C_ UMO0563
’I User manual

L9952GXP software driver user manual

Introduction

The L9952GXP is a complex device described in the L9952GXP datasheet and the
L9952GXP power management system IC application note (AN2751). For further
information on these documents, please contact STMicroelectronics. To simplify use of
L9952GXP device, an associated software driver has been developed. This document
decribes how to use the software driver to control the L9952GXP device.

September 2013 Rev 2 1/46

www.st.com

http://www.st.com

Contents UMO0563

Contents
1 Naming different releases of the L9952GXP software driver 5
2 Purpose of the L9952GXP softwaredriver 6
3 Architecture of the L9952GXP softwaredriver 7
3.1 L9952GXP software driver file structure 8
3.2 L9952GXP software driver error detection 9
3.3 L9952GXP low-level peripheral drivers 10
4 L9952GXP software driverfunctions 1"
5 L9952GXP software driver platformtypes 30
6 Dynamic view of the L9952GXP software driver functions 36
6.1 L9952GXP software driver error handling function 41
7 L9952GXP software driver system requirements 42
71 Operating system, compiler and interrupts 42
7.2 Hardware requirements i 42
7.3 Memory mappingt e 42
8 Using the L9952GXP software driver 43
8.1 Main.cfile e 43
8.2 L9952drv.Cfile e 43
8.3 L9952 Cfgfileo i 43
8.4 Std Types.hfile 43
8.5 Platform_Types.hfile i 43
8.6 Compiler.hfile. 44
8.7 L9952drv_AL.c and L9952drv_AL.hfiles 44
9 Revision history i e 45

2/46 Kﬁ

UMO0563

List of tables

List of tables

Table 1. LO952drv_Init . . . 11
Table 2. L9952drv_SetStandbyMode 12
Table 3. L9952drv_SetOutMode. e 13
Table 4. L9952drv_SetOutHSAUtorecovery e 14
Table 5. L9952drv_SetRelayOutput e 14
Table 6. L9952drv_SetVoltageReg2Mode 15
Table 7. L9952drv_SetTimert e 15
Table 8. L9952drv_SetTimer2 16
Table 9. L9952drv_SetDigOutput. e 16
Table 10. L9952drv_SetWUlInputMode 17
Table 11. L9952drv_DisableWakeupSource i 18
Table 12. L9952drv_SetResetThresholdLevel 19
Table 13. L9952drv_SetlnputFilterMode 20
Table 14. L9952drv_SetOutOLThresholdLevel 21
Table 15. L9952drv_LinSetup. 22
Table 16. L9952drv_ClearStatusRegisters. i e 22
Table 17. L9952drv_SetVsLockoutMode e 23
Table 18. L9952drv_WdgTrigger oot e 24
Table 19. L9952drv_SetRelayShutdownMode 25
Table 20. L9952drv_GetGlobalErrorStatus e 26
Table 21. L9952drv_GetStatus0. 27
Table 22. L9952drv_ReadStatus e 27
Table 23. L9952drv_GetStatust. 28
Table 24. 19952drv_ReadStatust e 28
Table 25. L9952drv_SetVReg1CurrentMonitorOn 29
Table 26. L9952drv_SetIntMode e 29
Table 27. L9952drv_StandbyModeType. e 30
Table 28. L9952drv_OutModeTypeottt e e 30
Table 29. L9952drv_OutHSAuUtorecoveryType.t e 30
Table 30. L9952drv_RelayOutputType.o e e 31
Table 31. L9952drv_VoltageReg2ModeType. i e 31
Table 32. L9952drv_Timer1PeriodType e 32
Table 33. L9952drv_Timer1ONTIMETYPeo e e e 32
Table 34. L9952drv_Timer20NTIimeTypeo e e 32
Table 35. L9952drv_DigOutputModeTypet e e 33
Table 36. L9952drv_WUInputModeType e 33
Table 37. L9952drv_InputFilterModeType 33
Table 38. L9952drv_ResetThresholdLevelType. i 34
Table 39. L9952drv_OutOLThresholdLevelType e 34
Table 40. L9952drv_LinSetupType. . . . oo e e 34
Table 41. L9952drv_VsLockoutModeType. i i 35
Table 42. L9952drv_RelayShutdownModeType. e 35
Table 43. L9952drv_IntMOdeType oot 35
Table 44. L9952drv_StatusRegType e 35
Table 45. L9952drv_ReportError 41
Table 46. Memory mapping eXamples 42
Table 47. Documentrevision history e 45

574

3/46

List of figures UMO0563

List of figures

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

4/46

Release names of the software driver 5
Block diagram of the L9952GXP software driver and the L9952GXP device with its
associated microcontroller and peripherals o 6
Top level architecture of the L9952GXP software driver and the L9952GXP device with

its associated microcontroller and peripherals 7
Software driver file structure 8
Error detection flowchart of the software driver, 9
L9952drv_Init() function e 36
L9952drv_WdgTrigger() function e 37
L9952drv_SetStandbyMode (L9952DRV_STANDBYMODE_V1) function. 38
L9952drv_ClearStatusRegister() function. 38
Group of L9952GXP software driver functions with similar behavior 39
L9952drv_ReadStatusx() function 40
L9952drv_GetGlobalErrorStatus() function 40

UMO0563 Naming different releases of the L9952GXP software driver

1 Naming different releases of the L9952GXP software
driver

A standardized naming system exists for naming different releases of the software driver for
the L9952GXP device. The name includes all relevant information, such as project name,
functionality, patch version and release type. An example of a release name is the
L9952drv_1-0-0_RC1, which is explained in Figure 1.

Figure 1. Release names of the software driver

L9952drv 10| 0 |RC1

Rel (5)

Patch version()

Minor version(®)

Major version®

vV VYVYVYyYy

Name("

Name: Project name
Major version: Major functionality

3. Minor version: Minor functionality
Odd numbers indicate the driver is still in development
Even numbers indicate the driver is mature and a public version is available.

4. Patch version: No additional functionality permitted, except bug fixing.

Release: Type of release
Official release (contains no additional marking)
Release candidate (contains additional marking)

Ky_l 5/46

Purpose of the L9952GXP software driver UMO0563

2

Note:

6/46

Purpose of the L9952GXP software driver

The L9952GXP device is generally used with a microcontroller. The microcontroller is
supplied from the device and the two communicate via a standard SPI interface. The
software driver for the L9952GXP is used to control the device (see Figure 2). Please refer
to the L9952GXP datasheet for further details.

The source code of the software driver is MISRA Il compliant and follows Autosar
requirements.

Figure 2. Block diagram of the L9952GXP software driver and the L9952GXP device
with its associated microcontroller and peripherals

Ve
| Voltage
Regulator 2
4 CAN CAN
iy
Microcontroller

LoGic) .
€. 0. Bulb,
R = N LED, Hal

- Sensor
Qutd L J
Interrupt J—
TxD
LiN2o™ e.g LED
SAEJ2602 #Z Hall Sensor
o " , -7-7.\‘. . /
Al 1~ L
For detaiied nfcrr".;ﬁm‘:)
see \ / .
EMC test report from ‘~\ ESDLINIS24B [/ = Cyclic Contact
IBEE Zwickau A Monitoring

si-safe Logic I

_LGND

UMO0563

Architecture of the L9952GXP software driver

3

Architecture of the L9952GXP software driver

The software driver for the L9952GXP is independent from the microcontroller which
physically controls the device. It is controlled by the user application layer of the software
driver (see Figure 3).

The glue layer, between the software driver and the low level peripheral drivers of the
microcontroller, is the L9952GXP SPI adaptation layer. This layer adapts the SPI interface of
the software driver to the microcontroller dependent SPI driver. Such a mechanism
decouples the software driver and makes its hardware independent (see Figure 3).

A detailed description of the low level peripheral drivers is ouside the scope of this
document. They are dependent on the microcontroller in question, but, decouple the user
application layer, making it hardware indpendent (see Figure 3). They provide the user
application layer with all the functions necessary to control the L9952GXP device.

A detailed description of the user application layer is also outside the scope of this user
manual. Please refer to the AN2751 (L9952GXP power management system IC application
note) for further details.

Figure 3. Top level architecture of the L9952GXP software driver and the L9952GXP
device with its associated microcontroller and peripherals

User application layer (")

L9952GXP software driver (? SW

L9952GXP SPI adaptation
layer (3)

Low level peripheral drivers
(ports, timers, SPI, ...)(4)

Microcontroller HW
A A A
SPI Reset TVCC 5V) Aux
v | v
L9952GXP

1. User application layer: User software which uses the application programming interface (API) of the
software driver to control the device. Such software is ouside the scope of this document.

2. Software driver for the L9952GXP: The software driver for the L9952GXP which interfaces the user

application layer.

3. L9952GXP SPI adaptation layer: A thin layer which adapts the software driver SPI interface to the

microcontroller dependent SPI driver.

4. Low level peripheral drivers: Provide the user application layer with all the functions necessary to control

the L9952GXP device. They control the peripherals of the microncontroller at the lowest power level.

7/46

Architecture of the L9952GXP software driver UMO0563

3.1

8/46

L9952GXP software driver file structure

The L9952GXP sofware driver includes a set of source files which are shown in Figure 4.
These files are described in more detail in Section 8: Using the L9952GXP software driver
on page 43.

Figure 4. Software driver file structure

Include R Include . 3
L9952drv.c(L9952drv.h (2 L9952drv_Cig.H>)

Include

Include

PIatform_Types.h(S)

4

Std_Types.h®

v

Include

Include ;
optionally

Arbitrary_micro
controller_reg.h ™

Compiler.h ®

Include

Include | g952drv_AL.N®

L9952drv_AL.c(®)

N o g ks

L9952drv.c file contains all functionality of the L9952GXP software driver.

L9952drv.h file contains the headers of the L9952GXP software driver functions.

L9952drv_Cfg.h file contains the configuration of the L9952GXP software driver functions.
Std_Types.h file contains the standard platform types of the L9952GXP software driver functions.
Platform_Types.h file contains the standard platform types for an 8-bit microcontroller platform.
Compiler.h: File contains the compiler dependent definitions.

Arbitrary_microcontroller_reg.h file contains the microcontroller dependent definitions. This is not
necessary for the L9952GXP driver itself, which is hardware independent. This file is useful when the
Std_Types.h/Compiler.h file is shared with other modules.

L9952drv_AL.c and L9952drv_AL.h files adapt the L9952GXP software driver to the low level SPI driver
which allows the software driver to control the L9952GXP device.

UMO0563

Architecture of the L9952GXP software driver

3.2

L9952GXP software driver error detection

Errors are detected in the software driver by checking library usage at runtime (see
flowchart in Figure 5).

When the L9952DRV_DEV_ERROR_DETECT preprocessor switch is defined, the
L9952GXP software driver function checks the initialization status of the library and the
value range of the input parameters at runtime. If an error is detected, the
L9952drv_ReportError() function is called.

Inside the L9952drv_ReportError() function, the
L9952DRV_DEV_ERROR_DETECT_EXEC_ CONTINUE switch allows the user to define
the behavior of the library function.

If the L9952DRV_DEV_ERROR_DETECT_EXEC_CONTINUE switch is not activated, the
library function is terminated immediately.

If the L9952DRV_DEV_ERROR_DETECT_EXEC_CONTINUE switch is defined, the
function body of the library function is executed after exiting the L9952drv_ReportError()
function.

Figure 5. Error detection flowchart of the software driver

Start of
L9952GXP
function

L9952DRV_DEV_
ERROR_DETECT
defined ?

Check input
parameters

No

No Yes | L9952drv Report
Error ()

L9952DRV_DEV_ERRORN
DETECT_EXEC_CONTINUE,
defined?

Yes

4

Function body No

r

9/46

Architecture of the L9952GXP software driver UMO0563

3.3

10/46

L9952GXP low-level peripheral drivers

Hardware of the low-level peripheral drivers depend on the microcontroller being used
together with the L9952GXP device. Functionality of the peripherals lies outside the scope
of the software driver being described in this document. However, an example of low-level
ST7 peripheral driver implementation with the software driver for the L9952GXP and an ST7
microcontroller was developed. This example is delivered with the L9952GXP software

driver.

UMO0563

L9952GXP software driver functions

4

L9952GXP software driver functions

The L9952GXP sofware driver mainly carries out simple functions. It does not perform its
own timing or processes. However, it must service the watchdog trigger, in the correct time
window, of the L9952GXP device. Other timing functions are checked by the user

application.

The following tables summarize the main functions of the L9952GXP software driver.

Table 1. L9952drv_lnit

Service name

L9952drv_Init

Void L9952drv_Init
(

Syntax void

)
Service ID 0
Sync/async Synchronous
Reentrancy Non reentrant
Parameters (in) None
Return value None

This function initializes the software driver. It has no affect on the device, the

Description L9952GXP SPI adaptation layer, or the SPI interface. However, The SPI must
be initialized prior to the function being used.
Caveats L9952drv controlsonly one L9952 device.
This function should not be called when an operation is running.
Configuration None

11/46

L9952GXP software driver functions UMO0563

12/46

Table 2. L9952drv_SetStandbyMode

Service name

L9952drv_SetStandbyMode

Void L9952drv_SetStandbyMode
(

Syntax L9952drv_StandbyModeType mode
)

Service ID 1

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode defines the type of standby mode to be set

Return value

None

This module sets selected standby modes of the L9952GXP device.

Description The registers affected are the CR0.20..21, CR2.20
(by L9952drv_SetVReg1CurrentMonitorOn)(1(2)3)
Power consumption of all components connected to the V1 voltage regulator
must be decreased after standby mode V1 is set. This is done by setting halt
C ¢ mode in the microcontroller. The watchdog should be set in its regular watchdog
aveats time window (to avoid triggering it) by calling L9952drv_WdgTrigger().
This function waits until both control registers are completely transferred to the
L9952GXP device via the SPI.
Configuration None

1. The L9952drv_SetVReg1CurrentMonitorOn() function is called before control register 0 is modified prior to
entering standby mode. This is for security reasons.

2. This function updates the software driver’s internal copy of control register 0 and sends it immediately to
the L9952GXP via the SPI.

3. This function refreshes the software driver’s internal copy of status O register from the L9952GXP device

via the SPI.

UMO0563 L9952GXP software driver functions

Table 3. L9952drv_SetOutMode
Service name L9952drv_SetOutMode

Void L9952drv_SetOutMode
(

Syntax uint8 mask
L9952drv_OutModeType mode

)

Service ID 2
Sync/async Asynchronous
Reentrancy Non reentrant

Parameter mask defines the outputs which should be configured

Address range: 0x00 .. OxF1

Bit 0: 1 = Mask is active for OUTHS, 0 = Mask is not active for OUTHS
Bit 4: 1 = Mask is active for OUT1, 0 = Mask is not active for OUT1

Bit 5: 1 = Mask is active for OUT2, 0 = Mask is not active for OUT2

Bit 6: 1 = Mask is active for OUT3, 0 = Mask is not active for OUT3

Bit 7: 1 = Mask is active for OUT4, 0 = Mask is not active for OUT4

The following constants are defined in L9952drv.h file:
#define L9952DRV_MASK_OUTHS 0x01
#define L9952DRV_MASK_OUT1 0x10
#define L9952DRV_MASK_OUT2 0x20
#define L9952DRV_MASK_OUT3 0x40
#define L9952DRV_MASK_OUT4 0x80

Parameters (in)

Example: OUT_MODE_MASK_OUT1 | OUT_MODE_MASK_OUT2 ... mask
is active for OUT1 and OUT2.

Parameter mode sets the mode for selected outputs

Return value None
This function controls high side (HS) outputs of the L9952GXP

Description The registers affected are the CRO0.0..14(12)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 0 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the
SPI.

‘y_l 13/46

L9952GXP software driver functions

UMO0563

14/46

Table 4.

L9952drv_SetOutHSAutorecovery

Service name

L9952drv_SetOutHSAutorecovery

Void L9952drv_SetOutHSAutorecovery
(

Syntax L9952drv_OutHSAutorecoveryType mode
)

Service ID 3

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode sets the autorecovery functionality of the OUT HS output

Return value

None

This function enables/disables the autorecovery functionality of the OUT HS

Description outputs of the L9952GXP.

The register affected is the CR2.5(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

Table 5.

This function updates the software driver’s internal copy of control register 2 and sends it immediately to

the L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the

L9952drv_SetRelayOutput

Service name

L9952drv_SetRelayOutput

Void L9952drv_SetRelayOutput

Syntax (L9952drv_RelayOutputType value
)

Service ID 4

Sync/Async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter value describes the state a relay is set to (or not set to)

Return value

None

This function controls the low side (LS) relay outputs of the L9952GXP.

Description The registers affected are the CR0.15..16(1)@)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

This function updates the software driver’s internal copy of control register 0 and sends it immediately to

the L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

574

UMO0563

L9952GXP software driver functions

Table 6.

L9952drv_SetVoltageReg2Mode

Service name

L9952drv_SetVoltageReg2Mode

Void L9952drv_SetVoltageReg2Mode
(

Syntax L9952drv_VoltageReg2ModeType mode
)

Service ID 5

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode defines the voltage regulator 2 mode to be set

Return value

None

This function controls the voltage regulator 2 mode of the L9952GXP.

Description The registers affected are the CRO0.17..18(12)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

Table 7.

This function updates the software driver’s internal copy of control register 0 and sends it immediately to
the L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the

L9952drv_SetTimer1

Service name

L9952drv_SetTimer1

Void L9952drv_SetTimer1
(

Syntax L9952drv_Timer1PeriodType period
L9952drv_Timer1ONTimeType ontime
)
Service ID 6
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter period defines the timer 1 period of the L9952GXP.
Parameter ontime defines the period where the L9952GXP timer 1 output is set
to 1.

Return value

None

This function controls timer1 of the L9952GXP.

Description The registers affected are the CR1 15..18(12)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

This function updates the software driver’s internal copy of control register 1 and sends it immediately to

the L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

15/46

L9952GXP software driver functions

UMO0563

16/46

Table 8.

L9952drv_SetTimer2

Service name

L9952drv_SetTimer2

Void L9952drv_SetTimer2(

Syntax L9952drv_Timer20ONTimeType ontime
)

Service ID 7

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter ontime defines the part of the timing period in which the L9952GXP
timer 2 output is set to 1.

Return value

None

This function controls timer2 of the L9952GXP

Description The register affected is the CR1.19(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

Table 9.

This function updates the software driver’s internal copy of the control register 1 and sends it inmediately
to the L9952GXP via the SPI.

the SPI.

This function refreshes the software driver’s internal copy of the status 1 register from the L9952GXP via

L9952drv_SetDigOutput

Service name

L9952drv_SetDigOutput

Void L9952drv_SetDigOutput
(

Syntax L9952drv_DigOutputModeType mode
)

Service ID 8

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode describes the modes for digital outputs Dig_Out3 and
Dig_Out4 of the L9952GXP.

Return value

None

This function controls digital outputs 3 and 4 of the L9952GXP

Description The registers affected are the CR1.12..14(1)(2)
The modes of digital outputs 3 and 4 are coupled due to the internal

Caveats construction of the L9952GXP.
This function waits until the data are completely transferred to the L9952GXP
via the SPI.

Configuration None

This function updates the software driver’s internal copy of control register 1 and sends it immediately to
the L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

574

UMO0563

L9952GXP software driver functions

Table 10. L9952drv_SetWUInputMode

Service name

L9952drv_SetWUInputMode

Void L9952drv_SetWUInputMode
(

Syntax uint8 mask
L9952drv_WUInputModeType mode
)
Service ID 9
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter mask sets the wakeup (WU) input mode as current source (active)
or current sink (not active):

Address range: 0x00 .. OxOF

Bit 0: 1 = Mask active for WU1, 0 = Mask not active for WU1

Bit 1: 1 = Mask active for WU2, 0 = Mask not active for WU2

Bit 2: 1 = Mask active for WU3, 0 = Mask not active for WU3

Bit 3: 1 = Mask active for WU4, 0 = Mask not active for WU4

The following constants are defined in the L9952drv.h file:
#define L9952DRV_MASK_WU1 0x01
#define L9952DRV_MASK_WU2 0x02
#define L9952DRV_MASK_WU3 0x04
#define L9952DRV_MASK_WU4 0x08

Example: L9952DRV_MASK_WU2 | L9952DRV_MASK_WU3 ... mask is
active for WU2 and WU3.
Parameter mode describes the modes (current source/current sink) of the
digital WU inputs.

Return value

None

This function sets the mode (current source or current sink) for the digital

Description wakeup inputs WU 1, WU2, WU3, and WU4 of the L9952GXP.

The registers affected are the CR1 8..11(1)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 1 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

SPI.

17/46

L9952GXP software driver functions UMO0563

18/46

Table 11. L9952drv_DisableWakeupSource

Service name

L9952drv_DisableWakeupSource

Void L9952drv_DisableWakeupSource
(

Syntax: uint8 mask
uint8 bitpattern
)
Service ID 10
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter mask sets the wakeup source. It disables the wakeup source from
OUT1 and WU2 and enables the wakeup source from OUT2.

Address range: 0x00 . .OxFF
Bit 0: 1 = Mask active for WU1

0 = Mask not active for WU1
Bit 1: 1 = Mask active for WU2

0 = Mask not active for WU2
Bit 2: 1 = Mask active for WU3

0 = Mask not active for WU3
Bit 3: 1 = Mask active for WU4

0 = Mask not active for WU4
Bit 4: 1 = Mask active for openload of OUT1 wakeup source,

0 = Mask not active for openload of OUT1 wakeup source
Bit 5: 1 = Mask active for openload of OUT2 wakeup source,

0 = Mask not active for openload of OUT2 wakeup source
Bit 6: 1 = Mask active for openload of OUT3 wakeup source,

0 = Mask not active for openload of OUT3 wakeup source
Bit 7: 1 = Mask active for openload of OUT4 wakeup source,

0 = Mask not active for openload of OUT4 wakeup source

The following constants are defined in the L9952drv.h file:
#define L9952DRV_MASK_WU1 0x01
#define L9952DRV_MASK_WU2 0x02
#define L9952DRV_MASK_WU3 0x04
#define L9952DRV_MASK_WU4 0x08
#define L9952DRV_MASK_OUT1 0x10
#define L9952DRV_MASK_OUT2 0x20
#define L9952DRV_MASK_OUT3 0x40
#define L9952DRV_MASK_OUT4 0x80

Example: L9952DRV_MASK_OUT1 | L9952DRV_MASK_WU4 ... mask is
active for WU1 and openload of OUT4

Parameter bitpattern disables/enables wakeup functionality separately for
each wakeup source. Particular bits correspond with specifice wakeup sources
in the same order as defined by mask (see above). Bits with a value of 1,
disable a corresponding wakeup source. Bits with a value of 0, enable a
corresponding wakeup source.

UMO0563

L9952GXP software driver functions

Table 11. L9952drv_DisableWakeupSource (continued)

Service name

L9952drv_DisableWakeupSource

Parameters (in)
cont'd....

Example:
L9952drv_DisableWakeupSource(0x32, 0x12)

A better method, is to use the predefined constants below:
L9952drv_DisableWakeupSource(L9952DRV_MASK_OUT1 |
L9952DRV_MASK_OUT2 | L9952DRV_MASK_WU?2,
L9952DRV_MASK_OUT1 | L9952DRV_MASK_WU2);

This example disables the wakeup source from OUT1 and WU2; and enables

wakeup source from OUT2. The rest reminds unchanged.

Return value

None

This function enables/disables wakeup functionality separately for each

Description wakeup source defined by mask.

The registers affected are the CR1.0..7(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 1 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

SPI.

Table 12. L9952drv_SetResetThresholdLevel

Service name

L9952drv_SetResetThresholdLevel

Void L9952drv_SetResetThresholdLevel
(

Syntax L9952drv_ResetThresholdLevelType level
)

Service ID 1

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter level defines the reset threshold level value

Return value

None

This function sets the reset threshold level of the L9952GXP

Description The registers affected are the CR2.8..9(1)(?)

Caveats This function waits until the data are completely transferred to the L9952GXP
via the SPI.

Configuration None

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

SPI.

19/46

L9952GXP software driver functions UMO0563

Table 13. L9952drv_SetinputFilterMode

Service name

L9952drv_SetIinputFilterMode

Void L9952drv_SetInputFilterMode
(

Syntax uint8 mask
L9952drv_InputFilterModeType mode
)
Service ID 12
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter mask sets the filter timing of the wakeup inputs
Address range: 0x00 .. OxOF
Bit 0: 1 = Mask active for WU1, 0 = Mask not active for WU1
Bit 1: 1 = Mask active for WU2, 0 = Mask not active for WU2
Bit 2: 1 = Mask active for WU3, 0 = Mask not active for WU3
Bit 3: 1 = Mask active for WU4, 0 = Mask not active for WU4

The following constants are defined in the L9952drv.h file:
#define L9952DRV_MASK_WU1 0x01
#define L9952DRV_MASK_WU2 0x02
#define L9952DRV_MASK_WU3 0x04
#define L9952DRV_MASK_WU4 0x08

Example: L9952DRV_MASK_WU1 | L9952DRV_MASK_WU4 ... mask is
active for WU1 and WU4.

Parameter mode sets filter timing for related WU inputs

Return value

None

This function controls the filter timing for digital wakeup inputs WU1, WU2, WU3

Description and WU4 of the L9952GXP.

The registers affected are the CR2.10..17(12)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

SPI.

20/46

UMO0563

L9952GXP software driver functions

Table 14. L9952drv_SetOutOLThresholdLevel

Service name

L9952drv_SetOutOLThresholdLevel

Void L9952drv_SetOutOLThresholdLevel
(

Syntax uint8 mask
L9952drv_OutOLThresholdLevelType level
)
Service ID 13
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter mask sets the openload detection level (OLT) for related HS outputs

Address range: 0x00 .. OxFO

Bit 4: 1 = Mask active for OUT 1, 0 = Mask not active for OUT 1
Bit 5: 1 = Mask active for OUT 2, 0 = Mask not active for OUT 2
Bit 6: 1 = Mask active for OUT 3, 0 = Mask not active for OUT 3
Bit 7: 1 = Mask active for OUT 4, 0 = Mask not active for OUT 4

Following constants are defined in L9952drv.h file
#define L9952DRV_MASK_OUT1 0x10
#define L9952DRV_MASK_OUT2 0x20
#define L9952DRV_MASK_OUT3 0x40
#define L9952DRV_MASK_OUT4 0x80

Example: L9952DRV_MASK_OUT1 | L9952DRV_MASK_OUT 4 ... mask is
active for OUT1 and OUT4.

Parameter level defines level for open load detection for related HS outputs

Return value

None

This function sets the openload detection level for selected HS outputs 1..4 of

Description the L9952GXP.

The registers affected are the CR2.0..3(1)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

SPI.

21/46

L9952GXP software driver functions

UMO0563

22/46

Table 15.

L9952drv_LinSetup

Service name

L9952drv_LinSetup

Void L9952drv_LinSetup
(

Syntax L9952drv_LinSetupType value
)

Service ID 14

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter value LIN setup values for pull up, on bits 0..2, which enables
dominant TxD timeout and LIN slope

Return value

None

This function sets the LIN configuration.

Description The registers affected are the CR2.6, 2.7, 2.18(M2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1.

Table 16.

This function updates the software driver’s internal copy of control register 2 and sends it immediately to

the L9952GXP via the SPI.
2. This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the

SPI.

L9952drv_ClearStatusRegisters

Service name

L9952drv_ClearStatusRegisters

Void L9952drv_ClearStatusRegisters

Syntax (void

)
Service ID 15
Sync/async Asynchronous
Reentrancy Non reentrant
Parameters (in) None
Return value None

This function clears the content of both L9952GXP status registers

Description The register affected is the CR1.21(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1.

This function updates the software driver’s internal copy of control register 1 and sends it immediately to

the L9952GXP via the SPI. It then changes the internal copy of control register 1 and sends it again to the
L9952GXP via the SPI.

SPI.

This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

574

UMO0563

L9952GXP software driver functions

Table 17. L9952drv_SetVsLockoutMode

Service name

L9952drv_SetVsLockoutMode

Void L9952drv_SetVsLockoutMode
(

Syntax L9952drv_VsLockoutModeType mode
)

Service ID 16

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode selects the behavior of the L9952GXP after Vs (power supply
voltage) recovery

Return value

None

This function enables automatic recovery of outputs after Vs over/under voltage

Description recovery of the L9952GXP.

The register affected is the CR2.4(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

SPI.

23/46

L9952GXP software driver functions UMO0563

24/46

Table 18. L9952drv_WdgTrigger

Service name

L9952drv_WdgTrigger

Void L9952drv_WdgTrigger
(

Syntax void

)
Service ID 17
Sync/async Synchronous
Reentrancy Non reentrant
Parameters (in) None
Return value None

Description

This function triggers the watchdog hardware. It is called cyclically by the upper
layer function (usually the watchdog manager), to prevent the watchdog
hardware from expiring. Right timing is essential. For more details see the
L9952GXP datasheet.

The register affected is the CR0.19(WR)G)

This function ensures the user pays attention to special conditions, such as,
watchdog handling after wakeup from standby mode.

Caveats

This function waits until the data are completely transferred to the L9952GXP
via the SPI.

Configuration

None

1. For security reasons, this function periodically refreshes dedicated bit positions of the main internal

variables.

This function writes internal copies of control register 0 to the L9952GXP device via the SPI.

3. This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the

SPI.

UMO0563

L9952GXP software driver functions

Table 19. L9952drv_SetRelayShutdownMode

Service name

L9952drv_SetRelayShutdownMode

Void L9952drv_SetRelayShutdownMode
(

Syntax L9952drv_RelayShutdownModeType mode
)

Service ID 18

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode selects the behavior of the relay output of the L9952GXP after
under/over voltage

Return value

None

This function enables automatic shutdown of the relay outputs during Vs

Description over/under voltage of the L9952GXP.

The register affected is the CR2.19(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 0 register from the L9952GXP via the

SPI.

25/46

L9952GXP software driver functions UMO0563

26/46

Table 20.

L9952drv_GetGlobalErrorStatus

Service name

L9952drv_GetGlobalErrorStatus

Bool L9952drv_GetGlobalErrorStatus
(

Syntax void

)
Service ID 19
Sync/async Synchronous
Reentrancy Non reentrant

Parameters (in)

None

Return value

True: Global error status is set (at least one error flag is set)
False: Global error status is reset (no error)

This function gets the status of the cumulative error bit of the L9952GXP. It is

Description implemented using the L9952drv_GetStatus0() function(!).
Reading the DO bit of the SPI while the chip select (CS) pin is active is not
standard SPI operation. The microcontroller-related SPI driver may not support
Caveats such functionality and problems may arise in the SPI adaptation layer.
This function waits until the data are completely transferred to the L9952GXP
via the SPI.
Configuration None

1.

It is possible to get the status of the cumulative error bit by regularly reading status register 0/1 or by

reading the first byte of either register. An alternative and quicker method is to read the DO bit of the SPI
while the SPI is not clocked and the chipselect (CS) pin is active. The SPI must not be communicating
during this procedure.

UMO0563

L9952GXP software driver functions

Table 21.

L9952drv_GetStatus0

Service name

L9952drv_GetStatus0

Void L9952drv_GetStatus0
(

Syntax L9952drv_StatusRegType *DataPtr
)

Service ID 20

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter *DataPtr points to variables which are filled with data from the status
0 register.

Return value

None

This function reads the current status from the L9952GXP via the SPI and then

Description files the data structure in the staus 0 registerm

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1.

Table 22.

Control register 2 is refreshed to the L9952GXP via the SPI using the software driver’s interanl copy of it.

L9952drv_ReadStatus0

Service name

L9952drv_ReadStatus0

Void L9952drv_ReadStatus0
(

Syntax L9952drv_StatusRegType *DataPtr
)

Service ID 21

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter *DataPtr points to variables which are filled with data from the status
0 register.

Return value

None

This function files data structure with the most recent software driver internal

Description copy of status 0 data.

Caveats This function returns the internal copy of the data. The status 0 register is not
refreshed by reading its status from the L9952GXP via the sPI,

Configuration None

The internal copy of the status 0 register is refreshed at every watchdog trigger (every 10 ms) by calling the
L9952drv_WdgTrigger() function.

27146

L9952GXP software driver functions

UMO0563

Table 23.

L9952drv_GetStatus1

Service name

L9952drv_GetStatus1

Void L9952drv_GetStatus1
(

Syntax L9952drv_StatusRegType *DataPtr
)

Service ID 22

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter *DataPtr points to variables which are filled with data from the status
1 register.

Return value

None

This function reads the current status from the L9952GXP via the SPI and then

Description files the data structure in the staus 1 registerm

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. Control register 1 is refreshed to the L9952GXP via the SPI using the software driver’s interanl copy of it.

Table 24.

L9952drv_ReadStatus1

Service name

L9952drv_ReadStatus1

Void L9952drv_ReadStatus1
(

Syntax L9952drv_StatusRegType *DataPtr
)

Service ID 23

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter *DataPtr points to variables which are filled with data from the status
1 register.

Return value

None

This function files data structure with the most recent software driver internal

Description copy of status 1 data.

Caveats This function returns the internal copy of the data. The status 1 register is not
refreshed by reading its status from the L9952GXP via the sPI,

Configuration None

1. Use the L9952drv_GetStatus1() function to get actual refreshed data via the SPI.

UMO0563

L9952GXP software driver functions

Table 25.

L9952drv_SetVReg1CurrentMonitorOn

Service name

L9952drv_SetVReg1CurrentMonitorOn

Void L9952drv_SetVReg1CurrentMonitorOn
(

Syntax void

)
Service ID 24
Sync/async Asynchronous
Reentrancy: Non reentrant
Parameters (in) None
Return value None

This function switches on voltage regulator 1 of the L9952GXP in stand by

Description mode.

The register affected is the CR2.20(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats

via the SPI.

Configuration

None

Table 26.

1. This function updates the software driver’s internal copy of control register 2 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status O register from the L9952GXP via the

SPI.

L9952drv_SetintMode

Service name

L9952drv_SetintMode

Void L9952drv_SetIntMode

Syntax (L9952drv_IntModeType mode
)

Service ID 25

Sync/async Asynchronous

Reentrancy Non reentrant

Parameters (in)

Parameter mode selects the interrupt mode of L9952GXP

Return value

None

This function selects the interrupt mode of L9952GXP

Description The register affected is the CR1.20(1)2)

This function waits until the data are completely transferred to the L9952GXP
Caveats .

via the SPI.
Configuration None

1. This function updates the software driver’s internal copy of control register 1 and sends it immediately to
the L9952GXP via the SPI.

2. This function refreshes the software driver’s internal copy of status 1 register from the L9952GXP via the

SPI.

29/46

L9952GXP software driver platform types

UMO0563

5

30/46

L9952GXP software driver platform types

The following tables summarize the L9952GXP software driver platform types.

Table 27. L9952drv_StandbyModeType
Type enum
L9952DRV_STANDBYMODE_V/1 a‘g‘;‘;hes L9952GXP to V1 standby
Range .
L9952DRV_STANDBYMODE_VBAT rsn"c‘)"(;‘;hes LO952GXP to Vbat stand by
Description Defines the standby modes of the L9952GXP
Table 28. L9952drv_OutModeType
Type: enum
L9952DRV_OUT_MODE_OFF Driver is off in all modes
L9952DRV OUT MODE ON Driver is on in active mode and off in
- - - standby mode
L9952DRV_OUT _MODE_TIMER1 Prlver is cyclic: It is on when Timer1 is
in active or standby mode
Range — . . . -
L9952DRV OUT MODE TIMER2 !Z)rlver is cyclic: It is on when Timer2 is
- - - in active or standby mode
Driver is controlled by the pulse-width
L9952DRV_OUT_MODE_PWM1 modulation 1 (PWM1) input
L9952DRV_OUT_MODE_PWM2 Driver is controlled by the PWM2 input
Description Defines the output modes of the HS outputs
Table 29. L9952drv_OutHSAutorecoveryType
Type enum
L9952DRV_OUTHS_AUTORECOVERY | D'Sables the autorecovery
OFF - - functionality for the OUT HS outputs
- of the L9952GXP
Range —
nables the autorecovery
ngstDRV—OUTHS—AUTORECOVERY functionality for the OUT HS outputs
- of the L9952GXP
e Defines the states for the OUT HS outputs which control autorecovery
Description

functionality

UMO0563

L9952GXP software driver platform types

Table 30. L9952drv_RelayOutputType
Type enum
RELAYOUTPUT_OFF_OFF Switches both relays off
RELAYOUTPUT_ON_OFF Switches relay REL1 on and REL2 off
RELAYOUTPUT_OFF_ON Switches relay REL1 off and REL2 on
RELAYOUTPUT_ON_ON Switches both relays on
RELAYOUTPUT OFF X SW|tche§ relay REL1 off and refreshes
Range the previous state of REL2
Switches relay REL1 on and refreshes
RELAYOUTPUT_ON_X the previous state of REL2
Switches relay REL2 off and refreshes
RELAYOUTPUT_X_OFF the previous state of REL1
Switches relay REL2 on and refreshes
RELAYOUTPUT_X_ON the previous state of REL1
Description Defines the states to control the relay outputs
Table 31. L9952drv_VoltageReg2ModeType
Type enum
L9952DRV_VOLTAGE_REG2_OFF Switches voltage regulator 2 off
L9952DRV_VOLTAGE_REG2_ON_AC | Switches voltage regulator 2 on when
TIVE the L9952GXP is in active mode
Range Switches voltage regulator 2 on when
L9952DRV_VOLTAGE_REG2_ON_V1 |the L9952GXP is in active or V1
standby mode
L9952DRV_VOLTAGE_REG2_ON Switches voltage regulator 2 on
Description Defines the voltage regulator 2 modes of the L9952GXP

31/46

L9952GXP software driver platform types

UMO0563

32/46

Table 32. L9952drv_Timer1PeriodType
Type enum
L9952DRV_TIMER1PERIOD_500 Sets timer 1 period to 0.5 s
L9952DRV_TIMER1PERIOD_1000 Sets timer 1 period to 1 s
L9952DRV_TIMER1PERIOD_1500 Sets timer 1 periodto 1.5 s
L9952DRV_TIMER1PERIOD_2000 Sets timer 1 period to 2 s
Range
L9952DRV_TIMER1PERIOD_2500 Sets timer 1 periodto 2.5 s
L9952DRV_TIMER1PERIOD_3000 Sets timer 1 period to 3 s
L9952DRV_TIMER1PERIOD_3500 Sets timer 1 periodto 3.5 s
L9952DRV_TIMER1PERIOD_4000 Sets timer 1 period to 4 s
Description Defines the timer 1 period of the L9952GXP
Table 33. L9952drv_Timer1ONTimeType
Type enum
L9952DRV_TIMER1ONTIME_10 Defines the ‘on’ time value as 10 ms
Range
? L9952DRV_TIMER1ONTIME_20 Defines ‘on’ time value as 20 ms
Description Defines the ‘on’ time of timer 1 of the L9952GXP
Table 34. L9952drv_Timer20ONTimeType
Type enum
R L9952DRV_TIMER2ONTIME_01 Defines the ‘on’ time value as 100 ps
ange
L9952DRV_TIMER2ONTIME_1 Defines the ‘on’ time value as 1 ms
Description Defines the ‘on’ time of timer 2 of the L9952GXP

UMO0563

L9952GXP software driver platform types

Table 35.

L9952drv_DigOutputModeType

Type

enum

Range

L9952DRV_DO_WU3_WU4

Sets Dig_Out3 to loopback of WU3
Sets Dig_Dut4 to loopback of WU4

L9952DRV_DO_HIZ_WuU4

Sets Dig_Out3 to high impedance
Sets Dig_Dut4 to loopback of WU4

L9952DRV_DO_WU3_HIZ

Sets Dig_Out3 to loopback of WU3
Sets Dig_Dut4 to high impedance

L9952DRV_DO_WU3_OLHS
2

Sets Dig_Out3 to loopback of WU3
Sets Dig_Out4 to loopback of open load state of OUT2

L9952DRV_DO_OLHS1_WU
4

Sets Dig_Out3 to loopback of open load state of OUT1
Sets Dig_Out4 to loopback of WU4

L9952DRV_DO_OLHS1_OL
HS2

Sets Dig_Out3 to loopback of open load state of OUT1
Sets Dig_Out4 to loopback of open load state of OUT2

L9952DRV_DO_OLHS1_HIZ

Sets Dig_Out3 to loopback of open load state of OUT1
Sets Dig_Out4 to high impedance

L9952DRV_DO_HIZ_OLHS2

Sets Dig_Out3 to high impedance
Sets Dig_Out4 to loopback of open load state of OUT2

Description

Defines which signals are looped to digital outputs Dig_Out3 and Dig_Out4

Table 36.

L9952drv_WUInputModeType

Type

enum

Range

L9952DRV_WU_INPUT_MODE_CUR_SINK

Defines the current sink (pull down)
mode for related WU inputs

L9952DRV_WU_INPUT_MODE_CUR_SOURCE

Defines the current source (pull up)
mode for related WU inputs

Description

Defines current source/current sink modes for related WU inputs

Table 37.

L9952drv_InputFilterModeType

Type

enum

Range

L9952DRV_IN_FILTER 64

Defines the input filter time value as 64 ys
and leaves it unsynchronized

L9952DRV_IN_FILTER_80_TIMER2

Defines the input filter time value as 80 ys
and synchronizes it with timer 2

L9952DRV_IN_FILTER_800_TIMER2

Defines the input filter time value as 800 ys
and synchronizes it with timer 2

L9952DRV_IN_FILTER_800_TIMER1

Defines the input filter time value as 800 ps
and synchronizes it with timer 1

Description

Defines the input filter configuration for related WU inputs

33/46

L9952GXP software driver platform types

UMO0563

34/46

Table 38. L9952drv_ResetThresholdLevelType
Type enum
L9952DRV_RESET_THRESHOLD 465 |Defines the reset threshold level as
0 465V
Range
L9952DRV_RESET_THRESHOLD_435 | Defines the reset threshold level as
0 435V
Description Defines the reset threshold level value
Table 39. L9952drv_OutOLThresholdLevelType
Type enum
L9952DRV_OUT OLTHRESHOLD 2 Defines the output openload threshold
level value as 2 mA
Range .
L9952DRV_OUT OLTHRESHOLD 8 Defines the output openload threshold
level value as 8 mA
Description Defines the output openload threshold level value for related outputs
Table 40. L9952drv_LinSetupType
Type enum
Enables master pullup (LINPU) and
L9952DRV_LIN_SL_DI_TIM_EN_PUP_EN | TxD dominant timeout for LIN; disables
alternative LIN slope
Disbles master pullup (LINPU) and
L9952DRV_LIN_SL_DI_TIM_EN_PUP_DI |alternative LIN slope; enables TxD
dominant timeout for LIN
Enables master pullup (LINPU);
L9952DRV_LIN_SL_DI_TIM_DI_PUP_EN |disables TxD dominant timeout for LIN
and alternative LIN slope
Disbles master pullup (LINPU), TxD
L9952DRV_LIN_SL_DI_TIM_DI_PUP_DI dominant timeout for LIN, and
alternative LIN slope
Range
L9952DRV_LIN_SL_EN_TIM_EN_PUP_E | Enables master pullup (LINPU), TxD
- == === - dominant timeout for LIN, and
N .
alternative LIN slope
Disbles master pullup (LINPU); enables
L9952DRV_LIN_SL_EN_TIM_EN_PUP_DI | TxD dominant timeout for LIN and
alternative LIN slope
Enables master pullup (LINPU) and
L9952DRV_LIN_SL_EN_TIM_DI_PUP_EN | alternative LIN slope; disables TxD
dominant timeout for LIN
Disbles master pullup (LINPU) and TxD
L9952DRV_LIN_SL_EN_TIM_DI_PUP_DI |dominant timeout for LIN; enables
alternative LIN slope
_ Defines all possible configurations related to the L9952GXP LIN interface. One
Description

configuration must be chosen.

UMO0563

L9952GXP software driver platform types

Table 41. L9952drv_VsLockoutModeType
Type enum
Disables Vs lockout after a Vs over/under
L9952DRV_VS_LOCKOUT DISABLE voltage gondltlon has dlsappgared. Outputs
automatically recover according to the output
settings in the CRO register.
Range Enables Vs lockout. After a Vs over/under
voltage recovery, outputs remain off until the
L9952DRV_VS_LOCKOUT_ENABLE | status register 1 bits 0 and 1 are cleared by
the CLR command, using bit 21 of control
regsiter 1.
Descriotion Defines Vs lockout modes for controlling automatic recovery after Vs over/under
P voltage recovery of the L9952GXP
Table 42. L9952drv_RelayShutdownModeType
Type enum
Enables shutdown of relay outputs during Vs
L9952DRV_RELAY_SHUTDOWN_EN | over/under voltage of the L9952GXP.
ABLE REL1.2 turned off in case of Vs over/under
voltage.
Range
Disables shutdown of relay outputs during
L9952DRV_RELAY_SHUTDOWN_DIS | Vs over/under voltage of the L9952GXP.
ABLE REL1.2 remain on in case of Vs over/under
voltage.
Description | Defines modes which control Vs over/under voltage shutdown of REL1.2 (low side drivers)
Table 43. L9952drv_IntModeType
Type enum
R L9952DRV_INT_DISABLE Disables interrupt mode
ange
L9952DRV_INT_ENABLE Enables interrupt mode
Description | Defines modes which control the interrupt mode of the L9952GXP
Table 44. L9952drv_StatusRegType
Type uint32
Range 0..0x00FFFFFF
The L9952drv_StatusRegType defines global data types for access to a complete
Descriotion local copy of the L9952GXP status registers 0 and 1. Access to the internal structure
P and particular bit variables of each status register is provided by a set of masks
related to each bit variable inside the status register.

35/46

Dynamic view of the L9952GXP software driver functions

UMO0563

6

36/46

Dynamic view of the L9952GXP software driver
functions

The following figures give a dynamic overview of the L9952GXP software driver functions.

Figure 6.

L9952drv_Init() function

L9952GXP s/w
driver user

L9952GXP s/w
driver

L9952GXP
SPI adaptation
layer

SPI driver

L9952GXP
device

1.9952drv_Init()

I
|
|
|
|

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1.

The hardware layer is depicted with a grey background and the software layer is depicted with a white

background.

UMO0563

Dynamic view of the L9952GXP software driver functions

Figure 7.

L9952drv_WdgTrigger() function

Right time window
is mandatory

_1 L9952drv_Wdg
Trigger ()

L9952GXP
L9952GXP L9952GXP . . L9952GXP
s/w driver user s/w driver SPI adaptation SPI driver device
layer
T 1 1 ' '
! | [! !
L9952drv_Wdg : I | |
Trigger () L9952DRV_AL_ | | |
SPLWR() | | SPI2abit
-l SPI_WR() communication I

L9952DRV_AL_

Right time window
is mandatory

N

|

|

|
~L 19952drv_Wdg
Trigger ()

SPI_WR()

> data transfer
\—4- -----

SPI 24 bit

|
|
|
|
|
|
|
|
|
|
|
|
communication :

L9952DRV_AL_

SPI_WR()

data transfer

SPI 24 bit
SPI_WR() communication !

> data transfer |
PR
_4- -----
S —

1. The hardware layer is depicted with a grey background and the software layer is depicted with a white

background.

37/46

Dynamic view of the L9952GXP software driver functions

UMO0563

38/46

Figure 8.

L9952drv_SetStandbyMode (L9952DRV_STANDBYMODE_V1) function

Microcontroller should go

to halt mode now
\ - — — — — =

L9952DRV_AL_
SPI_WR()

L9952GXP
L9952GXP L9952GXP i) L9952GXP
s/w driver user s/w driver SPI adaptation SPI driver device
layer
] |) T
l ' ' | |
A 19952drv_Wdg | I | |
Trigger () L9952DRV_AL_ | | |
> sPLWR() | | SPl2abit |
| SPI_WR() communication |
g data transfer
J_" """ l
R - I I
: ------- . I : :
Should be close to L] | |

COSE L9952 |
watchdog triggering L gﬁib‘;’h;ﬁ:{f‘ I Logs2DRV AL_ ! ! o
> SPLWR() _ ! | sPi2dbit
— > SPI_WR() communication |
1

data transfer

SPI 24 bit
communication

data transfer

1. The hardware layer is depicted with a grey background and the software layer is depicted with a white

background.

Figure 9.

L9952drv_ClearStatusRegister() function

L9952GXP
L9952GXP L9952GXP i . L9952GXP
s/w driver user s/w driver SPI adaptation SPI driver device
layer
| | T T
! | | [[
| |
| L9952drv_Clear | ! | |
L StatusRegisters() I L9952DRV_AL_ | . |
N sPLWR() ! | SPl24nbit |
> SPI_WR() communication |
data transfer |
- - - —— -
[—-=-——-- T

L9952DRV_AL_

SPI_WR() _

data

SPI 24 bit
communication

transfer

1. The hardware layer is depicted with a grey background and the software layer is depicted with a white

background.

UMO0563

Dynamic view of the L9952GXP software driver functions

The L9952drv_SetStandbyMode(L9952DRV_STANDBYMODE_VBAT) is one of a group of
functions of the L9952GXP which have the same behavior. Other functions in this group
include:

L9952drv_SetOutMode()
L9952drv_SetRelayOutput()

?
?
?

?

Figure 10. Group of L9952GXP software driver functions with similar behavior

L9952drv_SetVoltageReg2Mode()
L9952drv_SetOutHSAutorecovery()
L9952drv_SetTimer1()
L9952drv_SetTimer2()

L9952drv_SetDigOutput()
L9952drv_SetWUInputMode()

L9952drv_DisableWakeupSource()
L9952drv_SetResetThresholdLevel()

L9952drv_SetlInputFilterMode()
L9952drv_SetOutOLThresholdLevel()
L9952drv_LinSetup()
L9952drv_SetVsLockoutMode()

L9952drv_SetRelayShutdownMode()
L9952drv_GetStatus0()
L9952drv_GetStatus1()

L9952drv_SetVReg1CurrentMonitorOn()

L9952drv_SetIintMode

L9952GXP s/w
driver user

L9952GXP s/w
driver

L9952GXP

SPI adaptation SPI driver

layer

L9952GXP
device

T
|

! L9952drv_Func
tionGroup1()

L9952DRV_AL_
SPI_WR()

SPI_WR()

}
|
|
|
|
|

communication

data transfer
—>
le—

SPI 24 bit

1.

The hardware layer is depicted with a grey background and the software layer is depicted with a white

background.

39/46

Dynamic view of the L9952GXP software driver functions UMO0563

40/46

The ReadStatusx() function is comprised of two similarly behaved functions:
2 L9952drv_ReadStatus0()
2 L9952drv_ReadStatus1()

Figure 11. L9952drv_ReadStatusx() function

L9952GXP
L99§2GXP siw L9952§XP siw SPI adaptation SPI driver L9952QXP
driver user driver layer device

|

| L9952drv_Read
StatusX();
X

=<0, 1>

1. The hardware layer is depicted with a grey background and the software layer is depicted with a white
background.

Figure 12. 19952drv_GetGlobalErrorStatus() function

L9952GXP
L99§ZGXP s/w L9952§XP s/w SPI adaptation SPI driver L9952§XP
driver user driver layer device

. :
I

L9952drv_GetGl |
obalErrorStatus()I L9952DRV_AL_

SPI_WR()

))
I I
I I
I I
I I
SPILWR() | SPI :

communication

1. The hardware layer is depicted with a grey background and the software layer is depicted with a white
background.

UMO0563

Dynamic view of the L9952GXP software driver functions

6.1

Note:

L9952GXP software driver error handling function

Runtime error handling is supported via the L9952drv_ReportError() function. This function
is called from any of the L9952GXP driver functions when an error is detected. It is originally
implemented as a dummy function. Runtime error handling allows the user to implement the
required functionality, for example, error logging, setting some user global error variables or
flags for detailed error localization, and so on. The function is available only if the
preprocessor switch L9952DRV_DEV_ERROR_DETECT is set.

For further details, please refer to Section 3.2: L9952GXP software driver error detection on

page 9.

The error handling function does not care about the arbitrary SPI communication driver. All
SPI errors and timeouts must be solved inside the SPI driver.

If there is an error lock and the the watchdog expires, the microcontroller may be reset by
the L9952GXP device.

Table 45. L9952drv_ReportError

Service name

L9952drv_ReportError

Bool L9952drv_ReportError
(

Syntax uint8 Serviceld
uint8 Errorld
)
Service ID -
Sync/async Asynchronous
Reentrancy Non reentrant

Parameters (in)

Parameter Serviceld defines the ID of the failing function (service)
Parameter Errorld defines ID of the error

Return value

True: The software driver continues in an interrupted function in run mode
without the L9952DRV_DEV_ERROR_DETECT.

False: The software driver stops execution of the interrupted function by
returning (avoiding) any communication with the L9952GXP device().

Description Service for reporting errors, especially during the development phase
This function is originally implemented as a dummy function. It allows the user
Caveats to implement the required functionality, for example error logging, setting of
some user global error variables for detailed error localization, and so on.
Configuration None

1. The return value is driven in the L9952drv_Cfg.h file by #DEFINE
L9952DRV_DEV_ERROR_DETECT_EXEC_CONTINUE.

41/46

L9952GXP software driver system requirements UMO0563
7 L9952GXP software driver system requirements
71 Operating system, compiler and interrupts
2 The L9952GXP driver is written in ANSI C and is MISRA 1l compliant
? No operating system is required or directly supported
? No interrupts are used or required
2 The compiler depends on the microcontroller being used
7.2 Hardware requirements
There are no special hardware requirements for the L9952GXP software driver. For
hardware details, please refer to the L9952GXP datasheet.
7.3 Memory mapping
Memory mapping depends on the microcontroller being used and the setup of the compiler.
Table 46 gives two setups of the ST7L3 microcontroller which is compiled by Cosmic C
(version 4.5.5).
Table 46. Memory mapping examples
Map file items Setup 1 Setup 2
Microcontroller ST7L3 ST7L3
Memory model Compact memory Long stack
Memory model short modc modsl
cut
Version Run Debug
Version note Not defined Defined
L9952DRV_DEV_ERROR_DETECT |L9952DRV_DEV_ERROR_DETECT
Filename 19952drv_T5_1_R_c.map 19952drv_T5_1_D_sl.map
Map file items Result
Text (ROM) 1445 3183
Const (ROM) 4 4
Ubsct (RAM) 23 8
Share (RAM) 15 0
Data (RAM) 0 1
Bss (RAM stack) 0 15
42/46 17

UMO0563

Using the L9952GXP software driver

8

8.1

Note:

8.2

8.3

8.4

8.5

Using the L9952GXP software driver

The L9952GXP software driver includes a set of source files which can be modified by the
user if necessary to customize the driver. Some changes are essential, for example, see
Section 8.7: L9952drv_AL.c and L9952drv_AL.h files below.

Main.c file

Before beginning, this file is empty because it exists to compile the software driver for the
L9952GXP device.

The user must regularly service the L9952GXP device watchdog.

L9952drv.C file
The L9952 _drv.c file contains all functionality of the L9952GXP software driver.

It is recommended to change nothing in this file except the L9952drv_ReportError function.

The L9952drv_ReportError function is called from the L9952GXP software driver function if
the L9952DRV_DEV_ERROR_DETECT switch is active. This function is originally
implemented as a dummy function. It allows the user to implement the required functionality,
for example, error logging, settings of some user global error variables for detailed error
localization, and so on. See Section 3.2: L9952GXP software driver error detection on
page 9.

L9952_Cfg file

The source file, L9952_Cfg.h, is a dedicated area where L9952GXP software driver
configuration items are placed. Before the L9952GXP is configured, two preprocessor
switches allow the user to tune driver behavior. No changes are required, but, it is possible
to make them. For more details about preprocessor switches see Section 3.2: L9952GXP
software driver error detection on page 9.

Std_Types.h file

The Std_Types.h file is an Autosar compliant file. It defines standard platform types of the
L9952GXP software driver functions. No user changes are necessary.

Platform_Types.h file

File Platform_Types.h is an Autosar compliant file which defines global symbols depending
on the microcontroller platform (8-bit, 16-bit, or 32-bit). By default, this file contains values
for an 8-bit microcontroller platform, for which no user changes are necessary.

43/46

Using the L9952GXP software driver UMO0563

8.6

8.7

Note:

44/46

Compiler.h file

File Compiler.h is an Autosar compliant file which defines compiler types. Currently, this file
contains values for the Cosmic C-compiler. The L9952GXP software driver is hardware
independent, therefore, the Compiler.h file does not include any microcontroller dependent
file. No user changes are necessary.

L9952drv_AL.c and L9952drv_AL.h files

These files adapt the L9952GXP software driver to the low level SPI driver which allows the
software driver to control the L9952GXP device (see Section 3).

The L9952drv_AL.h file contains the macro:
#define L9952DRV_AL SPI WR SPI Send

This macro assigns a function, SPI_Send(), to transfer the SPI driver to the L9952GXP
device. SPI_Send() replaces the general function L9952DRV_AL_SPI_WR. By default,
SPI_Send() exists as a dummy function which needs to be updated or replaced. If it does
not exist, it must be created in the L9952drv_AL.c file.

The SPI_Send() prototype is:
extern void SPI Send (uint8 *DataTX, uint8 *DataRX) ;

A description of SPI_Send() is as follows:

2 DataTX defines a pointer to 3 bytes of data to be transmitted via the SPI

2 DataRX defines a pointer to 3 bytes of data to be received via the SPI

Data transmitted via the SPI are 3 bytes (24 bits) in length. They are transmitted in the

order: byte 1, byte 2, and byte 3. The MSB is always transmitted as the first bit from the
byte. Data are received in the same order as those transmitted.

The SPI driver must be initialized before the L9952GXP software driver is used for the first
time.

UMO0563

Revision history

9

Revision history

Table 47. Document revision history

Date Revision Changes
08-Jul-2008 1 Initial release
22-Sep-2013 2 Updated Disclaimer.

45/46

UMO0563

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

46/46 [s74

	1 Naming different releases of the L9952GXP software driver
	Figure 1. Release names of the software driver

	2 Purpose of the L9952GXP software driver
	Figure 2. Block diagram of the L9952GXP software driver and the L9952GXP device with its associated microcontroller and peripherals

	3 Architecture of the L9952GXP software driver
	Figure 3. Top level architecture of the L9952GXP software driver and the L9952GXP device with its associated microcontroller and peripherals
	3.1 L9952GXP software driver file structure
	Figure 4. Software driver file structure

	3.2 L9952GXP software driver error detection
	Figure 5. Error detection flowchart of the software driver

	3.3 L9952GXP low-level peripheral drivers

	4 L9952GXP software driver functions
	Table 1. L9952drv_Init
	Table 2. L9952drv_SetStandbyMode
	Table 3. L9952drv_SetOutMode
	Table 4. L9952drv_SetOutHSAutorecovery
	Table 5. L9952drv_SetRelayOutput
	Table 6. L9952drv_SetVoltageReg2Mode
	Table 7. L9952drv_SetTimer1
	Table 8. L9952drv_SetTimer2
	Table 9. L9952drv_SetDigOutput
	Table 10. L9952drv_SetWUInputMode
	Table 11. L9952drv_DisableWakeupSource
	Table 12. L9952drv_SetResetThresholdLevel
	Table 13. L9952drv_SetInputFilterMode
	Table 14. L9952drv_SetOutOLThresholdLevel
	Table 15. L9952drv_LinSetup
	Table 16. L9952drv_ClearStatusRegisters
	Table 17. L9952drv_SetVsLockoutMode
	Table 18. L9952drv_WdgTrigger
	Table 19. L9952drv_SetRelayShutdownMode
	Table 20. L9952drv_GetGlobalErrorStatus
	Table 21. L9952drv_GetStatus0
	Table 22. L9952drv_ReadStatus0
	Table 23. L9952drv_GetStatus1
	Table 24. L9952drv_ReadStatus1
	Table 25. L9952drv_SetVReg1CurrentMonitorOn
	Table 26. L9952drv_SetIntMode

	5 L9952GXP software driver platform types
	Table 27. L9952drv_StandbyModeType
	Table 28. L9952drv_OutModeType
	Table 29. L9952drv_OutHSAutorecoveryType
	Table 30. L9952drv_RelayOutputType
	Table 31. L9952drv_VoltageReg2ModeType
	Table 32. L9952drv_Timer1PeriodType
	Table 33. L9952drv_Timer1ONTimeType
	Table 34. L9952drv_Timer2ONTimeType
	Table 35. L9952drv_DigOutputModeType
	Table 36. L9952drv_WUInputModeType
	Table 37. L9952drv_InputFilterModeType
	Table 38. L9952drv_ResetThresholdLevelType
	Table 39. L9952drv_OutOLThresholdLevelType
	Table 40. L9952drv_LinSetupType
	Table 41. L9952drv_VsLockoutModeType
	Table 42. L9952drv_RelayShutdownModeType
	Table 43. L9952drv_IntModeType
	Table 44. L9952drv_StatusRegType

	6 Dynamic view of the L9952GXP software driver functions
	Figure 6. L9952drv_Init() function
	Figure 7. L9952drv_WdgTrigger() function
	Figure 8. L9952drv_SetStandbyMode (L9952DRV_STANDBYMODE_V1) function
	Figure 9. L9952drv_ClearStatusRegister() function
	Figure 10. Group of L9952GXP software driver functions with similar behavior
	Figure 11. L9952drv_ReadStatusx() function
	Figure 12. L9952drv_GetGlobalErrorStatus() function
	6.1 L9952GXP software driver error handling function
	Table 45. L9952drv_ReportError

	7 L9952GXP software driver system requirements
	7.1 Operating system, compiler and interrupts
	7.2 Hardware requirements
	7.3 Memory mapping
	Table 46. Memory mapping examples

	8 Using the L9952GXP software driver
	8.1 Main.c file
	8.2 L9952drv.C file
	8.3 L9952_Cfg file
	8.4 Std_Types.h file
	8.5 Platform_Types.h file
	8.6 Compiler.h file
	8.7 L9952drv_AL.c and L9952drv_AL.h files

	9 Revision history
	Table 47. Document revision history

