.

Note: If using the optional filename, do not supply a terminating
slash or backslash character.

If there are any spaces in the path or filename, the entire path and
filename must be enclosed in quotes.

Note: If you use the backslash and path separators and enclose

the path in double quotes, the final backslash must be a double

backslash (\\). Otherwise the closing double quote becomes part

of the parameter instead of a parameter separator.

Each node in the failover configuration must specify the same path
and filename and must have read, write, and file creation rights to
the shared directory specified by the path parameter.

The service that the interface runs against must specify a valid
logon user account under the “Log On” tab for the service
properties.

/UFO_Type=type

Required for UniInt
Failover Phase 2.

The Failover Type indicates which type of failover configuration the
interface will run. The valid types for failover are HOT, WARM, and
COLD configurations.

If an interface does not supported the requested type of failover,

the interface will shut down and log an error to the pipc.log file

stating the requested failover type is not supported.

/uht_id=#

Optional

Required if any type of
failover other than UniInt
Failover Phase 1 or 2 is
supported.

The /uht_id=# command-line parameter is used to specify a

unique ID for interfaces that are run in a redundant mode without
using the UniInt failover mechanism. There are several OSIsoft
interfaces that are UniInt based and implement their own version of
failover. In order for health tag(s) to be configured to monitor a
single copy of the Interface, an additional parameter is required. If
the /uht_id=# is specified; only health tags with a Location3

value equal to # will be loaded.

PI Interface for Metso maxDNA 41

Sample PIMax.bat File

The following is an example file:

REM===

REM

REM PIMax.bat

REM

REM Sample startup file for the PI Interface for Metso maxDna

REM

REM===

REM

REM OSIsoft strongly recommends using PI ICU to modify startup files.

REM

REM Sample command line

REM

 .\PIMax.exe ^

 /PS=M ^

 /host=localhost:5450 ^

 /ID=1 ^

 /maxstoptime=120 ^

 /sio

REM

REM End of PIMax.bat File

PI Interface for Metso maxDNA 43

Chapter 9. UniInt Failover Configuration

Introduction

To minimize data loss during a single point of failure within a system, UniInt provides two

failover schemes: (1) synchronization through the data source and (2) synchronization

through a shared file. Synchronization through the data source is Phase 1, and

synchronization through a shared file is Phase 2.

Phase 1 UniInt Failover uses the data source itself to synchronize failover operations and

provides a hot failover, no data loss solution when a single point of failure occurs. For this

option, the data source must be able to communicate with and provide data for two interfaces

simultaneously. Additionally, the failover configuration requires the interface to support

outputs.

Phase 2 UniInt Failover uses a shared file to synchronize failover operations and provides for

hot, warm, or cold failover. The Phase 2 hot failover configuration provides a no data loss

solution for a single point of failure similar to Phase 1. However, in warm and cold failover

configurations, you can expect a small period of data loss during a single point of failure

transition.

Note: This interface supports only Phase 2 failover.

You can also configure UniInt failover to send data to a High Availability (HA) PI Server

collective. The collective provides redundant PI Servers to allow for the uninterrupted

collection and presentation of PI time series data. In an HA configuration, PI Servers can be

taken down for maintenance or repair. The HA PI Server collective is described in the High

Availability Administrator Guide.

When configured for UniInt failover, the interface routes all PI data through a state machine.

The state machine determines whether to queue data or send it directly to PI depending on the

current state of the interface. When the interface is in the active state, data sent through the

interface gets routed directly to PI. In the backup state, data from the interface gets queued

for a short period. Queued data in the backup interface ensures a no-data loss failover under

normal circumstances for Phase 1 and for the hot failover configuration of Phase 2. The same

algorithm of queuing events while in backup is used for output data.

UniInt Failover Configuration

44

Quick Overview

The Quick Overview below may be used to configure this interface for failover. The failover

configuration requires the two copies of the interface participating in failover be installed on

different nodes. Users should verify non-failover interface operation as discussed in the

Installation Checklist chapter of this manual prior to configuring the interface for failover

operations. If you are not familiar with UniInt failover configuration, return to this section

after reading the rest of the UniInt Failover Configuration chapter in detail. If a failure occurs

at any step below, correct the error and start again at the beginning of step 6 Test in the table

below. For the discussion below, the first copy of the interface configured and tested will be

considered the primary interface and the second copy of the interface configured will be the

backup interface.

Configuration

 One Data Source

 Two Interfaces

Prerequisites

 Interface 1 is the primary interface for collection of PI data from the data source.

 Interface 2 is the backup interface for collection of PI data from the data source.

 You must setup a shared file if using Phase 2 failover..

 Phase 2: The shared file must store data for five failover tags:

 (1) Active ID.

 (2) Heartbeat 1.

 (3) Heartbeat 2.

 (4) Device Status 1.

 (5) Device Status 2.

 Each interface must be configured with two required failover command line

parameters: (1) its FailoverID number (/UFO_ID); (2) the FailoverID number of its

backup interface (/UFO_OtherID). You must also specify the name of the PI Server

host for exceptions and PI tag updates.

 All other configuration parameters for the two interfaces must be identical.

PI Interface for Metso maxDNA 45

Synchronization through a Shared File (Phase 2)

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

Figure : Synchronization through a Shared File (Phase 2) Failover Architecture

The Phase 2 failover architecture is shown in Figure 2 which depicts a typical network setup

including the path to the synchronization file located on a File Server (FileSvr). Other

configurations may be supported and this figure is used only as an example for the following

discussion.

For a more detailed explanation of this synchronization method, see Detailed Explanation of

Synchronization through a Shared File (Phase 2)

UniInt Failover Configuration

46

Configuring Synchronization through a Shared File (Phase 2)

Step Description

1. Verify non-failover interface operation as described in the Installation Checklist section of
this manual

2. Configure the Shared File

Choose a location for the shared file. The file can reside on one of the interface nodes or
on a separate node from the interfaces; however OSIsoft strongly recommends that you
put the file on a Windows Server platform that has the “File Server” role configured. .

Setup a file share and make sure to assign the permissions so that both primary and
backup interfaces have read/write access to the file.

3. Configure the interface parameters

Use the Failover section of the interface Configuration Utility (ICU) to enable failover and
create two parameters for each interface: (1) a Failover ID number for the interface; and
(2) the Failover ID number for its backup interface.

The Failover ID for each interface must be unique and each interface must know the
Failover ID of its backup interface.

If the interface can perform using either Phase 1 or Phase 2 pick the Phase 2 radio button
in the ICU.

Select the synchronization File Path and File to use for Failover.

Select the type of failover required (Cold, Warm, Hot). The choice depends on what types
of failover the interface supports.

Ensure that the user name assigned in the “Log on as:” parameter in the Service section
of the ICU is a user that has read/write access to the folder where the shared file will
reside.

All other command line parameters for the primary and secondary interfaces must be
identical.

If you use a PI Collective, you must point the primary and secondary interfaces to different
members of the collective by setting the SDK Member under the PI Host Information
section of the ICU.

[Option] Set the update rate for the heartbeat point if you need a value other than the
default of 5000 milliseconds.

4. Configure the PI tags

Configure five PI tags for the interface: the Active ID, Heartbeat 1, Heartbeat2, Device
Status 1 and Device Status 2. You can also configure two state tags for monitoring the
status of the interfaces.

Do not confuse the failover Device status tags with the UniInt Health Device Status tags.
The information in the two tags is similar, but the failover device status tags are integer
values and the health device status tags are string values.

Tag ExDesc digitalset

UniInt does not
examine the
remaining attributes,
but the PointSource
and Location1 must
match.

ActiveID [UFO2_ACTIVEID]

IF1_Heartbeat

(IF-Node1) [UFO2_HEARTBEAT:#]

IF2_Heartbeat

(IF-Node2) [UFO2_HEARTBEAT:#]

IF1_DeviceStatus

(IF-Node1) [UFO2_DEVICESTAT:#]

IF2_DeviceStatus

(IF-Node2) [UFO2_DEVICESTAT:#]

IF1_State

(IF-Node1) [UFO2_STATE:#] IF_State

IF2_State

(IF-Node2) [UFO2_STATE:#] IF_State

PI Interface for Metso maxDNA 47

Step Description

5. Test the configuration.

After configuring the shared file and the interface and PI tags, the interface should be
ready to run.

See Troubleshooting UniInt Failover for help resolving Failover issues.

1. Start the primary interface interactively without buffering.

2. Verify a successful interface start by reviewing the pipc.log file. The log file will

contain messages that indicate the failover state of the interface. A successful start
with only a single interface copy running will be indicated by an informational

message stating “UniInt failover: Interface in the “Primary”

state and actively sending data to PI. Backup interface

not available.” If the interface has failed to start, an error message will appear

in the log file. For details relating to informational and error messages, refer to the
Messages section below.

3. Verify data on the PI Server using available PI tools.

 The Active ID control tag on the PI Server must be set to the value of
the running copy of the interface as defined by the /UFO_ID startup

command-line parameter.

 The Heartbeat control tag on the PI Server must be changing values at
a rate specified by the /UFO_Interval startup command-line

parameter.

4. Stop the primary interface.

5. Start the backup interface interactively without buffering. Notice that this copy will
become the primary because the other copy is stopped.

6. Repeat steps 2, 3, and 4.

7. Stop the backup interface.

8. Start buffering.

9. Start the primary interface interactively.

10. Once the primary interface has successfully started and is collecting data, start the
backup interface interactively.

11. Verify that both copies of the interface are running in a failover configuration.

 Review the pipc.log file for the copy of the interface that was started

first. The log file will contain messages that indicate the failover state of
the interface. The state of this interface must have changed as

indicated with an informational message stating “UniInt failover:
Interface in the “Primary” state and actively sending

data to PI. Backup interface available.” If the interface

has not changed to this state, browse the log file for error messages.
For details relating to informational and error messages, refer to the
Messages section below.

 Review the pipc.log file for the copy of the interface that was started

last. The log file will contain messages that indicate the failover state of
the interface. A successful start of the interface will be indicated by an

informational message stating “UniInt failover: Interface in

the “Backup” state.” If the interface has failed to start, an error

message will appear in the log file. For details relating to informational
and error messages, refer to the Messages section below.

12. Verify data on the PI Server using available PI tools.

 The Active ID control tag on the PI Server must be set to the value of
the running copy of the interface that was started first as defined by the
/UFO_ID startup command-line parameter.

 The Heartbeat control tags for both copies of the interface on the PI

UniInt Failover Configuration

48

Step Description

Server must be changing values at a rate specified by the
/UFO_Interval startup command-line parameter or the scan class

which the points have been built against.

13. Test Failover by stopping the primary interface.

14. Verify the backup interface has assumed the role of primary by searching the

pipc.log file for a message indicating the backup interface has changed to the

“UniInt failover: Interface in the “Primary” state and

actively sending data to PI. Backup interface not

available.” The backup interface is now considered primary and the previous

primary interface is now backup.

15. Verify no loss of data in PI. There may be an overlap of data due to the queuing of
data. However, there must be no data loss.

16. Start the backup interface. Once the primary interface detects a backup interface, the

primary interface will now change state indicating “UniInt failover:

Interface in the “Primary” state and actively sending

data to PI. Backup interface available.” In the pipc.log file.

17. Verify the backup interface starts and assumes the role of backup. A successful start
of the backup interface will be indicated by an informational message stating

“UniInt failover: Interface in “Backup state.” Since this is the

initial state of the interface, the informational message will be near the beginning of

the start sequence of the pipc.log file.

18. Test failover with different failure scenarios (e.g. loss of PI connection for a single
interface copy). UniInt failover guarantees no data loss with a single point of failure.
Verify no data loss by checking the data in PI and on the data source.

19. Stop both copies of the interface, start buffering, start each interface as a service.

20. Verify data as stated above.

21. To designate a specific interface as primary. Set the Active ID point on the Data

Source Server of the desired primary interface as defined by the /UFO_ID startup

command-line parameter.

PI Interface for Metso maxDNA 49

Configuring UniInt Failover through a Shared File (Phase 2)

Start-Up Parameters

Note: The /stopstat parameter is disabled if the interface is running in a UniInt

failover configuration. Therefore, the digital state, digstate, will not be written to

each PI Point when the interface is stopped. This prevents the digital state being
written to PI Points while a redundant system is also writing data to the same PI
Points. The /stopstat parameter is disabled even if there is only one interface

active in the failover configuration.

The following table lists the start-up parameters used by UniInt Failover Phase 2. All of the

parameters are required except the /UFO_Interval startup parameter. See the table below

for further explanation.

Parameter Required/
Optional

Description Value/Default

/UFO_ID=# Required Failover ID for IF-Node1

This value must be different from
the failover ID of IF-Node2.

Any positive, non-
zero integer / 1

Required Failover ID for IF-Node2

This value must be different from
the failover ID of IF-Node1.

Any positive, non-
zero integer / 2

/UFO_OtherID=# Required Other Failover ID for IF-Node1

The value must be equal to the
Failover ID configured for the
interface on IF-Node2.

Same value as
Failover ID for
IF-Node2 / 2

Required Other Failover ID for IF-Node2

The value must be equal to the
Failover ID configured for the
interface on IF-Node1.

Same value as
Failover ID for
IF-Node1 / 1

/UFO_Sync=

path/[filename]

Required for
Phase 2
synchronization

The Failover File Synchronization
file path and optional filename

specify the path to the shared file
used for failover synchronization
and an optional filename used to
specify a user defined filename in
lieu of the default filename.

The path to the shared file
directory can be a fully qualified
machine name and directory, a
mapped drive letter, or a local path
if the shared file is on one of the
interface nodes. The path must be

terminated by a slash (/) or

backslash (\) character. If no

terminating slash is found, in the
/UFO_Sync parameter, the

interface interprets the final
character string as an optional
filename.

The optional filename can be any
valid filename. If the file does not

Any valid pathname /
any valid filename

The default filename
is generated as
executablename_

pointsource_

interfaceID.dat

UniInt Failover Configuration

50

Parameter Required/
Optional

Description Value/Default

exist, the first interface to start
attempts to create the file.

Note: If using the optional
filename, do not supply a

terminating slash or backslash
character.

If there are any spaces in the path
or filename, the entire path and
filename must be enclosed in
quotes.

Note: If you use the backslash

and path separators and enclose
the path in double quotes, the final
backslash must be a double

backslash (\\). Otherwise the

closing double quote becomes
part of the parameter instead of a
parameter separator.

Each node in the failover
configuration must specify the
same path and filename and must
have read, write, and file creation
rights to the shared directory
specified by the path parameter.

The service that the interface runs
against must specify a valid logon
user account under the “Log On”
tab for the service properties.

/UFO_Type=type Required The Failover Type indicates which
type of failover configuration the
interface will run. The valid types
for failover are HOT, WARM, and
COLD configurations.

If an interface does not supported
the requested type of failover, the
interface will shutdown and log an

error to the pipc.log file stating

the requested failover type is not
supported.

COLD|WARM|HOT /
COLD

/UFO_Interval=# Optional Failover Update Interval

Specifies the heartbeat Update
Interval in milliseconds and must
be the same on both interface
computers.

This is the rate at which UniInt
updates the Failover Heartbeat
tags as well as how often UniInt
checks on the status of the other
copy of the interface.

50 – 20000 / 5000

PI Interface for Metso maxDNA 51

Parameter Required/
Optional

Description Value/Default

/Host=server Required Host PI Server for exceptions and
PI point updates

The value of the /Host startup

parameter depends on the
PI Server configuration. If the
PI Server is not part of a collective,
the value of /Host must be

identical on both interface
computers.

If the redundant interfaces are
being configured to send data to a
PI Server collective, the value of
the /Host parameters on the

different interface nodes should
equal to different members of the
collective.

This parameter ensures that
outputs continue to be sent to the
data source if one of the
PI Servers becomes unavailable
for any reason.

For IF-Node1

PrimaryPI / None

For IF-Node2

SecondaryPI / None

Failover Control Points

The following table describes the points that are required to manage failover. In Phase 2

Failover, these points are located in a data file shared by the primary and backup interfaces.

OSIsoft recommends that you locate the shared file on a dedicated server that has no other

role in data collection. This avoids potential resource contention and processing degradation

if your system monitors a large number of data points at a high frequency.

Point Description Value / Default

ActiveID Monitored by the interfaces to determine which
interface is currently sending data to PI.
ActiveID must be initialized so that when the

interfaces read it for the first time, it is not an
error.

ActiveID can also be used to force failover. For

example, if the current primary is IF-Node 1 and
ActiveID is 1, you can manually change
ActiveID to 2. This causes the interface at IF-

Node2 to transition to the primary role and the
interface at IF-Node1 to transition to the backup
role.

From 0 to the highest
interface Failover ID
number / None)

Updated by the
redundant interfaces

Can be changed
manually to initiate a
manual failover

Heartbeat 1 Updated periodically by the interface on
IF-Node1. The interface on IF-Node2 monitors
this value to determine if the interface on
IF-Node1 has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node1

Heartbeat 2 Updated periodically by the interface on IF-
Node2. The interface on IF-Node1 monitors this
value to determine if the interface on IF-Node2
has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node2

UniInt Failover Configuration

52

PI Tags

The following tables list the required UniInt Failover Control PI tags, the values they will

receive, and descriptions.

Active_ID Tag Configuration

Attributes ActiveID

Tag <Intf>_ActiveID

CompMax 0

ExDesc [UFO2_ActiveID]

Location1 Match # in /id=#

Location5 Optional, Time in min to wait for backup
to collect data before failing over.

PointSource Match x in /ps=x

PointType Int32

Shutdown 0

Step 1

Heartbeat and Device Status Tag Configuration

Attribute Heartbeat 1 Heartbeat 2 DeviceStatus 1 DeviceStatus 2

Tag <HB1> <HB2> <DS1> <DS2>

ExDesc

[UFO2_Heartbeat:#]

Match # in
/UFO_ID=#

[UFO2_Heartbeat:#]

Match # in
/UFO_OtherID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_ID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_OtherID=#

Location1
Match # in /id=#

Match # in

/id=#
Match # in /id=# Match # in /id=#

Location5 Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Point
Source

Match x in /ps=x Match x in /ps=x Match x in /ps=x Match x in /ps=x

PointType int32 int32 int32 int32

Shutdown 0 0 0 0

Step 1 1 1 1

Interface State Tag Configuration

Attribute Primary Backup

Tag <Tagname1> <Tagname2>

CompMax 0 0

DigitalSet UFO_State UFO_State

ExDesc [UFO2_State:#]

(Match /UFO_ID=# on primary node)

[UFO2_State:#]

(Match /UFO_ID=# on backup node)

Location1 Match # in /id=# Same as for primary node

PointSource Match x in /ps=x Same as for primary node

PI Interface for Metso maxDNA 53

Attribute Primary Backup

PointType digital digital

Shutdown 0 0

Step 1 1

The following table describes the extended descriptor for the above PI tags in more detail.

PI Tag ExDesc Required /
Optional

Description Value

 [UFO2_ACTIVEID] Required Active ID tag

The ExDesc must start with the
case sensitive string:
[UFO2_ACTIVEID].

The PointSource must match the
interfaces’ Pointsource.

Location1 must match the ID for the
interfaces.

Location5 is the COLD failover retry
interval in minutes. This can be
used to specify how long before an
interface retries to connect to the
device in a COLD failover
configuration. (See the description
of COLD failover retry interval for a
detailed explanation.)

0 – highest
Interface Failover
ID

Updated by the
redundant
interfaces

 [UFO2_HEARTBEAT:#]

(IF-Node1)

Required Heartbeat 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_HEARTBEAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node1.

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

0 – 31 / None

Updated by the
interface on
IF-Node1

 [UFO2_HEARTBEAT:#]

(IF-Node2)

Required Heartbeat 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_HEARTBEAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2.

The pointsource must match the
interfaces’ point source.

Location1 must match the id for the
interfaces.

0 – 31 / None

Updated by the
interface on
IF-Node2

UniInt Failover Configuration

54

PI Tag ExDesc Required /
Optional

Description Value

 [UFO2_DEVICESTAT:#]

(IF-Node1)

Required Device Status 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_DEVICESTAT:#]

The value following the colon (:)
must be the Failover ID for the
interface running on IF-Node1

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

The failover 1 device status tag is
very similar to the UniInt Health
Device Status tag except the data
written to this tag are integer
values. A value of 0 is good and a
value of 99 is OFF. Any value
between these two extremes may
result in a failover. The interface
client code updates these values
when the health device status tag is
updated.

0 – 99 / None

Updated by the
interface on
IF-Node1

 [UFO2_DEVICESTAT:#]

(IF-Node2)

Required Device Status 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_DEVICESTAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

0 – 99 / None

Updated by the
interface on
IF-Node2

 [UFO2_STATE:#]

(IF-Node1)

Optional State 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_STATE:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node1

The failover state tag is
recommended.

The failover state tags are digital
tags assigned to a digital state set
with the following values.

0 = Off: The interface has been
shut down.

1 = Backup No Data Source: The

0 – 5 / None

Normally updated
by the interface
currently in the
primary role.

PI Interface for Metso maxDNA 55

PI Tag ExDesc Required /
Optional

Description Value

interface is running but cannot
communicate with the data source.

2 = Backup No PI Connection: The
interface is running and connected
to the data source but has lost its
communication to the PI Server.

3 = Backup: The interface is
running and collecting data
normally and is ready to take over
as primary if the primary interface
shuts down or experiences
problems.

4 = Transition: The interface stays
in this state for only a short period
of time. The transition period
prevents thrashing when more than
one interface attempts to assume
the role of primary interface.

5 = Primary: The interface is
running, collecting data and
sending the data to PI.

 [UFO2_STATE:#]

(IF-Node2)

Optional State 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_STATE:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2

The failover state tag is
recommended.

Normally updated
by the interface
currently in the
Primary state.

Values range
between 0 and 5.
See description of
State 1 tag.

UniInt Failover Configuration

56

Detailed Explanation of Synchronization through a Shared File
(Phase 2)

In a shared file failover configuration, there is no direct failover control information passed

between the data source and the interface. This failover scheme uses five PI tags to control

failover operation, and all failover communication between primary and backup interfaces

passes through a shared data file.

Once the interface is configured and running, the ability to read or write to the PI tags is not

required for the proper operation of failover. This solution does not require a connection to

the PI Server after initial startup because the control point data are set and monitored in the

shared file. However, the PI tag values are sent to the PI Server so that you can monitor them

with standard OSIsoft client tools.

You can force manual failover by changing the ActiveID on the data source to the backup

failover ID.

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

The figure above shows a typical network setup in the normal or steady state. The solid

magenta lines show the data path from the interface nodes to the shared file used for failover

synchronization. The shared file can be located anywhere in the network as long as both

interface nodes can read, write, and create the necessary file on the shared file machine.

OSIsoft strongly recommends that you put the file on a dedicated file server that has no other

role in the collection of data.

The major difference between synchronizing the interfaces through the data source (Phase 1)

and synchronizing the interfaces through the shared file (Phase 2) is where the control data is

located. When synchronizing through the data source, the control data is acquired directly

from the data source. We assume that if the primary interface cannot read the failover control

PI Interface for Metso maxDNA 57

points, then it cannot read any other data. There is no need for a backup communications path

between the control data and the interface.

When synchronizing through a shared file, however, we cannot assume that loss of control

information from the shared file implies that the primary interface is down. We must account

for the possible loss of the path to the shared file itself and provide an alternate control path

to determine the status of the primary interface. For this reason, if the shared file is

unreachable for any reason, the interfaces use the PI Server as an alternate path to pass

control data.

When the backup interface does not receive updates from the shared file, it cannot tell

definitively why the primary is not updating the file, whether the path to the shared file is

down, whether the path to the data source is down, or whether the interface itself is having

problems. To resolve this uncertainty, the backup interface uses the path to the PI Server to

determine the status of the primary interface. If the primary interface is still communicating

with the PI Server, than failover to the backup is not required. However, if the primary

interface is not posting data to the PI Server, then the backup must initiate failover operations.

The primary interface also monitors the connection with the shared file to maintain the

integrity of the failover configuration. If the primary interface can read and write to the

shared file with no errors but the backup control information is not changing, then the backup

is experiencing some error condition. To determine exactly where the problem exists, the

primary interface uses the path to PI to establish the status of the backup interface. For

example, if the backup interface controls indicate that it has been shutdown, it may have been

restarted and is now experiencing errors reading and writing to the shared file. Both primary

and backup interfaces must always check their status through PI to determine if one or the

other is not updating the shared file and why.

Steady State Operation

Steady state operation is considered the normal operating condition. In this state, the primary

interface is actively collecting data and sending its data to PI. The primary interface is also

updating its heartbeat value; monitoring the heartbeat value for the backup interface,

checking the active ID value, and checking the device status for the backup interface every

failover update interval on the shared file. Likewise, the backup interface is updating its

heartbeat value; monitoring the heartbeat value for the primary interface, checking the active

ID value, and checking the device status for the primary interface every failover update

interval on the shared file. As long as the heartbeat value for the primary interface indicates

that it is operating properly, the ActiveID has not changed, and the device status on the

primary interface is good, the backup interface will continue in this mode of operation.

An interface configured for hot failover will have the backup interface actively collecting and

queuing data but not sending that data to PI. An interface for warm failover in the backup role

is not actively collecting data from the data source even though it may be configured with PI

tags and may even have a good connection to the data source. An interface configured for

cold failover in the backup role is not connected to the data source and upon initial startup

will not have configured PI tags.

The interaction between the interface and the shared file is fundamental to failover. The

discussion that follows only refers to the data written to the shared file. However, every value

written to the shared file is echoed to the tags on the PI Server. Updating of the tags on the

PI Server is assumed to take place unless communication with the PI Server is interrupted.

The updates to the PI Server will be buffered by bufserv or BufSS in this case.

UniInt Failover Configuration

58

In a hot failover configuration, each interface participating in the failover solution will queue

three failover intervals worth of data to prevent any data loss. When a failover occurs, there

may be a period of overlapping data for up to 3 intervals. The exact amount of overlap is

determined by the timing and the cause of the failover and may be different every time. Using

the default update interval of 5 seconds will result in overlapping data between 0 and 15

seconds. The no data loss claim for hot failover is based on a single point of failure. If both

interfaces have trouble collecting data for the same period of time, data will be lost during

that time.

As mentioned above, each interface has its own heartbeat value. In normal operation, the

Heartbeat value on the shared file is incremented by UniInt from 1 – 15 and then wraps

around to a value of 1 again. UniInt increments the heartbeat value on the shared file every

failover update interval. The default failover update interval is 5 seconds. UniInt also reads

the heartbeat value for the other interface copy participating in failover every failover update

interval. If the connection to the PI Server is lost, the value of the heartbeat will be

incremented from 17 – 31 and then wrap around to a value of 17 again. Once the connection

to the PI Server is restored, the heartbeat values will revert back to the 1 – 15 range. During a

normal shutdown process, the heartbeat value will be set to zero.

During steady state, the ActiveID will equal the value of the failover ID of the primary

interface. This value is set by UniInt when the interface enters the primary state and is not

updated again by the primary interface until it shuts down gracefully. During shutdown, the

primary interface will set the ActiveID to zero before shutting down. The backup interface

has the ability to assume control as primary even if the current primary is not experiencing

problems. This can be accomplished by setting the ActiveID tag on the PI Server to the

ActiveID of the desired interface copy.

As previously mentioned, in a hot failover configuration the backup interface actively collects

data but does not send its data to PI. To eliminate any data loss during a failover, the backup

interface queues data in memory for three failover update intervals. The data in the queue is

continuously updated to contain the most recent data. Data older than three update intervals is

discarded if the primary interface is in a good status as determined by the backup. If the

backup interface transitions to the primary, it will have data in its queue to send to PI. This

queued data is sent to PI using the same function calls that would have been used had the

interface been in a primary state when the function call was received from UniInt. If UniInt

receives data without a timestamp, the primary copy uses the current PI time to timestamp

data sent to PI. Likewise, the backup copy timestamps data it receives without a timestamp

with the current PI time before queuing its data. This preserves the accuracy of the

timestamps.

PI Interface for Metso maxDNA 59

Failover Configuration Using PI ICU

The use of the PI ICU is the recommended and safest method for configuring the interface for

UniInt failover. With the exception of the notes described in this section, the interface shall

be configured with the PI ICU as described in the Configuring the Interface with PI ICU

section of this manual.

Note: With the exception of the /UFO_ID and /UFO_OtherID startup command-

line parameters, the UniInt failover scheme requires that both copies of the interface
have identical startup command files. This requirement causes the PI ICU to
produce a message when creating the second copy of the interface stating that the
“PS/ID combo already in use by the interface” as shown in Figure below. Ignore this
message and click the Add button.

Create the Interface Instance with PI ICU

If the interface does not already exist in the ICU it must first be created. The procedure for

doing this is the same as for non-failover interfaces. When configuring the second instance

for UniInt Failover the Point Source and Interface ID # boxes will be in yellow and a

message will be displayed saying this is already in use. This should be ignored.

Figure : PI ICU configuration screen shows that the “PS/ID combo is already in use by

the interface.” The user must ignore the yellow boxes, which indicate errors, and click the

Add button to configure the interface for failover.

Configuring the UniInt Failover Startup Parameters with PI ICU

There are three interface startup parameters that control UniInt failover: /UFO_ID,

/UFO_OtherID, and /UFO_Interval. The UFO stands for UniInt Failover. The /UFO_ID

UniInt Failover Configuration

60

and /UFO_OtherID parameters are required for the interface to operate in a failover

configuration, but the /UFO_Interval is optional. Each of these parameters is described in

detail in Configuring UniInt Failover through a Shared File (Phase 2) section and Start-Up

Parameters

Figure : The figure above illustrates the PI ICU failover configuration screen showing the

UniInt failover startup parameters (Phase 2). This copy of the interface defines its

Failover ID as 2 (/UFO_ID=2) and the other Interfaces Failover ID as 1

(/UFO_OtherID=1). The other failover interface copy must define its Failover ID as 1

(/UFO_ID=1) and the other Interface Failover ID as 2 (/UFO_OtherID=2) in its ICU

failover configuration screen. It also defines the location and name of the

synchronization file as well as the type of failover as COLD.

Creating the Failover State Digital State Set

The UFO_State digital state set is used in conjunction with the failover state digital tag. If

the UFO_State digital state set has not been created yet, it can be created using either the

Failover page of the ICU (1.4.1.0 or greater) or the Digital States plug-in in the SMT 3

Utility (3.0.0.7 or greater).

Using the PI ICU Utility to create Digital State Set

To use the UniInt Failover page to create the UFO_State digital state set, right-click on any

of the failover tags in the tag list and then click the Create UFO_State Digital Set on Server

PI Interface for Metso maxDNA 61

XXXXXX… command, where XXXXXX is the PI Server where the points will be or are

created.

This command will be unavailable if the UFO_State digital state set already exists on the

XXXXXX PI Server.

Using the PI SMT 3 Utility to create Digital State Set

Optionally the Export UFO_State Digital Set (.csv) command on the shortcut menu can be

selected to create a comma-separated file to be imported via the System Management Tools

(SMT3) (version 3.0.0.7 or higher) or use the

UniInt_Failover_DigitalSet_UFO_State.csv file included in the installation kit.

The procedure below outlines the steps necessary to create a digital set on a PI Server using

the Import from File command found in the SMT3 application. The procedure assumes the

user has a basic understanding of the SMT3 application.

1. Open the SMT3 application.

2. Select the appropriate PI Server from the PI Servers window. If the desired server is

not listed, add it using the PI Connection Manager. A view of the SMT application is

shown in Figure below.

3. From the System Management Plug-Ins window, expand Points then select

Digital States. A list of available digital state sets will be displayed in the main

window for the selected PI Server. Refer to Figure below.

4. In the main window, right-click on the desired server and select the Import from File

command. Refer to Figure below.

UniInt Failover Configuration

62

Figure : PI SMT application configured to import a digital state set file. The PI Servers

window shows the “localhost” PI Server selected along with the System Management

Plug-Ins window showing the Digital States Plug-In as being selected. The digital state

set file can now be imported by selecting the Import from File command.

5. Navigate to and select the UniInt_Failover_DigitalSet_UFO_State.csv file

for import using the Browse icon on the display. Select the desired Overwrite

Options. Refer to Figure below.

Figure : PI SMT application Import Digital Set(s) window. This view shows the

UniInt_Failover_DigitalSet_UFO_State.csv file as being selected for import.

Select the desired Overwrite Options by choosing the appropriate option button.

6. Click on the OK button. Refer to Figure above.

7. The UFO_State digital set is created as shown in Figure below.

PI Interface for Metso maxDNA 63

Figure : The PI SMT application showing the UFO_State digital set created on the

“localhost” PI Server.

UniInt Failover Configuration

64

Creating the UniInt Failover Control and Failover State Tags (Phase 2)

The ICU can be used to create the UniInt Failover Control and State Tags.

To use the ICU Failover page to create these tags simply right click any of the failover tags in

the tag list and click the Create all points (UFO Phase 2) command.

If this menu choice is unavailable, it is because the UFO_State digital state set has not been

created on the PI Server yet. Create UFO_State Digital Set on Server xxxxxxx… on the

shortcut menu can be used to create that digital state set. After this has been done then the

Create all points (UFO Phase2) command should be available.

Once the failover control and failover state tags have been created the Failover page of the

ICU should look similar to the illustration below.

PI Interface for Metso maxDNA 65

Chapter 10. Interface Node Clock

Windows

Make sure that the time and time zone settings on the computer are correct. To confirm, run

the Date/Time applet located in the Windows Control Panel. If the locale where the interface

node resides observes Daylight Saving Time, check the Automatically adjust clock for

daylight saving changes box. For example,

In addition, make sure that the TZ environment variable is not defined. All of the currently

defined environment variables can be viewed by opening a Command Prompt window and

typing set. That is,

C:> set

Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control

Panel, click the Environment Variables button under the Advanced tab, and remove TZ from

the list of environment variables.

PI Interface for Metso maxDNA 67

Chapter 11. Security

The PI Firewall Database and the PI Proxy Database must be configured so that the interface

is allowed to write data to the PI Server. See “Modifying the Firewall Database” and

“Modifying the Proxy Database” in the PI Server manuals.

Note that the Trust Database, which is maintained by the Base Subsystem, replaces the Proxy

Database used prior to PI version 3.3. The Trust Database maintains all the functionality of

the proxy mechanism while being more secure.

See “Trust Login Security” in the chapter “Managing Security” of the PI Server System

Management Guide.

If the interface cannot write data to the PI Server because it has insufficient privileges,

a -10401 error will be reported in the pipc.log file. If the interface cannot send data to a

PI2 Server, it writes a -999 error. See the section Appendix A: Error and Informational

Messages for additional information on error messaging.

PI Server v3.3 and Higher

Security configuration using piconfig

For PI Server v3.3 and higher, the following example demonstrates how to edit the PI Trust

table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust,IPAddr,NetMask,PIUser

a_trust_name,192.168.100.11,255.255.255.255,piadmin

@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,

a_trust_name

IPAddr: the IP Address of the computer running the interface; in the above example,

192.168.100.11

NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr

PIUser: the PI user the interface to be entrusted as; piadmin is usually an appropriate user

Security Configuring using Trust Editor

The Trust Editor plug-in for PI System Management Tools 3.x may also be used to edit the PI

Trust table.

Security

68

See the PI System Management chapter in the PI Server manual for more details on security

configuration.

PI Server v3.2

For PI Server v3.2, the following example demonstrates how to edit the PI Proxy table:

C:\PI\adm> piconfig

@table pi_gen,piproxy

@mode create

@istr host,proxyaccount

piapimachine,piadmin

@quit

In place of piapimachine, put the name of the interface node as it is seen by the PI Server.

PI Interface for Metso maxDNA 69

Chapter 12. Starting / Stopping the Interface on
Windows

This section describes starting and stopping the interface once it has been installed as a

service. See the UniInt Interface User Manual to run the interface interactively.

Starting Interface as a Service

If the interface was installed as service, it can be started from PI ICU, the Services control

panel or with the command:

PIMax.exe /start

To start the interface service with PI ICU, use the button on the PI ICU toolbar.

A message will inform the user of the status of the interface service. Even if the message

indicates that the service has started successfully, double check through the Services control

panel applet. Services may terminate immediately after startup for a variety of reasons, and

one typical reason is that the service is not able to find the command-line parameters in the

associated .bat file. Verify that the root name of the .bat file and the .exe file are the same,

and that the .bat file and the .exe file are in the same directory. Further troubleshooting of

services might require consulting the pipc.log file, Windows Event Viewer, or other

sources of log messages. See the section Appendix A: Error and Informational Messages for

additional information.

Stopping Interface Running as a Service

If the interface was installed as service, it can be stopped at any time from PI ICU, the

Services control panel or with the command:

PIMax.exe /stop

The service can be removed by:

PIMax.exe /remove

To stop the interface service with PI ICU, use the button on the PI ICU toolbar.

PI Interface for Metso maxDNA 71

Chapter 13. Buffering

Buffering refers to an interface node’s ability to temporarily store the data that interfaces

collect and to forward these data to the appropriate PI Servers. OSIsoft strongly recommends

that you enable buffering on your interface nodes. Otherwise, if the interface node stops

communicating with the PI Server, you lose the data that your interfaces collect.

The PI SDK installation kit installs two buffering applications: the PI Buffer Subsystem

(PIBufss) and the PI API Buffer Server (Bufserv). PIBufss and Bufserv are mutually

exclusive; that is, on a particular computer, you can run only one of them at any given time.

If you have PI Servers that are part of a PI collective, PIBufss supports n-way buffering. N-

way buffering refers to the ability of a buffering application to send the same data to each of

the PI Servers in a PI collective. (Bufserv also supports n-way buffering, but OSIsoft

recommends that you run PIBufss instead.)

Which Buffering Application to Use

You should use PIBufss whenever possible because it offers better throughput than Bufserv.

In addition, if the interfaces on an interface node are sending data to a PI collective, PIBufss

guarantees identical data in the archive records of all the PI Servers that are part of that

collective.

You can use PIBufss only under the following conditions:

 the PI Server version is at least 3.4.375.x; and

 all of the interfaces running on the interface node send data to the same PI Server or

to the same PI collective.

If any of the following scenarios apply, you must use Bufserv:

 the PI Server version is earlier than 3.4.375.x; or

 the interface node runs multiple interfaces, and these interfaces send data to multiple

PI Servers that are not part of a single PI collective.

If an interface node runs multiple interfaces, and these interfaces send data to two or more PI

collectives, then neither PIBufss nor Bufserv is appropriate. The reason is that PIBufss and

Bufserv can buffer data only to a single collective. If you need to buffer to more than one PI

collective, you need to use two or more interface nodes to run your interfaces.

It is technically possible to run Bufserv on the PI Server Node. However, OSIsoft does not

recommend this configuration.

Buffering

72

How Buffering Works

A complete technical description of PIBufss and Bufserv is beyond the scope of this

document. However, the following paragraphs provide some insights on how buffering

works.

When an interface node has buffering enabled, the buffering application (PIBufss or Bufserv)

connects to the PI Server. It also creates shared memory storage.

When an interface program makes a PI API function call that writes data to the PI Server (for

example, pisn_sendexceptionqx()), the PI API checks whether buffering is enabled. If it

is, these data writing functions do not send the interface data to the PI Server. Instead, they

write the data to the shared memory storage that the buffering application created.

The buffering application (either Bufserv or PIBufss) in turn

 reads the data in shared memory, and

 if a connection to the PI Server exists, sends the data to the PI Server; or

 if there is no connection to the PI Server, continues to store the data in shared

memory (if shared memory storage is available) or writes the data to disk (if shared

memory storage is full).

When the buffering application re-establishes connection to the PI Server, it writes to the PI

Server the interface data contained in both shared memory storage and disk.

(Before sending data to the PI Server, PIBufss performs further tasks such as data validation

and data compression, but the description of these tasks is beyond the scope of this

document.)

When PIBufss writes interface data to disk, it writes to multiple files. The names of these

buffering files are PIBUFQ_*.DAT.

When Bufserv writes interface data to disk, it writes to a single file. The name of its buffering

file is APIBUF.DAT.

As a previous paragraph indicates, PIBufss and Bufserv create shared memory storage at

startup. These memory buffers must be large enough to accommodate the data that an

interface collects during a single scan. Otherwise, the interface may fail to write all its

collected data to the memory buffers, resulting in data loss. The buffering configuration

section of this chapter provides guidelines for sizing these memory buffers.

When buffering is enabled, it affects the entire interface node. That is, you do not have a

scenario whereby the buffering application buffers data for one interface running on an

interface node but not for another interface running on the same interface node.

Buffering and PI Server Security

After you enable buffering, it is the buffering application – and not the interface program –

 that writes data to the PI Server. If the PI Server’s trust table contains a trust entry that

allows all applications on an interface node to write data, then the buffering application is

able write data to the PI Server.

However, if the PI Server contains an interface-specific PI Trust entry that allows a particular

interface program to write data, you must have a PI Trust entry specific to buffering. The

following are the appropriate entries for the Application Name field of a PI Trust entry:

PI Interface for Metso maxDNA 73

Buffering Application Application Name field for PI Trust

PI Buffer Subsystem PIBufss.exe

PI API Buffer Server APIBE (if the PI API is using 4 character process
names)

APIBUF (if the PI API is using 8 character process
names)

To use a process name greater than 4 characters in length for a trust application name, use the

LONGAPPNAME=1 in the PIClient.ini file.

Enabling Buffering on an Interface Node with the ICU

The ICU allows you to select either PIBufss or Bufserv as the buffering application for your

interface node. Run the ICU and select Tools > Buffering.

Choose Buffer Type

To select PIBufss as the buffering application, choose Enable buffering with PI Buffer

Subsystem.

To select Bufserv as the buffering application, choose Enable buffering with API Buffer

Server.

If a warning message such as the following appears, click Yes.

Buffering

74

Buffering Settings

There are a number of settings that affect the operation of PIBufss and Bufserv. The

Buffering Settings section allows you to set these parameters. If you do not enter values for

these parameters, PIBufss and Bufserv use default values.

PIBufss

For PIBufss, the paragraphs below describe the settings that may require user intervention.

Please contact OSIsoft Technical Support for assistance in further optimizing these and all

remaining settings.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSIsoft recommends that these

two memory buffer sizes should be increased to the maximum of 2000000 for the best

buffering performance.

Send rate (milliseconds)

Send rate is the time in milliseconds that PIBufss waits between sending up to the Maximum

transfer objects (described below) to the PI Server. The default value is 100. The valid range

is 0 to 2,000,000.

PI Interface for Metso maxDNA 75

Maximum transfer objects

Maximum transfer objects is the maximum number of events that PIBufss sends between

each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Event Queue File Size (Mbytes)

This is the size of the event queue files. PIBufss stores the buffered data to these files. The

default value is 32. The range is 8 to 131072 (8 to 128 Gbytes). Please see the section entitled

"Queue File Sizing" in the PIBufss.chm file for details on how to appropriately size the event

queue files.

Event Queue Path

This is the location of the event queue file. The default value is [PIHOME]\DAT.

For optimal performance and reliability, OSIsoft recommends that you place the PIBufss

event queue files on a different drive/controller from the system drive and the drive with the

Windows paging file. (By default, these two drives are the same.)

Bufserv

For Bufserv, the paragraphs below describe the settings that may require user intervention.

Please contact OSIsoft Technical Support for assistance in further optimizing these and all

remaining settings.

Maximum buffer file size (KB)

This is the maximum size of the buffer file ([PIHOME]\DAT\APIBUF.DAT). When Bufserv

cannot communicate with the PI Server, it writes and appends data to this file. When the

buffer file reaches this maximum size, Bufserv discards data.

The default value is 2,000,000 KB, which is about 2 GB. The range is from 1 to 2,000,000.

Buffering

76

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSIsoft recommends that these

two memory buffer sizes should be increased to the maximum of 2000000 for the best

buffering performance.

Send rate (milliseconds)

Send rate is the time in milliseconds that Bufserv waits between sending up to the Maximum

transfer objects (described below) to the PI Server. The default value is 100. The valid range

is 0 to 2,000,000.

Maximum transfer objects

Max transfer objects is the maximum number of events that Bufserv sends between each

Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Buffered Servers

The Buffered Servers section allows you to define the PI Servers or PI collective that the

buffering application writes data.

PIBufss

PIBufss buffers data only to a single PI Server or a PI collective. Select the PI Server or the

PI collective from the Buffering to collective/server drop down list box.

The following screen shows that PIBufss is configured to write data to a standalone PI Server

named starlight. Notice that the Replicate data to all collective member nodes check box

is disabled because this PI Server is not part of a collective. (PIBufss automatically detects

whether a PI Server is part of a collective.)

PI Interface for Metso maxDNA 77

The following screen shows that PIBufss is configured to write data to a PI collective named

admiral. By default, PIBufss replicates data to all collective members. That is, it provides n-

way buffering.

You can override this option by not checking the Replicate data to all collective member

nodes check box. Then, uncheck (or check) the PI Server collective members as desired.

Buffering

78

Bufserv

Bufserv buffers data to a standalone PI Server, or to multiple standalone PI Servers. (If you

want to buffer to multiple PI Servers that are part of a PI collective, you should use PIBufss.)

If the PI Server to which you want Bufserv to buffer data is not in the Server list, enter its

name in the Add a server box and click the Add Server button. This PI Server name must be

identical to the API Hostname entry:

The following screen shows that Bufserv is configured to write to a standalone PI Server

named etamp390. You use this configuration when all the interfaces on the interface node

write data to etamp390.

The following screen shows that Bufserv is configured to write to two standalone PI Servers,

one named etamp390 and the other one named starlight. You use this configuration

when some of the interfaces on the interface node write data to etamp390 and some write to

starlight.

PI Interface for Metso maxDNA 79

Installing Buffering as a Service

Both the PIBufss and Bufserv applications run as a Service.

PI Buffer Subsystem Service

Use the PI Buffer Subsystem Service page to configure PIBufss as a Service. This page also

allows you to start and stop the PIBufss service.

PIBufss does not require the logon rights of the local administrator account. It is sufficient to

use the LocalSystem account instead. Although the screen below shows asterisks for the

LocalSystem password, this account does not have a password.

Buffering

80

API Buffer Server Service

Use the API Buffer Server Service page to configure Bufserv as a Service. This page also

allows you to start and stop the Bufserv Service

Bufserv version 1.6 and later does not require the logon rights of the local administrator

account. It is sufficient to use the LocalSystem account instead. Although the screen below

shows asterisks for the LocalSystem password, this account does not have a password.

PI Interface for Metso maxDNA 81

PI Interface for Metso maxDNA 83

Chapter 14. Interface Diagnostics Configuration

The PI Point Configuration chapter provides information on building PI points for collecting

data from the device. This chapter describes the configuration of points related to interface

diagnostics.

Note: The procedure for configuring interface diagnostics is not specific to this
interface. Thus, for simplicity, the instructions and screenshots that follow refer to an
interface named ModbusE.

Some of the points that follow refer to a “performance summary interval”. This interval is 8

hours by default. You can change this parameter via the Scan performance summary box in

the UniInt – Debug parameter category page:

Scan Class Performance Points

A Scan Class Performance Point measures the amount of time (in seconds) that this interface

takes to complete a scan. The interface writes this scan completion time to millisecond

resolution. Scan completion times close to 0 indicate that the interface is performing

optimally. Conversely, long scan completion times indicate an increased risk of missed or

skipped scans. To prevent missed or skipped scans, you should distribute the data collection

points among several scan classes.

Interface Diagnostics Configuration

84

You configure one Scan Class Performance Point for each scan class in this interface. From

the ICU, select this interface from the Interface drop-down list and click UniInt-Performance

Points in the parameter category pane:

Right-click the row for a particular Scan Class # to open the shortcut menu:

You need not restart the interface for it to write values to the Scan Class Performance Points.

To see the current values (snapshots) of the Scan Class Performance Points, right-click and

select Refresh Snapshots.

Create / Create All

To create a Performance Point, right-click the line belonging to the tag to be created, and

select Create. Click Create All to create all the Scan Class Performance Points.

Delete

To delete a Performance Point, right-click the line belonging to the tag to be deleted, and

select Delete.

PI Interface for Metso maxDNA 85

Correct / Correct All

If the “Status” of a point is marked “Incorrect”, the point configuration can be automatically

corrected by ICU by right-clicking on the line belonging to the tag to be corrected, and

selecting Correct. The Performance Points are created with the following PI attribute values.

If ICU detects that a Performance Point is not defined with the following, it will be marked

Incorrect: To correct all points, click Correct All.

The Performance Points are created with the following PI attribute values:

Attribute Details

Tag Tag name that appears in the list box

Point Source Point Source for tags for this interface, as specified on the first tab

Compressing Off

Excmax 0

Descriptor Interface name + “ Scan Class # Performance Point”

Rename

Right-click the line belonging to the tag and select Rename to rename the Performance Point.

Column descriptions

Status

The Status column in the Performance Points table indicates whether the Performance Point

exists for the scan class in the Scan Class # column.

Created – Indicates that the Performance Point does exist

Not Created – Indicates that the Performance Point does not exist

Deleted – Indicates that a Performance Point existed, but was just deleted by the user

Scan Class #

The Scan Class column indicates which scan class the Performance Point in the Tagname

column belongs to. There will be one scan class in the Scan Class column for each scan class

listed in the Scan Classes box on the General page.

Tagname

The Tagname column holds the Performance Point tag name.

PS

This is the point source used for these performance points and the interface.

Location1

This is the value used by the interface for the /ID=# point attribute.

ExDesc

This is the used to tell the interface that these are performance points and the value is used to

corresponds to the /ID=# command line parameter if multiple copies of the same interface

are running on the interface node.

Interface Diagnostics Configuration

86

Snapshot

The Snapshot column holds the snapshot value of each Performance Point that exists in PI.

The Snapshot column is updated when the Performance Points page is selected, and when the

interface is first loaded. You may have to scroll to the right to see the snapshots.

 Performance Counters Points

When running as a Service or interactively, this interface exposes performance data via

Windows Performance Counters. Such data include items like:

 the amount of time that the interface has been running;

 the number of points the interface has added to its point list;

 the number of tags that are currently updating among others

There are two types or instances of Performance Counters that can be collected and stored in

PI Points. The first is (_Total) which is a total for the Performance Counter since the

interface instance was started. The other is for individual scan classes (Scan Class x) where x

is a particular scan class defined for the interface instance that is being monitored.

OSIsoft’s PI Performance Monitor interface is capable of reading these performance values

and writing them to PI points. Please see the Performance Monitor Interface for more

information.

If there is no PI Performance Monitor Interface registered with the ICU in the Module

Database for the PI Server the interface is sending its data to, you cannot use the ICU to

create any interface instance’s Performance Counters Points:

After installing the PI Performance Monitor Interface as a service, select this interface

instance from the Interface drop-down list, then click Performance Counters in the parameter

categories pane, and right-click on the row containing the Performance Counters Point you

wish to create. This will open the shortcut menu:

PI Interface for Metso maxDNA 87

Click Create to create the Performance Counters Point for that particular row. Click Create

All to create all the Performance Counters Points listed which have a status of Not Created.

To see the current values (snapshots) of the created Performance Counters Points, right-click

on any row and select Refresh Snapshots.

Note: The PI Performance Monitor Interface – and not this interface – is responsible
for updating the values for the Performance Counters Points in PI. So, make sure
that the PI Performance Monitor Interface is running correctly.

Performance Counters

In the following lists of Performance Counters the naming convention used will be:

“PerformanceCounterName” (.PerformanceCounterPointSuffix)

The tagname created by the ICU for each Performance Counter point is based on the setting

found under the Tools Options Naming Conventions Performance Counter Points.

The default for this is “sy.perf.[machine].[if service] followed by the Performance Counter

Point suffix.

Performance Counters for both (_Total) and (Scan Class x)

“Point Count” (.point_count)

A .point_count Performance Counters Point is available for each scan class of this interface

as well as an "(_Total)" for the interface instance.

The .point_count Performance Counters Point indicates the number of PI Points per scan

class or the total number for the interface instance. This point is similar to the Health Point

[UI_SCPOINTCOUNT] for scan classes and [UI_POINTCOUNT] for totals.

Interface Diagnostics Configuration

88

The ICU uses a naming convention such that the tag containing "(Scan Class 1)" (for

example, "sy.perf.etamp390.E1(Scan Class 1).point_count") refers to scan

class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing "(_Total)" refers

to the sum of all scan classes.

“Scheduled Scans: % Missed” (.sched_scans_%missed)

A .sched_scans_%missed Performance Counters Point is available for each scan class of this

interface as well as an "(_Total)" for the interface instance.

The .sched_scans_%missed Performance Counters Point indicates the percentage of scans the

interface missed per scan class or the total number missed for all scan classes since startup. A

missed scan occurs if the interface performs the scan one second later than scheduled.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, "sy.perf.etamp390.E1(Scan Class 1).sched_scans_%missed") refers

to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing

“(_Total)” refers to the sum of all scan classes.

“Scheduled Scans: % Skipped” (.sched_scans_%skipped)

A .sched_scans_%skipped Performance Counters Point is available for each scan class of this

interface as well as an "(_Total)" for the interface instance.

The .sched_scans_%skipped Performance Counters Point indicates the percentage of scans

the interface skipped per scan class or the total number skipped for all scan classes since

startup. A skipped scan is a scan that occurs at least one scan period after its scheduled time.

This point is similar to the [UI_SCSKIPPED] Health Point.

The ICU uses a naming convention such that the tag containing "(Scan Class 1)" (for

example, "sy.perf.etamp390.E1(Scan Class 1).sched_scans_%skipped")

refers to scan class 1, "(Scan Class 2)" refers to scan class 2, and so on. The tag containing

"(_Total)" refers to the sum of all scan classes.

“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval)

A .sched_scans_this_interval Performance Counters Point is available for each scan class of

this interface as well as an "(_Total)" for the interface instance.

The .sched_scans_this_interval Performance Counters Point indicates the number of scans

that the interface performed per performance summary interval for the scan class or the total

number of scans performed for all scan classes during the summary interval. This point is

similar to the [UI_SCSCANCOUNT] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_this_interval”

refers to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing

“(_Total)” refers to the sum of all scan classes.

Performance Counters for (_Total) only

“Device Actual Connections” (.Device_Actual_Connections)

The .Device_Actual_Connections Performance Counters Point stores the actual number of

foreign devices currently connected and working properly out of the expected number of

PI Interface for Metso maxDNA 89

foreign device connections to the interface. This value will always be less than or equal to the

Device Expected Connections counter.

“Device Expected Connections” (.Device_Expected_Connections)

The .Device_Expected_Connections Performance Counters Point stores the total number of

foreign device connections for the interface. This is the expected number of foreign device

connections configured that should be working properly at runtime. If the interface can only

communicate with 1 foreign device then the value of this counter will always be one. If the

interface can support multiple foreign device connections then this is the total number of

expected working connections configured for this interface.

“Device Status” (.Device_Status)

The .Device_Status Performance Counters Point stores communication information about the

interface and the connection to the foreign device(s). The value of this counter is based on the

expected connections, actual connections and value of the /PercentUp command line

option. If the device status is good then the value is ‘0’. If the device status is bad then the

value is ‘1’. If the interface only supports connecting to 1 foreign device then the

/PercentUp command line value does not change the results of the calculation. If for

example the interface can connect to 10 devices and 5 are currently working then the value of

the /PercentUp command line parameter is applied to determine the Device Status. If the

value of the /PercentUp command line parameter is set to 50 and at least 5 devices are

working then the DeviceStatus will remain good (that is, have a value of zero).

“Failover Status” (.Failover_Status)

The .Failover_Status Performance Counters Point stores the failover state of the interface

when configured for UniInt failover. The value of the counter will be ‘0’ when the interface is

running as the primary interface in the failover configuration. If the interface is running in

backup mode then the value of the counter will be '1'.

“Interface up-time (seconds)” (.up_time)

The .up_time Performance Counters Point indicates the amount of time (in seconds) that this

interface has been running. At startup the value of the counter is zero. The value will continue

to increment until it reaches the maximum value for an unsigned integer. Once it reaches this

value then it will start back over at zero.

“IO Rate (events/second)” (.io_rates)

The .io_rates Performance Counters Point indicates the rate (in event per second) at which

this interface writes data to its input tags. (As of UniInt 4.5.0.x and later this performance

counters point will no longer be available.)

“Log file message count” (.log_file_msg_count)

The .log_file_msg_count Performance Counters Point indicates the number of messages that

the interface has written to the log file. This point is similar to the [UI_MSGCOUNT] Health

Point.

Interface Diagnostics Configuration

90

“PI Status” (PI_Status)

The .PI_Status Performance Counters Point stores communication information about the

interface and the connection to the PI Server. If the interface is properly communicating with

the PI Server then the value of the counter is ‘0’. If the communication to the PI Server goes

down for any reason then the value of the counter will be ‘1’. Once the interface is properly

communicating with the PI Server again then the value will change back to ‘0’.

“Points added to the interface” (.pts_added_to_interface)

The .pts_added_to_interface Performance Counter Point indicates the number of points the

interface has added to its point list. This does not include the number of points configured at

startup. This is the number of points added to the interface after the interface has finished a

successful startup.

“Points edited in the interface”(.pts_edited_in_interface)

The .pts_edited_in_interface Performance Counters Point indicates the number of point edits

the interface has detected. The interface detects edits for those points whose PointSource

attribute matches the /ps= parameter and whose Location1 attribute matches the /id=

parameter of the interface.

“Points Good” (.Points_Good)

The .Points_Good Performance Counters Point is the number of points that have sent a good

current value to PI. A good value is defined as any value that is not a system digital state

value. A point can either be Good, In Error, or Stale. The total of Points Good, Points In

Error, and Points State will equal the Point Count. There is one exception to this rule. At

startup of an interface, the Stale timeout must elapse before the point will be added to the

Stale Counter. Therefore the interface must be up and running for at least 10 minutes for all

tags to belong to a particular Counter.

“Points In Error” (.Points_In_Error)

The .Points_In_Error Performance Counters Point indicates the number of points that have

sent a current value to PI that is a system digital state value. Once a point is in the In Error

count it will remain in the In Error count until the point receives a new, good value. Points in

Error do not transition to the Stale Counter. Only good points become stale.

“Points removed from the interface” (.pts_removed_from_interface)

The .pts_removed_from_interface Performance Counters Point indicates the number of points

that have been removed from the interface configuration. A point can be removed from the

interface when one of the point attributes is updated and the point is no longer a part of the

interface configuration. For example, changing the PointSource, Location1, or Scan attribute

can cause the tag to no longer be a part of the interface configuration.

“Points Stale 10(min)” (.Points_Stale_10min)

The .Points_Stale_10min Performance Counters Point indicates the number of good points

that have not received a new value in the last 10 minutes. If a point is Good, then it will

remain in the good list until the Stale timeout elapses. At this time if the point has not

received a new value within the Stale Period then the point will move from the Good count to

PI Interface for Metso maxDNA 91

the Stale count. Only points that are Good can become Stale. If the point is in the In Error

count then it will remain in the In Error count until the error clears. As stated above, the total

count of Points Good, Points In Error, and Points Stale will match the Point Count for the

interface.

“Points Stale 30(min)” (.Points_Stale_30min)

The .Points_Stale_30min Performance Counters Point indicates the number of points that

have not received a new value in the last 30 minutes. For a point to be in the Stale 30 minute

count it must also be a part of the Stale 10 minute count.

“Points Stale 60(min)” (.Points_Stale_60min)

The .Points_Stale_60min Performance Counters Point indicates the number of points that

have not received a new value in the last 60 minutes. For a point to be in the Stale 60 minute

count it must also be a part of the Stale 10 minute and 30 minute count.

“Points Stale 240(min)” (.Points_Stale_240min)

The .Points_Stale_240min Performance Counters Point indicates the number of points that

have not received a new value in the last 240 minutes. For a point to be in the Stale 240

minute count it must also be a part of the Stale 10 minute, 30 minute and 60 minute count.

Performance Counters for (Scan Class x) only

“Device Scan Time (milliseconds)” (.Device_Scan_Time)

A .Device_Scan_Time Performance Counter Point is available for each scan class of this

interface.

The .Device_Scan_Time Performance Counters Point indicates the number of milliseconds

the interface takes to read the data from the foreign device and package the data to send to PI.

This counter does not include the amount of time to send the data to PI. This point is similar

to the [UI_SCINDEVSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, "sy.perf.etamp390.E1 (Scan Class 1).device_scan _time") refers to

scan class 1, “(Scan Class 2) refers to scan class 2, and so on.

“Scan Time (milliseconds)” (.scan_time)

A .scan_time Performance Counter Point is available for each scan class of this interface.

The .scan_time Performance Counter Point indicates the number of milliseconds the interface

takes to both read the data from the device and send the data to PI. This point is similar to the

[UI_SCINSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, "sy.perf.etamp390.E1(Scan Class 1).scan_time") refers to scan class 1,

“(Scan Class 2)” refers to scan class 2, and so on.

Interface Diagnostics Configuration

92

Interface Health Monitoring Points

Interface Health Monitoring Points provide information about the health of this interface. To

use the ICU to configure these points, select this interface from the Interface drop-down list

and click Health Points from the parameter category pane:

Right-click the row for a particular Health Point to display the shortcut menu:

Click Create to create the Health Point for that particular row. Click Create All to create all

the Health Points.

To see the current values (snapshots) of the Health Points, right-click and select Refresh

Snapshots.

PI Interface for Metso maxDNA 93

For some of the Health Points described subsequently, the interface updates their values at

each performance summary interval (typically, 8 hours).

[UI_HEARTBEAT]

The [UI_HEARTBEAT] Health Point indicates whether the interface is currently running.

The value of this point is an integer that increments continuously from 1 to 15. After reaching

15, the value resets to 1.

The fastest scan class frequency determines the frequency at which the interface updates this

point:

Fastest Scan Frequency Update frequency

Less than 1 second 1 second

Between 1 and 60
seconds, inclusive

Scan frequency

More than 60 seconds 60 seconds

If the value of the [UI_HEARTBEAT] Health Point is not changing, then this interface is in

an unresponsive state.

[UI_DEVSTAT]

The [UI_DEVSTAT] Health Point provides an indication of the connection status between

the interface and the PLC(s) or PLC gateway. The possible values for this string point are:

 “1 | Starting” – The interface remains in this state until it has successfully

collected data from its first scan.

 “Good” – This value indicates that the interface is able to connect to all of the devices

referenced in the interface’s point configuration. A value of “Good” does not mean

that all tags are receiving good values, but it is a good indication that there are no

hardware or network problems.

 “4 | Intf Shutdown” – The interface has shut down.

The interface updates this point whenever the connection status between the interface and the

PLC(s) or PLC gateway changes.

[UI_SCINFO]

The [UI_SCINFO] Health Point provides scan class information. The value of this point is a

string that indicates

 the number of scan classes;

 the update frequency of the [UI_HEARTBEAT] Health Point; and

 the scan class frequencies

An example value for the [UI_SCINFO] Health Point is:

3 | 5 | 5 | 60 | 120

The interface updates the value of this point at startup and at each performance summary

interval.

Interface Diagnostics Configuration

94

[UI_IORATE]

The [UI_IORATE] Health Point indicates the sum of

1. the number of scan-based input values the interface collects before it performs

exception reporting; and

2. the number of event-based input values the interface collects before it performs

exception reporting; and

3. the number of values that the interface writes to output tags that have a SourceTag.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

value of this [UI_IORATE] Health Point may be zero. A stale timestamp for this point

indicates that this interface has stopped collecting data.

[UI_MSGCOUNT]

The [UI_MSGCOUNT] Health Point tracks the number of messages that the interface has

written to the log file since start-up. In general, a large number for this point indicates that

the interface is encountering problems. You should investigate the cause of these problems by

looking in log messages.

The interface updates the value of this point every 60 seconds. While the interface is running,

the value of this point never decreases.

[UI_POINTCOUNT]

The [UI_POINTCOUNT] Health Point counts number of PI tags loaded by the interface. This

count includes all input, output, and triggered input tags. This count does NOT include any

Interface Health tags or performance points.

The interface updates the value of this point at startup, on change, and at shutdown.

[UI_OUTPUTRATE]

After performing an output to the device, this interface writes the output value to the output

tag if the tag has a SourceTag. The [UI_OUTPUTRATE] Health Point tracks the number of

these values. If there are no output tags for this interface, it writes the System Digital State No

Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_OUTPUTBVRATE]

The [UI_OUTPUTBVRATE] Health Point tracks the number of System Digital State values

that the interface writes to output tags that have a SourceTag. If there are no output tags for

this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

PI Interface for Metso maxDNA 95

[UI_TRIGGERRATE]

The [UI_TRIGGERRATE] Health Point tracks the number of values that the interface writes

to event-based input tags. If there are no event-based input tags for this interface, it writes the

System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_TRIGGERBVRATE]

The [UI_TRIGGERBVRATE] Health Point tracks the number of System Digital State values

that the interface writes to event-based input tags. If there are no event-based input tags for

this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_SCIORATE]

You can create a [UI_SCIORATE] Health Point for each scan class in this interface. The ICU

uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class IO Rate.sc1) refers to scan class 1, “.sc2” refers to

scan class 2, and so on.

A particular scan class’s [UI_SCIORATE] point indicates the number of values that the

interface has collected. If the current value of this point is between zero and the

corresponding [UI_SCPOINTCOUNT] point, inclusive, then the interface executed the scan

successfully. If a [UI_SCIORATE] point stops updating, then this condition indicates that an

error has occurred and the tags for the scan class are no longer receiving new data.

The interface updates the value of a [UI_SCIORATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this interface.

[UI_SCBVRATE]

You can create a [UI_SCBVRATE] Health Point for each scan class in this interface. The

ICU uses a tag naming convention such that the suffix ".sc1" (for example,

sy.st.etamp390.E1.Scan Class Bad Value Rate.sc1) refers to scan class 1, ".sc2"

refers to scan class 2, and so on.

A particular scan class’s [UI_SCBVRATE] point indicates the number System Digital State

values that the interface has collected.

The interface updates the value of a [UI_SCBVRATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this interface.

[UI_SCSCANCOUNT]

You can create a [UI_SCSCANCOUNT] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix ".sc1" (for example,

Interface Diagnostics Configuration

96

sy.st.etamp390.E1.Scan Class Scan Count.sc1) refers to scan class 1, ".sc2"

refers to scan class 2, and so on.

A particular scan class's [UI_ SCSCANCOUNT] point tracks the number of scans that the

interface has performed.

The interface updates the value of this point at the completion of the associated scan. The

interface resets the value to zero at each performance summary interval.

Although there is no "Scan Class 0", the ICU allows you to create the point with the suffix

".sc0". This point indicates the total number of scans the interface has performed for all of its

Scan Classes.

[UI_SCSKIPPED]

You can create a [UI_SCSKIPPED] Health Point for each scan class in this interface. The

ICU uses a tag naming convention such that the suffix ".sc1" (for example,

sy.st.etamp390.E1.Scan Class Scans Skipped.sc1) refers to scan class 1, ".sc2"

refers to scan class 2, and so on.

A particular scan class’s [UI_SCSKIPPED] point tracks the number of scans that the

interface was not able to perform before the scan time elapsed and before the interface

performed the next scheduled scan.

The interface updates the value of this point each time it skips a scan. The value represents

the total number of skipped scans since the previous performance summary interval. The

interface resets the value of this point to zero at each performance summary interval.

Although there is no "Scan Class 0", the ICU allows you to create the point with the suffix

".sc0". This point monitors the total skipped scans for all of the interface’s Scan Classes.

[UI_SCPOINTCOUNT]

You can create a [UI_SCPOINTCOUNT] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix ".sc1" (for example,

sy.st.etamp390.E1.Scan Class Point Count.sc1) refers to scan class 1, ".sc2"

refers to scan class 2, and so on.

This Health Point monitors the number of tags in a scan class.

The interface updates a [UI_SCPOINTCOUNT] Health Point when it performs the associated

scan.

Although the ICU allows you to create the point with the suffix ".sc0", this point is not

applicable to this interface.

[UI_SCINSCANTIME]

You can create a [UI_SCINSCANTIME] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix ".sc1" (for example,

sy.st.etamp390.E1.Scan Class Scan Time.sc1) refers to scan class 1, ".sc2" refers

to scan class 2, and so on.

A particular scan class's [UI_ SCINSCANTIME] point represents the amount of time (in

milliseconds) the interface takes to read data from the device, fill in the values for the tags,

and send the values to the PI Server.

The interface updates the value of this point at the completion of the associated scan.

PI Interface for Metso maxDNA 97

[UI_SCINDEVSCANTIME]

You can create a [UI_SCINDEVSCANTIME] Health Point for each scan class in this

interface. The ICU uses a tag naming convention such that the suffix ".sc1" (for example,

sy.st.etamp390.E1.Scan Class Device Scan Time.sc1) refers to scan class 1,

".sc2" refers to scan class 2, and so on.

A particular scan class's [UI_ SCINDEVSCANTIME] point represents the amount of time (in

milliseconds) the interface takes to read data from the device and fill in the values for the

tags.

The value of a [UI_ SCINDEVSCANTIME] point is a fraction of the corresponding

[UI_SCINSCANTIME] point value. You can use these numbers to determine the percentage

of time the interface spends communicating with the device compared with the percentage of

time communicating with the PI Server.

If the [UI_SCSKIPPED] value is increasing, the [UI_SCINDEVSCANTIME] points along

with the [UI_SCINSCANTIME] points can help identify where the delay is occurring:

whether the reason is communication with the device, communication with the PI Server, or

elsewhere.

The interface updates the value of this point at the completion of the associated scan.

I/O Rate Point

An I/O Rate point measures the rate at which the interface writes data to its input tags. The

value of an I/O Rate point represents a 10-minute average of the total number of values per

minute that the interface sends to the PI Server.

When the interface starts, it writes 0 to the I/O Rate point. After running for ten minutes, the

interface writes the I/O Rate value. The interface continues to write a value every 10 minutes.

When the interface stops, it writes 0.

The ICU allows you to create one I/O Rate point for each copy of this interface. Select this

interface from the Interface drop-down list, click IO Rate in the parameter category pane, and

check Enable IORates for this interface.

Interface Diagnostics Configuration

98

As the preceding picture shows, the ICU suggests an Event Counter number and a Tagname

for the I/O Rate Point. Click the Save button to save the settings and create the I/O Rate point.

Click the Apply button to apply the changes to this copy of the interface.

You need to restart the interface in order for it to write a value to the newly created I/O Rate

point. Restart the interface by clicking the Restart button:

(The reason you need to restart the interface is that the PointSource attribute of an I/O Rate

point is Lab.)

To confirm that the interface recognizes the I/O Rate Point, look in the pipc.log for a

message such as:

PI-ModBus 1> IORATE: tag sy.io.etamp390.ModbusE1 configured.

To see the I/O Rate point’s current value (snapshot), click the Refresh snapshot button:

Enable IORates for this Interface

The Enable IORates for this interface check box enables or disables I/O Rates for the current

interface. To disable I/O Rates for the selected interface, uncheck this box. To enable I/O

Rates for the selected interface, check this box.

Event Counter

The Event Counter correlates a tag specified in the iorates.dat file with this copy of the

interface. The command-line equivalent is /ec=x, where x is the same number that is

assigned to a tag name in the iorates.dat file.

Tagname

The tag name listed in the Tagname box is the name of the I/O Rate tag.

Tag Status

The Tag Status box indicates whether the I/O Rate tag exists in PI. The possible states are:

 Created – This status indicates that the tag exist in PI

 Not Created – This status indicates that the tag does not yet exist in PI

 Deleted – This status indicates that the tag has just been deleted

 Unknown – This status indicates that the PI ICU is not able to access the PI Server

PI Interface for Metso maxDNA 99

In File

The In File box indicates whether the I/O Rate tag listed in the tag name and the event

counter is in the IORates.dat file. The possible states are:

 Yes – This status indicates that the tag name and event counter are in the IORates.dat

file

 No – This status indicates that the tag name and event counter are not in the

IORates.dat file

Snapshot

The Snapshot column holds the snapshot value of the I/O Rate tag, if the I/O Rate tag exists

in PI. The Snapshot box is updated when the IORate page is selected, and when the interface

is first loaded.

Create/Save

Create the suggested I/O Rate tag with the tag name indicated in the Tagname box. Or Save

any changes for the tag name indicated in the Tagname box.

Delete

Delete the I/O Rate tag listed in the Tagname box.

Rename

Allow the user to specify a new name for the I/O Rate tag listed in the Tagname box.

Add to File

Add the tag to the IORates.dat file with the event counter listed in the Event Counter box.

Search

Allow the user to search the PI Server for a previously defined I/O Rate tag.

Interface Status Point

The PI Interface Status Utility (ISU) alerts you when an interface is not currently writing data

to the PI Server. This situation commonly occurs if

 the monitored interface is running on an interface node, but the interface node cannot

communicate with the PI Server; or

 the monitored interface is not running, but it failed to write at shutdown a system

state such as Intf Shut.

The ISU works by periodically looking at the timestamp of a Watchdog Tag. The Watchdog

Tag is a tag whose value a monitored interface (such as this interface) frequently updates.

The Watchdog Tag has its ExcDev, ExcMin, and ExcMax point attributes set to 0. So, a non-

changing timestamp for the Watchdog Tag indicates that the monitored interface is not

writing data.

Please see the Interface Status Utility Interface for complete information on using the ISU. PI

Interface Status Utility Interface runs only on a PI Server Node.

Interface Diagnostics Configuration

100

If you have used the ICU to configure the PI Interface Status Utility Interface on the PI

Server Node, the ICU allows you to create the appropriate ISU point. Select this interface

from the Interface drop-down list and click Interface Status in the parameter category pane.

Right-click on the ISU tag definition window to open the shortcut menu:

Click Create to create the ISU tag.

Use the Tag Search button to select a Watchdog Tag. (Recall that the Watchdog Tag is one of

the points for which this interface collects data.)

Select a Scan frequency from the drop-down list box. This Scan frequency is the interval at

which the ISU monitors the Watchdog Tag. For optimal performance, choose a Scan

frequency that is less frequent than the majority of the scan rates for this interface’s points.

For example, if this interface scans most of its points every 30 seconds, choose a Scan

frequency of 60 seconds. If this interface scans most of its points every second, choose a Scan

frequency of 10 seconds.

If the Tag Status indicates that the ISU tag is Incorrect, right-click to open the shortcut

menu and select Correct.

Note: The PI Interface Status Utility Interface – and not this interface – is responsible
for updating the ISU tag. So, make sure that the PI Interface Status Utility Interface is
running correctly.

PI Interface for Metso maxDNA 101

Appendix A. Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a

non-configurable identifier that is no longer than 9 characters. ID is a configurable identifier

that is no longer than 9 characters and is specified using the /id parameter on the startup

command-line.

Message Logs

The location of the message log depends upon the platform on which the interface is running.

See the UniInt Interface User Manual for more information.

Messages are written to [PIHOME]\dat\pipc.log at the following times.

 When the interface starts many informational messages are written to the log. These

include the version of the interface, the version of UniInt, the command-line

parameters used, and the number of points.

 As the interface loads points, messages are sent to the log if there are any problems

with the configuration of the points.

 If the UniInt /dbUniInt parameter is found in the command-line, then various

informational messages are written to the log file.

Messages

Interface Informational Messages

Message INFO> /ExcMax=n

Meaning This message displays the value of the Exception maximum time that will be passed to
the SBP.

Message INFO> Will try to resubscribe every n seconds after the

first resubscribe failure

Meaning This message displays the resubscribe rate which will be used by the interface.

Message INFO> SBP version detected is n.n.n.n

Meaning This message is logged at startup to indicate the version of the SBP software.

Error and Informational Messages

102

Interface Warning Messages

Message WARNING> Error getting SBP version from the registry

Meaning This warning occurs if an error occurs while attempting to read the SBP version from
the registry. This could indicate that the SBP software is not installed correctly. The
interface will attempt to continue to run.

Interface Error Messages

Message ERROR > Unable to initialize secondary log file

Meaning The interface was unable to create and initialize the secondary log file. Verify that the
file specified is correct and that it can be written.

System Errors and PI Errors

System errors are associated with positive error numbers. Errors related to PI are associated

with negative error numbers.

Error Descriptions

On Windows and UNIX, descriptions of system and PI errors can be obtained with the pidiag

utility:

Windows: \PI\adm\pidiag /e error_number

UNIX: /PI/adm/pidiag –e error_number

UniInt Failover Specific Error Messages

Informational

Message 16-May-06 10:38:00

PiMax 1> UniInt failover: Interface in the “Backup” state.

Meaning Upon system startup, the initial transition is made to this state. While in this state, the
interface monitors the status of the other interface participating in failover. When
configured for Hot failover, data received from the data source is queued and not sent
to the PI Server while in this state. The amount of data queued while in this state is
determined by the failover update interval. In any case, there will be typically no more
than two update intervals of data in the queue at any given time. Some transition chains
may cause the queue to hold up to five failover update intervals worth of data.

Message 16-May-06 10:38:05

PiMax 1> UniInt failover: Interface in the “Primary” state

and actively sending data to PI. Backup interface not

available.

Meaning While in this state, the interface is in its primary role and sends data to the PI Server as
it is received. This message also states that there is not a backup interface participating
in failover.

PI Interface for Metso maxDNA 103

Message 16-May-06 16:37:21

PiMax 1> UniInt failover: Interface in the “Primary” state

and actively sending data to PI. Backup interface

available.

Meaning While in this state, the interface sends data to the PI Server as it is received. This
message also states that the other copy of the interface appears to be ready to take
over the role of primary.

Error and Informational Messages

104

Errors (Phase 1 & 2)

Message 16-May-06 17:29:06

PiMax 1> One of the required Failover Synchronization

points was not loaded.

Error = 0: The Active ID synchronization point was not

loaded.

The input PI tag was not loaded

Cause The Active ID tag is not configured properly.

Resolution Check validity of point attributes. For example, make sure Location1 attribute is valid
for the interface. All failover tags must have the same PointSource and Location1
attributes. Modify point attributes as necessary and restart the interface.

Message 16-May-06 17:38:06

PiMax 1> One of the required Failover Synchronization

points was not loaded.

Error = 0: The Heartbeat point for this copy of the

interface was not loaded.

The input PI tag was not loaded

Cause The Heartbeat tag is not configured properly.

Resolution Check validity of point attributes. For example, make sure Location1 attribute is valid
for the interface. All failover tags must have the same PointSource and Location1
attributes. Modify point attributes as necessary and restart the interface.

Message 17-May-06 09:06:03

PiMax > The Uniint FailOver ID (/UFO_ID) must be a

positive integer.

Cause The UFO_ID parameter has not been assigned a positive integer value.

Resolution Change and verify the parameter to a positive integer and restart the interface.

Message 17-May-06 09:06:03

PiMax 1> The Failover ID parameter (/UFO_ID) was found but

the ID for the redundant copy was not found

Cause The /UFO_OtherID parameter is not defined or has not been assigned a positive

integer value.

Resolution Change and verify the /UFO_OtherID parameter to a positive integer and restart

the interface.

PI Interface for Metso maxDNA 105

Errors (Phase 2)

Unable to open synchronization file

Message 27-Jun-08 17:27:17

PI Eight Track 1 1> Error 5: Unable to create file

‘\\georgiaking\GeorgiaKingStorage\UnIntFailover\\PIEightT

rack_eight_1.dat’

Verify that interface has read/write/create access on

file server machine.

Initializing UniInt library failed

Stopping Interface

Cause This message will be seen when the interface is unable to create a new failover
synchronization file at startup. The creation of the file only takes place the first time
either copy of the interface is started and the file does not exist. The error number
most commonly seen is error number 5. Error number 5 is an “access denied” error
and is likely the result of a permissions problem.

Resolution Ensure the account the interface is running under has read and write permissions for
the folder. The “log on as” property of the Windows service may need to be set to an
account that has permissions for the folder.

Error Opening Synchronization File

Message Sun Jun 29 17:18:51 2008

PI Eight Track 1 2> WARNING> Failover Warning: Error = 64

Unable to open Failover Control File

‘\\georgiaking\GeorgiaKingStorage\Eight\PIEightTrack_eigh

t_1.dat’

The interface will not be able to change state if PI is

not available

Cause This message will be seen when the interface is unable to open the failover
synchronization file. The interface failover will continue to operate correctly as long as
communication to the PI Server is not interrupted. If communication to PI is interrupted
while one or both interfaces cannot access the synchronization file, the interfaces will
remain in the state they were in at the time of the second failure, so the primary
interface will remain primary and the backup interface will remain backup.

Resolution Ensure the account the interface is running under has read and write permissions for
the folder and file. The “log on as” property of the Windows service may need to be set
to an account that has permissions for the folder and file.

PI Interface for Metso maxDNA 107

Appendix B. PI SDK Options

To access the PI SDK settings for this interface, select this interface from the Interface drop-

down list and click UniInt – PI SDK in the parameter category pane.

Disable PI SDK

Select Disable PI SDK to tell the interface not to use the PI SDK. If you want to run the

interface in disconnected startup mode, you must choose this option.

The command line equivalent for this option is /pisdk=0.

Use the Interface’s default setting

This selection has no effect on whether the interface uses the PI SDK. However, you must not

choose this option if you want to run the interface in disconnected startup mode.

Enable PI SDK

Select Enable PI SDK to tell the interface to use the PI SDK. Choose this option if the PI

Server version is earlier than 3.4.370.x or the PI API is earlier than 1.6.0.2, and you want to

use extended lengths for the Tag, Descriptor, ExDesc, InstrumentTag, or PointSource point

attributes. The maximum lengths for these attributes are:

Attribute Enable the Interface to use
the PI SDK

PI Server earlier than 3.4.370.x or PI
API earlier than 1.6.0.2, without the
use of the PI SDK

Tag 1023 255

Descriptor 1023 26

ExDesc 1023 80

InstrumentTag 1023 32

PointSource 1023 1

However, if you want to run the interface in disconnected startup mode, you must not choose

this option.

The command line equivalent for this option is /pisdk=1.

Communication Error Recovery

108

Appendix C. Communication Error Recovery

If a remote maxDNA node becomes inoperable, the tags associated with that node will return

an error code to PI (I/O Timeout), and will not report any future values to PI until the remote

node becomes operable again. Once the remote node is operable, the interface automatically

starts sending data to PI.

Prior to version 1.3, there was an issue with the communication error recovery. The situation

occurred when there was no active DPU. There are several situations where there is no active

DPU.

One situation is when there is only one DPU, and that DPU either fails or is pulled out for

replacement or maintenance. Another situation is when there is more than one DPU, but

backup mode is not enabled. In this case, there may be other DPUs on the network, but they

will not become active because backup mode is not enabled.

Prior to version 1.3, when the DPU once again became available, the interface would not

resume collecting data. This was a subscription issue, and has been corrected in version 1.3.

Appendix D. Troubleshooting

If the interface is behaving in an unexpected manner, check the pipc.log file and the user-

specified log file. (Not all error messages are written to the screen). In general, the user-

specified log file will contain greater detail then the pipc.log file.

Frequently Asked Questions

Q. As soon as I start the interface, it exits. What could cause this?

A. First, check the log files. A detailed explanation may be found there. Common causes may

be:

 PI is not running on the specified host

 maxDNA is not running locally

 a required interface DLL is missing (see Interface Installation)

Q. Why does it take several minutes to see new values after I add a new tag while the

interface is running?

A. The interface checks for changes in the PI point database every two minutes. Any new

values will not be sent to PI until the first scan after the tag was added.

Q. Why do I constantly get a timed-out status for tags on a remote node?

PI Interface for Metso maxDNA 109

A. Most likely the remote maxDNA node is not running. If the node is running, check the tag

configuration to make sure that the proper node, tag, and field have been specified.

Q. My PI values are not being updated, but the log files show that data is being sent to

the interface.

A. Check the permissions of your PI tags. If the user of the interface does not have access to

read and write the given PI tags, they will not be updated.

Message Logging

The maxDNA interface provides extensive run-time operation logging facilities. The logging

facility provides the following capabilities:

 Multiple detail levels: low, medium, high, none, all;

 A forced writes option that, when enabled, commits all data to the drive after each

write (slows the process significantly);

 A screen logging option that will echo the log entries to the console;

 Ability to append or overwrite existing log;

 Circular log file format with selectable size; and

 A common log file viewer for Windows systems.

Troubleshooting

110

Run Time Logging Configuration

You can change the operation of the logging facilities at runtime by creating several Logging

Tags. The logging tags provide a mechanism for changing the logging configuration during

run-time. When the logging configuration needs to be changed, a value can be written to the

appropriate tag. For each possible logging configuration change, there is a specific PI tag.

The following table describes the configuration changes that are permitted and the associated

tags and values:

Configuration
Parameter

Tagname Appropriate Values

Detail level $LOG_LEVEL 9 = All logs

8 = No logs

3 = High detail

2 = Medium detail

1 = Low detail

Log to screen $LOG_SCREEN 0 = off, 1 = log to screen

Enable forced writes $LOG_FORCED 0 = off, 1 = writes
committed immediately

All logging tags must be configured as output tags of type Integer. No source point parameter

is required.

PI Interface for Metso maxDNA 111

Appendix E. Terminology

To understand this interface manual, you should be familiar with the terminology used in this

document.

Buffering

Buffering refers to an interface node’s ability to store temporarily the data that interfaces

collect and to forward these data to the appropriate PI Servers.

N-Way Buffering

If you have PI Servers that are part of a PI Collective, PIBufss supports n-way buffering.

N-way buffering refers to the ability of a buffering application to send the same data to each

of the PI Servers in a PI Collective. (Bufserv also supports n-way buffering to multiple PI

Servers however it does not guarantee identical archive records since point compressions

attributes could be different between PI Servers. With this in mind, OSIsoft recommends that

you run PIBufss instead.)

ICU

ICU refers to the PI Interface Configuration Utility. The ICU is the primary application that

you use to configure PI interface programs. You must install the ICU on the same computer

on which an interface runs. A single copy of the ICU manages all of the interfaces on a

particular computer.

You can configure an interface by editing a startup command file. However, OSIsoft

discourages this approach. Instead, OSIsoft strongly recommends that you use the ICU for

interface management tasks.

ICU Control

An ICU Control is a plug-in to the ICU. Whereas the ICU handles functionality common to

all interfaces, an ICU Control implements interface-specific behavior.

Interface Node

An interface node is a computer on which

 the PI API and/or PI SDK are installed, and

 PI Server programs are not installed.

PI API

The PI API is a library of functions that allow applications to communicate and exchange

data with the PI Server. All PI interfaces use the PI API.

Terminology

112

PI Collective

A PI Collective is two or more replicated PI Servers that collect data concurrently.

Collectives are part of the High Availability environment. When the primary PI Server in a

collective becomes unavailable, a secondary collective member node seamlessly continues to

collect and provide data access to your PI clients.

PIHOME

PIHOME refers to the directory that is the common location for PI 32-bit client applications.

A typical PIHOME on a 32-bit operating system is C:\Program Files\PIPC.

A typical PIHOME on a 64-bit operating system is C:\Program Files (x86)\PIPC.

PI 32-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME.

For example, files for the 32-bit Modbus Ethernet Interface are in

[PIHOME]\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory path. For example, ICU files in [PIHOME]\ICU.

PIHOME64

PIHOME64 is found only on a 64-bit operating system and refers to the directory that is the

common location for PI 64-bit client applications.

A typical PIHOME64 is C:\Program Files\PIPC.

PI 64-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME64.

For example, files for a 64-bit Modbus Ethernet Interface would be found in

 C:\Program Files\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory path. For example, ICU files in [PIHOME]\ICU.

PI Message Log

The PI message log is the file to which OSIsoft interfaces based on UniInt 4.5.0.x and later

write informational, debug and error messages. When a PI interface runs, it writes to the

local PI message log. This message file can only be viewed using the PIGetMsg utility. See

the UniInt Interface Message Logging.docx file for more information on how to access these

messages.

PI SDK

The PI SDK is a library of functions that allow applications to communicate and exchange

data with the PI Server. Some PI interfaces, in addition to using the PI API, require the use of

the PI SDK.

PI Server Node

A PI Server Node is a computer on which PI Server programs are installed. The PI Server

runs on the PI Server Node.

PI Interface for Metso maxDNA 113

PI SMT

PI SMT refers to PI System Management Tools. PI SMT is the program that you use for

configuring PI Servers. A single copy of PI SMT manages multiple PI Servers. PI SMT runs

on either a PI Server Node or a interface node.

Pipc.log

The pipc.log file is the file to which OSIsoft applications write informational and error

messages. When a PI interface runs, it writes to the pipc.log file. The ICU allows easy

access to the pipc.log.

Point

The PI point is the basic building block for controlling data flow to and from the PI Server.

For a given timestamp, a PI point holds a single value.

A PI point does not necessarily correspond to a “point” on the foreign device. For example, a

single “point” on the foreign device can consist of a set point, a process value, an alarm limit,

and a discrete value. These four pieces of information require four separate PI points.

Service

A Service is a Windows program that runs without user interaction. A Service continues to

run after you have logged off from Windows. It has the ability to start up when the computer

itself starts up.

The ICU allows you to configure a PI interface to run as a Service.

Tag (Input Tag and Output Tag)

The tag attribute of a PI point is the name of the PI point. There is a one-to-one

correspondence between the name of a point and the point itself. Because of this relationship,

PI System documentation uses the terms “tag” and “point” interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an

Output Tag to write a value to the device.

PI Interface for Metso maxDNA 115

Appendix F. Technical Support and Resources

For technical assistance, contact OSIsoft Technical Support at +1 510-297-5828 or

techsupport@osisoft.com. The OSIsoft Technical Support website offers additional contact

options for customers outside of the United States.

When you contact OSIsoft Technical Support, be prepared to provide this information:

 Product name, version, and build numbers

 Computer platform (CPU type, operating system, and version number)

 Time that the difficulty started

 Log files at that time

 Details of any environment changes prior to the start of the issue

 Summary of the issue, including any relevant log files during the time the issue

occurred

The OSIsoft Virtual Campus (vCampus) website has subscription-based resources to help you

with the programming and integration of OSIsoft products.

http://support.osisoft.com/
http://vcampus.osisoft.com/

PI Interface for Metso maxDNA 117

Appendix G. Revision History

Date Author Comments

18-May-1999 TC First draft

12-Aug-1999 TC Second draft

18-Oct-1999 JFZ Updated document based on trip to test at MCS

04-Nov-1999 TC Revision 2 – Draft 1

05-Jul-2000 EW Added explanation of /excmax flag

26-Apr-2002 CG Formatting, TOC

15-Nov-2002 LNG Updated for version 1.3. Added /subchk flag and
clarified that MaxStation software does not need to
be running on the same machine as the interface.

26-Nov-2002 CG Fixed headers & footers; fixed page #s; changed
some section headings; does not conform to
standard document format

01-Aug-2003 LNG Added “and greater” to the version, for 1.3.0.1
release.

Added version requirement for maxAPPS.

Added supported Windows versions.

Added /pisdk option to the list of startup parameters.

17-May-2004 LNG Updated version to 1.4.1.0

17-May-2004 CG 1.4.1.0 Rev C: Fixed headers & footers; clarified
running as a service; used current skeleton
formatting

19-May-2004 CG 1.4.1.0 Rev D: Fixed the part number

27-May-2004 CG 1.4.1.0 Rev E: Change name from the
Max1000+Plus Interface to the maxDNA Interface

03-Jan-2008 JH 1.4.2.0 Rev A – Updated to skeleton version 2.5.6
and added failover.

20-Nov-2012 SBranscomb Version 1.4.2.0 Revision B; Updated Manual to
Skeleton Version 3.0.35.

18-Jul-2013 MHruzik Updated Manual to Skeleton Version 3.0.36

12-Sep-2013 ZRyska Corrections, Updated table of content and file has
been saved as final.

