

Stephen Parascandolo
Brunel University
BEng Computer Systems Engineering
Student ID: 9900239/1
Supervisor: Dr Ian Dear
Tutor: Mr Peter VanSanten

Model Railway
Computer Control Centre

Final Year Project Report
May 2003

Volume 1 – Main Report, References and Appendixes A – F

 1

 Contents

Model Railway Computer Control Centre
By Stephen Parascandolo

VOLUME 1

Contents ..1

Introduction...7

Model Railway Computer Control Centre ...7

1.1 About this Report...8

1.2 Aims and Objectives ...9

[1] Provide Realistic Signalling on the Model Railway...................9

[2] Provide a User Interface similar to Real VDU Control Centre .9

[3] Be Functional and Practical ...10

[4] Be User Configurable...10

[5] Be as simple as possible to configure11

[6] Develop within certain limitations...11

1.3 Summary ...11

Background...12

Modern UK Signalling Practice..12

2.1 Why Have Signalling?...12

2.2 Early Signalling..13

Block Sections ...13

Junctions and Conflicts..13

Track Circuits ...14

2.3 Modern Signalling ...15

 2

Centralised Control ..15

Track Circuit Block...15

Signals..16

Route Setting ...17

In Depth features ...17

2.4 Computer Based Signalling..19

VDU based signalling control..19

Electronic interlocking..20

Symbols..20

Mouse Actions ...20

2.5 Model Railway Features ...21

Junction Indicators...21

ATP Relays ..21

Miscellaneous ..21

2.6 Summary ...21

Hardware System ...22

3.1 Remote Panel Control System..22

3.2 Horton Layout...23

Design ..24

4.1 Developing Requirements...24

4.1.1 Additional Functionality..24

4.2 Assessment of Options..25

4.2.1 Software Tools ...25

Key Advantages of Visual Basic .NET ...26

4.2.2 Programming Philosophy ..26

4.3 System Fundamentals...27

4.3.1 Multi Threaded Solution...27

 3

4.3.2 Modes of Operation ...28

4.3.3 User Interface...28

The Signalling Display...29

Menu Bar..30

Signalling Data...30

Summary..30

4.4 Detailed Design..31

4.4.1 Device Objects ...31

4.4.2 Layout Data Class..33

4.4.3 Design Mode..34

User Interface...34

4.4.4 Data Validation...35

4.4.5 Test and Operate Modes...35

4.4.6 Hardware Class..37

4.5 In Depth Extracts..37

4.5.1 Points..38

4.5.2 Routes ..40

Route Set ...41

Route Cancel ...42

4.6 Summary ..43

Implementation...44

Testing ...45

6.1 Strategy ..45

6.1.1 Testing Plan..45

[A] Module Testing...45

[B] Development Order..46

[C] User Interface Correspondence Testing.................................47

 4

[D] Data Validation...47

[E] Random Testing...48

[F] Test Mode...48

[G] Demonstration Track ...49

6.1.2 Limitations...50

6.1.3 Summary ..50

6.2 Functional Testing..51

6.2.1 Module Testing...51

6.2.2 Development Order ...51

6.2.3 User Interface Correspondence Testing...................................52

6.2.4 Data Validation and Random Testing.......................................53

6.2.5 Test Mode...53

6.2.6 Demonstration Track ...54

6.3 Performance Tests...54

6.3.1 Reaction and Response Times...55

6.3.2 System Resources...55

6.3.3 Hardware Requirements ...56

6.4 Summary ..56

Conclusions ..57

7.1 Achievements...57

7.2 Critical Review..58

7.2.1 Missing Functionality..58

7.2.2 Data Format and Version Problems ...58

7.2.3 Graphics ...59

7.2.4 Object Model and Retrieval ...60

7.3 Future Enhancements ...61

References...62

 5

Websites ...62

Books ..63

Other Documentation...64

MERG Technical Bulletins..64

Railtrack Standards...65

Appendix A..66

RPC System Overview ..66

RPC PC – RPIC Interface Specification ...71

Appendix B..82

Horton Layout...82

Appendix C..89

Symbol Set ...89

Appendix D..92

User Interface Samples ...92

Main Screen...92

Design Mode Forms..93

Test Mode..97

Hardware Test Utility...98

Operate Mode..99

Appendix E ..100

Project Progress.. 100

Project Plan... 100

Monthly Progress Reports ... 105

Appendix F ..113

Financial Statement .. 113

 6

VOLUME 2

Appendix G …………………………………………………………………….. 1

Source Code …………………………………………………………………1

A CD-ROM containing the Project Report, Source Code, Installation
Software and Supporting Documentation is attached to the rear cover of
Volume 2.

 7

Chapter

1 Introduction
Model Railway Computer Control Centre
Realistic PC based Signalling for the Model Railway

Think of Model Railways, and you probably think of a Hornby train set or a carefully

modelled scene by elderly anoraks with finely crafted steam engines from the past.

Whilst these stereotypes remain true, there is more to model railways.

Some modellers prefer instead to recreate in miniature, the current railway scene. In

the UK, this has seen the increasing use of multiple unit operation, modern standard

locomotive designs and with privatisation, a huge array of colourful liveries. Few

notice the increasingly complicated signalling systems that allow the trains to operate

safely on crowded and complex track layouts.

A common feature of many so called, Modern Image layouts, is to incorporate a

working signalling system to add interest. Modern Signalling is colour light and

computer controlled. The left hand cover photo shows a real VDU based control

centre at Stoke On Trent. A basic tutorial in signalling is presented in Chapter 2.

In order to control realistic signalling for more complex track layouts, the switching and

interlocking required results in very complex hardware based solutions, often with

hundreds of electromechanical relays or a bewildering amount of logic gates. For this

reason, a number of railway modellers are turning to computer technology where

software can be used to save a mass of complex logic in hardware.

The Model Electronic Railway Group (MERG) are an international group of like

minded railway modellers who have developed a number of electronic solutions to

model railway problems and make them available as kits to members. A key product

family is the Remote Panel Control (RPC) system which provides Input and Output

capabilities to a PC via the serial or USB ports. The system is described in more detail

in Chapter 3.

 8

During a work placement year, the author worked for a railway signalling company,

GE Transportation Systems. Amongst the product range is the Modular Control

System (MCS) which is a VDU based signalling indication and control system. The

MCS system linked to safety critical Solid State Interlockings (SSIs) which made the

vital interlocking checks.

This project sets out to develop software to provide modern signalling for the model

railway. As safety is not such an important consideration, implementation can be on a

standard PC and the User Interface, Interlocking and Hardware interface can be

integrated into a single piece of software.

1.1 About this Report

This report takes attempts to take a logical approach, taking the reader through every

aspect of this software project. This Introduction chapter establishes the background

to the project and sets out the key Aims and Objectives that the project is trying to

meet.

Chapter 2 provides a tutorial on the fundamental aspects of Railway Signalling in the

UK which is essential to understand the design decisions taken.

Chapter 3 has been provided to briefly explain the MERG RPC hardware system that

this software is being developed for. It also explains about the test bed for my project,

the Beckenham and West Wickham MRCs “Horton” layout. Photos and diagrams

assist in putting the theory and project into context.

Chapter 4 takes the reader into the Design of the Software. Starting with the

development of the project requirements and developing in detail the software design

and structure.

Details of the functionality of the final software and the testing strategies employed

can be found in Chapter 5 and 6 while Chapter 7 gives a critical evaluation of the

design decisions and project outcome, looking to future developments and looking

back with hindsight at elements of the design.

Full specifications of the RPC Hardware Interface, specific details on the

implementation on Horton, References for the project and the Visual Basic.NET

source code can be found in the Appendixes. The Source code and Installation files

 9

together with this report are also provided on CD at the back of Volume 2 of this

report.

1.2 Aims and Objectives

The software should: -

[1] Provide Realistic Signalling on the Model Railway

The project is aiming for realistic modern signalling on the model railway. Further

details on relevant signalling can be found in Chapter 2.

However, there are some limitations and assumptions at this stage. It is assumed that

like on the real railway, a signaller will set the routes using the software, causing

signals to clear and points to change. And, a driver will drive the train, obeying the

signals. The trains are not controlled or driven by the software – although there may

be an interlock configured with the train power supply.

As a further limitation, and reflecting the operation of most model railways, there is no

timetable or sequence being operated and so there is no requirement for an

“Automatic Route Setting” system which would automatically set routes based on a

timetable. The signaller sets all routes manually.

It has to be assumed that the layout is suitably constructed and wired with suitably

chosen track sections (circuits), signal positions and wiring. For the software to be

effective, the layout needs to be signalled prototypically albeit with some

simplifications.

[2] Provide a User Interface similar to Real VDU Control Centre

A key objective is a desire to not just provide realistic signalling, i.e. correct signal

aspects and interlocking, but also for the User Interface to be similar to that found on

real VDU based control systems. This extends to many of the symbols and colours

used as well as the method of operation and mouse clicks. For the real railway, this is

set out in Railway Standards GK/RT/0025 and RT/E/S/17504. Railway Safety Ltd

does not permit their reproduction in this report.

 10

The display has to update in real time based on what is happening on the railway.

Train movements can then be observed on the screen – there is no theoretical reason

why the signaller can not be remote from the layout.

In addition, a key operating concept, Entry – Exit (or NX) route setting is required to

speed and aid route setting. This is explained further in Chapter 2.

By providing a similar user interface, the operating experience for the layout operators

is enhanced and in addition, by projecting the computer screen onto a screen at

exhibitions, provides a dramatic and obvious demonstration to the public of how the

layout being is operated. This generates interest and educates on signalling

principles.

[3] Be Functional and Practical

This is not simply a university project – The author fully intends to use the software

developed to control a real model railway layout. In addition, it is intended to provide

the software free of charge and open source on the internet for others to use. So this

software must be fully functional and address the practical needs of model railway

layouts.

To this end, the software must be reliable and able to operate continuously for long

periods. A number of detailed design issues also need to be thought out to adapt

standard signalling practice to be useful and workable on a typical model railway. A

degree of flexibility is required to allow non standard extras to be controlled. Railway

modellers are ingenious and always finding new things to add. Examples might

include playing announcements, crossing warning lights or train sound effects.

[4] Be User Configurable

It should be stressed that the software is not just for a single model railway layout.

The software needs to be fully configurable for any reasonable exhibition sized layout.

This presents a number of challenges but makes the software a great deal more

flexible. The design of the layout is not a task that needs to be carried out frequently –

indeed once entered, it would only need changing if the physical track or signalling

was changed or if some aspects of the interlocking needed to be amended.

 11

The infrequent change of the layout details mean that this section of the software can

be designed primarily for functionality and only secondly on usability grounds. It does

not matter if it takes some time to set out a complex layout.

A further issue that follows on is that the data created needs to be saved to disk and

opened again at a later date – data can not be recreated from scratch for each use of

the software.

[5] Be as simple as possible to configure

The interlocking data needs to be as user friendly as possible. Real systems and

some other model railway software relies on a script based approach. This puts off

many railway modellers who whilst understanding signalling, are not comfortable with

even the simplest elements of software.

[6] Develop within certain limitations

Finally, there are some limitations to the software which need to be set out at this

early stage. These have been set to match the author’s interest and personal

requirements but also to limit the project to some realistic boundaries!

These limitations are very simply that the software is designed for use only with the

MERG RPC Hardware System (running in RS232 mode only) and that the signalling

recreated is based on UK Colour Light signalling practice.

The software must be PC based and designed to work under MS Windows on a

modern PC. This is the most widely available platform. In addition, the RPC hardware

is designed to work with the RS232 serial port, easily available on most PCs.

1.3 Summary

The project has been introduced and 6 clearly defined objectives defined. These

Objectives are used extensively in the Chapter 4 to determine the direction of the

Design decisions.

Chapter 2 considers the Signalling concepts which the software is required to

implement and replicate.

 12

Chapter

2 Background
Modern UK Signalling Practice

This section is designed to explain the UK Signalling principles which must be

understood in order to appreciate the design decisions taken. Whilst being based on

prototypical signalling, model railway signalling clearly does not have the serious

safety implications of the real railway. For this reason, even on well signalled model

railways, such as Horton, described in this chapter, the signalling does not come

close to that required of the real railway.

This tutorial on signalling will only focus on the aspects that are relevant to model

railways and to this project. Some areas have been simplified and there are some

areas where the Model Railway requires additional features to be practical in an

exhibition environment.

Any differences to signalling concepts for model railways have been identified but

large areas of Signalling Practice have been omitted for simplicity as they are not

relevant to the project.

For further reading, the author recommends: -

 “BR Signalling Handbook” by Stanley Hall. ISBN 0-7110-2052-3 Ian Allan Publishing Ltd, 1992
Railway Technical Web Pages - http://www.trainweb.org/railwaytechnical/sigind.html

2.1 Why Have Signalling?

Signalling is a vital element of any railway. It ensures the safety of the train and

therefore the passengers. From the earliest railways, as soon as there was more than

one train on a network of railway tracks, there was the potential of trains colliding!

Unlike road vehicles, trains can not stop quickly. Even with modern braking systems,

a High Speed Train takes over a mile to stop from full speed – 125mph.

And so you have the two key reasons for signalling: -

 13

1) Keep trains apart from each other

2) Give trains sufficient warning of the need to stop

Neither of this is particularly relevant for model railways but the signals positioning

and indications are based on these key facts – even if they are only for show on the

model.

2.2 Early Signalling

Early signalling consisted of a “policeman” who stood by the side of the line and

indicated for a train to stop or proceed. After allowing one train to go, he would wait a

specified time before allowing a second train to proceed. After some time, a signal

was developed to replace hand signals and the semaphore signal was invented. This

was fine until the train in front broke down around the corner and the second just

ploughed in the back!

Block Sections

“Policemen” were soon replaced by railway signalmen and the newly invented signals

became mechanically controlled from signal boxes. Following some accidents and

with the development of the electric telegraph, systems were developed to allow

communication between adjacent signal boxes. The signalman at the far end of a

section could then tell the other signalman that the train had arrived safely and the line

must be clear to allow a second train.

The rules were very simple – signal boxes had to be positioned at suitable positions

along the line – usually at stations, and only one train was allowed in the “block

section” between signal boxes at any one time.

Soon the systems developed further, to electrically interlock the signals with the

electric telegraph between the signal boxes. And as train speeds rose, Distant Signals

were positioned ahead of the “Stop signals” to give advanced warning of the need to

slow down.

Junctions and Conflicts

We now come to junctions – that is where one line joins another using a switching

piece of track, called Points. Quite obviously, two into one doesn’t go. Signals protect

 14

all junctions and conflicting movements. Before a signal can be cleared, the points

must be moved to the correct position for the movement. Points have two positions,

one for each direction, known as “Normal” and “Reverse”. Only one movement can

be signalled across a simple junction at a time.

• Diagram 2.1 shows a simple junction layout. Signal 1 could not clear at the same time as Signal 2.
Points, A must be set correctly before the signal is cleared. Also, Points A must not move while there is a
train on the points.

This simple concept is known as interlocking and on both real and model railways is

vital to the safe and successful operation of the railway. It obviously extends to much

more complicated layouts to ensure that no two conflicting movements can

simultaneously have clear signals at the same time.

Track Circuits

As well as protecting points from moving under trains, signallers need to know or be

reminded where the trains are. Track Circuits were developed to detect where trains

are and provide train detection. This is achieved by splitting the track into sections.

These are then electrically isolated from each other by providing insulated joints in the

rails and electrically connecting all other rail joints.

A power supply is fed into one end across the two rails and a relay placed at the other

end. If a train is on the track, its wheels short circuit the relay and cause the relay to

de energise. The track circuit becomes Occupied. When the relay is energised, the

track circuit is Clear. The relay can then control lamps in the signal box or other

interlocking as required.

 15

2.3 Modern Signalling

Centralised Control

To maximise efficiency and man power and to apply area wide regulation of lots of

trains through a network of lines, signal boxes got larger and more centralised. This

was achieved by the introduction of power signal boxes with electric, colour light

signals and motorised points and widespread introduction of track circuits.

• Photo 2.2 Large Power Signal Box at Exeter, © P.S.Bellamy

These centres consist of large illuminated track diagrams and push button control,

often with many signalmen in a single signal centre.

Track Circuit Block

In a large centre, Track Circuits are widely used. “Block Sections” as described

previously are replaced by one or more Track Circuits. Signals interlock with the Track

Circuits to ensure that the line is clear as far as the next signal. On the Signalman’s

diagram (or Panel), Occupied Track Circuits show as a row of red lights along the

track.

Away from station and junction areas, automatic signals are provided which require

no action from the signaller. They work automatically based on Track Circuits ahead

and the aspect (colour) of the following signal.

 16

Signals

Modern Colour Light signals combine the standard semaphore signal with distant

signals to give drivers advanced warning of following signals. This permits higher line

speed and provides higher track capacity by allowing trains to follow each other more

closely, although at lower speeds. There are three types, Two Aspect, Three Aspect

and Four Aspect – Two and Three Aspect signals are used on quieter lines with fewer

trains and slower speeds.

Two Aspect Signals, simply show Red or Green. Distant, Yellow/Green signals are

often placed ahead of home signals.

Three Aspect Signals, show Red, Yellow or Green. Yellow indicated that the signal

ahead is at Red and therefore gives advanced warning for the driver to slow down.

Four Aspect Signals are most common on busy routes. A Double Yellow aspect is

included to give advanced warning of a single Yellow signal.

• Diagram 2.3 Sequence of Four Aspect Signal aspects behind a train, © Railway Technical Web Pages

The author appreciates that other types and variations of main signals exist for

various reasons.

 17

Route Setting

In older signal boxes, signallers had to operate a mechanical lever or switch for each

individual point that had to be changed and then another for any signals required to

be changed. If the layout was complicated, a single train movement could require

numerous actions. With larger areas of control, route setting systems developed. This

has now been established as the Entry – Exit or NX Route Setting system.

The track layout and signal positions are shown in schematic form on a console. Each

Signal has a push button. Routes are defined as the path from one signal (The Entry

Signal) to the next (The Exit Signal). To set the route, signallers simply press the first

signal and then press the next signal the train will come to. The route setting system

will “call” all points in that route the required position and allow the Entry Signal to

show a proceed aspect, which it evaluates based on the track circuit occupation

beyond it.

If there were 3 signals in a row, S1, S2 and S3, the signaller would need to set Route

S1-S2 followed by S2 – S3. There is only a single button for each signal, so the

signaller would press S1, S2, S2, S3. A Route may be cancelled by “pulling” the

button at the Entry Signal.

Routes can be used to simplify the interlocking. If two routes conflict, it is obvious only

one can be set at the same time. Once requested, if the route is available, points are

called. If these are detected correctly set and all the track sections are clear, the

Route will set, enabling the Entry signal to clear. The Route Set is indicated by a row

of white lights on the track diagram.

In Depth features

Route Release

In modern signalling centres, after the passage of a train over a route, the route

automatically cancels itself. If a second train needed to travel, the signaller would

have to set the route again. This is known as Train Operated Route Release (TORR).

It should be realised that the Entry signal itself would return to danger (Red)

automatically as the train occupied track circuits beyond the Entry Signal. The route

needs to stay set until the train is clear of all track circuits within the route in order to

protect the route for that train.

 18

There is a limitation to this however. Consider the following example.

• Diagram 2.5 Route Release Example

Train x is signalled from Signal 1 to Signal 2 at the end of a station platform. The train

stops at the station. As the train has not cleared all the track circuits within the route,

the route stays set. Train y is now waiting at Signal 1 and wants to go to Signal 3. The

route is clear but the original route is still set. There must be a method for the initial

route to timeout once the train arrives at the platform so a second route can be set.

An equivalent system is needed for the model railway for the same reason.

Call On / Shunt signals

For shunting movements at slow speed, often in sidings, a special type of signal is

used which shows Stop or Proceed. Call On signals are similar in appearance but are

used to allow trains to enter already part occupied platforms. A separate Exit button is

used to select this rather than a normal signal aspect. When these signals are

mounted on the same post as a main signal, the shunt signal doesn’t have a stop

aspect, as there is already a Red, stop aspect on the main signal. This is reflected in

the signallers display.

Isolated Exits

For Call On signals and at the end of a line – a terminus or dead end siding, there is

no Exit Signal, but a button is still required to act as the exit signal for the route setting.

These are known as Isolated Exits.

Auto Buttons

When referring to Routes, it was stated that if a second train comes, the signaller has

to set each route again. This is fine if trains go different ways at a diverging junction

but if many of them go the same way, it is rather inefficient. For this reason, Controlled

Signals are often provided with an Auto Button or A Button. After setting a route, a

 19

separate Auto Button may be set. This allows the signal to clear again on its own

once the first train is clear of the route. When a different route is required, the Auto

Button can be cancelled and another route set. (Real installations are slightly more

complicated than this)

Auto signals – ER Buttons

All signals so far described have been Controlled – The signaller sets them for each

movement. Away from junctions, there may be many miles of Automatic signals.

These always try to show the best possible aspect to the driver and are only affected

by the occupation of track circuits beyond them. For emergencies, they may be

provided with Emergency Replacement (ER) buttons to force them to Red.

Point Keys

For maintenance, safety protection, or if the points are failing to operate properly, it

can be useful to manually operate individual points. Switches, known as Point Keys

are provided for this purpose. These have three states – Normal, Centre and

Reverse. When Centred, the points are free for the Route Setting system to call as

required. When Normal or Reverse, the points are moved and locked in that position

although if set correctly, a route may be set through them.

Point Pairs

Two points may operate as a pair. A common configuration is a crossover, allowing

trains to move from one line, to an adjacent one. One control operates both ends of a

crossover – two sets of points.

2.4 Computer Based Signalling

VDU based signalling control

Large Signal Centres are now moving from illuminated panels with push buttons to

computer based control on VDUs. The track layout and all indications are shown on

screens to the signaller. Control switches are replaced with clicks on screen elements

with a tracker ball. The left hand cover photo shows a typical arrangement.

Often Automatic Route Setting can be provided using timetable data. As defined in

Objective 1, this is not to be developed for Model Railways.

 20

Electronic interlocking

Electromechanical relays to perform interlocking and route setting functions are

replaced with Vital Computer Processors, data links and interlocking data.

Symbols

A series of symbols have been developed to depict the schematic of the railway and

signalling states on the screen. Model Railway Computer Control Centre (MRCC)

needs to look similar to meet Objective 2.

• Figure 2.4 Typical Screen Layout, © SimSig (Simulation Screenshot). This shows many features not
described or required for model railways.

Mouse Actions

There are pre-defined mouse actions to control the railway which need to be similar to

meet Objective 2.

Signaller Action L / R Click Click on?

Key Points L (Normal)
R (Reverse)

Point Tips

Route Setting Left Entry Signal, then
Exit Signal

Cancel Route Right Entry Signal

Set Misc Control or A Button Left Control symbol

Cancel Misc Control or A Button Right Control symbol

 21

2.5 Model Railway Features

On the model railway, some things have to be different to the real railway for practical

reasons. Safety is not as important! One example is for Points – in reality, these

would be locked if there was a train on them, on a model, unreliable track circuits may

lock them unnecessarily. Running trains is more important than safety on a model! In

any case, model track circuiting is far more complex – See Chapter 3 for how the

RPC system achieves this.

Junction Indicators

Junction Indicators are rows of white lights on top of signals to indicate to the driver

that a diverging route is to be taken. They only display when the signal is showing a

proceed aspect and the route is set for the diverging route. On the Model Railway, a

separate output bit controls the Junction Indicators and this needs to be defined with a

Signal and a Route to control the output.

ATP Relays

To prevent embarrassing collisions on Model Railways, sections of track ahead

signals protecting junctions can be electrically isolated, bringing the electric train to an

immediate halt. This is achieved through an Automatic Train Protection (ATP) relay in

the power supply to that section. The relay can be connected to an output bit and the

software needs to ensure the output is set when the signal is not at danger or if a

move in the reverse direction is signalled.

Miscellaneous

There will always be miscellaneous functions which may be useful. Extra Controls

and interlocks for various reasons or gimmicks such as sound effects, working level

crossings or warning lights might be some of the extras that add interest to the model.

A flexible system for configuring additional inputs and outputs would be a real benefit.

2.6 Summary

This chapter has set out the signalling that is required to be implemented. Chapter 4

develops these into the Project Requirements. The next chapter provides information

on the Hardware system that provides the interface to the model railway.

 22

Chapter

3 Hardware System
3.1 Remote Panel Control System
Developed by the Model Electronic Railway Group

The scope of this project relates only to the software development. However, the

software is ultimately being designed to integrate with a hardware system. Initially, this

is limited by Objective 6 to the MERG Remote Panel Control (RPC) system and only

in RS232 mode. However, the design should be such that it would be straightforward

to change to a similar hardware system or alternative RPC interface.

• Diagram 3.1 MERG RPC System Stack Diagram © MERG

The RPC system (when running RS232 mode) is based around an RS232 serial

connection to the PC. At the head of an RPC “stack” of modules is an RPIC Interface

module based around a PIC microprocessor. This handles the serial communications

with the PC and sends and receives data from plug in modules making up the stack.

Input and Output Modules are available and plugged in as required to suit user

requirements. Key modules are the SRI4 and SRO4 32 bit Input and Output modules

respectively. Other modules include Relay Output boards and importantly, the FTC

Track Circuit board. This detects trains in sections for model railways based around a

current sensor which is required as model railways use the running rails to power the

trains and conventional relay track circuits can not be used.

 23

The software needs to know the configuration to determine the range of Input or

Output bits available to assign to devices on the screen synchronise with the

hardware. Input and Output ranges are separate, i.e. there is an input bit 0 and an

output bit 0 and these are independent.

MERG Technical Bulletins in the G16 series define the logic for this modules and

standard aspect codes for multiplexed operation of signals.

There is a comprehensive serial protocol defined for PC – RPIC communication and

this provides for individual bit, byte or whole system changes within a single message.

MERG Technical Bulletin G16/4 defines this protocol and this is presented in

Appendix A.

3.2 Horton Layout
The test bed for the software is the Horton Layout which the author has largely

designed and constructed. Some statistics are presented here as a measure of a

typical large layout’s requirements. This will provide a reference point when analysing

performance of the software and assists in the design of the user interface.

Size 8m x 3m (28’ x 10’)

Simultaneous train movements 6

Points 23

Signals 24

Routes 43

Track Circuits 39

RPC Modules SRO4 x 3
DPR x 2
FTC x 5
SRI4 x 1

• Figure 3.2 Statistics for Horton (excluding old section of layout)

Further Details including RPC Bit allocation and a track diagram are to be found in

Appendix B.

Beckenham and West Wickham MRC: http://www.bwwmrc.org.uk
MERG: http://www.merg.org.uk

 24

Chapter

4 Design
4.1 Developing Requirements

This project is unusual in that there is a very clearly defined set of requirements which

were known early on. The requirements are simply to work towards a solution that

meets Objectives 1 to 6 as set out in Chapter 1. The detailed requirements are to

implement as much of the functionality described in Chapter 2 as possible. The

detailed explanation of relevant signalling is by far the best way of presenting what

needs to be achieved.

4.1.1 Additional Functionality

In terms of functionality, a number of additional features were considered and the

design seeks to implement these where possible or ensure that the design does not

preclude them.

� Point Detection would allow input bits to provide feedback on whether points have

actually moved.

� Intelligent response from the Interlocking would ensure that if a request was

rejected, an explanation of why would be provided to the user. This is not

provided on real signalling systems but would assist less experienced operators.

� A Train Describer would allow an identity to be associated with each train and

track that train around the layout. This is of limited use on a model railway.

� Event Logging would allow a recording to be made of events that occur during

operation of the system. A logical development would firstly be passive playback

to view how the operating session went, and finally to active playback whereby

once a sequence of actions was recorded, the system could repeat it and

potentially relieve the need for operators.

 25

4.2 Assessment of Options
Objective 6 presented within Chapter 1 sets out some limitations in order to be

practical. The key decisions are that the system must be PC based under MS

Windows utilising the RS232 interface to the RPC hardware system.

Objective 4 sets out the need for the system to be user configurable for different

layouts. Objective 2 requires some careful attention with the User Interface design.

4.2.1 Software Tools

An early decision was made to use a modern development environment. This was

primarily to familiarise the author with current software tools which is good experience

but also to allow the simple development of a professional looking application. Several

existing applications to work with the RPC system are outdated – some are even

DOS based. I wished to have a 32 bit windows application. Well known and therefore

well supported development tools were chosen – The author was inexperienced and

needed the support of websites, forums, books and other documentation. This

pointed towards Microsoft products.

A shortlist was drawn up of: -

� MS Visual J

� MS Visual C

� MS Visual Basic

Visual J, being based on Java was ideal for an object orientated approach. However,

its support for Serial Port communication was limited. The software was to run on a

stand alone PC where as Java pointed more towards a Server – Client environment.

The clear choice was between Visual C and Visual Basic. Again, the author’s

inexperience played a significant role. Having worked with VBA behind MS access,

the author was more comfortable with VB. The project was considered to be

sufficiently complex without the steep learning curve of some elements of Visual C.

The memory management of Visual Basic was considered to be useful to a beginner

 26

as VB’s “garbage collector” deals with freeing up RAM, helping to eliminate “memory

leaks” which common in C programmes if not carefully understood.

Further research revealed that the current version of Visual Basic, Visual Basic .NET

provided VB with almost the same functionality as C. The .NET framework provides

for reuse of many key structures which are common across all .NET applications.

.NET will be integrated into the next version of Windows, and until then, applications

will only run on PCs with the .NET framework installed. The .NET framework is

available free of charge from Microsoft and is redistributable.

Key Advantages of Visual Basic .NET

� Easy to Program and learn the language. Wide range of support books, websites,

forums and documentation.

� Full support for Object Orientation including Inheritance, polymorphism and

interfaces.

� Built in, efficient data storage types such as ArrayList and SortedList.

� Automated Memory Management and freeing up of dynamically allocated

memory when no longer required.

� Good, simple graphical functionality which is essential for the GUI with specialist

symbols.

� Built in serialization functions to serialize objects to file

4.2.2 Programming Philosophy

The choice between traditional procedural programming and Object Orientated

design was an easy one to make. Railway signalling consists of a limited set of

devices, many similar to each other. Object Orientation was an obvious solution. Each

device becomes an object and the objects interact with each other.

The approach is more flexible and allows for iteration of the design as understanding

of the problem and programming techniques developed. The system instantly

becomes more expandable, more flexible and simpler to understand.

 27

4.3 System Fundamentals
It was quickly decided that there needed to be a central storage of all User Configured

data. A database was considered but rejected as being unnecessary and over

complicated and so a LayoutData class was developed to store the required data.

4.3.1 Multi Threaded Solution

After considering the Operate Mode requirements, a multi - threaded approach was

decided to be the most straightforward to allow devices such as signals and track

circuits to continuously update at the same time as the user was interacting with the

user interface. At the same time, the hardware should be constantly synchronising

with the software. So, there are three Operate and Test Mode threads: GUI,

DataProcessing and Hardware, all communicating through the objects that make up

the layout, which are stored within the LayoutData class.

• Diagram 4.1 Multi-Threaded Approach and Central Data Storage

Design Mode requires only the User Interface thread and the Layout Data. This

design also accommodates the testing strategy very well. The Hardware thread can

be coded and tested by the Hardware Test Utility and then integrated with the rest of

the system to form Operate Mode which utilises all three threads.

 28

4.3.2 Modes of Operation

There need to be at least two modes of operation. A Design Mode where users define

the layout and interlocking and an Operate Mode where the system runs as a VDU

based signalling control centre as described in Chapter 2. This concept is already

adopted by at least three existing software packages for control of the RPC system

and is the most logical method.

However, with the complexity of interlocking data, coupled with the fact that many

layouts are large and often kept in storage when not exhibited, there is a need for an

off line test of the interlocking configuration. If the user, having set up and configured

the layout, had the ability to simulate inputs from the layout, any errors where data

was valid but not what was intended could be rectified.

This would also be useful for training and more importantly, would be the only

practical way to test the software functionality without the need for a large layout.

Chapter 6, Testing explains the testing methodology in detail.

Therefore, there will be three modes – Design, Test and Operate. Only Operate mode

will connect to the hardware.

A need has also been identified to test the layout wiring and electronics. The

Hardware Test Utility should consist of a simple display of all input and output bits and

the ability to set and clear individual bits. This will also form a key part of the Testing

strategy.

4.3.3 User Interface

The User Interface has been considered as being fundamental to the system

because the Operating mode relies on specific symbols to both display the status of

the layout and allow the user to request operations on the layout. The whole screen,

with the sole exception of the menu is therefore available for the Signalling Display.

The obvious solution for the Design Mode is to view the same graphical image as

required when in Operating Mode. The layout can then be built up and amended as

required using a what-you-see-is-what-you-get interface. The alternative approach

 29

would be to have some kind of text data format to be interpreted into a graphical

display. This would make designing layouts difficult and not user friendly.

The Signalling Display

A decision was taken to split the Signalling Display into a grid of lots of small tiles.

This is easier to manage than elements of differing sizes and it also gives way to

creating a symbol set of bitmap images. The alternative approach of drawing the

symbols would probably have led to a performance increase as less processing is

required, however it was decided that the most straightforward approach should be

taken, and this was to draw a set of bitmap images.

An example was found in a textbook of the User Interface for a Chess Game1. This

was heavily modified to provide a grid of 80 x 64 tiles. This was evaluated based on

the complexity of a typical large layout to fit on a screen with a sensible tile size of 16

x 16 pixels, being the smallest size to be able to draw a signal symbol and have user

controls at a useable size.

The whole display would therefore fill a large screen running at 1200 x 1600

resolution. Scrollbars are provided for lower resolutions.

A symbol set was designed of 16 x 16 pixel symbols, each with a code and any tile

could have its symbol changed to any of the symbols. Appendix C shows the symbol

set and the codes used. Clicking on a tile would result in parameters identifying which

tile had been clicked. One object only may be assigned to each tile, giving each object

an x, y, and symbol code.

This is very important as this gives way to a central index of each tile in the grid,

referencing the relevant objects from the store of object. There would have been

significant problems linking to the correct objects if a system other than a grid was

chosen.

In addition to objects that are related to a display tile, Routes, and the RPC Module

Configuration are not directly related to the screen.

1 Visual Basic .NET for Experienced Programmers, Prentice Hall : Fig 13.26

 30

Menu Bar

It was decided that a Menu bar would be provided to give control to the users when

designing and configuring layouts and to allow changes of mode, and exiting the

software. This allows easy disabling of commands by setting the Enabled property.

Other options would have resulted in less space being available for the signalling

display and this is unacceptable as the whole display is used as an overview of the

layout to the operator. Floating windows for example, would obstruct the display.

Signalling Data

The direction for interlocking data to take is also fundamental to the way the system

operates. The interlocking data which is linking all the types of device together as

required could be based on user typed scripts, executed when called, as used by the

Solid State Interlocker application. It was considered that whilst greater flexibility is

gained by having, for example, signal aspects, based on an IF / THEN / ELSE

structure, it would not be user friendly. Railway modellers are not necessarily

computer programmers, and would rather deal only with signalling terminology.

For this reason, the objects have been designed to work with the minimum of

information and required data is only of a signalling nature and inputted via standard

windows controls, and not by any form of scripting.

Scripting would again benefit performance as scripts would only be run as required

but it was decided to avoid it for simplicity, both in programming and for users setting

up layout data.

Summary

The User Interface, featuring the signalling display, is at the heart of the system from

the users point of view. The grid concept underpins the way the system references

the Device objects and this is explained further in section 4.4.2.

The Symbol Set can be found in Appendix C and examples and explanation of the

elements of the User Interface are shown in Appendix D.

 31

4.4 Detailed Design
4.4.1 Device Objects

The objects were modelled in UML. After some iteration the following Class diagram

was decided. As will be analysed in the Conclusion, with the benefit of experience, it

would not be done in the same way if repeated. It is appreciated that it may have

helped to break down objects further but it was considered that the additional code

required would probably exceed that used to repeat some blocks of similar code in

multiple objects.

Diagram 4.3 on the following page shows the UML Class Diagram of Device Objects,

showing the Generalisation that has been designed. Key Associations are also shown

for the Point and Track associations. In addition to these objects, there is a Route

Class. The Route Class is shown in Diagram 4.2 below. The Device Objects and

Routes are stored within the Layout Data Class and their operation described further

in subsequent sections.

+ UpdateDetails (ID, SigEntry, SigExit, Conflicting, NPoints, RPoints,
Tracks, MiscTrue, MiscFalse, EarlyRelease, EarlyClrOcc, AButtonRef)
+ ValidateID () : Boolean
+ ValidateNX() : Boolean
+ ILDataValid() : Boolean
+ ValidateILData() : String

+ CallRoute()
+ CancelRoute()
+ Update()

+ ID : String
+ EntrySig : String
+ ExitSig : String
+ Conflicting : ArrayList
+ NPoints : ArrayList
+ RPoints : ArrayList
+ TkSections : ArrayList
+ MiscTrue : String
+ MiscFalse : String
+ EarlyReleaseTrack : String
+ EarlyClrOcc : String
+ AButtonRef : String
+ USet : Boolean
+ AButtonSet : Boolean
+ TracksClear : Boolean

Route

• Diagram 4.2 UML Class Diagram for Route Class

 32

• Diagram 4.3 UML Class Diagram of Device Objects

+ ChangePosition(x , y)

+ X_Pos :Integer
+ Y_Pos :Integer

ScreenElement
{abstract}

+ UpdateDetails (TkSecID, TC, RPCBit)
+ Validate () : Boolean
+ AddTrackElement (x,y)
+ RemoveTrackElement (x,y)

+ Update()
+ EnterDesignMode()
+ EnterTestMode()
+ EnterOperateMode()

+ TkName :String
+ Symbol :Integer
+ TC : Boolean
+ TOcc : Boolean
+ USet : Boolean
+ TORRAv : Boolean
+ APressed : Boolean
+ TCInputBit : Integer
+ AttachedTrackElements : Boolean
- TrackElements : ArrayList

TrackSection

+ UpdateSigDetails (SigID, DefAspect, Symbol, Routes,
ILMiscTrue, ILMiscFalse)
+ ChangeSymbol (Symbol)
+ ValidateSig() : Boolean
+ ILDataValid() : Boolean
+ ValidateILData() : String

+GetNextSigAspect() : Integer

+ SignalID :String
+ SigDefAspect :Integer
+ SigAspect : Integer
+ Symbol : Integer
+ MiscTrue : String
+ MiscFalse : String
- RoutesFromSig : ArrayList

Signal
{Abstract}

+ UpdateDetails (SigID, DefAspect, Symbol, MultiTF, RPCRef1,
RPCRef2, MainAssnTF, Routes, ILMiscTrue, ILMiscFalse)
+ Validate() : Boolean

+ UpdateAspect()
+ EnterDesignMode()
+ EnterOperateMode()

+ Multiplexed : Boolean
+ MainSigAssn :String
+ RPC1 : Integer
+ RPC2 : Integer

SignalShunt

+ UpdateDetails (SigID, DefAspect, Symbol, MultiTF,
RPCRef1, RPCRef2, Routes, ILMiscTrue, ILMiscFalse)
+ Validate() : Boolean

+ UpdateAspect()
+ EnterDesignMode()
+ EnterOperateMode()

+ Multiplexed : Boolean
+ RPC1 : Integer
+ RPC2 : Integer

Signal2Aspect

+ UpdateDetails (SigID, DefAspect, Symbol, MultiTF, RPCRef1,
RPCRef2, RPCRef3, MainAssnTF, Routes, ILMiscTrue, ILMiscFalse)
+ Validate() : Boolean

+ UpdateAspect()
+ EnterDesignMode()
+ EnterOperateMode()

+ Multiplexed : Boolean
+ MainSigAssn :String
+ RPC1 : Integer
+ RPC2 : Integer
+ RPC3 : Integer

Signal3Aspect

+ UpdateDetails (SigID, DefAspect, Symbol, MultiTF, RPCRef1, RPCRef2,
RPCRef3, RPCRef4, MainAssnTF, Routes, ILMiscTrue, ILMiscFalse)
+ Validate() : Boolean

+ UpdateAspect()
+ EnterDesignMode()
+ EnterOperateMode()

+ Multiplexed : Boolean
+ MainSigAssn :String
+ RPC1 : Integer
+ RPC2 : Integer
+ RPC3 : Integer
+ RPC4 : Integer

Signal4Aspect

+ UpdateDetails (DeviceID, TypeCode, RPCRef)
+ ChangeSymbol (Symbol)
+ Validate() : Boolean

+ Update()
+ SetMisc()
+ CancelMisc()
+ EnterDesignMode()
+ EnterTestMode()
+ EnterOperateMode()

+ DeviceID : String
+ CurrentState : Boolean
+ Symbol : Integer
+ MiscType : String
+ TypeCode : Integer
+ RPCRef : Integer

StaticMisc

+ UpdateDetails (SigID,
DefAspect, Symbol,
Routes, ILMiscTrue,
ILMiscFalse)
+ Validate() : Boolean

+ UpdateAspect()
+ EnterDesignMode()
+ EnterOperateMode()

IsolatedExit

+ UpdateDetails (DeviceID, TypeCode, RPCRef, ILAndTF, ILActive1, ILType1, ILID1, ILCond1,ILActive2, ILType2, ILID2,
ILCond2, ILActive3, ILType3, ILID3, ILCond3, ILActive4, ILType4, ILID4, ILCond4, ILActive5, ILType5, ILID5, ILCond5)
+ ChangeSymbol (Symbol)
+ Validate() : Boolean
- CheckConditionValid(DevType, DevID, Condition) : Boolean
+ ValidateILData() : String
- CheckLineValid(CheckTF, DevType, DevID) : String
- GetDevTypeStr (DevType) : String

+ Update()
- EvaluateCondition(DevType, DevID, LineCond) : Boolean
+ EnterDesignMode()
+ EnterTestMode()
+ EnterOperateMode()

+ DeviceID : String
+ CurrentState : Boolean
+ Symbol : Integer
+ MiscType : String
+ TypeCode : Integer
+ RPCRef : Integer
+ ILAndTF : Boolean
+ ILActiveChk1 : Boolean , ILDeviceType1 : Integer, ILDeviceID1 : String, ILCondition1 : String
+ ILActiveChk2 : Boolean , ILDeviceType2 : Integer, ILDeviceID2 : String, ILCondition2 : String
+ ILActiveChk3 : Boolean , ILDeviceType3 : Integer, ILDeviceID3 : String, ILCondition3 : String
+ ILActiveChk4 : Boolean , ILDeviceType4 : Integer, ILDeviceID4 : String, ILCondition4 : String
+ ILActiveChk5 : Boolean , ILDeviceType5 : Integer, ILDeviceID5 : String, ILCondition5 : String

MiscOutput

+ UpdateTkAssn (AssociatedTF, TkSecAssn)
+ ValidateTk() : Boolean
+ ChangeSymbol (Symbol)

+ DeviceID : String
+ Symbol : Integer
+ IsTkAssn : Boolean
+ TkSecAssn : String

TrackElement
{Abstract}

+ UpdatePointAssn (AssnTF, Ref1, Ref1NR, Ref2, Ref2NR)
+ Validate() : Boolean
+ UpdateSymbol(Symbol)

+ SubRouteSet()
+ SubRouteClr()
+ OccupyTrack()
+ ClearTrack()

+ PointAssn : Boolean
+ PointsRef : String
+ PointsPosRef : String
+ PointsRef2 : String
+ PointsPosRef2 : String

PlainTrack

+ UpdatePointAssn (AssnTF, Ref, NR, PointPair)
+ UpdatePoint (PointName, RPCBit, NRSwap, MiscTrue, MiscFalse)
+ Validate() : Boolean
+ UpdateSymbol(Symbol)
+ AddTrackElement (x, y)
+ RemoveTrackElement (x, y)
+ ILDataValid() : Boolean
+ ValidateILData() : String

+ SubRouteSet()
+ SubRouteClr()
+ OccupyTrack()
+ ClearTrack()
+ MoveNormal()
+ MoveReverse()
+ KeyNormal()
+ KeyReverse()
+ KeyCentre()
+ CallNormal (Sender)
+ CallReverse (Sender)

+ PointName : String
+ MiscTrue : String
+ MiscFalse : String
+ OutputBit : Integer
+ NRInvert : Boolean
+ PointPair : String
+ Position : String
+ Key : String
+ PointAssn : Boolean
+ PointsRef : String
+ PointsPosRef : String
+ AttachedTrackElements : Boolean
- PointAssns : ArrayList

Points

+ UpdateDetails (PointID)
+ Validate() : Boolean

+ UpdateKey(NCR)
+ Update()
+ EnterDesignMode()

+ AssociatedPointID : String
+ SymbolCode : Integer

PointKey

 33

4.4.2 Layout Data Class

A central data depository was planned to allow a single location to retrieve objects

from. It was also logical to have data stored within a single class in order to use the

.NET serialization functions to Save to disk and reconstruct from Disk.

The .NET framework provides a simple, dynamic, efficient object storage mechanism,

known as an ArrayList. It is said to be a cross between an Array and a Linked List. An

ArrayList is provided for each type of object. For the main Device Objects, a further

ArrayList, Devices contains the ArrayList’s holding the objects. Routes objects are

stored in similar SortedList structure to aid efficient retrieval by RouteID.

The Layout Data Class also manages the data retrieval by other objects and to do

that, a number of indexes are maintained.

A key Index is the DeviceIndex which is an 80 x 64 x 2 array. Layer 1 maintains a

value for Object Type which is a numeric value referring to the location of the Object

Collection within the Devices ArrayList, or -1, indicating that position on the grid is

empty, and hence available for objects to be created. Layer 2 of the Array maintains

the position within each Object Collection of the specific Object Instance. This Index is

essentially the link between the grid position on the user interface, which is used as

the main reference point for Device Objects, and the actual location of the object in

memory.

Devices which require them and Routes must have unique names to act as

references and so indexes are maintained to record names currently in use.

A register of Hardware Bits allocated is kept to ensure that the number of bytes

available can not be reduced (by changing the Module Configuration) while objects

exist referencing a bit that would no longer be available. The maximum number of

bytes available in the current hardware configuration is also stored.

A very large number of functions are provided to aid retrieval of data and updating of

indexes from the class. Interfaces are also set up through functions provided in this

class and the Operate Mode DataUpdate() functions are all in this class to call

Update() functions of each object instance requiring continuous update.

 34

The Data Processing thread, simply calls these Update functions on a regular basis.

The easiest way of understanding this class is by reference to the comments included

within the Source Code – data.vb is the file involved. Much of this class is very

straightforward but it performs a vital function at the centre of the system, as diagram

4.1 shows.

Subsequent sections refer to some of these processes in more detail.

4.4.3 Design Mode

Design mode is the mode started in and finished in to ensure data is consistent when

performing file operations. When returning to Design Mode, updating is removed and

objects returned to a known state – the same state new objects are created in.

The user clicks on the signalling display and if the tile is empty, a selected symbol is

displayed. This action enables the Insert Menu, allowing access to the Insert/Edit

forms for device types. If the selected tile is occupied, only edit options are enabled,

allowing parameters for that object to be amended or for the object to be deleted.

Setting up a layout is an infrequent operation, and the main interest in this application

is the Operate mode. For this reason, the Design Mode is crude and basic, yet

functional. It represents a considerable amount of coding time, most of which was

spent designing and testing the Data Validation elements. Section 4.4.4 refers.

User Interface

Each object has a form containing all the controls required to obtain all the information

for that object. The form also has its own, separate instance of the object in question,

known as tempobject. There are two reasons for this. The first is to aid usability –

whilst laying out a track for example, many adjacent cells may require the same type

of object with similar parameters. The form objects are not disposed of after each use,

they are simply hidden. When an update is complete, the tempobject data is copied

into the relevant location in the LayoutData. So the next time the form is called, on an

empty tile, the previous data is already present in the form. If the form is called from

an occupied tile, the data is copied from the LayoutData to the tempobject.

The second benefit is to assist with ensuring that invalid data is not allowed in the

LayoutData. If the new or altered data (temporarily stored within tempobject) is invalid,

 35

data validation prevents the data from being accepted and the data is not copied into

LayoutData.

4.4.4 Data Validation

One of the most essential elements of the system is data validation. The purpose of

Data Validation is very clear - to ensure the data is valid, complete and accurately

cross referenced. It is designed to be robust enough to prevent illegal data to be

accepted that would cause the system to crash or cause data corruption. It is not

however designed to ensure the data is necessarily sensible or correct from a

signalling point of view.

A two stage validation has been developed. The first stage must be passed before an

object can be created or updated. The second is checked and a detailed error report

generated if required but the data is accepted. In all cases, a relevant error message

is displayed to the user.

All the second level checks are run again before changing modes and the user is

prevented from changing modes if the checks fail. The reason for this two stage

approach is to give more flexibility in entering data. If rules were rigidly enforced all the

time, the user would have to create objects in precisely the right order to pass all the

validation checks first time. This would become very frustrating.

The two stage approach allows a reference to be made but for the referenced device

to be created later.

An example of Data Validation Code is given in section 4.5.1.

4.4.5 Test and Operate Modes

Test and Operate modes are very similar to each other but work quite differently to

Design mode. Before changing from Design Mode, the second level of data validation

is checked and if successful, all devices are set up for the new mode. The Signal and

Miscellaneous Devices interfaces are set up and Signals are set to their default

aspect (as specified by the user). Symbols are changed to their default state and in

Operate Mode, some symbols are hidden as they are not required (Track Sections

and Hidden Miscellaneous Devices).

 36

The Data Processing thread is then launched and this executes with the following

sequence: -

Update() called for
each Route

Update() called for
each Track Section

Update() called for each Signal
(using the ISignal Interface)

Update() called for each Misc Device
(using the IMisc Interface)

Wait
100ms

• Diagram 4.4 Data Processing Thread

Each step, causes the Update() function of the individual objects stored within the

LayoutData to be called and the objects have the necessary code to update as

required. A semaphore is used to indicate when the Data Processing Thread is

actually processing data and user requests made during this time, wait until it is

complete before executing to avoid data corruption through multiple threads

amending the same data. 100ms was considered to be fast enough to appear as

though the system was behaving in Real Time. The Performance Testing in section

6.3 looks further at performance issues.

Where one change will have a knock on effect on another object, the latter object will

simply update again at the next cycle of the Data Processing thread and to the user

the delay will not be noticeable. This is particularly relevant to the Calculated

Miscellaneous Outputs which evaluate their state based on other objects and

significant logic could be built up if required using this type of device.

In Test Mode, there the Hardware Object is set up but no synchronisation takes place

with the Hardware. Hardware Inputs are simulated by the user clicking the symbols

on the screen, which are hidden and inactive in Operate Mode. The User Action calls

the SimulateInput (bit, state) function in the Hardware Object and this changes bits in

the Input Array (Refer to Section 4.4.6 Hardware). Hence, the Data Processing sees

no difference to Operate Mode and this proves useful for Testing as described in

section 6.1.

When leaving Test or Operate Mode, the Data Processing thread is stopped and

Devices are returned to their Design Mode states to allow Design Mode to be

consistent. Layout Data can only be saved to file in Design Mode. When leaving the

application with data changed and not saved, the user is prompted to do so, the

 37

software switching itself back to Design Mode if required. File Open can only take

place in Design Mode.

4.4.6 Hardware Class

The Hardware Class is responsible for all hardware aspects of the software.

Essentially it maintains two arrays of Boolean values that are dimensioned according

to the number of Modules connected. One form is provided to obtain this information

and the maximum number of bytes is stored with the Layout Data. ReadBit(bit) allows

the Input Array to be read back and objects poll this as part of their update routines.

SetBit(bit) and ClearBit(bit) set bits in the Output Array.

The Hardware Object contains a synchronize function which uses RPC Type 0

messages to send and receive all bytes from the hardware to and from the arrays.

RPC Type 3, 4 and 5 messages are also coded and these are used by the integral

Hardware Test utility which provides a simple user interface to deal direct with the

Hardware. The RPC Message formats are defined in Appendix A.

Connect and Disconnect functions prompt the user for which Port to use. The code

for the Com Port Select form and the separate RS232 Class which provides serial

communications are taken directly from an RS232 Tester application2 found on the

web and were reused. Once connected, a new thread is launched to perform the

synchronisation at the same rate as the Data Processing thread.

4.5 In Depth Extracts
This section looks in detail at the design of two elements of the project; Points and

Routes.

The Points example focuses on the Design Mode with samples of Data Validation

and Object Creation and modification.

The Routes example shows how this critical element of the interlocking works in Test

and Operate Modes. This shows the complex nature of the logic for interlocking and

animation of the correct symbols on the screen.

2 http://www.freevbcode.com/ShowCode.Asp?ID=4666

 38

4.5.1 Points

Points Form

The Point Form used in Design Mode to obtain the data for the point is shown below.

• Figure 4.5 Points Form

The form is largely self explanatory. The Track Section makes the reference with an

electrically isolated track section on the layout. Many Point and Plain Track elements

representing single tiles of the display are associated with a single Track Section.

Interlocking data is used for additional interlocking based around Miscellaneous

Devices to be added.

Works With is the Point ID of the point it works with if the point operates as a pairs

with another point. The RPC Bit reference is the output bit that moves the points.

Points are assumed to have the “Normal” direction as the horizontal or vertical track in

the symbol – Checking the Swap N/R makes the diagonal the “Normal” direction.

Point Leg Association is required for animating the screen correctly. If checked, the

reference given must be valid.

Data Validation

As data is changed, the tempobject is updated as described in Section 4.4.4.

 39

Points Form Point Object Layout Data

Call Validate()

Result = True

Result = False

[No ID]

Call Data.Check
Reference(ID)

[ID Exists]

Show Error
Message

Lookup XY using
Name Index

Return Device
Type using

Device Index

ID In Use

Get Point (ID)

[<> -1]

Return relevent
Point Object

Check XY

Result = False

[XY is not
this Object]

Show Error
Message

ID Free

[-1]

[Device
is New]

[Device exists
 ID Changed]

[ID exists
for this Device]

Get Point (ID)

Check if IDs
Match

Return relevent
Point Object

[ID <> Stored ID]

Check if Track
Elements
reference
stored ID

[References
Exist]

Result = False

Show Error
Message

[No Refs]

[ID = Stored ID]

Validate Track Section
Reference

Result = False

Show Error
Message

Validate RPC
Reference

Check Track
Section Ref Exists

[Invalid]

[Valid]
Check RPC Bit is

within range
determined via

Module
Configuration

Result = False

Show Error
Message

[Invalid]

[Valid]

Check Point
Reference if

Checked

Result = False

Show Error
Message

[Invalid][Valid]

Check Point exists

[Point
References
Itself]

Result = False

Show Error
Message

[Point ID <> Point Ref]

Check Works With
Reference if entered

End

Return Result

Check Point exists

Result = False

Show Error
Message

[Invalid]

Return Works With
Point

[Valid]

[Point
References
Itself]

Result = False

Show Error
Message

[Point ID
 <>
 Works With Ref]

Check Works With Point not
referenced already

[Other Point
 already Paired]

[Other Point Free
to be paired]

[Paired with this
 Point already or
old name of this point]

[Paired with a
different point]

Result = False

Show Error
Message

● Diagram 4.6 UML Activity Diagram of Points
Object 1st Stage Data Validation

•

 Pressing Create/Update, the first

stage is to validate the data, as held

in the tempobject. For a Points

Object, the Validation process is as

shown in Diagram 4.6 (left). Other

objects validate in a similar manner.

 Following the successful completion

of this 1st stage validation check, the

second stage checks are made.

These are for the interlocking data

which is allowed to contain illegal

references but must be fixed before

leaving design mode. Warning

messages are displayed to the user

and the object created or updated

by copying tempobject to the Layout

Data Class.

At the same time, various indexes

are updated and related objects

may be updated. For example, the

Works With reference would cause

the reverse reference to be added

to the other point.

As can be seen, this section is the

most complex in the project and

accounted for a significant amount

of development time. By ensuring

only valid data is allowed and all

possibilities have been covered, the

 40

Test and Operate modes become straightforward and very few validation checks are

needed during Operating, improving performance and adding reliability.

Validation code for each object can be found in the Source Code in the appendixes, in
ScreenElements.vb

4.5.2 Routes

Route Objects underpin the signalling interlocking as described in section 2.3. The

form is complex but straightforward if the signalling theory in Chapter 2 has been

understood. The form is provided here as a reference whilst the Route setting

operation is described for Test/Operate Mode.

• Figure 4.7 Routes Form

The following pages show the operations of Route Set and Route Cancel, including

the related objects. Much of this code relates to the animation of the tracks. Tracks

with a Routes Set show in White, otherwise, they display in Grey and tracks occupied

(by a train) in show in Red. However, the white (and Red while a route is set), only

 41

applies to the path through a Track Section that is set. This complicates the

animation, which as will be seen, is controlled through the Track Section elements.

Signals aspects are based on other signals and Routes and these are not shown

here.

Route Set

The UML Interaction Sequence Diagram is shown in Diagram 4.8. At each stage until

the Set Route call, an error report is added to for any errors encountered in the route

checking and calling of the points. If the error report is empty, the route gets set, if not,

the error report is shown to the user, giving feedback on why the route can’t be set.

This is an intelligent response from the interlocking, achieving one of the additional

features in 4.1.1.

Signaller

:Route :LayoutData :Points :TrackSection :PlainTrack

Call Route()
*Check Conflicting Route()

Error Report

*Check Tracks Clear()

Error Report

*Check Misc True ()

Error Report

*Check Misc False ()

Error Report

* Call Normal()

Error Report

* Call Reverse()

Error Report

* Set Route()

Error Report

[Error Report = ""]

[Error Report <> ""]
* SubRoute Set()* SubRoute Set()

[Device Type
= Points]

[Device Type
= PlainLine]

Update A Button Flag ()

Set USet = True

• Figure 4.8 UML Object Interaction Sequence Diagram for Route Setting

 42

Route Cancel

Route Cancel works in a similar way to Route Set, but is much simpler. In addition, if

an Auto Button is specified for a Route, cancelling the Route also cancels the A

Button. The Code extracts that follow (from ScreenElements.vb) show how the Route

Cancel is achieved.

Public Sub CancelRoute()
 Dim i As Integer
 For i = 0 To TrackSections.Count - 1
 Data.GetTKSection(TrackSections(i)).USet = False [See Fig 4.10 below]
 Data.GetTKSection(TrackSections(i)).TORRAv = False
 If AButton <> "" Then
 Data.GetStaticMisc(AButton).CancelMisc()
 Data.GetTKSection(TrackSections(i)).APressed = False
 End If
 Next
 Me.USet = False
End Sub

• Figure 4.9 Code Extract for CancelRoute() from Route Class

'Clear Route
 Dim i As Integer
 For i = 0 To Me.TrackElements.Count - 1
 Dim xy As Point = CType(TrackElements(i), Point)
 Select Case (Data.GetDeviceType(xy.X, xy.Y))
 Case 9 'Plain Track
 CType(Data.GetDevice(xy.X, xy.Y), PlainTrack).SubRouteClr() [See Fig. 4.11 below]
 Case 10 'Points
 CType(Data.GetDevice(xy.X, xy.Y), Points).SubRouteClr()
 Case Else
 End Select
 Next

• Figure 4.10 Code Extract for Setting USet Property of TrackSection to False(Not Set)

Figure 4.9 is executed by the Route Class when the route is cancelled. Figure 4.10

occurs for each TrackSection in that Route. The Track Section then passes this on to

all the track elements that make up that section. These can be either PlainTrack or

Points. Figure 4.11 goes on to show the SubRouteClr() function within PlainTrack.

 Public Sub SubRouteClr()
 'Displays Route Clear
 If Data.GetTKSection(MyBase.TkSecAssn).TOcc = True Then
 'Track Occupied and Route Cancelled
 'Check if Track is Red

 43

 If (MyBase.Symbol - 99) Mod 3 = 0 Then 'Leave Red
 Else
 If (MyBase.Symbol - 98) Mod 3 = 0 Then
 'Change White - Red
 MyBase.ChangeSymbol(MyBase.Symbol + 1)
 GUI.UpdateDisplay(MyBase.X_Pos, MyBase.Y_Pos)
 Else
 'Change Grey - Red (Flood Track)
 MyBase.ChangeSymbol(MyBase.Symbol + 2)
 If TORRInProgressFlag = False Then GUI.UpdateDisplay(MyBase.X_Pos, MyBase.Y_Pos)
 End If
 End If
 Else
 'Track Not Occupied and Route Clear
 If (MyBase.Symbol - 98) Mod 3 = 0 Then
 'Change White - Grey
 MyBase.ChangeSymbol(MyBase.Symbol - 1)
 GUI.UpdateDisplay(MyBase.X_Pos, MyBase.Y_Pos)
 End If
 End If
 End Sub

• Figure 4.11 Code Extract for SubRouteClr() function of PlainTrack Class

This code shows the complexity of evaluating the symbols to be displayed to provide

the correct colours on the screen to meet the signalling requirements. The design of

the Symbol Set, shown in Appendix C is invaluable as it was structured in a logical

manner. This reduced the complexity of the logic required here, allowing common

rules to be applied for most sections to calculate the appropriate colour change, even

though the symbols may be for different orientations of track on the display.

The use of extensive comments in the code to aid its reading and understanding is

shown to good effect in these extracts.

4.6 Summary
This Design Section has finalised requirements and outlined the fundamentals of the

design with the multi-threaded approach to aid development and testing. This was

followed by the detailed design showing how the modes of operation work and

outlining the Layout Data class at the heart of the system. The Objects were defined

and an introduction given to how they interact with each other.

The In Depth Extracts have followed some key concepts in greater detail via UML

diagrams and source code walkthroughs. Clearly, there is far more to this project than

 44

what can be covered in this report. The full source code and further examples of the

User Interface can be found in the Appendixes.

The next section looks briefly at Implementation of the project and references the

supporting documentation.

Chapter

5 Implementation

The Design was used, together with the Testing Plan set out in Section 6.1.1 to help

form the Project Plan which has been presented in Appendix E. That appendix also

includes the monthly progress reports and an assessment of how the implementation

followed the plan.

Other supporting documentation has been placed in the appendixes including details

of the wiring of Horton in Appendix B, MERG technical bulletins in Appendix A and

Symbol codes in Appendix C.

Appendix D contains details of the user interface that was designed and gives an

indication of how the software looks. Appendix G presents the source code, which is

also supplied, along with the completed installation software on the CD-ROM at the

back of Volume 2.

A Project Website was also set up to allow others to comment on the design or assist

with testing. The Installation Software and other documentation are available for

download at http://homepage.ntlworld.com/dodonet/stephen/mrcc/

With a software project, trying out or observing a demonstration of the finished

software represents the best way of understanding the implementation of this design.

Chapter 6 looks at the Testing of the software, starting with the detailed strategy that

was developed to integrate with the design to form a logical and workable project

plan.

 45

Chapter

6 Testing
6.1 Strategy

In line with real railway practice, testing was considered to be of critical importance.

Reliability of the software was essential as prolonged operation was envisaged whilst

operating the model railway at Exhibitions. This requirement was set out as Objective

3 in section 1.3.

With such a complex set of requirements and functionality, robust planning, design

and testing was needed to ensure that as many operating scenarios as possible were

tested in a controlled manner. Without a clear strategy for testing, it would become

very easy to miss a bug or design flaw until it was too late, making it difficult to trace

and time consuming to rectify.

The choice made early in Chapter 4 of an Object Orientated approach was a key part

of the Testing Strategy in that it allows for iteration of the design and testing as the

project develops, as opposed to the traditional “waterfall” approach.

As a result of this decision, testing was not left as an isolated activity to take place on

the completion of the project. It was an integral part of the design process and testing

helped to formulate the order in which the project was executed in order to minimize

the risk of failure at the end of the process.

6.1.1 Testing Plan

The Testing Plan is broken into many layers which build up to a comprehensive test

of the final product.

[A] Module Testing

Each Function or section of code was tested as extensively as was practical, as

quickly after coding as possible. The Visual Studio Integrated Development

 46

Environment (IDE) provides extensive syntax checking as the code is written and

many other checks are made when the code is compiled.

Once any build errors had been rectified, that particular element of the code was

executed to ensure functionality as planned. This required extensive and repetitive

tests in some cases. These tests were not exhaustive however, due largely to time

constraints, but were completed until a reasonable degree of confidence could be

obtained.

[B] Development Order

The Project Plan (see Appendix E) was built around the testing strategy. The first

stage of the design was the development of the System Fundamentals in section 4.3.

Diagram 4.1 in Chapter 4 shows the Multi-Threaded solution whereby the project is

broken into three threads (Hardware, User Interface and Data Processing)

communicating with a central Layout Data object store.

The first section to be coded was the Hardware Interface. This was chosen as it

would underpin the system in Operate Mode. Without this, the software would not

work with the model railway layout. It was also considered to be a high risk for failure

as a result of the use of the RS232 port and the implementation of a specified

message protocol with the RPIC microprocessor.

The Hardware Interface included a built in Hardware Test Utility which synchronised

with a screen display of each bit. Each Hardware output could be controlled and all

bits read back from a pair of arrays within a Hardware Object. Extensive testing was

carried out to the hardware to ensure it functioned as planned and failure mode tests

were carried out on the serial link. Once complete, the Hardware thread could be

bolted on to the other threads of the software in the knowledge that it had been tested

and would work with the hardware when that stage was finally reached.

Design Mode was the next to be developed and involved the creation of the Layout

Data class and various elements of the User Interface. Again, testing could be carried

out using only the Layout Data and User Interface Thread.

The Test and Operate Mode Functions were then coded and the Data Processing

thread created. Test Mode could then be tested using the Layout Data together with

 47

the User Interface and Data Processing threads. This allowed almost all the

functionality of Operate Mode to be tested without the need for Hardware.

Finally, when tested satisfactorily, the already tested Hardware Thread was joined to

Test Mode to create Operate Mode. This allowed tests to concentrate only on issues

relating to the integration of all the components, as each had been tested in isolation

in advance.

[C] User Interface Correspondence Testing

As the Design section makes clear, the User Interface is very important in this project.

This extends beyond the signalling display to the dialogs in Design Mode which allow

the creation and modification of device objects.

It is vital therefore to ensure that both of these accurately reflect the data that is stored

within the Layout Data class at all times. The data visible on the screen has to be

proved to be correct as it is being relied upon in subsequent tests. As a result, a

number of tests were carried out to ensure that on viewing the properties of an object,

the correct object was retrieved from the object store and all controls on that form

were correctly updated to reflect the data from that object. Equally data entered had to

be correctly stored in the Layout Data.

[D] Data Validation

Section 4.4.4 sets out the way Data Validation has been implemented. However, the

reasons behind that design lie in this Testing Strategy. There are fundamentally two

approaches to writing modules of code. The first is to ensure that all data passed to or

processed by the function is validated before being processed, while the second

assumes the data to be valid to start with. In many cases, the first is considered to be

the best. However, for most of this project, the second approach was taken.

The reason for this is that the system is a closed system. It revolves around the

Layout Data class which holds all the objects making up the user defined data. The

plan is simply to validate data extensively in Design Mode to ensure that the data

stored is valid and many cross checks are made. Data which does not affect the

storage and creation of the object is allowed to be stored with errors in the Layout

Data but the second stage of the two stage Data Validation ensures that the user can

not leave Design Mode until these are corrected. The end result is that almost all of

 48

Design and Operate Modes can operate without validation checks, confident that the

data they use is valid.

Again, extensive testing was carried out by trying many combinations of invalid data.

These were entered in each dialog in Design Mode to ensure all errors were

recognised and appropriate error messages were returned to the user.

[E] Random Testing

In addition to the structured tests designed to test particular sections of code, random

testing was carried out by individuals who were not aware of the software design. As

the developer, it is very easy to always use the software as designed. It was felt that

getting other people to try the software without a manual and simply directed to

experiment with certain features would be a good test of unexpected scenarios.

This was particularly useful in the testing of the complex Design Mode where the Data

Validation code was protecting the software from getting into a situation where it may

crash. Data Validation code has to work by covering every scenario imaginable.

Random testing is particularly useful in finding scenarios that just couldn’t be thought

of when the code was designed. A number of loopholes were corrected in this way.

Friends and family, with varying computing skills and railway knowledge were used

and observed, although not aided, whilst using the software. In addition, a copy of the

software was placed on the internet and members of the Model Electronic Railway

Group invited to try it.

[F] Test Mode

It was identified early on that there was a need to test both the software functionality

and operation, and also the user defined data, without the need to set up a complete

model railway layout with relevant hardware. Horton, for example, is 24 square

metres and setting it up is no easy task. The Test Mode as described in section 4.3.2

provides for testing without the hardware. Hardware inputs are simulated by user

mouse actions on the screen.

This proved invaluable during development and for testing the Operate Mode

functions. The Test Mode removes the need for significant hardware to be wired up

and allows complex layouts or interlocking configurations to be tested virtually with no

need to actually build or wire them. This is needed to test features that the test be

 49

layout, Horton doesn’t have. Scenarios that wouldn’t be possible can also be

simulated in comfort at the PC saving considerable time.

[G] Demonstration Track

In order to test the Operate Mode of the software without setting up a full layout, the

ultimate testing tool was created in the form of a small test track. The track is vastly

over signalled with six track sections and five 4 – Aspect signals on a short length of

single track.

• Photo 6.1 Demonstration and Test Track together with PC running Model Railway Computer Control
Centre Software and Control Panel housing RPC Hardware

The test track, which is fully wired with the hardware system by small modifications to

the Horton Control Panel, allows a train to run up and down operating track circuits

with the software displaying its position and updating the signal aspects as required.

This is an ideal way to test the final Operate Mode and prove that the software really

does work as designed with the hardware to provide a signalling control centre for a

model railway.

 50

The test track is a convenient way to test the performance of the software and also to

investigate how the software copes with failure modes such as breaking the serial link

to the hardware whilst operating.

6.1.2 Limitations

The primary limitation to the testing is that there are 5120 tiles on the signalling

display, giving 5120 possible objects. There are 9 different object types or an empty

square resulting in 512010 combinations of objects. The data within each object

contain many more permutations giving trillions of combinations. Clearly only a tiny

fraction of these can be tested but the choice of tests is the key to testing such a

project.

The other major limitation that must be stated is that the tests performed are logical

ones – They ensure hopefully that the software is robust and reliable. They also make

some cross checks on user entered data. Checks also ensure that most of the

functionality and signalling described in Section 2 works correctly when the relevant

data for the users layout entered. However, the software and the testing does not in

any way ensure that the data entered is sensible or will work as intended. It simply

helps to ensure that when the right data is entered, it will work. Valid Data is not

necessarily Correct Data for the specific application of a product and the same applies

to many real computer systems.

6.1.3 Summary

This comprehensive strategy has allowed a significant degree of confidence to be

built up into the reliability and functionality of the software. With such a system, an

exhaustive test is completely impossible but with a well designed testing strategy, a

small amount of testing can cover a very large number of possible combinations.

By integrating the testing strategy into the design of the software, sections of the

project can be tested as component parts before the final system is brought together.

This minimizes the risk of the final product failing to achieve its objectives and allows

iteration in the design process.

Multiple layers of testing built up to provide a significant testing effort, culminating in a

full scale test track to permit full functional testing of the software.

 51

6.2 Functional Testing
The testing plan described was followed throughout the development process. This

section looks at the results of testing each element of the plan and gives examples of

some of the structured tests which were used.

6.2.1 Module Testing

Each section of code was tested as it was coded in order to verify it had the desired

effect. In many cases, immediate changes were made as run time errors occurred.

Usually these were obvious. In other cases, the Debugging tools provided by the

Visual Studio IDE were used to set breakpoints or monitor the state of variables and

data stored. After iteration, all sections of code were believed to be functioning

correctly.

6.2.2 Development Order

The approach proved worthwhile as later stages fell into place very quickly. Test

Mode was coded quickly and largely worked first time and Operate Mode was also

developed rapidly with minimal effort.

Tests revealed some problems with integration however. Whilst the multi-threaded

approach was designed carefully, a number of additional semaphores were needed

to prevent threads from clashing with each other. Many of these problems were timing

related and only occurred occasionally. After testing had revealed problems, the

debugging information was used to pinpoint the location of the error and a thorough

mental walkthrough of the code carried out to identify the loophole.

For example, the update thread had a semaphore to indicate it was processing and

the GUI was put in a loop until the processing was complete before making a user

request. It was discovered that this check could be reached towards the end of the

Update thread’s sleep time. The loop would be passed as the Update thread was not

processing but as it executed, the Update thread would wake up and clash. A second

semaphore was required to provide the opposite check that the GUI was busy.

 52

Mode changing was also a key area for testing. This included the requirement to

switch to Design Mode on closing the application and ensuring the processing or

hardware synchronisation was stopped in a controlled way during mode changes.

Tests were carried out by requesting actions followed immediately by mode changes

for example.

6.2.3 User Interface Correspondence Testing

As objects were created or modified, the debugger was used to pause execution to

examine the data in Layout Data and check that the expected data had been

changed. Problems were found with the Temp Objects (see 4.4.3) when the form

displayed and updated with data from the Temp Object. However, as the data was

copied into the form, the change to form controls caused an event to update the

Temp Object behind for a group of controls, resulting in data being lost in the Temp

Object. A formlock variable was used to prevent the problem.

To verify that each control was updated on viewing a Design form and that each

control was stored in the layout data, a test was developed for the Plain Track dialog,

the first to be coded.

Example Test

The layout in Figure 6.2 was created (it uses most symbol types for plain track). Data

was then added to each whereby each field had changed from the adjacent tile and

was documented. The Design form was then called up for each tile in turn, to ensure

that the data displayed was 100% correct. This proves both storage and retrieval of

the correct objects and the correspondence of the User Interface. Each property was

then changed to a sequence and a further check made to ensure the update of the

object worked correctly.

• Figure 6.2 Test Layout as part of User Interface Correspondence Testing

 53

6.2.4 Data Validation and Random Testing

The rigorous testing with invalid data and the use of random testing to identify

unexpected scenarios worked well. The data validation tests consisted of entering

data that was designed to trigger each branch of the data validation code. For second

stage data validation, other items would then be added as required such that the

original interlocking data was now valid. A further check was made to ensure that the

error had been removed from the list when it no longer applied.

A small number of loopholes were identified with random testing which would not

have been found if this technique had not been employed. All faults found were

rectified and retested.

6.2.5 Test Mode

Test Mode, which was identified as a requirement for users to test that their data was

fit for purpose, proved invaluable in simulating real life situations without the need for

hardware or physical wiring. It was ideal to test all aspects of the software and is a

good training tool too.

Testing involved creating a section of real model railway (a section of Horton was

used) and using the controls to set routes and mimic train movements. This allowed

the testing of interlocking and track animation. Features like Route Release and

Signal Aspects were also tested extensively, including unexpected and unrealistic

scenarios.

One test revealed that when a track section went clear through points, the whole

section would flash red momentarily as it cleared. This was identified to be a result of

TORR (see section 2.3) rightly clearing the route as the track cleared. However, this

occurred before the red indication had been removed and so parts of the track not on

the set route saw the route cancelled and the track occupied and flooded in red

briefly. A small modification prevented the change to red if TORR was in progress.

The code which deals with this is shown in figure 4.11.

Numerous other minor faults were quickly rectified as a result of the decision to

provide this testing facility as part of the software.

 54

6.2.6 Demonstration Track

The demonstration track was a good final test for the software allowing a thorough

and realistic test of actual operating conditions.

A number of problems were found whilst trying using the demonstration track. Firstly,

the logic was wrong on Track Circuits, resulting in inverted operation. A simple

modification was made.

The second problem was more subtle but at various times, it was found the hardware

would freeze and require a reset before continuing. The archives of the MERG group

were searched to reveal a similar problem had been reported by other members. The

problem related to modern software techniques such as multi-threading and the

interaction with the Windows operating system which can result in Windows delaying

outgoing messages. If the software continues to read and then write a second

message, it is possible for the input buffer of the microprocessor to get corrupted,

causing it to lock up. Advice of MERG members was taken which resulted in

modifications to the code to extend the timeout allowed by the software. Changes

were also made to prevent sending subsequent messages if a timeout was raised by

the software and delay until such time as the hardware would have timed out. In

addition, a firmware upgrade was made to the RPIC microprocessor which is

designed to improve the reliability of the “inter-byte” timeout on the hardware.

Problems were also experienced with some mode changes where some loopholes

were found that could lead to a potential failure of the software. Some error messages

were improved to give the user more guidance on what to do to recover the situation.

Tests were also made to ensure that failure conditions were dealt with. Tests involving

power failure on the microprocessor and link failure, breaking the serial connection,

were made and the software found to react appropriately.

6.3 Performance Tests
An important element of the software was for it to appear to be working in real time.

This is especially important on model railways, where short track sections and

proportionally fast trains result in less time for operators to make decisions.

 55

6.3.1 Reaction and Response Times

After creating a substantial portion of the data for Horton and adding the test track to it

(demo.mrc provided as a sample on the CD-ROM), tests were carried out in both Test

and Operate Mode to asses the speed at which the software responds.

Using an Intel Pentium 4, 1.8 GHz machine, with 512 Mb RAM and Windows XP

SP1, the software functioned very well. Graphics on the screen animated almost

instantly although the colour changing of whole track section was visibly not an

instantaneous action.

Reaction to events or requests, whether by hardware or simulation, was again almost

instantaneous, such that meaningful timings were not possible. A limitation of the

hardware was noted in that the hardware for track circuits takes about 200ms to clear

detect a clear track and as a result, running a train fast on the test track with very

short sections can result in state where a track section shows occupied after it has

cleared for a very short time.

Using an AMD K6, 380 MHz machine, with 64 Mb RAM and Windows 2000, reaction

was again good but delays were noticeable in changing symbols on the screen,

especially with long track sections. This is likely to be partly a result of retrieving these

from disk each time and performing some graphics processing to obtain the correct

symbol.

6.3.2 System Resources

Whilst using the Pentium 4 machine, the software was seen to have a continuous

requirement of less than 1% CPU usage in Operate mode when continuous

processing is taking place. This rises momentarily when a user makes a request such

as setting a route. Memory usage was steady at about 30Mb although this fluctuates

as the software allocates memory and the garbage collector frees unused memory.

Forums suggest that about 29Mb is usually eaten by the .NET framework and so this

is normal. Future versions of Windows will include the framework and will result in

much more efficient use of memory, with individual applications not showing such

high usage.

 56

On the older machine, CPU usage was maintained at about 20%. This is poor and

shows the amount of processing power used by the application. It is likely that a

significant part of this is a result of the high number of type conversions being carried

out and some inefficient coding of the data storage and retrieval of my software. This

is addressed in Chapter 7.

Point Keys

Whilst testing the software, the CPU and memory usage were monitored using the

Windows Task Manager. The importance in doing this was demonstrated when it was

observed that the addition of point keys to a layout resulted in a massive hit on

performance in Test and Operate Modes. On the newer machine, CPU usage

reached 30% and memory was seen to rise continuously with time.

It was found that when coding the Point Key’s Update() function, no check was made

to see if the symbol had to be changed – it was redrawn at each cycle of the Data

Processing thread. This was a minor error but had severe impact on performance.

6.3.3 Hardware Requirements

Microsoft state the minimum requirement for running applications on the .NET

framework as an Intel Pentium 90Mhz processor; Windows 98, ME, NT4, 2000 (with

latest service pack) or XP; 32Mb RAM with 96Mb recommended. The framework

requires 70Mb of disk space (160Mb during installation); 800x600 graphics at 256

colours; a mouse and Internet Explorer v5.01 or later.

Model Railway Computer Control Centre requires just 700kb of disk space and, as

the test have shown, a modern processor and more RAM gives significant benefits.

6.4 Summary
The application of a robust testing strategy and continuous testing as part of the

development process has lead to a reliable, functional application that meets most of

the original requirements.

The final chapter evaluates the project and looks at what has been achieved and

what elements could have done improved.

 57

Chapter

7 Conclusions
7.1 Achievements

The project has been a great success. A working application has been completed,

testing and is working, fulfilling the original aims and objectives set out in chapter one.

Looking back to the requirements that were set out at the start of chapter four, most of

the signalling functionality has been included and is working as planned. Beyond the

basic functionality, one of the additional requirements that was identified has also

been achieved – that of an intelligent response from the interlocking when a request is

rejected.

The final application has also been completed largely to the original project plan and

has been finished on time at a steady pace throughout. The good planning which

went into the development of the plan and the integration of the Design with the

Testing strategy has also paid off. Risky areas of the software such as the hardware

interface were tackled first to give maximum time to rectify any problems.

Equally, the rigorous approach to testing at all stages of the project has captured

errors as they were coded, at an early stage, making the task of solving them more

straightforward. Testing of the threads of the project in isolation and then integrating

them in a controlled manner has further simplified the fault finding actions where

problems have occurred.

In designing and developing the application, a much greater appreciation of the

benefits of the Object Orientated programming philosophy has been gained.

Theoretical concepts have been taken forward into a practical solution for a real life,

complex object problem. After working with the initial object model, and on

discovering the power of interfaces in order to implement polymorphism, it was

realised that it was a very useful tool indeed. A great deal of code for the aspect

sequencing in particular was saved by using this approach.

The project has proved a useful vehicle for developing the project management skills

and discipline required to understand and bring together many subsections of a

 58

complex problem into a single, working system. With approximately 15,000 lines of

code, this was a very large project to undertake, given the authors limited previous

software experience.

The author has gained significantly from the exercise. Not only has a useful and

working application been developed, but a good appreciation and understanding of a

major, modern, object orientated programming language has been obtained.

7.2 Critical Review
With the benefit of software experience that the project has provided, and a degree of

hindsight, it is possible to identify areas of the project that could have been done

better.

7.2.1 Missing Functionality

Of the basic signalling outlined in chapter two, the only significant omission was that

of an automatic signal. This was in fact largely due to an oversight which was not

identified early enough to easily rectify. Controlled signals, with Auto buttons have

been included and the data can be worked in such a way as to provide the

functionality of an automatic signal although there are some minor drawbacks.

A number of the more obscure features, such as junction indicators and ATP relays

have not been addressed individually but the use of two types of Miscellaneous

device has given the software a great deal of flexibility for ingenious users who

understand how to manipulate the data to their advantage.

7.2.2 Data Format and Version Problems

A decision was made to abandon a planned structured data format to store objects on

disk. A structured format, such as XML would have been developed and it would have

been human readable. However, to save time, the .NET serialization functions were

used to perform a binary serialization. Whilst this was very straightforward and fast to

implement, it introduced a limitation.

 59

If the Object model is amended or additional properties added to an object, a

serialization saved using the old model, can not be deserialized into the new model.

This presents a limitation to future development of the application as complex layouts

that had been created, would have to be recreated from scratch. If a structured data

format was used, additional properties could be added, but an old file could still be

open but with no data for the new properties.

7.2.3 Graphics

The basic structure of the graphics code was based on an example of a Chess Game

GUI in a textbook (see section 4.3.3). This greatly assisted with getting the graphics

functioning, allowing time to develop other areas of the software.

However, the approach resulted in some limitations. Firstly, in design mode, if an

object is selected, there is no identification of which tile is selected. If the tile is empty,

a selection symbol is displayed but if a tile is occupied, you can’t replace the graphic

with selected because you would not be able to see the original symbol. A solution

would be to create a second, transparent layer of graphics over the original signalling

display to display the selection symbol.

As the graphics are based on 16x16 pixel tiles, there is no method for adding text

labels to the signalling display. Solutions could include displaying text on the

proposed second graphics layer, or perhaps adding the labels as “tool tips” as the

mouse is hovered over the symbols.

When the Performance Testing was conducted (see section 6.3), it was obvious that

there was a delay incurred drawing tiles of the signalling display. On investigation, the

graphics symbols are stored on disk. A single file, symbols.png holds all the symbols

in a row as a single graphic. Every time a tile is changed, the file is accessed and the

correct symbol retrieved through a graphics function from the larger image. This is

likely to be the cause of the delay. The solution would be to load all the graphics

symbols into memory on startup, including the processing to split each symbol from

the single image.

 60

7.2.4 Object Model and Retrieval

With improved understanding of the power of Object Orientation and the functionality

provided under .NET to implement OO theory, a much improved and simplified object

model could be created. In many cases, repetitive code was required which was a

clear sign that the object model was deficient. Signals for example didn’t require

separate objects for each type.

Point Associations

Some sections of the model should have been broken down further. Point Association

which is used to correctly animate track sections based on the settings of points within

a track section should have been separated from both the Plain Track and Points

objects into a single shared object. This would have allowed the validation of the Point

Association to be required only in a single object, rather than two. It would also give

unlimited flexibility to adding further Point Associations for complex track layouts. The

existing design allows only for a fixed number for each track section, which has been

identified as being inadequate.

Object Retrieval

Reviewing the final code, it is obvious that there is a lack of consistency in the object

retrieval from the LayoutData object where all other objects are stored. Many

functions are used to retrieve objects and these together are inefficient. Different

types of objects are retrieved in different ways and much of the data validation is

carried out by the Design Forms, and not by the central data store – within the

LayoutData object. Data Validation involving other objects should be carried out by

LayoutData and not outside, as this results in a large number of Type Conversions

(the CType keyword). Much of the Operate Mode functionality suffers from similar

problems

The problems have come as a result of developing the software at the same time as

learning the language. Later parts of the code, are much more efficiently coded, but

still have to work with earlier structures. The solution to this problem would be a

fundamental redesign of the LayoutData object. This underpins the operation of all

aspects of the software and would be a major exercise.

 61

7.3 Future Enhancements
A number of future enhancements to the software have been identified, which are

practical additions to add functionality and address some of the problems identified in

previous section. A number of these will be implemented by the author before the

software is suitable for taking full control of the Beckenham and West Wickham

MRC’s Horton layout (see Appendix 2).

Automatic Signals

Automatic Signals will be added to the software, probably by adding an additional

Boolean value to the Signal Object. This would restrict the number of Routes from the

signal to one in Design Mode. In Operate Mode, the single route given, would be set

automatically and Route Cancel inhibited.

Symbols

The Symbols will be accessed from file, processed and stored in memory on starting

the software. Symbol changes will simply require retrieval from memory and not from

disk, with no graphics processing. This should give significant performance gains,

especially on older machines.

Data Logger

A data logger with playback facility could be added relatively easily to the software.

This feature was identified and described as an Additional Feature in Chapter 4.

RS485 Multi-drop Support

The RPIC module and the RPC hardware system can be configured using an RS485

Multi-drop protocol, rather than RS232. The RPC System Overview in Appendix A

explains this mode further. Changes would be required to the Hardware object to

support the protocol and changes made to the RPC Bit References for each device to

allow the entry of a Processor Identifier. This mode of operation is used by many

MERG members to save physical wiring and would give the software a wider potential

user base.

 62

 References
Websites

All accessible 22nd April 2003.

Beckenham and West Wickham Model Railway Club
http://www.bwwmrc.org.uk

FreeVBCode.com – Code samples and VB.NET RS232 Interface
http://www.freevbcode.com/

GPP Software – Solid State Interlocker
http://www.gppsoftware.com/ssi/ssi.htm

Google Search Engine

http://www.google.com

Microsoft Corporation

http://www.microsoft.com

Model Electronic Railway Group

http://www.merg.org.uk

http://groups.yahoo.com/group/merg
MERG Members Only Discussion Group

Model Railway Computer Control Centre – Project Website

http://homepage.ntlworld.com/dodonet/stephen/mrcc/index.html

.NET 247 – Forum and Advice on .NET framework

http://www.dotnet247.com

Railway Technical Web Pages – Signalling Index
http://www.trainweb.org/railwaytechnical/sigind.html

 63

SimSig / The Railway Engineering Company – Signalling Simulation Software
http://www.simsig.co.uk/
http://www.theraileng.co.uk/

Books
BR Signalling Handbook
Stanley Hall
Ian Allan, 1992
ISBN: 0-7110-2052-3

Object-Orientated Systems Analysis And Design (2nd Edition)
Simon Bennett, Steve McRobb and Ray Farmer
McGraw-Hill, 2002
ISBN: 0-07-709864-1

Visual Basic .NET for Experienced Programmers
H.M.Deitel, P.J.Deitel, T.R.Nieto, C.H.Yaeger
Prentice Hall, 2003
ISBN: 0-13-046131-8

Visual Basic .NET Serialization Handbook
Andy Olsen, Matjaz B. Juric, Eric Lippet, Adil Rehan
Wrox Press, 2002
ISBN: 1-86100-800-7

Visual Basic .NET Threading Handbook
Kourosh Ardestani, Fabio Claudio Ferracchiati, Sandra Gopikrishna, Tejaswi Redkar, Scrinivasa
Sivakumar, Tobin Titus
Wrox Press, 2002
ISBN: 1-861007-13-2

 64

Other Documentation
MERG Technical Bulletins

G16/3 RPC System Overview
Gordon Hopkins
Model Electronic Railway Group, 1996
Issue 1
(Reproduced in Appendix A)

G16/4 RPC Interface Specification

Gordon Hopkins
Model Electronic Railway Group, 2001
Issue 2
(Reproduced in Appendix A)

G16/5 RPC Remote Panel Interface PIC Module

Gordon Hopkins
Model Electronic Railway Group, 2001
Issue 3

G16/6 RPC Double Pole Relay Module

Gordon Hopkins
Model Electronic Railway Group, 1997
Issue 1

G16/7 RPC Shift Register Output 4 Bytes Module

Gordon Hopkins
Model Electronic Railway Group, 1997
Issue 1

G16/8 RPC Floating Track Circuit Module

Gordon Hopkins
Model Electronic Railway Group, 1997
Issue 1

 65

G16/16 RPC Multiple Aspect Signal Driver Module

Gordon Hopkins
Model Electronic Railway Group, 1999
Issue 1

G16/19 Shift Register Input 4 Bytes Module

Gordon Hopkins
Model Electronic Railway Group, 1999
Issue 1

G16/22 Serial Communications and Shift Registers

Gordon Hopkins
Model Electronic Railway Group, 1999
Issue 1

Railtrack Standards

IECC Operating Specification for Signalling Control and Indication Purposes
RT/E/S/17504
Railtrack PLC, 2001
Issue 2

 66

 Appendix A
RPC System Overview

The following Model Electronic Railway Group (MERG) technical bulletin G16/3

explains the philosophy of the MERG RPC system. This is for background information

on the hardware system.

The technical bulletin was written by MERG Member, Gordon Hopkins.

 67

G16/3 Page 1

 68

G16/3 Page 2

 69

G16/3 Page 3

 70

G16/3 Page 4

 71

RPC PC – RPIC Interface Specification
The following Model Electronic Railway Group (MERG) technical bulletin G16/4

details the communications specification with the hardware system. Only the RS232

mode has been implemented in this software.

 The technical bulletin was written by MERG Member, Gordon Hopkins.

 72

G16/4 Issue 2 Page 1

 73

G16/4 Issue 2 Page 2

 74

G16/4 Issue 2 Page 3

 75

G16/4 Issue 2 Page 4

 76

G16/4 Issue 2 Page 5

 77

G16/4 Issue 2 Page 6

 78

G16/4 Issue 2 Page 7

 79

G16/4 Issue 2 Page 8

 80

G16/4 Issue 2 Page 9

 81

G16/4 Issue 2 Page 10

 82

 Appendix B
Horton Layout

Horton is a layout of the Beckenham and West Wickham Model Railway Club. Full

details and photos of the layout can be found at http://www.bwwmrc.org.uk

The following pages show the layout information and track diagram, followed by the

RPC Bit allocation. The latter is a vital reference document as to the wiring of the

modules within the Control Panel.

Sample Layout File, Horton.MRC provided on the CD-ROM at the back of Volume 2,

is an extract of this layout and is set up to work with the RPC Bit allocation shown

here.

The Testing of Operate Mode was carried out to the Horton Control Panel as

described in the Testing Section.

 83

Horton Layout Information – Page 1

 84

Horton Layout Information – Page 2

 85

Horton RPC Bit Allocation – Page 1

 86

Horton RPC Bit Allocation – Page 2

 87

Horton RPC Bit Allocation – Page 3

 88

Horton RPC Bit Allocation – Page 4

 89

 Appendix C
Symbol Set

The symbol set was carefully designed to provide for all the symbols needed to

represent each type of device in each possible state combination.

They were designed to fit together to make up a larger image and numbered logically

to allow algorithms to remain the same for different orientations for example.

Each symbol is a 16 x 16 pixel bitmap image.

All were created as one .PNG file (2560 x 16 pixels to hold 160 symbols).

Symbol Types

 S1 S2 S3 S4

 S5 S6 S7 S8

 P1 P2 P3 P4 P5 P6 P7 P8

 T1 T2 T3 T4 T5 T6

 D1 D2 D3 D4 D5

 90

 X1 X2 X3 X4

 M1 M2 M3 M4 A1 Z1 K1

Symbol Codes

Signals Code Points Code Track Code Misc. Code
S1 Grey 0 P1 N All Grey 36 T1 Grey 100 M1 Off 133
S1 DGrey 1 P1 N All Red 37 T1 White 101 M1 On 134
S1 Red 2 P1 N Route Set 38 T1 Red 102
S1 Yellow 3 P1 N Route + Occ 39 M2 Grey 135
S1 DYellow 4 P1 R All Grey 40 T2 Grey 103 M2 Green 136
S1 Green 5 P1 R All Red 41 T2 White 104 M2 Red 137
 P1 R Route Set 42 T2 Red 105 M2 Yellow 138
S2 Grey 6 P1 R Route + Occ 43
S2 DGrey 7 T3 Grey 106 M3 Grey 139
S2 Red 8 P2 N All Grey 44 T3 White 107 M3 Green 140
S2 Yellow 9 P2 N All Red 45 T3 Red 108 M3 Red 141
S2 DYellow 10 P2 N Route Set 46 M3 Yellow 142
S2 Green 11 P2 N Route + Occ 47 T4 Grey 109
 P2 R All Grey 48 T4 White 110 M4 Tk Section 143
S3 Grey 12 P2 R All Red 49 T4 Red 111 M4 TC Clear 144
S3 DGrey 13 P2 R Route Set 50 M4 TC Occ 145
S3 Red 14 P2 R Route + Occ 51 T5 Grey 112
S3 Yellow 15 T5 White 113 Auto Button
S3 DYellow 16 P3 N All Grey 52 T5 Red 114 A1 Manual 146
S3 Green 17 P3 N All Red 53 A1 Auto 147
 P3 N Route Set 54 T6 Grey 115
S4 Grey 18 P3 N Route + Occ 55 T6 White 116 Exits
S4 DGrey 19 P3 R All Grey 56 T6 Red 117 X1 Grey 148
S4 Red 20 P3 R All Red 57 X1 White 149
S4 Yellow 21 P3 R Route Set 58 D1 Grey 118
S4 DYellow 22 P3 R Route + Occ 59 D1 White 119 X2 Grey 150
S4 Green 23 D1 Red 120 X2 White 151
 P4 N All Grey 60
S5 Grey 24 P4 N All Red 61 D2 Grey 121 X3 Grey 152
S5 Red 25 P4 N Route Set 62 D2 White 122 X3 White 153
S5 White 26 P4 N Route + Occ 63 D2 Red 123
 P4 R All Grey 64 X4 Grey 154
S6 Grey 27 P4 R All Red 65 D3 Grey 124 X4 White 155
S6 Red 28 P4 R Route Set 66 D3 White 125
S6 White 29 P4 R Route + Occ 67 D3 Red 126 Black Tile
 Z1 Black 156

 91

S7 Grey 30 P5 N All Grey 68 D4 Grey 127 Z1 Black Outline 157
S7 Red 31 P5 N All Red 69 D4 White 128
S7 White 32 P5 N Route Set 70 D4 Red 129 Point Keys
 P5 N Route + Occ 71 K1 Normal 158
S8 Grey 33 P5 R All Grey 72 D5 Grey 130 K1 Reverse 159
S8 Red 34 P5 R All Red 73 D5 White 131
S8 White 35 P5 R Route Set 74 D5 Red 132
 P5 R Route + Occ 75

 P6 N All Grey 76
 P6 N All Red 77
 P6 N Route Set 78
 P6 N Route + Occ 79
 P6 R All Grey 80
 P6 R All Red 81
 P6 R Route Set 82
 P6 R Route + Occ 83

 P7 N All Grey 84
 P7 N All Red 85
 P7 N Route Set 86
 P7 N Route + Occ 87
 P7 R All Grey 88
 P7 R All Red 89
 P7 R Route Set 90
 P7 R Route + Occ 91

 P8 N All Grey 92
 P8 N All Red 93
 P8 N Route Set 94
 P8 N Route + Occ 95
 P8 R All Grey 96
 P8 R All Red 97
 P8 R Route Set 98
 P8 R Route + Occ 99

 92

 Appendix D
User Interface Samples

Section 4.3.3 explains the theory behind the elements of the User Interface.

Examples are given here, together with an indication of their use and purpose. A full

User Manual has not been written as part of this project.

Main Screen

• Figure D.1 Main Screen in Design Mode showing Menu based commands and WYSIWYG Interface.

 93

Design Mode Forms

In Design Mode, the user uses the mouse to select a tile to work with. If empty, the tile

shows a selected symbol (a blue square as shown top left in figure D.1 on the

previous page). The Insert or Modify menus are then available as required to Insert

devices or modify or delete existing ones. A selection of Design Mode forms are

shown in the following pages and these provide the opportunity to enter or view all

stored information about the layout.

In addition, the Routes Table on the Interlocking Menu allow Routes to be defined.

• Figure D.2 Plain Track Form

• Figure D.3 Point Form

 94

• Figure D.4 Track Section Form

• Figure D.5 Four Aspect Signal Form

• Figure D.6 Aspect Conditions Form

 95

• Figure D.7 Isolated Exit Form

• Figure D.8 Point Key Form

• Figure D.9 Miscellaneous Input Form

 96

• Figure D.10 Miscellaneous Output Form

• Figure D.11 Route Form

 97

Test Mode

Test Mode as described in Section 4 allows simulation of the layout to check on the

interlocking data entered. Symbols are provided for simulating inputs from the layout

by user mouse actions.

This is in addition to the normal Operate Mode actions to control the layout. This

Mode in all other ways acts like Operate Mode but no synchronisation to hardware

takes place.

• Figure D.12 Main Screen in Test Mode showing Trains, Routes Set and Signal Aspects

 98

Hardware Test Utility

The Hardware Test Utility was coded first to understand the interface specification

described in Appendix A to communicate through the RS232 link to the RPC

hardware system. This utility also allows for the hardware class to be tested in

isolation, as described in Section 5.

In addition, layout functions and module functionality can be tested without the need

to enter full layout data.

Controls are provided to Connect and Disconnect from the Hardware and to Set,

Clear and Read individual bits.

The screen shows the current state of all Inputs and Outputs and this is continuously

synchronised with the hardware.

• Figure D.13 Hardware Test Utility

 99

Operate Mode

Operate Mode hides all Hidden Miscellaneous devices and Track Section symbols,

leaving a view that is very similar to the real VDU control screen shown in Section 2.

The interlocking returns messages to inform the user if the requested action is not

available.

• Figure D.14 Main Screen in Operate Mode

• Figure D.15 Intelligent Response from Interlocking to Request that is not available

 100

 Appendix E
Project Progress

The project has progressed well and closely matched the original schedule. This was

the result of a clear objectives and a robust, well thought out project plan. The plan

has allowed the project to meet timely milestones and complete on time.

Project Plan

The Project Plan was worked out at the beginning of the project and has been worked

to throughout. The Plan was updated as work progressed. The final version, reflecting

the completed project is presented on the following four pages. The plan has been

colour coded to indicate actual progress compared with the plan.

The plan shows that there were some overruns on the predicted time. This is largely

due to having little prior programming experience and as a result, there was no

benchmark to predict development time from. In particular, Defining Data Formats

took longer than expected. It was initially expected that a text file would be used and a

custom format designed to output all data. Research revealed the Serialization

techniques available in Visual Basic. This took some time to research and implement

and as a result, the activity overran the schedule.

Towards the end of the project, it the design work really paid off and the project fell

together very easily. As a result many activities were completed early. The “Additional

Features” were built into the design at a much earlier stage than expected and the

initial development built in advanced features at the same time.

Some activities such as Testing and the Project report started earlier but took longer

to complete. This was partly due to taking a more relaxed pace but also due to using

the extra time to complete more testing and produce the report to a higher standard.

 101

[Project Plan Page 1]

 102

[Project Plan Page 2]

 103

[Project Plan Page 3]

 104

[Project Plan Page 4]

 105

Monthly Progress Reports

In accordance with the Department Project Handbook, Monthly Progress reports were

prepared to summarise achievements and current problems at the end of each month

and present a plan for the next month.

The seven monthly reports, for October 2002 through April 2003 are presented on the

following pages.

 106

[October 2002 Progress Report]

 107

[November 2002 Progress Report]

 108

[December 2002 Progress Report]

 109

[January 2003 Progress Report]

 110

[February 2003 Progress Report]

 111

[March 2003 Progress Report]

 112

[April 2003 Progress Report]

 113

 Appendix F
Financial Statement

Excluding the hardware that was outside the scope of this project, and obviously

development time, the only financial cost has been for software and textbooks.

Item

Cost

Visual Basic .NET Standard Edition

£83.35

Visual Basic .NET for Experienced Programmers

£32.99

Visual Basic .NET Threading Handbook

£19.39

Visual Basic .NET Serialization Handbook

£19.49

Total Project Costs

£155.22

All items were purchased online at the best prices possible. Suppliers were Insight UK

and Computer Manuals Ltd.

Stephen Parascandolo
Brunel University
BEng Computer Systems Engineering
Student ID: 9900239/1
Supervisor: Dr Ian Dear
Tutor: Mr Peter VanSanten

Model Railway
Computer Control Centre

Final Year Project Report
May 2003

Volume 2 – Source Code and CD-ROM

 Appendix G
Source Code
The full Source Code of the project follows.

Source Files, this report and the Installation software for the project are also included

on CD-ROM attached to the rear cover of this Volume.

Updates and other information can also be downloaded from the Web at: -

http://homepage.ntlworld.com/dodonet/stephen/mrcc/

N.B.
RS232.vb is from www.vbcode.com as explained in the main text.

It should be noted whilst viewing the source code that the emphasis in coding has

very much been one of achieving functionality and meeting the Objectives of this

project, rather than to serve as a textbook example of Software Code. This is a real

life problem, not a straightforward textbook sample. As the Chapter 7 looks at, the

author acknowledges that with hindsight, the code wouldn’t be structured in the same

way if repeated.

