
United States Patent [191 [11] Patent Number: 4,484,826
Horn et al. [45] Date of Patent: Nov. 27, 1984

[54] AUTOMATIC INTERTEXT COLUMN 4,223,393 9/1980 Abe et al. 364/900

SPACING OTHER PUBLICATIONS

[75} Inventors: gag ?lial-t1}; xéinneth 0' shmp’ Jr" IBM Technical Disclosure Bulletin, “Column Equaliza
° ° "8"" 6" tion,” Howell et al., vol. 25, No. 1, Jun. 1982, pp.

[73] Assignee: International Business Machines 388—390.
Corporation, Armonk, NY. IBM Program Product “Documentation Composition

. Facility/User’s Guide”, Second ed., Apr. 1980, No.
[2]] App!‘ No" 305’255 SH20-9l61-1, Ch. 5, pp. 67-69.
[22] Filed: Sep. 24, 1981 , , .

Primary Examiner-Ernest T. Wright, Jr.
[51] Int. Cl.3 B41J 25/18 Attorney, Agent, or Fz'rm—-R. Bruce Brodie
[52] US. Cl. 400/279; 400/3;

400/76; 400/83; 364/900; 340/720 [57] ABSTRACT
[58} Field of Search 400/2, 3, 63, 64, 67, In a column layout operation in an interactive word

400/68, 76, 83, 279, 705.4, 705.5; 364/200, 900; processing system, the unoccupied character escape
340/720, 721, 723, 724 ment along a column example line is automatically

[56] References Cited evenly distributed by the insertion of an appropriate

U.S. PATENT DOCUMENTS

laaanaa- ea

number of space characters responsive to the stroking
of a predetermined function key.

3 Claims, 6 Drawing Figures

:....6..,.:....7....:....B....:.t.->

:H..15....:..,.7....:....8....:.-..>>
lllllllI l

3,952,852 4/1976 Greek et al. 400/279
4,207,0ll 6/ 1980 Pascoe 400/279

(.2...-:....3....:-.,.b....:....5....
:Hlllllllallli ‘Ill-8B!!! llIBiBB-I _

(luutuulthznnlan.,:....S.-‘.
yuan-anal“

4 graphics : total col widths
lm ft margin
ml 1 right margin
rte = right tai?e edge
eel = coi example line
r = reminder no. of

:tra Spaces 7

" uuttev'sv # uranium

' graphics \ NO _

.‘Qmw
YES

Uutterw'dtn'ilrte-lwn: gram,“
~ gTtTers

* r

I (Jitters

r_‘“‘::':; * ~ *— —A~~___

-‘ distribute

stun gutter lnsszc‘ol
delete spams D U

/ / insert

<\ A q suaces

HHS?!

utl spaces.

5
l
l

“"7 l

l
l
i
l

US. Patent Nov. 27, 1984 Sheet 5 0f6 4,484,826

<.2. . . . :3. . . . :4. . . . :. . . .5. . . . :6 :7. . . . :8. . . . :>>

gaaaaaaaaaaaaa aaaaaaanaa aaaaaaaoa

<2. . . . :3. . . . :4. . . . :5. . . . :6. . . . :7. . . . :8. . . . :»

gaaaaaaaaaaaaa aaaaaamaa aaaaaaa-a

graphics = totaI coI widths
Im = left margin
rm = right margin
rte right tabie edge
C61 (:01 exampIe I ine 5C6" C81} # C015. _
r remainder no. of # gutters. # QY?PhICS

xtra spaces _ _ _ _ _ _ _ _ _ g _ _ a _ _ -

I find I
rte

graphics >

(rm-1m)

I
I
I
I

rtez=rm I
I
I
I

gutterwidth: =(rte-Irn)-# graphics
gutters

: q + r

gutters

I'- _ _ — _ — ______ " —‘__ _—_'— __|

I ciistribute I
I scan gutter $222201 I
I deIete spaces p 9
I I
I - gutters > 0 N0 insert I I q spaces I
I YES I
I insert l
I q+I spaces; I
I r:=r-I I

I # gutters-1 ' I I
L_ _________ __ ______ ____I

J

4,484,826
1

AUTOMATIC INTERTEXT COLUMN SPACING

FIELD OF THE INVENTION

This invention relates to word processing, and more
particularly, to a machine assisted interactive method
and means for evenly adjusting the gutters between
columns during formatting of multiple text columns on
a page in a word processing system.

BACKGROUND ART

Pascoe, U.S. Pat. No. 4,207,011, issued June 10, i980,
describes the formatting of sequentially stored text col
umns by embedding semaphore codes. Upon the side
by»side printout of the stored text columns, the embed
ded codes preserve a synchronous relationship between
their varying line spacings. That is, a code character in
line i initiates a memory scan to ascertain the existence
of any counterpart line i to be printed from column 2.

Greek, et al., US. Pat. No. 3,952,852, issued Apr. 27,
1976, discloses a system having a keyboard and printer,
a buffer and control, and a multicolumn playout control
unit. During set-up, a tab ?eld for de?ning the printing
locations of the column, can be set up by operator key.
The columns, which are stored sequentially, are printed
out in a side-by-side manner, the beginning of each
column being de?ned by the keying of a column begin
code. In contrast, word processing systems where text
stream input is stored and displayed, tables of multiple
columns of text or data are formatted by an operator
involving a displayable scale line on the system. The
operator independently ascertains column widths and
gutters, and then must count and enter the tab stops
along the scale line.
Word processing is to be distinguished from text

processing in both the kind and degree of facilities avail
able to the operator. Text processing involves the use of
a large capacity CPU shared among multiple terminals
empowered with a text processor such as
SCRIPTS/V S having rapid access to megabytes of fast
DASD storage. In text systems, threaded data lists exe
cuted in SCRIPTS permits ?exible operator formatting
taking advantage of the sophisticated processing opera
tions on list pointers and indices. To the contrary, word
processing is focused on stand-alone terminals in which
letters, small documents, and memos are processed by
microcomputers interacting with limited diskette stor
age of 200 or 300 kilobyte capacity. The documents and
pages are processed as end marked, semi-in?nite, simply
structured character strings with few embedded con
trols. The comparative absence of highly elaborated
data structures saves memory but requires special for
matting considerations, such as documents composing
for tables and the like.

In the IBM Program Product “Document Composi
tion Facility/User's Guide", Second Edition, April
1980, IBM publication No. SH20-9l6l-l, at Chapter 5,
pp. 67-69, there is described multicolumn page layout
for the SCRIPT/V S text processing system. SCRIPT
de?nes a multiple column layout requiring operator
speci?cation of column number, width, and left margin
position for each column. Thus, the prior art of inter
column spacing is completely operator de?ned with
limited, if any, automatic assistance.

In the co-pending Horn and Shipp application, U.S.
Ser. No. 305,260, ?led on Sept. 24, 1981 there is de
picted a multiple text column formatting method exe
cuted in an interactive word processing system having a

10

20

25

30

40

45

55

60

65

2
display screen, a keyboard, a memory for storing for
matted information, and an intercoupling microproces
sor. In the Horn, et al., type of prompting interactive
word processor, multiple text column tables are format
ted prior to text entry by invoking a column layout
function mode. Consonantly, menued prompts promi
nently displayed guide the operator in order to struc
ture the column widths and gutters (intercolumn spac—
ing) by repeated keying of text characters or widths and
then inserting space characters over to the next column
position and repeatedly keying in text characters to
de?ne the widths of yet another column. This single
entry line permits the column and gutter widths to be
automatically aligned with tab stops. The formatted
column example line is then vector encoded and saved.
If it is subsequently desired to revise a saved table, its
encoded format line is recalled, rebuilt, and then revised
by entering repeated text and control characters to
de?ne an altered width of an existing column or a new
column. In turn, the revised column example line may
be encoded and saved. There is also provided an auto
matic one character wide gutter insertion when creating
a new column to prevent the operator from failing to
include a gutter after formatting his adjacent column.

The Invention

It is an object of the inventive method for evenly
adjusting the gutters between columns during the for
matting of multiple text columns on a page in an interac
tive word processing system formed from a keyboard,
display, memory for storing formatted information, and
an intercoupling microprocessor. The method steps
include operator keyboard entry of a line of at least two
column width examples formed from repeated text and
control characters; and responsive to function key actu
ation, the machine step of modifying the example line
by the automatic insertion of spaced characters in the
gutters between the column examples proportional to
the unoccupied escapement between the page margins
divided by the number of gutters. In addition to auto
matically producing even spacing between each column
within the vertical page margins, there is also executed
the additional step of adjusting the tab stops within each
column accordingly.

Advantageously, this method is in harmony with
other column layout functions-by-example. Generi
cally, an operator “teaches" the word processor to
format text data for use in a multiple text column table
by way of dummy illustration supplemented by auto
matic assistance.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 depicts a word processor system con?gura
tion including soft and hard copy output facilities, inter
nal and external memory, a keyboard, a microprocessor,
and intercoupling bus.

FIG. 2 delineates a partial register organization of the
microprocessor shown in FIG. 1.
FIG. 3 is a display screen (soft copy) layout organiza

tion of information as viewed by a word processor
operator.

FIG. 4 shows table and column layout spatial de?ni
tions.
FIG. 5 depicts the method flow diagram of the inven

tion.

4,484, 826
3

FIG. 6 is a PASCAL source code implementation of
the machine response to the operative function key
stroke of the method.

DESCRIPTION OF THE PREFERRED
EMBODIMENT AND INDUSTRIAL

APPLICABILITY

Brief System Machine Description

Referring now to FIG. 1, there is shown a word
processing system 10 which includes a keyboard 12 for
receiving text character entries and transmitting the text
through a path 14 to a microprocessor 16. A memory
bus 18 couples processor 16 to a CRT display 20, dis
kette drive 22, a printer 24. and a random access mem‘
ory 26. Keyboard 12 preferably should exhibit a set of
actuable key faces of any standard alphanumeric char
acter set together with function keys. The function keys
are in effect mode switches. That is. a function key upon
operator actuation operates as an event driver. It inter
rupts microprocessor 16 which then task switches the
processor 16. This suspends execution of the current
task and transfers control to the starting address of the
instruction string resident in memory 26 of the program
bound or associated with the function key. Such task
switching involves saving the contents of principal
registers and transferring to a program counter the
starting address of the first location in memory 26 of the
program. The program counter causes the contents to
be read out from RAM 26 and transferred to a program
decoder or functional equivalent thereof for execution.
Since the binding of speci?c programs to function keys
and task switching upon function key actuation is well
known to the art further description thereof shall not be
made.
An operator enters a text stream through the key

board 12. Each page of text is stored and processed in
memory 26. As the text stream is received in the mem
ory 26, it is simultaneously presented to display 20.
After the buffering of the text in text storage buffer 28
of memory 26. the stream can be saved on diskette drive
22 or hard copy printed out on printer 24.
Memory 26 includes a number ofdata areas and func

tional programs for operating with the text stored in
system 10. The text and related control function are
saved in a text storage buffer 28 which includes an
active format storage section 30 and a diskette buffer 32.
The keyboard character set (KB/CS) for the document»
ing process is available in the active format storage
section 30.
As each character is entered through the keyboard

12. it is processed by one or more of the keystroke
service routines stored in memory location or block 50
as executed by processor 16. Also, the text stream
stored in text storage buffer 28 is simultaneously entered
into display refresh buffer 76. This buffer 76 drives
display 20. The diplay control block 70 and display
access method block 68 provide a window which may
be scrolled relative to the contents of the TSB 28. It
should be noted that both the diskette drive 22 and
printer 24 have dedicated buffer block areas assigned
thereto. Lastly, block 70 serves to store ?ags and status
information as required by the operation of block 68.

l‘ext storage buffer control block 34 serves as the
data area for the text storage buffer 28. A cursor control
buffer section 36. is included within the text storage
control block 34. Block 34 is linked through a channel
38 to the active format storage section 30 and through a
channel 40 to the text storage buffer 28. The cursor

35

40

45

55

65

4
control section 36 is connected through a channel 42 to
text storage buffer 28.
A text storage buffer manager block 44 is coupled

through a channel 46 to the text storage buffer 28. Block
44 is further coupled through a channel 48 to the T58
control block 34.
As each character is entered through keyboard 12, it

is received at the memory 26 by the actions of one or
more keystroke service routines in memory location or
block 50. A keystroke control unit block 52 is a data
area which determines the selected keystroke routine
for processing the received character. Block 52 is linked
to the keystroke service routine in memory location or
block 50 through channel 54. The keystroke service
routine block 50 is further linked through a channel 56
to the text storage buffer control block 34 and through
channels 58 and 60 to TSB manager block 44.
The active format storage section 30 is connected

through channel 62 to the keystroke service routine
block 50. The diskette buffer 32 is connected through
channel 64 to the keystroke service routine block 50.
The text characters and control information in TSB

28 are communicated through channel 66 to a display
access method block 68. This serves as an interface for
the display 20. Corresponding access method blocks for
the keyboard 12, diskette drive 22, and printer 24 are
substituted when communications with these units is
required. Display control block 70 is connected through
path 72 to the access method block 68.

Partial Machine Register Organization, Data, and
Control Flow

Referring now to FIG. 2, there is illustrated the con
temporary machine register organization of processor
16. Such a processor 16 may be commercially imple
mented as, for example, by an Intel Corporation micro
processor model 8086. According to FIG. 2, the proces
sor 16 includes a control logic unit 80, which responds
to an interrupt on device bus 82 from keyboard 12.
Logic unit 80 is also connected to a data and address bus
84 intercoupling other logic elements.

In response to a fetch instruction from random access
memory 26, logic unit 80 generates control signals to
other elements. ‘The signals are coupled by way of path
86, illustratively connecting ALU 88. Synchronous
operation of unit 80 and other logic elements is ensured
by way of clock pulses from an external clock source
transmitted over path 90. Data and instructions to be
executed by processor 16 are entered over logic unit 92.
Data also may be entered by way of a programmed
input/output logic 94. Logic unit 92 couples storage
elements of RAM 26 and receives instructions by pro
cessing data from the [/0 control 94 or from RAM 26.

Device controlled information from processor 16 is
passed by I/O control unit 94 and data bus 98. Input on
data bus 98 from keyboard 12 is processed internally
through processor 16 by instructions over bus 84 to
logic unit 80 by ALU 88. ALU 88 in response to a signal
on path 86 and in accordance with instructions received
on bus 18 executes arithmetic operations stored in tem
porary register 102.
An external clock signal source simultaneously

supplies clocking or strobe signals for synchronizing the
diverse transmission and memory accessing elements of
the machine. Indeed. clock signals on path 90 are pro
vided to each of the major elements. As can be seen in
FIG. 2. a conventional microprocessor architecture is

4,484,826
5

set out, for example, a program counter 104 when incre
mented by the clock signals on path 90 speci?es location
either in a register or in a memory for the next instruc
tion to be executed. Data pointer register 106 and stack
pointer register 108 respectively contain pointers to the
address location for recently entered characters, and,
the location in the memory of the instruction stack (i.e,
to a last in, ?rst out, stack used for procedure and func
tion calls, the storage of static variables, and temporary
values during expression evaluation). Element 110 is a
status register with reference either to availability or
content error.

Prompting Word Processor Display
In a prompting word processor, display device 20 is

of the CRT type and is capable of setting out monos
paced characters. In this regard, reference should be
made to FIG. 3. A typical display is partitioned such
that lines 1 or 2 are status lines reflecting the informa
tion state of the display. Next, lines 3 through 23 de?ne
a viewpoint in which are set out menus, text, and infor
mation necessary for interactive processing. Line 24 is a
prompt line which provides information stepping the
operator to the next menu function or activity. Lastly,
line 25 is a message line which indicates whether mes
sages are ?ashing or queued.
A typical screen layout of the information state or

display lines 1 and 2 is shown just above the portion of
FIG. 3 denominated “function”. Such a screen layout
could contain the volume number or identity of the
diskettes, task description, document name, the keying
mode such as insert or replace, and other specialized or
reserved functions.

Column and Gutter De?nitions

Referring now to FIG. 4, there is shown the gutter
and column width parameters specifying a set of adja
cent vertical columns starting at the table left margin
and extending to the right margin. Column and gutter
widths are de?ned in terms of the width of a character
included within a predetennined font or in absolute
escapement units such as V1440 inches per unit. In this
regard, a column width is preferably a multiple byte
number designating the width of a column text as the
number of character units counted relative to the pre
ceding gutter. Likewise, a gutter width is a multiple
byte number designating the amount of white space in
character widths associated with a vertical column. The
?rst gutter width is speci?ed as a unit count relative to
the left margin. Other gutter widths specify unit counts
relative to the right edge of the previous column
widths.

Multitext Column Layout Formatting By Example
The purpose of column layout functions in an interac~

tive prompting word processing system 10 is to provide
an opportunity for an operator to specify all of the
attributes of a column table format so as to permit im
plementing column functions such as delete, move,
copy, and revise. These attributes include the widths of
each column, the tab stop within each column, and the
spacing (gutters) between columns. In the copending
Horn and Shipp patent application Ser. No. 305,260,
?led Sept. 24, 1981, there is described a method for
formatting multiple columns either when creating a
new table or for revising existing tables by way of modi
fying selected column widths or inserting a new column
therein. The method involves initializing the system by

5

25

30

35

40

45

60

65

6
selectively suppressing text edit controls and reserving
resources such as an allocation of memory. The table
formatting is executed by way of operator keying of
repeated text characters and controls as an example.
The “example line" is then encoded and saved. If the
table is to be newly created, then the operator keys in a
new format under a displayed scale line designated the
“column example line” by the repetitive keying of text
and control characters. The tab rack constitutes column
and gutter width information. Said tab rack is encoded
as control bytes associated with the BEGIN TABLE
(BT) control character. This information is saved. Thus,
if the table is to be revised, then the “column example
line” is displayed and reconstituted according to the
previously saved encoded information. At that time, the
operator can key in revisions by way of example. Again,
the revised layout is saved.

Automatic Intercolumn Spacing

The method of the invention is invoked during a
column layout mode when an operator requests the
word processing system to “justify” the speci?ed col
umns proportionally from each other and the speci?ed
margins. According to the method, the operator keys in
an example for each column specifying the width and
the tab stops for each column. Each example must be
separated by at least one space. This may be clearly seen
in the illustration shown at the top of FIG. 5. Each of
the column examples is under a scale line which regis
ters the tab stops. If the operator has keyed in the three
columns with varied spacing therebetween as repre
sented by repeated text character “a"s, the intercolumn
spacing function is invoked by stroking a dedicated
(COLUMN LAYOUT) function key. The machine
responds by determining the amount of unoccupied line
widths, dividing it by the number of gutters, and then
inserting space characters so that the gutters between
adjacent columns are even.

Reference should be made to the method flow dia
gram also depicted in FIG. 5. Starting at the top, the
following method steps are responsive to the function
key actuation after the operator has entered a column
example line. First, the microprocessor 16 scans the
column example line to determine the number of col
umns, the number of gutters, and the number of graphic
characters. In this regard, the left and right table mar
gins are known. After the scan, the next step is to ?nd
the right table edge and assign it to the right margin.
Thus, if the total column widths are greater than the
space between the right margin and left margin, then
the right table edge is placed upon the end of the col
umn example line escapement. If the total column
widths fit within the right- and left-hand margins, then
the right table edge is assigned to the right margin.
Next, the even gutter width is determined as a function
of the unoccupied space between the margins and the
number of gutters. This means that the distance be
tween the right table edge and the left margin from
which is subtracted the total column widths de?nes the
total available unoccupied character escapement. If this
quantity is divided by the number of gutters, then the
quotient and remainder can be used to govern the actual
insertion of space characters during the next step of
distributing the available white space evenly.

Starting at the beginning of the column example line,
the inner column spacing is distributed to each gutter by
the repetitive application of the steps of scanning the
next gutter, deleting all the spaces in said gutter, and if

4,484,826
7

the remainder r is greater than ¢, then insert the integer
quotient + 1 spaces and decrement the remainder r by 1.
Otherwise, insert the integer quotient of spaces. After
space insertion, the number of gutters is diminished by l
and, if greater than 0, the cycle is repeated until the
number of gutters is equal to 0.

A PASCAL Source Code Implementation

A PASCAL source code implementation of the ma
chine response to the operative function keystroke is set
out in FIG. 6. PASCAL is a well-known high-level
source code programming language suitable for use in
devising control and operating system programs, the
object code of which, upon execution in an interactive
word processor, suitably implements the method of
invention. The PASCAL language is well appreciated
in the art. Reference can be made to Jensen and Wirth,
“PASCAL User Manual and Report,” Second Edition,
Springer-Verlag, 1974; Wirth, “Algorithms Plus Data
Structures Equal Programs," Prentice-Hall Series in
Automatic Computation, I976. The language has been
adopted as an ISO Standard. PASCAL compilers are
resident in microprocessors, as for example, the UCSD
PASCAL in the Apple II Plus computer system made
by Apple Computer, INc., Cupertino, Calif.
The PASCAL implementation is expressed by a pro

cedure labeled ‘autoinsert’. This procedure is invoked
by a procedure call (not shown) which passes numerical
parameter values de?ning the current position of the
display cursor in respect of the table being formatted.
The other formal parameters in this procedure autoin
sert are ‘eob', a control character de?ning the end of a
character string, ‘start’ defining the beginning of a char
acter string, ‘rm’ and ‘Im' respectively designating the
vertical table right and left margins. The character
string is represented by the variable ‘buffer’. All of the
input parameters are of the integer type. In PASCAL, a
character string must be represented as a packed array
of type characters. In this procedure, the required car
riage return (rcr) is depicted as a constant having the
ordinal value of z in the ASCII character code. The
variables local to the procedure are all of the integer
type but one, (gutterfound) which is of type Boolean.
For data typing details, reference should be made to the
above-named language texts.

Because the ‘*variables" are dynamically generated
when the program set out in FIG. 6 is executed, those
variables such as “linewidth” and “guttercount" which
are operative as counters are operative as logical count
ers rather than physical units. Such is a matter of design
choice. Such logical counters will not have a physical
existence except as a RAM memory location assigned
according to the memory map discipline governing
RAM 26 and the PASCAL compiling of the source
code set out in FIG. 6.
Of the integer local variables, ‘linewidth’ is a running

count of the number of characters being scanned in the
column example line. The ‘guttercount‘ represents the
number of gutters actually encountered. The ‘totcol
width‘ is a running variable of the number of characters
encountered in scanning across the column example
line. ‘spacing’ is the integer guotient of the ‘linewidth’
divided by the ‘guttercount'. ‘xtra' is the remainder
expressed as the ‘linewidth‘ modulo ‘guttercount’.
Lastly, ‘i’ is an indexing variable used for character
insertion. The value of the Boolean variable ‘gutter
found’ is an indicator which invokes the determination
of ‘gutterwidth’ or ‘totcolwidth‘. The programmatic

25

30

40

45

55

8
parallel to the method is set out between lines 8 and 47.
In this regard, line 9 deals with initialization of all of the
counter registers, while a line 10 moves the cursor to
the start of the column example line.

schematically, the program consists of a ?rst ‘while
do’ loop between lines 11 and 24 which scans the en
tered character example line to determine the line
width, the total column width, and the number of gut
ters. Lines 25 through 47 include the determination of
the intercolumn spacing at line 27-28, and the distribu
tion of that spacing by a ‘repeat-until’ loop bounded by
lines 30-45. In order to ensure that the automatic inter
column spacing is invoked only in the presence of two
or more columns, a conditional statement, ‘if-then’ is
inserted on line 25 with an ending on line 46. The next
paragraphs will describe a functional analysis of the
procedure string.

Referring again to FIG. 6, line 9 constitutes the ini
tialization of the significant registers. In this regard, the
Boolean variable ‘gutterfound’ is set to false and the
running character width count represented by ‘line
width‘ and ‘totcolwidth’ are set to G as is the ‘gutter
count’. Initialization is completed in line 10 by moving
the cursor to the start of the column example line.
The ascertainment of the line width, the total column

width, and the number of gutters is a function, as previ
ously mentioned, contained within the ‘while-do’ loop
between lines 11 and 24. This outer loop consists of a
pair of subordinate ‘while-do‘ loops and a conditional
statement. The ?rst inner ‘while-do’ loop between lines
13 and 16 measures the width of a gutter. As long as
each successive character in a text string is a space
character, then the line width counter is incremented
and the cursor is moved to the next character. The
conditional statement represented by lines 17 through
19 resets the ‘gutterfound’ Boolean variable to false and
increments the gutter counter by +1. The second inter
nal ‘while-do’ loop depicted in lines 20-23 is invoked if
the buffer cursor character is not a space nor the end of
line. Consequently, for each character satisfying either
one of those conditions, the running variables ‘totcol
width’ and ‘linewidth’ are incremented as is the cursor.
When a space character or an end of line is encountered,
the ‘while-do‘ loop is not executed. The transfer of
control is relinquished to the ‘while-do’ loop between
lines 13-16. Consequently, the moment an END OF
LINE ‘rcr’ is encountered, control is transferred from
the outer ‘while-do’ loop of lines 11-24 to the determi
nation bounded by conditional statements 25-27.
At line 25 if at least one gutter is found, then it is

necessary to obtain the number of characters available
to the right margin. That is, in line 27, if the total occu
pied characters of the column widths plus a minimum of
one space per gutter is less than or equal to the right and
left margin differences, then the line width is set equal
to the difference between the right and left margins.
This implementation assumes that the cursor position
monotonically increases from left margin to right mar
gm.

Line 28 represents the computation of the inter
column spacing. Here the unoccupied character escape
ment, represented by two integer variables ‘spacing’
and ‘xtra‘. Spacing is assigned the integer quotient value
of (linewidth-totcolwidth) divided by guttercount.
‘Xtra’ represents the integer remainder of the division
and is assigned the value of (linewidth-totcolwidth)
modulo guttercount. After this, the cursor is reposi
tioned by line 29 to the start of the column example line.

4,484,826
The ‘repeat-until‘ loop embraced within lines 30-45,

mechanizes the insertion of spacing characters between
each column, that is, the distribution of the intercolumn
spacing forms equal width gutters.
During each repeat cycle, the cursor on line 31 is

incremented until the first gutter is found. Further, the
repeat cycle consists of two ‘while-do’ loops which
respectively delete or insert a space character under the
appropriate conditions. Illustratively, the ?rst ‘while
do’ loop scans the gutter and deletes spaces. This is
PASCAL implemented by a functional equivalent of
moving the characters to the right of the instantaneous
cursor position to the end of the buffer over to the left,
thereby eliminating spaces between column margins.
This is expressed in lines 33—36 by way of a ‘for’ loop
indexed from ‘cursor+ l’ to the integer value represent
ing the buffer end (eob). Since the column widths are
preserved, there is no information lost by deleting the
space characters. The remaining steps are to reinsert an
even number of space characters to de?ne the gutters
between adjacent columns. To this end, a new variable
‘counter’ is assigned the value of ‘spacing’ on line 37. In
order to ensure that the number of remainder spaces
represented by ‘xtra’ are evenly distributed, one addi
tional space is added in each gutter formation cycle.
Parenthetically, the number of such cycles is controlled
by the variable ‘guttercount’. Thus, to ensure an extra
space insertion, the conditional statement on line 38
causes the variable counter to be incremented by +1
with the variable‘xtra’ decremented by — l.
The actual space character insertion is governed by

the ‘while-do‘ loop on lines 39—44. The insertion will be
for the width of one gutter. This is represented by the
distance in a ‘for’ loop index i from the end of buffer
down to the cursor position moving from right to left.
The actual assignment is made on line 42 in which buf
fer[cursor]:=‘ ‘. In the PASCAL implementation, this is
accomplished by moving the rightmost column widths
which amounts to ‘counter’ positions to the right and
?lling in the hole with space characters. When the sec
ond ‘while-do‘ loop completes this task, the variable
guttercount is decremented by l on line 44. Unless the
guttercount is Q, the loop is repeated with the cursor on
line 31 being incremented and the cycle repeated for the
scanning of the next gutter to delete the spaces and then
the insertion of the appropriate even number. When the
guttercount is equal to ¢, the cursor is repositioned to
the start of the column example line and the procedure
transfer control back to the interactive word processor
and interface.
The PASCAL source code implementation was se

lected to express aspects of the invention in view of its
compactness and currency among persons having ordi
nary skill in this art. Other method implementations can
be formulated in assembly level language as, for exam
ple, set out in Osborne, “8080 Programming for Logic
Design", Sybex, Berkeley, Calif. 1976.
While the invention is particularly described with

reference to a preferred embodiment, it is appreciated
that its departure from the prior art is to produce equal
size gutters between each column in contrast to printer
justification which merely distributes the white space
between the end of a line and the right margin to the
spaces on the line. Signi?cantly, the method of this
invention by altering the number of spaces between the

20

25

30

35

45

65

10
column examples on the column example line has pre
served each column while readjusting its horizontal
position. Since tab stop settings for the table are part of
the column examples, the tab stop settings have been
properly adjusted to their correct locations. It will be
further understood by those skilled in this art, that vari
ous other changes in the form and details may be made
therein without departing from the spirit and scope of
the invention.
Having thus described our invention, what is claimed

as new and desired to secure the Letters Patent is:
l. A method for forming a multiple text column table

within a page, the space between adjacent columns
being denominated a gutter, the left edge of the leftmost
column and the right edge of the rightmost column
being denominated a page or table margin, said method
evenly adjusting the gutters between columns during
the formatting of the multiple text columns on the page
in an interactive word processing system formed from a
keyboard, display, memory for storing formatted infor
mation, and an intercoupling microprocessor, compris
ing the steps of:

operator entering of a line of at least two column
width examples of repeated text and control char
acters; and

responsive to function key actuation, the machine
step of modifying the example line by the auto
matic insertion of space characters into the gutters
between column examples approximating the unoc
cupied escapement between the page margins di
vided by the number of gutters, said machine step
further including the steps of ad seriatim scanning
each gutter and removing space characters encoun
tered therein, initializing a counter index to the
number of spaces to be inserted, and inserting the
space characters and decrementing the index for
each insertion until the index is exhausted.

2. A method for inserting an approximately even
number of space characters between formatted text
column widths of a multicolumn table in an example
line of repeated text and control characters operator
keyed during the column layout mode of an electronic
page in an interactive word processing system, and
responsive to the stroking of a predetermined key, the
machine steps of:

scanning the example line and counting the number of
columns, gutters, and text characters;

moving the right table edge to coincide with the right
page margin if the example line is less than the
horizontal character escapement between the left
and right margins, and moving the edge otherwise
to the line end;

computing the gutter width as the integer quotient of
the unoccupied escapement between the margins
divided by the number of gutters and the integer
remainder of the unoccupied escapement modulo
number of gutters; and

forming each gutter by inserting the quotient number
of space characters, between consecutive overlap
ping pairs of columns, said gutter formation being
repeated until the number of gutters is exhausted.

3. A method according to claim 2 wherein the num
ber of space characters is equal to the quotient plus 1,
whereby the remainder is evenly distributed.

it i 1k t it

