EXC-1553P104/MCH3

MIL-STD-1553 TEST AND SIMULATION BOARD FOR PC/104 COMPATIBLE COMPUTERS

User's Manual

Contents

1	Introd	luction	1-1
		rview553P104/MCH3 Board Features:	
	1.2 Insta 1.2.1 1.2.2	AllationSoftware InstallationBoard Installation	1-3
	1.3 1553	3 Bus Connections	1-5
	1.4 Gen 1.4.3 1.4.4 1.4.5	eral I/O Map	1-6 1-7
	1.5 Gen	eral Memory Map	1-9
2	Gener	ral Channel Operation	2-1
3	Bus C	Controller Operation	3-1
	3.1 Bus	Controller Message Processing	3-1
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9	trol Registers: BC Mode Control Register Operational Status Register Current Command Register Interrupt Mask Register Pending Interrupt Register Interrupt Log List Pointer Register BIT Word Register Minor Frame Timer Register Command Block Pointer Register	3-3 3-4 3-5 3-5 3-7 3-7 3-8
	3.3 BC / 3.3.1 3.3.1. 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6		3-10 3-13 3-13 3-14 3-14 3-14
	3.4 Com	nmand Block Chaining	3-15
	3.5 Mem	nory Architecture	3-16
	3.6 MIL-	STD-1553A Operation: BC Mode	3-17

4	F	Remote	e Terminal Operation	4-1
	4.1	Contr	ol Registers: RT Mode	4-2
		.1.1 .1.2	Control Register Operational Status Register	
		.1.2	Current Command Block Register	4-5
		.1.4	Interrupt Mask Register	4-6
		.1.5 .1.6	Pending Interrupt RegisterInterrupt Log List Pointer Register	
	•	.1.7	BIT Word Register	
		.1.8 .1.9	Time-Tag RegisterRT Descriptor Pointer Register	
		.1.10	1553 Status Word Bits Register	4-11
	-	.1.11	Illegalization Registers	
			riptor Block	
		.2.1 .2.2	Receive Control Word Transmit Control Word	4-18
		.2.3	Mode Code Receive Control Word	4-19
		.2.4 .2.5	Mode Code Transmit Control Word Data Pointer A and B (Mode #0)	
		.2.6	Ping-Pong Handshake (Mode #0)	4-24
	4.	.2.7	Broadcast Data Pointer (Mode #0)	4-25
	4.3		Structures	
		.3.1 .3.2	Subaddress Receive Data	
	4	.3.3	Mode Code Data	
	4.4	RT Ci	ircular Buffer Modes	4-32
		.4.1	Mode #1 Operation	4-32
		.4.2 .4.3	Mode #1 Descriptor Block	4-32 4-33
	4.	.4.4	Mode #2 Operation	4-34
		.4.5 .4.6	Mode #2 Descriptor Block	4-35 4-36
	4.5	Mode	Code and Subaddress	
	4.6	Enco	der and Decoder	4-41
	4.7	RT-to	-RT Transfer Compare	4-41
	4.8	Termi	inal Address	4-42
	4.9	Reset	t	4-42
	4.10	MIL	-STD-1553A Operation: RT Mode	4-43
5	Е	Bus Mo	onitor Operation	5-1
	5.1	Bus N	Monitor Message Processing	5-1
	5.1.1	Erro	r Condition Message Processing	5-2
	5.2		ol Registers: BM Mode	
	_	.2.1 .2.2	Control Register Operational Status Register	
	5	.2.3	Current Command Register	5-6
		.2.4 .2.5	Interrupt Mask Register Pending Interrupt Register	
	5.	.2.6	Interrupt Log List Pointer Register	5-7
	_	.2.7 .2.8	BIT Word Register Time-Tag Register	

	5.2.9 5.2.10 5.2.11 5.2.12 5.2.13	Initial Monitor Block Pointer Register Initial Monitor Data Pointer Register Monitor Block Counter Register Monitor Filter Hi Register Monitor Filter Lo Register	5-8 5-9 5-9
	5.3 Bus 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6	Monitor Architecture Message Information Word Command Words Data Pointer Status Words. Time-Tag Reserved	5-10 5-12 5-12 5-12
	5.4 Bus	Monitor Block Chaining	5-13
	5.5 Mem	nory Architecture	5-14
	5.6 RT/C	Concurrent Monitor Operation	5-15
	5.7 MIL-	STD-1553A Operation: BM Mode	5-16
6	Chanr	nel Interrupt Architecture	6-1
	6.1 Over 6.1.1 6.1.2 6.1.3	VIEW	6-2 6-2
7	Mecha	nical and Electrical Specifications	7-1
	7.1 Boar	d Layout	7-1
	7.2 LED	Indicators	7-2
	7.3.1 7.3.2 7.3.3	I/O Address Decoding Jumpers Board Logical Address Jumpers Interrupt Select Jumpers	7-2 7-3 7-3
	7.3.4 7.3.5	Channel 0, Channel 1 and Channel 2Factory Default Jumper Settings	
	7.3.5		7-4 7-5 7-5
	7.3.5 7.4 Coni 7.4.1 7.4.2	Factory Default Jumper Settings Pectors	7-4 7-5 7-5 7-7
8	7.3.5 7.4 Conr 7.4.1 7.4.2 7.5 Powe	Factory Default Jumper Settings Pectors Connectors J1, J2 and J3 PC/104 Bus Connectors Pinout - Connectors P1 and P2	7-4 7-5 7-5 7-7
8	7.3.5 7.4 Conr 7.4.1 7.4.2 7.5 Powe Orderi	Factory Default Jumper Settings nectors Connectors J1, J2 and J3 PC/104 Bus Connectors Pinout - Connectors P1 and P2 er Requirements	7-47-57-57-77-8
	7.3.5 7.4 Conr 7.4.1 7.4.2 7.5 Powe Orderi	Factory Default Jumper Settings	7-47-57-57-77-88-1

Figures

Figure 1-1	EXC-1553P104/MCH3: Block Diagram	1-2
Figure 1-2	Direct Coupled Connection (One Bus Shown)	1-5
Figure 1-3	Transformer Coupled Connection (One Bus Shown)	1-5
Figure 1-4	General I/O Map	1-6
Figure 1-5	General Memory Map	1-9
Figure 2-1	Channel Memory Map	2-1
Figure 3-1	Control Registers Map: BC Mode	3-2
Figure 3-2	BC Command Block Architecture	3-9
Figure 3-3	Control Word Definition	3-10
Figure 3-4	Message Control Options	3-15
Figure 3-5	Minor Frame Sequencing	3-15
Figure 3-6	Memory Architecture for BC Mode	3-16
Figure 4-1	Control Registers Map: RT Mode	4-2
Figure 4-2	Descriptor Table	4-16
Figure 4-3	RT Non-Broadcast Receive Message Indexing	4-22
Figure 4-4	EXC-1553P104/MCH3 Descriptor Block (Receive)	4-23
Figure 4-5	EXC-1553P104/MCH3 Descriptor Block (Transmit)	4-23
Figure 4-6	RT Mode #1 Descriptor Block and Circular Buffer	4-34
Figure 4-7	RT Mode #2 Descriptor Block and Circular Buffers	4-37
Figure 5-1	Control Registers Map—BM Mode	5-3
Figure 5-2	Bus Monitor Block Diagram	5-10
Figure 5-3	Message Information Word	5-10
Figure 5-4	Bus Monitor Block Structuring	5-13
Figure 5-5	Memory Architecture for Bus Monitor Mode	5-14
Figure 7-1	EXC-1553P104/MCH3: Board Layout	7-1
Figure 7-2	Connectors J1 and J2 Layout (Front View)	7-5
Figure 9-1	MIL-STD-1553B Word Formats	9-1
Figure 9-2	MIL-STD-1553B Message Formats	9-2

page iv Excalibur Systems

Tables

Table 3-1	MIL-STD-1553A/B Operation—BC Mode	3-17
Table 4-1	Illegalization Register Blocks	4-12
Table 4-2	Illegalization Register Map	4-13
Table 4-3	RT Mode #2 Control Word and MIB Pointer Structure	4-36
Table 4-4	Mode Code Description	4-38
Table 4-5	MIL-STD-1553A/B Operation: RT Mode	4-43
Table 5-1	MIL-STD-1553A/B Operation: BM Mode	5-16
Table 6-1	Interrupt Ring Buffer	6-3
Table 7-1	XT/AT Connector (P1)	7-7
Table 7-2	AT Bus Extension (P2)	7-7

1 Introduction

Chapter 1 provides an overview of the EXC-1553P104/MCH3 avionics communication board. The following topics are covered:

1.1	Overview	page 1-1
1.2	Installation	page 1-3
1.3	1553 Bus Connections	page 1-5
1.4	General I/O Map	page 1-6
1.5	General Memory Map	page 1-9

1.1 Overview

The EXC-1553P104/MCH3 is an intelligent, three channel MIL-STD-1553 interface board for PC/104 systems. The EXC-1553P104/MCH3 provides a complete solution for developing and testing 1553 interfaces and performing system simulation of the MIL-STD-1553 bus. The board handles all standard variations of the MIL-STD-1553 protocol. Each channel of the EXC-1553P104/MCH3 contains 64Kbytes of dual-port RAM for data blocks, control registers, and Look-up tables. All data blocks and control registers are memory mapped and may be accessed in real time.

Each of the independent, dual-redundant 1553 channels may be programmed to operate in one of four modes of operation: Bus Controller, Remote Terminal, Bus Monitor and RT/Concurrent-Bus Monitor. The EXC-1553P104/MCH3 comes complete with menu-driven software, a C driver software library including source code, and mating connector for each channel.

The EXC-1553P104/MCH3—E option is an extended temperature (-40° to +85°C), ruggedized version of the board for industrial or harsh environment applications. For each channel of the EXC-1553P104/MCH3—E, all components are soldered on to the printed circuit board (sockets are not used), enabling use in high vibration environments.

PC **BUS** XFRMR Channel #0 BUSAH 0 ADDR/ Α **BUFFER** ASIC Module DATA XFRMR SuMMIT™XT В BUSBH 0 1553 CONNECTIONS XFRMR Channel #1 Α PC **ASIC Module BUSBL** XFRMR **INTERFACE** CNTRL SuMMIT™XT BUSBH 1 В CONTROLLER XFRMR Channel #2 BUSAH 2 Α ASIC Module J3 BUSBL 2 XFRMR SuMMIT™XT В BUSBH 2 24 MHz OSC

Figure 1-1 is a block diagram of the EXC-1553P104/MCH3.

Figure 1-1 EXC-1553P104/MCH3: Block Diagram

EXC-1553P104/MCH3 Board Features:

- Three MIL-STD-1553 independent dual-redundant channels
- Single supply 5V operation

Features Per Channel:

- Operates as BC, RT, BM, or RT/Concurrent-BM
- Multiple protocol capability
- MIL-STD-1553A
- MIL-STD-1553B
- Autonomous operation in all modes
- 64Kbytes word memory-mapped RAM
- · 32 control registers
- Polling or interrupt driven
- · Real time operation
- Built-In Test capability

- C software library included
- Ruggedized, extended temperature range available
- BC Mode

Major/Minor frames

Programmable intermessage gap Automatic retry

RT Mode

Single RT simulation

Subaddress double buffering

Circular buffer mode

Message illegalization

16-bit time tag

Programmable broadcast mode

BM Mode

16-bit time tag

Filtering per RT

Interrupt history list

Programmable monitor block

count

See Ordering Information, page 8-1 for the exact part numbers.

page 1-2 Excalibur Systems

1.2 Installation

To install the EXC-1553P104/MCH3 add the appropriate software for your operating system and then configure and install the hardware.

1.2.1 Software Installation

The EXC-1553P104/MCH3 is delivered with software compatible with several operating systems. For information about installing the accompanying software drivers, see **ReadMe.txt** on the *Galahad Software Tools* diskettes that came with your board.

1.2.2 Board Installation

Before installing the board, it is very important to:

- Select one of the board's four consecutive I/O address;
- Determine which half segment of memory is available on your PC, to set the Base Address of the board;
- Select the desired PC interrupt line.

For information and instructions about these setting see Chapter 7, Mechanical and Electrical Specifications, Jumpers, page 7-2 and the **ReadMe.txt** on the *Galahad Software Tools* diskettes that came with your board.

WARNING

You should wear a suitably grounded electrostatic discharge wrist strap whenever handling the Excalibur board.

To install the EXC-1553P104/MCH3 follow the instructions in the order given below:

- 1. Set Jumpers JP12-JP19 according to the *I/O port* selected (see I/O Address Decoding Jumpers, page 7-2).
- 2. Set Jumpers JP20-P24 according to the *memory segment* selected (see Board Logical Address Jumpers, page 7-3).
- 3. Set Jumpers JP1-JP11 according to the *interrupt lines* selected (see Interrupt Select Jumpers page 7-3).
- 4. 1553 devices may be connected to the 1553 bus either directly (direct-coupled) or via a bus-coupling stub (transformer coupled). Use Jumpers JP25-JP28, JP29-JP32 and JP33-JP36 to set the coupling mode to the 1553 bus(es) (see 1553 Coupling Mode Select Jumpers, page 7-4).

5. Make certain the computer power source is disconnected. Insert the EXC-1553P104/MCH3 board into any PC/104 slot.

If AT interrupts are to be used (i.e., IRQ greater than 7), a 16-bit slot must be used. If only XT interrupts are to be used, no loss in speed or functionality will occur if an 8-bit slot is used.

Once the board is installed, a mating I/O connector wired with required cables should be attached to the board. The cables may be connected to and disconnected from the board while power to the computer is turned on, but not while the board is transmitting over the bus.

page 1-4 Excalibur Systems

1.3 1553 Bus Connections

For short distances, direct coupling may be used to connect the EXC-1553P104/MCH3 directly to another 1553 device. To ensure data integrity, you must make certain that the cable connecting the two devices is properly terminated with 78-Ohm resistors (see Figure 1-2).

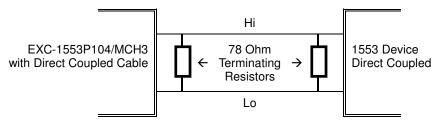


Figure 1-2 Direct Coupled Connection (One Bus Shown)

If operating in the more standard Transformer coupling mode, use stub coupler devices, which are available from Excalibur Systems, Inc. Two terminators are required for each coupler, which services a single bus [e.g. Bus A]. See Figure 1-3. For more information about our couplers, check our website www.mil-1553.com.

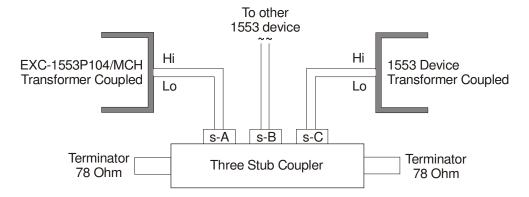


Figure 1-3 Transformer Coupled Connection (One Bus Shown)

1.4 General I/O Map

The board uses four I/O addresses, starting at the Base I/O Address, which is set with the appropriate Jumpers (JP12-JP19) as follows:

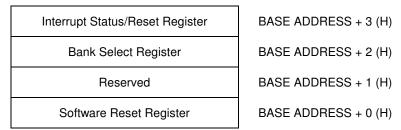


Figure 1-4 General I/O Map

1.4.3 Software Reset Register

The Software Reset register resets the channel. Writing a 1 to the appropriate bit will reset the corresponding channel. Writing a value of 0 has no effect. This register is set to 0 at power-up.

Address: BASE + 0 (H) WRITE

Bit	Description
03-07	Reserved – set to 0
02	1 = Channel 2 Software Reset
01	1 = Channel 1 Software Reset
00	1 = Channel 0 Software Reset

Software Reset Register

page 1-6 Excalibur Systems

1.4.4 Bank Select Register

The Bank Select register sets the desired bank number. Writing a 0 to this address selects Bank 0 which contains the lower 32K of Channel 0. Writing a 1 to this address selects Bank 1 which contains the upper 32K of Channel 0, etc. This register is set to 0 at power-up.

Address: BASE + 2 (H) WRITE

Bit	Value	Description
03-07	X = Don't care	
00-02	0 H	Bank 0 (Channel 0 Lower 32K)
	1 H	Bank 1 (Channel 0 Upper 32K)
	2 H	Bank 2 (Channel 1 Lower 32K)
	3 H	Bank 3 (Channel 1 Upper 32K)
	4 H	Bank 4 (Channel 2 Lower 32K)
	5 H	Bank 5 (Channel 2 Upper 32K)
	6–7 H	Reserved – set to 0

Bank Select Register

1.4.5 Interrupt Status/Reset Register

Address: BASE + 3 (H) READ/WRITE

The Interrupt Status/Reset register is used to poll and reset the board interrupt request. Writing a value of 1 to the appropriate bit will reset the corresponding channel interrupt request. Writing a value of 0 has no effect.

Bit	Bit Name	Description
03-07	Reserved –	set to 0
02	IR2	1 = Channel 2 Interrupt Reset
01	IR1	1 = Channel 1 Interrupt Reset
00	IR0	1 = Channel 0 Interrupt Reset

Interrupt Status/Reset Register: Write Definition

Reading this register indicates which channels are generating interrupts. More than one bit at a time may be set, generating interrupts from more than one channel at a time.

Bit	Bit Name	Description
03-07	Reserved –	set to 0
02	IS2	1 = Channel 2 Interrupt Active
01	IS1	1 = Channel 1 Interrupt Active
00	IS0	1 = Channel 0 Interrupt Active

Interrupt Status/Reset Register: Read Definition

NOTE

The board specific interrupt line (IRQ2, IRQ3, etc. [JP1-JP11]) is chosen through jumpers on the board. The source of this interrupt comes from one of the channels. Each channel has a Pending Interrupt register containing the cause of the last interrupt.

page 1-8 Excalibur Systems

1.5 General Memory Map

The EXC-1553P104/MCH3 has three channels installed on the board, but it uses only 32K bytes of PC memory. This is implemented via a bank 0-5 switching mechanism. At any given time, only 32K bytes of the board's memory are available.

Figure 1-5 illustrates the memory allocation of the EXC-1553P104/MCH3 board.

Channel 0		Chan	nel 1	Channel 2	
Memory Area		Memor	ry Area	Memory Area	
Lower	Upper	Lower	Upper	Lower	Upper
32K	32K	32K	32K	32K	32K
BANK	BANK	BANK	BANK	BANK	BANK
0	1	2	3	4	5

Figure 1-5 General Memory Map

2 General Channel Operation

Chapter 2 describes the general channel operation of the EXC-1553P104/MCH3, which applies to each available 1553 channel on the board.

Each 1553 channel occupies a 32K-word area of the board's Memory Address Space. This area is shared between the Channel Memory Block, used for data and message control and the Channel Register Block, used for various control registers (see Figure 2-1). A powerful RISC processing unit (UTMC "SµMMITTM-XT" 1553 protocol controller) provides automatic message handling, message status, general operational status and interrupt information. The user has direct access to all control registers and data blocks in Real Time. To control the board operation, access the RAM and control registers. The EXC-1553P104/MCH3 may be configured to support MIL-STD-1553A as well as MIL-STD-1553B protocol.

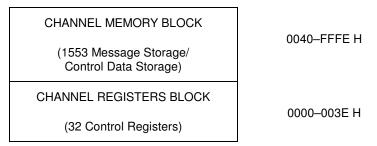


Figure 2-1 Channel Memory Map

Chapters 3, 4 and 5 of the *User's Manual* explain the operation of a single channel of the EXC-1553P104/MCH3 in each of the three modes: Bus Controller, Remote Terminal, and Bus Monitor.

NOTE Operating and addressing the second and third channels are identical to that of the first channel with the appropriate Base Address.

3 Bus Controller Operation

Chapter 3 describes EXC-1553P104/MCH3 operation in Bus Controller (BC) mode. The following topics are covered:

Bus Controller Message Processing	page 3-1
Control Registers: BC Mode	page 3-2
BC Architecture	page 3-9
Command Block Chaining	page 3-15
Memory Architecture	page 3-16
MIL-STD-1553A Operation: BC Mode	page 3-17

3.1 Bus Controller Message Processing

To process messages, the EXC-1553P104/MCH3 uses data supplied in the control registers along with data stored in RAM memory. The board accesses eight words stored in RAM memory called a command block. The command block is accessed at the beginning and end of command processing.

NOTE In BC mode, the board does not need to re-read the Command Block on a retry situation.

The user allocates memory spaces for the minor frame. The top of the command blocks can reside at any address location. Defined and entered into memory by the user, the control registers are linked to the Command Block via the Command Block Pointer Register contents. Each command block contains a Control Word, Command Word1, Command Word2, Data Pointer, Status Word 1, Status Word 2, Branch Address, and Timer Value. This chapter provides a complete description of each location.

Control Word information allows the board to control the commands transmitted over the 1553 bus. The Control word allows the board to transmit commands on a specific bus, perform retries, initiate RT-to-RT transfers, and interrupt on certain conditions. The host defines each Command Word associated with each command block. For normal 1553 commands, only the first Command Word location will contain valid data. For RT-to-RT commands, as specified in the Control Word, the host must define the first Command Word as a receive and the second Command Word as a transmit.

For a receive command, the Data Pointer is read to determine where Data Words are retrieved. The board retrieves Data Words sequentially from the address specified by the Data Pointer. For a transmit command, the Data Pointer is read to determine the top memory location. The board stores Data Words sequentially from this top memory location.

The board reads the command block during minor frame processing. The board then begins the acquisition of Data Words for either transmission or storage.

After transmission or reception, the board begins post-processing. The command block is updated. The board modifies the Control Word as required. An optional interrupt log entry is performed after the command block update.

3.2 Control Registers: BC Mode

The control registers are read/write unless otherwise stated. All control registers must be accessed in word mode. All control register bits are active high and are reset to 0 unless otherwise stated.

Figure 3-1 below illustrates the control registers for Bus Controller mode.

Reserved	0012-003E H
Command Block Pointer Register	0010 H
Minor Frame Timer	000E H
BIT Word Register	000C H
Interrupt Log List Pointer Register	000A H
Pending Interrupt Register	0008 H
Interrupt Mask Register	0006 H
Current Command Block Register	0004 H
Operational Status Register	0002 H
Control Register	0000 H

Figure 3-1 Control Registers Map: BC Mode

NOTE The information in this section describes the operation of a single channel of the EXC-1553P104/MCH3 in BC mode. Operating and addressing the second and third channels is identical to that of the first channel with the appropriate base address.

page 3-2 Excalibur Systems

3.2.1 Control Register

Address: 0000 (H) READ/WRITE

Use the Control register to configure the board for BC mode operation. To make changes to the BC and this register, the STEX bit (Bit 15) must be logic 0.

Bit	Bit Name	Description
15	STEX	Start Execution
		1 = Initiates board channel operation0 = Inhibits board channel operation
		After execution begins, writing a logic 0 will halt the board channel after completing the current 1553 message.
14	SBIT	Start BIT
		1 = Places the channel into the Built-In Test routine. The BIT test takes 1msec. to execute and has a fault coverage of 93.4%. Once the channel has been started, the host must halt the channel in order to place it into the Built-In Test mode (STEX = 0).
		Note : If Start BIT (SBIT) and Start Execution (STEX) are both set on one register write, BIT has priority.
10-13	Reserved	Set to 0
09	ERTO	Extended Response Time-Out
		 1 = Enables the extended response time-out option and forces the BC Mode to look for an RTs response time in 30μsec or generate time-out errors. 0 = Enables for the standard time-out in 14μsec.
05-08	Reserved	Set to 0
04	BCEN	Broadcast Enable
		1 = Enables the broadcast option for BC Mode.0 = Enables Remote Terminal #31 as a unique remote terminal address.
		When enabled, the board does not expect a Status Word response from the Remote Terminal.
03	Reserved	Set to 0
02	PPEN	Ping-Pong Enable. This bit controls the method by which the board will retry messages.
		1 = Allows the board to ping-pong between buses during retries.
		0 = All retries will be performed on the programmed bus as defined in the Retry Number field of the Command Block control word.
01	INTEN	Interrupt Log List Enable.
		1 = Enables the interrupt log list.0 = Prevents the logging of interrupts as they occur.
00	Reserved	Set to 0

Control Register

3.2.2 Operational Status Register

Address: 0002 (H) READ/WRITE

The Operational Status register provides pertinent status information for BC Mode and is not reset to 0000H on reset. Instead, the bit A/B_STD is set to 1.

NOTE To make changes to the BC and this register, the STEX bit (Bit 15 in the Control Register) must be logic 0.

Bit	Bit Name	Description	on	
10-15	Reserved	Set to 0		
09	MSEL1	Mode Select 1. In conjunction with Mode Select 0, this bit determines the channel's mode of operation.		
08	MSEL0	Mode Select 0. In conjunction with Mode Select 1, this bit determines the channel's mode of operation.		
		MSEL1	MSEL0	Mode of Operation
		0	0	BC
		0	1	RT
		1	0	ВМ
		1	1	RT/ Concurrent BM Mode
07	A/B_STD		e board will	A or 1553B. This bit determines operate under MIL-STD-1553A or
			the board taged the time-out of	o look for all responses in 9μsec or errors.
		MIL-S7	ГD-1553В pr	vs the board to operate under the otocol (see MIL-STD-1553A le, page 3-17).
04-06	Reserved	These read-only bits are not applicable.		
03	EX	Channel Executing. This read-only bit indicates whether the channel is presently executing or is idle.		
			nannel is exe nannel is idle	•
02	Reserved	This read-	only bit is no	t applicable.
01	Ready	Channel F	Ready. This	read-only bit is cleared on reset.
		The channel has completed initialization or BIT, and regular operation may begin.		
00	TERACT	Channel Terminal Active. This read-only bit is cleared on reset.		
		1 = The ch	nannel is pre	sently processing a 1553 message.
				nsitions from 1 to 0, EX and ntil command processing is

Operational Status Register

page 3-4 Excalibur Systems

3.2.3 Current Command Register

Address: 0004 (H) READ ONLY

The Current Command register contains the last 1553 command that was transmitted by the board. Upon the execution of each Command Block, this register will automatically be updated. This register is updated when transmission of the Command Word begins. In an RT-to-RT transfer, the register will reflect the latest Command Word as it is transmitted.

Bit	Bit Name	Description	
00-15	CC[15-0]	Current Command. These bits contain the latest 1553 command that was transmitted by the Bus Controller.	

Current Command Register

3.2.4 Interrupt Mask Register

Address: 0006 (H) READ / WRITE

The BC Mode interrupt architecture allows the host to mask or temporarily disable the service of interrupts. While masked, interrupt activity does not occur. The unmasking of an interrupt after the event occurs does not generate an interrupt for that event. An interrupt is masked only if the corresponding bit of this register is set to a logic 0.

Bit	Bit Name	Description
12-15	Reserved	Set to 0
11	MERR	Message Error Interrupt
06-10	Reserved	Set to 0
05	EOL	End Of List Interrupt
04	ILLCMD	Illegal Command Interrupt
03	ILLOP	Illogical Opcode Interrupt
02	RTF	Retry Fail Interrupt
01	СВА	Command Block Accessed Interrupt
00	Reserved	Set to 0

Interrupt Mask Register

3.2.5 Pending Interrupt Register

Address: 0008 (H) READ ONLY

The Pending Interrupt register is used to identify which of the interrupts occurred during operation. The assertion of any bit in this register generates an interrupt.

NOTE All register bits are cleared on a host read.

Bit	Bit Name	Description	
12-15	Reserved	Ignore on read.	
11	MERR	Message Error Interrupt	
		1 = A message error occurred. The board can detect Manchester, sync-field, word count, 1553 word parity, bit count, and protocol errors. This bit will be set and an interrupt generated (if not masked) after message processing is complete.	
06-10	Reserved	Ignore on read.	
05	EOL	End Of List Interrupt.	
		1 = The board is at the end of the command block.	
04	ILLCMD	Illogical Command Interrupt. The board checks for RT-to-RT Terminal address field match, RT-to-RT transmit/receive bit mismatch and correct order, and broadcast transmit commands. If illogical commands occur, the board will halt execution.	
		1 = An illogical command (i.e., Transmit Broadcast or improperly formatted RT-RT message) has been written into the Command Block.	
03	ILLOP	Illogical Opcode Interrupt.	
		1 = An illogical opcode (i.e., any reserved opcode) was used in the command block. The board halts operation if this condition occurs.	
02	RTF	Retry Fail Interrupt.	
		1 = All programmed retries failed.	
01	CBA	Command Block Accessed Interrupt.	
		1 = A command block was accessed (Opcode 1010), if enabled.	
00	Reserved	Ignore on read.	

Pending Interrupt Register

page 3-6 Excalibur Systems

3.2.6 Interrupt Log List Pointer Register

Address: 000A (H) READ/WRITE

The Interrupt Log List Pointer indicates the starting address of the Interrupt Log List. The Interrupt Log List is a 32-word ring-buffer that contains information pertinent to the service of interrupts. The EXC-1553P104/MCH3 architecture requires the location of the Interrupt Log List on a 32-word boundary. The most significant 11 bits of this register designate the location of the Interrupt Log List within a 64K-word memory space. Initialize the lower 5 bits of this register to a logic 0 by the host. The board controls the lower 5 bits to implement the ring-buffer architecture. Read this register to determine the location and number of interrupts within the Interrupt Log List (least significant 5 bits).

Bit	Bit Name	Description	
00-15	ILLP[15-0]	Interrupt Log List Pointer Bits.	
		Note: Bits 5-15 indicate the starting Base address while bits 4-0 indicate the ring location of the Interrupt Log List.	

Interrupt Log List Pointer Register

3.2.7 BIT Word Register

Address: 000C (H) READ/WRITE

The BIT Word register contains information on the current status of the channel hardware. The user defines the lower 8 bits of this register.

Bit	Bit Name	Description	
15	DMAF	DMA Fail. 1 = All the channel's internal DMA activity was not	
		completed within 16µsec.	
14	WRAPF	Wrap Fail. The board automatically compares the transmitted word (encoder word) to the reflected decoder word by way of the continuous loopback feature. If the encoder word and reflected word do not match, the WRAPF bit is set. The loopback path is via the MIL-STD-1553 bus transceiver.	
13	Reserved	Ignore on read.	
12	BITF	BIT Fail.	
		1 = A BIT failure. Interrogate bits 11 through 08 to determine the specific failure.	
11	BUAF	Bus A Fail.	
		1 = A BIT test failure in Bus A.	
10	BUBF	Bus B Fail.	
		1 = A BIT test failure in Bus B.	
09	MSBF	Memory Test Fail. Most significant memory byte failure.	
80	LSBF	Memory Test Fail. Least significant memory byte failure.	
00-07	UDB[7-0]	User-Defined Bits.	

BIT Word Register

3.2.8 Minor Frame Timer Register

Address: 000E (H) READ ONLY

The Minor Frame Timer register (MFT) reflects the state of the 16-bit MFT counter. This counter is loaded via the Load Minor Frame Timer opcode (Opcode 1110).

Bit	Bit Name	Description
00-15	MFT[15-0]	Minor Frame Timer. These bits indicate the value of the timer.

Minor Frame Timer Register

3.2.9 Command Block Pointer Register

Address: 0010 (H) READ / WRITE

The Command Block Pointer register contains the location to start the Command Blocks. After execution begins, this register is automatically updated with the address of the next block.

Bit	Bit Name	Description
00-15	CBA[15-0]	Command Block Address. These bits indicate the starting location of the Command Block.

Command Block Pointer Register

page 3-8 Excalibur Systems

3.3 BC Architecture

As defined in MIL-STD-1553, the Bus Controller initiates all communications on the bus. To comply with MIL-STD-1553 bus controller requirements, the EXC-1553P104/MCH3 uses a Command Block architecture that takes advantage of both control registers and RAM. Each Command Word transmitted over the bus must be associated with a Command Block. The Command Block requires eight contiguous 16-bit memory locations for each message.

These eight locations include a:

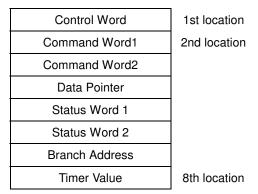


Figure 3-2 BC Command Block Architecture

The host must initialize each of the locations associated with each Command Block. The exception is for the two status locations that will be updated as Command Words are transmitted and corresponding Status Words are received. Command Blocks may be linked together in such a manner as to allow the generation of Major and Minor message frames. In addition, the BC can detect the assertion of Status Word bits and generate interrupts or branch to a new message frame, depending of course, on the specific conditions that arise.

3.3.1 Control Word

The first memory location of each BC Mode Command Block contains the Control word. Each control word contains the opcode, retry number, bus definition, RT-to-RT instruction, condition codes, and the block access message error. The control word is defined below:

15	12	11	10	09	80	07	01	00
Орс	ode	Ret	ry #	BUSA/B	RT-RT	Condit	ions Codes	Block Access ME

Figure 3-3 Control Word Definition

Bit	Bit Name	Descrip	tion		_
12-15	Opcode	These bits define the opcode to be used by the board for that particular Command Block. If the opcode does not perform any 1553 function, all other bits are ignored. Each of the available opcodes is defined in "Opcode Definition," page 3-11.			
10-11	Retry Number	These bits define the number of retries for each individual Command Block and if retry opcode is used. If the Ping-Pong Enable Bit (bit 02 of the Control Register) is not enabled, all retries will occur on the programmed bus. However, if bit 02 is enabled, the first retry will always occur on the alternate bus, the second retry will occur on the primary bus, the third retry will occur on the alternate bus, and the fourth retry will occur on the primary bus.			
		BIT 11	BIT 10	No. of Retries	
		0	1	1	
		1	0	2	
		1	1	3	
		0	0	4	
09	Bus A/B	will be tr		which of the two buse (i.e., primary bus). (Le	
80	RT-RT Transfer	This bit defines whether or not the present Command Block is an RT-to-RT transfer and if the board should transmit the second command word. The board always stores data associated with an RT-to-RT.			
01-07	Condition Codes	These bits define the condition code the board uses for that particular Command Block. Each of the available condition codes are defined in "BC Condition Codes",page 3-13.			
00	Block Access Message Error	The board sets this bit to 1, indicating a protocol message error occurred in the RT's response. For this occurrence, the board will overwrite this bit prior to storing the Control Word into memory. An example of this type of error would be noise on the 1553 bus.			

Control Word Description

3.3.1.1 OPCODE DEFINITION

Opcode	Field Name	Definition
0000	End Of List	This opcode instructs the board that the end of the command block has been encountered. Command processing stops and the interrupt is generated if the interrupt is enabled. No command processing takes place (i.e., no 1553).
0001	Skip	This opcode instructs the board to load the message-to-message timer with the value stored in timer value location. The board will then wait the specific time before proceeding to the next command block. This opcode allows for scheduling a specific time between message execution. No command processing takes place (i.e., no 1553).
0010	Go To	This opcode instructs the board to "go to" the command block as specified in the branch address location. No command process takes place (i.e., no 1553).
0011	Built-in Test	This opcode instructs the channel to perform an internal built-in test. If the channel passes the built-in test, then processing of the next command block will continue. However, if the channel fails the built-in test, then processing stops. No command processing takes place (i.e., no 1553).
0100	Execute Block; Continue	This opcode instructs the board to execute the current command block and proceed to the next command block. This opcode allows for continuous operations.
0101	Execute Block; Branch	This opcode instructs the board to execute the current command block and unconditionally branch to the location as specified in the branch address location.
0110	Execute Block; Branch on Condition	This opcode instructs the board to execute the current command block and branch only if the condition is met. If no conditions are met, the opcode appears as an execute and continue.
0111	Retry on Condition	This opcode instructs the board to perform automatic retries, as specified in the control word, if particular conditions occur. If no conditions are met, the opcode appears as an execute and continue.
1000	Retry on Condition; Branch	This opcode instructs the board to perform automatic retries, as specified in the control word, if particular conditions occur. If the conditions are met, the board retries. Once all retries have executed, the board branches to the location as specified in the branch address location. If no conditions are met, the opcode appears as an execute and branch.

Opcode	Field Name	Definition
1001	Retry on Condition; Branch if all Retries Fail	This opcode instructs the board to perform automatic retries, as specified in the control word, if particular conditions occur. If the conditions are met and all the retries fail, the board branches to the location as specified in the branch address location. If no conditions are met, the opcode appears as an execute and continue.
1010	Interrupt; Continue	This opcode instructs the board to interrupt and continue processing on the next command block. When using this opcode, no 1553 processing occurs.
1011	Call	This opcode instructs the board to "go to" the command block as specified in the branch address location without processing this block. The next command block address is saved in an internal register so that the board may remember one address and return to the next command block. No command processing takes place (i.e., no 1553).
1100	Return to Call	This opcode instructs the board to return to the command block address saved during the Call opcode. No command processing takes place (i.e., no 1553).
1101	Reserved	The board will generate an illegal opcode interrupt (if interrupt enabled) and automatically stop execution if a reserved opcode is used.
1110	Load Minor Frame Timer	This opcode instructs the board to load the minor frame timer (MFT) with the value stored in the eighth location of the current command block. The timer will be loaded after the previous MFT has decremented to zero. After the MFT timer is loaded with the new value, the board will proceed to the next command block. No command processing takes place (i.e., no 1553).
1111	Return to Branch	This opcode instructs the board to return to the command block address saved during a Branch opcode. No command processing takes place (i.e., no 1553).

Opcode Definition

NOTE For retries with interrupts enabled, all interrupts are logged after message processing is complete.

3.3.1.2 BC CONDITION CODES

Condition codes have been provided as a means for the EXC-1553P104/MCH3 to perform certain functions based on the RT's Status Word. In an RT-to-RT transfer, the conditions apply to both of the Status Words. Each bit of the condition codes is defined below.

Bit Number	Description
07	Message Error. This condition will be met if the board detects an error in the RT's response, or if it detects no response. The board will wait 15µsec. in 1553B mode and 9µsec. in 1553A mode before declaring an RT no response (see "MIL-STD-1553A Operation: BC Mode" page 3-17).
06	Status Word Response with the Message Error bit set (Bit time 09 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Message Error bit set.
05	Status Word Response with the Busy bit set (Bit time 16 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Busy bit set.
04	Status Word Response with the Terminal Flag bit set (Bit time 19 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Terminal Flag bit set.
03	Status Word Response with the Subsystem Fail bit set (Bit time 17 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Subsystem Fail bit set.
02	Status Word Response with the Instrumentation bit set (Bit time 10 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Instrumentation bit set.
01	Status Word Response with the Service Request bit set (Bit time 11 in 1553A mode). This condition is met if the board detects that the RT's Status Word has the Service Request bit set.

Condition Codes

3.3.2 1553 Command Words

The next two locations of the BC Mode Command Block are for 1553 Command Words. In most 1553 messages, only the first Command Word needs to be initialized. However, in an RT-to-RT transfer, the first Command Word is the Receive Command and the second Command Word is the Transmit Command.

3.3.3 Data Pointer

The fourth location of the BC Mode Command Block is the data pointer that points to the first memory location to store or retrieve the Data Words associated with the message for that command block. This data structure allows the board to store or retrieve the exact specified number of Data Words, thus saving memory space and providing efficient space allocation.

NOTE In an RT-to-RT transfer, the board uses the data pointer as the location in memory to store the transmitted data in the transfer.

One common application for the data pointer occurs when the board needs to send the same data words to several RTs. Here, each Command Block associated with those messages would contain the same data pointer value, and, therefore, retrieve and transmit the same data. Note that the Data Pointer is never updated (i.e., the board reads and writes the pointer but never changes its value).

3.3.4 1553 Status Words

The next two locations in the BC Mode Command Block are for Status Words. As the RT responds to the BC's command, the corresponding Status Word will be stored in Status Word 1. In an RT-RT transfer, the first Status Word will be the status of the Transmitting RT while the second Status Word will be the status of the Receiving RT.

3.3.5 Branch Address

The seventh location in the BC Mode Command Block contains the starting location of the branch. This location simply allows the board to branch to another location in memory when certain opcodes are used.

3.3.6 Timer Value

The last location in the BC Mode Command Block is the Timer Value. This timer is used for one of two purposes:

- To set up minor frame schedules when using the Load Minor Frame Timer opcode (1110). The MFT counter is clocked by a 15.625 KHz. (64µsec) internal clock. The MFT counter runs continuously during message processing and must decrement to zero prior to loading the next Minor Frame time value.
- As a message-to-message timer (MMT) when using the Skip opcode (0001). The MMT timer is clocked at the 24 MHz (41.666nsec.) rate and allows for scheduling of specific time between message execution.

page 3-14 Excalibur Systems

3.4 Command Block Chaining

To determine the first Command Block, set the initial start address in the Command Block Pointer Register [Address 0010 (H)]. The Command Blocks will execute in a contiguous fashion as long as no "go to", "branch", "call", or "return" opcodes are used. With the use of these opcodes, almost any memory configuration is possible. Figures 3-4 and 3-5 show how several Command Blocks may be linked together to form a command frame and how branch opcodes may be used to link minor frames. The minimum BC intermessage gap is 28.0µsec.

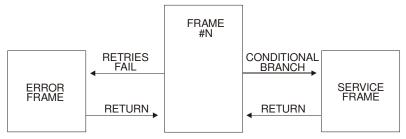


Figure 3-4 Message Control Options

The example in Figure 3-5 shows a configuration of four minor frames, in which Message A is sent in every frame, Message B is sent in every other frame, and Message C is sent once. Each minor frame goes out at 10msec. (100Hz). If each minor frame is 10msec. long, Message A is sent every 10msec., Message B is sent every 20msec., and Message C is sent every 40msec.

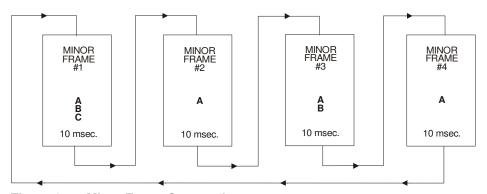


Figure 3-5 Minor Frame Sequencing

3.5 Memory Architecture

After reviewing the control registers, it is advantageous to look at how to set up memory to configure the EXC-1553P104/MCH3 as a Bus Controller. This section shows one method for defining the memory configuration.

The configuration shows the Command Blocks, data locations, and the Interrupt Log List as separate entities. Figure 3-6 shows that the first block of memory is allocated for the Command Blocks. Notice that the Command Block Pointer Register initially points to the control word of the first Command Block. After completing execution of that first Command Block, the Command Block Pointer Register will automatically be updated to show the address of the next Command Block.

Following the Command Block locations is the memory required for all the data words. In BC applications, the number of data words for each Command Block is known. In Figure 3-6, for example, the first Command Block has allocated several memory locations for expected data. Conversely, the second Command Block has only allocated a few memory locations. Since the number of data words associated with each Command Block is known, memory may be used efficiently.

Also shown as a separate memory area is the Interrupt Log List (see Interrupt Log List Pointer Register, page 3-7). Notice that the Interrupt Log List Pointer Register points to the top of the initial Log List. After execution of that first BC Command Block, the Interrupt Log List Pointer Register will automatically be updated if interrupt condition exists.

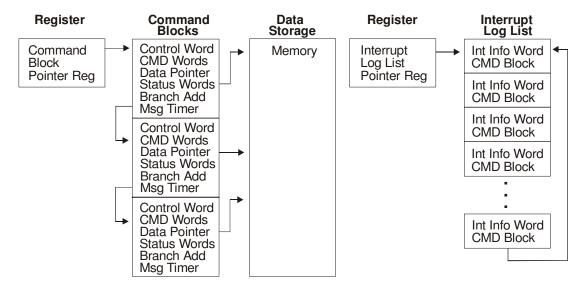


Figure 3-6 Memory Architecture for BC Mode

page 3-16 Excalibur Systems

3.6 MIL-STD-1553A Operation: BC Mode

To maximize flexibility, the EXC-1553P104/MCH3 can operate in many different systems that use various protocols. Specifically, two of the protocols that the board may be used with are MIL-STD-1553A and MIL-STD-1553B. To meet these protocols, configure the board through the Control register (ERTO Bit 09) and the Operational Status register (A/B_STD Bit 07). Table 3-1 defines the four ways to program the EXC-1553P104/MCH3.

A/B_STD	ERTO	RESULT
0	0	1553B standard, 1553B response (in 14 µsec.)
0	1	1553B standard, extended response (in 30 μsec.)
1	0	1553A standard, 1553A response (in 9 μsec.)
1	1	1553A standard, extended response (in 21 µsec.)

Table 3-1 MIL-STD-1553A/B Operation: BC Mode

When configured as a MIL-STD-1553A bus controller, the board will operate as follows:

- Looks for the RT response within 9µsec
- Defines all mode codes without data
- · Defines subaddress 00000 as a mode code

4 Remote Terminal Operation

Chapter 4 describes EXC-1553P104/MCH3 operation in Remote Terminal (RT) mode. The following topics are covered:

Control Registers: RT Mode	page 4-2
Descriptor Block	page 4-14
Data Structures	page 4-26
RT Circular Buffer Modes	page 4-32
Mode Code and Subaddress	page 4-38
Encoder and Decoder	page 4-41
RT-to-RT Transfer Compare	page 4-41
Terminal Address	page 4-42
Reset	page 4-42
MIL-STD-1553A Operation: RT Mode	page 4-43

NOTE The EXC-1553P104/MCH3 can be configured as both a remote terminal and monitor. For more information about this feature, see RT/Concurrent Monitor Operation, page 5-15.

4.1 Control Registers: RT Mode

The Control registers are read/write unless otherwise stated. All Control registers must be accessed in Word mode. All Control register bits are active high and are reset to 0 unless otherwise stated.

Figure 4-1 below illustrates the Control registers for Remote Terminal mode.

Illegalization Registers (16 registers)	0020-003E H
Reserved	0014-001E H
1553 Status Word Bits Register	0012 H
RT Descriptor Pointer Register	0010 H
Time Tag Register	000E H
BIT Word Register	000C H
Interrupt Log List Pointer Register	000A H
Pending Interrupt Register	0008 H
Interrupt Mask Register	0006 H
Current Command Block Register	0004 H
Operational Status Register	0002 H
Control Register	0000 H

Figure 4-1 Control Registers Map: RT Mode

NOTE The information in this section describes the operation of a single channel of the EXC-1553P104/MCH3 in RT mode.

Operating and addressing the second and third channels is identical to that of the first channel with the appropriate Base Address.

4.1.1 Control Register

Address: 0000 (H) READ / WRITE

Use the Control register to configure the board for RT operation. To make changes to the RT mode and this register, the STEX bit (Bit 15) must be logic 0.

Bit	Bit Name	Description	
15	STEX	Start Channel Execution	
		1 = Initiates board channel operation.0 = Inhibits board channel operation.	
		A remote terminal address parity error prevents RT Mode operation regardless of the logical state of this bit. If an RT address parity error exists, bit 03 of the Operational Status Register will be set low and bit 02 of the Operational Status Register will be set high.	
14	SBIT	Start Channel BIT	
		1 = Places the channel into the Built-In Test routine. The BIT routine takes 1msec to execute and has a fault coverage of 93.4%. If the channel has been started, the host must halt the channel in order to place the channel into the Built-In Test mode (STEX = 0).	
		Note : If Start BIT (SBIT) and Start Execution (STEX) are both set on one register write, SBIT has priority.	
13	Reserved	Set to 0	
12	BUAEN	Bus A Enable	
		1 = Enables Bus A operation.0 = The board does not recognize Commands received over Bus A.	
11	BUBEN	Bus B Enable	
		1 = Enables Bus B operation.0 = The board does not recognize Commands received over Bus B.	
10	Reserved	Set to 0	
09	PPACK	Ping-Pong Acknowledge. This read-only bit acknowledges the Ping-Pong operation. The Ping-Pong Enable is acknowledged by transitioning from a logical zero to a logical one, while the Ping-Pong Disable is acknowledged by transitioning from a logical one to a logical zero.	
07-08	RTM[1-0]	Remote Terminal Mode bits. These two bits determine the RT mode of operation.	
		RTM[1—0] RT Mode	
		0 0 Mode #0 Index or Ping-Pong Operation	
		0 1 X Reserved	
		1 0 Mode #1 Circular Buffer 1 Operation	
		1 1 Mode #2 Circular Buffer 2 Operation	

Control Register (continues on next page)

Bit	Bit Name	Description
05-06	Reserved	Set to 0
04	BCEN	Broadcast Enable
		1 = Enables the broadcast option for RT Mode.0 = Enables remote terminal address 31 as a unique remote terminal address.
03	DYNBC	Dynamic Bus Control Acceptance. This bit controls the board's ability to accept the dynamic bus Control mode code.
		 1 = Allows the board to respond to a dynamic bus Control mode code with status Word bit 18 set to a logic one. 0 = Prevents the assertion of status Word bit 18 upon reception of the dynamic mode code.
02	PPEN	Ping-Pong Enable
		 1 = Enables the ping-pong buffer feature of the board and disables the message indexing feature. 0 = Disables the ping-pong feature and enables the message indexing feature.
01	INTEN	Interrupt Log Enable
		1 = Enables the interrupt logging feature.0 = Prevents the logging of interrupts.
00	XMTSW	Transmit Last Status Word
		1 = Allows the board to automatically execute the Transmit Status Word mode code when configured for MIL-STD-1553A mode operation.

Control Register (continued from previous page)

4.1.2 Operational Status Register

Address: 0002 (H) READ/WRITE

The Operational Status register provides pertinent status information for RT Mode and is not reset to 0000 H on reset. Instead the bits A/B_STD, and RTA[4-0] are set to 1.

Bit	Bit Name	Description		
11-15	RTA[4-0]	remote termi	Remote Terminal Address Bits. These five bits contain the remote terminal address. The RTA4 bit is the MSB bit, while the RTA0 bit is the LSB bit.	
10	RTAPTY	Terminal Address Parity Bit. This bit is appended to the remote terminal address bus (RTA[4-0]) to supply odd parity. The board requires odd parity for proper operation.		
09	MSEL1			ion with Mode Select 0, this bit node of operation.
80	MSEL0			ion with Mode Select 1, this bit node of operation.
		MSEL1	MSEL0	Mode of Operation
		0	0	BC Mode
		0	1	RT Mode
		1	0	BM Mode
		1	1	RT/ Concurrent Monitor Mode
07	A/B_STD	the board will 1 = Enables t	operate unde he XMTSW bi	1553B. This bit determines whether r MIL-STD-1553A or 1553B protocol. t (Bit 00 of the Control Register)
04-06	Reserved		only bits are no	
03	EX	Channel Exe board is pres	cuting. This re ently executing nel is executing	ead-only bit indicates whether the g or is idle.
02	TAPF	Terminal Add	ress Parity Fa	il. Read only.
		error. The bo	ard checks fo	vance of a terminal address parity r odd parity. This bit reflects the Register bits 10-15.
01	READY	1 = The chan	•	only bit is cleared on reset. eted initialization or BIT, and begin.
00	TERACT			his read-only bit is cleared on reset. y processing a 1553 message.

Operational Status Register

NOTE

- 1. Remote Terminal Address and Parity are checked on start of execution
- 2. To make changes to the RT Mode and this register, the STEX bit (Bit 15 in the Control Register) must be logic 0.

4.1.3 Current Command Block Register

Address: 0004 (H) READ ONLY

Address: 0006 (H) READ/WRITE

This 16-bit register contains the last valid 1553 Command processed by the board.

Bit	Bit Name	Description
00-15	CC[15-0]	Current Command. These bits contain the latest valid 1553 Command that was received by the board. This register is valid 13µsec after the TERACT bit (Bit 00 of the Operational Status Register) is set to 0.

Current Command Block Register

4.1.4 Interrupt Mask Register

The EXC-1553P104/MCH3 interrupt architecture allows for the masking of all interrupts. An interrupt is masked if the corresponding bit of this register is set to logic 0. This feature allows the host to temporarily disable the service of interrupts. While masked, interrupt activity does not occur. The unmasking of an interrupt after the event occurs does not generate an interrupt for that event.

Bit	Bit Name	Description
12-15	Reserved	Set to 0
11	MERR	Message Error Interrupt
10	SUBAD	Subaddress Accessed Interrupt
09	BDRCV	Broadcast Command Received Interrupt
80	IXEQ0	Index Equal Zero Interrupt
07	ILLCMD	Illegal Command Interrupt
00-06	Reserved	Set to 0

Interrupt Mask Register

4.1.5 Pending Interrupt Register

Address: 0008 (H) READ ONLY

The Pending Interrupt Register is used to identify events that generate interrupts. The assertion of any bit in this register generates an interrupt. A register read of the Pending Interrupt Register will clear all bits.

Bit	Bit Name	Description
12-15	Reserved	Ignore on read.
11	MERR	Message Error Interrupt.
		1 = A message error occurred. The board can detect Manchester, sync-field, Word count errors (too many or too few), MIL-STD-1553 Word parity, bit count errors (too many or too few), and protocol errors. If not masked, this bit is always set and an interrupt generated when the board asserts bit-time 9 (Message Error) of the 1553 status Word (e.g., illegal Commands, invalid Data Word, etc.).
10	SUBAD	Subaddress Accessed Interrupt.
		 1 = A pre-selected subaddress has transacted a message. To determine the exact subaddress, the host interrogates the interrupt log IAW.
09	BDRCV	Broadcast Command Received Interrupt.
		1 = The board's receipt of a valid broadcast Command.The board suppresses status Word transmission.
08	IXEQ0	Index Equal Zero Interrupt. The board sets this bit to 1 to indicate the completion of a pre-defined number of Commands by the RT. Upon assertion of this interrupt, the host updates the subaddress descriptor to prevent the potential loss of data.
07	ILCMD	Illegal Command Interrupt. 1 = The board received an illegal Command. Upon receipt of this Command, the board responds with a status Word only; Bit-time 09 (Message Error) of the 1553 status Word is set to a logic 1.
00-06	Reserved	Ignore on read.

Pending Interrupt Register

Address: 000A (H) READ / WRITE

4.1.6 Interrupt Log List Pointer Register

The Interrupt Log List Pointer indicates the starting address of the Interrupt Log List. The Interrupt Log List is a 32-word ring-buffer that contains information pertinent to the service of interrupts. The EXC-1553P104/MCH3 architecture requires the location of the Interrupt Log List on a 32-word boundary. The most significant 11 bits of this register designate the location of the Interrupt Log List within a 64K memory space. The lower 5 bits of this register should be initialized to a logic 0. The board controls the lower 5 bits to implement the ring-buffer architecture. Read this register to determine the location and number of interrupts within the Interrupt Log List (least significant 5 bits).

Bit	Bit Name	Description
00-15	ILLP[15-0]	Interrupt Log List Pointer Bits. Note: Bits 15-05 indicate the starting Base address while bits 04-00 indicate the ring location of the Interrupt Log List.

Interrupt Log List Pointer Register

4.1.7 BIT Word Register

Address: 000C (H) READ/WRITE

The BIT Word register contains information on the current status of the channel's hardware. The RT transmits the contents of this register upon reception of a Transmit BIT Word Mode Code. The user defines the lower 8 bits of this register.

Bit	Bit Name	Description	
15	DMAF	DMA Fail.	
		1 = All the channel's internal DMA activity had not been completed within 7μ sec	
14	WRAPF	Wrap Fail. The board automatically compares the transmitted Word (encoder word) to the reflected decoder word by way of the continuous loop-back feature. If the encoder word and reflected Word do not match, the WRAPF bit is set. The loop-back path is via the MIL-STD-1553 bus transceiver.	
13	TAPF	Terminal Address Parity Fail. This bit reflects the outcome of the remote terminal address parity check.	
		1 = A parity failure. When a parity error occurs the board does not begin operation (STEX bit forced to a logic 0) and bus A and B do not enable.	
12	BITF	BIT Fail.	
		 1 = A BIT failure. Interrogate bits 11 through 08 to determine the specific bus that failed. 1553 Status Word bit-time 19 (Terminal Flag) is automatically set to a logic one when a BIT failure occurs. 	
11	BUAF	Bus A Fail.	
		1 = A BIT test failure in Bus A.	
10	BUBF	Bus B Fail.	
		1 = A BIT test failure in Bus B.	
09	MSBF	Memory Test Fail. Most significant memory byte failure.	
80	LSBF	Memory Test Fail. Least significant memory byte failure.	
00-07	UDB[7-0]	User-Defined Bits.	

BIT Word Register

4.1.8 Time-Tag Register

Address: 000E (H) READ ONLY

Address: 0010 (H) READ WRITE

The Time-Tag register reflects the state of a 16-bit free running counter. The resolution of this counter is 64µsec/bit. The Time-Tag counter is automatically reset when the board receives a valid synchronize without Data mode code. The board automatically loads the Time-Tag counter with the data associated with reception of a valid synchronize with Data mode code.

The Time-Tag counter begins operation in one of two cases:

- Either within 64µsec of the rising (final) edge of a reset
- *Or* the receipt of one of the following valid mode codes:
 - reset of the remote terminal
 - sync with/without data

When the board is halted (STEX bit 15 in the Control register = 0), the Time-Tag continues to run.

Bit	Bit Name	Description
00-15	TT[15-0]	Time-Tag Counter Bits.

Time-Tag Register

4.1.9 RT Descriptor Pointer Register

Each subaddress and mode code has a reserved block of memory containing information about how to process a valid Command to that subaddress or mode code. Located contiguously in memory, these reserved memory locations are called a descriptor space. The RT Descriptor Pointer register contains an address that points to the top of this memory space. The board uses the T/R bit, subaddress/mode code field, and mode code to select one block in the descriptor table for message processing. The RT Descriptor Pointer register is static during message processing.

Bit	Bit Name	Description
00-15	RTDA[15-0]	RT Descriptor Address Bits.

RT Descriptor Pointer Register

4.1.10 1553 Status Word Bits Register

Address: 0012 (H) READ / WRITE

The 1553 Status Word Bits register controls the outgoing MIL-STD-1553 Status Word. The host controls the Instrumentation, Busy, Terminal Flag, Service Request, and Subsystem Flag by writing to bits 09 through 00 of this register. The board's Status Word response reflects assertion of these bit(s) until negated by the host unless the Immediate Clear Function is enabled. The Immediate Clear Function automatically clears these bits after being transmitted in a Status Word.

The Immediate Clear Function does not affect the operation of the Transmit Last Status Word and Transmit Last Command Word Mode Codes. Transaction of a legal valid Command with the INS bit set to a logic one and the Immediate Clear Function enabled, results in the transmission of a 1553 Status Word with bit 10 asserted. If the ensuing Command is a Transmit Last Status Word or Last Command mode code, bit 10 of the outgoing 1553 Status Word remains a logic 1.

For MIL-STD-1553B applications, the 1553 Status Word Bits register is as follows:

Bit	Bit Name	Description
15	IMCLR	Immediate Clear Function.
		1 = Enables the Immediate Clear Function (IMF) of the board. Enabling the IMF results in the clearing of the INS, BUSY, TF, SRQ, and/or SUBF bit immediately after a message is completed. To enable this function, set this bit to 1 when setting bit(s) INS, BUSY, TF, SRQ, and/or SSYSF to 1. This bit should be used consistently since once set, it will remain set, and once cleared, it will remain cleared.
10-14	Reserved	Set to 0
09	INS	Instrumentation Bit. This bit sets the Instrumentation bit of the MIL-STD-1553B Status Word. (Bit 10 of the Status Word).
80	SRQ	Service Request Bit. This bit sets the Service Request bit of the MIL-STD-1553B Status Word. (Bit 11 of the Status Word).
04-07	Reserved	Set to 0
03	BUSY	Busy Bit. Assertion of this bit is reflected in the outgoing MIL-STD-1553B Status Word.
		1 = Prevents memory accesses. (Bit 16 of the Status Word).
02	SSYSF	Subsystem Flag Bit. This bit sets the Subsystem Flag bit of the MIL-STD-1553B Status word. (Bit 17 of the Status Word).
01	Reserved	Set to 0
00	TF	Terminal Flag. Assertion of this bit is reflected in the outgoing MIL-STD-1553B Status Word. The board automatically sets this bit if a BIT failure occurs. Inhibit Terminal Flag mode code prevents the assertion by the host. Override Inhibit Terminal Flag Mode Code re-establishes the Terminal Flag option. (Bit 19 of the Status Word).

1553 Status Word Bits Register: MIL-STD-1553B

For MIL-STD-1553A applications, the 1553 Status Word Bits register

Bit	Bit Name	Description
15	IMCLR	Immediate Clear Function.
		1 = Enables the Immediate Clear Function (IMF) of the board. Enabling the IMF results in the clearing of the bits 10-19 immediately after a Status Word is transmitted. To enable this function, set this bit when writing to bits 10-19. This bit should be used consistently since once set, it will remain set, and once cleared, it will remain cleared.
10-14	Reserved	Set to 0
09	SB10	Status bit time 10
80	SB11	Status bit time 11
07	SB12	Status bit time 12
06	SB13	Status bit time 13
05	SB14	Status bit time 14
04	SB15	Status bit time 15
03	SB16	Status bit time 16
02	SB17	Status bit time 17
01	SB18	Status bit time 18
00	SB19	Status bit time 19

1553 Status Word Bits Register: MIL-STD-1553A

4.1.11 Illegalization Registers

The 16 registers are divided into eight blocks, two registers per block, as shown in Table 4-1 below:

Block Name	Address (H)
Receive	0020 and 0022
Transmit	0024 and 0026
Broadcast Receive	0028 and 002A
Broadcast Transmit (Automatically Illegalized)	002C and 002E
Mode Code Receive	0030 and 0032
Mode Code Transmit	0034 and 0036
Broadcast Mode Code Receive	0038 and 003A
Broadcast Mode Code Transmit	003C and 003E

Table 4-1 Illegalization Register Blocks

Address: 0020 - 003E (H)

The blocks correspond to the following types of Commands. Register address 0020 (H) and 0022 (H) illegalize receive Commands to 32 subaddresses. The most significant bit of register 0020 (H) controls the illegalization of subaddress 01111. The least significant bit controls subaddress 00000. Register 0022 (H) controls illegalization of subaddresses 10000 through 11111. The least significant bit relates to subaddress 10000; the most significant bit relates to subaddress 11111. Transmit Commands and Broadcast Commands (both receive and transmit) use the same encoding scheme as receive subaddress illegalization.

Register 0030 (H) through 003E (H) controls the illegalization of mode codes. Register 0030 (H) governs the illegalization of receive mode codes (T/R bit = 0) 00000 through 01111 and register 0032 (H) mode codes 10000 through 11111. Register blocks Transmit Mode Code (T/R bit = 1), Broadcast Receive Mode Codes, and Broadcast Transmit Mode Codes use the same decode scheme as receive mode codes.

Table 4-2 shows the illegalization register map. For Receive, Transmit, Broadcast Receive, and Broadcast Transmit blocks, the numbers shown in the column under each bit number identify the specific subaddress or mode code (in hex) that the register bit illegalizes (Logical 0 = legal, Logical 1 = illegal).

Name	Regist Addres																
Bit Number		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Receive	0020	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
neceive	0022	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Transmit	0024	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
ITAIISIIII	0026	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Broadcast	0028	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
Receive	002A	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Broadcast	002C	XX															
Transmit	002E	XX															
Mode Code	0030	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
Receive	0032	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Mode Code	0034	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
Transmit	0036	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Mode Broadcast Receive	0038	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
	003A	1F	1E	1D	1C	1B	1A	19	18	17	16	15	14	13	12	11	10
Mode	003C	0F	0E	0D	0C	0B	0A	09	80	07	06	05	04	03	02	01	00
Broadcast Transmit	003E	YY															

Table 4-2 Illegalization Register Map

- 1. XX = Automatically illegalized by EXC-1553P104/MCH3.
- 2. YY = Automatically illegalized by EXC-1553P104/MCH3 in 1553B only.
- 3. ZZ = Automatically illegalized by EXC-1553P104/MCH3 in 1553B and 1553A if XMTSW is enabled.
- 4. WW = Automatically illegalized in 1553A.
- 5. UU = Automatically illegalized in 1553A if XMTSW enabled.

4.2 Descriptor Block

To process messages, the board uses data from the Control Registers with data stored in the RAM. The board accesses a 4-word descriptor block stored in RAM. The descriptor block is accessed at the beginning and end of Command processing. Multiple descriptor blocks are sequentially entered into memory to form a descriptor table. The following paragraphs discuss the descriptor block in detail.

The host controlling the board allocates 512 consecutive memory spaces for the subaddress and mode code descriptor table (see Figure 4-2, page 4-16). The top of the descriptor table can reside at any address location. The Control registers are linked to the descriptor table via the Descriptor Address Register contents. Each descriptor block contains a Control Word, Data Pointer A, Data Pointer B, and Broadcast Data Pointer. Each subaddress and mode code is assigned a descriptor for receive and transmit Commands (T/R bit equals zero or one).

Control Word information allows the board to generate interrupts, buffer messages, and control message processing. For a receive Command, the Data List Pointer is read to determine the top of the data buffer. The board stores data sequentially from the top of data buffer plus two locations (e.g., 0100H, 0102H, 0104H, 0106H, etc.). When processing a transmit Command, the Data List Pointer is read to determine where Data Words are retrieved. The board retrieves Data Words sequentially from the address the Data List Pointer designates plus two 16-bit address locations.

The Broadcast Data Pointer allows for separate storage of non-broadcast data from broadcast data per MIL-STD-1553B Notice II. The user enables or disables this feature via the Control Word's least significant bit. When disabled, the non-broadcast and broadcast data is stored via Data List Pointer A or B. For transmit Commands, the Broadcast Data Pointer is not used. The board does not transmit any information on the receipt of a broadcast transmit Command.

The board reads the descriptor block during Command processing (i.e., after assertion of TERACT). The board reads the Control Word and three Data Pointers. The board then begins the acquisition of Data Words for either transmission or storage.

After transmission or reception, the board begins post-processing. The Descriptor Block is updated. An optional interrupt log entry is performed after a descriptor update. During the descriptor update, the board modifies the Control Word index field and bits 4, 2, and 1, if required. The board updates Data Pointer A if no message errors occurred during the message transaction. Reception of a broadcast Command, with no message errors, results in the update of the Broadcast Data Pointer. Neither Data Pointer A or B is updated if the board has the ping-pong mode of operation enabled.

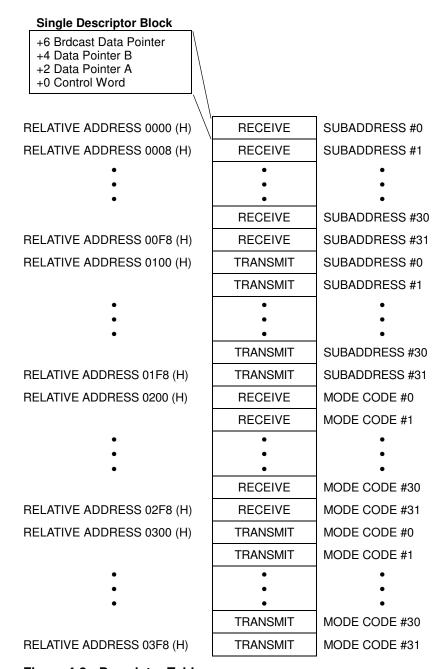


Figure 4-2 Descriptor Table

page 4-16 Excalibur Systems

4.2.1 Receive Control Word

Information contained in the Receive Control Word assists the board in message processing. The following bits describe the receive subaddress descriptor Control Word. The descriptor Control Word is initialized by the host and updated by the board during Command post-processing.

Bit	Bit Name	Description
08-15	INDX	Index Field. These bits define multiple message buffer length. The host uses this field to instruct the board to buffer <i>N</i> messages. <i>N</i> can range from 0 (00 H) to 256 (FF H). If buffer ping-ponging is enabled, the INDX field is 'don't care' (i.e., does not contain applicable information). During ping-pong mode operation, you should initialize the index field to 00 (H). The RT does not perform multiple message buffering in the ping-pong mode of operation. The index decrements each time a complete message is transacted (no message errors). The index does not decrement if the subaddress is illegalized. The board can generate an interrupt when the index field transitions from one to zero (see bit 07).
07	INTX	Interrupt Index Equals Zero.
		 1 = Enables the generation of an interrupt when the index field transitions from one to zero. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
06	IWA	Interrupt When Accessed.
		 1 = Enables the generation of an interrupt when the subaddress receives a valid Command. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
05	IBRD	Interrupt Broadcast Received.
		1 = Enables the generation of an interrupt when the subaddress receives a valid broadcast Command. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
04	BAC	Block Accessed. The host initializes this bit to zero; the board overwrites the zero with a logic one upon completion of message processing. Upon reading a one, the host resets this bit to zero in preparation for the next message.
03	Reserved	Set to 0
02	A/B	Buffer A/B. Indicates the last buffer accessed when buffer ping-pong is enabled. During initialization, the host designates the first buffer used by setting this bit. 1 = Buffer A
		0 = Buffer B This bit is a 'don't care' if buffer ping-ponging is not enabled.
01	BRD	Broadcast Received.
01	DND	1 = Reception of a valid broadcast Command.
00	NII	Notice II. 1 = Enables the use of the Broadcast Data Pointer as a buffer for Broadcast Command information. 0 = Broadcast information is stored in the same buffer as non-broadcast information.

Receive Control Word

4.2.2 Transmit Control Word

Information contained in the Transmit Control Word assists the EXC-1553P104/MCH3 in message processing. The following bits describe the transmit subaddress descriptor Control Word. The descriptor control Word is initialized by the host and updated by the board during Command post-processing.

Bit	Bit Name	Description
07-15	Reserved	Set to 0
06	IWA	Interrupt When Accessed. 1 = Enables the generation of an interrupt when the subaddress receives a valid Command. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
05	Reserved	Set to 0
04	BAC	Block Accessed. The host initializes this bit to zero; the board overwrites the zero with a logic one upon completion of message processing. Upon reading a one, the host resets this bit to zero in preparation for the next message.
03	Reserved	Set to 0
02	A/B	Buffer A/B. Indicates the Data pointer to access when buffer ping-pong is enabled. During initialization, the host designates the first buffer used by setting this bit. 1 = Buffer A 0 = Buffer B This bit is a 'don't care' if buffer ping-ponging is not enabled.
01	BRD	Broadcast Received. 1 = Reception of a Broadcast Command.
00	Reserved	Set to 0

Transmit Control Word

4.2.3 Mode Code Receive Control Word

Information contained in the Mode Code Receive Control Word assists the EXC-1553P104/MCH3 in message processing. The following bits describe the receive mode code descriptor Control Word. The descriptor control Word is initialized by the host and updated by the board during Command post-processing.

NOTE In MIL-STD-1553A, all mode codes are without data, and the T/R bit is ignored.

Bit	Bit Name	Description
08-15	INDX	Index Field. These bits define multiple message buffer length. The host uses this field to instruct the board to buffer <i>N</i> messages. <i>N</i> can range from 0 (00 H) to 256 (FF H). If buffer ping-ponging is enabled, the INDX field is 'don't care' (i.e., does not contain applicable information). The board does not perform message buffering in the ping-pong mode of operation. The index decrements each time a complete message is transacted (no message errors). The index does not decrement if the mode code is illegalized. The board can generate an interrupt when the index field transitions from one to zero (see bit 07).
07	INTX	Interrupt Index Equals 0.
		 1 = Enables the generation of an interrupt when the index field transitions from 1 to 0. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
06	IWA	Interrupt When Accessed.
		1 = Enables the generation of an interrupt when mode code Command is received. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
05	IBRD	Interrupt Broadcast Received.
		1 = Enables the generation of an interrupt when a valid broadcast mode code Command is received. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
04	BAC	Block Accessed. The host initializes this bit to zero; the board overwrites the zero with a logic 1 upon completion of message processing. Upon reading a one, the host resets this bit to zero in preparation for the next message.
03	Reserved	Set to 0
02	A/B	Buffer A/B. Indicates the last buffer accessed when buffer ping-pong is enabled. During initialization, you designate the first buffer used by setting this bit. 1 = Buffer A 0 = Buffer B This bit is a 'don't care' if buffer ping-ponging is not enabled.
0.4	555	
01	BRD	Broadcast Received. 1 = Reception of a valid broadcast Command.
00	NII	Notice II. 1 = Enables the use of the Broadcast Data Pointer as a buffer for broadcast Command information. 0 = Broadcast information is stored in the same buffer as non-broadcast information.

Mode Code Receive Control Word

4.2.4 Mode Code Transmit Control Word

Information contained in the Mode Code Transmit Control Word assists the EXC-1553P104/MCH3 in message processing. The following bits describe the transmit mode code descriptor Control Word. The user initializes the descriptor Control Word and the board updates it during Command post-processing.

NOTE In MIL-STD-1553A, all mode codes are without data, and the T/R bit is ignored.

Bit	Bit Name	Description
07-15	Reserved	Set to 0
06	IWA	Interrupt When Accessed. 1 = Enables the generation of an interrupt when mode code Command is received. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
05	IBRD	Interrupt Broadcast Received. 1 = Enables the generation of an interrupt when a broadcast mode code is received. The interrupt is entered into the Pending Interrupt Register if not masked in the Mask Register. An interrupt is generated after message processing.
04	BAC	Block Accessed. The host initializes this bit to 0; the board overwrites the 0 with a logic 1 upon completion of message processing. Upon reading a 1, the host resets this bit to 0 in preparation for the next message.
03	Reserved	Set to 0
02	A/B	Buffer A/B. This bit indicates the last buffer accessed when buffer ping-pong is enabled. During initialization, you designate the first buffer used by setting this bit. 1 = Buffer A 0 = Buffer B This bit is a 'dep't care' if buffer ping penging is not enabled.
		This bit is a 'don't care' if buffer ping-ponging is not enabled.
01	BRD	Broadcast Received. 1 = Reception of a broadcast Command.
00	Reserved	Set to 0

Mode Code Transmit Control Word

4.2.5 Data Pointer A and B (Mode #0)

Data List Pointer A and B contains address information for the retrieval and storage of message Data Words. In the index mode of operation, the board reads Data Pointer A to determine the location of data for retrieval or storage. The board uses the Data Pointer to initialize an internal counter, which increments after each Data Word. For a receive Command, the board stores the incoming Data Word sequentially into memory. As part of Command post-processing, the board writes a new Data pointer into the descriptor block. The board continues to update the Data pointer until the Control Word index field decrements to zero. An example is shown in Figure 4-3 RT Non-Broadcast Receive Message Indexing, page 4-22.

NOTE The index feature is not applicable for transmit Commands (i.e., T/R bit = 1).

Bit	Bit Name	Description
00-15	DP[15-0]	Data Pointer Bits. The second and third Words of the descriptor block contain the data buffer location. The board accesses either Data Pointer A or Data Pointer B depending on the state of Control Word Bit 02 during ping-pong operation. For index operation, the board accesses only Data Pointer A. The board updates Data pointer A after message processing is complete and the index field is not equal to zero and ping-pong operation disabled. Bit 15 is the most significant bit; bit 00 is the least significant bit.

Data Pointer A and B

For ping-pong buffer operation, the host uses either Data Pointer A or Data Pointer B. The board determines which pointer to access via the state of Control Word bit 02. The board retrieves or stores Data Words from the address contained in the Data pointer, automatically incrementing the Data Pointer as Data Words are received. The Data pointer is never updated as part of Command post-processing in the ping-pong mode of operation. See Figures 4-4 and 4-5.

_		_		
Receive Subaddress	CONTROL WORD	Index field	contents: 03XX (H)	
#1 Descriptor Block	DATA POINTER A	Data Pointer A: 0100 (H)		
	DATA POINTER B	Data Point	er B: XXXX (H)	
	BROADCAST DATA POINTER	Broadcast	Data Pointer: XXXX (H)	
Command #1				
Receive three Words	Message Info Word	0200 (H)	Index equals three	
	Time-Tag	0202 (H)		
	Data Word #1	0204 (H)		
	Data Word #2	0206 (H)		
Command #2	Data Word #3	0208 (H)	Index decrements to two	
Receive two Words	Message Info Word	020A (H)	Index equals two	
	Time-Tag	020C (H)		
	Data Word #1	020E (H)		
Command #3	Data Word #2	0210 (H)	Index decrements to one	
Receive three Words	Message Info Word	0212 (H)	Index equals one	
	Time-Tag	0214 (H)		
	Data Word #1	0216 (H)		
	Data Word #2	0218 (H)		
	Data Word #3	021A (H)	Index decrements to zero	
·		•	[Data Pointer A updated to 010E (H), interrupt generated enabled]	

Figure 4-3 RT Non-Broadcast Receive Message Indexing

Note: X = don't care

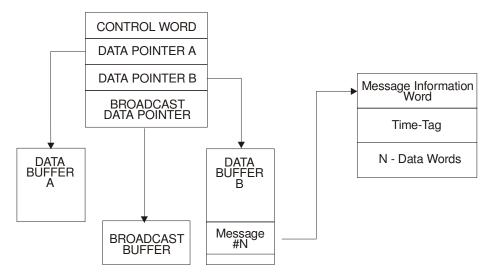


Figure 4-4 EXC-1553P104/MCH3 Descriptor Block (Receive)

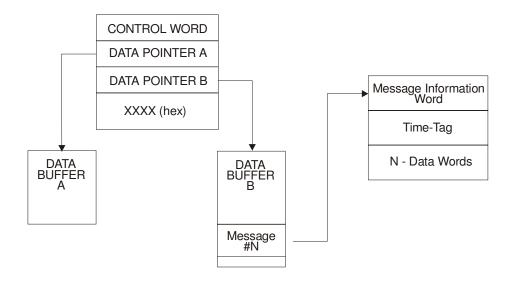


Figure 4-5 EXC-1553P104/MCH3 Descriptor Block (Transmit)

4.2.6 Ping-Pong Handshake (Mode #0)

The EXC-1553P104/MCH3 provides a software handshake that indicates the enable and disable of buffer ping-pong operation. During remote terminal operation the board asynchronous ping-pongs between two subaddress or mode code data buffers. To perform buffer service, the application software must freeze the remote terminal's access to a single buffer. The board's ping-pong enable/disable handshake allows the application software to asynchronously freeze (i.e., disable ping-pong operation) the remote terminal to a single buffer.

The handshake mechanism functions as follows.

Prior to starting remote terminal operation, enable the buffer ping-pong feature by writing a logical 1 to bit 02 of the Control Register. During ping-pong operation, the remote terminal ping-pongs between the two data buffers, for each subaddress or mode code, on a message by message basis. Each unique MIL-STD-1553 subaddress and mode code is assigned two data buffer locations (A and B). The remote terminal retrieves data from a buffer or stores data into a buffer depending on the message type (i.e., transmit or receive Command). During ping-pong operation, the remote terminal determines the active subaddress or mode code buffer at the beginning of message processing, the remote terminal complements bit 02 of the Descriptor Control Word to access the alternate buffer on the following message (i.e., ping-pong).

To off-load or load the subaddress and mode code buffers without collisions (e.g., remote terminal writing and application software reading the same buffer), the application software must disable ping-pong operation (i.e., freeze the remote terminal access to a single buffer, either A or B). Disabling ping-pong operation allows the application software to off-load or load the alternate buffer while the remote terminal continues to use the active buffer. To implement this architecture, ping-pong operation must enable and disable asynchronously via software with feedback to indicate that buffer ping-ponging is truly disabled. Second, unique subaddress and mode code flags indicate which buffer is active. Each unique subaddress and mode code is assigned a flag that indicates the active buffer.

To begin the process of off-loading or loading the remote terminal's subaddress and/or mode code buffers, when using the ping-pong feature, the application software performs the following sequences disables ping-pong operation, determines the active buffer, service the alternate buffer, enables ping-pong operation.

The application software disables ping-pong operation by writing a logical 0 to Control Register bit 02. The disable of ping-pong operation is acknowledged by bit 09 of the Control Register. Bit 09 of the Control Register acknowledges the ping-pong disable by transitioning from a logical 1 to a logical 0. The application software interrogates bit 02 of each Descriptor Control Word to determine the active buffer on a subaddress or mode code basis. If bit 02 is a logical 0, the remote terminal uses Buffer A and the application software off-loads or loads Buffer A.

The application software enables ping-pong operation by writing a logical 1 to Control Register bit 02. The enable of ping-pong operation is acknowledged by bit 09 of the Control Register. Bit 09 of the Control Register acknowledges the ping-pong enable by transitioning from a logical 0 to a logical 1.

4.2.7 Broadcast Data Pointer (Mode #0)

The Broadcast Data Pointer contains the address for the Message Information Word, Time-Tag Word, and Data Words associated with a broadcast Command. The following bits describe the receive subaddress/mode code descriptor Broadcast Data Pointer. If ping-pong operation is disabled, the board automatically increments this Data Pointer during Command post-processing,

Bit	Bit Name	Description				
00-15	BP[15-0]	Broadcast Data Pointer. The fourth Word of the descriptor block contains the broadcast data buffer location. This pointer can reside anywhere in memory space. The board accesses this pointer when Control Word bit 00 is a logic 1 and broadcast is enabled. Bit 15 is the most significant bit, bit 00 is the least significant bit. Notes: 1. If ping-pong is enabled, this pointer does not update.				
		2. When the broadcast Command is followed by a Transmit Last Command or Last Status Word mode code, the board transmits a Status Word with bit 15 of the Status Word set to a logic 1. The broadcast bit is cleared when the next valid non-Broadcast Command is received.				

Broadcast Data Pointer

4.3 Data Structures

The following sections discuss the Data structures that result from Command processing. For each complete message processed, the EXC-1553P104/MCH3 generates a Message Information Word and Time-Tag Word. These Words aid the host in further message processing. The Message Information Word contains Word count, message type, and message error information. The Time-Tag Word is a 16-bit Word containing the Command validity time. The Time-Tag Word data comes from the board's internal Time-Tag counter.

4.3.1 Subaddress Receive Data

For receive Commands, the board stores Data Words plus two additional Words. The board adds a Receive Information Word and Time-Tag Word to each receive Command data packet. The board places the Receive Information Word and Time-Tag Word ahead of the Data Words associated with a receive Command (see Figures4-3 4-4, and4-5 above). When message errors occur, the board stores the Receive Information Word and Time-Tag Word. Once a message error condition is observed, all Data Words are considered invalid.

Data storage occurs at the memory location pointed to by the Data pointer plus two 16-bit locations.

RECEIVE INFORMATION WORD

The following bits describe the Receive Information Word contents:

Bit	Bit Name	Description
11-15	WC[4-0]	Word Count Bits. These five bits contain Word count information extracted from the receive Command Word bits 15 to 19.
10	Reserved	Ignore on read.
09	BUA/B	Bus A/B.
		1 = The message was received on Bus A.0 = The message was received on Bus B.
80	RTRT	Remote Terminal to Remote Terminal Transfer. The Command processed was an RT-to-RT transfer.
07	ME	Message Error.
		1 = A message error condition was observed during processing.See bits 00 to 04 for details.
05-06	Reserved	Ignore on read.
04	ILL	Illegal Command Received.
		1 = The Command received was an illegal Command.
03	то	Time-Out Error. 1 = The board did not receive the proper number of Data Words, i.e., the number of Data Words received was less than the Word count specified in the Command Word.
02	OVR	Overrun Error.
		1 = The board received a Word when none was expected or the number of Data Words received was greater then expected.
01	PRTY	Parity Error.
		1 = The board observed a parity error in the incoming Data Words.
00	MAN	Manchester Error.
		1 = The board observed a Manchester error in the incoming Data Words.

Receive Information Word

4.3.2 Subaddress Transmit Data

The user is responsible for organizing the data packet (i.e., *N* Data Words) into memory and establishing the applicable Data Pointer. The user can allocate two 16-bit memory locations at the top of the data packet for the storage of the Transmit Information Word and the Time-Tag Word. An example transmit Data structure for three Words is shown below:

Data Pointer A \longrightarrow	0200 (H)	XXXX	Reserved for Transmit Info Word
equals 0100 (H)	0202 (H)	XXXX	Reserved for Time-Tag Word
	0204 (H)	FFFF	Data Word #1
	0206 (H)	FFFF	Data Word #2
	0208 (H)	FFFF	Data Word #3

NOTE Data Pointer A points to the top of the Data structure, not to the top of the Data Words.

TRANSMIT INFORMATION WORD

The following bits describe the Transmit Information Word contents:

Bit	Bit Name	Description
11-15	WC[4-0]	Word Count Bits. These five bits contain Word count information extracted from the receive Command Word bits 15 to 19.
10	Reserved	Ignore on read.
09	BUA/B	Bus A/B. 1 = The message was received on Bus A. 0 = The message was received on Bus B.
80	Reserved	Ignore on read.
07	ME	Message Error. 1 = A message error condition was observed during processing. See bits 00 to 04 for more detail.
05-06	Reserved	Ignore on read.
04	ILL	Illegal Command Received. 1 = The Command received was an illegal Command.
03	Reserved	Ignore on read.
02	OVR	Overrun Error. 1 = The board received a Data Word with a Transmit Command.
00-01	Reserved	Ignore on read.

Transmit Information Word

4.3.3 Mode Code Data

The Transmit and Receive Data Structures for mode codes are similar to those for a subaddress. The receive Data structure contains an Information Word, Time-Tag Word, and message Data Word. All receive mode codes with data have one associated Data Word. Data storage occurs at the memory location pointed to by the Data pointer plus two 16-bit locations. Reception of the synchronize with Data mode code automatically loads the Time-Tag counter and stores the Data Word at the address defined by the Data pointer plus two 16-bit locations.

The transmit mode code Data structure contains an Information Word, Time-Tag Word, and associated Data Word. The host is responsible for linking the board Data Pointer to the data (e.g., Transmit Vector Word). For mode codes with internally generated Data Words (e.g., Transmit BIT Word, Transmit Last Command), the transmitted Data Word is added to the Data structure.

For MIL-STD-1553A mode of operation, all mode codes are defined without Data Words. For mode codes without data, the Data structure contains the Message Information Word and Time-Tag Word only.

NOTE In MIL-STD-1553A, all mode codes are without data and the T/R bit is ignored.

MODE CODE RECEIVE INFORMATION WORD

The following bits describe the Mode Code Receive Information Word contents:

Bit	Bit Name	Description
11-15	MC[4-0]	Mode Code. These five bits contain the mode code information extracted from the receive Command Word bits 15 to 19.
10	Reserved	Ignore on read.
09	BUA/B	Bus A/B.
		1 = The message was received on Bus A.0 = The message was received on Bus B.
08	RTRT	Remote Terminal to Remote Terminal Transfer. 1 = The Command processed was an RT-to-RT transfer.
07	ME	Message Error. 1 = A message error condition was observed during processing. See bits 00 to 04 for details.
05-06	Reserved	Ignore on read.
04	ILL	Illegal Command Received.1 = The Command received was an illegal Command.
03	то	Time-out Error. 1 = The board did not receive the proper number of Data Words, i.e., the number of Data Words received was less than the Word count specified in the Command Word.
02	OVR	Overrun Error.
		1 = The board received a Word when none was expected, or the number of Data Words received was greater than expected.
01	PRTY	Parity Error.
		1 = The board observed a parity error in the incoming Data Words.
00	MAN	Manchester Error.
		1 = The board observed a Manchester error in the incoming Data Words.

Mode Code Receive Information Word

MODE CODE TRANSMIT INFORMATION WORD

The following bits describe the Mode Code Transmit Information Word contents:

Bit	Bit Name	Description	
11-15	MC[4-0]	Mode Code. These five bits contain the mode code information extracted from the Command Word bits 15 to 19.	
10	Reserved	Ignore on read.	
09	BUA/B	Bus A/B.	
		1 = The message was received on Bus A.0 = The message was received on Bus B.	
80	Reserved	Ignore on read.	
07	ME	Message Error.	
		1 = A message error condition was observed during processing. See bits 00 to 04 for details.	
05-06	Reserved	Ignore on read.	
04	ILL	Illegal Command Received.	
		1 = The Command received was an illegal Command.	
03	Reserved	Ignore on read.	
02	OVR	Overrun Error.	
		1 = The board received a Data Word with a Transmit Command.	
00-01	Reserved	Ignore on read.	

Mode Code Transmit Information Word

4.4 RT Circular Buffer Modes

The RT circular buffer modes simplify the software service of remote terminals implementing bulk or periodic data transfers. You can select the preferred mode at start-up by writing to Control Register bits 07 and 08 (see Control Register, page 4-3). The two modes, Mode #1 and Mode #2 are discussed in sections 4.4.1 and 4.4.2.

4.4.1 Mode #1 Operation

In this mode the board merges transmit or receive data into a circular buffer along with message information.

For each valid receive message, the board enters a message information Word, Time-Tag Word, and Data Word(s) into a unique receive circular buffer.

For each valid transmit message, the board enters a message information Word and Time-Tag Word into reserved memory locations within the transmit circular buffer. The board automatically controls the wrap around of circular buffers.

4.4.2 Mode #1 Descriptor Block

Each subaddress and mode code both transmit and receive, has a unique circular buffer assignment. The board decodes the Command Word T/R bit, subaddress/mode code field, and Word_count/mode_code field to select a unique descriptor block that contains Control Word, TA, CA, and BA (see Figure 4-6).

To implement Circular Buffer 1's architecture, the 4-word descriptor block and Control Register are different than in the Mode #0. Bits 15 through 08 of the Control Word are don't care. The second Word of the descriptor block defines the buffer's starting or top address (TA). The TA pointer remains static during message processing. The fourth entry into the descriptor block identifies the buffer's bottom address (i.e., BA) and also remains static during message processing. The third descriptor block Words represent the current address (i.e., CA) in the buffer and is dynamic. If the board observes no message error conditions, the CA pointer updates at the end of message processing. The application software reads the dynamic CA pointer to determine the current bottom of the buffer.

The TA (top of buffer) and BA (bottom of buffer) pointers define the circular buffer's length. The CA pointer identifies the current address (i.e., last accessed address plus one). The circular buffer wraps to the top address after completing a message that results in CA being greater than or equal to BA. If CA increments past BA during intra-message processing, the board will access memory (read or write) address locations past BA. Delimit all circular buffer boundaries with at least 34 address locations.

NOTE In this mode of operation, bits INDX, NII and A/B of the descriptor Control Word and the PPEN bit of the Control Register are 'don't care'.

4.4.3 Mode #1 Circular Buffer

RECEIVE MESSAGE PROCESSING

The board begins all message processing by reading a unique descriptor block after reception and validation of a subaddress or mode code Command Word. The board internally increments the CA pointer to store the receive Data Word(s). After message processing completes, the board stores the Message Information Word and Time-Tag Word into the circular buffer preceding the message data. At the end of message processing, the board updates CA (if no errors detected). For CA larger than BA storage of next message begins at the address location pointed to by the TA pointer, and CA is made equal to TA. If CA is less than BA, CA points to the next available memory location in the buffer (i.e., CA+1).

For transmit Commands, the board begins transmission of data from memory location CA+2. Reserve the first two locations for the message information Word and Time-Tag Word. After message processing completes, the board enters the message information Word and Time-Tag Word into the circular buffer. At the end of message processing, the board updates CA (if no errors detected). For CA larger than BA, storage of the next message begins at the address location pointed to by the TA pointer, and CA is made to equal TA. If CA is less than BA, CA points to the next available memory location in the buffer (i.e., CA+1).

NOTE In this mode the Message Information Word bit 5 reflects the reception of broadcast message via the BRD bit.

The board generates a circular buffer empty/full interrupt when the buffer reaches the end (i.e., CA greater than BA) and begins a new message at the top of the buffer. Bit 08 of the Mask Register and bit 07 of the Descriptor Control Word mask enables the generation of the Full/Empty interrupt.

Data Words Time-Tag Message Info Word **CIRCULAR BUFFER** Data Words Time-Tag Message Info Word BA CA TΑ **CONTROL WORD** Descriptor Block

Figure 4-6 describes the relationship between TA, BA, and CA.

Figure 4-6. RT Mode #1 Descriptor Block and Circular Buffer

4.4.4 Mode #2 Operation

In this mode the board separates message data and message information into unique circular buffers. The separation of data from message information simplifies the software that loads and unloads data from the buffers. The message information buffer contains Time-Tag and Message Information Words for each message transacted on the bus, while the data buffer contains the message Data Words. After processing a pre-determined number of messages, both buffers wrap-around.

4.4.5 Mode #2 Descriptor Block

Each subaddress and mode code, both transmit and receive, has a unique pair of circular buffers. The board decodes the Command Word T/R bit, subaddress/mode field, and Word_count/mode_code field to select a unique descriptor block which contains Control Word, TA, CA, and MIB (see Figure 4-7, page 4-37).

To implement Circular Buffer 2's architecture, the descriptor block and Control Register are different than in Mode #0. Bits 15 through 08 of the Control Word specify the Message Information Buffer (MIB) length; the maximum MIB size is 256. Table 4-3 shows how the Control Word's most significant bits select the depth of the MIB. The Control Words eight most significant bits remain static during message processing.

The second Word of the description block defines the top address (TA) of the Data circular buffer. The TA pointer remains static during message processing. The third descriptor Word identifies the current address (i.e., CA) of the Data circular buffer. The application software reads the dynamic CA pointer to determine the current address of the Data buffer. The board increments the CA pointer, at the end of message processing, until the MIB buffer is full. When the MIB wraps around, the S μ MMIT loads the CA pointer with the TA pointer.

The fourth Word in the descriptor block defines the top or base address of the Message Information Buffer (i.e., MIB) and the current MIB address (i.e., offset from base address). The SµMMIT enters the message information Word and Time-Tag Word into the MIB, for each message, until the end of the MIB is reached. When the MIB reaches the end, the next message's message information Word and Time-Tag Word is entered at the top of the MIB. The MIB pointer is a semi-static pointer. The board updates the current address field at the end of message processing. The Base Address field remains static.

NOTE In this mode of operation, bits INDX, NII and A/B of the descriptor Control Word and the PPEN bit of the Control Register are 'don't care'.

4.4.6 Mode #2 Circular Buffer

RECEIVE MESSAGE PROCESSING

The board begins all message processing by reading the descriptor block of the subaddress or mode code Command received (i.e., Control Word, TA, CA, and MIB). The board begins storage of Data Word(s) starting at the location contained in the CA pointer. The board automatically updates the CA pointer internally as message processing progresses. The board stores the message information Word and Time-Tag Word into the MIB, after receiving the correct number of Data Words, At the end of message processing, the board updates CA and the MIB Current Address Field (CAF). If CAF equals the specified MIB length, CA is updated to TA and the MIB CAF is reset to zero. If CAF is less than the specified MIB length, CA and MIB CAF point to the next available memory location in each buffer. Control Word bits 15 to 08 specify the MIB length.

For transmit Commands, the board begins transmission of data from memory location CA. After message processing completes, the board enters the message information Word and time-tag Word into the MIB. At the end of message processing, the board updates CA and the MIB CAF. If CAF equals the specified MIB length, CA is updated to TA and the MIB CAF is reset to zero. If CAF is less than the specified MIB length, CA and MIB CAF point to the next available memory location in each buffer.

NOTE In this mode the BRD bit is added to the Message Information Word bit 05.

The board generates a circular buffer empty/full interrupt when the MIB reaches the end and begins a new message at the top of the buffer. Bit 08 of the Mask Register and bit 07 of the Descriptor Control Word mask enable the generation of the Full/Empty interrupt.

Control Word Bits 8-15	Length of MIB (messages)	MIB Pointer Structure (Base and CAF)
FF	128	8 Bit Base Address +8 Bit Current Address Field
7F	64	9 Bit Base Address +7 Bit Current Address Field
3F	32	10 Bit Base Address +6 Bit Current Address Field
1F	16	11 Bit Base Address +5 Bit Current Address Field
0F	8	12 Bit Base Address +4 Bit Current Address Field
07	4	13 Bit Base Address +3 Bit Current Address Field
03	2	14 Bit Base Address +2 Bit Current Address Field
01	1	15 Bit Base Address +1 Bit Current Address Field

Table 4-3 RT Mode #2 Control Word and MIB Pointer Structure

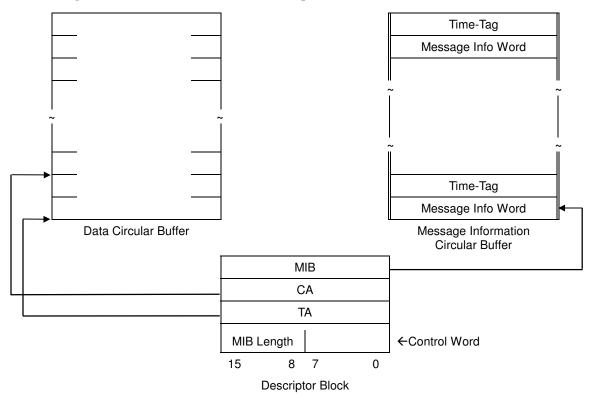


Figure 4-7 describes the relationship between TA, CA, and MIB.

Figure 4-7 RT Mode #2 Descriptor Block and Circular Buffers

EXC-1553P104/MCH3: User's Manual

4.5 Mode Code and Subaddress

The EXC-1553P104/MCH3 provides subaddress and mode code decoding that meets MIL-STD-553B requirements. In addition, the board has automatic internal illegal Command decoding for reserved MIL-STD-1553B mode codes. Table 4-4 shows the board's response to all possible mode code combinations.

T/R	Mode Code	Function	Operation
0	00000-01111	Undefined (w/o data)	Command Word stored Status Word transmitted
0	10000	Undefined (with data)	 Command Word stored Data Word stored Status Word transmitted
0	10001	Synchronize (with data)	 Command Word stored Data Word stored Time-Tag counter loaded with Data Word value Status Word transmitted
0	10010	Undefined	 Command Word stored Data Word stored Status Word transmitted
0	10011	Undefined	 Command Word stored Data Word stored Status Word transmitted
0	10100	Selected Transmitter Shutdown	 Command Word stored Data Word stored Status Word transmitted
0	10101	Override Selected Transmitted Shutdown	 Command Word stored Data Word stored Status Word transmitted
0	10110-11111	Reserved	 Command Word stored Data Word stored Status Word transmitted
1	00000	Dynamic Bus Control	 Command Word stored Dynamic Bus Acceptance bit set in outgoing Status Word if enabled in the Control Register Status Word transmitted
1	00001	Synchronize	 Command Word stored Time-Tag counter reset to 0000 (H) Status Word transmitted

Table 4-4 Mode Code Description (continues on next page)

T/R	Mode Code	Function	Operation
1	00010	Transmit Status Word	 Command Word stored Last Status Word transmitted Status Word cleared after reset Note: The board updates Status Word if illegalized.
1	00011	Initiate Self-Test	 Command Word stored Status Word transmitted BIT initiated TF bit set if BITF bit asserted
1	00100	Transmitter Shutdown	 Command Word stored Status Word transmitted Alternate bus disabled
1	00101	Override Transmitter Shutdown	1. Command Word stored 2. Status Word transmitted 3. Alternate bus enabled Note: Reception of the override transmitter shut-down mode code does not enable a channel not previously enabled in the Control Register. Reset remote terminal mode code clears the transmitter shut-down function.
1	00110	Inhibit Terminal Flag Bit	 Command Word stored Terminal flag bit set to 0 and assertion disabled Status Word transmitted
1	001111	Override Inhibit Terminal Flag	 Command Word stored Terminal flag bit enabled for assertion Status Word transmitted
1	01000	Reset Remote Terminal	 Command Word stored Status Word transmitted Software reset
1	01001-01111	Reserved	 Command Word stored Status Word transmitted
1	10000	Transmit Vector Word	 Command Word stored Service request bit set to a logic zero in out going Status Status Word transmitted Data Word transmitted Clears the SRQ bit in the 1553 Status Word Bits Register
1	10001	Reserved	 Command Word stored Status Word transmitted Data Word stored

Table 4-4 Mode Code Description (continues on next page)

T/R	Mode Code	Function	Operation
1	10010	Transmit Last Command	Command Word stored Last Status Word transmitted Last Command Word transmitted Data Word stored (Transmit Last Command) Transmitted Data Word is all 0 after reset Note: The board stores the Transmit Last Command mode code if illegalized and updates Status Word.
1	10011	Transmit BIT Word	 Command Word stored Status Word transmitted BIT Word transmitted from BIT Word Register Data Word stored (Transmit BIT Word)
1	10100-10101	Undefined (with data)	 Command Word stored Status Word transmitted Data Word transmitted
1	10110-11111	Reserved	 Command Word stored Status Word transmitted Data Word transmitted

Table 4-4 Mode Code Description (continued from previous page)

page 4-40 Excalibur Systems

4.6 Encoder and Decoder

The EXC-1553P104/MCH3 receives the Command Word from the MIL-STD-1553 bus and processes it either by the primary or secondary decoder. Each decoder checks for the proper sync pulse and Manchester waveform, edge skew, correct number of bits, and parity. If the Command is a receive Command, the board processes each incoming Data Word for correct format, Word count, and contiguous data. If a message error is detected, the board stops processing the remainder (if any) of the message, suppresses Status Word transmission, and asserts bit 09 (ME bit) of the Status Word.

The board automatically compares the transmitted Word (encoder Word) with the reflected decoder Word by way of the continuous loop-back feature. If the encoder Word and reflected Word do not match, the WRAPF bit is asserted in the BIT Word Register and an interrupt will be generated, if enabled. In addition to the loop-back compare test, a timer precludes a transmission greater than 800µsec by the assertion of Fail-Safe Timer. This timer is reset upon receipt of another Command.

Remote Terminal Response-Time:

MIL-STD-1553A = 7μsec.
MIL-STD-1553B = 10μsec.
Data Contiguity Time-Out = 1.0μsec.

4.7 RT-to-RT Transfer Compare

The RT-to-RT Terminal Address compare logic ensures that the incoming Status Word's Terminal Address matches the Terminal Address of the transmitting RT specified in the Command Word. An incorrect match results in setting the message-error bit and suppressing transmission of the Status Word. (RT-to-RT transfer time-out = 55 to 59μ sec). The board does not check ME or SSYSF of the transmitting remote terminal when receiving.

4.8 Terminal Address

The EXC-1553P104/MCH3 Terminal Address is programmed via the most significant six bits in the Operational Status Register: RTA[4-0] and RTPTY. The Terminal Address parity is odd; RTPTY is set to a logic state to satisfy this requirement. When the Operational Status Register bit 02 (TAPF) is set, this indicates incorrect Terminal Address parity. The Operational Status Register bit 02 is valid after the rising (final) edge of a reset.

For example:

```
RTA[4-0] = 05(H) = 00101
RTPTY = 1(H) = 1 Sum of 1s = 3 (odd), Operational Status Register Bit 02 = 0
RTA[4-0] = 04(H) = 00100
RTPTY = 0(H) = 0 Sum of 1s = 1 (odd), Operational Status Register Bit 02 = 0
RTA[4-0] = 04(H) = 00100
RTPTY = 1 (H) = 0 Sum of 1s = 2 (even), Operational Status Register Bit 02 = 0
```

NOTE The board checks the Terminal Address and parity after RT mode operation has been started. With Broadcast disabled, RTA(4:0) = 11111 operates as a normal RT address.

The BIT Word Register parity fail bit is valid after RT mode has been started.

The Terminal Address is also programmed via a write to the Operational Status Register. The board loads the Terminal Address upon completion of the Control Register write which activates RT mode.

4.9 Reset

The software reset (see Software Reset Register, page 1-6) is also equivalent to a hardware (power-on) reset and takes 5µsec to complete. Assertion of reset results in the immediate reset of the channel and termination of Command processing. The user is responsible for the reinitialization of the RT Mode for operation.

A Reset Remote Terminal mode code (Mode Code 01000, T/R = 1) clears the encoder/decoders, resets the time-tag, enables the busses to the programmed host state, and re-enables the Terminal Flag for assertion. This reset is performed after the transmission of the 1553 Status Word.

4.10 MIL-STD-1553A Operation: RT Mode

To maximize flexibility, the EXC-1553P104/MCH3 can operate in many different systems that use various protocols. Specifically, two of the protocols that the board may be used with are MIL-STD-1553A and MIL-STD-1553B. To meet these protocols, you can configure the board through the Control register (XMTSW Bit 00) and the Operational Status register (A/B_STD Bit 07). Table 4-5 defines the three ways to program the EXC-1553P104/MCH3.

A/B STD	XMTSW	RESULT (protocol selected)	
0	Χ	1553B response, 1553B Standard	
1	0	1553A response, 1553A Standard	
1	1	1553A response, auto execute the TRANSMIT LAST STATUS WORD mode code.	

Table 4-5 MIL-STD-1553A/B Operation: RT Mode

When configured as a remote terminal to meet MIL-STD-1553A, the EXC-1553P104/MCH3 will operate as follows:

- Responds with a Status Word within 7µsec.
- Ignores the T/R bit for all mode codes.
- All mode codes are defined without data.
- All mode codes use mode code transmit control and information Words.
- Mode code 00000 is defined as dynamic bus control (DBC).
- Subaddress 00000 defines a mode code.
- ME and TF bits are defined in the 1553 Status Word; all other Status Word bits are programmable (i.e., NO BUSY mode, etc.)
- Broadcast of all mode codes, except Mode Code 00000 (DBC) and mode code 00010 (transmit Status Word if enabled), is allowed.
- To illegalize a Mode Code, the user needs to illegalize both the receive and transmit versions.
- Illegalization of row 1F (H) is not automatic.

5 Bus Monitor Operation

Chapter 5 describes EXC-1553P104/MCH3 operation in Bus Monitor (BM) mode. The following topics are covered:

Bus Monitor Message Processing	page	5-1
Control Registers: BM Mode	page	5-3
Bus Monitor Architecture	page	5-10
Bus Monitor Block Chaining	page	5-13
Memory Architecture	page	5-14
RT/Concurrent Monitor Operation	page	5-15
MIL-STD-1553A Operation: BC Mode	page	5-16

5.1 Bus Monitor Message Processing

To process messages, the EXC-1553P104/MCH3 uses data supplied in the Control Registers along with RAM memory. There are eight 16-bit memory locations for each message called a monitor block, seven are used and one is reserved. The monitor block is updated at the end of command processing. The following paragraphs discuss the command block in detail.

The user allocates memory spaces for each monitor block. The top of the monitor blocks can reside at any address location. The Control Registers are initialized by the host and linked to the Monitor Block via the Initial Monitor Block Pointer Register and the Monitor Block Counter Register contents. Each monitor block contains a Message Information Word, Command Word 1, Command Word 2, Data Pointer, Status Word 1, Status Word 2, and Time-Tag. For a full description of each location, see Bus Monitor Architecture, page 5-10.

The Message Information Word allows the board to inform the user on which bus the command was received, whether the message was an RT-to-RT transfer, and conditions associated with the message. The board also stores each Command Word associated with the message in the appropriate location. For normal 1553 commands, only the first Command Word location will contain data. For RT-to-RT commands, the second Command Word location will contain data, and bit 08 in the Message Information Word will be set.

For each command, the Data Pointer is read to determine where to store data words. The board stores data sequentially from the top memory location. The board also stores each status word associated with the message in the appropriate location. For normal 1553 commands, only the first status word location will contain data. For RT-to-RT commands, the second status word location will contain data.

The board begins monitoring after Control Register bit 15 = 1 (i.e., assertion of TERACT and STEX bits). After reception, the board begins post-processing. Command post-processing involves storing data to memory. An optional interrupt log entry is performed after a monitor is entered. Monitor Time-Out:

- MIL-STD-1553A = 9μ sec.
- MIL-STD-1553B = $15\mu sec.$

5.1.1 Error Condition Message Processing

When the monitor detects an error condition in either the Command Word, Data Words, or the RT's status, the monitor block will not store the data. The monitor block counter increments. The initial message Data Pointer remains constant. The monitor block pointer increments. Message information bits of the monitor block are changed to reflect the error. An interrupt is given indicating a message has occurred.

See Message Information Bits, page 5-11.

5.2 Control Registers: BM Mode

The control registers are read/write unless otherwise stated. All control registers **must** be accessed in word mode. All Control Register bits are active high and are reset to 0 unless otherwise stated.

Figure 5-1 below illustrates the control registers for Bus Monitor mode.

Reserved	0020-003E H
Monitor Filter Register Lo	001E H
Monitor Filter Register Hi	001C H
Monitor Block Counter Register	001A H
Initial Monitor Data Pointer Register	0018 H
Initial Monitor Command Block Pointer Register	0016 H
Reserved	0010-0014 H
Time Tag Register	000E H
BIT Word Register	000C H
Interrupt Log List Pointer Register	000A H
Pending Interrupt Register	0008 H
Interrupt Mask Register	0006 H
Current Command Block Register	0004 H
Operational Status Register	0002 H
Control Register	0000 H

Figure 5-1 Control Registers Map: BM Mode

NOTE The information in this section describes the operation of a single channel of the EXC-1553P104/MCH3 in RT mode. Operating and addressing the second and third channels is identical to that of the first channel with the appropriate Base Address.

5.2.1 Control Register

Address: 0000 (H) READ/WRITE

Use the Control register to configure the board for Bus Monitor operation. To make changes to the Bus Monitor and to this register, the STEX bit (Bit 15) must be logic 0.

NOTE The user has 5µsec after TERACT (Operational Status Register bit 00) is active to stop operation.

Bit	Bit Name	Description	
15	STEX	Start Execution.	
		1 = Initiates board operation.0 = Inhibits board operation.	
		After execution has begun, writing a logic 0 will halt the board after completing the current 1553 message.	
14	SBIT	Start BIT (Built-In Test routine).	
		1 = Places the board into the Built-In Test routine. The BIT test takes 1msec. to execute and has a fault coverage of 93.4%. If the channel has been started, the host must halt the board in order to place it into the Built-In Test mode (STEX = 0).	
		Note : If Start BIT (SBIT) and Start Execution (STEX) are both set on one register write, BIT has priority.	
10-13	Reserved	Set to 0	
09	ERTO	Extended Response Time-Out.	
		1 = Enables the extended response time-out option and forces the BM mode to look for an RT's response time in 30μsec or generate time-out errors.	
06-08	Reserved	0 = Enables for the standard time-out in 14μsec. Set to 0	
05	BMTC	Bus Monitor Control. This bit determines whether the	
US	BIVITC	board will monitor all RTs or selected RTs.	
		The board will monitor only the RTs as specified in the Monitor Filter Hi and Lo registers. The board will monitor all RTs.	
04	BCEN	Broadcast Enable.	
		 1 = Enables the RT address 31 to be used as a message broadcast. 0 = Enables remote terminal address 31 as a normal 	
		address.	
02-03	Reserved	Set to 0	
01	INTEN	Interrupt Log Enable.	
		1 = Enables the interrupt logging feature.0 = Prevents the logging of interrupts.	
00	Reserved	Set to 0	

Control Register

5.2.2 Operational Status Register

Address: 0002 (H) READ / WRITE

The Operational Status register reflects pertinent status information for the board and is not reset to 0000 (H) on reset. Instead, the bit A/B_STD is set to 1.

NOTE To make changes to the Monitor and to this register, the STEX bit (Control Register, bit 15) must be logic 0.

Bit	Bit Name	Description		
10-15	Reserved	Set to 0		
09	MSEL1	Mode Select 1. In conjunction with Mode Select 0, this bit determines the board mode of operation.		
08	MSEL0	Mode Select 0. In conjunction with Mode Select 1, this bit determines the board mode of operation.		
		MSEL1	MSEL0	Mode of Operation
		0	0	BC Mode
		0	1	RT Mode
		1	0	BM Mode
		1	1	RT/ Concurrent-BM Mode
07	A/B_STD	Military Standard 1553A or 1553B Standard. This bit determines whether the board will look for the RT's response in 9µsec. (MIL-STD-1553A) or in 15µsec. (MIL-STD-1553B).		
		1 = Forces the board to declare a time-out error condition if the RT has not responded in 9μsec.		
		0 = Allows the board to declare a time-out error condition if the RT has not responded in 15μsec.		
05-06	Reserved	These read-only bits should be ignored on read.		
04	Reserved	Set to 0		
03	EX	Channel Executing. This read-only bit indicates whether the channel is presently executing or whether it is idle. 1 = The channel is executing. 0 = The channel is idle.		
02	Reserved	Set to 0		
01	READY	Channel Ready. This read-only bit is cleared on reset. 1 = The channel has completed initialization or BIT, and regular operation may begin.		
00	TERACT	Channel Terminal Active. This read-only bit is cleared on reset.		
		1 = The bo	oard is prese	ently processing a message.

Operational Status Register

5.2.3 Current Command Register

Address: 0004 (H) READ ONLY

The Current Command Register contains the last valid command that was transmitted over the 1553 bus. In an RT-to-RT transfer, this register will update as each of the two commands are received by the Bus Monitor.

Bit	Bit Name	Description	
00-15	CC[15-0]	Current Command. These bits contain the latest 1553 word that was received by the Bus Monitor.	

Current Command Register

5.2.4 Interrupt Mask Register

Address: 0006 (H) READ/WRITE

The EXC-1553P104/MCH3 interrupt architecture allows the host to mask or temporarily disable the service of interrupts. While masked, interrupt activity does not occur. The unmasking of an interrupt after the event occurs does not generate an interrupt for that event. An interrupt is masked if the corresponding bit of this register is set to logic 0.

Bit	Bit Name	Description
12-15 Reserved Set to 0		
11	MERR	Message Error Interrupt
01-10	Reserved	Set to 0
00	MBC	Monitor Block Counter Interrupt

Interrupt Mask Register

5.2.5 Pending Interrupt Register

Address: 0008 (H) READ ONLY

The Pending Interrupt register is used to identify which of the interrupts occurred during operation. All register bits are cleared on a host read.

Bit	Bit Name	Description	
12-15	Reserved	Ignore on read.	
11	MERR	Message Error Interrupt. 1 = A message error occurred. The Monitor can detect Manchester, sync-field, word count, 1553 word parity, bit count, and protocol errors. This bit will be set and an interrupt generated after message processing is complete.	
01-10	Reserved	Ignore on read.	
00	MBC	Monitor Block Counter Interrupt. This bit is set if the board's monitor block counter reaches zero (transition from 1 to 0). Note: The Monitor does not discriminate between error-free messages and those messages with errors.	

Pending Interrupt Register

5.2.6 Interrupt Log List Pointer Register

Address: 000A (H) READ/WRITE

The Interrupt Log List Pointer register indicates the starting address of the Interrupt Log List. (See Interrupt Log List Address, page 6-3.) The Interrupt Log List is a 32-word ring-buffer that contains information pertinent to the service of interrupts. The board architecture requires the location of the Interrupt Log List on a 32-word boundary. The most significant 11 bits of this register designate the location of the Interrupt Log List within a 64K word memory space. Initialize the lower five-bits of this register to a logic 0. The board controls the lower five-bits to implement the ring-buffer architecture. This register is read to determine the location and number of interrupts within the Interrupt Log List (least significant five-bits).

Bit	Bit Name	Description
00-15	ILLP[15-0]	Interrupt Log List Pointer Bits. Bits 05-15 indicate the starting Base Address while Bits 00-04 indicate the ring location of the Interrupt Log List.

Interrupt Log List Pointer Register

5.2.7 BIT Word Register

Address: 000C (H) READ/WRITE

The BIT Word register contains information on the current status of the board.

Bit	Bit Name	Description
15	DMAF	DMA Fail. 1 = All the channels' internal DMA activity has not been completed within 7µsec.
13-14	Reserved	Set to 0.
12	BITF	BIT Fail. 1 = A BIT failure. Interrogate bits 11 and 10 to determine the specific bus that failed.
11	BUAF	Bus A Fail. 1 = A BIT test failure in Bus A.
10	BUBF	Bus B Fail. 1 = A BIT test failure in Bus B.
09	MSBF	Memory Test Fail. Most significant memory byte failure.
80	LSBF	Memory Test Fail. Least significant memory byte failure.
00-07	UDB[7-0]	User-Defined Bits.

BIT Word Register

5.2.8 Time-Tag Register

Address: 000E (H) READ ONLY

The Time-Tag register reflects the state of a 16-bit free running ring counter in the RT and Bus Monitor modes. This counter will remain a free running counter as long as the channel is not in a reset mode. The resolution of this counter is 64µsec/bit. The Time-Tag counter begins operation on the falling (final) edge of the reset pulse.

Bit	Bit Name	Description
00-15	TT[15-0]	Time-Tag Counter Bits. These bits indicate the state of the 16-bit internal counter.

Time-Tag Register

5.2.9 Initial Monitor Block Pointer Register

Address: 0016 (H) READ/WRITE

The Initial Monitor Block Pointer register contains the starting location of the Monitor Blocks.

NOTE Do not change this register while BM mode is active (i.e., Operational Status Register, bit 03 = 1).

Bit	Bit Name	Description
00-15	MBA[15-0]	Initial Monitor Block Address. These bits indicate the starting location of the Monitor Block.

Initial Monitor Block Pointer Register

5.2.10 Initial Monitor Data Pointer Register

Address: 0018 (H) READ/WRITE

The Initial Monitor Data Pointer register contains the starting location of the Monitor Data.

NOTE Do not change this register while BM mode is active (i.e., Operational Status Register, bit 03 = 1).

Bit	Bit Name	Description
00-15	MBA[15-0]	Initial Monitor Data Address. These bits indicate the starting location of the Monitor Data.

Initial Monitor Data Pointer Register

5.2.11 Monitor Block Counter Register

Address: 001A (H) READ/WRITE

The Monitor Block Counter register contains the number of Monitor Blocks you want to log. After execution begins, the register automatically decrements as commands are logged. When this register is decremented from 1 to 0, an interrupt will be generated, if enabled. The board will start over at the initial pointers as identified in the Initial Monitor Block Pointer Register and the Initial Monitor Data Pointer Register.

NOTE It is recommended that this register not be changed while the BM mode is active (i.e., Operational Status Register, bit 03 = 1).

Bit	Bit Name	Description
00-15	MBC[15-0]	Monitor Block Count. These bits indicate the number of Monitor Blocks to log.

Monitor Block Counter Register

5.2.12 Monitor Filter Hi Register

Address: 001C (H) READ/WRITE

The Monitor Filter Hi register determines which RTs (RT#31 through RT#16) the board will monitor.

Bit	Bit Name	Description
00-15	MFH[31-16]	Monitor Filter. These bits determine which RT to monitor.

Monitor Filter Hi Register

5.2.13 Monitor Filter Lo Register

Address: 001E (H) READ/WRITE

The Monitor Filter Lo register determines which RTs (RT 15 through RT 0) the board will monitor.

Bit	Bit Name	Description
00-15	MFL[15-0]	Monitor Filter. These bits determine which RT to monitor.

Monitor Filter Lo Register

5.3 Bus Monitor Architecture

To meet the MIL-STD-1553 monitor requirements, the board uses a Monitor Block architecture that takes advantage of both Control Registers and RAM. The Monitor Block, that is located in contiguous memory, requires eight 16-bit locations for each message.

These eight locations include:

- A Message Information Word
- Two Command Word locations
- A Data Pointer
- Two Status Word locations
- A Time-Tag location
- A reserved location

The user must initialize the starting locations of the Monitor Block, the Data Pointer, the Block Counter, and the Interrupt Log Pointer. From then on, the board will build a Monitor Block for each message it receives over the 1553 bus. Figure 5-2 shows a diagram of the Monitor Block followed by a description of each location associated with the Monitor Block.

Message Info Word
Command Word 1
Command Word 2
Data Pointer
Status Word 1
Status Word 2
Time Tag
Reserved

Figure 5-2 Bus Monitor Block Diagram

5.3.1 Message Information Word

The first memory location of each Monitor Block contains the message information word. Each information word contains the opcode, retry number, bus definition, RT-to-RT messages, and the message information.

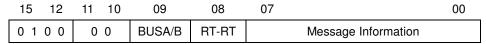


Figure 5-3 Message Information Word

page 5-10 Excalibur Systems

Bit Number	Description
12-15	Default. With the Monitor Block architecture resembling the BC Command Block architecture, these bits default to a 0100 state (which is the Execute and Continue opcode) in case the monitor must switch to the BC mode of operation.
10-11	Default. With the Monitor Block architecture resembling the BC, these bits default to a '00' state. If the monitor must switch to the BC, the retries will be set at four per message.
09	Bus A/B. This bit defines on which of the two buses the command was received. (Logic 1 = Bus A, Logic 0 = Bus B).
08	RT-to-RT Transfer. This bit defines whether or not the message associated with this Monitor Block was an RT-to-RT transfer and whether the board saved the second command word. This bit will be set only if the board is instructed to monitor the Receive RT.
00-07	Message Information Bits. These bits define the conditions of the message received by the board for that particular Monitor Block. Each of the message information bits is defined in the following section.

Message Information Word

MESSAGE INFORMATION BITS

Message information bits are provided as a means to supply more data on the message. In an RT-to-RT transfer, the information applies to both of the status words. Each message information bit is defined below.

Bit Number	Description
07	Message Error. This bit will be set if the monitor detects an error in either the Command Word, Data Words, or the RT's status.
06	Mode Code without Data. This bit will be set if the monitor detects that the command being processed is a mode code without data words.
05	Broadcast. This bit will be set if the monitor detects that the command being processed is a broadcast message.
04	Reserved
03	Time-Out Error. This bit will be set if the RT did not receive the proper number of Data Words, e.g., the number of Data Words received was less than the word count specified in the Command Word.
02	Overrun Error. This bit will be set if the RT received a word when none were expected or the number of Data Words received was greater than expected.
01	Parity Error. This bit will be set if a parity error has occurred on one of the message words.
00	Manchester Error. This bit will be set if a Manchester error has occurred on one of the Data Words

Message Information Bits

5.3.2 Command Words

The next two locations in the board Monitor Block are for Command Words. In non-RT-to-RT 1553 messages, only the first Command Word will be stored. However, in an RT-to-RT transfer, the first command word is the Receive Command and the second Command Word is the Transmit Command.

5.3.3 Data Pointer

The fourth location in the Monitor Block is the Data Pointer. This pointer points to the first memory location to store the Data Words associated with the message for this block. The data associated with each individual message will be stored contiguously. This data structure allows the board to store the specified number of data words.

NOTE In an RT-to-RT transfer, the BM uses the Data Pointer as the location in memory to store the transmitting data in the transfer.

5.3.4 Status Words

The next two locations in the Monitor Block are for Status Words. As the RT responds to the BC's command, the corresponding Status Word will be stored in Status Word 1. However, in an RT-to-RT transfer, the first status word will be the status of the Transmitting RT while the second Status Word will be the status of the Receiving RT.

5.3.5 Time-Tag

The seventh location in the Monitor Block is the Time-Tag associated with the message. The Time-Tag is stored into this location at the end of message processing (i.e., captured after the command is validated).

5.3.6 Reserved

The last location in the Monitor Block is reserved.

5.4 Bus Monitor Block Chaining

The host determines the first Monitor Block by setting the start address in the Initial Monitor Block Pointer Register. Figure 5-4 shows the Monitor Block as the blocks execute in a contiguous fashion.

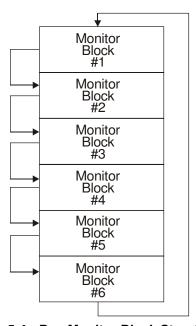


Figure 5-4 Bus Monitor Block Structuring

5.5 Memory Architecture

The configuration shows the Monitor Blocks, data locations, and the Interrupt Log List as separate entities. Figure 5-5 shows that the first block of memory is allocated for the Monitor Blocks. Notice that the Initial Monitor Block Pointer Register points to the initial Monitor Block location, the Initial Monitor Data Pointer Register points to the initial Data location, Interrupt Log List Pointer Register points to the Interrupt Log, and the Monitor Block Counter Register contains the Monitor Block count. After execution begins, the board will build command blocks and store Data Words until the count reaches 0. When the count reaches 0, the board will simply wrap back to the initial values and start again.

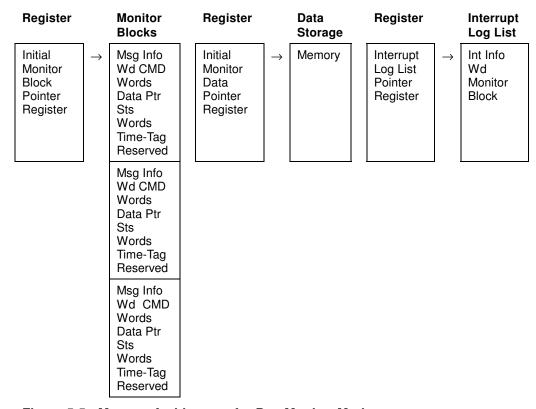


Figure 5-5 Memory Architecture for Bus Monitor Mode

5.6 RT/Concurrent Monitor Operation

For applications that require simultaneous Remote Terminal and Bus Monitor operation, the board should be configured as both a remote terminal and bus monitor. This feature allows the RT to communicate on the bus for one specific address and to monitor the bus for other specific addresses. Configuration as both Bus Monitor and RT precludes the board from monitoring its own remote terminal address.

When the board is configured as both RT and Bus Monitor, the RT has priority over the Bus Monitor. For example, commands to the RT will always take priority over commands for the Bus Monitor. The examples below describe what happens if the RT is defined for terminal address 1 and the Bus Monitor is to monitor terminal address 12.

Example 1:

In this example, the Bus Monitor will decode the first command on bus A, realize the message is for terminal address 12, and start monitoring the message. However, as soon as the board realizes the second command on bus B is to terminal address 1, the RT will take priority and begin RT message processing.

Example 2:

In Example 2, the RT will decode the first command on bus A, realize the message is for terminal address 1, and start message processing. As the message on bus B is received, the board will realize it is to terminal address 12, but since the RT has priority, the Bus Monitor will not switch to the bus monitor mode.

The above examples also apply to an RT-to-RT message. For example, if the first command in an RT-to-RT transfer matches the terminal address of the RT, the entire message will be stored (Message 1). However, if the first command in an RT-to-RT transfer matches the terminal address of the Bus Monitor and the second command matches the terminal address of the RT, the RT will take priority and only the RT message is stored (Message 2). Below is an RT-to-RT message example.

Message 1	CMD/TA = 1	CMD/TA = 12		
Message 2	CMD/TA = 12	CMD/TA = 1		

5.7 MIL-STD-1553A Operation: BM Mode

To maximize flexibility, the EXC-1553P104/MCH3 can operate in many different systems that use various protocols. Specifically, two of the protocols that the board may be used with are MIL-STD-1553A and MIL-STD-1553B. To meet these protocols, configure the board through the Control Register (ERTO Bit 09) and the Operational Status Register (A/B_STD Bit 07). Table 5-1 defines the four ways to program the EXC-1553P104/MCH3.

A/B STD	ERTO	RESULT
0	0	1553B standard, 1553B response (in 14µsec.)
0	1	1553B standard, extended response (in 30µsec.)
1	0	1553A standard, 1553A response (in 9µsec.)
1	1	1553A standard, extended response (in 21µsec.)

Table 5-1 MIL-STD-1553A/B Operation: BM Mode

When configured as a MIL-STD-1553A bus monitor, the EXC-1553P104/MCH3 will operate as follows:

- Looks for the RT response within 9µsec.
- Ignores the T/R bit for all mode codes.
- Defines all mode codes without data.
- Defines subaddress 00000 as a mode code.

6 Channel Interrupt Architecture

Chapter 6 describes the channel interrupt architecture. The following topics are covered:

Overview	page 6-1
Interrupt Identification Word	page 6-2
Interrupt Address Word	page 6-2
Interrupt Log List Address	page 6-3

6.1 Overview

The EXC-1553P104/MCH3 channel interrupt architecture involves three Control Registers, an Interrupt Log List, and the interrupt line. The three Control Registers include a Pending Interrupt Register, Interrupt Mask Register, and Interrupt Log List Register. The Pending Interrupt Register contains information that identifies the events generating the interrupts. The Interrupt Mask Register allows the user to mask or disable the generation of interrupts. The Interrupt Log List Register contains the base address of a 32-word interrupt ring buffer.

The lower twelve interrupt bits of the Pending Interrupt Register are entered into the Interrupt Log List, if the Interrupt Log List is enabled.

The interrupt architecture allows for the entry of 16 interrupts into a 32-word ring buffer. The EXC-1553P104/MCH3 channel automatically handles the interrupt logging overhead. Each interrupt generates two words of information to assist the host in performing interrupt processing. The Interrupt Identification Word (IIW) identifies the type(s) of interrupt that occurred. The Interrupt Address Word (IAW) identifies the interrupt source (e.g., subaddress or command block) via a 16-bit address.

6.1.1 Interrupt Identification Word (IIW)

The Interrupt Identification Word is a 16-bit word identifying the interrupt type. The format is similar to the Pending Interrupt Register. The host reads the IIW to determine which interrupt event occurred. The bit description for the IIW is provided below.

Bit	Bit Name	Description
12-15	Reserved	Set to 0
11	MERR	Message Error Interrupt (All modes)
10	SUBAD	Subaddress Accessed Interrupt (RT Mode)
09	BDRCV	Broadcast Command Received Interrupt (RT Mode)
80	IXEQ0	Index Equal Zero Interrupt (RT Mode)
07	ILCMD	Illegal Command Interrupt (RT Mode)
06	Reserved	Set to 0
05	EOL	End Of List (BC Mode)
04	ILLCMD	Illogical Command (BC Mode)
03	ILLOP	Illogical Opcode (BC Mode)
02	RTF	Retry Fail (BC Mode)
01	СВА	Command Block Accessed (BC Mode)
00	MBC	Monitor Block Count Equal Zero (BM Mode)

Interrupt Identification Word (IIW)

6.1.2 Interrupt Address Word (IAW)

The Interrupt Address Word is a 16-bit word that identifies the interrupt source. The IAW has different meanings in each mode of operation. The IAW in:

- **RT mode** identifies the subaddress or mode code descriptor that generated the interrupt.
- **BC mode** points to the command block addressed when the interrupt occurred.
- BM mode marks the monitor counter count when the interrupt occurred.

Use the IAW with the Initial Monitor Command Block Pointer Register to determine the monitor command block that generates the interrupt.

When in RT/Concurrent-BM mode, the user determines if the IAW contains information for the RT or the BM. The determination is made by comparing the contents of the IAW base address with the descriptor base address. If a match occurs, then the IAW contains a subaddress or mode code identifier. If no match occurs, the IAW contains monitor counter information.

6.1.3 Interrupt Log List Address

The Interrupt Log List resides in a 32-word ring buffer. The host defines the location buffer, within the memory space, via the Interrupt Log List Register. Restrict the ring buffer address to a 32-word boundary.

During initialization write a value to the Interrupt Log List Pointer Register. Initialize the least significant five bits to a logic 0. The most significant 11 bits determine the base address of the buffer. The board increments the ring buffer pointer on the occurrence of the first interrupt, storing the IIW and IAW at buffer locations 00 (H) and 02 (H) respectively. The board logs ensuing interrupts sequentially into the ring buffer until interrupt number 16 occurs. The board enters interrupt 16's IIW in buffer location 3C (H) and the IAW at location 3E (H).

The board increments the ring buffer pointer as interrupts occur. The least significant five bits of the Interrupt Log List Pointer register reflect the ring buffer pointer value. Table 6-1 shows the ring buffer architecture.

The user reads the ring buffer pointer value to determine the number of interrupts that have occurred. By extracting the least significant five bits from the Interrupt Log List Register and logical shifting the data once to the right, the host determines the number of interrupt events.

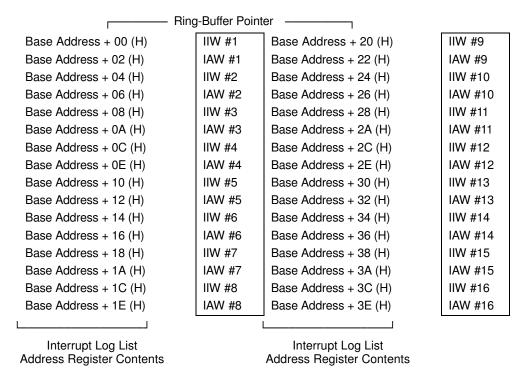


Table 6-1 Interrupt Ring Buffer

7 Mechanical and Electrical Specifications

Chapter 7 describes the mechanical and electrical specifications of the EXC-1553P104/MCH3 board. The following topics are discussed:

Board Layout	page 7-1
LED Indicators	page 7-2
Jumpers	page 7-2
Connectors	page 7-5
Power Requirements	page 7-8

7.1 Board Layout

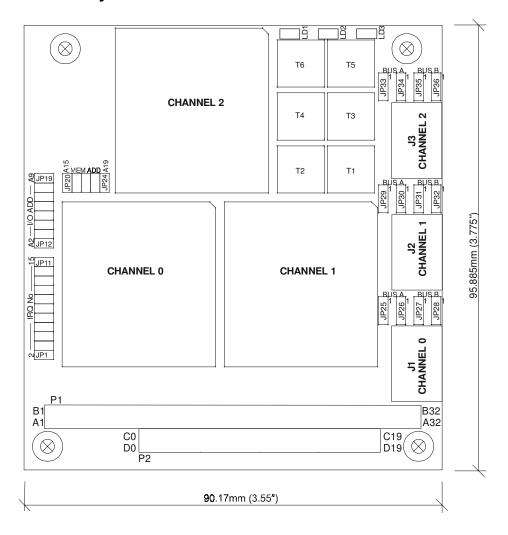


Figure 7-1 EXC-1553P104/MCH3: Board Layout

7.2 LED Indicators

The EXC-1553P104/MCH3 board contains three LEDs. The LEDs indicate that a 1553 message is being processed by the corresponding channel (TERACT bit set to 1 in Operational Status Register). Operation of both channels is identical. Each LED corresponds to a channel listed below.

LED	Indication		
LD1	Channel 0		
LD2	Channel 1		
LD3	Channel 2		

LED Indicators

7.3 Jumpers

Groups of Jumper Headers are provided on the board for various user-selectable functions. These headers are mounted with 2 mm shorting blocks according to the default board setup (see Factory Default Jumper Settings, page 7-4). In high vibration environments these jumpers can be soldered or "Wire-Wrapped".

The EXC-1553P104/MCH3 board contains sets of Jumper arrays that control the Logical Address (Segment), the base I/O address and the interrupt line selected for the board. There are also Jumpers for the 1553 interface (Direct/Transformer Coupled).

7.3.1 I/O Address Decoding Jumpers

JP12 - JP19

The I/O Address Decoding Jumpers select one of the board's four consecutive I/O addresses. The Jumper setting are:

Address Lines
A2
A3
A4
A5
A6
A7
A8
A9

I/O Address Decoding Jumpers JP12-JP19

A Jumper covered with a shorting block = logic 0 at bit position
An uncovered Jumper = logic 1 at bit position

Example To select I/O Base Address 0280 (H), short with shorting blocks Jumpers JP18 and JP16 – JP12.

7.3.2 Board Logical Address Jumpers

JP20-JP24

The Addressing Decoding Jumpers are used to set the Base Address of the board within the PC's memory space. The EXC-1553P104/MCH3 board occupies 32K (one half segment) of memory within the PC's lower one megabyte of memory address space. Jumpers JP20 – JP24 corresponding to address lines A15 – A19, are used to select the Base Address of this half segment, as shown below.

Jumpers	Address Lines
JP20	A15
JP21	A16
JP22	A17
JP23	A18
JP24	A19

Address Decoding Jumpers JP20 - JP24

A Jumper covered with a shorting block = logic 0 at bit position
An uncovered Jumper = logic 1 at bit position

NOTE Do not use Address 0000 (all shorted) as this may cause the

board not to function properly.

Example To set Channel 0 to Logical Address (Segment) D0000 (H), short with a shorting block, Jumpers JP20 and JP22.

7.3.3 Interrupt Select Jumpers

JP1-JP11

The Interrupt Select Jumpers are used to select the desired PC Interrupt line in cases when the interrupt mode is used. Each jumper selects one interrupt line as shown below:

JP1	JP2	JP3	JP4	JP5	JP6	JP7	JP8	JP9	JP10	JP11
IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7	IRQ10	IRQ11	IRQ12	IRQ14	IRQ15

NOTE

- 1. When using interrupt mode: only one of the 11 jumpers (JP1 JP11) should be shorted per your requirements.
- 2. When not using interrupts, all jumpers should be left open.

Example

To select the IRQ5 PC Interrupt line: short with shorting block JP4.

7.3.4 Channel 0, Channel 1 and Channel 2 1553 Coupling Mode Select Jumpers

JP25-JP36

The board can be either direct-coupled or transformer-coupled to the 1553 bus. Groups of four Jumpers select the coupling mode for each channel.

The table below defines the jumper settings for all twelve Jumpers.

Coupling Mode	Setting
Direct-Coupled	Short pins 2 and 3 of channel x jumper group
Transformer-Coupled	Short pins 1 and 2 of channel x jumper group

Jumper Settings Required to Select Coupling Mode

The table below defines the jumper groups for each channel.

Channel	Bus	Jumper Group
0	Α	JP25, JP26
0	В	JP27, JP28
1	Α	JP29, JP30
1	В	JP31, JP32
2	Α	JP33, JP34
2	В	JP35, JP36

Channel Jumper Groups

Example

To set Channel 1 to transformer-coupled, short with a shorting block pins 1 and 2 of JP29, JP30, JP31 and JP32.

7.3.5 Factory Default Jumper Settings

The factory default settings are:

JP25 – JP36	Pins 1 & 2	Shorted	Transformer-Coupled mode for all channels
JP12-JP16, JP18		Shorted	I/O Base Address 0280 (H)
JP20, JP22		Shorted	Logical Address (Segment) D0000 (H)
JP4		Shorted	Interrupt selected to IRQ5

7.4 Connectors

The EXC-1553P104/MCH3 contains five Connectors:

- Three 5-pin, Right-angle Connectors, 0.1" spacing (J1, J2 & J3), one per channel
- One 64-pin, Stackthrough Connector, with key (P1)
- One 40-pin, Stackthrough Connector, with key (P2)

7.4.1 Connectors J1, J2 and J3

The three 5-pin, Molex Right-angle Connectors (P/N#:90136-2105) contain all the relevant signals for a specific channel. Mating Connectors (P/N# 90156-0145) with crimp terminals (P/N# 90119-2111) are included. Each Connector is associated with a specific channel – Channel 0 with Connector J1, Channel 1 with Connector J2 and Channel 2 with Connector J3.

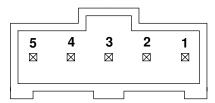


Figure 7-2 Connectors J1 and J2 Layout (Front View)

Pin	Connector J1	Pin	Connector J2	Pin	Connector J3
1	BUSAHI_0	1	BUSAHI_1	1	BUSAHI_2
2	BUSALO_0	2	BUSALO_1	2	BUSALO_2
3	SHIELD	3	SHIELD	3	SHIELD
4	BUSBLO_0	4	BUSBLO_1	4	BUSBLO_2
5	BUSBHI_0	5	BUSBHI_1	5	BUSBHI_2

Connectors J1, J2 and J3 Pin Assignments

Signal	Description
BUSAHI_0 BUSALO_0	Channel #0, Bus A connection.
BUSBHI_0 BUSBLO_0	Channel #0, Bus B connection.
BUSAHI_1 BUSALO_1	Channel #1, Bus A connection.
BUSBHI_1 BUSBLO_1	Channel #1, Bus B connection.
BUSAHI_2 BUSALO_2	Channel #2, Bus A connection.
BUSBHI_2 BUSBLO_2	Channel #2, Bus B connection.
SHIELD (case)	Provided for 1553 cables shield connection. This signal is connected to the case of the computer.

Connectors J1, J2 and J3 Signals Description

7.4.2 PC/104 Bus Connectors Pinout - Connectors P1 and P2

Pin	Signal	Pin	Signal
A1		B1	GND
A2	D7	B2	RESETDRV
A3	D6	B3	+5V
A4	D5	B4	IRQ2(9)
A5	D4	B5	
A6	D3	B6	
A7	D2	B7	-12V
A8	D1	B8	
A9	D0	B9	+12V
A10	I/OCHRDY	B10	KEY
A11	AEN	B11	SMEMW
A12	A19	B12	SMEMR
A13	A18	B13	I0Wn
A14	A17	B14	I0Rn
A15	A16	B15	
A16	A15	B16	
A17	A14	B17	
A18	A13	B18	
A19	A12	B19	
A20	A11	B20	
A21	A10	B21	IRQ7
A22	A9	B22	IRQ6
A23	A8	B23	IRQ5
A24	A7	B24	IRQ4
A25	A6	B25	IRQ3
A26	A5	B26	
A27	A4	B27	
A28	A3	B28	ALE
A29	A2	B29	+5V
A30	A1	B30	
A31	A0	B31	GND
A32	GND	B32	GND

Table 7-1 XT/AT Connector (P1)

Pin	Signal	Pin	Signal
C0		D0	
C1		D1	
C2		D2	
C3		D3	IRQ10
C4		D4	IRQ11
C5		D5	IRQ12
C6		D6	IRQ15
C7		D7	IRQ14
C8		D8	
C9		D9	
C10		D10	
C11		D11	
C12		D12	
C13		D13	
C14		D14	
C15		D15	
C16		D16	+5V
C17		D17	
C18		D18	GND
C19	KEY	D19	GND

Table 7-2 AT Bus Extension (P2)

7.5 Power Requirements

The EXC-1553P104/MCH3 power requirements are listed in the following table.

EXC-1553P104/MCH3 with no channels installed:

+5V @ 200 mA

Each installed channel requires:

- +5V @ 55mA (0% duty cycle: non- transmitting on 1553 bus)
- +5V @ 250mA (25% duty cycle transmitting on 1553 bus)
- +5V @ 410mA (50% duty cycle transmitting on 1553 bus)
- +5V @ 650mA (87.5% duty cycle transmitting on 1553 bus)

Example

The maximum power requirements for a 3 channel board (@ 25% duty cycle per channel) will be:

 $[+5V @200mA] + [3 \times 250mA] = 950mA$

Chapter 8 Ordering Information

8 Ordering Information

Chapter 8 explains how to indicate the options you want when ordering an EXC-1553P104/MCH3 board.

Add ${\bf E}$ to the name of the board to indicate the extended temperature/ ruggedization option.

PART NUMBER	DESCRIPTION
EXC-1553P104/MCH3	Three Channel MIL-STD-1553 interface board for PC/104 Systems. Supports BC, RT, BM, or RT/Concurrent-BM
EXC-1553P104/MCH3-E	As above with extended temperature operation and ruggedized (-40 $^{\circ}$ to + 85 $^{\circ}\text{C})$

Chapter 8 Ordering Information

9 Appendices

Chapter 9 contains appendices describing the Military Standard 1553B word and message formats. The following topics are included:

MIL-STD-1553B Word Formats page 9-1 MIL-STD-1553B Message Formats page 9-2

Appendix A MIL-STD-1553B Word Formats

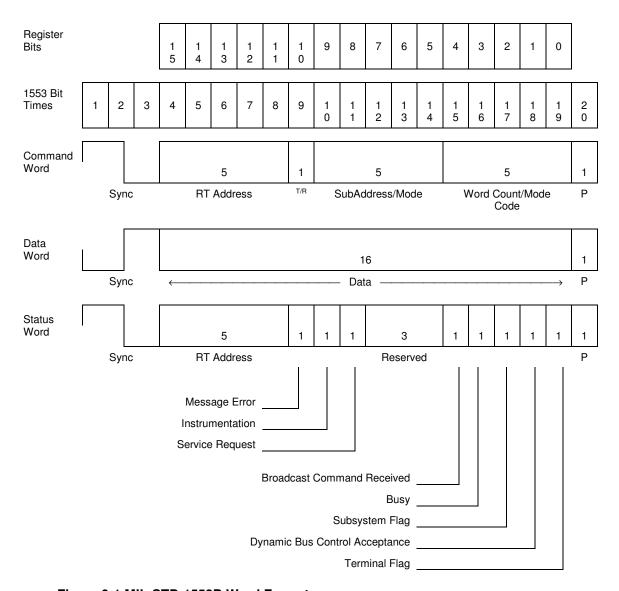


Figure 9-1 MIL-STD-1553B Word Formats

NOTE: T/R = Transmit/Receive

P = Parity

Appendix B MIL-STD-1553B Message Formats

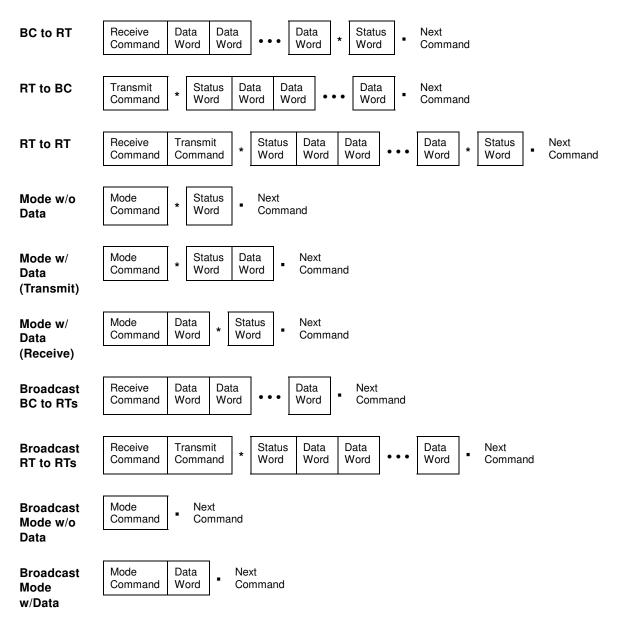


Figure 9-2 MIL-STD-1553B Message Formats

NOTE: * = Response time • = Intermessage gap

page 9-2 Excalibur Systems

The information contained in this document is believed to be accurate. However, no responsibility is assumed by Excalibur Systems, Inc. for its use and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

November 2001 Rev A-1