
S3CC11B/FC11B

CalmRISC 16-Bit CMOS

MICROCONTROLLER

USER'S MANUAL

Revision 0

Important Notice

The information in this publication has been carefully
checked and is believed to be entirely accurate at the
time of publication. Samsung assumes no
responsibility, however, for possible errors or
omissions, or for any consequences resulting from
the use of the information contained herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of any
product or circuit and specifically disclaims any and
all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims,
costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any
claim of personal injury or death that may be
associated with such unintended or unauthorized use,
even if such claim alleges that Samsung was
negligent regarding the design or manufacture of said
product.

S3CC11B/FC11B 16-Bit CMOS Microcontroller
User's Manual, Revision 0
Publication Number: 20-S3-CC11B/FC11B-102004

© 2004 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written
consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001
certification (BVQ1 Certificate No. 9330). All semiconductor products are designed and
manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Ri, Giheung- Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (82)-(331)-209-1907
FAX: (82)-(331)-209-1889

Home-Page URL: Http://www.samsungsemi.com/

Printed in the Republic of Korea

S3CC11B/FC11B MICROCONTROLLER iii

Preface

The S3CC11B/FC11B Microcontroller User's Manual is designed for application designers and programmers who are
using the S3CC11B/FC11B microcontroller for application development. It is organized in two main parts:

Part I Programming Model Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming
model, instruction set, and interrupt structure. It has seven chapters:

Chapter 1 Product Overview
Chapter 2 Address Spaces
Chapter 3 Calm16Core

Chapter 4 Exceptions
Chapter 5 Memory Map
Chapter 6 Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3CC11B/FC11B with general product descriptions, as
well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces. Chapter 2 also describes ROM code
option.

Chapter 3, " Calm16Core," describes the special registers.

Chapter 4, " Exceptions ," describes the internal register file.

Chapter 5, " Memory Map," describes the S3CC11B/FC11B memory map structure in detail.

Chapter 6, " Instruction Set," describes the S3CC11B/FC11B instruction set structure in detail.

A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part
II. If you are not yet familiar with the S3CK-series microcontroller family and are reading this manual for the first time,
we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed information in Chapters
4, 5 and 6. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the
S3CC11B/FC11B microcontroller. Also included in Part II are electrical, mechanical. It has 20 chapters:

Chapter 7 PLL (Phase Locked Loop)
Chapter 8 RESET and Power-Down
Chapter 9 I/O Ports
Chapter 10 Basic Timer
Chapter 11 Watch Timer
Chapter 12 8-bit Timer 0
Chapter 13 16-Bit Timer 1 (8-Bit Timer A & B)
Chapter 14 Serial I/O Interface
Chapter 15 SSFDC (Solid State Floppy Disk Card)
Chapter 16 10-Bit Analog-to-Digital Converter
Chapter 17 CODEC

Chapter 18 LCD Controller / Driver
Chapter 19 Battery Level Detector
Chapter 20 8/16-Bit Serial Interface for
 External Codec
Chapter 21 CaimMAC1616
Chapter 22 Program Memory Access Speed
Chapter 23 Electrical Data
Chapter 24 Mechanical Data
Chapter 25 S3FC11B Flash MCU
Chapter 26 Development Tools

One order form is included at the back of this manual to facilitate customer order for S3CC11B/FC11B
microcontrollers: the Flash Factory Writing Order Form.
You can photocopy this form, fill it out, and then forward it to your local Samsung Sales Representative.

S3CC11B/FC11B MICROCONTROLLER v

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

Introduction................................ 1-1
Features................................ 1-1

Block Diagram .. 1-3
Pin Assignment... 1-4
Pin Circuit Diagrams .. 1-9

Chapter 2 Address Spaces

Overview................................ 2-1
Program Memory 2-2
Data Memory .. 2-4

Chapter 3 Calm16Core

Introduction................................ 3-1
Features................................ 3-1

Registers .. 3-2
General Registers & Extension Registers .. 3-2
Special Registers .. 3-3

Pipeline Structure .. 3-4
Interrupts .. 3-5

Chapter 4 Exceptions

Overview................................ 4-1
Hardware Reset... 4-1
FIQ Exception................................ 4-2
IRQ Exception................................ 4-2
TRQ Exception.. 4-2
SWI Exception .. 4-2
Break Exception.. 4-2

Interrupt Sources (IRQ) .. 4-3
Interrupt Structure.. 4-4
Interrupt Control Register.. 4-5

Interrupt Masking Register.. 4-5
Interrupt Proirity Register.. 4-5

Interrupt Prority Registers (IPRH: 3F0008H, IPRL: 3F0009H) ... 4-8
Interrupt Id Register 4-9

S3CC11B/FC11B MICROCONTROLLER vii

Table of Contents (Continued)

Chapter 5 Memory Map

Overview................................ 5-1

Chapter 6 Instruction Set

ALU Instructions.. 6-1
ALUOP Register, Immediate................................ 6-2
ALUOP Register, Register.. 6-3

Load Instructions................................ 6-4
LD Regis ter, Register... 6-4
LD Register, Data Memory / LD Data Memory, Register.. 6-5
LD Register, Program Memory.. 6-7
LD Register, # Immediate................................ 6-7

Branch Instructions.. 6-8
Bit Operation... 6-10
Miscellaneous Instructions ... 6-11
CalmRISC16 Instruction Set Map.. 6-12
Quick Reference.. 6-17

viii S3CC11B/FC11B MICROCONTROLLER

Table of Contents (Continued)

Part II — Hardware Descriptions

Chapter 7 PLL (Phase Locked Loop)

Overview................................ 7-1

Chapter 8 RESET and Power-Down

Overview................................ 8-1

Chapter 9 I/O Ports

Port Data Registers 9-1

Chapter 10 Basic Timer

Overview................................ 10-1
Basic Timer & Watchdog Timer Block Diagram .. 10-4

Chapter 11 Watch Timer

Overview................................ 11-1
Watch Timer Block Diagram................................ 11-3

Chapter 12 8-Bit Timer 0

Overview................................ 12-1
Function Description .. 12-2
Timer 0 Control Register (T0CON) 12-3
Block Diagram .. 12-4

Chapter 13 16-Bit Timer 1 (8-Bit Timer A & B)

Overview................................ 13-1
Interval Timer Function................................ 13-1
Block Diagram .. 13-4

S3CC11B/FC11B MICROCONTROLLER ix

Table of Contents (Continued)

Chapter 14 Serial I/O Interface

Overview................................ 14-1
Programming Procedure... 14-1
SIO Pre-Scaler Register (SIOPS).. 14-3
Block Diagram .. 14-3
Serial I/O Timing Diagrams ... 14-4

Chapter 15 SSFDC (Solid State Floppy Disk Card)

Overview................................ 15-1
SSFDC Register Description .. 15-3
SmartMedia Control Register (SMCON) 15-3
SmartMedia ECC Count Register (ECCNT) .. 15-4
SmartMedia ECC Data Register (ECCDATA) 15-4
SmartMedia ECC Result Data Register (ECCRST) 15-4

Chapter 16 10-Bit Analog-To-Digital Converter

Overview................................ 16-1
Function Description .. 16-1
Conversion Timing ... 16-2
A/D Converter Control Register (ADCON10) ... 16-2
Internal Reference Voltage Levels.. 16-3
Block Diagram .. 16-3

Chapter 17 Codec

Overview................................ 17-1
Features................................ 17-1
A/D Converter Control Register (ADCON)... 17-2

Chapter 18 LCD Controller/Driver

Overview................................ 18-1
LCD Circuit Diagram .. 18-2
LCD Display Registers................................ 18-3
LCD Control Register (LCON) ... 18-3
LCD Voltage Dividing Resistors................................ 18-6

x S3CC11B/FC11B MICROCONTROLLER

Table of Contents (Continued)

Chapter 19 Battery Level Detector

Overview................................ 19-1
Battery Level Detector Control Register (BLDCON) 19-2

Chapter 20 8/16-Bit Serial Interface for External Codec

Overview................................ 20-1
Programming Procedure... 20-1
CSIO Control Register (CSIOCON).. 20-2

Chapter 21 CaimMAC1616

Introduction................................ 21-1
Architecture Features .. 21-1
Technology Features ... 21-1
Block Diagram .. 21-2

Programming Model................................ 21-3
Multiplier and Accumulator Unit .. 21-4
Arithmetic Unit .. 21-7
Status Register 1 (MSR1) .. 21-11
Ram Pointer Unit 21-13
Address Modification ... 21-15
Data Memory Spaces and Organization................................ 21-19
Arithmetic Unit .. 21-21
Overflow Protection in Accumulators 21-22
External Condition Generation Unit.. 21-24
Status Register 0 (MSR0) .. 21-25
Status Register 2 (MSR2) .. 21-27
Barrel Shifter and Exponent Unit ... 21-29
Barrel Shifter... 21-29
Shifting Operations .. 21-30
Exponent Block... 21-33

Instruction Set Map and Summary .. 21-34
Addressing Modes... 21-34
Instruction Coding.. 21-39
Quick Reference.. 21-55

Instruction Set................................ 21-60
Glossary 21-60

S3CC11B/FC11B MICROCONTROLLER xi

Table of Contents (Continued)

Chapter 22 Program Memory Access Speed

Overview................................ 22-1

Chapter 23 Electrical Data

Overview................................ 23-1

Chapter 24 Mechanical Data

Overview................................ 24-1

Chapter 25 S3FC11B Flash MCU

Overview................................ 25-1

Chapter 26 Development Tools

Overview................................ 26-1
CalmSHINE: IDE (Integrated Development Environment).. 26-1
In-Circuit Emulator... 26-1
CalmRISC16 C-Compiler: CalmCC16................................ 26-1
CalmRISC16 Relocatable Assembler: Calm8ASM .. 26-1
CalmRISC16 Linker: Calm8LINK ... 26-1

Emulation Probe Board Configuration .. 26-2
Use Clock Setting for External Clock Mode.. 26-3
Sub Clock Setting ... 26-3
The Lowpass Filter for PLL ... 26-3
Power Selection.. 26-4
Clock Selection... 26-4
JP1, JP2 Pin Assignment................................ 26-5
JP11 Pin Assignment .. 26-5

S3CC11B/FC11B MICROCONTROLLER xiii

List of Figures

Figure Title Page
Number Number

1-1 S3CC11B/FC11B Top Block Diagram ... 1-3
1-2 S3CC11B/FC11B Pin Assignments (100-QFP-1420C) .. 1-4
1-3 S3CC11B/FC11B Pin Assignments (100-TQFP-1414) .. 1-5
1-4 Pin Circuit Type 1 ... 1-9
1-5 Pin Circuit Type 2 (nRESET) .. 1-9
1-6 Pin Circuit Type 3 ... 1-9
1-7 Pin Circuit Type 4 (P0.4-P0.7, P1, P2, P3.4-P3.7, P4.0)................................ 1-10
1-8 Pin Circuit Type 5 (P0.0-P0.3).. 1-10
1-9 Pin Circuit Type 6 (P3.0-P3.3).. 1-11
1-10 Pin Circuit Type 7 ... 1-11
1-11 Pin Circuit Type 7 (P6, P7, P8, P9) .. 1-12
1-12 Pin Circuit Type 9 (P4.1-P4.3, P5) .. 1-12
1-13 Pin Circuit Type 10 (P4.4-P4.7) .. 1-13

2-1 Program Memory Configuration .. 2-2
2-2 Data Memory Configuration.. 2-4

3-1 Register Structure in CalmRISC16 .. 3-2

4-1 Interrupt Sources (IRQ).. 4-3
4-2 Interrupt Structure ... 4-4
4-3 Interrupt Priority Register (IPR) 4-8

5-1 Memory Mapped IO Registers.. 5-1

7-1 Phase-Locked Loop Circuit Diagram 7-1
7-2 System Clock Circuit Diagram 7-4
7-3 External Loop Filter for PLL.. 7-5

9-1 Port Data Register Structure .. 9-1

10-1 Basic Timer & Watchdog Timer Block Diagram.. 10-4

11-1 Watch Timer Block Diagram .. 11-3

12-1 Timer 0 Functional Block Diagram .. 12-4

13-1 Timer 1 Block Diagram .. 13-4

xiv S3CC11B/FC11B MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

14-1 SIO Pre-scaler Register (SIOPS).. 14-3
14-2 SIO Functional Block Diagram 14-3
14-3 Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0) 14-4
14-4 Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1) 14-4

15-1 Simple System Configuration ... 15-2
15-2 ECC Processor Block Diagram .. 15-5

16-1 A/D Converter Control Register (ADCON10)... 16-2
16-2 A/D Converter Data Register (ADDATAH10/ADDATAL10) ... 16-3
16-3 A/D Converter Functional Block Diagram ... 16-3
16-4 Recommended A/D Converter Circuit for Highest Absolute Accuracy 16-4

17-1 CODEC Block Diagram ... 17-4
17-2 Single-Ended Input Application................................ 17-5

18-1 LCD Function Diagram .. 18-1
18-2 LCD Circuit Diagram .. 18-2
18-3 LCD Display Register Organization... 18-3
18-4 LCD Voltage Dividing Registers Connection... 18-6
18-5 LCD Signal Waveforms (1/3 Duty, 1/3 Bias)... 18-7
18-6 LCD Signal Waveforms (1/4 Duty, 1/3 Bias)... 18-8
18-7 LCD Signal Waveforms (1/8 Duty, 1/4 Bias)... 18-9
18-9 LCD Signal Waveforms (1/8 Duty, 1/5 Bias)... 18-11

19-1 Block Diagram for Battery Level Detect 19-1
19-2 Battery Level Detector Circuit and Control Register .. 19-2

20-1 SIO Block Diagram for External Codec.. 20-4
20-2 8-Bit SIO Timing Diagram for External Codec 20-5
20-3 16-Bit SIO Timing Diagram for External Codec ... 20-6

S3CC11B/FC11B MICROCONTROLLER xv

List of Figures (Continued)

Figure Title Page
Number Number

21-1 CalmMAC1616 Block Diagram 21-2
21-2 Multiplier and Accumulator Unit Block Diagram.. 21-4
21-3 MAU Registers Configuration ... 21-6
21-4 Integer Division Example.. 21-9
21-5 Fractional Division Example................................ 21-10
21-6 MSR1 Register Configuration ... 21-11
21-7 RAM Pointer Unit Block Diagram.. 21-14
21-8 Pointer Register and Index Register Configuration.. 21-15
21-9 Modulo Control Register Configuration... 21-17
21-10 CalmMAC16 Data Memory Space Map................................ 21-19
21-11 CalmMAC16 Data Memory Allocation ... 21-20
21-12 Arithmetic Unit Block Diagram 21-22
21-13 Accumulator Register Configuration.. 21-23
21-14 MSR0 Register Configuration ... 21-25
21-15 MSR2 Register Configuration ... 21-27
21-16 Barrel Shifter and Exponent Unit Block Diagram .. 21-29
21-17 Various Barrel Shifter Instruction Operation ... 21-31
21-18 Indirect Addressing Example I (Single Read Operation) .. 21-34
21-19 Indirect Addressing Example II (Dual Read Operation) .. 21-35
21-20 Indirect Addressing Example III (Write Operation)... 21-36
21-21 Short Direct Addressing Example................................ 21-36
21-22 Long Direct Addressing Example.. 21-37
21-23 Short Direct Associated Addressing Example.. 21-38

23-1 Operating Voltage Range................................ 23-4
23-2 Input Timing for External Interrupts (Ports 0, Ports 4).. 23-5
23-3 Input Timing for RESET ... 23-5
23-4 Stop Mode Release Timing When Initiated by a nRESET.. 23-6
23-5 Stop Mode(main) Release Timing Initiated by Interrupts.. 23-7
23-6 Stop Mode(sub) Release Timing Initiated by Interrupts.. 23-7
23-7 Clock Timing Measurement at XIN................................ 23-8
23-8 Clock Timing Measurement at XTIN ... 23-9

24-1 100-QFP-1420C Package Dimensions .. 24-2
24-2 100-TQFP-1414 Package Dimensions... 24-3

25-1 S3FC11B Pin Assignments (100-QFP-1420C) ... 25-2
25-2 S3FC11B Pin Assignments (100-TQFP-1414).. 25-3

26-1 Emulation Probe Board Configuration .. 26-2

S3CC11B/FC11B MICROCONTROLLER xvii

List of Tables

Table Titl e Page
Number Number

1-1 S3CC11B/FC11B Pin Description................................ 1-6

4-1 Exceptions................................ 4-1

5-1 Registers ... 5-2

6-1 CalmRISC16 Instruction Set Map 6-12
6-2 Quick Reference................................ 6-17

9-1 Port Data Register Summary ... 9-1

15-1 Control Register Description................................ 15-3

19-1 BLDCON Value and Detection Level 19-2

21-1 Exponent Evaluation and Normalization Example... 21-33

23-1 Absolute Maximum Ratings 23-1
23-2 D.C. Electrical Characteristics 23-1
23-3 A.C. Electrical Characteristics 23-5
23-4 Data Retention Supply Voltage in Stop Mode .. 23-6
23-5 Main Oscillator Characteristics................................ 23-8
23-6 Sub Oscillator Frequency .. 23-9
23-7 BLD Electrical Characteristics.. 23-10
23-8 PLL Electrical Characteristics.. 23-10
23-9 10-Bit A/D Converter Electrical Characteristics 23-10
23-10 ADC/DAC Electrical Characteristics 23-11

25-1 Descriptions of Pins Used to Read/Write the FLASH ROM................................ 25-4

S3CC11B/FC11B MICROCONTROLLER xix

List of Instruction Descriptions

Instruction Full Instruction Name Page
Mnemonic Number

ADC (1) Add with Carry Register... 6-21
ADC (2) Add with Carry Immediate .. 6-22
ADD (1) Add Register .. 6-23
ADD (2) Add Small Immediate.. 6-24
ADD (3) Add Immediate ... 6-25
ADD (4) Add Extended Register.. 6-26
ADD (5) Add Immediate to Extended Register .. 6-27
ADD (6) Add 5-bit Immediate to Extended Register................................ 6-28
AND (1) AND Register 6-29
AND (2) AND Small Immediate................................ 6-30
AND (3) AND Large Immediate 6-31
BITop BIT Operation 6-32
BNZD Branch Not Zero with Autodecrement .. 6-33
BR Conditional Branch.. 6-34
BRA EC Branch on External Condition... 6-35
BREAK BREAK.. 6-36
BSRD Branch Subroutine with Delay Slot.. 6-37
CLD Coprocessor Load... 6-38
CLRSR Clear SR .. 6-39
CMP (1) Compare Register ... 6-40
CMP (2) Compare Immediate .. 6-41
CMP (3) Compare Short Immediate ... 6-42
CMPEQ (1) Compare Equal Extended Register ... 6-43
CMPEQ (2) Compare Equal Small Immediate.. 6-44
CMPEQ (3) Compare Equal Large Immediate.. 6-45
COM Complement... 6-46
COP Coprocessor... 6-47
DECC Decrement with Carry.. 6-48
DT Decrement and Test .. 6-49
EXT Sign-Extend ... 6-50
INCC Increment with Carry ... 6-51
JMP (1) Jump Register .. 6-52
JMP (2) Jump Immediate 6-53
LD (1) Load Register 6-54
LD (2) Load Register 6-55
LD (3) Load Short Immediate 6-56
LD (4) Load Immediate.. 6-57
LD (5) Load Large Immediate................................ 6-58
LD RExt Load Register Extension.. 6-59
LDB (1) Load Byte Register Disp. 6-60
LDB (2) Load Byte Register Large Disp. .. 6-61
LDB (3) Load Byte Register Indexed................................ 6-62
LDB (4) Load Byte to R0 Register Disp. .. 6-63
LDC Load Code.. 6-64
LD PC Load Program Counter................................ 6-65
LD SvR (1) Load from Saved Register .. 6-66

xx S3CC11B/FC11B MICROCONTROLLER

List of Instruction Descriptions (Continued)

Instruction Full Instruction Name Page
Mnemonic Number

LD SvR (2) Load to Saved Register.. 6-67
LD SR Load Status Register... 6-68
LDW (1) Load Word Stack Disp. ... 6-69
LDW (2) Load Word Register Small Disp.. 6-70
LDW (3) Load Word Register Disp. .. 6-71
LDW (4) Load Word Register Indexed .. 6-72
LDW (5) Load Word Register Small Disp.. 6-73
LDW (6) Load Word Register Disp. .. 6-74
LDW (7) Load Word Register Indexed .. 6-75
MUL Multiplication.. 6-76
NOP No Operation.. 6-77
OR (1) OR Register ... 6-78
OR (2) OR Small Immediate ... 6-79
OR (3) OR Large Immediate ... 6-80
POP (1) Load Register from Stack .. 6-81
POP (2) Load Register from Stack .. 6-82
PUSH (1) Load Register to Stack .. 6-83
PUSH (2) Load Register to Stack .. 6-84
RETD Ret. from Subroutine with Delay Slot................................ 6-85
RET_FIQ Return from Fast Interrupt .. 6-86
RET_IRQ Return from Interrupt.. 6-87
RET_SWI Return from Software Interrupt.. 6-88
RL Rotate Left 6-89
RR Rotate Right ... 6-90
RRC Rotate Right with Carry.. 6-91
SBC (1) Subtract with Carry Register .. 6-92
SBC (2) Subtract with Carry Immediate 6-93
SETSR Set SR... 6-94
SLB Shift Left Byte................................ 6-95
SR Shift Right.. 6-96
SRA Shift Right Arithmetic .. 6-97
SRB Shift Right Byte .. 6-98
SUB (1) Subtract Register .. 6-99
SUB (2) Subtract Small Immediate.. 6-100
SUB (3) Subtract Extended Register 6-101
SUB (4) Subtract Large Immediate .. 6-102
SUB (5) Subtract 5-bit Immediate.. 6-103
SWI Software Interrupt .. 6-104
SYS System.. 6-105
TST (1) Test Register.. 6-106
TST (2) Test Small Immediate.. 6-107
TST (3) Test Large Immediate.. 6-108
TSTSR Test SR................................ 6-109
XOR (1) XOR Register.. 6-110
XOR (2) XOR Small Immediate 6-111
XOR (3) XOR Large Immediate.. 6-112

S3CC11B/FC11B PRODUCT OVERVIEW

 1-1

1 PRODUCT OVERVIEW

INTRODUCTION

The S3FC11B is a calmRISC16 and MAC1616 core-based CMOS single-chip microcontroller. It contains ROM,
RAM, 77 I/O pins, programmable 8/16-bit timer/counters, CODEC, PLL, 4-ch A/D converter, 36SEG x 8COM LCD
controller/driver, and etc. The S3FC11B can be used for dedicated control functions in a variety of applications, and
is especially designed for application with voice synthesizer, voice recognition, or etc.

FEATURES

Memory

• 24K x 16 bits program memory (mtp flash ROM)

• 8K x 16 bits data memory (mtp flash ROM)
• 10K x 8 bits data memory (excluding LCD RAM)

77 I/O Pins

• I/O: 33 pins
• I/O 44 pins (Sharing with segment drive output)

SSFDC Interface Logic

• Two selection pins (nCE0, nCE1)

8-Bit Basic Timer

• Programmable interval timer

• 8 kinds of clock sourc e

• Watch-dog timer's clock source
(overflow of 8-bit counter)

Watchdog Timer

• System reset when 3-bit counter overflow

One 8-Bit Timer/Counter 0

• Programmable interval timer

• External event counter function

• PWM function and capture function

One 16-Bit Timer/Counter 1

• One 16-bit timer/counter mode

• Two 8-bit timer/counters A/B mode

Watch Timer

• Interval time: 3.91ms, 0.25S, 0.5S, and 1S at
32.768 kHz

• 0.5/1/2/4 kHz selectable buzzer output

LCD Controller/Driver

• 36 segments and 8 common terminals

• 3, 4 and 8 common selectable
• Internal resistor circuit for LCD bias

8-Bit Serial Interface

• Four programmable operating modes

8/16-Bit Serial Interface for External Codec

• Internal/External clock source selectable

• Two programmable operating modes

PRODUCT OVERVIEW S3CC11B/FC11B

1-2

FEATURES (Continued)

Battery Level Detector

• Programmable low voltage detector

• Two criteria voltage (2.45 V, 2.70 V)

Phase -Locked Loop (PLL)

• Programmable clock synthesizer

Codec

• 14-bit A/D converter, 14-bit D/A converter

• 3.6 kHz –11 kHz sampling frequency

• 3.0 V–3.6 V operating voltage range

Analog to Digital Converter (10-bit resolution)

• 4-channel analog inputs

• 25uS conversion time
• 3.0 V–3.6 V operation voltage range

Two Power-Down Modes

• Idle: Only CPU clock stops

• Stop: Selected system clock and CPU clock stop

Oscillation Sources

• Crystal or ceramic for main clock

• Programmable oscillation sources for main clock
• 32.768 kHz crystal oscillation circuit for sub clock

• CPU clock divider circuit (divided by 1, 2, 4, or 8)

Instruction Execution Times

• Main clocks:
30 ns at 32 MHz when 1 cycle instructions
60 ns at 32 MHz when 2 cycle instructions

• Sub clocks (32.768 kHz):
30.52 us when 1 cycle instructions
61.04 us when 2 cycle instructions

Operating Voltage Range

• 2.0 V to 3.6 V

Operating Temperature Range

• –25 °C to +85 °C

Current Consumption

• Sub idle current: 6.0 uA at VDD = 3.3V

Package Type

• 100-QFP, 100-TQFP package

S3CC11B/FC11B PRODUCT OVERVIEW

 1-3

BLOCK DIAGRAM

MAIN OSC.
VDD1, VDD2,

VDD3

CalmRISC CPU

P6.0-P6.7/
SEG15-SEG22

P7.0-P7.7/
SEG23-SEG30

VSS1, VSS2, VSS3
AVDD1, AVSS1

PORT 6

PORT 5

PORT 4

PORT 3

PORT 2

PORT 0

PORT 1

P5.0-P5.7/
SEG7-SEG14

P4.0/CDR
P4.1/CDX/SEG0
P4.2/CFS/SEG1

P4.3/CCLK/SEG2
P4.4-P4.7/INT4-INT7/

SEG3-SEG6

P3.0-P3.2/
CIN0-CIN2

P3.3/T0CLK
P3.4/T0OUT/T0PWM/T0CAP

P3.5/BUZ/T1CLK
P3.6/TAOUT
P3.7/TBOUT

P2.0/nWE
P2.1/nRE
P2.2/WP

P2.3/ R/nB
P2.4/ALE
P2.5/CLE

P2.6/nCE0
P2.7/nCE1

P1.0-P1.7
I/O0-I/O7

P0.0-P0.3/
INT0-INT3

P0.4
P0.5/SI

P0.6/SO
P0.7/SCK

SUB OSC. W D T
BASIC
TIMER

X IN XOUT XTin XTout

PORT 7

PORT 8

SIO

TIMER 0

WATCH
TIMER

BLD

CODEC

X-Memory
(6144 Bytes)

Y-Memory
(4096 Bytes)

RAM
(196 Bytes)

Flash ROM
(32k x 16)

LCD Driver/
Controller

Smartmedia
Interface

P8.0-P8.4/
SEG31-SEG35

BUZ/P3.5/T1CLK

COM0-COM7/P9.7-P9.0

SEG0-SEG35/P4.1-P8.4CLE, ALE,WP,nWE,nRE,nCE0,nCE1
I/O0 / P1.0-I/O7 /P1.7

R/nB

PLL

MAC1616
(DSP)

VLC1

PORT 9 P9.0-P9.7/
COM7-COM0

VREFOUT
DAOUT
ADGAIN
ADINN
ADINP
AVSS2
AVDD2

A/DC

SIO for
ext. Codec

TIMER A

TIMER B TI
M

E
R

1

SI/P0.5
SO/P0.6
SCK/P0.7

T0CLK/P3.3

T0OUT/T0PWM/
T0CAP/P3.4

T1CLK/P3.5/BUZ
TAOUT/P3.6
TBOUT/P3.7

CDR/P4.0
CDX/P4.1/SEG0
CFS/P4.2/SEG1
CCLK/P4.3/SEG2

AD0-AD2/P3.0-P3.2
AD3/P3.3/T0CLK

Figure 1-1. S3CC11B/FC11B Top Block Diagram

PRODUCT OVERVIEW S3CC11B/FC11B

1-4

PIN ASSIGNMENT

S3CC11B/
S3FC11B

(100-QFP-1420C)

P
0.

5/
S

I
P

0.
6/

S
O

P
0.

7/
S

C
K

V
LC

1
C

O
M

0/
P

9.
7

C
O

M
1/

P
9.

6
C

O
M

2/
P

9.
5

C
O

M
3/

P
9.

4
C

O
M

4/
P

9.
3

C
O

M
5/

P
9.

2
C

O
M

6/
P

9.
1

C
O

M
7/

P
9.

0
S

E
G

35
/P

8.
4

S
E

G
34

/P
8.

3
S

E
G

33
/P

8.
2

S
E

G
32

/P
8.

1
S

E
G

31
/P

8.
0

S
E

G
30

/P
7.

7
S

E
G

29
/P

7.
6

S
E

G
28

/P
7.

5

P
1.

5/
 I/

O
5

P
1.

6/
 I/

O
6

P
1.

7/
 I/

O
7

P
2.

0/
nW

E
P

2.
1/

nR
E

P
2.

2/
W

P
P

2.
3/

 R
/n

B
P

2.
4/

A
LE

P
2.

5/
C

LE
P

2.
6/

nC
E

0
P

2.
7/

nC
E

1
P

3.
0/

A
D

0
P

3.
1/

A
D

1
P

3.
2/

A
D

2
P

3.
3/

A
D

3/
T

0C
LK

P
3.

4/
T

0P
W

M
P

3.
5/

B
U

Z
/T

1C
LK

P
3.

6/
T

A
O

U
T

P
3.

7/
T

B
O

U
T

P
4.

0/
C

D
R

SEG27/P7.4
SEG26/P7.3
SEG25/P7.2
SEG24/P7.1
SEG23/P7.0
SEG22/P6.7
SEG21/P6.6
SEG20/P6.5
SEG19/P6.4
SEG18/P6.3
SEG17/P6.2
SEG16/P6.1
SEG15/P6.0
SEG14/P5.7
VDD2
VSS2
SEG13/P5.6
SEG12/5.5
SEG11/P5.4
SEG10/P5.3
SEG9/P5.2
SEG8/P5.1
SEG7/P5.0
SEG6/P4.7/INT7
SEG5/P4.6/INT6
SEG4/P4.5/INT5
SEG3/P4.4/INT4
SEG2/P4.3/CCLK
SEG1/P4.2/CFS
SEG0/P4.1/CDX

VDD3
VSS3

VREFOUT
ADGAIN

ADINN
ADINP

AVDD2
AVSS2
DAOUT

LPF
AVDD1
AVSS1

P0.4
P0.3/INT3

VDD1
VSS1

Xout
XIN

TEST
XTin

XTout
nRESET

P0.2/INT2
P0.1/INT1
P0.0/INT0
P1.0/ I/O0
P1.1/ I/O1
P1.2/ I/O2
P1.3/ I/O3
P1.4/ I/O4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

Figure 1-2. S3CC11B/FC11B Pin Assignments (100-QFP-1420C)

S3CC11B/FC11B PRODUCT OVERVIEW

 1-5

S3CC11B/
S3FC11B

(100-TQFP-1414)

V
S

S
3

V
D

D
3

P
0.

5/
S

I
P

0.
6/

S
O

P
0.

7/
S

C
K

V
LC

1
C

O
M

0/
P

9.
7

C
O

M
1/

P
9.

6
C

O
M

2/
P

9.
5

C
O

M
3/

P
9.

4
C

O
M

4/
P

9.
3

C
O

M
5/

P
9.

2
C

O
M

6/
P

9.
1

C
O

M
7/

P
9.

0
S

E
G

35
/P

8.
4

S
E

G
34

/P
8.

3
S

E
G

33
/P

8.
2

S
E

G
32

/P
8.

1
S

E
G

31
/P

8.
0

S
E

G
30

/P
7.

7
S

E
G

29
/P

7.
6

S
E

G
28

/P
7.

5
S

E
G

27
/P

7.
4

S
E

G
26

/P
7.

3
S

E
G

25
/P

7.
2

P
1.

2/
 I/

O
2

P
1.

3/
 I/

O
3

P
1.

4/
 I/

O
4

P
1.

5/
 I/

O
5

P
1.

6/
 I/

O
6

P
1.

7/
 I/

O
7

P
2.

0/
nW

E
P

2.
1/

nR
E

P
2.

2/
W

P
P

2.
3/

 R
/n

B
P

2.
4/

A
LE

P
2.

5/
C

LE
P

2.
6/

nC
E

0
P

2.
7/

nC
E

1
P

3.
0/

A
D

0
P

3.
1/

A
D

1
P

3.
2/

A
D

2
P

3.
3/

A
D

3/
T

0C
LK

P
3.

4/
T0

P
W

M
P

3.
5/

B
U

Z
/T

1C
LK

P
3.

6/
T

A
O

U
T

P
3.

7/
T

B
O

U
T

P
4.

0/
C

D
R

S
E

G
0/

P
4.

1/
C

D
X

S
E

G
1/

P
4.

2/
C

F
S

SEG24/P7.1
SEG23/P7.0
SEG22/P6.7
SEG21/P6.6
SEG20/P6.5
SEG19/P6.4
SEG18/P6.3
SEG17/P6.2
SEG16/P6.1
SEG15/P6.0
SEG14/P5.7
VDD2
VSS2
SEG13/P5.6
SEG12/5.5
SEG11/P5.4
SEG10/P5.3
SEG9/P5.2
SEG8/P5.1
SEG7/P5.0
SEG6/P4.7/INT7
SEG5/P4.6/INT6
SEG4/P4.5/INT5
SEG3/P4.4/INT4
SEG2/P4.3/CCLK

VREFOUT
ADGAIN
ADININ
ADINP
AVDD2
AVSS2
DAOUT

LPF
AVDD1
AVSS1

P0.4
P0.3/INT3

VDD1
VSS1
Xout

Xin
TEST
XTin

XTout
nRESET

P0.2/INT2
P0.1/INT1
P0.0/INT0
P1.0/ I/O0
P1.1/ I/O1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

26 27 28 29 30
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

10
0 8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

7
6

7
7

7
8

7
9

8
0

Figure 1-3. S3CC11B/FC11B Pin Assignments (100-TQFP-1414)

PRODUCT OVERVIEW S3CC11B/FC11B

1-6

Table 1-1. S3CC11B/FC11B Pin Description

Name Type Description Circuit
Type

Number Shared Pins

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

I/O I/O port with bit programmable pins;
Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups;
P0.0-P0.3 is alternatively used for external
interrupt input (noise filters).

5

4

25(23)
24(22)
23(21)
14(12)
13(11)
100(98)
99(97)
98(96)

INT0
INT1
INT2
INT3

–
SI
SO

SCK
P1.0 – P1.7 I/O I/O port with nibble-programmable pins;

Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups; Also
configurable as smartmedia interface lines I/O0 –
I/O7.

4 26 – 33
(24–31)

I/O0 - I/O7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

I/O I/O port with bit-programmable pins;
Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups; Also
configurable as smartmedia interface lines nWE,
nRE, WP, R/nB, ALE, CLE, nCE0, and nCE1.

4 34(32)
35(33)
36(34)
37(35)
38(36)
39(37)
40(38)
41(39)

nWE
nRE
WP
R/nB
ALE
CLE

nCE0
nCE1

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

I/O I/O port with bit-programmable pins;
Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups.
P3.0 – P3.3 is alternatively used for analog input.

6

4

42(40)
43(41)
44(42)
45(43)
46(44)
47(45)
48(46)
49(47)

AD0
AD1
AD2

AD3/T0CLK
T0OUT/T0PWM/T0

CAP
BUZ/T1CLK

TAOUT
TBOUT

P4.0
P4.1
P4.2
P4.3
P4.4 – P4.7

I/O I/O port with bit-programmable pins; Schmitt
trigger input or push-pull, open-drain output and
software assignable pull-ups. P4.4 – P4.7 is
alternatively used for external interrupt input
(noise filters, interrupt enable control).

4
9

10

50(48)
51(49)
52(50)
53(51)
54 – 57
(52–55)

CDR
CDX/SEG0
CFS/SEG1

CCLK/SEG2
INT4-INT7/

SEG3 -SEG6
P5.0 – P5.6

P5.7

I/O I/O port with bit-programmable pins;
Schmitt trigger input or push-pull, open-drain
output and software assignable pull-ups.

9 58 – 64
(56–62)
67(65)

SEG7–SEG13

SEG14
P6.0 – P6.7 I/O I/O port with nibble-programmable pins; Schmitt

trigger input or push-pull output and software
assignable pull-ups.

8 68 – 75
(66–73)

SEG15–SEG22

P7.0 – P7.7 I/O Same general characteristics as port6. 8 76 – 83
(74–81)

SEG23–SEG30

NOTE: The parentheses are a pin number of 100-TQFP package.

S3CC11B/FC11B PRODUCT OVERVIEW

 1-7

Table 1-1. S3CC11B/FC11B Pin Description (Continued)

Name Type Description Circuit
Type

Number Shared Pins

P8.0 – P8.4 I/O Same general characteristics as port6. 8 84 – 88
(82–86)

SEG31–
SEG35

P9.0 – P9.7 I/O Same general characteristics as port6. 8 89 – 96
(87–94)

COM7–COM0

ADINN I Analog negative input pin. – 5(3) –

ADINP I Analog positive input pin. – 6(4) –

ADGAIN I/O Analog input gain control pin. – 4(2) –

VREFOUT O Vref output pin. – 3(1) –

DAOUT O Digital to analog converter output pin. – 9(7) –

LPF I/O PLL loop filter pin – 10(8) –

COM0 – COM7 I/O LCD common data output pins. 8 96–89
(94–87)

P9.7-P9.0

SEG0
SEG1
SEG2
SEG3 – SEG6

I/O LCD segment data output pins. 9

10

51(49)
52(50)
53(51)
54 – 57
(52–55)

P4.1/CDX
P4.2/CFS

P4.3/CCLK
P4.4-P4.7/
INT4-INT7

SEG7 – SEG13
SEG14
SEG15 – SEG35

I/O LCD segment data output pins. 9

8

58–64
(56–62)
67(65)
68–88
(66–86)

P5.0-P5.6

P5.7
P6.0-P8.4

VLC1 – LCD power supply pins. – 97(95) –

INT0 – INT2

INT3
INT4 – INT7

I/O External interrupt input pins. 5

10

25–23
(23–21)
14(12)
54 – 57
(52–55)

P0.0 - P0.2

P0.3
P4.4 – P4.7

T1CLK I/O Timer 1/A external clock input pin. 4 47(45) P3.5/BUZ

TAOUT
TBOUT

I/O Timer 1/A and B clock output pins. 4 48(46)
49(47)

P3.6
P3.7

BUZ I/O Buzzer signal output pin. 4 47(45) P3.5/T1CLK

SI I/O Serial data input pin. 4 100(98) P0.5

SO I/O Serial data output pin. 4 99(97) P0.6

SCK I/O Serial I/O interface clock signal pin. 4 98(96) P0.7

T0OUT I/O Timer0’s interval output pin. 4 46(44) P3.4/T0PWM/
T0CAP

T0PWM I/O Timer0’s PWM output pin. 4 46(44) P3.4/T0OUT/
T0CAP

NOTE: The parentheses are a pin number of 100-TQFP package.

PRODUCT OVERVIEW S3CC11B/FC11B

1-8

Table 1-1. S3CC11B/FC11B Pin Description (Continued)

Name Type Description Circuit
Type

Number Shared Pins

T0CAP I/O Timer0’s Capture input pin. 4 46(44) P3.4/T0OUT/
T0PWM

T0CLK I/O Timer0’s external clock input pin. 6 45(43) P3.3/AD3
nWE I/O Write enable pin. 4 34(32) P2.0
nRE I/O Read enable pin. 4 35(33) P2.1
WP I/O Write protect pin. 4 36(34) P2.2
R/nB I/O Ready and busy status pin. 4 37(35) P2.3
ALE I/O Address latch enable pin. 4 38(36) P2.4
CLE I/O Command latch enable pin. 4 39(37) P2.5
nCE0 I/O Chip enable 0 pin. 4 40(38) P2.6
nCE1 I/O Chip enable 1 pin. 4 41(39) P2.7
I/O0 – I/O7 I/O Smartmedia interface lines. 4 26 – 33

(24–31)
P1.0 – P1.7

AD0 – AD2

AD3

I/O Analog input pins for A/D converter. 6 42 – 44
(40–42)
45(43)

P3.0 – P3.2

P3.3/T0CLK
CDR I/O Receive data input pin for external codec. 4 50(48) P4.0
CDX I/O Transmit data output pin for external codec. 9 51(49) P4.1/SEG0
CFS I/O Frame sync pulse for external codec. 9 52(50) P4.2/SEG1
CCLK I/O Master and bit clock for external codec. 9 53(51) P4.3/SEG2
AVDD1,
AVSS1

– Analog power pins for PLL block. – 11, 12
(9, 10)

–

AVDD2,
AVSS2

– Analog power pins for CODEC block. – 7, 8
(5, 6)

–

nRESET I System reset pin. 2 22(20) –
XTin,XTout – Crystal oscillator pins for sub clock. – 20, 21

(18, 19)
–

Xin, Xout – Main oscillator pins. – 18, 17
(16, 15)

–

TEST I Input pin for test.(must be connected to VSS) – 19(17) –
VDD1, VSS1 – Power input pins for CPU. – 15, 16

(13, 14)
–

VDD2, VSS2 – Power input pins for peripheral block. – 66, 65
(64, 63)

–

VDD3, VSS3 – Power input pins for peripheral block. – 2,1
(99,100)

–

NOTE: The parentheses are a pin number of 100-TQFP package.

S3CC11B/FC11B PRODUCT OVERVIEW

 1-9

PIN CIRCUIT DIAGRAMS

P-CHANNEL

N-CHANNEL

IN

VDD

Figure 1-4. Pin Circuit Type 1

VDD

PULL-UP
RESISTOR

SCHMITT TRIGGER

IN

Figure 1-5. Pin Circuit Type 2 (nRESET)

P-Channel

N-Channel

VDD

Out

Output
Disable

Data

Figure 1-6. Pin Circuit Type 3

PRODUCT OVERVIEW S3CC11B/FC11B

1-10

VDD

Data

Resistor
 Enable

VDD

I/O

P-CH

N-CH

Open Drain

Output
Disable

Pull-up
Resistor

Figure 1-7. Pin Circuit Type 4 (P0.4-P0.7, P1, P2, P3.4-P3.7, P4.0)

VDD

Data

Resistor
 Enable

VDD

I/O

P-CH

N-CH

Open Drain

Output
Disable

Pull-up
Resistor

Noise
Filter

External
Interrupt

Input

Figure 1-8. Pin Circuit Type 5 (P0.0-P0.3)

S3CC11B/FC11B PRODUCT OVERVIEW

 1-11

VDD

Out Data

VDD

I/O

P-CH

N-CH

Open Drain
Enable

Output
Disable

Digital In

Analog In

Pull-up
Enable

Figure 1-9. Pin Circuit Type 6 (P3.0-P3.3)

VDD

M
U
X

VSS

Select

Port Data

Alternative Signal

Output Disable

Alternative Input

Normal Input

Pull-up
Resistor

VDD

Pull-up Enable

Data

Open-Drain

In/Out

Figure 1-10. Pin Circuit Type 7

PRODUCT OVERVIEW S3CC11B/FC11B

1-12

VDD

Circuit
Type 3

Circuit
Type 7

Pull-up
Resistor

Resistor
Enable

Data
Output

Disable 1
COM/SEG

Output
Disable 2

I/O

Figure 1-11. Pin Circuit Type 7 (P6, P7, P8, P9)

VDD

Data

Resistor
 Enable

VDD

I/O

P-CH

N-CH

Open-Drain

Output
Disable

Pull-up
Resistor

Circuit
Type 7

SEG
Output

Disable

Figure 1-12. Pin Circuit Type 9 (P4.1-P4.3, P5)

S3CC11B/FC11B PRODUCT OVERVIEW

 1-13

VDD

Data

Resistor
 Enable

VDD

I/O

P-CH

N-CH

Open Drain

Output
Disable

Pull-up
Resistor

Noise
Filter

External
Interrupt

Input

Circuit
Type 7

SEG
Output

Disable

Figure 1-13. Pin Circuit Type 10 (P4.4-P4.7)

PRODUCT OVERVIEW S3CC11B/FC11B

1-14

NOTES

S3CC11B/FC11B ADDRESS SPACE

 2-1

2 ADDRESS SPACE

OVERVIEW

CalmRISC16 has 21-bit program address lines, PA[20:0] (equivalent to PC[21:1]), which supports up to 32K word of
program memory.
The 32K word program memory space is divided into 24K word internal program memory and 8K word Data Memory
(Data ROM) area.

CalmRISC16 also has 22-bit data memory address lines, DA[21:0], which supports up to 10K byte.

Memory configuration in CalmRISC16 side

Data Memory:
10K byte internal data memory

Program Memory:
24K word internal program memory
8K word data memory (Data ROM: YROM)

Memory configuration in CalmMAC24 side
Data Memory:

X-Memory area - 3K word internal memory (6K byte)
Y-Memory area - 2K word internal memory (4K byte)

Program Memory:
24K word internal program memory
8K word data memory (Data ROM: YROM)

ADDRESS SPACE S3CC11B/FC11B

2-2

PROGRAM MEMORY

Program memory configuration is shown in Figure 2-1. The total size of ROM (Program ROM + Data ROM) is the
32K × 16 bits. The program ROM’s address is 0000H–BFFEH and the data ROM's address is C000H–FFFEH.

Data ROM

Not used

3FFFFEH

00FFFEH

00BFFEH

Byte

Program Memory

000000H

NOTE: The total size of ROM (Program ROM + Data ROM) is the 32K × 16bits.
The program ROM's address is 0000H-BFFEH and the data ROM's address
is C000H-FFFEH.

Figure 2-1. Program Memory Configuration

S3CC11B/FC11B ADDRESS SPACE

 2-3

DATA MEMORY

Data memory configuration is shown in Figure 2.2. CalmMAC16 only can access the internal data memory and if the
memory request tries to access non-existent memory area, FIQ(Fast Interrupt request) is generated. In this case, if
FE bit in CalmRISC16’s SR register is 1, the violation service routine is called and served. CalmRISC16 can access
the internal data memory. But the FIQ is not used in the S3CC11B. The address of the CalmRISC16 consists of 8
bits, while the address of the MAC1616 consists of 16bits. So, if the address of the CalmRISC16 is E800H, the
address of the MAC1616 is 7400H. Program ROM can be accessed in the view of ROM (with LDC instruction) that
has 0000–BFFEH address. Also and in the view of RAM (with LDB, LDW instructions) that has same address.

Data ROM can be accessed in the view of ROM (with LDC instruction) that has C000 – FFFEH address. Also and in
the view of RAM (with LDB, LDW instructions) that has 11000 – 14FFFH address. Of course, Data ROM can be
accessed by MAC1616. (The address ranges are 8800H to A7FFH.)

The memory violation (access the non-existent area) FIQ can be also generated.

ADDRESS SPACE S3CC11B/FC11B

2-4

Not used
3FFFFEH

00BFFFH

000000H

Byte

Program ROM

LCD Display Registers

Control Registers

Not used

Data ROM

(Data RAM)
Y-Memory

(Data RAM)
X-Memory

Not used

00E7FFH
00E800H

00FFFFH
010000H
010FFFH
011000H

014FFFH
015000H

3EFFFFH
3F0000H
3F007FH
3F0080H
3F00A3H
3F00A4H

Address of
CalmRISC16

Address of
MAC1616

I/O Area

A7FFH

8800H
87FFH

8000H
7FFFH

7400H .14.15
.7 .6 .5 .4 .3 .2 .1 .0

.13 .12 .11 .10 .9 .8

.7 .6 .5 .4 .3 .2 .1 .0
.14.15 .13 .12 .11 .10 .9 .8

7401H

7400H

-MAC1616-

.14.15
.7 .6 .5 .4 .3 .2 .1 .0

.13 .12 .11 .10 .9 .8

.7 .6 .5 .4 .3 .2 .1 .0
.14.15 .13 .12 .11 .10 .9 .8

0E803H

-CalmRISC16-

0E802H
0E801H
0E800H

NOTES:
1. The address of the calmRISC consists of 8-bits, while the address of the MAC1616 consists of 16-bits.
2. The total size of ROM (Program ROM + Data ROM) is the 32K x 16bits. The program ROM's address is
 0000H-BFFFH and the data ROM's address is C000H-FFFEH.
3. The data of program memroy (Program ROM) can be loaded to a register by load instructions.

Figure 2-2. Data Memory Configuration

S3CC11B/FC11B Calm16Core

 3-1

3 Calm16Core

INTRODUCTION

The main features of CalmRISC16, a 16-bit embedded RISC MCU core, are high performance, low power
consumption, and efficient coprocessor interface. It can operate up to 32MHz, and consumes 200µA/MHz @3.3V.
When operating with MAC1616, a 16-bit fixed point DSP coprocessor, CalmRISC16 can operate up to 32MHz.
Through efficient coprocessor interface, CalmRISC16 provides a powerful and flexible MCU+DSP solution. The
following gives brief summary of main features of CalmRISC16.

FEATURES

Architecture

• Harvard RISC architecture

• 5-Stage pipeline

Registers

• Sixteen 16-bit general registers

• Eight 6-bit extension registers

• 22-bit Program Counter (PC)

• 16-bit Status Register (SR)

• Five saved registers for interrupts.

Instruction Set

• 16-bit instruction width for 1-word instructions

• 32-bit instruction width for 2-word instructions

• Load/Store instruction architecture

• Delayed branch support

• C-language/OS support

• Bit operation for I/O process

Instruction Execution Time

• One instruction/cycle for basic instructions

Address Space

• 2M word for Program Memory

• 4M byte for Data Memory

Calm16Core S3CC11B/FC11B

3-2

REGISTERS

In CalmRISC16 there are sixteen 16-bit general registers, eight 6-bit extension registers, a 16-bit Status
Register(SR), a program counter (PC), and five saved registers.

GENERAL REGISTERS & EXTENSION REGISTERS

The following figure shows the structure of the general registers and the extension registers.

R0

R1

...

R7

R8

R9

R14

R15

.

..

E8

E9

E14

E15

.

..

PC

SPC_FIQ

SPC_IRQ

SR

SSR_FIQ

SSR_IRQ

SSR_SWI

Link Register

Stack Pointer

Registers for Byte

Address Registers

16-bit 22-bit

22-bit

16-bit

Figure 3-1. Register Structure in CalmRISC16

The general registers (from R0 to R15) can be either a source register or a destination register for almost all ALU
operations, and can be used as an index register for memory load/store instructions (e.g., LDW R3, @[A8+R2]). The
6-bit extension registers (from E8 to E15) are used to form a 22-bit address register (from A8 to A15) by
concatenating with a general register (from R8 to R15). The address registers are used to generate 22-bit program
and data addresses.

S3CC11B/FC11B Calm16Core

 3-3

SPECIAL REGISTERS

The special registers consist of 16-bit SR (Status Register), 22-bit PC (Program Counter), and saved registers for
IRQ(interrupt), FIQ(fast interrupt), and SWI(software interrupt). When IRQ interrupt occurs, the most significant 6 bits
of the return address are saved in SPCH_IRQ, the least significant 16 bits of the return address are saved in
SPCL_IRQ, and the status register is saved in SSR_IRQ. When FIQ interrupt occurs, the most significant 6 bits of
the return address are saved in SPCH_FIQ, the least significant 16 bits of the return address are saved in
SPCL_FIQ, and the status register is saved in SSR_FIQ. When a SWI instruction is executed, the return address is
saved in A14 register (E14 concatenated with R14), and the status register is saved in SSR_SWI. The least
significant bit of PC, SPCL_IRQ and SPCL_FIQ is read only and its value is always 0.

— The 16-bit register SR has the following format.

15 8 7 0

T – – –- – – – – – PM Z1 Z0 V TE IE FE

• FE: FIQ enable bit, FIQ is enabled when FE is set.

• IE: IRQ enable bit, IRQ is enabled when IE is set.

• TE: TRQ enable bit, Trace is enabled when TE is set.

• V: overflow flag, set/clear accordingly when arithmetic instructions are executed.

• Z0: zero flag of R6, set when R6 equals zero and used as the branch condition when BNZD instruction with R6 is
executed.

• Z1: zero flag of R7, set when R7 equals zero and used as the branch condition when BNZD instruction with R7 is
executed.

• PM: privilege mode bit. PM = 1 for privilege mode and PM = 0 for user mode

• T: true flag, set/clear as a result of an ALU operation.

FE, IE, TE, and PM bits can be modified only when PM = 1 (privilege mode). The only way to change from user
mode to privilege mode is via interrupts including SWI instructions. The reserved bit of SR (from bit 7 to bit 14) can be
used for other purposes without any notice. Hence programmers should not depend on the value of the reserved bits
in their programming. The reserved bits are read as 0 value.

Calm16Core S3CC11B/FC11B

3-4

PIPELINE STRUCTURE

CalmRISC16 has a 5-stage pipeline architecture. It takes 5 cycles for an instruction to do its operation. In a pipeline
architecture, instructions are executed overlapped, hence the throughput is one instruction per cycle. Due to data
dependency, control dependency, and 2 word instructions, the throughput is about 1.2 on the average. The following
diagram depicts the 5-stage pipeline structure.

IF ID EX MEM WB

In the first stage, which is called IF (Instruction Fetch) stage, an instruction is fetched from program memory. In the
second stage, which is called ID (Instruction Decoding) stage, the fetched instruction is decoded, and the
appropriate operands, if any, for ALU operation are prepared. In the case of branch or jump instructions, the target
address is calculated in ID stage. In the third stage, which is called EX (Execution) stage, ALU operation and data
address calculation are executed. In the fourth stage, which is called MEM (Memory) stage, data transfer from/to
data memory or program memory is executed. In the fifth stage, which is called WB (Write Back) stage, a write-back
to register file can be executed. The following figure shows an example of pipeline progress when 3 consecutive
instructions are executed.

I1 : ADD R0, 3 IF ID EX MEM WB

I2 : ADD R1, R0 IF ID EX MEM WB

I3 : LD R2, R0 IF ID EX MEM WB

In the above exam ple, the instruction I2 needs the result of the instruction I1 before I1 completes. To resolve this
problem, the EX stage result of I1 is forwarded to ID stage of I2. Similar forwarding mechanism occurs from MEM
stage of I1 to ID stage of I3.

The pipeline cannot progress (called a pipeline stall) due to a data dependency, a control dependency, or a resource
conflict.

When a source operand of an ALU instruction is from a register, which is loaded from memory in the previous
instruction, 1 cycle of pipeline stall occurs (called load stall). Such load stalls can be avoided by smart reordering of
the instruction sequences. CalmRISC16 has 2 classes of branch instructions, those with a delay slot and without a
delay slot. Non-delay slot branch instructions incurs a 1 cycle pipeline stall if the branch is taken, due to a control
dependency. For branch instructions with a delay slot, no cycle waste is incurred if the delay slot is filled with a
useful instruction (or non NOP instruction). Pipeline stalls due to resource conflicts occurs when two different
instructions access at the same cycle the same resource such as the data memory and the program memory. LDC
(data load from program memory) instruction causes a resource conflict on the program memory. Bit operations such
as BITR and BITS (read-modify-write instructions) cause a resource conflict on the data memory.

S3CC11B/FC11B Calm16Core

 3-5

INTERRUPTS

In CalmRISC16, there are five interrupts: RESET, FIQ, IRQ, TRQ, SWI. The RESET, FIQ, and IRQ interrupts
correspond to external requests. TRQ and SWI interrupts are initiated by an instruction (therefore, in a deterministic
way). The following table shows a summary of interrupts.

Name Priority Address Description

RESET 1 000000h Hardware Reset

FIQ 3 000002h Fast Interrupt Request

IRQ 5 000004h Interrupt Request

TRQ 2 000006h Trace Request

SWI 4 000008h–
0000feh

Software Interrupt

When nRES (an input pin CalmRISC16 core) signal is released (transition from 0 to 1), “JMP addr:22” is
automatically executed by CalmRISC16. Among the 22-bit address addr:22, the most significant 6 bits are forced to
0, and the least significant 16 bits are the contents of 000000h (i.e., reset vector address) of the program memory.
In other words, “JMP {6’h00, PM[000000h]}” instruction is forced to the pipeline. The initial value of PM bit is 1 (that
is, in privilege mode) and the initial values of other bits in SR register are 0. All other registers are not initialized (i.e.,
unknown).

When nFIQ (an input pin CalmRISC16 core) signal is active (transition from 1 to 0), “JMP addr:22” instruction is
automatically executed by CalmRISC16. The address of FIQ interrupt service routine is in 000002h (i.e., FIQ vector
address) of the program memory (i.e., “JMP {6’h00, PM[000002h]}”). The return address is saved in {SPCH_FIQ,
SPCL_FIQ} register pair, and the SR value is saved in SSR_FIQ register. PM bit is set. FE, IE, and TE bits are
cleared. When RET_FIQ instruction is executed, SR value is restored from SSR_FIQ, and the return address is
restored into PC from {SPCH_FIQ, SPCL_FIQ}.

When nIRQ signal (an input pin CalmRISC16 core) is active (transition from 1 to 0), “JMP {6’h00, PM[000004h]}”
instruction is forced to the instruction pipeline. The return address is saved in {SPCH_IRQ, SPCL_IRQ} register pair,
and the SR value is saved in SSR_IRQ register. PM bit is set. IE and TE bits are cleared. When RET_IRQ instruction
is executed, SR value is restored from SSR_IRQ, and return address is restored to PC from {SPCH_IRQ,
SPCL_IRQ}.

When TE bit is set, TRQ interrupt happens and “JMP {6’h00, PM[000006h]}” instruction is executed right after each
instruction is executed. TRQ interrupt uses the saved registers of IRQ(that is, {SPCH_IRQ, SPCL_IRQ} register pair
and SSR_IRQ) to save the return address and SR, respectively. PM bit is set. IE, TE bits are cleared.

When “SWI imm:6” instruction is executed, the return address is saved in the register A14, and the value of SR is
saved in SSR_SWI. Then the program sequence jumps to the address (imm:6 * 4). PM bit is set. IE and TE bits are
cleared. “SWI 0” and “SWI 1” are prohibited because the addresses are reserved for other interrupts. When RET_SWI
instruction is executed, SR is restored from SSR_SWI, and the return address is restored to PC from A14.

NOTES

1. 6’h00 is defined as 00 (or zero) in 6 bits
2. imm:6 is defined as 6-bit immediate number

Calm16Core S3CC11B/FC11B

3-6

NOTES

S3CC11B/FC11B EXCEPTIONS

 4-1

4 EXCEPTIONS

OVERVIEW

Exceptions in CalmRISC16 are listed in the table below. Exception handling routines, residing at the given addresses
in the table, are invoked when the corresponding exception occurs. The starting address of each exception routine is
specified by concatenating 0H (leading 4 bits of 0) and the 16-bit data in the exception vector listed in the table. For
example, the interrupt service routine for FIQ starts from 0H:PM[000002H]. Note that “:” means concatenation and
PM[*] stands for the 16-bit content at the address * of the program memory. When an IRQ or FIQ occurs, current PC
is pushed in the SPC_IRQ, SPC_FIQ on an exception. And if SWI is executed, current PC is pushed in the E14:R14
register.

Table 4-1. Exceptions

Name Address Priority Description

Reset 000000H 1st Exception due to reset release.

FIQ 000002H 3rd Exception due to nFIQ signal. Maskable by setting FE

IRQ 000004H 5th Exception due to nIRQ signal. Maskable by setting IE

TRQ 000006H 2nd Exception due to TE bit in SR register

SWI 000008H–
0000FEH

4th Exception due to SWI execution

NOTE: Break mode due to BKREQ has a higher priority than all the exceptions above. That is, when BKREQ is active,
 even the exception due to reset release is not executed.

HARDWARE RESET

When nRES (an input pin CalmRISC16 core) signal is released (transition from 0 to 1), “JMP addr:22” is
automatically executed by CalmRISC16. Among the 22-bit address addr:22, the most significant 6 bits are forced to
0, and the least significant 16 bits are the contents of 000000h (i.e., reset vector address) of the program memory.
In other words, “JMP {6’h00, PM[000000h]}” instruction is forced to the pipeline. The initial value of PM bit is 1 (that
is, in privilege mode) and the initial values of other bits in SR register are 0. All other registers are not initialized (i.e.,
unknown).

EXCEPTIONS S3CC11B/FC11B

4-2

FIQ EXCEPTION

When nFIQ (an input pin CalmRISC16 core) signal is active (transition from 1 to 0), “JMP addr:22” instruction is
automatically executed by CalmRISC16. The address of FIQ interrupt service routine is in 000002h (i.e., FIQ vector
address) of the program memory (i.e., “JMP {6’h00, PM[000002h]}”). The return address is saved in {SPCH_FIQ,
SPCL_FIQ} register pair, and the SR value is saved in SSR_FIQ register. PM bit is set. FE, IE, and TE bits are
cleared. When RET_FIQ instruction is executed, SR value is restored from SSR_FIQ, and the return address is
restored into PC from {SPCH_FIQ, SPCL_FIQ}. But the FIQ is not used in the S3CC11B.

IRQ EXCEPTION

When nIRQ signal (an input pin CalmRISC16 core) is active (transition from 1 to 0), “JMP {6’h00, PM[000004h]}”
instruction is forced to the instruction pipeline. The return address is saved in {SPCH_IRQ, SPCL_IRQ} register pair,
and the SR value is saved in SSR_IRQ register. PM bit is set. IE and TE bits are cleared. When RET_IRQ instruction
is executed, SR value is restored from SSR_IRQ, and return address is restored to PC from {SPCH_IRQ,
SPCL_IRQ}.

TRQ EXCEPTION

When TE bit is set, TRQ interrupt happens and “JMP {6’h00, PM[000006h]}” instruction is executed right after each
instruction is executed. TRQ interrupt uses the saved registers of IRQ(that is, {SPCH_IRQ, SPCL_IRQ} register pair
and SSR_IRQ) to save the return address and SR, respectively. PM bit is set. IE, TE bits are cleared.

SWI EXCEPTION

When “SWI imm:6” instruction is executed, the return address is saved in the register A14, and the value of SR is
saved in SSR_SWI. Then the program sequence jumps to the address (imm:6 * 4). PM bit is set. IE and TE bits are
cleared. “SWI 0” and “SWI 1” are prohibited because the addresses are reserved for other interrupts. When RET_SWI
instruction is executed, SR is restored from SSR_SWI, and the return address is restored to PC from A14.

BREAK EXCEPTION

Break exception is reserved only for an in-circuit debugger. When a core input signal, BKREQ , is high, the
CalmRISC16 core is halted or in the break mode, until BKREQ is deactivated. Another way to drive the CalmRISC16
core into the break mode is by executing a break instruction, BREAK. When BREAK is fetched, it is decoded and
the CalmRISC16 core output signal nBKACK is generated. An in-circuit debugger generates BKREQ active by
monitoring nBKACK to be active. BREAK instruction is exactly the same as the NOP (no operation) instruction
except that it does not increase the program counter and activates nBKACK. There, once BREAK is encountered in
the program execution, it falls into a deadlock. BREAK instruction is reserved for in-circuit debuggers only, so it
should not be used in user programs.

NOTE

imm:6 is defined as 6-bit immediate number

S3CC11B/FC11B EXCEPTIONS

 4-3

FIQ Sources

If the memory request tries to access non-existent memory area, FIQ is generated. In this case, if the FE bit in SR
is 1, then FIQ routine is called and executed. But the FIQ is not used in the S3CC11B.

INTERRUPT SOURCES (IRQ)

Timer 0 match/capture

Timer 0 overflow

CODEC INT

SIO INT for external Codec

SIO INT

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

NOTES:
1. The IRQ vector has several interrupt sources. The priority of the sources is controlled by setting the
 IPRH/IPRL registers.
2. External interrupts are triggered by a rising or falling edge, depending on the corresponding control
 register setting. Ext INT4-Ext INT7 have no interrupt pending bit but have an enable bit.

H/W, S/W

Vector SourceLevel RESET (CLEAR)

Hardware ResetRESET 000000H -

Timer 1/A match

Timer B match

H/W, S/W

H/W, S/W

H/W, S/W

000002H Fast Interrupt RequestFIQ

Watch timer INT H/W, S/W

Ext INT0

Ext INT1

Ext INT2

Ext INT3

Ext INT4

Ext INT5

Ext INT6
Ext INT7

H/W, S/W

Priority

1

3

Basic Timer overflow

000002HIRQ 5

000006HTRQ 2 Trace Interrupt Request H/W

000008H
~

0000FEH

SWI 4 Software Interrupt -

Figure 4-1. Interrupt Sources (IRQ)

EXCEPTIONS S3CC11B/FC11B

4-4

INTERRUPT STRUCTURE

IIR

Core

 NOTE: The pending bit is cleared by hardware when the CPU reads the IIR register value in an interrupt service
routine. But also the corresponding pending bit is cleared by S/W when it is written ID × 2 value to the

 IIR register. Where the ID is a bit of IRR (for example, the ID of SIO INT is "8"). All pending bits are
cleared when "80H" is written to IIR register.

IRR0
IRR1
IRR2
IRR3
IRR4
IRR5
IRR6
IRR7
IRR8
IRR9
IRR10
IRR11
IRR12
IRR13
IRR14
IRR15

Clear

P4INT.0

P4INT.1

P4INT.2

P4INT.3

Ext INT4

Ext INT5

Ext INT6

Ext INT7

Timer 0 match/capture
Timer 0 overflow
Timer 1/A match

Timer B match
Basic timer overflow

CODEC INT
SIO INT for external Codec

Watch Timer INT
SIO INT
Ext INT0
Ext INT1
Ext INT2
Ext INT3

IMR0
Logic

IPR
Logic

IRQ

Stop & Idle
Release

Figure 4-2. Interrupt Structure

S3CC11B/FC11B EXCEPTIONS

 4-5

INTERRUPT CONTROL REGISTER

The calmRISC16 has 4-types registers, IRR, IMR, IIR, IPR.

INTERRUPT MASKING REGISTER

Interrupt masking register is IMR. The role of IMR masks the pending interrupt. Although any interrupt source sets
the nterrupt pending register, the interrupt cannot be send to the core if the interrupt is masked.

0: mask (defaule value)
1: unmask

INTERRUPT PROIRITY REGISTER

Interrupt priority register is IPR. The IPR register determine the serving order of interrupts when any interrupts of 21
sources occur simultaneously.

EXCEPTIONS S3CC11B/FC11B

4-6

IMRH — Interrupt Mask Register High 3F0006H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 Bits 7–6

 0 Always logic "0"

.5 External P4.4-P4.7(IRR.13) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.4 External P0.3(IRR.12)

 0 Disable interrupt request

 1 Enable interrupt request

.3 External P0.2(IRR.11) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.2 External P0.1(IRR.10) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.1 External P0.0(IRR.9) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.0 Serial I/O(IRR.8) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

S3CC11B/FC11B EXCEPTIONS

 4-7

IMRL — Interrupt Mask Register Low 3F0007H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Watch Timer(IRR.7) Interrupt Enable Bit

 0 Disable Interrupt request

 1 Enable Interrupt request

.6 SIO for External Codec(IRR.6) Interrupt Enable Bit

 0 Disable Interrupt request

 1 Enable Interrupt request

.5 CODEC(IRR.5) Interrupt Enable Bit

 0 Disable Interrupt request

 1 Enable Interrupt request

.4 Basic Timer Overflow(IRR.4) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.3 Timer B Match(IRR.3) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.2 Timer 1/A Match(IRR.2) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.1 Timer 0 Overflow(IRR.1) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

.0 Timer 0 Match or Capture(IRR.0) Interrupt Enable Bit

 0 Disable interrupt request

 1 Enable interrupt request

EXCEPTIONS S3CC11B/FC11B

4-8

INTERRUPT PRORITY REGISTERS (IPRH: 3F0008H, IPRL: 3F0009H)

.2 .1 IPRL(000009H).3.4.5

xx000: X0 > Y0 > Z0 > X1 > Y1 > Z1
x0100: X0 > Y0 > X1 > Z0 > Y1 > Z1
01100: X0 > Y0 > X1 > Y1 > Z0 > Z1
11100: X0 > Y0 > X1 > Y1 > Z1 > Z0
x0010: X0 > X1 > Y0 > Z0 > Y1 > Z1
00110: X0 > X1 > Y1 > Y0 > Z0 > Z1
10110: X0 > X1 > Y1 > Y0 >Z1 > Z0
01010: X0 > X1 > Y0 > Y1 > Z0 > Z1
11010: X0 > X1 > Y0 > Y1 > Z1 >Z0
x1110: X0 > X1 > Y1 > Z1 > Y0 > Z0
xx001: X1 > Y1 > Z1 > X0 > Y0 > Z0
x0101: X1 > Y1 > X0 > Z1 > Y0 > Z0
01101: X1 > Y1 > X0 > Y0 > Z1 > Z0
11101: X1 > Y1 > X0 > Y0 > Z0 > Z1
x0011: X1 > X0 > Y1 > Z1 > Y0 > Z0
00111: X1 > X0 > Y0 > Y1 > Z1 > Z0
10111: X1 > X0 > Y0 > Y1 > Z0 > Z1
01011: X1 > X0 > Y1 > Y0 > Z1 > Z0
11011: X1 > X0 > Y1 > Y0 > Z0 > Z1
x1111: X1 > X0 > Y0 > Z0 > Y1 > Z1

.9 .8 IPRH(000008H).10.11.12Not used .6.7 .0

Group A
0 = IRR0 > IRR1
1 = IRR1 > IRR0

Gjroup Priority:
.7 .6 .5

0 0 0 = A > B > C
0 0 1 = B > C > A
0 1 0 = A > B > C
0 1 1 = B > A > C
1 0 0 = C > A > B
1 0 1 = C > B > A
1 1 0 = A > C > B
1 1 1 = A > B > C

Group B
0 = IRR2 > (IRR3, IRR4)
1 = (IRR3, IRR4) > IRR2

Subgroup B
0 = IRR3 > IRR4
1 = IRR4 > IRR3

Group C
0 = IRR5 > (IRR6, IRR7)
1 = (IRR6, IRR7) > IRR3

Subgroup C
0 = IRR6 > IRR7
1 = IRR7 > IRR6

IRR7 IRR6 IRR5 IRR4 IRR3 IRR2 IRR1 IRR0

IRR15 IRR14 IRR13 IRR12 IRR11 IRR10 IRR9 IRR8

IPRL (000005H)

IPRH (000004H)

Group 0 (X0, Y0, Z0

Group 1 (X1, X1, Z1)

Group C Group B Group A

NOTES:
1. X, Y, Z represent priority groups (A, B, or C) determined by bits (7, 4, 1)
2 If bits (7, 4, 1) are (1, 1, 1), then X, Y, Z is corresponded to A, B, C.
3 If bits (7, 4, 1) are (1, 0, 1), then X, Y, Z is corresponded to C, B, A.

Figure 4-3. Interrupt Priority Register (IPR)

S3CC11B/FC11B EXCEPTIONS

 4-9

INTERRUPT ID REGISTER

Interrupt ID register (IIR) represents an "ID" of the interrupt to be serviced. When any interrupt of 21 sources
requests a service from core, the core can selects the target interrupt source by reading IIR.

The pending bit is cleared by hardware when the CPU reads the IIR register value in an interrupt service routine. But
also the corresponding bit is cleared by S/W when it is written ID*2 value to the IIR register.

Where the ID is a bit of IRR (For example, the ID of SIO INT is "8"). All pending bits are cleared when "80H" is
written to IIR register.

EXCEPTIONS S3CC11B/FC11B

4-10

NOTES

S3CC11B/FC11B MEMORY MAP

 5-1

5 MEMORY MAP

OVERVIEW

To support the control of peripheral hardware, the address for peripheral control registers are memory -mapped to the
area higher than 3F0000H. Memory mapping lets you use a mnemonic as the operand of an instruction in place of
the specific memory location.
In this section, detailed descriptions of the S3CC11B/FC11B control registers are presented in an easy-to-read
format.

You can use this section as a quick-reference source when writing application programs.

This control register is divided into three areas.

Control Register

Timer and
Peripheral Control Register

Port Register Area

System Control Register Area

3F007F

3F0040H
3F003FH

3F0010H
3F000FH

3F0000H

Figure 5-1. Memory Mapped IO Registers

MEMORY MAP S3CC11B/FC11B

5-2

Table 5-1. Registers
Register Name Mnemonic Hex Reset R/W

Locations 3F0000H, 3F0001H are not mapped

Clock control register CLKCON 3F0002H 00H R/W

Oscillator control register OSCCON 3F0003H 00H R/W

Interrupt request register high IRRH 3F0004H 00H R/W

Interrupt request register low IRRL 3F0005H 00H R/W

Interrupt mask register high IMRH 3F0006H 00H R/W

Interrupt mask register low IMRL 3F0007H 00H R/W

Interrupt priority register high IPRH 3F0008H 00H R/W

Interrupt priority register low IPRL 3F0009H 00H R/W

Location 3F000AH is not mapped

Interrupt ID register IIR 3F000BH – R/W

Basic timer control register BTCON 3F000CH 70H R/W

Basic timer counter BTCNT 3F000DH 00H R

Watchdog timer enable register WDTEN 3F000EH 00H R/W

Location 3F000FH is not mapped
Port 0 data register P0 3F0010H 00H R/W

Port 1 data register P1 3F0011H 00H R/W

Port 2 data register P2 3F0012H 00H R/W

Port 3 data register P3 3F0013H 00H R/W

Port 4 data register P4 3F0014H 00H R/W

Port 5 data register P5 3F0015H 00H R/W

Port 6 data register P6 3F0016H 00H R/W

Port 7 data register P7 3F0017H 00H R/W

Port 8 data register P8 3F0018H 00H R/W

Port 9 data register P9 3F0019H 00H R/W

Locations 3F001AH-3F001FH are not mapped

Port 0 control register high P0CONH 3F0020H 00H R/W

Port 0 control register low P0CONL 3F0021H 00H R/W

Port 0 pull-up resistors enable register P0PUR 3F0022H 00H R/W

Port 0 interrupt state setting register P0STA 3F0023H 00H R/W

Port 1 control register P1CON 3F0024H 00H R/W

Locations 3F0025H-3F0027H are not mapped

Port 2 control register high P2CONH 3F0028H 00H R/W

Port 2 control register low P2CONL 3F0029H 00H R/W

Port 2 pull-up resistors enable register P2PUR 3F002AH 00H R/W

Location 3F002BH is not mapped

S3CC11B/FC11B MEMORY MAP

 5-3

Table 5-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W
Port 3 control register high P3CONH 3F002CH 00H R/W
Port 3 control register low P3CONL 3F002DH 00H R/W
Port 3 pull-up resistors enable register P3PUR 3F002EH 00H R/W

Location 3F002FH is not mapped
Port 4 control register high P4CONH 3F0030H 00H R/W
Port 4 control register low P4CONL 3F0031H 00H R/W
Port 4 pull-up resistors enable register P4PUR 3F0032H 00H R/W
Port 4 interrupt control register P4INT 3F0033H 00H R/W
Port 5 control register high P5CONH 3F0034H 00H R/W
Port 5 control register low P5CONL 3F0035H 00H R/W
Port 5 pull-up resistors enable register P5PUR 3F0036H 00H R/W

Location 3F0037H is not mapped
Port 6 control register P6CON 3F0038H 00H R/W

Location 3F0039H is not mapped
Port 7 control register P7CON 3F003AH 00H R/W

Location 3F003BH is not mapped
Port 8 control register P8CON 3F003CH 00H R/W

Location 3F003DH is not mapped
Port 9 control register P9CON 3F003EH 00H R/W

Location 3F003FH is not mapped
Timer 0 counter register T0CNT 3F0040H 00H R
Timer 0 data register T0DATA 3F0041H FFH R/W
Timer 0 control register T0CON 3F0042H 00H R/W

Location 3F0043H is not mapped
Timer A counter register TACNT 3F0044H 00H R
Timer B counter register TBCNT 3F0045H 00H R
Timer A data register TADATA 3F0046H FFH R/W
Timer B data register TBDATA 3F0047H FFH R/W
Timer 1/A control register TACON 3F0048H 00H R/W
Timer B control register TBCON 3F0049H 00H R/W

Locations 3F004AH-3F004BH are not mapped
SIO data register high byte for external codec CSIODATAH 3F004CH 00H R/W
SIO control register low byte for external codec CSIODATAL 3F004DH 00H R/W
SIO control register for external codec CSIOCON 3F004EH 00H R/W

Locations 3F004FH-3F0050H are not mapped
10-bit A/D converter control register ADCON10 3F0051H 00H R/W
10-bit A/D converter data register high ADDATAH10 3F0052H – R/W
10-bit A/D converter data register low ADDATAL10 3F0053H – R/W

MEMORY MAP S3CC11B/FC11B

5-4

 Table 5-1. Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

SmartMedia control register SMCON 3F0058H x0H R/W

ECC count register ECCNT 3F0059H 00H R/W

ECC data register high ECCH 3F005AH 00H R/W

ECC data register low ECCL 3F005BH 00H R/W

ECC data register extension ECCX 3F005CH 00H R/W

ECC clear register ECCCLR 3F005DH 00H W

ECC result data register high ECCRSTH 3F005EH 00H R/W

ECC result data register low ECCRSTL 3F005FH 00H R/W

Locations 3F0060H-3F0063H are not mapped

Codec control register CDCON 3F0064H 00H R/W

Locations 3F0065H-3F0067H are not mapped

A/D data register high ADDATAH 3F0068H – R

A/D data register low ADDATAL 3F0069H – R

D/A data register high DADATAH 3F006AH 00H R/W

D/A data register low DADATAL 3F006BH 00H R/W

SIO data register SIODATA 3F006CH 00H R/W

SIO pre-scale register SIOPS 3F006DH 00H R/W

SIO control register SIOCON 3F006EH 00H R/W

Location 3F006FH is not mapped

Watch timer control register WTCON 3F0070H 00H R/W

Location 3F0071H is not mapped

LCD control register LCON 3F0072H 00H R/W

LCD mode register LMOD 3F0073H 00H R/W

Battery level detector control register BLDCON 3F0074H 00H R/W

Location 3F0075H is not mapped

PLL control register PLLCON 3F0076H 00H R/W

PLL data register PLLDATA 3F0077H 00H R/W

Flash memory control register FMCON 3F0078H 00H R/W

Locations 3F0079H-3F007FH are not mapped

S3CC11B/FC11B INSTRUCTION SET

 6-1

6 INSTRUCTION SET

ALU INSTRUCTIONS

In operations between a 16-bit general register and an immediate value, the immediate value is zero-extended to 16-
bit. The following figure shows an example of 7-bit immediate numbers.

7-bits Immediate

7-bits Immediate'0'

imm: 7

15 7

6 0

In operations between a 22-bit register and an immediate value, the immediate value is zero-extended to 22-bit. In
operations between a 22-bit register and a 16-bit register, the 16-bit register is zero-extended to 22-bit. The overflow
flag in a 16-bit arithmetic operation is saved to V flag in SR register. ALU instructions are classified into 3 classes as
follows.

• ALUop Register, Immediate

• ALUop Register, Register

• ALUop Register

INSTRUCTION SET S3CC11B/FC11B

6-2

ALUOP REGISTER, IMMEDIATE

ADD/ADC/SUB/SBC/AND/OR/XOR/TST/CMP/CMPU Rn, #imm:16

The instructions perform an ALU operation of which source operands are a 16-bit general register Rn and a 16-bit
immediate value. In the instructions TST/CMP/CMPU, only T flag is updated accordingly as the result. In the
instructions ADD/ADC/SUB/SBC, the value of T flag is the carry flag of the operations, and the value of V flag
indicates whether overflow or underflow occurs. In the instructions AND/OR/XOR/TST, the value of T flag indicates
whether the result is zero (T=1). “CMP {GT|GE|EQ}, Rn, #imm:16” instructions are for signed comparison operations
(GT for greater than, GE for greater than or equal to and EQ for equal to), and “CMPU {GT|GE}, Rn, #imm:16”
instructions are for unsigned comparison operations.

NOTE: imm:16 i s defined as a 16-bit immediate number

ADD/SUB An, #imm:16

The immediate value is zero-extended to 22-bit value. No flag update occurs.

ADD/SUB Rn, #imm:7

The immediate value is zero-extended to 16-bit value. T flag is updated to the carry of the operation. V flag is
updated.

AND/OR/XOR/TST R0, #imm:8

The immediate value is zero-extended to 16-bit value. T flag indicates whether the lower 8-bit of the logical operation
result is zero.

CMP EQ, Rn, #imm:8

The immediate value is zero-extended to 16-bit value. Rn is restricted to R0 to R7. T flag is updated as the result of
the instruction.

CMP GE, Rn, #imm:6

The immediate value is zero-extended to 16-bit value. The instruction is for signed compare. T flag is updated as the
result of the instruction.

ADD/SUB An, #imm:5

The immediate value is zero-extended to 22-bit value. No flag is updated.

S3CC11B/FC11B INSTRUCTION SET

 6-3

ALUOP REGISTER, REGISTER

ADD/SUB/ADC/SBC/AND/OR/XOR/TST/CMP/CMPU Rn, Ri

The instructions perform an ALU operation of which source operands are a pair of 16-bit general registers. In the
instructions TST/CMP/CMPU, only T flag is updated as the result. In the instructions ADD/ADC/SUB/SBC, the value
of T flag is the carry of the operations, and the value of V flag indicates whether overflow or underflow occurs. In the
instructions AND/OR/XOR/TST, the value of T flag indicates whether the result is zero. “CMP {GT|GE|EQ}, Rn, Ri”
instructions are for signed comparison, and “CMPU {GT|GE}, Rn, Ri” instructions are for unsigned comparison.

ADD/SUB An, Ri

16-bit general register Ri is zero-extended to 22-bit value. The result is saved in the 22-bit register An. No flag update
occurs.

CMP EQ, An, Ai

The instruction compares two 22-bit registers.

MUL {SS|SU|US|UU}, Rn, Ri

The general registers Rn and Ri can be one of R0 to R7. The instruction multiplies the lower byte of Rn and the
lower byte of Ri, and the 16-bit result is saved in Rn. The optional field, SS, SU, US, and UU, indicates whether the
source operands are signed value or unsigned value. The first letter of the two letter qualifiers corresponds to Rn, and
the second corresponds to Ri. For example, in the instruction “MUL SU, R0, R1”, the 8-bit signed value in the lower
byte of R0 and the 8-bit unsigned value in the lower byte of R1 are multiplied, and the 16-bit result is saved in R0.

RR/RL/RRC/SR/SRA/SLB/SRB/DT/INCC/DECC/COM/COM2/COMC/EXT Rn

For “DT Rn”(Decrement and Test) and “COM Rn”(Complement) instructions, T flag indicates whether the result is
zero. In the instruction of “EXT Rn”(Sign Extend), no flag update occurs. In all other instructions, carry-out of the
operation is transferred to T flag. In the instruction of DT, INCC, and DECC, V flag indicates whether overflow or
underflow occurs.

INSTRUCTION SET S3CC11B/FC11B

6-4

LOAD INSTRUCTIONS

“Load instructions” move data from register/memory/immediate to register/memory. When the destination is a
memory location, only general registers and extension registers can be the source. We can classify “Load
instructions” into the following 4 classes.

• LD Register, Register

• LD Register, Immediate

• LD Data Memory, Register / LD Register, Data Memory

• LD Register, Program Memory

LD REGISTER, REGISTER

LD Rn, Ri / LD An, Ai

The instructions move 16-bit or 22-bit data from the source register to the destination register. When the destination
register is R6/R7, the zero flag Z0/Z1 is updated. In all other cases, no flag update occurs.

LD Rn, Ei / LD En, Ri

In the instruction “LD Rn, Ei”, the 6-bit data in Ei is zero-extended to 16-bit data, and then transferred to Rn. When
the destination register is R6/R7, the zero flag Z0/Z1 is updated. In the instruction “LD En, Ri”, least significant 6 bits
of Ri are transferred to En. Rn/Ri is one of the registers from R0 to R7.

LD R0, SPR / LD SPR, R0
SPR : SR, SPCL_FIQ, SPCH_FIQ, SSR_FIQ, SPCL_IRQ, SPCH_IRQ, SSR_IRQ, SSR_SWI

The instructions transfer data between SPR (Special Purpose Registers) and R0. No flag update occurs except the
case that the destination register is SR.

LD An, PC

The instruction moves the value of (PC+4) to An.

S3CC11B/FC11B INSTRUCTION SET

 6-5

LD REGISTER, DATA MEMORY / LD DATA MEMORY, REGISTER

LDW Rn, @[SP+edisp:9] / LDW @[SP+edisp:9], Rn

The instructions transfer 16-bit data between a general register Rn and the memory location at the address of
(SP+edisp:9). Note SP is another name of A15. edisp:9 is an even positive displacement from 0 to 510. edisp:9 is
encoded into an 8-bit displacement value in the instruction map because the LSB is always 0. When the address is
calculated, the 8-bit displacement field is shifted to the left by one bit, and then the result is added to the value of
SP. Even if the address might be specified as odd in assembly mnemonic, the LSB of the address should be
truncated to zero for word alignment.

LDW Rn, @[Ai+edisp:5] / LDW @[Ai+edisp:5], Rn

The instructions transfer 16-bit data between a general register Rn and the memory location at the address of
(Ai+edisp:5). edisp:5 is an even positive displacement from 0 to 30. edisp:5 is encoded into an 4-bit displacement
value in the instruction map because the LSB is always 0. When the address is calculated, the 4-bit displacement
field is shifted to the left by one bit, and then the result is added to the value of Ai. Even if the address might be
specified as odd in assembly mnemonic, the LSB of the address should be truncated to zero for word alignment.

LDW Rn, @[Ai+disp:16] / LDW @[Ai+disp:16], Rn

The instructions transfer 16-bit data between a general register Rn and the memory location at the address of
(Ai+disp:16). disp:16 is an positive displacement from 0 to FFFFh. If the address is odd, the LSB of the address is
set to zero for word alignment.

LDW Rn, @[Ai+Rj] / LDW @[Ai+Rj], Rn

The instructions transfer 16-bit data between a general register Rn and the memory location at the address of
(Ai+Rj). The value of Rj is zero-extended to 22-bit value. If the address is odd, the LSB of the address is set to zero
for word alignment.

LDW An, @[Ai+edisp:5] / LDW @[Ai+edisp:5], An

The instructions transfer 22-bit data between an address register An and the memory location at the address of
(Ai+edisp:5). edisp:5 is an even positive displacement from 0 to 30. edisp:5 is encoded into an 4-bit displacement
value in the instruction map because the LSB is always 0. When the address is calculated, the 4-bit displacement
field is shifted to the left by one bit, and then the result is added to the value of Ai. Even if the address might be
specified as odd in assembly mnemonic, the LSB of the address should be truncated to zero for word alignment.

LDW An, @[Ai+disp:16] / LDW @[Ai+disp:16], An

The instructions transfer 22-bit data between an address register An and the memory location at the address of
(Ai+disp:16). disp:16 is an positive displacement from 0 to FFFFh. If the address is odd, the LSB of the address is
set to zero for word alignment.

LDW An, @[Ai+Rj] / LDW @[Ai+Rj], An

The instructions transfer 22-bit data between an address register An and the memory location at the address of
(Ai+Rj). The value of Rj is zero-extended to 22-bit value. If the address is odd, the LSB of the address is set to zero
for word alignment.

INSTRUCTION SET S3CC11B/FC11B

6-6

PUSH Rn/PUSH Rn, Rm/PUSH An/ PUSH An, Am

The instruction “PUSH Rn” transfers 16-bit data from the register Rn to the memory location at the address of SP,
and then decrements the value of SP by 2. The register Rn should not be R15. The operation of “PUSH R15” is
undefined. The instruction “PUSH Rn, Rm” pushes Rn and then Rm. The registers Rn and Rm should not be the
same. The registers Rn and Rm should not be R15. The instruction “PUSH An” pushes Rn and then En. When the
extension register En is pushed, the value of En is zero-extended to 16-bit data. The register An should not be A15.
The instruction “PUSH An, Am” pushes An and then Am. The registers An and Am should not be the same

POP Rn/POP Rn, Rm/POP An/ POP An, Am

The instruction “POP Rn” increments the value of SP by 2, and then transfers 16-bit data to the register Rn from the
memory location at the address of SP. The register Rn should not be R15. The operation of “POP R15” is undefined.
The instruction “POP Rn, Rm” pops Rn and then Rm. The registers Rn and Rm should not be the same. The
registers Rn and Rm should not be R15. The instruction “POP An” pops En and then Rn. When the extension
register En is popped, the least significant 6 bits are transferred to En. The register An should not be A15. The
instruction “POP An, Am” pops An and then Am. The registers An and Am should not be the same

LDB Rn, @[Ai+disp:4] / LDB @[Ai+disp:4], Rn

The instructions transfer 8-bit data between the general register Rn and the memory location at the address of
(Ai+disp:4). disp:4 is a positive displacement from 0 to 15. The general register Rn is one R0 to R7. In the instruction
“LDB Rn, @[Ai+disp:4]”, the 8-bit data is zero-extended to 16-bit data, and then written into Rn. In the instruction
“LDB @[Ai+disp:8], Rn”, the least significant byte of Rn is transferred to the memory.

LDB Rn, @[Ai+disp:16] / LDB @[Ai+disp:16], Rn

The instructions transfer 8-bit data between the general register Rn and the memory location at the address of
(Ai+disp:16). disp:16 is a positive displacement from 0 to FFFFh. The general register Rn is one of R0 to R7. In the
instruction “LDB Rn, @[Ai+disp:16]”, the -bit data is zero-extended to 16-bit data, and then written into Rn. In the
instruction “LDB @[Ai+disp:16], Rn”, the least significant byte of Rn is transferred to the memory.

LDB R0, @[A8+disp:8] / LDB @[A8+disp:8], Rn

The instructions transfer 8-bit data between the general register R0 and the memory location at the address of
(A8+disp:8). disp:8 is a positive displacement from 0 to 255. In the instruction “LDB R0, @[A8+disp:8]”, the 8-bit
data is zero-extended to 16-bit data, and then written into R0. In the instruction “LDB @[A8+disp:8], R0”, the least
significant byte of R0 is transferred to the memory.

LDB Rn, @[Ai+Rj] / LDB @[Ai+Rj], Rn

The instructions transfer 8-bit data between the general register Rn and the memory location at the address of
(Ai+Rj). The value of Rj is zero-extended to 22-bit value. The general register Rn is one of the 8 registers from R0 to
R7. In the instruction “LDB Rn, @[Ai+Rj]”, the 8-bit data is zero-extended to 16-bit data, and then written into R0. In
the instruction “LDB @[Ai+Rj], Rn”, the least significant byte of Rn is transferred to the memory.

S3CC11B/FC11B INSTRUCTION SET

 6-7

LD REGISTER, PROGRAM MEMORY

LDC Rn, @Ai

The instruction transfers 16-bit data to Rn from program memory at the address of Ai.

LD REGISTER, # IMMEDIATE

LD Rn, #imm:8 / LD Rn, #imm:16 / LD An, #imm:22

The instructions move an immediate data to a register. In the instruction “LD Rn, #imm:8”, the immediate value is
zero-extended to 16-bit value.

INSTRUCTION SET S3CC11B/FC11B

6-8

BRANCH INSTRUCTIONS

CalmRISC16 has 2 classes of branch instructions: with a delay slot and without a delay slot. If a delay slot is filled
with a useful instruction (or an instruction which is not NOP), then the performance degradation due to the control
dependency can be minimized. However, if the delay slot cannot be used, then it should be NOP instruction, which
can increase the program code size. In this case, the corresponding branch instruction without a delay slot can be
used to avoid using NOP.

Some instructions are not permitted to be in the delay slot. The prohibited instructions are as follows.

— All 2-word instructions

— All branch and jump instructions including SWI, RETD, RET_SWI, RET_IRQ, RET

— BREAK instructions

When a prohibited instruction is in the delay slot, the operation of CalmRISC16 is undefined or unpredictable.

BSRD eoffset:13

In the instruction, called branch subroutine with a delay slot, the value (PC + 4) is saved into A14 register, the
instruction in the delay slot is executed, and then the program sequence is moved to (PC + 2 + eoffset:13), where
PC is the address of the instruction “BSRD eoffset:13”. The immediate value eoffset:13 is sign-extended to 22-bit
and then added to (PC+2). In general, the 13-bit offset field appears as a label in assembly programs. If the
instruction in the delay slot reads the value of A14, the value (PC+4) is read. The even offset eoffset:13 is encoded to
12bit signed offset in instruction map by dropping the least significant bit.

BRA/BRAD/BRT/BRTD/BRF/BRFD eoffset:11

In the branch instructions, the target address is (PC + 2 + eoffset:11). The immediate value eoffset:11 is sign-
extended to 22-bit and then added to (PC+2). The “D” in the mnemonic stands for a delay slot. In general, the 11-bit
offset field appears as a label in assembly programs. BRA and BRAD instructions always branch to the target
address. BRT and BRTD instructions branch to the target address if T flag is set. BRF and BRFD instructions
branch to the target address if T flag is cleared. BRAD/BRTD/BRFD instructions are delay slot branch instructions,
therefore the instruction in the delay slot is executed before the branch to the target address or the branch decision
is made. The even offset eoffset:11 is encoded to 10-bit signed offset in instruction map by dropping the least
significant bit.

BRA/BRAD EC:2, eoffset:8

In the branch instructions, the target address is (PC + 2 + eoffset:8). The immediate value eoffset:8 is sign-extended
to 22-bit and then added to (PC+2). The EC:2 field indicates one of the 4 external conditions from EC0 to EC3 (input
pin signals to CalmRISC16). When the external condition corresponding to EC:2 is set, the program branches to the
target address. BRAD has a delay slot. The even offset eoffset:8 is encoded to 7-bit signed offset in instruction map
by dropping the least significant bit.

S3CC11B/FC11B INSTRUCTION SET

 6-9

BNZD R6/R7, eoffset:8

In the branch instruction, the target address is (PC + 2 + eoffset:8). The immediate value eoffset:8 is sign- extended
to 22-bit and then added to (PC+2). “BNZD R6, eoffset:8” instruction branches to the target address if Z0 flag is
cleared. “BNZD R7, eoffset:8” instruction branches if Z1 flag is cleared. Before the branch operation, the instruction
decrements R6/R7, updates Z0/Z1 flag according to the decrement result, and then executes the instruction in the
delay slot. The instruction is used to manage loop counter with just one cycle overhead. In the end of the loop, the
value of R6/R7 is –1. When the instruction in the delay slot read the Z0/Z1 flag, the result after the decrement is
read. The even offset eoffset:8 is encoded to 7-bit signed offset in instruction map by dropping the least significant
bit.

JMP/JPT/JPF/JSR addr:22

The target address of the instructions is addr:22. JMP always branches to the target address. JPT branches to the
target address if the T flag is set. JPF branches if the T flag is cleared. JSR always branches to the target address
with saving the return address (PC+4) into A14. The instructions are 2 word instructions.

JMP/JPT/JPF/JSR Ai

The target address of the instructions is the value of Ai. JMP always branches to the target address. JPT branches
to the target address if the T flag is set. JPF branches if the T flag is cleared. JSR always branches to the target
address with saving the return address (PC+2) into A14.

SWI #imm:6/ RET_SWI/RET_IRQ/RET_FIQ

refer to the section for interrupts.

RETD

The instruction branches to the address in A14 after the execution of the instruction in the delay slot. When there is
no useful instruction adequate to the delay slot, “JMP A14” can be used instead of “RETD”.

INSTRUCTION SET S3CC11B/FC11B

6-10

BIT OPERATION

The bit operations manipulate a bit in SR register or in a memory location.

BITR/BITS/BITC/BITT @[A8+R1], #imm:3

The source as well as the destination is the 8-bit data in the data memory at the address (A8 + R1). The #imm:3
field chooses a bit position among the 8 bits. BITR resets the bit #imm:3 of the source, and then writes the result to
the destination, the same memory location. BITS sets the bit #imm:3 of the source, and then writes the result to the
destination. BITC complements the bit #imm:3 of the source, and then writes the result to the destination. BITT does
not write any data to the destination. T flag indicates whether the bit #imm:3 of the source is zero. In other words,
when the bit #imm:3 of the source is zero, T flag is set. BITR and BITS can be used to implement a semaphore
mechanism or lock acquisition/release.

CLRSR/SETSR/TSTSR bit
bit : FE, IE, TE, Z0, Z1, V, PM

CLRSR instruction clears the corresponding bit of SR. SETSR instruction sets the corresponding bit of SR. TSTSR
tests whether the corresponding bit is zero, and stores the result in T flag. For example, when IE flag is zero,
“TSTSR IE” instruction sets the T flag. We can clear the T flag by the instruction “CMP GT, R0, R0”. We can set the
T flag by the instruction “CMP EQ, R0, R0”.

S3CC11B/FC11B INSTRUCTION SET

 6-11

MISCELLANEOUS INSTRUCTIONS

SYS #imm:5

The instruction activates the output port nSYSID. The #imm:5 is transferred to outside on DA[4:0]. The most
significant 17 bits remain unchanged. The instruction is for system command to outside such as power down
modes.

COP #imm:13

The instruction activates the output port nCOPID. The #imm:13 is transferred to outside on COPIR[12:0]. The
instruction is used to transfer instruction to coprocessor. The #imm:13 may be from 200h to 1FFFh.

CLD Rn, #imm:5 / CLD #imm:5, Rn

The instruction activates the output port nCOPID, nCLDID, and CLDWR. The least significant 13 bits of the
instruction is transferred to outside on COPIR[12:0]. The #imm:5 is transferred to outside on DA[4:0]. The
instructions move 16-bit data between Rn and a coprocessor register implied by the #imm:5 field. CLDWR signal
indicates whether the data movement is from CalmRISC16 to coprocessor. The register Rn is one 8 registers from
R0 to R7.

NOP

No operation.

BREAK

The software break instruction activates nBRK signal, and holds PA for one cycle. It’s for debugging operation.

INSTRUCTION SET S3CC11B/FC11B

6-12

CALMRISC16 INSTRUCTION SET MAP

Table 6-1. CalmRISC16 Instruction Set Map

 15 8 7 0

ADD Rn, #imm:7 0 0 0 0 Rn 0 Imm:7

SUB Rn, #imm:7 0 0 0 0 Rn 1 Imm:7

LD Rn, #imm:8 0 0 0 1 Rn Imm:8

LDW Rn, @[SP + edisp:9] 0 0 1 0 Rn Edisp:9

LDW @[SP + edisp:9], Ri 0 0 1 1 Ri Edisp:9

LDW Rn, @[Ai + edisp:5] 0 1 0 0 Rn 0 Ai Edisp:5

LDW Rn, @[Ai + Rj] 0 1 0 0 Rn 1 Ai Rj

LDW @[An + edisp:5], Ri 0 1 0 1 Ri 0 An Edisp:5

LDW @[An + Rm], Ri 0 1 0 1 Ri 1 An Rm

LDB Dn, @[Ai + disp:4] 0 1 1 0 0 Dn 0 Ai Disp:4

LDB Dn, @[Ai + Rj] 0 1 1 0 0 Dn 1 Ai Rj

LDW An, @[Ai + disp:4] 0 1 1 0 1 An 0 Ai Disp:4

LDW An, @[Ai + Rj] 0 1 1 0 1 An 1 Ai Rj

LDB @[An + disp:4], Di 0 1 1 1 0 Di 0 An Disp:4

LDB @[An + Rm], Di 0 1 1 1 0 Di 1 An Rm

LDW @[An + disp:4], Ai 0 1 1 1 1 Ai 0 An Disp:4

LDW @[An + Rm], Ai 0 1 1 1 1 Ai 1 An Rm

ADD Rn, Ri 1 0 0 0 Rn 0 0 0 0 Ri

SUB Rn, Ri 1 0 0 0 Rn 0 0 0 1 Ri

ADC Rn, Ri 1 0 0 0 Rn 0 0 1 0 Ri

SBC Rn, Ri 1 0 0 0 Rn 0 0 1 1 Ri

AND Rn, Ri 1 0 0 0 Rn 0 1 0 0 Ri

OR Rn, Ri 1 0 0 0 Rn 0 1 0 1 Ri

XOR Rn, Ri 1 0 0 0 Rn 0 1 1 0 Ri

TST Rn, Ri 1 0 0 0 Rn 0 1 1 1 Ri

CMP GE, Rn, Ri 1 0 0 0 Rn 1 0 0 0 Ri

CMP GT, Rn, Ri 1 0 0 0 Rn 1 0 0 1 Ri

CMPU GE, Rn, Ri 1 0 0 0 Rn 1 0 1 0 Ri

CMPU GT, Rn, Ri 1 0 0 0 Rn 1 0 1 1 Ri

CMP EQ, Rn, Ri 1 0 0 0 Rn 1 1 0 0 Ri

LD Rn, Ri 1 0 0 0 Rn 1 1 0 1 Ri

RR Rn 1 0 0 0 0 0 0 0 1 1 1 0 Rn

RL Rn 1 0 0 0 0 0 0 1 1 1 1 0 Rn

S3CC11B/FC11B INSTRUCTION SET

 6-13

Table 6-1. CalmRISC16 Instruction Set Map (Continued)

 15 8 7 0

RRC Rn 1 0 0 0 0 0 1 0 1 1 1 0 Rn

SRB Rn 1 0 0 0 0 0 1 1 1 1 1 0 Rn

SR Rn 1 0 0 0 0 1 0 0 1 1 1 0 Rn

SRA Rn 1 0 0 0 0 1 0 1 1 1 1 0 Rn

JPF Ai 1 0 0 0 0 1 1 0 1 1 1 0 0 Ai

JPT Ai 1 0 0 0 0 1 1 0 1 1 1 0 1 Ai

JMP Ai 1 0 0 0 0 1 1 1 1 1 1 0 0 Ai

JSR Ai 1 0 0 0 0 1 1 1 1 1 1 0 1 Ai

SLB Rn 1 0 0 0 1 0 0 0 1 1 1 0 Rn

DT Rn 1 0 0 0 1 0 0 1 1 1 1 0 Rn

INCC Rn 1 0 0 0 1 0 1 0 1 1 1 0 Rn

DECC Rn 1 0 0 0 1 0 1 1 1 1 1 0 Rn

COM Rn 1 0 0 0 1 1 0 0 1 1 1 0 Rn

COM2 Rn 1 0 0 0 1 1 0 1 1 1 1 0 Rn

COMC Rn 1 0 0 0 1 1 1 0 1 1 1 0 Rn

EXT Rn 1 0 0 0 1 1 1 1 1 1 1 0 Rn

ADD Rn, #imm:16 1 0 0 0 0 0 0 0 1 1 1 1 Rn

ADD An, #imm:16 1 0 0 0 0 0 0 1 1 1 1 1 0 An

SUB An, #imm:16 1 0 0 0 0 0 0 1 1 1 1 1 1 An

ADC Rn, #imm:16 1 0 0 0 0 0 1 0 1 1 1 1 Rn

SBC Rn, #imm:16 1 0 0 0 0 0 1 1 1 1 1 1 Rn

AND Rn, #imm:16 1 0 0 0 0 1 0 0 1 1 1 1 Rn

OR Rn, #imm:16 1 0 0 0 0 1 0 1 1 1 1 1 Rn

XOR Rn, #imm:16 1 0 0 0 0 1 1 0 1 1 1 1 Rn

TST Rn, #imm:16 1 0 0 0 0 1 1 1 1 1 1 1 Rn

CMP GE, Rn, #imm:16 1 0 0 0 1 0 0 0 1 1 1 1 Rn

CMP GT, Rn, #imm:16 1 0 0 0 1 0 0 1 1 1 1 1 Rn

CMPU GE, Rn, #imm:16 1 0 0 0 1 0 1 0 1 1 1 1 Rn

CMPU GT, Rn, #imm:16 1 0 0 0 1 0 1 1 1 1 1 1 Rn

CMP EQ, Rn, #imm:16 1 0 0 0 1 1 0 0 1 1 1 1 Rn

LD Rn, #imm:16 1 0 0 0 1 1 0 1 1 1 1 1 Rn

Reserved 1 0 0 0 1 1 1 1 1 1 1

CMP EQ, Dn, #imm:8 1 0 0 1 0 Dn Imm:8

AND R0, #imm:8 1 0 0 1 1 0 0 0 Imm:8

INSTRUCTION SET S3CC11B/FC11B

6-14

Table 6-1. CalmRISC16 Instruction Set Map (Continued)

 15 8 7 0

OR R0, #imm:8 1 0 0 1 1 0 0 1 Imm:8

XOR R0, #imm:8 1 0 0 1 1 0 1 0 Imm:8

TST R0, #imm:8 1 0 0 1 1 0 1 1 Imm:8

LDB R0, @[A8+ disp:8] 1 0 0 1 1 1 0 0 Disp:8

LDB @[A8+ disp:8],R0 1 0 0 1 1 1 0 1 Disp:8

BITR @[A8+R1], bs:3 1 0 0 1 1 1 1 0 0 0 0 0 0 Bs:3

BITS @[A8+R1], bs:3 1 0 0 1 1 1 1 0 0 0 0 0 1 Bs:3

BITC @[A8+R1], bs:3 1 0 0 1 1 1 1 0 0 0 0 1 0 Bs:3

BITT @[A8+R1], bs:3 1 0 0 1 1 1 1 0 0 0 0 1 1 Bs:3

SYS #imm:5 1 0 0 1 1 1 1 0 0 0 1 Imm:5

SWI #imm:6 1 0 0 1 1 1 1 0 0 1 Imm:6

CLRSR bs:3 1 0 0 1 1 1 1 0 1 0 0 0 0 Bs:3

SETSR bs:3 1 0 0 1 1 1 1 0 1 0 0 0 1 Bs:3

TSTSR bs:3 1 0 0 1 1 1 1 0 1 0 0 1 0 Bs:3

NOP 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0

BREAK 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1

LD R0, SR 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0

LD SR, R0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1

RET_FIQ 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0

RET_IRQ 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1

RET_SWI 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0

RETD 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1

LD R0, SPCL_FIQ 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0

LD R0, SPCH_FIQ 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1

LD R0, SSR_FIQ 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1

LD R0, SPCL_IRQ 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0

LD R0, SPCH_IRQ 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1

LD R0, SSR_IRQ 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1

Reserved 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0

LD R0, SSR_SWI 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1

Reserved 1 0 0 1 1 1 1 0 1 0 1 0 1 1

S3CC11B/FC11B INSTRUCTION SET

 6-15

Table 6-1. CalmRISC16 Instruction Set Map (Continued)

 15 8 7 0

LD SPCL_FIQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0

LD SPCH_FIQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1

LD SSR_FIQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1

LD SPCL_IRQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0

LD SPCH_IRQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1

LD SSR_IRQ, R0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1

Reserved 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0

LD SSR_SWI, R0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0

Reserved 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1

Reserved 1 0 0 1 1 1 1 0 1 0 1 1 1 1

Reserved 1 0 0 1 1 1 1 0 1 1 0

Reserved 1 0 0 1 1 1 1 0 1 1 1 0

LD An, PC 1 0 0 1 1 1 1 0 1 1 1 1 0 An

Reserved 1 0 0 1 1 1 1 0 1 1 1 1 1

JPF adr:22 1 0 0 1 1 1 1 1 0 0 Adr[21:16]

JPT adr:22 1 0 0 1 1 1 1 1 0 1 Adr[21:16]

JMP adr:22 1 0 0 1 1 1 1 1 1 0 Adr[21:16]

JSR adr:22 1 0 0 1 1 1 1 1 1 1 Adr[21:16]

LDC Rn, @Ai 1 0 1 0 Rn 0 0 0 0 0 Ai

Reserved 1 0 1 0 0 0 0 0 1

LD Dn, Ei 1 0 1 0 0 Dn 0 0 0 1 0 Ei

LD En, Di 1 0 1 0 0 Di 0 0 0 1 1 En

CMP EQ, An, Ai 1 0 1 0 1 An 0 0 0 1 0 Ai

LD An, Ai 1 0 1 0 1 An 0 0 0 1 1 Ai

LDW Rn, @[Ai+disp:16] 1 0 1 0 Rn 0 0 1 0 0 Ai

LDW @[An+disp:16], Ri 1 0 1 0 Ri 0 0 1 0 1 An

LDB Dn, @[Ai+disp:16] 1 0 1 0 0 Dn 0 0 1 1 0 Ai

LDB @[An+disp:16], Di 1 0 1 0 0 Di 0 0 1 1 1 An

LDW An, @[Ai+disp:16] 1 0 1 0 1 An 0 0 1 1 0 Ai

LDW @[An+disp:16], Ai 1 0 1 0 1 Ai 0 0 1 1 1 An

CMP GE, Dn, #imm:6 1 0 1 0 0 Dn 0 1 Imm:6

ADD An, #imm:5 1 0 1 0 1 An 0 1 0 imm:5

SUB An, #imm:5 1 0 1 0 1 An 0 1 1 imm:5

INSTRUCTION SET S3CC11B/FC11B

6-16

Table 6-1. CalmRISC16 Instruction Set Map (Continued)

 15 8 7 0

CMP EQ, An, #imm:22 1 0 1 0 0 An 1 0 Imm[21:16]

LD An, #imm:22 1 0 1 0 1 An 1 0 Imm[21:16]

ADD An, Ri 1 0 1 0 0 An 1 1 0 0 Ri

SUB An, Ri 1 0 1 0 1 An 1 1 0 0 Ri

MUL UU, Dn, Di 1 0 1 0 0 Dn 1 1 0 1 0 Di

MUL US, Dn, Di 1 0 1 0 0 Dn 1 1 0 1 1 Di

MUL SU, Dn, Di 1 0 1 0 1 Dn 1 1 0 1 0 Di

MUL SS, Dn, Di 1 0 1 0 1 Dn 1 1 0 1 1 Di

POP Rn[, Rm] 1 0 1 0 Rm 1 1 1 0 0 Rn

Reserved 1 0 1 0 0 1 1 1 0 1

POP An[, Am] 1 0 1 0 1 Am 1 1 1 0 1 An

PUSH Rn[, Rm] 1 0 1 0 Rm 1 1 1 1 0 Rn

Reserved 1 0 1 0 0 1 1 1 1 1

PUSH An[, Am] 1 0 1 0 1 Am 1 1 1 1 1 An

BSRD eoffset:13 1 0 1 1 Eoffset:13

BRA EC:2, eoffset:8 1 1 0 0 0 0 0 EC:2 Eoffset:8

Reserved 1 1 0 0 0 0 1

BRAD EC:2, eoffset:8 1 1 0 0 0 1 0 EC:2 Eoffset:8

BNZD H, eoffset:8 1 1 0 0 0 1 1 H 0 Eoffset:8

Reserved 1 1 0 0 0 1 1 1

BRA eoffset:11 1 1 0 0 1 0 Eoffset:11

BRAD eoffset:11 1 1 0 0 1 1 Eoffset:11

BRF eoffset:11 1 1 0 1 0 0 Eoffset:11

BRFD eoffset:11 1 1 0 1 0 1 Eoffset:11

BRT eoffset:11 1 1 0 1 1 0 Eoffset:11

BRTD eoffset:11 1 1 0 1 1 1 Eoffset:11

CLD Dn, imm:5 1 1 1 0 0 0 0 imm:5 0 Dn

CLD imm:5, Di 1 1 1 0 0 0 0 imm:5 1 Di

COP imm:13 1 1 1 Imm:13

• Dn[15:0] : R0-R7

• H[15:0] : R6, R7

• An[21:0] : A8-A15, concatenation of En and Rn

• En[5:0] : E8-E15, MS 6-bit of An

• SP : equal to A15

• EC:2 : EC0,EC1,EC2,EC3

• Disp : unsigned displacement

• Eoffset : even signed offset

• Edisp : even unsigned displacement

S3CC11B/FC11B INSTRUCTION SET

 6-17

QUICK REFERENCE

Table 6-2. Quick Reference

Instruction op1 op2 operation flag

ADD
SUB

Rn #imm:7
Ri

op1 <- op1 + op2
op1 <- op1 + ~op2 + 1

T=C, Z0, Z1,V

LD Rn #imm:8
#imm:16

Ri

op1 <- op2 Z0, Z1

LDW Rn @[SP+edisp:9]
@[Ai+edisp:5]

@[Ai+Rj]
@[Ai+disp:16]

op1 <- op2 –

LDW @[SP+edisp:9]
@[An+edisp:5]

@[An+Rm]
@[Ai+disp:16]

Ri op1 <- op2 –

LDW An @[Ai+edisp:5]
@[Ai+Rj]

@[Ai+disp:16]

op1 <- op2 –

LDW @[An+edisp:5]
@[An+Rm]

@[Ai+disp:16]

Ai op1 <- op2 –

LDB Dn @[SP+disp:8]
@[Ai+disp:4]

@[Ai+Rj]
@[Ai+disp:16]

op1<-{8’h0,op2[7:0]} –

LDB R0 @[A8+disp:8] op1<-{8’h0,op2[7:0]} –

LDB @[SP+disp:8]
@[An+disp:4]

@[Ai+Rj]
@[Ai+disp:16]

Di op1 <- op2[7:0] –

LDB @[A8+disp:8] R0 op1 <- op2[7:0] –

ADC
SBC

Rn Ri
#imm:16

op1 <- op1 + op2 + T
op1 <- op1 + ~op2 + T

T=C,V,

Z0,Z1

AND
OR
XOR

Rn Ri
#imm:16

op1 <- op1 & op2
op1 <- op1 | op2
op1 <- op1 ^ op2

T=Z,

Z0,Z1

TST Rn Ri
#imm:16

op1 & op2 T=Z

INSTRUCTION SET S3CC11B/FC11B

6-18

Table 6-2. Quick Reference (Continued)

Instruction op1 op2 operation flag

CMP GE
CMP GT
CMPU GE
CMPU GT
CMP EQ

Rn Ri

#imm:16

op1 + ~op2 + 1, T=~N
op1 + ~op2 + 1, T=~N&~Z
op1 + ~op2 + 1, T=C
op1 + ~op2 + 1, T=C&~Z
op1 + ~op2 + 1, T=Z

T

RR
RL
RRC
SRB
SR
SRA
SLB

Rn – op1 <- {op1[0],op1[15:1]}
op1 <- {op1[14:0],op1[15]}
op1 <- {T,op1[15:1]}
op1 <- {8’h00,op1[15:8]}
op1 <- {0,op1[15:1]}
op1 <- {op1[15],op1[15:1]}
op1 <- {op1[7:0],8’h00}

T=op1[0]
T=op1[15]
T=op1[0]
T=op1[7]
T=op1[0]
T=op1[0]
T= op1[8]

DT Rn op1 <- op1 + 0xffff T=Z,

Z0,Z1,V

COM Rn op1 <- ~op1 T=Z,Z0,

Z1

INCC
DECC
COM2
COMC

Rn op1 <- op1 + T
op1 <- op1 + 0xffff + T
op1 <- ~op1 + 1
op1 <- ~op1 + T

T=C,Z0,

Z1

EXT Rn op1<-{8{op1[7]},op1[7:0]} Z0, Z1

JPF
JPT
JMP
JSR

Ai

addr:22

 if(T==0) PC <- op1
if(T==1) PC <- op1
PC <- op1
A14 <- PC+(2|4), PC< -op1

–

ADD Rn #imm:16 op1 <- op1 + op2 T=C,

Z0,Z1,V

ADD
SUB

An #imm:16

#imm:5

Ri

op1 <- op1 + op2
op1 <- op1 – op2

–

CMP EQ Dn #imm:8 op1 + ~op2 + 1 T=Z

AND
OR
XOR
TST

R0 #imm:8 op1 <- op1 & {8’h00,op2}
op1 <- op1 | {8’h00,op2}
op1 <- op1 ^ {8’h00,op2}
op1 & {8’h00,op2}

T=Z[7:0]

BITR
BITS
BITC
BITT

@[A8+R1] bs:3 op1[op2] <- 0
op1[op2] <- 1
op1[op2] <- ~op1[op2]
op1[op2] <- op1[op2]

T= ~op1[op2]

SYS #imm:5 – DA[4:0] <- op1 –

SWI #imm:6 – A14 <- PC+2, PC <- op2*4 IE, TE

S3CC11B/FC11B INSTRUCTION SET

 6-19

Table 6-2. Quick Reference (Continued)

Instruction op1 op2 operation flag

CLRSR
SETSR
TSTSR

bs:3 – SR[op1] <- 0
SR[op1] <- 1
T <- ~SR[op1]

–

RETD – – PC <- A14 –

LD R0 SR
SPCL_FIQ
SPCH_FIQ
SSR_FIQ
SPCL_IRQ
SPCH_IRQ
SSR_IRQ
SSR_SWI

op1 <- op2 –

LD SR
SPCL_FIQ
SPCH_FIQ
SSR_FIQ
SPCL_IRQ
SPCH_IRQ
SSR_IRQ
SSR_SWI

R0 op1 <- op2 –

LD An PC
Ai

#imm:22

op1 <- op2 + 4

op1 <- op2

op1 <- op2

–

CMP EQ An Ai
#imm:22

op1 + ~op2 + 1 T=Z[22:0]

LDC Rn @Ai op1 <- PM[op2] –

LD Rn Ei op1 <- {10’h000, op2} –

LD En Ri op1 <- op2[5:0] –

CMP GE Dn #imm:6 op1 + ~op2 + 1 T=~N

MUL UU
MUL US
MUL SU
MUL SS

Dn Di op1<-{0,op1[7:0]} * {0,op2[7:0]}
op1<-{0,op1[7:0]}*{op2[7],op2[7:0]}
op1<-{op1[7],op1[7:0]}*{0,op2[7:0]}
op1 <-{op1[7],op1[7:0]}*
{op2[7],op2[7:0]}

–

POP Rn Rm op1<-@[SP+2], op2<-@[SP+4],
SP<-SP+4

–

PUSH Rn Rm @[SP]<-op1,@[SP-2]<-op2,SP<-SP-4 –

INSTRUCTION SET S3CC11B/FC11B

6-20

Table 6-2. Quick Reference (Continued)

Instruction op1 op2 operation flag

POP An Am En<-@[SP+2], Rn< -@[SP+4], Em<-
@[SP+6], Rm<-@[SP+8], SP<-SP+8

–

PUSH An Am @[SP]<-Rn, @[SP-2]<-En, @[SP-4]<-
Rm, @[SP-6]<-Em, SP<-SP-8

–

BSRD eoffset:13 – A14 <- PC+2, PC <- PC + 2 + op1 –

BRA/BRAD EC:2 eoffset:8 if(EC:2 == 1) PC <- PC + 2 + op2 –

BNZD R6 eoffset:8 if(Z0 == 0) PC <- PC + 2 + op2
R6 <- R6 – 1

Z0

BNZD R7 eoffset:8 if(Z1 == 0) PC <- PC + 2 + op2
R7 <- R7 – 1

Z1

BRA/BRAD eoffset:11 – PC <- PC + 2 + op1 –

BRF/BRFD eoffset:11 – if(T==0) PC <- PC + 2 + op1 –

BRT/BRTD eoffset:11 – if(T==1) PC <- PC + 2+op1 –

CLD Dn imm:5 op1 <- Coprocessor[op2] –

CLD imm:5 Di Coprocessor[op1] <- op2

COP imm:13 – COPIR <- op2

S3CC11B/FC11B INSTRUCTION SET

 6-21

ADC (1) – Add with Carry Register

Format: ADC Rn, Ri

Description: The ADC (Add with Carry Register) instruction is used to synthesize 32-bit addition. If register pairs
R0, R1 and R2, R3 hold 32-bit values (R0 and R2 hold the least-significant word), the following
instructions leave the 32-bit sum in R0, R1:

 ADD R0, R2

 ADC R1, R3

The instruction ADC R0, R0 produces a single-bit Rotate Left with Carry (17-bit rotate through the
carry) on R0.

ADC adds the value of register Rn, and the value of the Carry flag (stored in the T bit), and the value
of register Ri, and stores the result in register Rn. The T bit and the V flag are updated based on the
result.

INSTRUCTION SET S3CC11B/FC11B

6-22

ADC (2) – Add with Carry Immediate

Format: ADC Rn, #<imm:16>

Description: The ADC (Add with Carry Immediate) instruction is used to synthesize 32-bit addition with an
immediate operand. If register pair R0, R1 holds a 32-bit value (R0 holds the least-significant word),
the following instructions leave the 32-bit sum with 87653456h in R0, R1:

 ADD R0, #3456h

 ADC R1, #8765h

ADC adds the value of register Rn, and the value of the Carry flag (stored in the T bit), and the 16-bit
immediate operand, and stores the result in register Rd. The T bit and the V flag are updated based
on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 1 0 1 1 1 1 Rn

Operation: Rn := Rn + <imm:16> + T bit

T bit := Carry from (Rn + <imm:16> + T bit)

V flag := Overflow from (Rn + <imm:16> + T bit)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn + <imm:16>) == 0)

Exceptions: None.

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of ADC Rn, <imm:16> takes 2 cycles.

S3CC11B/FC11B INSTRUCTION SET

 6-23

ADD (1) – Add Register

Format: ADD Rn, Ri

Description: The ADD (Add Register) instruction is used to add two 16-bit values in registers. 32-bit addition can
be achieved by executing ADC instruction in pair with this instruction.

ADD adds the value of register Rn, and the value of register Ri, and stores the result in register Rn.
The T bit and the V flag are updated based on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 0 0 0 Ri

Operation: Rn := Rn + Ri

T bit := Carry from (Rn + Ri)

V flag := Overflow from (Rn + Ri)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn + Ri) == 0)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-24

ADD (2) – Add Small Immediate

Format: ADD Rn, #<imm:7>

Description: This form of ADD instruction is used to add a 7-bit (positive) immediate value to a register
ADD adds the value of register Rn, and the value of <imm:7>, and stores the result in register Rn.
The T bit and the V flag are updated based on the result.

 15 14 13 12 11 8 7 6 0

 1 0 0 0 Rn 0 <imm:7>

Operation: Rn := Rn + <imm:7>

T bit := Carry from (Rn + <imm:7>)

V flag := Overflow from (Rn + <imm:7>)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn + <imm:7>) == 0)

Exceptions: None

Notes: <imm:7> is an unsigned amount.

S3CC11B/FC11B INSTRUCTION SET

 6-25

ADD (3) – Add Immediate

Format: ADD Rn, #<imm:16>

Description: The ADD (Add Immediate) instruction is used to add a 16-bit immediate value to a register. 32-bit
addition or subtraction can be achieved by executing ADC or SBC instruction in pair with this
instruction.

ADD adds the value of register Rn, and the value of <imm:16>, and stores the result in register Rn.
The T bit and the V flag are updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 0 0 1 1 1 1 Rn

Operation: Rn := Rn + <imm:16>

T bit := Carry from (Rn + <imm:16>)

V flag := Overflow from (Rn + <imm:16>)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn + <imm:16>) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of ADD Rn, <imm:16> takes 2 cycles. The instruction
“SUB Rn, #<imm:16>” does not exist.

The result of “SUB Rn, #<imm:16>” instruction is identical with the result of “ADD Rn, #(2’s
complement of <imm:16>)” except when <imm:16> is zero. In that case, “SUB Rn, #<imm:7>” can
be used.

INSTRUCTION SET S3CC11B/FC11B

6-26

ADD (4) – Add Extended Register

Format: ADD An, Ri

Description: The ADD (Add Extended Register) instruction is used to add a 16-bit unsigned register value to a
22-bit register.

This instruction adds the value of 16-bit register Ri, and the value of 22-bit register An, and stores
the result in register An.

 15 14 13 12 11 10 8 7 6 5 4 3 0

 1 0 1 0 0 An 1 1 0 0 Ri

Operation: An := An + Ri

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-27

ADD (5) – Add Immediate to Extended Register

Format: ADD An, #<imm:16>

Description: This form of ADD instruction is used to add a 16-bit unsigned immediate value to a 22-bit register.

This instruction adds the value of <imm:16> to the value of An, and stores the result in register An.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 0 0 0 0 1 1 1 1 1 0 An

Operation: An := An + <imm:16>

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-28

ADD (6) – Add 5-bit Immediate to Extended Register

Format: ADD An, #<imm:5>

Description: This form of ADD instruction is used to add a 5-bit unsigned immediate value to a 22-bit register.

This instruction adds the value of 5-bit immediate <imm:5>, and the value of 22-bit register An, and
stores the result in register An.

 15 14 13 12 11 10 8 7 6 5 4 0

 1 0 1 0 1 An 0 1 0 <imm:5>

Operation: An := An + <imm:5>

Exceptions: None

Notes: <imm:5> is an unsigned amount.

S3CC11B/FC11B INSTRUCTION SET

 6-29

AND (1) – AND Register

Format: AND Rn, Ri

Description: The AND (AND Register) instruction is used to perform bitwise AND operation on two values in
registers, Rn and Ri.

The result is stored in register Rn. The T bit is updated based on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 1 0 0 Ri

Operation: Rn := Rn & Ri

T bit := ((Rn & Ri) == 0)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn & Ri) == 0)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-30

AND (2) – AND Small Immediate

Format: AND R0, #<imm:8>

Description: The AND (AND Small Immediate) instruction is used to perform an 8-bit bitwise AND operation on
two values in register R0 and <imm:8>.

The result is stored in register R0. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 0

 1 0 0 1 1 0 0 0 <imm:8>

Operation: R0 := R0 & <imm:8>

T bit := ((R0 & <imm:8>)[7:0] == 0)

Exceptions: None

Notes: The register used in this operation is fixed to R0. Therefore, the operand should be placed in R0
before this instruction executes. <imm:8> is zero-extended to a 16-bit value before operation.

S3CC11B/FC11B INSTRUCTION SET

 6-31

AND (3) – AND Large Immediate

Format: AND Rn, #<imm:16>

Description: This type of AND instruction is used to perform bitwise AND operation on two values in register Rn
and <imm:16>.

The result is stored in register Rn. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 0 0 1 1 1 1 Rn

Operation: Rn := Rn & <imm:16>

T bit := ((Rn & <imm:16>) == 0)

if(Rn == R6/R7) Z0/Z1 flag := ((Rn & <imm:16>) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-32

BITop – BIT Operation

Format: BITop @[A8+R1], #<bs:3>

Description: The BITop (Bit Operation) instruction is used to perform a bit operation on an 8-bit memory value.
The allowed operations include reset (BITR), set (BITS), complement (BITC), and test (BITT).

BITop fetches the value of memory location specified by @(A8+R1), performs the specified
operation on the specified bit, and stores the result back into the same memory location

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 1 1 1 1 0 0 0 0 OP <bs:3>

Operation: Temp := MEM[A8+R1]

T bit := ~Temp[<bs:3>]

if (BITop != BITT) {

 Result := BITop(Temp, <bs:3>)

 MEM[A8+R1] := Result

}

Here, BITop is BITR (OP == 00) | BITS (01) | BITC (10) | BITT (11). The bit location of these
operations is specified by <bs:3>.

Exceptions: None

Notes: The address used to access data memory is obtained from the addition of two registers A8 and R1.
No other registers can be used for this address calculation.

If you want to use a instruction which cause the change of T flag, you must add the nop instruction
between two instructions.

BITR @[A8+R1], #<bs:3>
NOP
CMP EQ, R0, R2

S3CC11B/FC11B INSTRUCTION SET

 6-33

BNZD – Branch Not Zero with Autodecrement

Format: BNZD H, <eoffset:8>

Description: The BNZD (Branch Not Zero with Delay Slot) instruction is used to change the program flow when
the specified register value does not evaluate to zero. After evaluation, the value in register is
automatically decremented. A typical usage of this instruction is as a backward branch at the end
of a loop.

 LOOP:

 ...

 BNZD R6, LOOP // if (Z0 != 0) go back to LOOP

 ADD R4, 3 // delay slot

In the above example, R6 is used as the loop counter. After specified loop iterations, BNZD is not
taken and the control will come out of the loop, and R6 will have -1. For a loop with “N” iterations,
the counter register used should be initially set to “(N-1)”. BNZD has a single delay slot; the
instruction that immediately follows BNZD will be executed always regardless of whether BNZD is
taken or not.

 15 14 13 12 11 10 9 8 7 6 0

 1 1 0 0 0 1 1 H 0 <eoffset:8>

Operation: if(H == R6) {

if(Z0 != 0) PC := PC + 2 + <eoffset:8>

R6 := R6 – 1

Z0 := ((R6-1) == 0)

} else { // H == R7

 Same mechanism as the case R6

}

H is a register specifier denoting either R6 or R7.

Exceptions: None

Notes: When BNZD checks if H is zero by looking up the Z0 (for R6) or Z1 (for R7) bit in SR, these flags
are updated as BNZD decrements the value of the register. For the first iteration, however, the user
is responsible for resetting the flag, Z0 or Z1, before the loop starts execution.

INSTRUCTION SET S3CC11B/FC11B

6-34

BR – Conditional Branch

Format: BRtype <eoffset:11>

Description: The BR (Conditional Branch) instruction is used to change the program flow conditionally or
unconditionally. The allowed forms of the instruction include BRA (always), BRAD (always with
delay slot), BRT (when T bit is set), BRTD (when T bit is set, with delay slot), BRF (when T bit is
clear), and BRFD (when T bit is clear, with delay slot).

The branch target address is calculated by

1. sign-extending <offset:10> to 22 bits

2. adding this to the PC (which contains the address of the branch instruction plus 1)

 15 14 13 12 11 10 9 0

 1 1 0 <Type> D <eoffset:11>

Operation: if (Condition)

PC := PC + 2 + <eoffset:11>

Here, the <Type> field determines whether this branch is BRA (01), BRF (10), or BRT (11). If D is
set, the branch instruction has one branch delay slot, meaning that the instruction following the
branch will be executed always, regardless of the branch outcome. If D is clear, the immediately
following instruction is NOT executed if the branch is taken.

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-35

BRA EC – Branch on External Condition

Format: BRA(D) EC:2 <eoffset:8>

Description: The BRA EC (Branch on External Condition) instruction is used to change the program flow when a
certain external condition is set. A typical usage of this instruction is to branch after a coprocessor
operation as shown below:

 COP <operation>

 NOP

 NOP

 BRA EC0 OVERFLOW

 ...

 OVERFLOW: ...

 ...

The BRA EC instruction checks the specified external condition (instead of checking the T bit as
other branch instructions) and branch to the specified program address. There can be up to 4
external conditions, specified by the <EC:2> field in the instruction.

 15 14 13 12 11 10 9 8 7 6 0

 1 1 0 0 0 D 0 <EC:2> <eoffset:8>

Operation: if (ExternalCondition_n == True)

PC := PC + 2 + <eoffset:8>

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-36

BREAK – BREAK

Format: BREAK

Description: The BREAK instruction suspends the CalmRISC core for 1 cycle by keeping PC from increasing.
Processor resumes execution after 1 cycle. This instruction is used for debugging purposes only
and thus should not be used in normal operating modes. A core signal nBRK is asserted low for the
cycle.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1

Operation: No operation with PC suspended for a single cycle.

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-37

BSRD – Branch Subroutine with Delay Slot

Format: BSRD <eoffset:13>

Description: The BSRD (Branch Subroutine with Delay slot) instruction is used to change the program flow to a
subroutine by assigning the address of the subroutine to PC after saving the return address (PC+4)
in the link register, or A14.

The address of the subroutine is calculated by:

1. sign-extending <eoffset:13> to 22 bits

2. adding this to the PC (which contains the address of the branch instruction plus 1)

After executing the subroutine, the program flow can return back to the instruction that follows the
BSRD instruction by setting PC with the value stored in A14 (see JMP Ai instruction in page 7-52
and RET instruction in page 7-85). This instruction has a delay slot; the instruction that immediately
follows BSRD will be always executed.

 15 14 13 12 11 0

 1 0 1 1 <eoffset:13>

Operation: A14 := PC + 4

PC := PC + 2 + <eoffset:13>

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-38

CLD – Coprocessor Load

Format: CLD Dn, <imm:5> / CLD <imm:5>, Di

Description: The CLD (Coprocessor Load) instruction is used to transfer data from and to coprocessor by
generating the core signals nCLDID and CLDWR. The content of DA[4:0] is <imm:5>, the address
of coprocessor register to be read or written.

When a data item is read from coprocessor (CLD Dn, <imm:5>), it is stored in Dn. When a data
item is written to coprocessor, it should be prepared in Di.

 15 14 13 12 11 10 9 8 4 3 2 0

 1 1 1 0 0 0 0 imm:5 M Dn/Di

Operation: (M == 0, read)

DA[4:0] := <imm:5>

nCLDID := 0

CLDWR := 0

Dn := (<imm:5>)

(M == 1, write)

DA[4:0] := <imm:5>

nCLDID := 0

CLDWR := 1

(<imm:5>) := Di

Exceptions: None

Notes: This instruction has a delay slot, because this instruction is 2-cycle instruction.

S3CC11B/FC11B INSTRUCTION SET

 6-39

CLRSR – Clear SR

Format: CLRSR bs:3

Description: The CLRSR (Clear SR) instruction is used to clear a specified bit in SR as follows:

 CLRSR FE / IE / TE / V / Z0 / Z1 / PM

To clear the T bit, one can do as follows:

 CMP GT, R0, R0

To turn on a specified bit in SR, the SETSR instruction is used.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 0 0 <bs:3>

Operation: SR[<bs:3>] := 0

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-40

CMP (1) – Compare Register

Format: CMPmode Rn, Ri

Description: The CMP (Compare Register) instruction is used to compare two values in registers Rn and Ri. The
allowed modes include GE (Greater or Equal), GT (Greater Than), UGE (Unsigned Greater or
Equal), UGT (Unsigned Greater Than), and EQ (Equal).

CMP subtracts the value of Ri from the value of Rn and performs comparison based on the result.
The contents of Rn and Ri are not changed after this operation. The T bit is updated for later
reference.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 1 <Mode> Ri

Operation: Temp := Rn - Ri

T bit := ~Negative if (<Mode> == GE)

 ~Negative && ~Zero if (<Mode> == GT)

 Carry if (<Mode> == UGE)

 Carry && ~Zero if (<Mode> == UGT)

 Zero if (<Mode> == EQ)

<Mode> encoding: GE (000), GT (001), UGE (010), UGT (011), and EQ (100).

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-41

CMP (2) – Compare Immediate

Format: CMPmode Rn, #<imm:16>

Description: The CMP (Compare Immediate) instruction is used to compare two values in register Rn and
<imm:16>. The allowed modes include GE (Greater or Equal), GT (Greater Than), UGE (Unsigned
Greater or Equal), UGT (Unsigned Greater Than), and EQ (Equal).

CMP subtracts the value of <imm:16> from the value of Rn and performs comparison based on the
result. The contents of Rn is not changed, however, after this operation. The T bit is updated for
later reference.

 15 14 13 12 11 10 8 7 6 5 4 3 0

 1 0 0 0 1 <Mode> 1 1 1 1 Rn

Operation: Temp := Rn - <imm:16>

T bit := ~Negative if (<Mode> == GE)

 ~Negative && ~Zero if (<Mode> == GT)

 Carry if (<Mode> == UGE)

 Carry && ~Zero if (<Mode> == UGT)

 Zero if (<Mode> == EQ)

<Mode> encoding: GE (000), GT (001), UGE (010), UGT (011), and EQ (100).

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of CMPmode #<imm:16> takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-42

CMP (3) – Compare Short Immediate

Format: CMP GE, Dn, #<imm:6>

Description: The CMP (Compare Immediate) instruction is used to perform signed-comparison of the register Dn
and an unsigned immediate value <imm:6>. Dn is one of the registers from R0 to R7. CMP
subtracts the value of <imm:6> from the value of Dn and performs signed-comparison based on the
result. The contents of Dn is not changed, however, after this operation. The T bit is updated for
later reference.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 0 Dn 0 1 imm:6

Operation: T bit := ~Negative of (Rn - <imm:6>)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-43

CMPEQ (1) – Compare Equal Extended Register

Format: CMP EQ, An, Ai

Description: The CMP EQ (Compare Equal Extended Register) instruction is used to compare two values in
registers An and Ai.

This instruction is a restricted form of more general CMPmode instructions for a 22-bit equality
comparison between register values.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 1 An 0 0 0 1 0 Ai

Operation: T bit := (An == Ai)

An or Ai refers to registers from A8 to A15 with their 6-bit extensions.

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-44

CMPEQ (2) – Compare Equal Small Immediate

Format: CMP EQ, Dn, #<imm:8>

Description: The CMP EQ (Compare Equal Small Immediate) instruction is used to compare two values in
register Dn and <imm:8>. <imm:8> is zero-extended to 16 bits before comparison.

This instruction is a restricted form of more general CMPmode instructions for an 8-bit equality
comparison between a register value and an immediate value.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 0 Dn <imm:8>

Operation: T bit := ((Dn - <imm:8>) == 0)

Dn refers to registers R0 - R8.

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-45

CMPEQ (3) – Compare Equal Large Immediate

Format: CMP EQ An, #<imm:22>

Description: The CMP EQ (Compare Equal Large Immediate) instruction is used to compare two values in
register An and <imm:22>.

This instruction is a restricted form of more general CMPmode instructions for a 22-bit equality
comparison between a register value and an immediate value.

 15 14 13 12 11 10 8 7 6 5 0

 1 0 1 0 0 An 1 0 <imm:22>[21:16]

Operation: T bit := Zero from (An - <imm:22>)

An refers to registers from A8 to A15 with their 6-bit extensions.

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate (<imm:22>[15:0]) follows the instruction
word shown above. Unlike 1-word instructions, therefore, fetching of CMP EQ <imm:22> takes 2
cycles.

INSTRUCTION SET S3CC11B/FC11B

6-46

COM – Complement

Format: COMmode Rn

Description: The COM (Complement) instruction is used to compute 1’s or 2’s complement of a register value
Rn. Utilizing various modes, 32-bit complement operation can be done. If register pair R0, R1 holds
a 32-bit value (R0 holds the least-significant word), the following instructions leave the 32-bit 2’s
complement in R0, R1:

 COM2 R0 // 2’s complement

 COMC R1 // 2’s complement with carry

COM computes the 1’s complement of the value of register Rn. COM2 computes the 2’s
complement, and COMC computes the 2’s complement value when T bit has been set. If T bit is
clear, COM2 is equivalent to COM.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 1 <Mode> 1 1 1 0 Rn

Operation: if (<Mode> == 00) { // COM

 Rn := ~Rn

 T bit := (Rn == 0)

}

if (<Mode> == 01) { // COM2

 Rn := ~Rn + 1

 T bit := Carry from (~Rn + 1)

}

if (<Mode> == 10) { // COMC

 Rn := ~Rn + T bit

 T bit := Carry from (~Rn + T)

}

Encoding of <Mode>:

00: COM, 01: COM2, 10: COMC

if(Rn == R6/R7) Z0/Z1 := Zero flag of the result.

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-47

COP – Coprocessor

Format: COP <imm:13>

Description: The COP (Coprocessor) instruction is used to perform a coprocessor operation, specified by
<imm:13>. Certain coprocessor operations set external conditions, upon which branches can be
executed (see BRECn instructions).

The <imm:13> should be greater or equal to 0x200.

 15 14 13 12 0

 1 1 1 <imm:13>

Operation: Perform a coprocessor operation by placing signals on core output pins as follows:

 Core output signal COPIR[12:0] := <imm:13>

 Core output signal nCOPID := LOW

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-48

DECC – Decrement with Carry

Format: DECC Rn

Description: The DECC (Decrement with Carry) instruction is used to synthesize 32-bit decrement. If register
pair R0, R1 holds a 32-bit value (R0 holds the least-significant word), the following instructions leave
the 32-bit decremented value in R0, R1:

 DEC R0 // this is implemented by ADD R0, -1

 DECC R1

DECC decrements the value of Rn by 1 only if the Carry flag (stored in the T bit) is clear, and stores
the result back in register Rn. The T bit and the V flag are updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 0 1 1 1 1 1 0 Rn

Operation: Rn := Rn - 1 + T bit

T bit := Carry from (Rn - 1 + T bit)

V flag := Overflow from (Rn -1 + T bit)

if(Rn == R6/R7) Z0/Z1 := ((Rn – 1 + T) == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-49

DT – Decrement and Test

Format: DT Rn

Description: The DT (Decrement and Test) instruction is used to decrement the value of a specified register and
test it. This instruction provides a compact way to control register indexing for loops. The T bit and
the V flag are updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 0 0 1 1 1 1 0 Rn

Operation: Rn := Rn - 1

T bit := ((Rn - 1) == 0)

V flag := Overflow from (Rn - 1)

if(Rn == R6/R7) Z0/Z1 := ((Rn – 1) == 0)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-50

EXT – Sign-Extend

Format: EXT Rn

Description: The EXT (Sign Extend) instruction is used to sign-extend an 8-bit value in Rn. This instruction
copies Rn[7] to Rn[15:8].

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 1 1 1 1 1 1 0 Rn

Operation: All bits from Rn[15] to Rn[8] := Rn[7]

if(Rn == R6/R7) Z0/Z1 := (Result == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-51

INCC – Increment with Carry

Format: INCC Rn

Description: The INCC (Increment with Carry) instruction is used to synthesize 32-bit increment. If register pair
R0, R1 holds a 32-bit value (R0 holds the least-significant word), the following instructions leave the
32-bit incremented value in R0, R1:

 INC R0 // will be replaced by ADD R0, 1

 INCC R1

INCC increments the value of Rn by 1 only if the Carry flag (stored in the T bit) is set, and stores the
result back in register Rn. The T bit and the V fl ag are updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 0 1 0 1 1 1 0 Rn

Operation: Rn := Rn + T bit

T bit := Carry from (Rn + T bit)

V flag := Overflow from (Rn + T bit)

if(Rn == R6/R7) Z0/Z1 := ((Rn + T0) == 0)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-52

JMP (1) – Jump Register

Format: JPF/JPT/JMP/JSR Ai

Description: The Jump Register instructions change the program flow by assigning the value of register Ai into
PC.

JPF and JPT are conditional jumps that check the T bit to determine whether or not to jump to the
target address. JMP unconditionally jumps to the target. JSR is an unconditional jump but saves
the return address (the immediately following instruction to JSR) in the link register, A14. At the end
of each subroutine, JMP A14 will change the program flow back to the original call site.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 0 1 1 M[1] 1 1 1 0 M[0] Ai

Operation: (M == 00, JPF)

if (T bit == FALSE)

PC := Ai

(M == 01, JPT)

if (T bit == TRUE)

PC := Ai

(M == 10, JMP)

PC := Ai

(M == 11, JSR)

A14 := PC + 2

PC := Ai

Exceptions: None

Notes: There is no delay slot for these instructions. Therefore, when conditional branch JPF or JPT is
taken, the instruction in the pipeline which is fetched from PC+2 will be squashed. In case of JMP
and JSR (always taken), the following instruction fetched will be always squashed.

S3CC11B/FC11B INSTRUCTION SET

 6-53

JMP (2) – Jump Immediate

Format: JPF/JPT/JMP/JSR <imm:22>

Description: The Jump Immediate instruc tions change the program flow by assigning the value of <imm:22> into
PC.

JPF and JPT are conditional jumps that check the T bit to determine whether or not to jump to the
target address. JMP unconditionally jumps to the target. JSR is an unconditional jum p but saves
the return address (the immediately following instruction to JSR) in the link register, A14. At the end
of each subroutine, JMP A14 will change the program flow back to the original call site.

 15 14 13 12 11 10 9 8 7 6 5 0

 1 0 0 1 1 1 1 1 <Mode> <imm:22>[21:16]

Operation: (<Mode> == 00, JPF)

if (T bit == FALSE)

PC := <imm:22>

(<Mode> == 01, JPT)

if (T bit == TRUE)

PC := <imm:22>

(<Mode> == 10, JMP)

PC := <imm:22>

(<Mode> == 11, JSR)

A14 := PC + 4

PC := <imm:22>

Exceptions: None

Notes: These are 2-word instructions, where the 16-bit immediate (<imm:22>[15:0]) follows the instruction
word shown above. As fetching of a 2-word instruction takes 2 cycles, no later instructions will be in
processor pipeline when the branch is taken (thus no squashing).

INSTRUCTION SET S3CC11B/FC11B

6-54

LD (1) – Load Register

Format: LD Rn, Ri

Description: The LD (Load Register) instruction is used to transfer a register value to a register.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 1 1 0 1 Ri

Ope ration: Rn := Ri

if(Rn == R6/R7) Z0/Z1 := (Ri == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-55

LD (2) – Load Register

Format: LD An, Ai

Description: This form of LD instruction (Load Extended Register) is used to load a 22-bit register value to a 22-
bit register.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 1 An 0 0 0 1 1 Ai

Operation: An := Ai

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-56

LD (3) – Load Short Immediate

Format: LD Rn, #<imm:8>

Description: The LD (Load Short Immediate) instruction is used to load an 8-bit immediate value to a register.

 15 14 13 12 11 8 7 0

 0 0 0 1 Rn <imm:8>

Operation: Rn[15:8] := 0, Rn[7:0] := <imm:8>

if(Rn == R6/R7) Z0/Z1 := (<imm:8> == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-57

LD (4) – Load Immediate

Format: LD Rn, #<imm:16>

Description: This form of LD instruction (Load Immediate) is used to load a 16-bit immediate value to a register.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 1 1 0 1 1 1 1 1 Rn

Operation: Rn := <imm:16>

if(Rn == R6/R7) Z0/Z1 := (<imm:16> == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-58

LD (5) – Load Large Immediate

Format: LD An, #<imm:22>

Description: This form of LD instruction (Load Large Immediate) is used to load a 22-bit immediate value to an
extended register An.

 15 14 13 12 11 10 8 7 6 5 0

 1 0 1 0 1 An 1 0 <imm:22>[21:16]

Operation: An := <imm:22>

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate (<imm:22>[15:0]) follows the instruction
word shown above. Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

S3CC11B/FC11B INSTRUCTION SET

 6-59

LD RExt – Load Register Extension

Format: LD Dn, Ei / LD En, Di

Description: The LD RExt (Load Register Extension) instructions are used to transfer a register value to and from
a 6-bit extension register.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 0 Dn(or Di) 0 0 0 1 M Ei (or En)

Operation: (M == 0, LD Dn, Ei)

Dn := Ei (zero-extended to 16 bits)

(M == 1, LD En, Di)

En := Di (lower 6 bits only)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-60

LDB (1) – Load Byte Register Disp.

Format: LDB Dn, @[Ai+<disp:4>] / LDB @[An+<disp:4>], Di

Description: The LDB (Load Byte Register Displacement) instruction is used to load a byte from or to data
memory at the location specified by the register Ai and a 4-bit displacement.

 15 14 13 12 11 10 8 7 6 4 3 0

 0 1 1 M 0 Dn or Di 0 Ai or An <disp:4>

Operation: (M == 0, LDB Dn, @[Ai+<disp:4>])

Dn := DM[(Ai+<disp:4>)]

(M == 1, LDB @[An+<disp:4>], Di)

DM[(An+<disp:4>)] := Di

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-61

LDB (2) – Load Byte Register Large Disp.

Format: LDB Dn, @[Ai+<disp:16>] / LDB @[An+<disp:16>], Di

Description: The LDB (Load Byte Register Large Displacement) instruction is used to load a byte from or to data
memory at the location specified by the register Ai and a 16-bit displacement.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 0 Dn or Di 0 0 1 1 M Ai or An

Operation: (M == 0, LDB Dn, @[Ai+<disp:16>])

Dn := DM[(Ai+<disp:16>)]

(M == 1, LDB @[An+<disp:16>], Di)

DM[(An+<disp:16>)] := Di

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-62

LDB (3) – Load Byte Register Indexed

Format: LDB Dn, @[Ai+Rj] / LDB @[An+Rm], Di

Description: The LDB (Load Byte Register Indexed) instruction is used to load a byte from or to data memory at
the location specified by the register Ai (or An) and the second register Rj (or Rm).

 15 14 13 12 11 10 8 7 6 4 3 0

 0 1 1 M 0 Dn or Di 1 Ai or An Rj or Rm

Operation: (M == 0, LDB Dn, @[Ai+Rj])

Dn := DM[(Ai+Rj]

(M == 1, LDB @[An+Rm], Di)

DM[(An+ Rm)] := Di

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-63

LDB (4) – Load Byte to R0 Register Disp.

Format: LDB R0, @[A8+<disp:8>] / LDB @[A8+<disp:8>], A8

Description: The LDB (Load Byte to R0 Register Displacement) instruction is used to load a byte from or to data
memory at the location specified by the register A8 and an 8-bit displacement.

 15 14 13 12 11 10 9 8 7 0

 1 0 0 1 1 1 0 M <disp:8>

Operation: (M == 0, LDB R0, @[A8+<disp:8>])

R0 := DM[(A8+<disp:8>]

(M == 1, LDB @[A8+<disp:8>], R0)

DM[(A8+<disp:8>)] := R0

Exceptions: None

Notes: This single-word instruction allows a user to access a wider range of data memory than the LDB (1)
instruction by providing a larger displacement, at the expense of the restrictions that only the R0
and A8 registers are used for data transfer and address computation.

INSTRUCTION SET S3CC11B/FC11B

6-64

LDC – Load Code

Format: LDC Rn, @Ai

Description: The LDC instruction is used to transfer a register value from the program memory. The program
memory address is specified by the 22-bit register An. LDC is useful to look up the data stored in
program memory, such as the coefficient table for certain numerical algorithms.

 15 14 13 12 11 8 7 6 5 4 3 2 0

 1 0 1 0 Rn 0 0 0 0 0 Ai

Operation: Rn := PM[Ai]

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-65

LD PC – Load Program Counter

Format: LD An, PC

Description: The LD PC (Load Program Counter) instruction is used to transfer the value of PC into a 22-bit
register An. This instruction provides a way to implement position independent code (PIC) on
CalmRISC16 even in the absence of general virtual memory support. After executing this
instruction, An will be used to compute a PC-relative location of a data item or a code section.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 1 1 1 1 0 1 1 1 1 0 An

Operation: An := PC + 4

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-66

LD SvR (1) – Load from Saved Register

Format: LD R0, SPCL_* / LD R0, SPCH_* / LD R0, SSR_*

Description: The LD SvR (Load from Saved Register) instructions are used to transfer a value from the specified
interrupt register, e.g., SSR_FIQ. Only R0 register is used for this data transfer.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 1 1 1 1 0 1 0 1 0 <RS>

Operation: R0 := <specified_saved_register>

Encoding for <RS> (Register Specifier):

0000: SPCL_FIQ, 0001: SPCH_FIQ, 0010: SSR_FIQ,

0100: SPCL_IRQ, 0101: SPCH_IRQ, 0110: SSR_IRQ,

1010: SSR_SWI

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-67

LD SvR (2) – Load to Saved Register

Format: LD SPCL_*, R0 / LD SPCH_*, R0 / LD SSR_*, R0

Description: The LD SvR (Load to Saved Register) instructions are used to transfer a value to the specified
interrupt register, e.g., SSR_FIQ. Only R0 register is used for this data transfer.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 1 1 1 1 0 1 0 1 1 <RS>

Operation: <specified_saved_register> := R0

Encoding for <RS> (Register Specifier):

0000: SPCL_FIQ, 0001: SPCH_FIQ, 0010: SSR_FIQ,

0100: SPCL_IRQ, 0101: SPCH_IRQ, 0110: SSR_IRQ,

1010: SSR_SWI

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-68

LD SR – Load Status Register

Format: LD R0, SR / LD SR, R0

Description: The LD SR (Load Status Register) instruction is used to transfer a value to and from SR. Only R0
register is used for this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 M

Operation: (M == 0, LD R0, SR)

R0 := SR

(M == 1, LD SR, R0)

SR := R0

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-69

LDW (1) – Load Word Stack Disp.

Format: LDW Rn, @[SP+<edisp:9>] / LDW @[SP+<edisp:9>], Ri

Description: The LDW (Load Word Stack Displacement) instruction is used to load a word from or to data
memory at the location specified by the SP register (or A15) and an even 9-bit displacement.
<edisp:9>, from 0 to 510, is encoded into 8-bit displacement by dropping the least significant bit.

 15 14 13 12 11 8 7 0

 0 0 1 M Rn or Ri <edisp:9>

Operation: (M == 0, LDW Rn, @[SP+<edisp:9>])

Rn := DM[(SP + <edisp:9>)]

(M == 1, LDW @[SP+<edisp:9>], Ri)

DM[(SP + <edisp:9>)] := Ri

Exceptions: None

Notes: For memory transfer per word, the (byte) address need to be aligned to be even. Thus, if (SP +
<edisp:9>) is an odd number, it will be made even by clearing the least significant bit. <edisp:9>
can denote an even number from 0 to 510.

INSTRUCTION SET S3CC11B/FC11B

6-70

LDW (2) – Load Word Register Small Disp.

Format: LDW Rn, @[Ai+<edisp:5>] / LDW @[An+<edisp:5>], Ri

Description: The LDW (Load Word Register Displacement) instruction is used to load a word from or to data
memory at the location specified by the register Ai and a 5-bit even displacement from 0 to 30.
<edisp:5> is encoded to 4-bit number by dropping the least significant bit.

 15 14 13 12 11 8 7 6 4 3 0

 0 1 0 M Rn or Ri 0 Ai or An <edisp:5>

Operation: (M == 0, LDW Rn, @[Ai+<edisp:5>])

Rn := DM[(Ai + <edisp:5>)]

(M == 1, LDW @[An+<edisp:5>], Ri)

DM[(An + <edisp:5>)] := Ri

Exceptions: None

Notes: For memory transfer per word, the (byte) address need to be aligned to be even. Thus, if (Ai +
<edisp:5>) is an odd number, it will be made even by clearing the least significant bit. <edisp:5>
can denote an even number from 0 to 30.

S3CC11B/FC11B INSTRUCTION SET

 6-71

LDW (3) – Load Word Register Disp.

Format: LDW Rn, @[Ai+<disp:16>] / LDW @[An+<disp:16>], Ri

Description: The LDW (Load Word Register Large Displacement) instruction is used to load a word from or to
data memory at the location specified by the register Ai and a 16-bit displacement.

 15 14 13 12 11 8 7 6 5 4 3 2 0

 1 0 1 0 Rn or Ri 0 0 1 0 M Ai or An

Operation: (M == 0, LDW Rn, @[Ai+<disp:16>])

Rn := DM[(Ai + <disp:16>)]

(M == 1, LDW @[An+<disp:16>], Ri)

DM[(An + <disp:16>)] := Ri

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles. For memory
transfer per word, the (byte) address need to be aligned to be even. Thus, if (Ai + <disp:16>) is an
odd number, it will be made even by clearing the least significant bit.

INSTRUCTION SET S3CC11B/FC11B

6-72

LDW (4) – Load Word Register Indexed

Format: LDW Rn, @[Ai+Rj] / LDW @[An+Rm], Ri

Description: The LDW (Load Word Register Indexed) instruction is used to load a word from or to data memory
at the location specified by the register Ai (or An) and the second register Rj (or Rm), which is an
unsigned value.

 15 14 13 12 11 8 7 6 4 3 0

 0 1 0 M Rn or Ri 1 Ai or An Rj or Rm

Operation: (M == 0, LDW Rn, @[Ai+Rj])

Rn := DM[(Ai+Rj]

(M == 1, LDW @[An+Rm], Ri)

DM[(An+Rm)] := Ri

Exceptions: None

Notes: For memory transfer per word, the (byte) address needs to be aligned to be even. Thus, if (Ai + Rj)
or (An + Rm) is an odd number, it will be made even by clearing the least significant bit.

S3CC11B/FC11B INSTRUCTION SET

 6-73

LDW (5) – Load Word Register Small Disp.

Format: LDW An, @[Ai+<edisp:5>] / LDW @[Ai+<edisp:5>], An

Description: The LDW (Load Word Register Displacement) instruction is used to load 2 word from or to data
memory at the location specified by the register Ai and a 5-bit even displacement from 0 to 30.
<edisp:5> is encoded to 4-bit number by dropping the least significant bit.

 15 14 13 12 11 10 8 7 6 4 3 0

 0 1 1 M 1 An 0 Ai <edisp:5>

Operation: (M == 0, LDW An, @[Ai+<edisp:5>])

En := DM[(Ai + <edisp:5>)]

Rn := DM[(Ai + <edisp:5> + 2)]

(M == 1, LDW @[Ai+<edisp:5>], An)

DM[(Ai + <edisp:5>)] := En

DM[(Ai + <edisp:5> + 2)] := Rn

Exceptions: None

Notes: For memory transfer per word, the (byte) address need to be aligned to be even. Thus, if (Ai +
<edisp:5>) is an odd number, it will be made even by clearing the least significant bit. <edisp:5>
can denote an even number from 0 to 30.

INSTRUCTION SET S3CC11B/FC11B

6-74

LDW (6) – Load Word Register Disp.

Format: LDW An, @[Ai+<disp:16>] / LDW @[Ai+<disp:16>], An

Description: The LDW (Load Word Register Large Displacement) instruction is used to load 2 word from or to
data memory at the location specified by the register Ai and a 16-bit displacement.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 1 An 0 0 1 1 M Ai

Operation: (M == 0, LDW An, @[Ai+<disp:16>])

En := DM[(Ai + <disp:16>)]

Rn := DM[(Ai + <disp:16> + 2)]

(M == 1, LDW @[Ai+<disp:16>], An)

DM[(Ai + <disp:16>)] := En

DM[(Ai + <disp:16> + 2)] := Rn

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles. For memory
transfer per word, the (byte) address need to be aligned to be even. Thus, if (Ai + <disp:16>) is an
odd number, it will be made even by clearing the least significant bit.

S3CC11B/FC11B INSTRUCTION SET

 6-75

LDW (7) – Load Word Register Indexed

Format: LDW An, @[Ai+Rj] / LDW @[Ai+Rj], An

Description: The LDW (Load Word Register Indexed) instruction is used to load 2 word from or to data memory
at the location specified by the register Ai and the second register Rj, which is an unsigned value.

 15 14 13 12 11 10 8 7 6 4 3 0

 0 1 1 M 1 An 1 Ai Rj

Operation: (M == 0, LDW An, @[Ai + Rj])

En := DM[(Ai + Rj)]

Rn := DM[(Ai + Rj + 2)]

(M == 1, LDW @[Ai + Rj], An)

DM[(Ai + Rj)] := En

DM[(Ai + Rj + 2)] := Rn

Exceptions: None

Notes: For memory transfer per word, the (byte) address needs to be aligned to be even. Thus, if (Ai + Rj)
is an odd number, it will be made even by clearing the least significant bit.

INSTRUCTION SET S3CC11B/FC11B

6-76

MUL – Multiplication

Format: MUL Mode, Dn, Di

Description: The instruction MUL performs 8x8 multiplication of the least significant byte of Dn and the least
significant byte of Di. Dn and Di are registers from R0 to R7. The 16-bit multiplication result is
written back to Dn. The mode is one of UU, US, SU, SS. The mode indicates each operand is
signed value or unsigned value.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 M1 Dn 1 1 0 1 M2 Di

Operation: if(M1 == 0 && M2 == 0) // mode = UU

 Dn := lower 16 bits of ({0,Dn[7:0]} * {0, Di[7:0]})

else if(M1 == 0 && M2 == 1) // mode == US

 Dn := lower 16 bits of ({0,Dn[7:0]} * {Di[7],Di[7:0]})

else if(M1 == 1 && M2 == 0) // mode == SU

 Dn := lower 16 bits of ({Dn[7],Dn[7:0]} * {0,Di[7:0]})

else // mode == SS

 Dn := lower 16 bits of ({Dn[7],Dn[7:0]} * {Di[7],Di[7:0]})

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-77

NOP – No Operation

Format: NOP

Description: The NOP (No Operation) instruction does not perform any operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0

Operation: None

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-78

OR (1) – OR Register

Format: OR Rn, Ri

Description: The OR (OR Register) instruction is used to perform bitwise OR operation on two values in
registers, Rn and Ri.

The result is stored in register Rn. The T bit is updated based on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 1 0 1 Ri

Operation: Rn := Rn | Ri

T bit := ((Rn | Ri) == 0)

if(Rn == R6/R7) Z0/Z1 := ((Rn|Ri) == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-79

OR (2) – OR Small Immediate

Format: OR R0, #<imm:8>

Description: The OR (OR Small Immediate) instruction is used to perform bitwise OR operation on two values in
register R0 and <imm:8>.

The result is stored in register R0. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 0

 1 0 0 1 1 0 0 1 <imm:8>

Operation: R0 := R0 | <imm:8>

T bit := ((R0 | <imm:8>)[7:0] == 0)

Exceptions: None

Notes: The register used in this operation is fixed to R0. Therefore, the operand should be placed in R0
before this instruction executes. <imm:8> is zero-extended to a 16-bit value before operation.

INSTRUCTION SET S3CC11B/FC11B

6-80

OR (3) – OR Large Immediate

Format: OR Rn, #<imm:16>

Description: This type of OR instruction is used to perform bitwise OR operation on two values in register Rn and
<imm:16>.

The result is stored in register R0. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 0 1 1 1 1 1 Rn

Operation: Rn := Rn | <imm:16>

T bit := ((Rn | <imm:16>) == 0)

if(Rn == R6/R7) Z0/Z1 := ((Rn | <imm:16>) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

S3CC11B/FC11B INSTRUCTION SET

 6-81

POP (1) – Load Register from Stack

Format: POP Rn, Rm / POP Rn

Description: The POP instruction load one or two 16-bit data from software stack to general registers. In the
instruction of “POP Rn, Rm”, there are some restrictions on Rn and Rm.

– Rn and Rm should not be R15.

– If Rn is one of the 8 registers from R0 to R7, Rm should also be one of them. If Rn is one of the
registers from R8 to R14, Rm should also be one of them. For example, “POP R7, R8” is
illegal.

– If Rn is the same as Rm, pop operation occurs only once. “POP Rn, Rn” is equivalent to “POP
Rn”.

 15 14 13 12 11 8 7 6 5 4 3 2 0

 1 0 1 0 Rm 1 1 1 0 0 Rn

Operation: if(Rn == Rm) { // POP Rn

 Rn := DM[SP + 2]

 SP := SP + 2

} else {

 Rn := DM[SP + 2]

 Rm := DM[SP + 4]

 SP := SP + 4

}

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-82

POP (2) – Load Register from Stack

Format: POP An, Am / POP An

Description: The POP instruction load one or two 22-bit data from software stack to extended registers. In the
instruction of “POP An, Am”, there are some restrictions on An and Am.

– An and Am should not be A15.

– If An is the same as Am, pop operation occurs only once. “POP An, An” is equivalent to “POP
An”.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 1 Am 1 1 1 0 1 An

Operation: if(An == Am) { // POP An

 En := lower 6 bits of DM[SP + 2]

 Rn := DM[SP + 4]

 SP := SP + 4

} else {

 En := lower 6 bits of DM[SP + 2]

 Rn := DM[SP + 4]

 Em := lower 6 bits of DM[SP + 6]

 Rm := DM[SP + 8]

 SP := SP + 8

}

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-83

PUSH (1) – Load Register to Stack

Format: PUSH Rn, Rm / PUSH Rn

Description: The PUSH instruction load one or two 16-bit data from general registers to software stack. In the
instruction of “PUSH Rn, Rm”, there are some restrictions on Rn and Rm.

– Rn and Rm should not be R15.

– If Rn is one of the 8 registers from R0 to R7, Rm should also be one of them. If Rn is one of the
registers from R8 to R14, Rm should also be one of them. For example, “PUSH R7, R8” is
illegal.

– If Rn is the same as Rm, push operation occurs only once. “PUSH Rn, Rn” is equivalent to
“PUSH Rn”.

 15 14 13 12 11 8 7 6 5 4 3 2 0

 1 0 1 0 Rm 1 1 1 1 0 Rn

Operation: if(Rn == Rm) { // PUSH Rn

 DM[SP] := Rn

 SP := SP – 2

} else {

 DM[SP] := Rn

 DM[SP – 2] := Rm

 SP := SP – 4

}

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-84

PUSH (2) – Load Register to Stack

Format: PUSH An, Am / PUSH An

Description: The PUSH instruction load one or two 22-bit data to software stack from extended registers. In the
instruction of “PUSH An, Am”, there are some restrictions on An and Am.

– An and Am should not be A15.

– If An is the same as Am, push operation occurs only once. “PUSH An, An” is equivalent to
“PUSH An”.

 15 14 13 12 11 10 8 7 6 5 4 3 2 0

 1 0 1 0 1 Am 1 1 1 1 1 An

Operation: if(An == Am) { // PUSH An

 DM[SP] := Rn

 DM[SP – 2] := {10’h000, En}

 SP := SP – 4

} else {

 DM[SP] := Rn

 DM[SP – 2] := {10’h000, En}

 DM[SP – 4] := Rm

 DM[SP – 6] := {10’h000, Em}

 SP := SP – 8

}

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-85

RETD – Ret. from Subroutine with Delay Slot

Format: RETD

Description: The RETD (Return from Subroutine with Delay Slot) instruction is used to finish a subroutine and
return by jumping to the address specified by the link register or A14. The difference between RETD
and JMP A14 is that RETD has a delay slot, which allows efficient implementation of small
subroutines.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1

Operation: PC := A14

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-86

RET_FIQ – Return from Fast Interrupt

Format: RET_FIQ

Description: The RET_FIQ (Return from Fast Interrupt) instruction is used to finish a FIQ handler and resume the
normal program execution. When this instruction is executed, SSR_FIQ (saved SR) is restored into
SR, and the program control transfers to (SPCH_FIQ:SPCL_FIQ).

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0

Operation: SR := SSR_FIQ

PC := (SPCH_FIQ:SPCL_FIQ)

Exceptions: None

Notes: Fast Interrupt is requested through the core signal nFIQ. When the request is acknowledged, SR
and current PC are saved in the designated registers (namely SSR_FIQ and SPCH_FIQ:SPCL_FIQ)
assigned for FIQ processing. Such bits in SR as FE, IE, and TE are cleared, and PM is set.

S3CC11B/FC11B INSTRUCTION SET

 6-87

RET_IRQ – Return from Interrupt

Format: RET_IRQ

Description: The RET_IRQ (Return from Interrupt) instruction is used to finish an IRQ handler and resume the
normal program execution. When this instruction is executed, SSR_IRQ (saved SR) is restored into
SR, and the program control transfers to (SPCH_IRQ:SPCL_IRQ).

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1

Operation: SR := SSR_IRQ

PC := (SPCH_IRQ:SPCL_IRQ)

Exceptions: None

Notes: Interrupt is requested through the core signals nIRQ. When the request is acknowledged, SR and
current PC are saved in the designated registers (namely SSR_IRQ and SPCH_FIQ:SPCL_IRQ)
assigned for IRQ processing. Such bits in SR as IE and TE are cleared, and PM is set.

INSTRUCTION SET S3CC11B/FC11B

6-88

RET_SWI – Return from Software Interrupt

Format: RET_SWI

Description: The RET_SWI (Return from Software Interrupt) instruction is used to finish a SWI handler and
resume the normal program execution. When this instruction is executed, SSR_FIQ (saved SR) is
restored into SR, and the program control transfers to the address A14 (link register).

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0

Operation: SR := SSR_SWI

PC := A14

Exceptions: None

Notes: Software interrupt is initiated by executing a SWI instruction from applications. When SWI
instruction is executed, SR and current PC are saved in the designated registers
(namely SSR_SWI and A14) assigned for SWI processing.

S3CC11B/FC11B INSTRUCTION SET

 6-89

RL – Rotate Left

Format: RL Rn

Description: The RL (Rotate Left) instruction rotates the value of Rn left by one bit and stores the result back in
Rn. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 0 1 1 1 1 0 Rn

Operation: Rn := Rn << 1, Rn[0] = MSB of Rn before rotation

T bit := MSB of Rn before rotation

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-90

RR – Rotate Right

Format: RR Rn

Description: The RR (Rotate Right) instruction rotates the value of Rn right by one bit and stores the result back
in Rn. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 0 0 1 1 1 0 Rn

Operation: Rn := Rn >> 1, MSB of Rn = Rn[0] before rotation

T bit := Rn[0] before rotation

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-91

RRC – Rotate Right with Carry

Format: RRC Rn

Description: The RRC (Rotate Right with Carry) instruction rotates the value of (Rn:T bit) right by one bit and
stores the result back in Rn. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 1 0 1 1 1 0 Rn

Operation: Rn := Rn >> 1, MSB of Rn = T bit before rotation

T bit := Rn[0] before rotation

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-92

SBC (1) – Subtract with Carry Register

Format: SBC Rn, Ri

Description: The SBC (Subtract with Carry) instruction is used to synthesize 32-bit subtraction. If register pairs
R0, R1 and R2, R3 hold 32-bit values (R0 and R2 hold the least-significant word), the following
instructions leave the 32-bit result in R0, R1:

 SUB R0, R2

 SBC R1, R3

SBC subtracts the value of register Ri, and the value of the Carry flag (stored in the T bit), from the
value of register Rn, and stores the result in register Rn. The T bit and the V flag are updated based
on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 0 1 1 Ri

Operation: Rn := Rn + ~Ri + T bit

T bit := Carry from (Rn + ~Ri + T bit)

V flag := Overflow from (Rn + ~Ri + T bit)

if(Rn == R6/R7) Z0/Z1 := ((Rn + ~Ri + T) == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-93

SBC (2) – Subtract with Carry Immediate

Format: SBC Rn, #<imm:16>

Description: The SBC (Subtract with Carry immediate) instruction is used to synthesize 32-bit subtraction with
an immediate operand. If register pair R0, R1 holds a 32-bit value (R0 holds the least-significant
word), the following instructions leave the 32-bit subtraction result with 34157856h in R0, R1:

 SUB R0, #7856h

 SBC R1, #3415h

SBC subtracts the value of <imm:16>, and the value of the Carry flag (stored in the T bit), from the
value of Rn, and stores the result in register Rd. The T bit and the V flag are updated based on the
result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 0 1 1 1 1 1 1 Rn

Operation: Rn := Rn + ~<imm:16> + T bit

T bit := Carry from (Rn + ~<imm:16> + T bit)

V flag := Overflow from (Rn + ~<imm:16> + T bit)

if(Rn == R6/R7) Z0/Z1 := ((Rn + ~<imm:16> + T) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

INSTRUCTION SET S3CC11B/FC11B

6-94

SETSR – Set SR

Format: SETSR bs:3

Description: The SETSR (Set SR) instruction is used to set a specified bit in SR as follows:

 SETSR FE / IE / TE / V / Z0 / Z1 / PM

To set the T bit, one can do as follows:

 CMP EQ, R0, R0

To clear a specified bit in SR, the CLRSR instruction is used.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 1 1 1 1 0 1 0 0 0 1 <bs:3>

Operation: SR[<bs:3>] := 1

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-95

SLB – Shift Left Byte

Format: SLB Rn

Description: The SLB (Shift Left Byte) instruction shift the value of Rn left by 8 bit and stores the result back in
Rn. The low 8 bit positions are filled with 0's. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 1 1 1 1 0 1 0 0 0 Rn

Operation: SR[15:8] := Rn[7:0] and Rn[7:0] := 8'h00

T bit := Rn[8] before shifting

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-96

SR – Shift Right

Format: SR Rn

Description: The SR (Shift Right) instruction shifts the value of Rn right by one bit and stores the result back in
Rn. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 0 0 1 1 1 0 Rn

Operation: Rn := Rn >> 1, with Rn[15] set to 0

T bit := Rn[0] before shifting

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-97

SRA – Shift Right Arithmetic

Format: SRA Rn

Description: The SRA (Shift Right Arithmetic) instruction shifts the value of Rn right by one bit and stores the
result back in Rn. While doing so, the original sign bit (most significant bit) is copied to the most
significant bit of the result. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 0 1 1 1 1 0 Rn

Operation: Rn := Rn >> 1, with Rn[15] set to the original value

T bit := Rn[0] before shifting

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-98

SRB – Shift Right Byte

Format: SRB Rn

Description: The SRB (Shift Right Byte) instruction shifts the value of Rn right by 8 bit and stores the result back
in Rn. The high 8 bit positions are filled with 0’s. T bit is updated as a result of this operation.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 0 0 1 1 1 1 1 0 Rn

Opera tion: Rn[7:0] := Rn[15:8] and Rn[15:8] := 8’h00

T bit := Rn[7] before shifting

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-99

SUB (1) – Subtract Register

Format: SUB Rn, Ri

Description: The SUB (Subtract Register) instruction is used to subtract a 16-bit register value from another 16-
bit register value. 32-bit subtraction can be achieved by executing SBC instruction in pair with this
instruction.

SUB subtracts the value of register Ri from the value of Rn, and stores the result in register Rn. The
T bit and the V flag are updated based on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 0 0 1 Ri

Operation: Rn := Rn - Ri

T bit := Carry from (Rn - Ri)

V flag := Overflow from (Rn - Ri)

if(Rn == R6/R7) Z0/Z1 := ((Rn – Ri) == 0)

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-100

SUB (2) – Subtract Small Immediate

Format: SUB Rn, #<imm:7>

Description: This form of SUB instruction is used to subtract a 7-bit immediate value from a register.

It subtracts the value of <imm:7> from the value of register Rn, and stores the result in register Rn.
The T bit and the V flag is updated based on the result.

 15 14 13 12 11 8 7 6 0

 0 0 0 0 Rn 1 <imm:7>

Operation: Rn := Rn - <imm:7>

T bit := Carry from (Rn - <imm:7>)

V flag := Overflow from (Rn - <imm:7>)

if(Rn == R6/R7) Z0/Z1 := ((Rn - <imm:7>) == 0)

Exceptions: None

Notes: <imm:7> is an unsigned amount.

S3CC11B/FC11B INSTRUCTION SET

 6-101

SUB (3) – Subtract Extended Register

Format: SUB An, Ri

Description: This form of SUB instruction (Subtract Extended Register) is used to add a 16-bit unsigned register
value from a 22-bit value in register.

This instruction subtracts the value of 16-bit register Ri from the value of 22-bit register An, and
stores the result in register An.

 15 14 13 12 11 10 8 7 6 5 4 3 0

 1 0 1 0 1 An 1 1 0 0 Ri

Operation: An := An - Ri

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-102

SUB (4) – Subtract Large Immediate

Format: SUB An, #<imm:16>

Description: The SUB (Subtract Large Immediate) instruction is used to subtract a 16-bit unsigned immediate
value from a 22-bit register.

SUB subtracts the value of <imm:16> from the value of An, and stores the result in register An.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 0 0 0 0 1 1 1 1 1 1 An

Operation: An := An - <imm:16>

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

S3CC11B/FC11B INSTRUCTION SET

 6-103

SUB (5) – Subtract 5-bit Immediate

Format: SUB An, #<imm:5>

Description: This form of SUB instruction (Subtract Extended Register) is used to subtract a 5-bit unsigned
immediate value from a 22-bit register.

This instruction subtracts the value of 5-bit immediate <imm:5> from the value of 22-bit register An,
and stores the result in register An.

 15 14 13 12 11 10 8 7 6 5 4 0

 1 0 1 0 1 An 0 1 1 <imm:5>

Operation: An := An - <imm:5>

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-104

SWI – Software Interrupt

Format: SWI #<imm:6>

Description: The SWI (Software Interrupt) instruction performs a specified set of operations (i.e., an SWI
handler). This instruction can be used as an interface to the low-level system software such as
operating system.

Executing this instruction is similar to performing a function call. However, interrupts (IRQ and TRQ)
will be masked off so that when a software interrupt is handled, it can be seen as an uninterruptible
operation. Note that FIQ can still be triggered when an SWI is serviced. Return from a SWI handler
is done by RET_SWI unlike normal function calls.

 15 14 13 12 11 10 9 8 7 6 5 0

 1 0 0 1 1 1 1 0 0 1 <imm:6>

Operation: A14 := PC + 2

SSR_SWI := SR

IE := 0, TE := 0

PC := <imm:6> << 2

Exceptions: None

Notes: Program addresses from 000000h to 0000feh are reserved for SWI handlers. SWI vectors 0 and 1
are not used, as the addresses from 000000h to 000007h are reserved for other interrupts.

S3CC11B/FC11B INSTRUCTION SET

 6-105

SYS – System

Format: SYS #<imm:5>

Description: The SYS (System) instruction is used for system peripheral interfacing using DA[4:0] and nSYSID
core signals.

 15 14 13 12 11 10 9 8 7 6 5 4 0

 1 0 0 1 1 1 1 0 0 0 1 <imm:5>

Operation: core output signal DA[4:0] := <imm:5>, DA[21:5] := (unchanged)

core output signal nSYSID := LOW

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-106

TST (1) – Test Register

Format: TST Rn, Ri

Description: The TST (TST Register) instruction is used to determine if many bits of a register are all clear, or if
at least one bit of a register is set.

TST performs a comparison by logically ANDing the value of register Rn with the value of Ri.
T bit is set according to the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 1 1 1 Ri

Operation: Temp := Rn & Ri

T bit := ((Rn & Ri) == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-107

TST (2) – Test Small Immediate

Format: TST R0, #<imm:8>

Description: This type of TST instruction is used to determine if many bits of a register are all clear, or if at least
one bit of a register is set.

TST performs a comparison by logically ANDing the value of register Rn with the value of Ri. T bit is
set according to the result.

 15 14 13 12 11 10 9 8 7 0

 1 0 0 1 1 0 1 1 <imm:8>

Operation: Temp n := Rn & <imm:8>

T bit := ((Rn & <imm:8>)[7:0] == 0)

Exceptions: None

Notes: The register used in this operation is fixed to R0. Therefore, the operand should be placed in R0
before this instruction executes.

INSTRUCTION SET S3CC11B/FC11B

6-108

TST (3) – Test Large Immediate

Format: TST Rn, #<imm:16>

Description: This type of TST instruction is used to determine if many bits of a register are all clear, or if at least
one bit of a register is set.

TST performs a comparison by logically ANDing the value of register Rn with the value of Ri.
T bit is set according to the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 1 1 1 1 1 1 Rn

Operation: Temp := Rn & <imm:16>

T bit := ((Rn & <imm:16>) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

S3CC11B/FC11B INSTRUCTION SET

 6-109

TSTSR – Test SR

Format: TSTSR bs:3

Description: The TSTSR (Test SR) instruction is used to test a specified bit in SR as the following example
shows:

 TST FE / IE / TE / V / Z0 / Z1 / PM

To set or clear a specified bit, the SETSR or CLRSR instruction is used.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

 1 0 0 1 1 1 1 0 1 0 0 1 0 <bs:3>

Operation: T bit := ~SR[<bs:3>]

Exceptions: None

Notes: None

INSTRUCTION SET S3CC11B/FC11B

6-110

XOR (1) – XOR Register

Format: XOR Rn, Ri

Description: The XOR (XOR Register) instruction is used to perform bitwise XOR operation on two values in
registers, Rn and Ri.

The result is stored in register Rn. The T bit is updated based on the result.

 15 14 13 12 11 8 7 6 5 4 3 0

 1 0 0 0 Rn 0 1 1 0 Ri

Operation: Rn = Rn ^ Ri

T bit = ((Rn ^ Ri) == 0)

if(Rn == R6/R7) Z0/Z1 := ((Rn^Ri) == 0)

Exceptions: None

Notes: None

S3CC11B/FC11B INSTRUCTION SET

 6-111

XOR (2) – XOR Small Immediate

Format: XOR R0, #<imm:8>

Description: This type of XOR instruction is used to perform bitwise XOR operation on two values in register R0
and <imm:8>.

The result is stored in register R0. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 0

 1 0 0 1 1 0 1 0 <imm:8>

Operation: R0 = R0 ^ <imm:8>

T bit = ((R0 ^ <imm:8>)[7:0] == 0)

Exceptions: None

Notes: The register used in this operation is fixed to R0. Therefore, the operand should be placed in R0
before this instruction executes. <imm:8> is zero-extended to a 16-bit value before operation.

INSTRUCTION SET S3CC11B/FC11B

6-112

XOR (3) – XOR Large Immediate

Format: XOR Rn, #<imm:16>

Description: This type of XOR instruction is used to perform bitwise XOR operation on two values in register Rn
and <imm:16>.

The result is stored in register Rn. The T bit is updated based on the result.

 15 14 13 12 11 10 9 8 7 6 5 4 3 0

 1 0 0 0 0 1 1 0 1 1 1 1 Rn

Operation: Rn = Rn ^ <imm:16>

T bit = ((Rn ^ <imm:16>) == 0)

if(Rn == R6/R7) Z0/Z1 := ((Rn^<imm:16>) == 0)

Exceptions: None

Notes: This is a 2-word instruction, where the 16-bit immediate follows the instruction word shown above.
Unlike 1-word instructions, therefore, fetching of this instruction takes 2 cycles.

S3CC11B/FC11B PLL (Phase Locked Loop)

 7-1

7 PLL (PHASE LOCKED LOOP)

OVERVIEW

S3CC11B/FC11B builds clock synthesizer for system clock generation, which can operate external crystal for
reference, using internal phase-locked loop (PLL) and voltage-controlled oscillator (VCO). The input clock to the PLL
block should be 2.048 MHz by the pre-scaler.

System Clock Circuit

The system clock circuit has the following component:

• External crystal oscillator 32.768 kHz

• Phase comparator, noise filter and frequency divider.

• Lock detector

• PLL control circuit: Control register, PLLCON and PLL frequency divider data register.

fxin
Pre-Scaler PLL VCO Post-Scaler Selector

fx

PLLCON.1PLLDATA.1-.0Feedback
Divider

PLLDATA.4-.2

PLLDATA.6-.5PLLCON.0

fin FVCO Fout

NOTES:
1. By a system reset, the PLL block is disabled and the fxin is selected for the fx with the PLLCON.0 = "0".
2. It should be written to the PLLCON.1-0 with a "11" to use the PLL output frequency, fout, as system clock.
3. If the PLL block is disabled with the PLLCON.0 = "0", a current through the PLL block should be under 1uA.
4. The PLL block should be disabled by software before entering power down mode (STOP mode).

Figure 7-1. Phase -Locked Loop Circuit Diagram

PLL (Phase Locked Loop) S3CC11B/FC11B

7-2

PLLCON — PLL Data Register 3F0076H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – – – 0 0

Read/Write – – – – – – R/W R/W

.7–.2 Bits 7–2

 Not used

.1 fx Selection Bit

 0 Select fxin

 1 Select fout

 Note: Where fxin is the main oscillator clock and fout is the PLL clock.

.0 PLL Enable Bit

 0 Disable PLL

 0 Enable PLL

PLLDATA — PLL Data Register 3F0077H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 0 0 0 0 0 0 0

Read/Write – R/W R/W R/W R/W R/W R/W R/W

.7 Bits 7

 Not used

.6–.5 Pre-Scaler Bits

 fxin ÷ 2N, N = 0, 1, and 2.

.4–.2 Feedback Divider Bits

 fvco ÷ (N + 8), N = 0, 2, 4, 6, ……………, and 14.

.1–.0 Post-Scaler Bits

 fvco ÷ (N + 1), N = 0, 1, 2, and 3.

S3CC11B/FC11B PLL (Phase Locked Loop)

 7-3

OSCCON — Oscillator Control Register 3F0003H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7–.4 Bits 7–4

 Not used

.3 Main Oscillator Control Bit

 0 Main oscillator RUN

 1 Main oscillator STOP

.2 Sub Oscillator Control Bit

 0 Sub oscillator RUN

 1 Sub oscillator STOP

.1 Bit 1

 Not used

.0 System Clock Source Selection Bit

 0 Select main oscillator for system clock

 1 Select sub oscillator for system clock

CLKCON — Clock Control Register 3F0002H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – – – 0 0

Read/Write – – – – – – R/W R/W

.7–.2 Bits 7–2

 Not used

.1–.0 System Clock Selection Bits

 0 0 fxx/8

 0 1 fxx/4

 1 0 fxx/2

 1 1 fxx/1

PLL (Phase Locked Loop) S3CC11B/FC11B

7-4

INT
Stop Release Stop Release

INT

Selector 1

Sub-System
Oscillator

Circuit

OSCCON.2
Stop

Oscillator
Control
Circuit

CPU stop signal
by idle or stop

CPU

DA [7-0]

Idle or stop instruction
makes DA [7-0] signal
(SYS intruction by CalmRISC16)

OSCCON.3

OSCCON.0
Basic Timer
Timer/Counters
Watch Timer (fxin/128)
Battery Level Detector
LCD Controller
Serial I/O
PWM Modules

Stop

Main Oscillator and
PLL Circuit fx fxt

Watch Timer
BLD

SSFDC Interface
CODEC
Serial Interface for ext. Codec

1/1 - 1/4096
Frequency Dividing Circuit

Selector 2CLKCON.1-.0

PLLCON

1/1 1/2 1/3 1/8

Figure 7-2. System Clock Circuit Diagram

S3CC11B/FC11B PLL (Phase Locked Loop)

 7-5

R13 LPF

C27
1000pF

C28
20k

250pF

Figure 7-3. External Loop Filter for PLL

PLL (Phase Locked Loop) S3CC11B/FC11B

7-6

NOTES

S3CC11B/FC11B RESET AND POWER-DOWN

 8-1

8 RESET AND POWER-DOWN

OVERVIEW

During a power-on reset, the voltage at VDD goes to High level and the nRESET pin is forced to Low level. The

nRESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This
procedure brings S3CC11B into a known operating status.

For the time for CPU clock oscillation to stabilize, the nRESET pin must be held to low level for a minimum time
interval after the power supply comes within tolerance. For the minimum time interval, see the electrical
characteristic.

In summary, the following sequence of events occurs during a reset operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is disabled.

— All Ports are set to input mode.

— Peripheral control and data registers are disabled and reset to their default hardware values.

— The program counter (PC) is loaded with the program reset address in 00000H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in
location 00000H is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the
basic timer control register, BTCON, before entering STOP mode. Also, if you want to use the basic timer
watchdog function, you can enable it by writing some value other than '1010 0101b' to the WDTEN register.

RESET AND POWER-DOWN S3CC11B/FC11B

8-2

NOTES

S3CC11B/FC11B I/O PORTS

 9-1

9 I/O PORTS

PORT DATA REGISTERS

All ten port data registers have the identical structure shown in Figure 9-1 below:

Table 9-1. Port Data Register Summary

Register Name Mnemonic Address Reset Value R/W

Port 0 Data Register P0 3F0010H 00H R/W

Port 1 Data Register P1 3F0011H 00H R/W

Port 2 Data Register P2 3F0012H 00H R/W

Port 3 Data Register P3 3F0013H 00H R/W

Port 4 Data Register P4 3F0014H 00H R/W

Port 5 Data Register P5 3F0015H 00H R/W

Port 6 Data Register P6 3F0016H 00H R/W

Port 7 Data Register P7 3F0017H 00H R/W

Port 8 Data Register P8 3F0018H 00H R/W

Port 9 Data Register P9 3F0019H 00H R/W

I/O Port n Data Register (n = 0-9)
n = 0-9: R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Pn.0Pn.1
Pn.2Pn.3Pn.4Pn.5Pn.6Pn.7

Figure 9-1. Port Data Register Structure

I/O PORTS S3CC11B/FC11B

9-2

P0CONH — Port 0 Control Register High 3F0020H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P0.7/SCK Configuration Bits

 0 0 Schmitt trigger input(SCK input)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function(SCK output)

.5–.4 P0.6/SO Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function(SO output)

.3–.2 P0.5/SI Configuration Bits2

 0 0 Schmitt trigger input(SI input)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.1–.0 P0.4 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

S3CC11B/FC11B I/O PORTS

 9-3

P0CONL — Port 0 Control Register Low 3F0021H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P0.3/INT3 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.5–.4 P0.2/INT2 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.3–.2 P0.1/INT1 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.1–.0 P0.0/INT0 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

I/O PORTS S3CC11B/FC11B

9-4

P0PUR — Port 0 Pull-Up Resistors Enable Register 3F0022H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P0.7's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.6 P0.6's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.5 P0.5's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.4 P0.4's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.3 P0.3's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.2 P0.2's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.1 P0.1's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.0 P0.0's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

S3CC11B/FC11B I/O PORTS

 9-5

P0STA — Port 0 Interrupt State Setting Register 3F0023H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.4 Bits 7–4

 Not used

.3 P0.3's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.2 P0.2's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.1 P0.1's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.0 P0.0's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

I/O PORTS S3CC11B/FC11B

9-6

P1CON — Port 1 Control Register 3F0024H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7–.6 Bits 7–6

 Not used

.5–.3 P1.7/ I/O7 – P1.4/ I/O4 Configuration Bits

 0 0 0 Schmitt trigger input

 0 0 1 Schmitt trigger input; Pull-up resis tor enable

 0 1 0 Push-pull output

 0 1 1 N-channel open-drain output

 1 0 0 N-channel open-drain output; Pull-up resistor enable

.2–.0 P1.3/ I/O3 – P1.0/ I/O0 Configuration Bits

 0 0 0 Schmitt trigger input

 0 0 1 Schmitt trigger input; Pull-up resistor enable

 0 1 0 Push-pull output

 0 1 1 N-channel open-drain output

 1 0 0 N-channel open-drain output; Pull-up resistor enable

NOTE: When the SmartMedia control(SMCON) register is enabled, the read or write operation for port 1 activate the ECC
 block and the pull -up resistors should be automatically disabled to reduce current consumption through them. The
 ECC block capture the data on port 1 access and execute ECC operation.

S3CC11B/FC11B I/O PORTS

 9-7

P2CONH — Port 2 Control Register High 3F0028H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P2.7/nCE1 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.5–.4 P2.6/nCE0 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.3–.2 P2.5/CLE Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.1–.0 P2.4/ALE Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

NOTE: When the SmartMedia control(SMCON) register is enabled, the access of port 2 generate the read or write strobe
 signal to the SmartMedia memory. However, other pins for SmartMedia interface should set interface condition and
 generate interface signal by CPU instruction. This provide the custom er with the high speed memory access time,
 small chip size and small power consumption together.

I/O PORTS S3CC11B/FC11B

9-8

P2CONL — Port 2 Control Register Low 3F0029H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P2.3/ R/nB Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.5–.4 P2.2/WP Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.3–.2 P2.1/nRE Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

.1–.0 P2.0//nWE Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

NOTE: When the SmartMedia control(SMCON) register is enabled, the access of port 2 generate the read or write strobe
 signal to the SmartMedia memory. However, other pins for SmartMedia interface should set interface condition and
 generate interface signal by CPU instruction. This provide the customer with the high speed memory access time,
 small chip size and small power consumption together.

S3CC11B/FC11B I/O PORTS

 9-9

P2PUR — Port 2 Pull-Up Resistors Enable Register 3F002AH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P2.7's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.6 P2.6's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.5 P2.5's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.4 P2.4's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.3 P2.3's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.2 P2.2's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.1 P2.1's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.0 P2.0's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

NOTE: When the SmartMedia control(SMCON) register is enabled, the pull-up resistors should be automatically disabled
to
 reduce current comsuption through them.

I/O PORTS S3CC11B/FC11B

9-10

P3CONH — Port 3 Control Register High 3F002CH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P3.7/TBOUT Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (TBOUT output)

.5–.4 P3.6/TAOUT Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (TAOUT output)

.3–.2 P3.5/BUZ/T1CLK Configuration Bits

 0 0 Schmitt trigger input (T1CLK input)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (BUZ output)

.1–.0 P3.4/T0OUT/T0PWM/T0CAP Configuration Bits

 0 0 Schmitt trigger input (Capture input at T0CAP)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (T0OUT or T0PWM output)

S3CC11B/FC11B I/O PORTS

 9-11

P3CONL — Port 3 Control Register Low 3F002DH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 3.3/AD3/T0CLK Configuration Bits

 0 0 Schmitt trigger input (T0CK input)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (AD3 input)

.5–.4 P3.2/AD2 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (AD2 input)

.3–.2 P3.1/AD1 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (AD1 input)

.1–.0 P3.0/AD0 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative f Alternative function (AD0 input)

I/O PORTS S3CC11B/FC11B

9-12

P3PUR — Port 3 Pull-Up Resistors Enable Register 3F002EH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P3.7's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.6 P3.6's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.5 P3.5's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.4 P3.4's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.3 P3.3's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.2 P3.2's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.1 P3.1's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.0 P3.0's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

S3CC11B/FC11B I/O PORTS

 9-13

P4CONH — Port 4 Control Register High 3F0030H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P4.7/SEG6 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG6 output)

.5–.4 P4.6/SEG5 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG5 output)

.3–.2 P4.5/SEG4 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG4 output)

.1–.0 P4.4/SEG3 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG3 output)

I/O PORTS S3CC11B/FC11B

9-14

P4CONL — Port 4 Control Register Low 3F0031H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P4.3/SEG2/CCLK Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG2 or CCLK output)

.5–.4 P4.2/SEG1/CFS Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG1 or CFS output)

.3–.2 P4.1/SEG0/CDX Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG0 or CDX output)

.1–.0 P4.0/CDR Configuration Bits

 0 0 Schmitt trigger input (CDR input)

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Not available

S3CC11B/FC11B I/O PORTS

 9-15

P4PUR — Port 4 Pull-Up Resistors Enable Register 3F0032H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P4.7's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.6 P4.6's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.5 P4.5's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.4 P4.4's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.3 P4.3's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.2 P4.2's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.1 P4.1's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.0 P4.0's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

I/O PORTS S3CC11B/FC11B

9-16

P4INT — Port 4 Interrupt Control Register 3F0033H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P4.7's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.6 P4.6's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.5 P4.5's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.4 P4.4's Interrupt State Setting Bit

 0 Falling edge interrupt

 1 Rising edge interrupt

.3 P4.7's Interrupt Enable Bit

 0 Disable interrupt

 1 Enable interrupt

.2 P4.6's Interrupt Enable Bit

 0 Disable interrupt

 1 Enable interrupt

.1 P4.5's Interrupt Enable Bit

 0 Disable interrupt

 1 Enable interrupt

.0 P4.4's Interrupt Enable Bit

 0 Disable interrupt

 1 Enable interrupt

S3CC11B/FC11B I/O PORTS

 9-17

P5CONH — Port 5 Control Register High 3F0034H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P5.7/SEG14 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG14 output)

.5–.4 P5.6/SEG13 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG13 output)

.3–.2 P5.5/SEG12 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG12 output)

.1–.0 P5.4/SEG11 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG11 output)

I/O PORTS S3CC11B/FC11B

9-18

P5CONL — Port 5 Control Register Low 3F0035H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.6 P5.3/SEG10 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG10 output)

.5–.4 P5.2/SEG9 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG9 output)

.3–.2 P5.1/SEG8 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG8 output)

.1–.0 P5.0/SEG7 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Push-pull output

 1 0 N-channel open-drain output

 1 1 Alternative function (SEG7 output)

S3CC11B/FC11B I/O PORTS

 9-19

P5PUR — Port 5 Pull-Up Resistors Enable Register 3F0036H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7 P5.7's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.6 P5.6's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.5 P5.5's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.4 P5.4's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.3 P5.3's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.2 P5.2's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.1 P5.1's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

.0 P5.0's Pull-up Resistor Enable Bit

 0 Disable pull-up resistor

 1 Enable pull-up resistor

I/O PORTS S3CC11B/FC11B

9-20

P6CON — Port 6 Control Register 3F0038H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7–.4 Bits 7–4

 Not used

.3–.2 P6.7/SEG22 – P6.4/SEG19 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG22 – SEG19 signal output)

.1–.0 P6.3/SEG18 – P6.0/SEG15 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG18 – SEG15 signal output)

S3CC11B/FC11B I/O PORTS

 9-21

P7CON — Port 7 Control Register 3F003AH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7–.4 Bits 7–4

 Not used

.3–.2 P7.7/SEG30 – P7.4/SEG27 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG30 – SEG27 signal output)

.1–.0 P7.3/SEG26 – P7.0/SEG23 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG26 - SEG23 signal output)

I/O PORTS S3CC11B/FC11B

9-22

P8CON — Port 8 Control Register 3F003CH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

.7–.4 Bits 7–4

 Not used

.3–.2 P8.4/SEG35 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG35 signal output)

.1–.0 P8.3/SEG34 – P8.0/SEG31 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (SEG31 – SEG34 signal output)

S3CC11B/FC11B I/O PORTS

 9-23

P9CON — Port 9 Control Register 3F003EH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – 0 0 0 0 0 0

Read/Write – – R/W R/W R/W R/W R/W R/W

.7–.6 Bits 7–6

 Not used

.5–.4 P9.5/COM2 – P9.7/COM0 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (COM0 – COM2 signal output)

.3–.2 P9.4/COM3 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (COM3 signal output)

.1–.0 P9.0/COM7 – P9.3/COM4 Configuration Bits

 0 0 Schmitt trigger input

 0 1 Schmitt trigger input; Pull-up resistor enable

 1 0 Push-pull output

 1 1 Alternative function (COM4 – COM7 signal output)

I/O PORTS S3CC11B/FC11B

9-24

NOTES

S3CC11B/FC11B BASIC TIMER

 10-1

10 BASIC TIMER

OVERVIEW

The basic timer’s primary function is to measure a predefined time interval. The standard time interval is equal to 256
basic clock pulses and the period of a clock pulse can be selected by basic timer control register.

The 8-bit counter register, BTCNT, is increased each time the clock signal, which can be selected by the clock
signal selection field in basic timer control register, is detected. BTCNT will increase until an overflow occurs. An
overflow internally sets an interrupt pending flag to signal that the predefined time has elapsed. An interrupt request
(BTINT) is then generated, BTCNT is cleared to zero, and the counting continues from 00h.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when STOP
mode is released by an external interrupt.

In STOP mode, whenever a reset or an external interrupt occurs, the oscillator starts and releases the CPU from
STOP mode to normal mode. The BTCNT value then starts increasing at the rate of fOSC/2048 (for reset), or at the
rate of the preset clock source (for an external interrupt). When BTCNT is increased to 80h, basic timer generates
CPU start signal to indicate that the stabilization interval has elapsed, gating the clock signal on to the CPU so that
it can resume its normal operation.

In summary, the following events occur during the STOP mode release:

1. We assume that, in STOP mode, a power-on reset or an external interrupt occurs to trigger a STOP mode
release and oscillation starts.

2. If a power-on reset occurs, the BTCNT will increase at the rate of fOSC /2048. If an external interrupt is used to
release the STOP mode, the BTCNT value increases at the rate of the preset clock source.

3. Clock oscillation stabilization interval begins and continues until BTCNT becomes 80h.

4. When a BTCNT is 10h, the CPU start signal is generated and the normal CPU operation resumes.

Watchdog Timer Function

The basic timer can also be used as a "watchdog" timer to detect inadvertent program loops, i.e. infinite loop, by
system or program operation errors. For this purpose, instructions that clear the watchdog timer counter register
within a given period should be executed at proper points in a program. If an instruction that clears the watchdog
timer counter register is not executed within the period and the watchdog timer overflows, a reset signal is generated
so that the system will be restarted. Operations of a watchdog timer are as follows:

1. Each time BTCNT overflows, the overflow signal is sent to the watchdog timer counter, WTCNT.

2. If WDTCNT overflows, a system-reset signal is generated.

As the reset signal sets WDTCON as A5H and this value disables the watchdog timer.

BASIC TIMER S3CC11B/FC11B

10-2

BTCON — Basic Timer Control Register 3F000CH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 1 1 1 – – 0 0

Read/Write – R/W R/W R/W – – R/W R/W

.7 Not used

.6–.4 Basic Timer Clock Selection Bits

 0 0 0 fxx/2

 0 0 1 fxx/4

 0 1 0 fxx/16

 0 1 1 fxx/32

 1 0 0 fxx/128

 1 0 1 fxx/256

 1 1 0 fxx/1024

 1 1 1 fxx/2048

.3–.2 Bits 3–2

 Not used

.1 Basic Timer Counter Clear Bit

 0 Don't care

 1 Clear basic timer counter

.0 Watchdog Timer Counter Clear Bit

 0 Don't care

 1 Clear watchdog timer counter

S3CC11B/FC11B BASIC TIMER

 10-3

WDTEN — Watch-Dog Timer Enable Register 3F000EH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

.7–.0 Watch-dog Timer Enable Bits

 10100101 Disable watch-dog timer

 Other values Enable watch-dog timer

BASIC TIMER S3CC11B/FC11B

10-4

BASIC TIMER & WATCHDOG TIMER BLOCK DIAGRAM

8-BIt Basic Counter
(read only)

MUX

Reset or Stop,
or BTCON.1

Data BUS

CPU Start Signal
(power down release)

Clear

BT OVF

BTCON .6 .5 .4

3-bit Watchdog
Timer Counter

clear

BTCON.0 Reset STOP IDLE

fxx/2048

fxx/1024

fxx/256

fxx/128

fxx/32

fxx/16

fxx/4

fxx/2

BTCNT.7

RESET
OVF

fb
BT INT

WDTEN.7-.0

NOTES:
1. The basic timer counter is cleared to "00H" when a "1" is written to BTCON.1, and immediately the

write operation the bit is automatically cleared to "0"
2. The watch-dog timer counter is cleared to "0H" when a "1" is written to BTCON.0, and immediately

the write operation the bit is automatically cleared to "0".

Figure 10-1. Basic Timer & Watchdog Timer Block Diagram

S3CC11B/FC11B WATCH TIMER

 11-1

11 WATCH TIMER

OVERVIEW

Watch timer functions include read time and watch-time measurements. After the watch timer starts and time
elapses, the watch timer interrupt is automatically set to"1" , and interrupt requests commence in 3.91ms, 0.25s,
0.5s or 1 second intervals.

The watch timer can generate a steady 0.5 kHz, 1 kHz, 2 kHz or 4 kHz signal to the BUZZER output. By setting
WTCON[3:2] to "11b", the real time clock will function in high-speed mode, generating an interrupt every 3.91 ms.
High-speed mode is useful for timing events for program debugging sequences.

— Real-Time and Watch-Time Measurement

— Using a Main Oscillator or Sub Oscillator Clock Source

— Buzzer Output Frequency Generator

— Timing Tests in High-Speed Mode

WATCH TIMER S3CC11B/FC11B

11-2

WTCON — Watch Timer Control Register 3F0070H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 0 0 0 0 0 0 0

Read/Write – R/W R/W R/W R/W R/W R/W R/W

.7 Bit 7

 Not used

.6 Watch Timer Clock Source Selection Bit (When WTCON.1 = "0" Only)

 0 fxin/128

 1 fxin/64

.5–.4 Buzzer Signal Selection Bits

 0 0 0.5 kHz

 0 1 1 kHz

 1 0 2 kHz

 1 1 4 kHz

.3–.2 Watch Timer Speed Selection Bits

 0 0 Set watch timer interrupt to 1s

 0 1 Set watch timer interrupt to 0.5s

 1 0 Set watch timer interrupt to 0.25s

 1 1 Set watch timer interrupt to 3.91ms

.1 Watch Timer Clock Selection Bit

 0 Select clock divided by 26 or 27 (fxin/64 or fxin/128)

 1 Select sub clock (fxt)

.0 Watch Timer Enable Bit

 0 Disable watch timer; Clear frequency dividing circuits

 1 Enable watch timer

S3CC11B/FC11B WATCH TIMER

 11-3

WATCH TIMER BLOCK DIAGRAM

WTCON.1

WTCON.2

WTCON.3

WTCON.4

WTCON.5

WTCON.6

Enable/Disable
Selector
Circuit

MUX

fW/215
fW/214

fW/213
fW/27

fW/64 (0.5 kHz)
fW/32 (1 kHz)
fW/16 (2 kHz)
fW/8 (4 kHz)

(1 Hz)

fXin = Main clock (where fxin = 4.19 MHz)
fxt = Sub clock (32.768 kHz)
fW = Watch timer frequency

Clock
Selector

Frequency
Dividing
Circuit

fW

32.768 kHz

fxt

fX
in
/6

4

fLCD = 2048 Hz

WTCON.7

WTCON.0

8

BUZZER Output

MUX

fX
in

/1
28

WTCON.6

Watch Timer INT

Figure 11-1. Watch Timer Block Diagram

WATCH TIMER S3CC11B/FC11B

11-4

 NOTES

S3CC11B/FC11B 8-BIT TIMER 0

 12-1

12 8-BIT TIMER 0

OVERVIEW

The 8-bit timer 0 is an 8-bit general-purpose timer/counter. Timer 0 has three operating modes, one of which you
select using the appropriate T0CON setting:

— Interval timer mode (Toggle output at T0 pin)

— Capture input mode with a rising or falling edge trigger at the T0CAP pin

— PWM mode (T0PWM)

8-BIT TIMER 0 S3CC11B/FC11B

12-2

FUNCTION DESCRIPTION

Timer 0 Interrupts

The Timer 0 module can generate two interrupts: the Timer 0 overflow interrupt (T0OVF), and the Timer 0 match/
capture interrupt (T0INT).

Interval Timer Function

The Timer 0 module can generate an interrupt: the Timer 0 match interrupt (T0INT).
In interval timer mode, a match signal is generated(,) and T0 is toggled when the counter value is identical to the
value written to the T0 reference data register, T0DATA. The match signal generates a Timer 0 match interrupt and
clears the counter.
If, for example, you write the value 10H to T0DATA and 0AH to T0CON, the counter will increment until it reaches
10H. At this point, the T0 interrupt request is generated and the counter value is reset and counting resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T0PWM
pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to
the Timer 0 data register. In PWM mode, however, the match signal does not clear the counter but can generate a
match interrupt. The counter runs continuously, overflowing at FFH, and then repeats the incrementing from 00H.
Whenever an overflow occurs, an overflow(OVF) interrupt can be generated.
Although you can use the match or the overflow interrupt in PWM mode, interrupts are not typically used in PWM-
type applications. Instead, the pulse at the T0PWM pin is held to High level as long as the reference data value is
less than or equal to (≤) the counter value, and then the pulse is held to Low level for as long as the data value is
greater than (>) the counter value. One pulse width is equal to tCLK × 256.

Capture Mode

In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter value
into the T0 data register. You can select the rising or falling edges to trigger this operation.
Timer 0 also gives you capture input source: the signal edge at the T0CAP pin. You select the capture input by
setting the value of the Timer 0 capture input selection bit in the port control register.
Both kinds of Timer 0 interrupts can be used in capture mode: the Timer 0 overflow interrupt is generated whenever a
counter overflow occurs; the Timer 0 match/capture interrupt is generated whenever the counter value is loaded into
the T0 data register.
By reading the captured data value in T0DATA and assuming a specific value for the Timer 0 clock frequency, you
can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin.

S3CC11B/FC11B 8-BIT TIMER 0

 12-3

TIMER 0 CONTROL REGISTER (T0CON)

You use the Timer 0 control register, T0CON, to

• Select the Timer 0 operating mode (interval timer, capture mode, or PWM mode)

• Select the Timer 0 input clock frequency

• Clear the Timer 0 counter, T0CNT

• Enable the Timer 0 counter

A reset clears T0CON to '00H'. This sets Timer 0 to normal interval timer mode, selects an input clock frequency of
fOSC/4096, and disables Timer 0 counting operation. You can clear the Timer 0 counter at any time during normal

operation by writing a "1" to T0CON.3.

8-BIT TIMER 0 S3CC11B/FC11B

12-4

BLOCK DIAGRAM

MUX

1/14096

1/16
1/256

8-Bit Up Counter
(T0CNT, Read-Only)

8-Bit Comparator

Timer 0 Buffer
Register

Data Bus

M
U
XP3.4

M
U
X

Clear

Data BusT0CON. 7-.5

Overflow INT

T0OUT
T0PWM

Match

P3.3

T0CON. 3-.2

Timer 0 Data
Register

T0CON. 3-.2

Match Signal

T0OVF

T0CON.1R

1/1

T0CLK

T0CAP

T0CLR

Match or Capture INT

P3.4

T0CON. 0

Figure 12-1. Timer 0 Functional Block Diagram

S3CC11B/FC11B 8-BIT TIMER 0

 12-5

T0CON — Timer 0 Control Register 3F0042H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 – 0 0 0 0

Read/Write R/W R/W R/W – R/W R/W R/W R/W

.7–.5 Timer 0 Clock Selection Bits

 0 0 0 fxx/4096

 0 0 1 fxx/256

 0 1 0 fxx/16

 0 1 1 fxx/1

 1 0 0 External clock (at T0CLK pin)

 Other values Not used for S3FC11B

.4 Bit 4

 fxin/128

.3–.2 Timer 0 Operating Mode Selection Bits

 0 0 Interval mode

 0 1 Capture mode (capture on rising edge, counter running, OVF)

 1 0 Capture mode (capture on falling edge, counter running, OVF)

 1 1 PWM mode (OVF interrupt can occur)

.1 Timer 0 Counter Clear Bit

 0 No effect

 1 Clear the timer 0 counter (when write)

.0 Timer 0 Counter Enable Bit

 0 Disable counting operation

 1 Enable counting operation

8-BIT TIMER 0 S3CC11B/FC11B

12-6

NOTES

S3CC11B/FC11B 16-BIT TIMER 1 (8-BIT TIMER A & B)

 13-1

13 16-BIT TIMER 1 (8-BIT TIMER A & B)

OVERVIEW

The 16-bit timer 1 is used in one 16-bit timer or two 8-bit timers. When Bit 2 of TBCON is "1", it operates as one 16-
bit timer. When it is "0", it operates as two 8-bit timers. When it operates as one 16-bit timer, the TBCNT's clock
source can be selected by setting TBCON.3. If TBCON.3 is "0", the timer A's overflow would be TBCNT's clock
source. If it is "1", the timer A's interval out would be TBCNT's clock source. The timer clock source can be selected
by the S/W.

INTERVAL TIMER FUNCTION

The timer A&B module can generate an interrupt: the Timer A and/or Timer B match interrupt (TAINT, TBINT). In
interval timer mode, a match signal is generated when the counter value is identical to the value written to the
reference data register, TADATA/TBDATA. The match signal generates Timer A and/or Timer B match interrupt and
clears the counter.

TB pin can be toggled whenever the timer B match interrupt occurs if I/O port setting is appropriate.

16-BIT TIMER 1 (8-BIT TIMER A & B) S3CC11B/FC11B

13-2

TACON — Timer 1/A Control Register 3F0048H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 0 0 0 – – 0 0

Read/Write – R/W R/W R/W – – R/W R/W

.7 Bit 7

 Not used

.6–.4 Timer 1/A Clock Selection Bits

 0 0 0 fxx/4096

 0 0 1 fxx/512

 0 1 0 fxx/64

 0 1 1 fxx/8

 1 0 0 fxx (system clock)

 1 0 1 fxt (sub clock)

 1 1 0 T1CLK (external clock)

 1 1 1 Not used for S3FC11B

.3–.2 Bit 3–2

 Not used

.1 Timer 1/A Counter Clear Bit

 0 No effect

 1 Clear the timer 1/A counter (when write)

.0 Timer 1/A Counter Enable Bit

 0 Disable counting operation

 1 Enable counting operation

S3CC11B/FC11B 16-BIT TIMER 1 (8-BIT TIMER A & B)

 13-3

TBCON — Timer B Control Register 3F0049H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 0 0 0 0 0 0 0

Read/Write – R/W R/W R/W R/W R/W R/W R/W

.7 Bit 7

 Not used

.6–.4 Timer B Clock Selection Bits

 0 0 0 fxx/4096

 0 0 1 fxx/512

 0 1 0 fxx/64

 0 1 1 fxx/8

 1 0 0 fxt (sub clock)

 Other values Not used for S3FC11B

.3 16-Bit Operation Timer B Clock Input Selection Bit

 0 Timer A overflow out

 1 Timer A interval out

.2 Timer B Mode Selection Bit

 0 8-bit operation mode

 1 16-bit operation mode

.1 Timer B Counter Clear Bit

 0 No effect

 1 Clear the timer B counter (when write)

.0 Timer B Counter Enable Bit

 0 Disable counting operation

 1 Enable counting operation

16-BIT TIMER 1 (8-BIT TIMER A & B) S3CC11B/FC11B

13-4

BLOCK DIAGRAM

M
U
X

1
fxx/4096

fxx/512

fxx/64

fxx/8

fxx/1

fxt/1

TBCON.2 Timer A Data Register
(Read/Write)

MUX

0

TBCON.0

TACON.0

TACON.6,.5,.4
Timer A Buffer Register

8-Bit Comparator

Data Bus

TACNT (8-Bit
Up-Counter, Read Only)

TACON.1 TBCON.1

MUX TBCON.2

TBCON.3

MUX

10

TBCON.6,.5,.4

8-Bit Comparator

TBCON.3

TBCNT (8-Bit
Up-Counter, Read Olny)

Timer B Buffer Register

Timer B Data Register
(Read/Write)

Data Bus

1

TBOUT

TBINT

TBCON.0TBCON.2

0

MUX
M
U
X

fxx/4096

fxx/512

fxx/64

fxx/8

fxt/1

MUX1

0

MUX0

1

8

8

TAINT

TBCON.2

TBCON.1 TBCON.3TBCON.2

Interval
Output Gen.

0 and 1 means mux input

Interval
Output Gen.

TAOUT

T1CK

Figure 13-1. Timer 1 Block Diagram

S3CC11B/FC11B SERIAL I/O INTERFACE

 14-1

14 SERIAL I/O INTERFACE

OVERVIEW

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.

PROGRAMMING PROCEDURE

To program the SIO modules, follow these basic steps:

1. Configure the I/O pins at port (SO,nSCK, SI) by loading the appropriate value to the P0CONH register, if
necessary.

2. Load an 8-bit value to the SIOCON register to properly configure the serial I/O module. In this operation,
SIOCON.2 must be set to "1" to enable the data shifter.

3. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift operation
starts.

4. When the shift operation (transmit/receive) is completed, the SIO pending bit is set to "1", and a SIO interrupt
request is generated.

SERIAL I/O INTERFACE S3CC11B/FC11B

14-2

SIOCON — Serial I/O Control Register 3F006EH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 0 0 – –

Read/Write R/W R/W R/W R/W R/W R/W – –

.7 Serial I/O Shift Clock Selection Bit

 0 Internal clock

 1 External clock(SCK)

.6 Data Direction Control Bit

 0 MSB-first mode

 1 LSB-first mode

.5 Serial I/O Mode Selection Bit

 0 Receive-only mode

 1 Transmit/receive mode

.4 Tx/Rx Edge Selection Bit

 0 Tx at falling edges, Rx at rising edges

 1 Rx at falling edges, Tx at rising edges

.3 Serial I/O Counter Clear and Shift Start Bit

 0 No effect

 1 Clear 3-bit counter and start shifting
(This bit is automatically cleared to logic zero immediately after starting shift)

.2 Serial I/O Shift Operation Enable Bit

 0 Disable shifter and clock counter

 1 Enable shifter and clock counter

.1–.0 Bits 1–0

 Not used

S3CC11B/FC11B SERIAL I/O INTERFACE

 14-3

SIO PRE-SCALER REGISTER (SIOPS)

The values stored in the SIO pre-scaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as
follows:

Baud rate = Input clock/(Pre-scaler value + 1), or SCLK input clock

where the input clock is fxx/4

LSBMSB

SIO Pre-scaler Register (SIOPS)
6DH, R/W

Baud rate = (fxx/4)/(SIOPS + 1)

.7 .6 .5 .4 .3 .2 .1 .0

Figure 14-1. SIO Pre-scaler Register (SIOPS)

BLOCK DIAGRAM

3-Bit Counter

MUX 8-Bit SIO Shift Buffer
(SIODATA)8-Bit P.S 1/2fxin/2

SIOPS

SCK

SIOCON.7
(Shift Clock

Source Select)

Prescaled Value = 1/(SIOPS + 1)

CLK

CLK

SI(P0.5)

SIOCON.3

SIOCON.4
(Edge Select)

SIOCON.5
(Mode Select)

SIOCON.2
(Shift Enable)

SIOCON.6
(LSB/MSB First
Mode Select)

Data Bus

SO(P0.6)

Serial I/O INT

8

CLEAR

Figure 14-2. SIO Functional Block Diagram

SERIAL I/O INTERFACE S3CC11B/FC11B

14-4

SERIAL I/O TIMING DIAGRAMS

SO

Transmit
Complete

IRQS

Set SIOCON.3

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0SI

nSCK

Figure 14-3. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0)

IRQS

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

nSCK

Transmit
Complete

SI

SO

Set SIOCON.3

Figure 14-4. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)

S3CC11B/FC11B SSFDC (Solid State Floppy Disk Card)

 15-1

15 SSFDC (SOLID STATE FLOPPY DISK CARD)

OVERVIEW

S3CC11B/FC11B build interface logic for SmartMedia™ card, called as SSFDC, solid state floppy disk card. The
SSFDC interface includes the use of simple hardware together with software to generate a basic control signal or
ECC for SmartMedia™.

The built-in SSFDC interface logic consists of ECC block and the read/write strobe signal generation block. The high
speed RISC CPU core, CalmRISC16 supports high speed control for other strobe signal generation and detection.
Therefore, ALE, CLE, CE and etc signal should be operated by CPU instruction. This mechanism provides the
balanced cost and power consumption without the de-graduation of SSFDC access speed.

Physical format is necessary to maintain wide compatibility. SmartMedia™ has a standard physical format. System
makers and controller manufacturers are requested to conform their products to such specifications. For logical
format, SmartMedia™ employs a DOS format on top of physical format. See PC Card Standard Vol.7 and other
references for more information. With all SmartMedia™ products, physical and logical formatting has been
completed at time of shipment.

SSFDC (Solid State Floppy Disk Card) S3CC11B/FC11B

15-2

nCE (P2.6, 7)

CLE (P2.5)

R/B (P2.3)

ALE (P2.4)

nWE (Dedicated Pins)

nRE (Dedicated Pins)

SSFDC
Interface Control

I/O0 - I/O7
(Dedicated Pins)

M
U

X

ECC
Processor

Port 1

VS

DB0 - DB7

Figure 15-1. Simple System Configuration

S3CC11B/FC11B SSFDC (Solid State Floppy Disk Card)

 15-3

SSFDC REGISTER DESCRIPTION

Description of the register in the SSFDC, SmartMedia interface is listed the below table.

Table 15-1. Control Register Description

Register Address R/W/C Description

SMCON 3F0058H R/W SmartMedia control register

ECCNT 3F0059H R/W ECC count register

ECCH/L/X 3F005AH
3F005BH
3F005CH

R/W ECC data register high/low/extension

ECCCLR 3F005DH W ECC clear register

ECCRSTH/L 3F005EH
3F005FH

R/W ECC result data register low/high

SMARTMEDIA CONTROL REGISTER (SMCON)

Register Address R/W Description Reset Value

SMCON 3F0058H R/W SmartMedia control register 00H

[0] ECC Enable This bit enables or disables the ECC operation in the SmartMedia
block. When this bit is set as "1", ECC block is activated and ECC
operation is done whenever accessing the Port 1.
"1”: Enable "0”: Disable.

[1] Enable SmartMedia interface This bit controls the operation of SmartMedia block. When this bit is
set as "1", Port 1 is activated as I/O data bus of SmartMedia
interface. SmartMedia control signal is generated whenever accessing
the Port 1.

[3:2] Wait cycle control These bit control the wait cycle insertion when access to SmartMedia
card.

00: No wait in nWE or nRD signal
01: 1 wait in nWE or nRD signal
10: 4 wait in nWE or nRD signal
11: 8 wait in nWE or nRD signal

SSFDC (Solid State Floppy Disk Card) S3CC11B/FC11B

15-4

SMARTMEDIA ECC COUNT REGISTER (ECCNT)

Register Address R/W Description Reset Value

ECCNT 3F0059H R/W SmartMedia ECC count register 00h

[7:0] Count This field acts as the up-counter. You can know the ECC count
number by reading this register. This register is cleared by setting the
SMCON.0, Start bit or overflow of counter.

SMARTMEDIA ECC DATA REGISTER (ECCDATA)

Register Address R/W Description Reset Value

ECCX 3F005CH R/W SmartMedia ECC data extension register 00h

ECCH 3F005AH R/W SmartMedia ECC data high register 00h

ECCL 3F005BH R/W SmartMedia ECC data low register 00h

[7:0] Data Data field acts as ECC data register when SMCON.0,
Enable bit is set. The access instruction to Port 1 executes a 1byte
ECC operation. The writing to ECCCLR register have all ECC data
registers clear to zero

SMARTMEDIA ECC RESULT DATA REGISTER (ECCRST)

Register Address R/W Description Reset Value

ECCRSTH 3F005EH R/W SmartMedia ECC result data register high 00h

ECCRSTL 3F005FH R/W SmartMedia ECC result data register low 00h

[7:0] Data After ECC compare operation is executed, ECC result out to ECC
result data register, ECCRST.
ECCRSTH[7:0] have the byte location with correctable error bit.
ECCRSTL[2:0] have the bit location where is correctable error bit.
ECCRSTL[4:3] have the error information.

00: No error occurred.
01: detect 1 bit error but recoverable
10: detect the multiple bit error.
11: detect the multiple bit error.

S3CC11B/FC11B SSFDC (Solid State Floppy Disk Card)

 15-5

I/O0 - I/O7

M
U

X

Port 1

VS

DB0 - DB7

ECCCNT

X-OR

ECCDATA
(ECCX/H/L)

ECCRST
(ECCRST/H/L)

SSFDC
Interface Control

ECCRSTL[5:4]: Error Information
00: No error
01: 1 bit error in ECCRSTH.ECCRSTL[2:0]
 (Randge: 0x00.0-0xFF.7
 Byte address: ECCRSTH[7:0]
 Bit location: ECCRSTL[2:0])
10: Multi bit error
11: Multi bit error

Figure 15-2. ECC Processor Block Diagram

SSFDC (Solid State Floppy Disk Card) S3CC11B/FC11B

15-6

NOTES

S3CC11B/FC11B 10-BIT A/D CONVERTER

 16-1

16 10-BIT ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one
of the eight input channels to equivalent 10-bit digital values. The analog input level must lie between the AVREF and

AVSS values. The A/D converter has the following components:

— Analog comparator with successive approximation logic

— D/A converter logic (resistor string type)

— ADC control register (ADCON10)

— Four multiplexed analog data input pins (AD0–AD3)

— 10-bit A/D conversion data output register (ADDATAH10/ADDATAL10)

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at first you must set with alternative function for ADC input
enable at port 3, the pin set with alternative function can be used for ADC analog input. And you write the channel
selection data in the A/D converter control register ADCON10.4–.5 to select one of the eight analog input pins (AD0–
AD3) and set the conversion start or enable bit, ADCON10.0. The read-write ADCON10 register is located in address
51H. The pins which are not used for ADC can be used for normal I/O or T0CLK signal.

During a normal conversion, ADC logic initially sets the successive approximation register to 800H (the approximate
half-way point of an 10-bit register). This register is then updated automatically during each conversion step. The
successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically
select different channels by manipulating the channel selection bit value (ADCON10.5–.4) in the ADCON10 register.
To start the A/D conversion, you should set the enable bit, ADCON10.0. When a conversion is completed,
ADCON10.3, the end-of-conversion(EOC) bit is automatically set to 1 and the result is dumped into the
ADDATAH10/ADDATAL10 register where it can be read. The A/D converter then enters an idle state. Remember to
read the contents of ADDATAH10/ADDATAL10 before another conversion starts. Otherwise, the previous result will
be overwritten by the next conversion result.

NOTE

Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog level at
the AD0–AD3 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input
level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in conversion process,
there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC operation is finished.

10-BIT A/D CONVERTER S3CC11B/FC11B

16-2

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D
conversion. Therefore, total of 50 clocks are required to complete an 10-bit conversion: When fxx/8 is selected for
conversion clock with an 4.5 MHz fxx clock frequency, one clock cycle is 1.78 us. Each bit conversion requires 4
clocks, the conversion rate is calculated as follows:

4 clocks/bit × 10-bit + set-up time = 50 clocks, 50 clock × 1.78 us = 89 us at 0.56 MHz (4.5 MHz/8)

Note that A/D converter needs at least 25µs for conversion time.

A/D CONVERTER CONTROL REGISTER (ADCON10)

The A/D converter control register, ADCON10, is located at address 51H. It has three functions:

— Analog input pin selection (bits 4–5)

— End-of-conversion status detection (bit 3)

— ADC clock selection (bits 2 and 1)

— A/D operation start or disable (bit 0)

After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog input
pins (AD0–AD3) can be selected dynamically by manipulating the ADCON10.4–.5 bits. And the pins not used for
analog input can be used for normal I/O or T0CLK function.

Start or disable bit
0 = Disable operation
1 = Start operation
 (This bit is cleared automatically
 after End-of-Conversion.)

A/D Converter Control Register (ADCON10)
51H, R/W (EOC bit is read-only)

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

End-of-conversion bit
0 = Not complete Conversion
1 = Complete Conversion

Always logic zero

A/D input pin selection bits:
00 = AD0
01 = AD1
10 = AD2
11 = AD3 Clock Selection bits:

00 = fxx/16
01 = fxx/8
10 = fxx/4
11 = fxx/1

Figure 16-1. A/D Converter Control Register (ADCON10)

S3CC11B/FC11B 10-BIT A/D CONVERTER

 16-3

.7 .6 .5 .4 .3 .2 .1 .0 000053H

.9 .8ADDATAH10 000052H

ADDATAL10

Figure 16-2. A/D Converter Data Register (ADDATAH10/ADDATAL10)

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level
must remain within the range AVSS to AVREF.

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process
for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AVREF.

BLOCK DIAGRAM

Input Pins
AD0-AD3

(P3.0-P3.3)

Clock
Selector

Conversion Result
(ADDATAH10/ADDATAL10)

-

+

To ADCON10.3
(EOC Flag)

Successive
Approximation

Logic & Register

VDD

VSS

Analog
Comparator

10-bit D/A
Converter

M

U

X

ADCON10.4-.5
(Select one input pin of the assigned pins)

P3CONL
(Assign Pins to ADC Input)

ADCON10.0
(AD/C Enable)

ADCON10.0
(AD/C Enable)

...

ADCON10.2-.1

Figure 16-3. A/D Converter Functional Block Diagram

10-BIT A/D CONVERTER S3CC11B/FC11B

16-4

AVSS

S3CC11B/FC11B
AD0-AD3

AVREF
Reference

Voltage Input
(AVREF ≤ VDD)

Analog
Input Pin

VDD

VDD
10 µF 103

101

+
-

C

C

R

NOTE: The symbol "R" signifies an offset resistor with a value of from 50 to 100 Ω.

Figure 16-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy

S3CC11B/FC11B CODEC

 17-1

17 CODEC

OVERVIEW

The CODEC is Sigma-Delta type ADC for speech and telephony applications. The CODEC contains both digital
IIR/FIR filters, and an on-chip voltage reference circuit is included to allow supply operations.

FEATURES

• 256X oversampling

• On chip decimation filter for ADC

• On chip interpolation filter for DAC

CODEC S3CC11B/FC11B

17-2

CODEC CONTROL REGISTER (CDCON)

User can select the CODEC input clock for dividing higher crystal by controlling CDCON.
A/D converted data are 14-bit resolution and are input to ADDATAH (High byte), ADDATAL (Low byte) in 16-bit data
format also, D/A converted data are 14-bit resolution and are input to DADATAH (high byte), DADATAL (low byte) in
16-bit data format. Because CODEC use 256X over-sampling, for 8 kHz sampling, when crystal is 2.048 MHz (= 8
kHz × 256), user must select fx as CODEC input clock.
And when crystal is 4.096 MHz (= 2 × 8 kHz × 256), user must select fx/2 as CODEC input clock.

S3CC11B/FC11B CODEC

 17-3

CDCON — CODEC Control Register 3F0064H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 0 0 – 0 0 0

Read/Write R/W R/W R/W R/W – R/W R/W R/W

.7 A/D Converter Enable Bit

 0 Disable A/D converter

 1 Enable A/D converter

.6 D/A Converter Enable Bit

 0 Disable D/A converter

 1 Enable D/A converter

.5 Codec Frequency Dividing Circuit Enable Bit

 0 Disable codec frequency dividing circuit

 1 Enable codec frequency dividing circuit

.4 Mute Control Bit

 0 Enable mute(Low out)

 1 Disable mute(Data out)

.3 Bit 3

 Not used

.2–.0 Codec Input Clock Selection Bits

 0 0 0 f256S = fxin ÷ 1

 0 0 1 f256S = fxin ÷ 2

 0 1 0 f256S = fxin ÷ 3

 0 1 1 f256S = fxin ÷ 4

 1 0 0 f256S = fxin ÷ 5

 1 0 1 f256S = fxin ÷ 6

 1 1 0 f256S = fxin ÷ 8

 1 1 1 f256S = fxin ÷ 10

CODEC S3CC11B/FC11B

17-4

-

+

Decimal
Filter

ADDATAH

ADDATAL

Voltage Reference

ADGAIN

ADINN

ADINP

DAOUT

C
od

ec
 IN

T
E

na
bl

e

Analog
Postfilter

ModulatorΣ

ModulatorΣ Interpolation
Filter

VREFOUT

Frequency Dividing
Circuit

C
D

C
O

N
.2

-.
0

fxin

f256s f16s fs

CDCON.5

Enable
Disable

CDCON.7 CDCON.6

DADATA
Buffer

DADATAH

DADATAL

Codec INT
Enable

A
VD

D
2

A
VS

S
2

V
D

D
3

V
S

S
3

NOTES:
1. The CODEC interupt is generated every 1/fs interval and the ADDATA is updated at that time.
2. The interrupt generation is started in a group delay after enabling the A/D converter

Figure 17-1. CODEC Block Diagram

S3CC11B/FC11B CODEC

 17-5

ADINN

ADINP

ADGAIN

R1

AVREFOUT

R1C0
-

+

R2VDD

GND

C1

Example:
R1 = 100 kΩ
R2 = 200 kΩ
C1 = 50 pF

Voltage Gain:
R2 = 2 x R1
R1>10 kΩ
C1 = 1 x 10-5/R2

2 x R1
R2

Figure 17-2. Single-Ended Input Application

CODEC S3CC11B/FC11B

17-6

NOTES

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-1

18 LCD CONTROLLER / DRIVER

OVERVIEW

The S3CC11B/FC11B microcontroller can directly drive an up-to-288-dot (36 segments x 8 commons) LCD panel.
Its LCD block has the following components:

— LCD controller/driver

— Display RAM for storing display data

— 36 segment output pins (SEG0–SEG35)

— 8 common output pins (COM0–COM7)

— Internal resistor circuit for LCD bias

— VLC1 pin for controlling the driver and bias voltage

The LCD control register, LCON, is used to turn the LCD display on and off, switch the current to the dividing
resistors for the LCD display, and frame frequency. Data written to the LCD display RAM can be automatically
transferred to the segment signal pins without any program control.

When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even in the main clock
stop or idle mode.

LCD
Controller/

Driver8

8-B
it D

ata B
us

1

8

36

VLC1

COM0 - COM7

SEG0 - SEG35

Figure 18-1. LCD Function Diagram

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-2

LCD CIRCUIT DIAGRAM

COM3/P9.4

COM2/P9.5

COM1/P9.6

COM0/P9.7

36

D
at

a
B

us

Display
RAM Selector

Timing
Controller

LCD
Voltage
Control

fLC

LCON

COM
Control

LMOD

SEG35/P8.4

SEG0/P4.1

VLC1

COM7/P9.0

COM6/P9.1

COM5/P9.2

COM4/P9.3

Figure 18-2. LCD Circuit Diagram

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-3

LCD DISPLAY REGISTERS

3F0080–3F00A3H are used as LCD data memory. These locations can be addressed by 1-bit or 8-bit
instructions. If the bit value of a display segment is "1", the LCD display is turned on. If the bit value is "0", the
display is turned off.

Display RAM data are sent out through the segment pins, SEG0–SEG35, using the direct memory access (DMA)
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD display
can be allocated to general-purpose use.

3F
00

80
H

b0

b1

b2

b3

b4

b5

b6

b7

3F
00

81
H

3F
00

82
H

3F
00

83
H

3F
00

84
H

3F
00

85
H

3F
00

86
H

3F
00

87
H

3F
00

88
H

3F
00

89
H

S
E

G
0

S
E

G
1

S
E

G
2

S
E

G
3

S
E

G
4

S
E

G
5

S
E

G
6

S
E

G
7

S
E

G
8

S
E

G
9

3F
00

9D
H

3F
00

9E
H

3F
00

9F
H

3F
00

A
0H

3F
00

A
1H

3F
00

A
2H

3F
00

A
3H

S
E

G
29

S
E

G
30

S
E

G
31

S
E

G
32

S
E

G
33

S
E

G
34

S
E

G
35

COM0

COM1

COM2

COM3

COM4

COM5

COM6

COM7

Figure 18-3. LCD Display Register Organization

LCD CONTROL REGISTER (LCON)

The LCD control register (LCON) is used to turn the LCD display on and off, LCD frame frequency, and control
the flow of the current to the dividing resistors in the LCD circuit. After a RESET, all LCON values are cleared to
"0". This turns the LCD display off and stops the flow of the current to the dividing resistors.

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-4

LCON — LCD Control Register 3F0072H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value 0 0 – – 0 0 0 0

Read/Write R/W R/W – – R/W R/W R/W R/W

.7–.6 LCD Display Control Bits

 0 0 Display off, P-Tr off

 0 1 Normal display (using VLC1 with external voltage), P-Tr off

 1 0 Not available

 1 1 Normal display (using VLC1 with internal voltage), P-Tr on

.5–.4 Bits 5–4

 Not used

.3–.2 LCD Duty and Bias Selection Bits

 0 0 1/3 duty (COM0 – COM2 select), 1/3bias

 0 1 1/4 duty (COM0 – COM3 select), 1/3bias

 1 0 1/8 duty (COM0 – COM7 select), 1/4bias

 1 1 1/8 duty (COM0 – COM7 select), 1/5bias

.1–.0 LCD Clock Selection Bits

 0 0 fw/27(256 Hz when fw is 32.768 kHz)

 0 1 fw/26(512 Hz when fw is 32.768 kHz)

 1 0 fw/25(1,024 Hz when fw is 32.768 kHz)

 1 1 fw/24(2,048 Hz when fw is 32.768 kHz)

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-5

LMOD — LCD Mode Control Register 3F0073H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – – 0 0 0

Read/Write – – – – – R/W R/W R/W

.7–.3 Bits 7–3

 Not used

.2 SEG2 Signal Selection Bit (When P4.3 is selected as alternative function only)

 0 CCLK output

 1 SEG2 output

.1 SEG1 Signal Selection Bit (When P4.2 is selected as alternative function only)

 0 CFS output

 1 SEG1 output

.0 SEG0 Signal Selection Bit (When P4.1 is selected as alterna tive function only)

 0 CDX output

 1 SEG0 output

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-6

LCD VOLTAGE DIVIDING RESISTORS

On-chip voltage dividing resistors for the LCD drive power supply are fixed to the VLC1–VLC5 pins. Figure 15-5

shows the bias connections for the S3CC11B/FC11B LCD drive power supply. To cut off the flow of current
through the dividing resistor, manipulate bits 7 and 6 of the LCON register.

Application Without Contrast Control

S3FC11B

VLC2

VLC4

VLC3

VLC5

VDD

VLC1

R1

R2

R3

R4

R5

LCON.7-.6(on)

VSS

VLCD = VDD

Application With Contrast Control

S3FC11B

VLC2

VLC4

VLC3

VLC5

VDD

VLC1

R1

R2

R3

R4

R5

LCON.7-.6(off)

VSS

VLCD

VDD

FixedFixed

NOTES:
1. The VLC3/VLC4 is short circuit when 1/4 bias is selected by LCON.3-.2.
2. The VLC2/VLC3 and VLC4/VLC5 is short circuit, respectively, when 1/3 bias is selected by LCON.3-.2.

Figure 18-4. LCD Voltage Dividing Registers Connection

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-7

1 20

1 FRAME

0 1 2

FR

VLC1
VSS

SEG0 −COM0

+ VLC1

+ 1/3 V LC1

COM0

VLC1

VLC2 (VLC3)

VLC4 (VLC5)

VSS

COM1

VLC1

VLC2 (VLC3)

VLC4 (VLC5)

VSS

COM2

VLC1

VLC2 (VLC3)

VLC4 (VLC5)

VSS

SEG0

VLC1
VLC2 (VLC3)

VLC4 (VLC5)

VSS

SEG1

VLC1
VLC2 (VLC3)

VLC4 (VLC5)

VSS

− 1/3 V LC1

− VLC1

COM0

COM1
COM2

SEG1 SEG0SEG2

0 V

Figure 18-5. LCD Signal Waveforms (1/3 Duty, 1/3 Bias)

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-8

1 20

1 FRAME

0 1 2

FR

VLC1
VSS

VSS

COM0

VLC1
VLC2 (VLC3)
VLC4 (VLC5)
VSS

COM1

VLC1
VLC2 (VLC3)
VLC4 (VLC5)
VSS

COM2

VLC1
VLC2 (VLC3)
VLC4 (VLC5)

SEG0

VLC1
VLC2 (VLC3)
VLC4 (VLC5)
VSS

SEG1

VLC1
VLC2 (VLC3)
VLC4 (VLC5)
VSS

SEG0 −COM 0

+ VLC1

+ 1/3 V LC1

− 1/3 V LC1

− VLC1

COM0

COM1

COM2

SEG0SEG1

COM3

3 3

COM3

VLC1
VLC2 (VLC3)
VLC4 (VLC5)

0 V

Figure 18-6. LCD Signal Waveforms (1/4 Duty, 1/3 Bias)

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-9

COM0

VLC1

VLC2

VLC3 (VLC4)

VLC5

VSS

FR

1 FRAME

COM1

VLC1

VLC2

VLC3 (VLC4)

VLC5

VSS

COM2

VLC1

VLC2

VLC3 (VLC4)

VLC5

VSS

SEG5

VLC1

VLC2

VLC3 (VLC4)

VLC5

VSS

SEG5 −COM0

VLC1

VLC2

VLC3 (VLC4)

VLC5

0V

−VLC5

−VLC3 (−VLC4)

−VLC2

−VLC1

VLC1
0 1 2 3 7

VSS

4 5 6 7 0 1 2 3 74 5 6COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

S
E
G
5

S
E
G
6

S
E
G
7

S
E
G
8

S
E
G
9

Figure 18-7. LCD Signal Waveforms (1/8 Duty, 1/4 Bias)

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-10

SEG6

VLC1

VLC2

VLC3 (VLC4)

VLC5

VSS

SEG6 −COM0

VLC1
VLC2

VLC3 (VLC4)

VLC5
0V
−VLC5

−VLC3 (−VLC4)

−VLC2
−VLC1

FR

1 FRAME

VLC1
0 1 2 3 7

VSS

4 5 60 7 0 1 2 3 74 5 60 7

Figure 18-8. LCD Signal Waveforms (1/8 Duty, 1/4 Bias) (Continued)

S3CC11B/FC11B LCD CONTROLLER/DRIVER

 18-11

1 2COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

FR

VLC1
0 3 7

1 FRAME

VSS

COM0

VLC1

VLC2

VLC3

VLC4
VLC5

0 1 2 3 7

COM1

COM2

SEG5

Vss

VLC1
VLC2

VLC3

VLC4

VLC5
VSS

VLC1

VLC2
VLC3

VLC4

VLC5
VSS

VLC1

VLC2

VLC3
VLC4

VLC5

VSS

S
E
G
5

S
E
G
6

S
E
G
7

S
E
G
8

S
E
G
9

Figure 18-9. LCD Signal Waveforms (1/8 Duty, 1/5 Bias)

LCD CONTROLLER/DRIVER S3CC11B/FC11B

18-12

FR

VLC1
0 1 2 3 7

1 FRAME

VSS

0 1 2 3 7

SEG6

VLC1

VLC2

VLC3
VLC4

VLC5

VSS

SEG5 −COM0

VLC1
VLC2

VLC3

VLC4
VLC5

0V
−VLC5
−VLC4

−VLC3

−VLC2
−VLC1

SEG6 −COM0

VLC1

VLC2

VLC3
VLC4

VLC5

0V
−VLC5

−VLC4

−VLC3

−VLC2
−VLC1

Figure 18-10. LCD Signal Waveforms (1/8 Duty, 1/5 Bias) (Continued)

S3CC11B/FC11B BATTERY LEVEL DETECTOR

 19-1

19 BATTERY LEVEL DETECTOR

OVERVIEW

The S3CC11B/FC11B micro-controller has a built-in BLD (Battery Level Detector) circuit which allows detection of
power voltage drop through software. Turning the BLD operation on and off can be controlled by software. Because
the IC consumes a large amount of current during BLD operation. It is recommended that the BLD operation should
be kept OFF unless it is necessary. Also the BLD criteria voltage can be set by the software. The criteria voltage can
be set by matching to one of the 2 kinds of voltage.

2.45 V or 2.70 V (VDD reference voltage)

The BLD block works only when BLDCON.0 is set. If VDD level is lower than the reference voltage selected with
BLDCON.4–.2, BLDCON.1 will be set. If VDD level is higher, BLDCON.1 will be cleared. When users need to
minimize current consumption, do not operate the BLD block.

BLD Out

BLD Run

Set the Level

VDD Pin

fBLD

Battery
Level

Detector
BLDCON.1

Battery
Level

Setting

BLDCON.0

BLDCON.4-.2

Figure 19-1. Block Diagram for Battery Level Detect

BATTERY LEVEL DETECTOR S3CC11B/FC11B

19-2

BATTERY LEVEL DETECTOR CONTROL REGISTER (BLDCON)

The bit 0 of BLDCON controls to run or disable the operation of battery level detect. Basically this VBLD is set as

invalid by system reset and it can be changed in 2 kinds voltages by selecting Battery Level Detect Control register
(BLDCON). When you write 3-bit data value to BLDCON, an established resistor string is selected and the VBLD is

fixed in accordance with this resistor. Table 16-1 shows specific VBLD of 2 levels.

Battery Level Detector Control Register (BLDCON)
74H, R/W, Reset: 00H

MSB LSB

Not used

BLD Enable/Disable

BLD OUT

Bias
VREF

VIN

RVLD

Resistor String

NOTES:
1. The reset value of BLDCON is #00H.
2. VREF is about 1 volt.

.7 .6 .5 .4 .3 .2 .1 .0

Comparator

BANDGAP

Figure 19-2. Battery Level Detector Circuit and Control Register

Table 19-1. BLDCON Value and Detection Level

VLDCON .4–.2 VBLD

0 0 0 –

0 0 1 2.45 V

1 1 1 2.70 V

S3CC11B/FC11B 8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC

 20-1

20 8/16-BIT SERIAL INTERFACE FOR

 EXTERNAL CODEC

OVERVIEW

8/16-bit serial interface for external codec, CSIO, can interface with voice CODEC(note). The components of each
CSIO function block are :

— 8-bit control register (CSIOCON)

— 16-bit Data buffer (CSIODATAH, CSIODATAL)

— Serial data I/O pins (CDX, CDR)

— Frame sync. pin (CFS)

— External clock input/out pin (CCLK)

The CSIO module can transmit or receive 16-bit serial data configured by its corresponding control register
settings. The CSIO module operates with master mode only.

PROGRAMMING PROCEDURE

To program the CSIO modules, follow these basic steps:

1. Load an 8-bit value to the CSIOCON control register to properly configure the CSIO module.

2. The CSIO interrupt request is automatically generated at the end of 16-bit shifting.

3. In the CSIO interrupt routine, read/write ADC/DAC data.

4. Repeat steps 3 to 4.

NOTE

Voice codec: MC145483DW

8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC S3CC11B/FC11B

20-2

CSIO CONTROL REGISTER (CSIOCON)

The control register for CSIO interface module, CSIOCON, is located at 4E. It has the control settings for the
CSIO module.

— 8/16 serial interface for external codec

— Shift clock selection

— Short/long frame sync type selection

— Edge selection for shift operation

— Shift operation (transmit/receive) enable

S3CC11B/FC11B 8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC

 20-3

CSIOCON — SIO Control Register for External Codec 3F004EH

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – 0 0 0 0 0 0 0

Read/Write – R/W R/W R/W R/W R/W R/W R/W

.7 Bit 7

 Not used

.6 8/16-Bit Serial I/O Selection Bit

 0 Select 8-bit serial interface for external codec

 1 Select 16-bit serial interface for external codec

.5–.3 Shift Clock Selection Bits

 0 0 0 fCSIO = fxin ÷ 1

 0 0 1 fCSIO = fxin ÷ 2

 0 1 0 fCSIO = fxin ÷ 3

 0 1 1 fCSIO = fxin ÷ 4

 1 0 0 fCSIO = fxin ÷ 5

 1 0 1 fCSIO = fxin ÷ 6

 1 1 0 fCSIO = fxin ÷ 8

 1 1 1 fCSIO = fxin ÷ 10

.2 Frame Sync Type Selection Bit

 0 Select short frame sync type

 1 Select long frame sync type

.1 Shift Clock Edge Selection Bit

 0 DX at rising edges, DR at falling edges

 1 DX at falling edges, DR at rising edges

.0 Shift Operation Control Bit

 0 Disable shift operation (SIO for external codec)

 1 Enable shift operation (SIO for external codec)

8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC S3CC11B/FC11B

20-4

8/16-bit
ShifterLSB MSB

CDX/P4.1

CSIODATAH/L
Receive Buffer

16

CSIODATAH/L
Transmit Buffer

16

CSIOCON.1

(Edge Selection)

Timing and
Control

CFS

CCLK

CSIOCON.0

Frequency
Dividing
Circuit

fxin

CSIOCON.5-.3

fCSIO

CSIOCON.2 CSIOCON.6

CDR/P4.0

C
C

LK
/P

4.
3

C
FS

/P
4.

2

Figure 20-1. SIO Block Diagram for External Codec

S3CC11B/FC11B 8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC

 20-5

Interval Time: 256/fCSIO

Disable Pull-Up Resister of
CDR/P4.0

Enable Pull-Up Resister of
CDR/P4.0

Disable Pull-Up Resister of
CDR/P4.0

Interrupt Interval Time: 256/fCSIO

NOTE: The pull-up resistor of CDR/P4.0 is automatically controlled as the above timing diagram when the pin is selected as
 input with pull-up resistor and SIO for external codec is enabled.

CCLK

CFS

CDX

CDR

SIO INT
for External

Codec

Interval Time: 256/fCSIO

Disable Pull-Up Resister of
CDR/P4.0

Enable Pull-Up Resister of
CDR/P4.0

Disable Pull-Up Resister of
CDR/P4.0

Interrupt Interval Time: 256/fCSIO

NOTE: The pull-up resistor of CDR/P4.0 is automatically controlled as the above timing diagram when the pin is selected as
 input with pull-up resistor and SIO for external codec is enabled.

CCLK

CFS

CDX

CDR

SIO INT
for External

Codec

Short Frame Sync Timing

Long Frame Sync Timing

Figure 20-2. 8-Bit SIO Timing Diagram for External Codec

8/16-BIT SERIAL INTERFACE FOR EXTERNAL CODEC S3CC11B/FC11B

20-6

Interval Time: 256/fCSIO

Disable Pull-Up Resister of
CDR/P4.0

Enable Pull-Up Resister of
CDR/P4.0

Disable Pull-Up Resister of
CDR/P4.0

NOTE: The pull-up resistor of CDR/P4.0 is automatically controlled as the above timing diagram when the pin is selected as
 input with pull-up resistor and SIO for external codec is enabled.

CCLK

CFS

CDX

CDR

SIO INT
for External

Codec

Short Frame Sync Timing

Long Frame Sync Timing

Interrupt Interval Time: 256/fCSIO

Interval Time: 256/fCSIO

Disable Pull-Up Resister of
CDR/P4.0

Enable Pull-Up Resister of
CDR/P4.0

Disable Pull-Up Resister of
CDR/P4.0

NOTE: The pull-up resistor of CDR/P4.0 is automatically controlled as the above timing diagram when the pin is selected as
 input with pull-up resistor and SIO for external codec is enabled.

CCLK

CFS

CDX

CDR

SIO INT
for External

Codec

Interrupt Interval Time: 256/fCSIO

Figure 20-3. 16-Bit SIO Timing Diagram for External Codec

S3CC11B/FC11B CaImMAC1616

 21-1

21 CaImMAC1616

INTRODUCTION

CalmMAC16 is a 16-bit high performance fixed-point DSP coprocessor for CalmRISC16 microcontroller. CalmMAC16
is designed for the mid to high-end audio applications which require low power consumption and portability. It mainly
includes a 16-bit arithmetic unit (ARU), a barrel shifter & exponent unit (BEU), a 16-bit x 16-bit multiplier
accumulation unit (MAU), and a RAM pointer unit (RPU) for data address generation. Main datapaths are
constructed to 16-bit width for audio applications.

CalmMAC16 is designed to be the DSP coprocessor for CalmRISC16 microcontroller. It receives 13-bit instruction
code and command information from CalmRISC16 via special coprocessor interface and sends internal status
information to host processor, CalmRISC16 through external condition port.

ARCHITECTURE FEATURES

— 16-bit barrel shifting with support for multi-precision capability

— 16-bit exponent evaluation with support for multi-precision capability

— 4 data address RAM pointers with post-modification & modulo capability

— 4 index registers with 2 extended index registers : up to 8-bit index value

— 2 direct address RAM pointers for short direct addressing

— Min/Max instruction with pointer latching and modification

— Division step in single cycle

— Conditional instruction execution capability

— Four-Quadrant fractional/integer 16 x 16-bit multiplication in single cycle

— 16 x 16-bit multiplication and 36-bit accumulation in a single cycle

— 16-bit arithmetic operation

— 2 32-bit multiplier accumulator with 4-bit guard

— 2 32K x 16-bit data memory spaces

TECHNOLOGY FEATURES

— 0.35u triple metal CMOS technology

— 12ns cycle time at 3.0V, 125C, Worst Process condition

— Fully static design

CaImMAC1616 S3CC11B/FC11B

21-2

BLOCK DIAGRAM

MSR2

MSR1

X0/X1

MA0/1

36-bit Adder

16 x 16 Multiplier

P

MA0/1

X0/X1 X0/X1Y0/Y1

Modulo
Arithmetic

SD0-3

MSR0
Interface

Logic

MAU ARU BEU

RPU Status
Registers

Control

Modulo
Arithmetic

XB[15:0]

YB[15:0]

16-bit Exponent
Detector

SISA

16-bit Barrel
Shifter

RP0-3 MC0-1

RP0-3 SD0-3RPD0-1

16-bit Adder

SA SI

SRSG

A/B
A/B/C/D

Figure 21-1. CalmMAC1616 Block Diagram

The block diagram shows the main blocks that compose the CalmMAC16:

— Multiplier Accumulator Unit (MAU)

— Arithmetic Unit (ARU)
— Barrel shifter & Exponent detection Unit (BEU)
— RAM Pointer Unit (RPU)

— Status Registers

— Interface Unit

S3CC11B/FC11B CaImMAC1616

 21-3

PROGRAMMING MODEL

In this chapter, the important features of each unit in CalmMAC16 are discussed in details. How the data memories
are organized is discussed and data memory addressing modes are explained.

The major components of the CalmMAC16 are:

• Multiplier Accumulator Unit (MAU)

 Multiplier
 – Input Registers X0, X1, Y0, Y1
 – Output Register P

 Multiplier Accumulators MA0, MA1
 Saturation Logic

 Multiplier Accumulator Shifter

 36-bit Arithmetic Unit

 Status Register MSR1

• Arithmetic Unit (ARU)

 Accumulator A, B, C, D
 Saturation Logic

 Accumulator Shifter

 16-bit Arithmetic Unit

 Status Registers MSR0, MSR2

• Barrel shifter & Exponent detection Unit (BEU)

 16-bit Exponent Detector

 16-bit Barrel Shifter
 – Input Registers SA, SI
 – Output Registers SG, SR

• RAM Pointer Unit (RPU)

 2 Modulo Address Generator

 Bit-Reverse Generator

 Indirect Address Pointers RP0, RP1, RP2, RP3

 Index Registers SD0, SD1, SD2, SD3

 Extended Index Registers SD0E, SD3E

 Direct Pointers RPD0, RPD1

 Modulo Configuration Registers MC0, MC1

 Alternative Bank Pointers RP0, RP1, RP2, RP3

 Alternative Bank Index Registers SD0, SD1, SD2, SD3

 Alternative Bank Extended Index Registers SD0E, SD3E

CaImMAC1616 S3CC11B/FC11B

21-4

MULTIPLIER AND ACCUMULATOR UNIT

The Multiplier and Accumulator Unit contains two main units, the Multiplier Unit and the Accumulator Unit. The
detailed block diagram of the Multiplier and Accumulator Unit is shown in Figure 21-2.

X0

36-bit Adder16 x 16 Multiplier

P

X1

Y0

Y1

Shifter/Saturation

XB[15:0]

YB[15:0]

MA0

MA1

Shifter Shifter

Saturation

Saturation

Figure 21-2. Multiplier and Accumulator Unit Block Diagram

S3CC11B/FC11B CaImMAC1616

 21-5

Multiplier

The Multiplier unit consists of a 16 by 16 to 32 bit parallel 2’s complement single-cycle, non-pipelined multiplier, 4
16-bit input registers (X0, X1, Y0, and Y1), a 32-bit output product register (P), and output shifter & saturation logic.
The multiplier can perform 4-quadrant multiplication. (signed by signed, unsigned by signed, signed by unsigned, and
unsigned by unsigned) Together with 36-bit adder in MAU, the CalmMAC16 can perform a single-cycle Multiply-
Accumulate (MAC) operation. The multiplier only operates when multiply instruction is executed. The P register is
not updated and the multiplier is not operates after a change in the input registers. This scheme reduces power
consumption in multiplier.

PSH1 bit of MSR1 register indicates whether multiplier output is shifted 1 bit to the left or not. If PSH1 bit is set,
multiplier output is shifted 1 bit to the left. This operation can be used in the signed fractional multiplication. USM bit
of MSR1 register indicates whether multiplier input register is signed or unsigned. When USM bit is set, X1 and Y1
register is interpreted as an unsigned operand. For example, if X1 and Y0 register is selected as multiplier input
register, unsigned by signed multiplication is performed. If X1 and Y1 register is selected, unsigned by unsigned
multiplication is performed.

The X or Y register can be read or written via the XB bus, and Y register can be written via YB when dual load
instruction is executed. The 16-bit most significant portion (MSP) of the P register (PH) or the 16-bit least
significant portion (LSP) of the P register (PL) can be written through the XB as an operand. When MSP of the P
register is written, LSP of the P register is forced to zero. When LSP of the P register is written, MSP of the P
register is not changed.

Overflow Protection in Multiplier

 The only case the multiplier overflow occurs is when multiplying 8000h by 8000h in signed-by-signed fractional
multiplication. (These case means –1*-1) : the result should be normally 1, which overflows fractional format. Thus, in
this particular case, the multiplier saturation block forces the multiplier result to 7FFFFFFFh after internal 1-bit shift
to the left and write this value to the product register P.

— Saturation Condition: ~Prod[31] & Prod[30] & PSH1 & SX & SY
(Prod : product result, PSH1 : Fractional Indication, SX : Signed X operand, SY : Signed Y operand)

Multiplier Accuulators

Each MAi (i=0,1) is organized as two regular 16-bit registers (MA0H, MA0L, MA1H, MA1L) and two 4-bit extension
nibble (MA0E, MA1E) in MSR1 register. The MAi accumulators can serve as the source operand, as well as the
destination operand of MA relevant instructions. 36-bit full data transfer between two MA accumulators is possible
through “ELD MA1, MA0” and “ELD MA0, MA1” instructions.

The 16-bit most significant portion (MSP) of the MA register (MAiH) or the 16-bit least significant portion (LSP) of the
MA register (MAiL) can be written by the XB as an operand. When MAiH register is written, MAiL register is forced to
zero and MAiE extension nibble is sign-extended. When MAiL register is written, MAiH and MAiE are not changed.

Registers MAiH and MAiL can also be used as general-purpose temporary 16-bit data registers.

CaImMAC1616 S3CC11B/FC11B

21-6

Extension Nibbles

Extension nibbles MA0E and MA1E in MSR1 register offer protection against 32-bit overflows. When the result of a
36-bit adder output crosses bit 31, it sets VMi flag of MSR1 register (MA register Overflow flag). Upto 15 overflows or
underflows are possible using the extension nibble, after which the sign is lost beyond the MSB of the extension
nibble, setting MV flag of MSR1 (Memorized Overflow flag) and latching the value.

Registers MA0E and MA1E can not be accessed independently. Those registers are read or written as a part of
MSR1 register, during MSR1 register read or write instruction.

Overflow Protection in MA Registers

 The multiplier accumulator saturation instruction (ESAT instruction) sets the destination MA register to the plus or
minus maximum value, if selected MA register overflows (VMi bit of MSR1 register is set). Saturation values are
7FFFFFFFh (positive overflow) or 80000000h (negative overflow) for the MA register and extension nibble is sign-
extended.

 Another saturation condition is when moving from MAiH register through XB bus. This saturation mode is enabled
when selected MA register overflows (VMi bit at MSR1 register is set), and overflow protection bit is enabled (OPM
bit at MSR1 register is set). In this case the saturation logic will substitute a limited data value having maximum
magnitude and the same sign as the source register. The MA register value itself is not changed at all. Saturation
values are 7FFFh (positive overflow) or 8000h (negative overflow).

 The last saturation condition is when enabling saturation on multiplier accumulators during arithmetic calculations
by setting the OPMA bit of MSR1 register. When overflow from the high portion of an MAi accumulator to the
extension bits occurs during MAi arithmetic operation and the OPMA bit is set, the accumulator is limited to a full-
scale 32-bit positive (7FFFFFFFh) or negative (80000000h) value.

— Saturation by Instruction : “ESAT” Instruction & VMi

— Sturation by MA Read : Read MAiH & VMi & OPM

— Saturation by Arithmetic Operation : Arithmetic Instruction on MAi & VMi & OPMA

X0/X1/Y0/Y1
Xi/Yi

015

Xi/Yi

MA0/MA1
MAi

0151631

(MAiH) MAiL

MSR1_MAi

3235

MA Guard Region

P
P

0151631

(PH) PL

Figure 21-3. MAU Registers Configuration

S3CC11B/FC11B CaImMAC1616

 21-7

ARITHMETIC UNIT

The arithmetic unit performs several arithmetic operations on data operands. It is a 36-bit, single-cycle, non-pipelined
arithmetic unit. The arithmetic unit receives one operand from MAi, and another operand from P register. The source
and destination MA accumulator of arithmetic instruction is always the same.

The arithmetic unit can perform positive or negative accumulate, add, subtract, shift, and several other operations, all
of them in a single cycle. It uses two’s complement arithmetics. Some flags (VMi, MV flag) are affected as a result
of the arithmetic unit output value. The flags represent the MA register status.

Rounding Provision

Two rounding operations are enabled inside the CalmMAC16 : the first one concerns the whole 32-bit MAi
accumulator, the second concerns a higher 16-bit portion of MAi register (MAiH) or a higher 16-bi portion of P
register (PRN) during 16-bit arithmetic operation in ARU.

The first rounding facility is provided by the “ERND” instruction. It can be applied only to a multiplier accumulator. The
rounding operation is always a two’s complement rounding operation.

— If bit 15 of MAiL is 1, 1 is added in bit 16 position of MA register, the result is stored in MAiH register, and MAiL
is not changed.

— If bit 15 of MAiL is 0 MAiH and MAiL register remain unchanged. The second rounding is provided as a form of
source operand (MAiRN or PRN). When the source operand of 16-bit arithmetic operation in ARU is specified as
MAiRN, the rounded value of 16-bit higher portion of MAi register is read as a source operand. When the source
operand is specified as PRN, the rounded value of 16-bit higher portion of P register is read as a source operand.
The value of MA register or P register itself is not changed at all.

MA Shifting Capabilities

Two shift operations are enabled inside the CalmMAC16 : the first one concerns the whole 32-bit MAi accumulator
register and 4-bit extension nibble, the second concerns a higher 16-bit portion of MAi register (MAiH) during 16-bit
arithmetic operation in ARU. Each of the two multiplier accumulators can be shifted arithmetically by 1-bit left or
right.

The first shift operation is provided by the “ESLA” (1-bit shift left arithmetic) or “ESRA” (1-bit shift right arithmetic)
instruction. The second shifting is provided as a form of source operand (MAiSL or MAiSR). When the source
operand of 16-bit arithmetic operation in ARU is specified as MAiSL, the 1-bit left shifted value of 16-bit higher portion
of MAi register is read as a source operand. When the source operand is specified as MAiSR, the 1-bit right shifted
value of 16-bit higher portion of MAi register is read. The value of MA register itself is not changed at all.

Double Precision Multiplication Support

The arithmetic unit support for double precision multiplication by add or subtract instruction with an alignment option
of the P register. (“EADD MAi, PSH” or “ESUB MAi, PSH” instruction). In this case, the P register is aligned (shifting
16 bits to the right) before accumulating the partial multiplication result.

An example of different multiplication is in the multiplication of 32-bit by 16-bit numbers, where two multiplication and
a addition are needed : multiplying the 16-bit number with the lower and upper portion of a 32-bit (double precision)
number and addition of each partial product value. The signed by signed operation is used to multiply the 16-bit
signed number with the upper, signed portion of the 32-bit number. The signed by unsigned operation is used to
multiply the 16-bit signed number with the lower, unsigned portion of the 32-bit number. After the signed by unsigned
operation is executed, it is recommended to accumulate the aligned (using “EADD MAi, PSH” instruction) result of
the signed by uns igned operation with the signed by signed operation result. For the multiplication of two double
precision (32-bit) numbers, the unsigned by signed operation can be used. Note that in all case, only upper 32-bit
result can be calculated.

CaImMAC1616 S3CC11B/FC11B

21-8

Division Possibilities

Two specific instructions (“EDIVQ” and “ERESR” instruction) are used to implement a non-restoring conditional
add/subtract division algorithm. The division can be only signed and two operands (dividend and divisor) must be all
positive number. The dividend must be a 32-bit operand, located in MA register. : 4-bit extension nibble contains the
sign extension of the MA register in 16-bit operation mode. The divisor must be a 16-bit operand located in 16-bit
most significant portion of the P register. The 16-bit least significant portion of the P register must be zero.

To obtain a valid result, the value of the dividend must be strictly smaller than the value of divisor (reading operand as
fractional data). Else, the quotient could not be expressed in the correct format. (for example, quotient greater than 1
for fractional format). At the end of algorithm, the result is stored in the MA register. (the same which previously
contained the dividend) : the quotient in the 16-bit LSP, the significant bit remainder stored in the 16 MSP of the MA
register.

Typically 32/16 division can be executed with 16 elementary divide operations, preceded by 1 initialization
instructions (This instruction is required to perform initial subtraction operation.), and possibly followed by one
restoring instruction which restores the true remainder (in case this last one is useful for the next calculations). Note
that lower precision can also be obtained by decreasing the number of elementary division step applied.

The operation of elementary instructions for division is as follows.

"EDIVQ" :

This single cycle instruction is repeatedly executed to generate division quotient bits. It calculates one bit of the
quotient at a time, computes the new partial remainder, sets NQ bit of the MSR1 register according to the new
partial remainder sign. First, this instruction calculates the new partial remainder by adding or subtracting the divisor
from the remainder, depending on current NQ bit value.

 If current NQ = 0, new partial remainder = old partial remainder – divisor

If current NQ = 1, new partial remainder = old partial remainder + divisor

This add or subtract operation is performed between MA register and P register. Second, this instruction shifts one
bit left the new partial remainder and moves one bit quotient into the rightmost bit. The one bit quotient bit is the
inverted value of the new partial remainder sign-bit.

 Quotient bit = ~(sign of new partial remainder)

Third, EDIVQ updates the MA register with shifted new partial remainder value, and updates the NQ bit of MSR1
register with sign value of the new partial remainder. This NQ update determines the operation of the next EDIVQ
instruction.

"ERESR" :

This single cycle instruction restores the true remainder value. In fact, due to the non-restoring nature of the division
algorithm, the last remainder has to be restored or not by adding 2 times the divisor, depending on the NQ bit of
MSR1 register previously computed.

 If NQ = 0, No Operation is performed

 If NQ = 1, Adds two times the divisor to the MA register.
 (containing the last calculated remainder in the 16-bit most significant portion)

The new calculated remainder will have to be 16-bit right arithmetical shifted, in order to be represented in a usual
fractional format.

S3CC11B/FC11B CaImMAC1616

 21-9

Dividend : 23 (0001 0111)
Divisor : 6 (0110)

MA
P

0 0001 0111
0110 0000

Remainder
(5)

0 1010 0011MA

ERESR : 0 0000 0000+

0 1010 0011MA

0 1011 0001MA

EDIVQ : 1 1010 0000+

0 0101 0001

1 1111 1000MA

EDIVQ : 0 0110 0000+

0 0101 1000

1 1001 1100MA

EDIVQ : 0 0110 0000+

1 1111 1100

MA 0 0010 1110

EDIVQ : 1 1010 0000+

1 1100 1110

Quotient
(3)

ESLA :

0 0101 0001MAESRA :

Dividend : 17 (0001 0001)
Divisor : 6 (0110)

MA
P

0 0001 0001
0110 0000

Remainder
(5)

1 1110 0010MA

ERESR : 0 0000 0000+

0 1010 0011MA

0 0101 0001MA

EDIVQ : 1 1010 0000+

1 1111 0001

1 1100 1000MA

EDIVQ : 0 0110 0000+

0 0010 1000

1 1000 0100MA

EDIVQ : 0 0110 0000+

1 1110 0100

MA 0 0010 0010

EDIVQ : 1 1010 0000+

1 1100 0010

Quotient
(2)

ESLA :

0 0101 0001MAESRA :

Figure 21-4. Integer Division Example

A 32/16 integer division example code is as follows

 ER NQ // Initialize Division Step

 ESLA MA // Arithmetic Shift Left 1

 EDIVQ MA, P // Division Step

 ….

 EDIVQ MA, P // Division Step (16 times)

 ERESR MA, P // Remainder Restoring

 ESRA MA // Arithmetic Shift Right 1

CaImMAC1616 S3CC11B/FC11B

21-10

Dividend : 23/128 (0001 0111)
Divisor : 6/8 (0110)

MA
P

0 0001 0111
0110 0000

Dividend : 29/128 (0001 1101)
Divisor : 6/8 (0110)

Remainder
(11/128)

0 1010 0001MA

ERESR : 0 0000 0000+

0 1011 0001MA

1 1111 1000MA

EDIVQ : 0 0110 0000+

0 0101 1000

1 1001 1100MA

EDIVQ : 0 0110 0000+

1 1111 1100

1 0110 1110MA

EDIVQ : 0 0110 0000+

1 1001 1100

MA 0 0001 0111

EDIVQ : 1 1010 0000+

1 1011 0111

Quotient
(1/8)

Remainder
(5/128)

1 1001 0010MA

ERESR : 0 1100 0000+

0 0101 0010MA

0 0010 1001MA

EDIVQ : 1 1010 0000+

1 1100 1001

1 1011 0100MA

EDIVQ : 0 0110 0000+

0 0001 0100

1 0111 1010MA

EDIVQ : 0 0110 0000+

1 1101 1010

MA 0 0001 1101

EDIVQ : 1 1010 0000+

1 1011 1101

Quotient
(2/8)

MA
P

0 0001 1101
0110 0000

Figure 21-5. Fractional Division Example

A 32/16 fractional division example code is as follows.

 ER NQ // Initialize Division Step

 EDIVQ MA, P // Division Step

 ….

 EDIVQ MA, P // Division Step (16 times)

 ERESR MA, P // Remainder Restoring

Note that the validity of the division operand must be checked before all of these code : i.e. the dividend is strictly
smaller than the divisor. The previous two figures show division with 9-bit dividend and 8-bit divisor. (Assume that the
MA register and P register are 8-bit wide, and MA guard bit is 1-bit wide.)

S3CC11B/FC11B CaImMAC1616

 21-11

STATUS REGISTER 1 (MSR1)

MSR1 register of three CalmMAC16 status registers (MSR0, MSR1, MSR2) is used to hold the flags, control bits,
status bits for MAU. The contents of each field definitions are described as follows. If MSR1 register is used as a 16-
bit source operand in 16-bit arithmetic operation, the 16-bit MSR1 register is zero-extended to a 16-bit operand.

15 12 11 8 7 6 5 4 3 2 1 0

MA1E MA0E OPMUSM MV VM1 VM0NQ PSH1

MA1 Register Extension Nibble

MA0 Register Extension Nibble

Not Quotient
0 = Subtraction (Reset Value)
1 = Addition

Product Left Shift 1 Control
0 = No Shift (Reset Value)
1 = 1-bit Left Shift

Unsigned Multiplication Control
0 = Signed (Reset Value)
1 = Unsigned X1/Y1

MA Overflow Protection
(0 when Reset)

Memorized Overflow Flag
(0 when Reset)

MA1 Overflow Flag

MA0 Overflow Flag

OPMA

Arithmetic Overflow Protection
(0 when Reset)

Figure 21-6. MSR1 Register Configuration

MA1E/MA0E – Bit 15~12 / Bit 11~8

These four bit nibbles are used as guard bits for MA registers. These bits are updated when MA register write
operation is occurred. These bits are also written during MSR1 register write operation.

CaImMAC1616 S3CC11B/FC11B

21-12

OPMA – Bit 7

The OPMA bit indicates that saturation arithmetic is provided or not when arithmetic operation on one of the MA
registers. When the OPMA bit is set (Overflow Protection is enabled) and overflow is occurred during arithmetic
operation, the saturation logic will substitute a limited data value having maximum magnitude and the same sign as
the source MA register. If the OPMA bit is clear, no saturation is perfo rmed. This bit has not effect on a “ESAT”
instruction, which always saturates the MA register value. The OPMA bit is modified by writing the MSR1 register or
“ER/ES OPMA” instruction. The OPMA bit is cleared by a processor reset.

NQ – Bit 6

This bit defines next operation of division step. When this bit is clear, the next division instruction subtracts P
register from MA register, and when this bit is set, the next division instruction adds P register value from MA
register. It also defines next operation of restoring instruction. If this bit is set to 0, the next restoring instruction adds
0 to MA register and if this bit is set to 1, adds two times the divisor (P register value) to the MA. The NQ bit is
affected when MSR1 register write operation, “ER/ES NQ” instruction, or division step (“EDIVQ” instruction) is
executed. The NQ bit is cleared by a processor reset.

PSH1 – Bit 5

This bit defines multiplier output shift operation. When this bit is set, multiplier output result is 1-bit shifted left. This
property can be used for fractional format operand multiplication. When this bit is clear, no shift is executed on the
multiplier output. The PSH1 bit can be modified by writing to MSR1 register or “ER/ES PSH1” instruction. The PSH1
bit is cleared by a proc essor reset.

USM – Bit 4

 The USM bit indicates that the X1 or Y1 register is signed or unsigned as a multiplicand. When set, selected
multiplicand is interpreted as a unsigned number if X1 or Y1 register is selected. The other registers (X0, Y0) are
always signed numbers. The USM bit can be modified by writing to MSR1 register or “ER/ES USM” instruction. The
USM bit is cleared by a processor reset.

OPM – Bit 3

The OPM bit indicates that saturation arithmetic is provided or not when moving from the higher portion of one of the
MA registers through the XB bus. When the OPM bit is set (Overflow Protection is enabled), the saturation logic will
substitute a limited data value having maximum magnitude and the same sign as the source MA register. If the OPM
bit is clear, no saturation is performed. This bit has not effect on a “ESAT” instruction, which always saturates the
MA register value. The OPM bit is modified by writing the MSR1 register or “ER/ES OPM” instruction. The OPM bit
is cleared by a processor res et.

MV – Bit 2

The MV bit is a memorized 36-bit overflow. This bit indicates that the guard bits of MA register is overflowed during
previous arithmetic operations. This bit is set when overflow on guard bits is occurred and is not cleared when this
overflow is cleared. It is only cleared when “ER MV” instruction or MSR1 register write instruction is executed.

VM1/VM0 – Bit 1 – 0

These bits indicate arithmetic overflow on MA1 register and MA0 register respectively. One of these bits is set if an
arithmetic overflow (32-bit overflow) occurs after an arithmetic operation, and cleared otherwise. It represents that the
result of an operation cannot be represented in 32 bits. i.e. these bits are set when 5-bit value of MA[35:31] register
is not all the same in 16-bit mode. These bits are modified by writing the MSR1 register or all instructions that write
one of MA register.

S3CC11B/FC11B CaImMAC1616

 21-13

RAM POINTER UNIT

The RAM Pointer Unit (RPU) performs all address storage and effective address calculations necessary to address
data operands in data memories. In addition, it supports latching of the modified register in maximum/minimum
operations and bit reverse address generation. This unit operates in parallel with other resources to minimize address
generation overhead. The RPU performs two types of arithmetics : linear or modulo. The RPU contains four 16-bit
indirect address pointer registers (RP0 ~ RP3, also referred to RPi) for indirect addressing, two 16-bit direct address
pointer registers (RPD0 ~ RPD1, also referred to RPDi) for short direct form addressing, four 16-bit indirect index
registers (SD0 ~ SD3, also referred to SDi) and its extensions (SD0E and SD3E), and two 16-bit modulo
configuration registers (MC0 and MC1, also referred to MCi) for modulo control. The MC0 register has effect on RP0
and RP1 pointer register, and the MC1 register has effect on RP2 and RP3 register. In addition, it contains four
alternative bank pointer register (RP0B ~ RP3B), four alternative index registers (SD0B ~ SD3B), and two alternative
bank extension index register (SD0BE and SD3BE) supported by an individual bank exchange.

All indirect pointer registers (RPi) and direct pointer registers (RPDi) can be used for both XA and YA for instructions
which use only one address register. In this case the X memory and Y memory can be viewed as a single
continuous data memory space. the bit 14 to bit 0 of RPi register and RPDi register defines address for X or Y
memory, and the bit 15 determines whether the address is for X memory or Y memory. The bit 15 to bit 12 of MSR0
register (MEi bit) indicates whether the each pointer is updated with modulo arithmetic. The bit 15 to bit 12 of MSR2
register (BKi bit) defines the current bank of each pointer. When this bit is set to 1, the pointer register of alternative
bank is selected as a address register, and the index register of alternative bank is selected as a index value. “EBK
#imm:4” (Bank definition instruction) instruction specifies bank of each pointer and index register. Four bit immediate
field indicates each pointer and index, i.e. bit 3 of imm:4 specifies the bank of RP3 and SD3 register, and bit 2 of
imm:4 specifies the bank of RP2 and SD2 register. For example, if “EBK #1110b” instruction is executed, current
bank of RP3, RP2, and RP1 is bank 1, and current bank of RP0 is bank 0. When the bank of pointer register is
changed, the bank of each index register including extended index register is automatically changed. The bank of
pointer can be changed by executing “EBK” instruction, “ER/ES BKi” instruction, or the instruction that writes MSR2
register.

The RPU can access two data operand simultaneously over XA and YA buses. In dual access case, RP0 or RP1 is
selected as a X memory pointer and RP3 is selected as a Y memory pointer regardless of bit 15 of RP0 and RP3.

All registers in the RPU may be read or written to by the XB as 16-bit operands, thus can serve as general-purpose
register. If one of the RPU register is read as a 16-bit operand, the 16-bit value is zero-extended to 16-bit value.

The detailed block diagram of the RAM Pointer Unit is shown in Figure 21-7.

CaImMAC1616 S3CC11B/FC11B

21-14

RP0

RP1

RP2

RP3

SD1(B)

SD0(B)

SD3(B)

MC0

MC1

RPD0

RPD1

SD0E(B)

SD3E(B)

SD2(B)

X Modulo Logic

Y Modulo Logic

Bit-Reverse
Logic

XB[15:0]

XA[14:0]

YA[14:0]

RP0(B)

RP1(B)

RP3(B)

RP2(B)

Figure 21-7. RAM Pointer Unit Block Diagram

S3CC11B/FC11B CaImMAC1616

 21-15

ADDRESS MODIFICATION

The RPU can generate up to two 15-bit addresses every instruction cycle which can be post-modified by two
modifiers : linear and modulo modifier. The address modifiers allow the creation of data structures in the data
memory for circular buffers, delay lines, FIFOs, etc. Address modification is performed using 16-bit two’s
complement linear arithmetics.

Linear (Step) Modifier

During one instruction cycle, one or two of the pointer register, RPi, can be post incremented/decremented by a 2’s
complement 4-bit step (from –8 to +7). If XSD bit of MSR0 register is set, these 4-bit step is extended to 8-bit (from –
128 to +127) by concatenating index register with extended index register (SD0E, SD3E) when selected pointer is
RP0 or RP3. The selection of linear modifier type (one out of four) is included in the relevant instructions. The four
step values are stores in each index register SDi. If the instruction requires a data memory read operation, S0 (bit 3
to bit 0) or S1 (bit 7 to bit 4) field of SDi register is selected as an index value. If the instruction requires a data
memory write operation, D0 (bit 11 to bit 8) or D1 (bit 15 to bit 12) field of SDi register is selected as an index value.

15 12 11 8 7 4 3 0

D1 S0

Destination Index 1

SDi D0 S1

Destination Index 0

Source Index 1

Source Index 0

15 0

PTRi

Address Pointer RPDi

RPDi

15 0

PTRi

Address Pointer RPi

RPi

Figure 21-8. Pointer Register and Index Register Configuration

CaImMAC1616 S3CC11B/FC11B

21-16

Modulo Modifier

The two modulo arithmetic units (X, Y Modulo Logic) can update one or two address registers within one instruction
cycle. They are capable of performing modulo calculations of up to 210 (=1024). Each register can be set
independently to be affected or unaffected by the modulo calculation using the ME bits in the MSR0 register. Modulo
setting values are stored in 13 least significant bits of modulo configuration registers MC0 and MC1 respectively. The
bits 12 to bit 10 of MC0 and MC1 register determines maximum modulo size from 8 to 1024 and the bits 9 to bit 0 of
modulo control register defines upper boundary of modulo calculation in the current modulo size. The lower boundary
of modulo calculation is automatically defined by modulo size itself. (Refer to Figure 21-9)

For proper modulo calculation, the following constraints must be satisfied. (M = modulo size, S = step size)

1. Only the p LSBs of RPi can be modified during modulo operation, where p is the minimal integer that satisfies 2P
≥ M. RPi should be initiated with a number whose p LSBs are less than M.

2. M ≥ S

The modulo modifier operation, which is a post-modification of the RPi register, is defined as follows

 if ((RPi == Upper Boundary in k LSBs) and (S > 0)) then

 RPi k LSB ← 0

 else if ((RPi == Lower Boundary in k LSBs) and (S < 0)) then

 RPi k LSB ← Upper Boundary in k LSBs

 else

 RPi k LSB ← RPi + S (k LSBs)

 where k is defined by MCi[12:10]

The modulo calculation examples are as follows.

1. Full Modulo with Step = 1 (selected by instruction and index register value)
MC0 = 000_001_0000000111 (Upper Boundary = 7, Lower Boundary = 0, Modulo Size = 8)
RPi = 0010h
0010h → 0011h → 0012h → 0013h → 0014h → 0015h → 0016h → 0017h → 0010h → 0011h

2. Full Modulo with Step = 3 (selected by instruction and index register value)
MC0 = 000_001_0000000111 (Upper Boundary = 7, Lower Boundary = 0, Modulo Size = 8)
RPi = 0320h
0320h → 0323h → 0326h → 0321h → 0324h → 0327h → 0322h → 0325h → 0320h → 0323h

3. Part Modulo with Step = –2 (selected by instruction and index register value)
MC0 = 000_001_0000000101(Upper Boundary = 5, Lower Boundary = 0, Modulo Size = 8)
RPi = 2014h
2014h → 2012h → 2010h → 2014h → 2102h

The total number of circular buffer (modulo addressing active area) is defined by 64K / Modulo size. i.e. if current
modulo size is 64, the total number of circular buffer is 1024.

S3CC11B/FC11B CaImMAC1616

 21-17

15 13 12 10 9 0

Modulo Size Upper Boundary

Reserved (Readable/Writable)

RP0/RP1 Modulo Size
000 = 210, modulo area: dddd0000000000 - dddd,MC0[9:0]
001 = 23, modulo area: dddddddddddd000 - ddddddddddd,MC[2:0]
010 = 24, modulo area: ddddddddddd0000 - dddddddddd,MC[3:0]
011 = 25, modulo area: dddddddddd00000 - ddddddddd,MC[4:0]
100 = 26, modulo area: ddddddddd000000 - dddddddd,MC[5:0]
101 = 27, modulo area: dddddddd0000000 - ddddddd,MC[6:0]
110 = 28, modulo area: ddddddd00000000 - dddddd,MC[7:0]
111 = 29, modulo area: dddddd000000000 - ddddd,MC[8:0]

MC0

Modulo Upper Boundary

15 13 12 10 9 0

Bit-Reverse
Order

Modulo Size Upper Boundary

Bit-Reverse Order
000 = reverse RPi[4:0]
001 = reverse RPi[5:0]
010 = reverse RPi[6:0]
011 = reverse RPi[7:0]
100 = reverse RPi[8:0]
101 = reverse RPi[9:0]
110 = reverse RPi[10:0]
111 = reverse RPi[11:0]

RP2/RP3 Modulo Size
000 = 210, modulo area: dddd0000000000 - dddd,MC0[9:0]
001 = 23, modulo area: dddddddddddd000 - ddddddddddd,MC[2:0]
010 = 24, modulo area: ddddddddddd0000 - dddddddddd,MC[3:0]
011 = 25, modulo area: dddddddddd00000 - ddddddddd,MC[4:0]
100 = 26, modulo area: ddddddddd000000 - dddddddd,MC[5:0]
101 = 27, modulo area: dddddddd0000000 - ddddddd,MC[6:0]
110 = 28, modulo area: ddddddd00000000 - dddddd,MC[7:0]
111 = 29, modulo area: dddddd000000000 - ddddd,MC[8:0]

MC1

Modulo Upper Boundary

NOTE: "d" means DON'T CARE.

Figure 21-9. Modulo Control Register Configuration

CaImMAC1616 S3CC11B/FC11B

21-18

Bit Reverse Capabilities

The bit-reverse addressing is useful for radix-2 FFT(Fast Fourier Transform) calculations. The CalmMAC16 DSP
coprocessor does not support the bit-reverse addressing itself. But it supports the bit field reverse capabilities in the
form of instruction. The “ERPR” instruction selects a source address pointer RPi and performs bit reverse operation
according to the bit field specified in bit 15 to bit 13 of MC1 register. (Refer to Figure 21-9) The result bit pattern is
written to the current bank RP3 register. In this way, RP3 has a bit-reversed address value of source pointer value.
Note that the data buffer size is always a power of 2 up to 212.

Index Extension

When an instruction with indirect addressing is executed, the current value of selected address pointer register RPi
provides address on XA and YA buses. Meanwhile, the current address is incremented by the value contained into
the selected index value contained into the selected bit field of selected index register, and stored back into RPi at
the end of instruction execution.

The 4-bit index values can be considered as a signed number, so the maximum increment value is 7(0111b) and the
maximum decrement value is –8(1000b). If the 4-bit index value is insufficient for use, the index values can be
extended to 8-bit values when RP0 or RP3 register is selected as an address pointer register. In this case, all index
values are extended to 8-bit by concatenating with SD0E or SD3E register. The bit field of SD0E and SD3E is the
same as other index register SDi. The index extension registers are enabled when the XSD bit of MSR0 register is
set. Otherwise, those are disabled. If the extension index registers are enabled, index values for indirect addressing
becomes to 8-bit during addressing with RP0 and RP3 pointer register, and current index register becomes the
extended index register instead of the regular index register: i.e. When a index register is read or written by a load
instruction, SD0E register or SD3E register is selected as a source operand or a destination operand, instead of SD0
or SD3 register. For each of SD0/SD0E or SD3/SD3E, only one register is accessible at a time.

S3CC11B/FC11B CaImMAC1616

 21-19

DATA MEMORY SPACES AND ORGANIZATION

The CalmMAC16 DSP coprocessor has only data memory spaces. The program memory can only be accessed by
CalmRISC, host processor. The data memory space is shared with host processor. The CalmRISC has 22-bit data
memory address, so it can access up to 4M byte data memory space.

The CalmMAC16 access data memory with 16-bit width. It can access upto 64K word (word = 2-bytes). The data
space is divided into a lower 32K word X data space and a higher 32K word Y data space. When two data memory
access are needed in an instruction, one is accessed in X data space, and the other is accessed in Y memory
space. When one data memory access is needed, the access is occurred in X or Y data memory space according
to the address.

YH/YL
(32 x 2K byte)

FFFFh

32K word
Y Memory

8000h

XH/XL
(32 x 2K byte)

7FFFh

32K word
X Memory

0000h

 Figure 21-10. CalmMAC16 Data Memory Space Map

Each space is divided into three 32K byte XH/XL or YH/YL region. Each space can contain RAM or ROM, and can
be off-chip or on-chip. The configuration of this region depends on the specific chip configuration. (Figure 21-10) 16-bit
data of X memory (XH and XL memory), 16-bit data of Y memory (YH and YL memory), can be allocated to any 256K
byte region from 4M byte data memory space of CalmRISC16. The X memory space and Y memory space can be
mapped in the separated region, but CalmMAC16 can access a continuous data space i.e. looking at the two
memory as a single continuous data memory.

The data memory space of CalmMAC16 may contain slow memories and peripherals as well as fast memories and
peripherals. When using slow memories, additional wait cycles have to be inserted through DBWAIT pin of
CalmMAC16.

CaImMAC1616 S3CC11B/FC11B

21-20

3FFFFEh

32K word
CalmMAC16
Y Memory

(1 word = 2 bytes)

000000h

YH
(32K byte)

YL
(32K byte)

XH
(32K byte)

XL
(32K byte)

32K word
CalmMAC16
X Memory

(1 word = 2 bytes)

000001h

3FFFFFh

2M word
CalmRISC16
Data Memory

(1 word = 2 bytes)

Figure 21-11. CalmMAC16 Data Memory Allocation

S3CC11B/FC11B CaImMAC1616

 21-21

ARITHMETIC UNIT

The Arithmetic Unit (ARU) performs all arithmetic operations on data operands. It is a 16-bit, single cycle, non-
pipelined arithmetic unit. The CalmMAC16 is a coprocessor of CalmRISC16 microcontroller. So, all the logical
operation and other bit manipulation operations can be performed in CalmRISC16. Thus, the CalmMAC16 has not
logical units and bit manipulation units at all.

The ARU receives one operand from Ai (A or B) or Ci (C or D) register, and another operand from either the MSB part
of MA register, the XB bus, or from Ai or Ci. Operations between the two accumulator registers are possible. The
source and destination accumulator register of an ARU instruction is always the same. The XB bus input is used for
transferring one of the CalmMAC16 register content, an immediate operand, or the content of a data memory
location, addressed in direct addressing mode or in indirect addressing mode as a source operand. The flags in the
MSR0 register are affected as a result of the ARU output. But the flags are not affected during data load from data
memory location to a accumulator or during CLD instruction. In most of the instructions where the ARU result is
transferred to one of accumulator registers, the flags represent the accumulator register status. The detailed block
diagram of the Arithmetic Unit is shown in Figure 21-12.

The ARU can perform add, subtract, compare, several other arithmetic operations (such as increment, decrement,
negate, and absolute), and some arithmetic shift operations. It uses two’s complement arithmetic.

Main Accumulators : A/B

 Each Ai (A or B) register is organized as a regular 16-bit register. The Ai accumulators can serve as the source
operand, as well as the destination operand of all ARU instructions and serve as a source operand of exponent
instruction. The Ai registers can be read or written though the XB bus. It can be read or written to the data memory
during some MAU instructions and some ARU instructions (parallel move)

Auxiliary Accumulators : C/D

Each Ci (C or D) register is organized as a regular 16-bit register and can serve as the source operand, as well as
the destination operand of some ARU instructions and serve as a source operand of exponent instruction. Some
ARU instruction can only acces s main accumulators A/B as a source or destination operand, and auxiliary
accumulators C/D are only accessed in some special instructions. The Ci registers can be read or written though the
XB bus. It can be read or written to the data memory during some ARU instructions (parallel move)

CaImMAC1616 S3CC11B/FC11B

21-22

16-bit Adder

XB[15:0]

A

B

Shifter Shifter

MSR0

MSR2

EI Generation

C

D

Saturation

Figure 21-12. Arithmetic Unit Block Diagram

Overflow Protection in Accumulators

The Ai or Ci accumulator saturation is performed during arithmetic operation that causes overflow, if overflow
protection bit (OP in MSR0 register) is enabled. The limited values are 7FFFh (positive overflow), or 8000h (negative
overflow). During accumulator register read through XB bus, the saturation is not occurred.

— Saturation Condition: Arithmetic instruction & 16-bit Overflow & OP

S3CC11B/FC11B CaImMAC1616

 21-23

A/B

015

C/D

015

C/D

A/B

Main Accumulators

Auxiliary Accumulators

Figure 21-13. Accumulator Register Configuration

Maximum-Minimum Possibilities

A single Cycle maximum/minimum operation is available with pointer latching and modification. One of the Ai
accumulator registers, defined in the instruction, holds the maximum value in a “EMAX” instruction, or the minimum
value in a “EMIN” instruction. In one cycle, the two accumulators are compared, and when a new maximal or minimal
number is found, this value is copied to the above defined accumulator. In the same instruction, one of pointer
register RPi (except RP3 pointer) can be used as a buffer pointer. The address pointer register that generates
address can be post-modified according to the specified mode in the instruction. When the new maximum or
minimum number is found, the address register (user invisible register) value is latched into RP3 pointer register. The
address register stores original pointer register value during pointer modification instructions (instructions with
indirect addressing, “ERPS/ERPD” instruction, or “ERPN” instruction). For more details, refer to “EMAX” and “EMIN”
instructions in chapter 4 on the instruction set.

The examples which searches block elements are as follows

 ELD C, @RP0+S0 // 1st Data load

Loop_start:

 EMAX(EMIN) A,C C,@RP0+S0 // 1st Min/Max evaluation, 2nd Data load

 JP Loop_start

 EMAX(EMIN) A,C // Last Min/Max evaluation

Conditional Instruction Execution

Some instructions can be performed according to the T flag value of MSR0 register. These instructions may operate
when the T flag is set, and do nothing if the T flag is cleared. The instructions which have suffix “T” are this type of
instructions. (“emod1” type instruction.) The conditional instruction execution capabilities can reduce the use of
branch instructions which require several cycles.

Shifting Operations

A few options of shifting are available in the ARU and all of them are performed in a single cycle. All shift operations
performed in the ARU are arithmetic shift operations : i.e. right shift filling the MSBs with sign values and left shift
filling with LSBs with zeros. The source and destination operands are one of 16-bit Ai or Ci accumulator registers.
The shift instructions performed in the ARU are all conditional instructions. The shift amount is limited to 1 and 8,
right or left respectively. The shift with carry is also supported.

CaImMAC1616 S3CC11B/FC11B

21-24

Multi-Precision Support

Various instructions which help multi-precision arithmetic operation, are provided in the CalmMAC16. The
instructions with suffix “C” indicates that the operation is performed on source operand and current carry flag value.
By using these instructions, double precision or more precision arithmetics can be accomplished. The following
shows one example of multi-precision arithmetic.

 // 3-cycle Double Precision Addition (A:B + C:D)

 EADD B, D // Lower Part Addition

 EINCC A // Carry Propagation

 EADD A, C // Higher Part Addition

EXTERNAL CONDITION GENERATION UNIT

The CalmMAC16 can generates and send the status information or control information after instruction execution to
the host processor CalmRISC16 through EI[3:0] pin (Refer to Pin Diagram). The CalmRISC16 can change the
program sequence according to this information by use of a conditional branch instruction that uses EI pin values as
a branch condition. The EI generation block in the ARU selects one of status register value or combination of status
register values according to the SECi (I=0,1,2) field in the MSR2 register for EI[2:0]. (Refer to MSR2 register
configuration) EI[3] pin selects one of status register value or combination of status register values according to the
test field of “ETST cc EC3” instruction. So, the EI[2:0] pin is always changes the value if corresponding status
register bit value is changed, but EI[3] is only changed after executing “ETST cc EC3” instruction. (Refer to “ETST”
instruction)

In a high speed system, which operates at full clock speed (32 MHz) with CalmRISC16 and CalmMAC16, a branch
instruction using EI[2:0] value as a branch condition can not immediately follow the instruction that changes EI[2:0]
value. In this case, a “NOP” (no operation) instruction must be inserted between the branch instruction and the ARU
instruction. On the other hand, in a medium and low speed system, the branch instruction can immediately follow
any instruction that changes EI values. The following shows the examples.

 // Branching in high speed system

 EADD A,C // Update Status Flags & EI[2:0]

 ENOP

 BRA EC0, Label1

 // Branching in medium to low speed system

 EADD B,D // Update Status Flags & EI[2:0]

 BRA EC1, Label2

In case of branch instruction using EI[3] as a branch condition, a “ETST cc EC3” instruction must be executed
before the branch instruction, because only the “ETST” instruction evaluates the EI[3] pin values. The following shows
an example of branching with EI[3]

 // Branching with EI[3]

 EADD A,C // Update Status Flags

 ETST NC, EC3 // Update EI[3] port value

 BRA EC3, Label3

S3CC11B/FC11B CaImMAC1616

 21-25

STATUS REGISTER 0 (MSR0)

 MSR0 register of three CalmMAC16 status registers (MSR0, MSR1, MSR2) is used to hold the flags, control bits,
status bits for the ARU and BEU(Barrel Shifter and Exponent Unit). The contents of each field definitions are
described as follows.

ME3/ME2/ME1/ME0 – Bit 15 – Bit 12

 These bits define modulo options of the corresponding pointer register for address modification. When this bit is
cleared, the current bank of corresponding RPi register will be modified as specified by the instruction regardless of
the modulo options that is specified in MCi registers. When this bit is set, the current bank of pointer register will be
modified using the suitable modulo. The MEi bits are cleared by a processor reset. The MEi bits can be modified by
writing to MSR0 register, or “ER/ES” instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VS V N Z C T

Barrel Shifter/Exponent Overflow Flag

Negative Flag

Zero Flag

OPXSD

Accumulator Overflow Protection
(0 when Reset)

Reserved (Read as 0)

Accumulator Overflow Flag

Reserved (Read as 0)

Carry Flag

Test Flag

ME0ME1ME2ME3

Extended Index Enable
0 = No Extension (Reset Value)
1 = SD0/SD3 Extension

0 = RPi Modulo Disable (Reset Value)
Modulo Enable RPi

1 = RPi Module Enable

Figure 21-14. MSR0 Register Configuration

CaImMAC1616 S3CC11B/FC11B

21-26

XSD – Bit 10

This bit defines current bank of index register for index register read or write operation, and the length of index value
for address modification. When this bit is set, the current bank of index register is SD0E and SD3E instead of SD0
and SD3, respectively. When clear, the current index registers are SD0 and SD3. (reset state) During indirect
addressing mode, pointer register RPi is post-modified by index register value. If XSD is set, the width of index value
becomes to 8-bit by concatenating extension index register and normal index register. If clear, the normal 4-bit index
value is applied. The XSD bit can be modified by writing to MSR0 register or “ER/ES XS D” instruction. The XSD bit is
cleared by a processor reset.

OP – Bit 9

The OP bit indicates that saturation arithmetic in the ARU is provided or not when overflow is occurred during
arithmetic operation. The overflow protection can be applied to all of the four accumulator registers. If this bit is set,
the saturation logic will substitute a limited value having maximum magnitude and the same sign as the source
accumulator register during overflow. If clear, no saturation is performed, and overflow is not protected by the
CalmMAC16. The OP bit can be modified by writing to MSR0 register or “ER/ES OP” instruction. The OP bit is
cleared by a processor reset.

VS – Bit 6

The VS bit is a overflow flag for BEU(Barrel Shifter and Exponent Unit). This bit is set if arithmetic overflow is
occurred during shift operation or exponent evaluation on BEU registers. When the instructions which performs BEU
operation writes this bit as a overflow flag instead of V bit. The VS bit indicates that the result of a shift operation can
not be represented in 16-bit SR register, or the source value of an exponent operation is all zero or all one. The VS
bit can be modified by writing to MSR0 register instruction.

V – Bit 5

The V bit is a overflow flag for ARU accumulators. This bit is set if arithmetic overflow is occurred during arithmetic
operation on a destination accumulator register in ARU. The V bit indicates that the result of an arithmetic operation
can not be represented in 16-bit accumulator register. The V bit can be modified simultaneously by writing to MSR0
register instruction.

N – Bit 3

The N bit is a sign flag for ARU or BEU operation result. This bit is set if ARU or BEU operation result value is a
negative value, and cleared otherwise. The N flag is the same as the MSB of the output if current operation does not
generate overflow. If overflow is occurred during instruction execution, the value of N flag is the negated value of the
MSB of the output. The N bit can be modified by instructions writing to MSR0 register.

Z – Bit 2

The Z bit is a zero flag for ARU or BEU operation result. This bit is set when ARU or BEU operation result value is
zero, and cleared otherwise. The Z bit can be modified by instructions writing to MSR0 register, explicitly.

C – Bit 1

The C bit is a carry flag for ARU or BEU operation result. This bit is set when ARU or BEU operation generates carry,
and cleared otherwise. The C bit is not affected by “ELD” instruction because this instruction does not generate carry
all the times. The C bit can be modified by instructions writing to MSR0 register, explicitly.

T – Bit 0

The T bit is a test flag that evaluates various conditions when “ETST cc T” instruction is executed. This flag value can
be used as a condition during executing a conditional instruction (instructions that have a suffix “T”). The conditional
instructions can only be executed when the T bit is set. Otherwise, performs no operation. The T bit can be modified
by instructions writing to MSR0 register, explicitly.

S3CC11B/FC11B CaImMAC1616

 21-27

STATUS REGISTER 2 (MSR2)

MSR2 register of three CalmMAC16 status registers (MSR0, MSR1, MSR2) is used to select EI[2:0] port of the
CalmMAC16 from various flags and status information in MSR0 and MSR1 register and to specify current bank of
each pointer and index register. The MSR2 register is used at external condition generation unit in the ARU. The
contents of each field definitions are described as follows.

15 14 13 12 11 8 7 4 3 0

SEC2 SEC1 SEC0BK0BK1BK2BK3

0 = Bank 0 RPi/SDi (Reset Value)
Bank Selection RPi/SDi

1 = Bank 1 RPi/SDi

EC0 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = V
0111 = ~V
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS
1101 = reverved
1110 = MV
1111 = T

1101 = reverved

EC1 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = V
0111 = ~V
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS

1110 = MV
1111 = T

EC2 Selection
0000 = Z
0001 = ~Z
0010 = N
0011 = ~N
0100 = C
0101 = ~C
0110 = V
0111 = ~V
1000 = GT
1001 = LE
1010 = VM0
1011 = VM1
1100 = VS
1101 = reverved
1110 = MV
1111 = T

Figure 21-15. MSR2 Register Configuration

CaImMAC1616 S3CC11B/FC11B

21-28

BK3/BK2/BK1/BK0 – Bit 15 – Bit 12

These bits define current banks of the corresponding pointer and index register for address generation and address
modification.

Clear - bank 0 pointer and index register is selected

Set - bank 1 pointer and index register is selected.

The BKi bits are cleared by a processor reset. The BKi bits can be modified by writing to MSR2 register, “ER/ES
BKi” instruction, or “EBK” instruction. The writing to MSR2 and “EBK” instruction can change the whole four banks of
each pointer register and index register. On the other hand, “ER/ES” instruction changes only one bank of pointer
and index register.

SEC2/SEC1/SEC0 – Bit 11 – Bit 0

These bits defines the logic state of the EI[2:0] pin according to status information of CalmMAC16 processor. For
example, if SEC2 value is “0000b”, the EI[2] pin monitors Z flag value of MSR0 register. The logic state of the EI pin
is changed immediately after SECi bit field value is changed or corresponding condition flag bit value is changed. The
SECi bits can be modified by a instruction writing to the MSR2 register, or “ESECi” instructions.

S3CC11B/FC11B CaImMAC1616

 21-29

BARREL SHIFTER AND EXPONENT UNIT

The Barrel Shifter and Exponent Unit (BEU) performs several shifting operations and exponent evaluations. It
contains a 16-bit, single cycle, non-pipelined barrel shift er and 16-bit exponent evaluation unit. The detailed block
diagram of the Barrel Shifter and Exponent Unit is shown in Figure 21-16.

16-bit Exponent

SA

XB[15:0]

from A/B/C/D

16-bit Barrel Shifter

SR

SG

SI

 Figure 21-16. Barrel Shifter and Exponent Unit Block Diagram

BARREL SHIFTER

The barrel shifter performs standard arithmetic and logical shift, and several special shift operations. It is a 32-bit left
and right, single-cycle, non-pipelined barrel shifter. The barrel shifter receives the source operand from either one of
the 16-bit two Ai (A or B) accumulator registers or 16-bit SI register. It also receives the shift amount value from
either one of the 16-bit two Ai accumulator registers or 7-bit SA register. Because the maximum amount of shift is
from –32 (right shift 32-bit) to +32 (left shift 32 bit), 7-bit shift amount is sufficient. When Ai register is used as the
shift amount register, 7 LSBs of 16-bit register value are only valid. If the shift value is greater than 32 or less than –
32, the shifter generates the same result as shift 32-bit or shift –32-bit. The amount of shifts is only determined by a
value in the one of these three register and can not be determined by a constant embedded in the instruction opcode
(immediate shift amount is not supported). The barrel shifter takes 16-bit input operand and 7-bit amount value, and
generates 32-bit shifted output values. The destination of shifted value is two 16-bit shift output register SG and SR
register. The SG register holds the value of shifted out, and the SR register holds the shifted 16-bit values.

The flags are affected as a result of the barrel shifter output, as well as a result of the ARU output. When the result is
transferred into the barrel shifter output register, the flags represent the shifter output register status. The C, N, and Z
flag in MSR0 register is used common to the ARU and the BEU, but the V flag is different. The ARU uses the V flag
as overflow flag, and the BEU uses the VS flag as overflow flag.

CaImMAC1616 S3CC11B/FC11B

21-30

SHIFTING OPERATIONS

 Several shift operations are available using the barrel shifter. All of them are performed in a single cycle. The
detailed operations of each shift instruction are depicted in figure 2.16. If 7-bit shift amount value is positive, shift left
operation is performed and if negative, shift right operation is performed. After all barrel shifter operation is performed,
the carry flag has the bit value which is shifted out finally.

 “ESFT” instruction performs a standard logical shift operation. The shifted bit pattern is stored into the 16-bit SR
register (Shifter Result register), and the shifted out bit pattern is stored into the 16-bit SG register (Shifter Guard
register). When shift left operation, MSBs of SG register and LSBs of SR register is filled with zeros. When shift right
operation, LSBs of SG register and MSBs of SR register is filled with zeros. “ESFTA” instruction performs a standard
arithmetic shift operation. The operation is all the same as a logical shift except that the MSBs of SG register or
MSBs of SR register is sign-extended instead of being filled with zeros.

 “ESFTD” instruction is provided for double precision shift operation. With this instruction, one can shift 32-bit
number stored in two registers. Unlike standard logical and arithmetic shift, this instruction only updates the SG
register with the values that is ORed previous SG register value and shifted out result from barrel shifter. The following
codes are examples of double precision shift operation.

 // Double Precision Left ({SG,SR} <- {B,A} <<SA

 ESFT A,SA // Lower Part Shift

 ESFTD B,SA // Upper Part Shift

 // Double Precision Right ({SR,SG} <- {B,A}>>SA

 ESFT B,SA // Upper Part Shift

 ESFT A,SA // Lower Part Shift

S3CC11B/FC11B CaImMAC1616

 21-31

Input

0's0's

SRSG

0's0's

Shifter Input

Shifter Output

ESFT (Logical Shift)

ESFTA (Arithmetic Shift)

ESFTD (Double-Precision Shift)

ESFTL (Linked Shift)

0

0

0

15
Input

015

15015

31

SRSG
015015

Registers

031

Input

0'ssign's

SRSG

0'ssign's

Shifter Input

Shifter Output

0

0

0

15
Input

015

15015

31

SRSG
015015

Registers

031

Input

0's0's 0's0's

Shifter Input

Shifter Output

0

0

15
Input

015

31 031

SG
015

SG
015

Input

0's0's 0's0's

Shifter Input

Shifter Output

0

0

15
Input

015

31 031

SG
015

SR
015 015 015

Registers

Registers

Left Shift Operations Right Shift Operations

SG SR

Figure 21-17. Various Barrel Shifter Instruction Operation

CaImMAC1616 S3CC11B/FC11B

21-32

“ESFTL” instruction is used for bit-stream manipulation. It links the previously shifted data with the current data. The
operation of this instruction is the same as logical shift instruction except that the shifted out result is ORed with
previous SG register values. This ORing process makes it possible to concatenate the previous data and the current
data. This instruction is valid only when the magnitude of shift amount is greater than 16. The linking process
example is as follows.

 // Left Link ({SG,SR} <- B<<A and link SI

 ESFT B,A // Previous Data Shift

 ESUB A,#16 // Preprocessing for Linking

 ESFTL SI,A // Current Data Shift

 // Right Link ({SR,SG} <- B>>A and link SI

 ESFT B,A // Previous Data Shift

 EADD A,#16 // Preprocessing for Linking

 ESFTL SI,A // Current Data Shift

Bit-Field Operation

The barrel shifter supports a bit-field masking operation. This operation can be used for data bit-stream manipulation
only. Various bit-field operations such as bit set, bit reset, bit change, and bit test operation is supported in
CalmRISC16, host processor. So the CalmMAC16 need not powerful bit operation capabilities. “ENMSK” instruction
is provided for bit-pattern masking. This instruction masks MSBs of SG register with selected mask pattern. The
mask pattern is generated according to the 4-bit immediate operand embedded in the instruction.

S3CC11B/FC11B CaImMAC1616

 21-33

EXPONENT BLOCK

The exponent block performs exponent evaluation of one of the four 16-bit accumulator registers A, B, C, D. The
result of this operation is a signed 7-bit value, and transferred into the Shift Amount register (SA). The source
operand is unaffected by this calculation.

Table 21-1. Exponent Evaluation and Normalization Example

Evaluated Number N Exponent Result Normalized Number

00001101…. 4 3 (shift left by 3) 01101….

11101010…. 3 2 (shift left by 2) 101010…

00000011…. 6 5 (shift left by 5) 011….....

11111011…. 5 4 (shift left by 4) 1011…….

The algorithm for determining the exponent result for a 16-bit number is as follows. Let N be the number of the sign
bits (i.e. the number of MSBs equal to bit 15) found in the evaluated number. The exponent result is N-1. This means
that the exponent is evaluated with respect to bit 16. Therefore, the exponent result is always greater than or equal to
zero. (Refer to following table as examples) A non-zero result represents an un-normalized number. When evaluating
the exponent value of one of the accumulator register, the result is the amount of left shifts that should be executed
in order to normalize the source operand. An exponent result equal to zero represents a normalized number.

Normalization

Full normalization can be achieved in 2 cycles, using “EEXP” instruction, followed by “ESFT” instruction. The “EEXP”
instruction evaluates the exponent value of one of the Ai register. The sec ond instruction “ESFT” is shifting the
evaluated number, according to the exponent result stored at SA register.

 // Normalization

 EEXP A

 ESFT A,SA

The block normalization is also possible using the exponent unit and “EMIN” instruction. The “EMIN” instruction can
select the minimum exponent value from all evaluated exponent result.

Double Precision Supports

The CalmMAC16 DSP coprocessor has an instruction which can evaluate exponent values of double precision 32-bit
data operand. Double precision exponent evaluation can be achieved in 2 cycles, using a standard exponent
valuation instruction (“EEXP”), followed by “EEXPC” instruction. The “EEXP” instruction sets the VS flag when the
source operand has the all one value or the all zero value and sets the C flag with the LSB bit value of the source
operand. The C flag transfer the sign information of higher 16-bit data. After “EEXP” instruction is executed, the
“EEXPC” instruction evaluates the exponent value of lower 16-bit data and carry if the VS flag is set. And then the
calculated exponent value is added with previous SA register value. In this way, full double precision exponent
calculation can be done.

 // Double Precision Exponent Evaluation about {A,B}

 EEXP A

 EEXPC B

CaImMAC1616 S3CC11B/FC11B

21-34

INSTRUCTION SET MAP AND SUMMARY

ADDRESSING MODES

Various addressing modes, including indirect linear and modulo addressing, short and long direct addressing, and
immediate, are implemented in the CalmMAC16 coprocessor.

Indirect Addressing Mode

Indirect Addressing for Single Read Operati on
@RP0+S0 / @RP0+S1 / @RP1+S0 / @RP1+S1 /
@RP2+S0 / @RP2+S1 / @RP3+S0 / @RP3+S1

One of the current bank pointer registers (RP0, RP1, RP2, RP3) points to one of the 64K data words. The data
location content, pointed to by the pointer register, is the source operand. The RPi pointer register is modified with
one of two 4-bit or 8-bit source index values (S0 or S1 field) which reside in the index register after the instruction is
executed. The source index values are sign extended to 16-bit and added to 16-bit pointer values in RPi register. The
RP1 and RP2 register can only use 4-bit source index value. The RP0 and RP3 register can use extended 8-bit
source index value if XSD bit of MSR0 register is set.

Indirect Addressing for Dual Read Operation

@RP0+Si (i = 0,1) and @RP3+Si (i = 0,1)
@RP1+Si (i = 0,1) and @RP3+Si (i = 0,1)

One of the current bank pointer registers RP0 or RP1 points to one of the lower 32K data words (X data memory),
and the current bank RP3 pointer register points to one of the upper 32K data words (Y data memory). The data
location contents, pointed to by the pointer registers, are the source operands. The pointer registers are modified
with one of two 4-bit or 8-bit source index values (S0 or S1 field) which reside in the index register after the
instruction is executed. The source index values are sign extended to 16-bit and added to 16-bit pointer values in
pointer registers. The RP1 register can only use 4-bit source index value. The RP0 and RP3 register can use
extended 8-bit source index value if XSD bit of MSR0 register is set.

EADD A, @RP0+S1 (When XSD = 1)

Before Execution After Execution

8010hA

RP0 (no modulo) 0010h

Data Loacation 10h 0011h

SD0 F333h

SD0E 0122h

0011h

0033h

0011h

F333h

0122h

Figure 21-18. Indirect Addressing Example I (Single Read Operation)

S3CC11B/FC11B CaImMAC1616

 21-35

ELD X0, @RP1+S0, Y1, @RP3+S1 (When XSD = 0)

Before Execution After Execution

Data in 8001h A987h

Data in 1001h 4321h

A987h

4321h

Y1 9ABCh

X0 3456h

A987h

4321h

RP3 (no modulo) 8001h

RP1 (no modulo) 1001h

8003h

1000h

SD3 2E2Eh

SD1 1F1Fh

2E2Eh

1F1Fh

Figure 21-19. Indirect Addressing Example II (Dual Read Operation)

Indirect Addressing for Write Operation

@RP0+D0 / @RP0+D1 / @RP1+D0 / @RP1+D1 /
@RP2+D0 / @RP2+D1 / @RP3+D0 / @RP3+D1

One of the current pointer registers (RP0, RP1, RP2, RP3) points to one of the 64K data words. The data location
content, pointed to by the pointer register, is the destination operand. The RPi pointer register is modified with one of
two 4-bit or 8-bit destination index values (D0 or D1 field) which reside in the index register after the instruction is
executed. The destination index values are sign extended to 16-bit and added to 16-bit pointer value in RPi register.
The RP1 and RP2 register can only use 4-bit source index value. The RP0 and RP3 register can use extended 8-bit
source index value if XSD bit of MSR0 register is set.

CaImMAC1616 S3CC11B/FC11B

21-36

ELD @RP1+D0, B

Before Execution After Execution

8010hB

RP1 (no modulo) 0020h

Data Loacation 20h 0011h

SD1 1819h

8010h

0018h

8010h

1819h

Figure 21-20. Indirect Addressing Example III (Write Operation)

Direct Addressing Mode

Short direct Addressing
RPD0.adr:5 / RPD1.adr:5

The data location, one of the 64K data word, is one of the source operand or destination operand. The 16-bit data
location is composed of the page number in the MSB 11 bits of RPD0 or RPD1 register and the direct address field
(the offset in the page) in the instruction code. The short direct addressing uses RPD0 or RPD1 register specified in
instruction code as a page value. The LSB 5 bits of RPD0 or RPD1 register is not used at all.

ELD A, RPD0.3h

Before Execution After Execution

8010hA

RPD0 0028h

Data Loacation 23h 0011h

0011h

0028h

0011h

Address Generation 0000000001 00011

RPD0[15:5] adr:5

Figure 21-21. Short Direct Addressing Example

S3CC11B/FC11B CaImMAC1616

 21-37

Long Direct Addressing

adr:16

The data location, one of the 64K data word, is one of the source operand or destination operand. The 16-bit data
location is specified as the second word of the instruction. There is no use of the page bits in the RPDi register in
this mode.

ELD 1234h, B

Before Execution After Execution

8010hB

Data Loacation 1234h 0011h

8010h

8010h

Address Generation 001001000110100

adr:16

 Figure 21-22. Long Direct Addressing Example

Short Direct Associated Addressing

RPD1.adr:2

The data location, one of the 64K data word, is one of the source operand or destination operand. The 16-bit data
location is composed of the page number in the MSB 10 bits of RPD1 register, the 2-bit direct address field (the
offset in the page) in the instruction code, and destination or source register name itself. The source or destination
register will be one of a set of pointer register (RP0 ~ RP3), two sets of index register (SD0_0 ~ SD3_0 and SD0_1 ~
SD3_1), and two sets of modulo control register (MC0_0 ~ MC1_0 and MC0_1 ~ MC1_1). One of 16 registers itself
specifies 4-bit address field. With this addressing mode, user can keep up to 4 sets of pointer registers, 8 set of
index registers, and 8 set of modulo control registers at one time. The short direct associated addressing uses only
RPD1 register as a page value. The LSB 6 bits of RPD0 register is not used at all.

CaImMAC1616 S3CC11B/FC11B

21-38

ELD RPD1.3H, SD0_0

Before Execution After Execution

8010hSD0

RPD1 0088h

Data Location 00a3h 0011h

8010h

0088h

8010h

Address Generation 0000000010

15

RPD1[15:6]

6 45

adr:2

11 1000

3

SD0_0

1

Figure 21-23. Short Direct Associated Addressing Example

Immediate Mode

Short Immediate
form I : #imm:4
form II: #imm:5

The form I is used for 4-bit register field load in “ESDi” instruction, “EBK” instruction, and “ESECi” instruction, or
masking pattern generation in “ENMSK” instruction. The form II is used for one of the source operands. The 5-bit
value is right-justified and sign-extended to the 16-bit operand when the destination register has 16-bit width. If the
destination register has 16-bit width, it is sign-extended to the 16-bit operand.

Long Immediate

#imm:16

The long immediate form is used for one of the source operands. The 16-bit value is right-justified and sign-extended
to the 16-bit operand when the destination operand is 16-bit. When the destination register has 16-bit width, the
immediate value is no changed. The long immediate requires the second instruction code.

S3CC11B/FC11B CaImMAC1616

 21-39

INSTRUCTION CODING

Abbreviation Definition and Encoding

• rps

Mnemonic Encoding Description

RP0+S0 000 RP0 post-modified by SD0 S0 field

RP1+S0 001 RP1 post-modified by SD1 S0 field

RP2+S0 010 RP2 post-modified by SD2 S0 field

RP3+S0 011 RP3 post-modified by SD3 S0 field

RP0+S1 100 RP0 post-modified by SD0 S1 field

RP1+S1 101 RP1 post-modified by SD1 S1 field

RP2+S1 110 RP2 post-modified by SD2 S1 field

RP3+S1 111 RP3 post-modified by SD3 S1 field

• rpd

Mnemonic Encoding Description

RP0+D0 000 RP0 post-modified by SD0 D0 field

RP1+D0 001 RP1 post-modified by SD1 D0 field

RP2+D0 010 RP2 post-modified by SD2 D0 field

RP3+D0 011 RP3 post-modified by SD3 D0 field

RP0+D1 100 RP0 post-modified by SD0 D1 field

RP1+D1 101 RP1 post-modified by SD1 D1 field

RP2+D1 110 RP2 post-modified by SD2 D1 field

RP3+D1 111 RP3 post-modified by SD3 D1 field

• rp01s

Mnemonic Encoding Description

RP0+S0 00 RP0 post-modified by SD0 S0 field

RP1+S0 01 RP1 post-modified by SD1 S0 field

RP0+S1 10 RP0 post-modified by SD0 S1 field

RP1+S1 11 RP1 post-modified by SD1 S1 field

CaImMAC1616 S3CC11B/FC11B

21-40

• rp3s

Mnemonic Encoding Description

RP3+S0 0 RP3 post-modified by SD3 S0 field

RP3+S1 1 RP3 post-modified by SD3 S1 field

• mg1

Mnemonic Encoding Description

Y0 000 Y0[15:0] register

Y1 001 Y1[15:0] register

X0 010 X0[15:0] register

X1 011 X1[15:0] register

MA0(H) 100 MA0[35:0] / MA0[31:16] register

MA0L 101 MA0[15:0] register

MA1(H) 110 MA1[35:0] / MA1[31:16] register

MA1L 111 MA1[15:0] register

• mg2

Mnemonic Encoding Description

RP0 000 Current bank RP0[15:0] register

RP1 001 Current bank RP1[15:0] register

RP2 010 Current bank RP2[15:0] register

RP3 011 Current bank RP3[15:0] register

RPD0 100 RPD0[15:0] register

RPD1 101 RPD1[15:0] register

MC0 110 MC0[15:0] register

MC1 111 MC1[15:0] register

• sdi

Mnemonic Encoding Description

SD0 00 Current bank SD0[15:0] register (SD0 or SD0E)

SD1 01 Current bank SD1[15:0] register

SD2 10 Current bank SD2[15:0] register

SD3 11 Current bank SD3[15:0] register (SD3 or SD3E)

S3CC11B/FC11B CaImMAC1616

 21-41

• Ai

Mnemonic Encoding Description

A 0 A[15:0] register

B 1 B[15:0] register

• Ci

Mnemonic Encoding Description

C 0 C[15:0] register

D 1 D[15:0] register

• An

Mnemonic Encoding Description

A 00 A[15:0] register

B 01 B[15:0] register

C 10 C[15:0] register

D 11 D[15:0] register

• rpui

Mnemonic Encoding Description

RP0 0000 Current bank RP0[15:0] register

RP1 0001 Current bank RP1[15:0] register

RP2 0010 Current bank RP2[15:0] register

RP3 0011 Current bank RP3[15:0] register

MC0_0 0100 MC0[15:0] register (set 0)

MC1_0 0101 MC1[15:0] register (set 0)

MC0_1 0110 MC0[15:0] register (set 1)

MC1_1 0111 MC1[15:0] register (set 1)

SD0_0 1000 Current bank SD0[15:0] register (set 0)

SD1_0 1001 Current bank SD1[15:0] register (set 0)

SD2_0 1010 Current bank SD2[15:0] register (set 0)

SD3_0 1011 Current bank SD3[15:0] register (set 0)

SD0_1 1100 Current bank SD0[15:0] register (set 1)

SD1_1 1101 Current bank SD1[15:0] register (set 1)

SD2_1 1110 Current bank SD2[15:0] register (set 1)

SD2_1 1111 Current bank SD3[15:0] register (set 1)

CaImMAC1616 S3CC11B/FC11B

21-42

• mga

Mnemonic Encoding Description

MA0 00 MA0[35:0] / MA0[31:16] register

MA1 01 MA1[35:0] / MA1[31:16] register

A 10 A[15:0] register

B 11 B[15:0] register

• mgx

Mnemonic Encoding Description

Y0 00 Y0[15:0] register

Y1 01 Y1[15:0] register

X0 10 X0[15:0] register

X1 11 X1[15:0] register

S3CC11B/FC11B CaImMAC1616

 21-43

• mg

Mnemonic Encoding Description

MA0(H) 00000 MA0[35:0] / MA0[31:16] register

MA0L 00001 MA0[15:0] register

MA1(H) 00010 MA1[35:0] / MA1[31:16] register

MA1L 00011 MA1[15:0] register

MA0SR 00100 Arithmetic right one bit shifted MA0[31:16] register

MA0SL 00101 Arithmetic left one bit shifted MA0[31:16] register

MA1SR 00110 Arithmetic right one bit shifted MA1[31:16] register

MA1SL 00111 Arithmetic left one bit shifted MA1[31:16] register

RP0 01000 Current bank RP0[15:0] register

RP1 01001 Current bank RP1[15:0] register

RP2 01010 Current bank RP2[15:0] register

RP3 01011 Current bank RP3[15:0] register

RPD0 01100 RPD0[15:0] register

RPD1 01101 RPD1[15:0] register

MC0 01110 MC0[15:0] register

MC1 01111 MC1[15:0] register

SD0 01000 Current bank SD0[15:0]/SD0E register

SD1 01001 Current bank SD1[15:0] register

SD2 01010 Current bank SD2[15:0] register

SD3 01011 Current bank SD3[15:0]/SD3E register

SA 01100 SA[6:0] register

SI 01101 SI[15:0] register

SG 01110 SG[15:0] register

SR 01111 SR[15:0] register

P(H) 11000 P[31:16] register

PL 11001 P[15:0] register

MA0RN 11010 Rounded MA0[31:16] register

MA1RN 11011 Rounded MA1[31:16] register

MSR0 11100 MSR0[15:0] register

MSR1 11101 MSR1[15:0] register

MSR2 11110 MSR2[15:0] register

PRN 11111 Rounded P[31:16] register

NOTE: Grayed Field : read only register

CaImMAC1616 S3CC11B/FC11B

21-44

• mci

Mnemonic Encoding Description

MC0 0 MC0[15:0] register

MC1 1 MC1[15:0] register

• srg

Mnemonic Encoding Description

SA 00 SA[6:0] register

SI 01 SI[15:0] register

SG 10 SG[15:0] register

SR 11 SR[15:0] register

• asr

Mnemonic Encoding Description

A 00 A[15:0] register

B 01 B[15:0] register

SI 10 SI[15:0] register

SR 11 SR[15:0] register

• asa

Mnemonic Encoding Description

A 00 A[6:0] register

B 01 B[6:0] register

SA 10 SA[6:0] register

– 11 reserved

S3CC11B/FC11B CaImMAC1616

 21-45

• bs

Mnemonic Encoding Description

BK0 0000 MSR2[12]

BK1 0001 MSR2[13]

BK2 0010 MSR2[14]

BK3 0011 MSR2[15]

ME0 0100 MSR0[12]

ME1 0101 MSR0[13]

ME2 0110 MSR0[14]

ME3 0111 MSR0[15]

OPM 1000 MSR1[3]

OPMA 1001 MSR1[7]

OP 1010 MSR0[9]

USM 1011 MSR1[4]

MV 1100 MSR1[2]

XSD 1101 MSR0[10]

PSH1 1110 MSR1[5]

NQ 1111 MSR1[6]

• ereg

Mnemonic Encoding Description

– 0000 Reserved

– 0001 Reserved

– 0010 Reserved

– 0011 Reserved

A 0100 A[15:0] register

B 0101 B[15:0] register

C 0110 C[15:0] register

D 0111 D[15:0] register

SA 1000 SA[6:0] register

SI 1001 SI[15:0] register

SG 1010 SG[15:0] register

SR 1011 SR[15:0] register

– 1100 Reserved

– 1101 Reserved

– 1110 Reserved

 1111 Reserved

CaImMAC1616 S3CC11B/FC11B

21-46

• ns

Mnemonic Encoding Description

S0 00 SDi[3:0] register

S1 01 SDi[7:4] register

D0 10 SDi[11:8] register

D1 11 SDi[15:12] register

• emod0

Mnemonic Encoding Description

ELD 00 Load

EADD 01 Add

ESUB 10 Subtract

ECP 11 Compare

• Pi

Mnemonic Encoding Description

P(H) 0 P[31:16] register

PL 1 P[15:0] register

S3CC11B/FC11B CaImMAC1616

 21-47

• cct

Mnemonic Encoding Description

Z 0000 Z = 1

NZ 0001 Z = 0

NEG 0010 N = 1

POS 0011 N = 0

C 0100 C = 1

NC 0101 C = 0

V 0110 V = 1

NV 0111 V = 0

GT 1000 N = 0 and Z = 0

LE 1001 N = 1 or Z = 1

VM0 1010 VM0 = 1

VM1 1011 VM1 = 1

VS 1100 VS = 1

– 1101 Reserved

MV 1110 MV = 1

– 1111 Reserved

CaImMAC1616 S3CC11B/FC11B

21-48

• emod1

Mnemonic Encoding Description

ESRA(T) 0000 Arithmetic shift right 1-bit

ESLA(T) 0001 Arithmetic shift left 1-bit

ESRA8(T) 0010 Arithmetic shift right 8-bit

ESLA8(T) 0011 Arithmetic shift left 8-bit

ESRC(T) 0100 Arithmetic shift right 1-bit with Carry

ESLC(T) 0101 Arithmetic shift left 1-bit with Carry

EINCC(T) 0110 Increment with Carry

EDECC(T) 0111 Decrement with Carry

ENEG(T) 1000 Negate

EABS(T) 1001 Absolute

EFS8(T) 1010 Force to Sign bit 15 ~ bit 8 by bit 7

EFZ8(T) 1011 Force to Zero bit 15 ~ bit 8

– 1100 Reserved

– 1101 Reserved

EEXP(T) 1110 Exponent detection

EEXPC(T) 1111 Exponent detection with Carry

NOTE: “T” suffix means that instruction is executed when T flag is set.

S3CC11B/FC11B CaImMAC1616

 21-49

• emod2

Mnemonic Encoding Description

ESRA 0000 Arithmetic shift right 1-bit

ESLA 0001 Arithmetic shift left 1-bit

ERND 0010 Rounding

ECR 0011 Clear

ESAT 0100 Saturate

ERESR 0101 Restore Remainder

– 0110 Reserved

– 0111 Reserved

ELD MAi,MAi’ 1000 Load from MAi’ to MAi

– 1001 Reserved

EADD MAi,P 1010 Add MAi and P

ESUB MAi,P 1011 Subtract P from MAi

EADD MAi,PSH 1100 Add MAi and 16-bit right shifted P

ESUB MAi,PSH 1101 Subtract 16-bit right shifted P from MAi

EDIVQ 1110 Division Step

– 1111 Reserved

• XiYi

Mnemonic Encoding Description

X0Y0 00 X0[15:0] * Y0[15:0]

X0Y1 01 X0[15:0] * Y1[15:0]

X1Y0 10 X1[15:0] * Y0[15:0]

X1Y1 11 X1[15:0] * Y1[15:0]

• Xi / Yi

Mnemonic Encoding Description

X0 / Y0 0 X0[15:0] / Y0[15:0] register

X1 / Y1 1 X1[15:0] / Y1[15:0] register

CaImMAC1616 S3CC11B/FC11B

21-50

• rs

Mnemonic Encoding Description

ER 0 Bit reset instruction

ES 1 Bit set instruction

• Mi

Mnemonic Encoding Description

MA0 0 MA0[31:0] register

MA1 1 MA1[31:0] register

• rpi

Mnemonic Encoding Description

RP0 00 Current bank RP0[15:0] register

RP1 01 Current bank RP1[15:0] register

RP2 10 Current bank RP2[15:0] register

RP3 11 Current bank RP3[15:0] register

S3CC11B/FC11B CaImMAC1616

 21-51

Overall COP Instruction Set Map

Instruction 12 11 10 9 8 7 6 5 4 3 2 1 0

ECLD 0 0 0 0 imm:5 LS Dn

ELD mg,#imm:16 0 0 0 1 0 mg imm:3

EMOD0 An,#imm:16 0 0 0 1 1 0 mod0 An imm:3

ELD mgx,#imm:16 0 0 0 1 1 1 0 0 mgx imm:3

ERPN rpi, #imm:16 0 0 0 1 1 1 0 1 rpi imm:3

ELD An,adr:16 0 0 0 1 1 1 1 0 An adr:3

ELD adr:16,An 0 0 0 1 1 1 1 1 An adr:3

EMAD Mi, XiYi, mgx,@rps 0 0 1 0 XiYi mgx 0 rps

EMSB Mi, XiYi, mgx,@rps 0 0 1 0 XiYi mgx 1 rps

EMLD Mi, XiYi, mgx,@rps 0 0 1 1 XiYi mgx 0 rps

EMUL XiYi, mgx,@rps 0 0 1 1 XiYi mgx 1 0 rps

EADD Mi,P, mgx,@rps 0 0 1 1 0 Mi mgx 1 1 rps

ESUB Mi,P, mgx,@rps 0 0 1 1 1 Mi mgx 1 1 rps

EADD Mi,P, An,@rps 0 1 0 0 0 Mi An 0 0 rps

ESUB Mi,P, An,@rps 0 1 0 0 0 Mi An 0 1 rps

ELD Mi,P, An,@rps 0 1 0 0 0 Mi An 1 0 rps

ELD Mi,P, mgx,@rps 0 1 0 0 0 Mi mgx 1 1 rps

EADD Mi,P, @rpd,mga 0 1 0 0 1 Mi mga 0 0 rpd

ESUB Mi,P, @rpd,mga 0 1 0 0 1 Mi mga 0 1 rpd

ELD Mi,P, @rpd,mga 0 1 0 0 1 Mi mga 1 0 rpd

EADD Mi,P, @rpd,P 0 1 0 0 1 Mi 0 0 1 1 rpd

ESUB Mi,P, @rpd,P 0 1 0 0 1 Mi 0 1 1 1 rpd

ELD Mi,P, @rpd,P 0 1 0 0 1 Mi 1 0 1 1 rpd

Reserved 0 1 0 0 1 d 1 1 1 1 d d d

EADD Ai,Mi, mgx,@rps 0 1 0 1 0 Mi mgx 0 Ai rps

ESUB Ai,Mi, mgx,@rps 0 1 0 1 0 Mi mgx 1 Ai rps

ELD Ai,Mi, mgx,@rps 0 1 0 1 1 Mi mgx 0 Ai rps

EADD Ai,Mi, Mi,@rps 0 1 0 1 1 Mi 0 0 1 Ai rps

ESUB Ai,Mi, Mi,@rps 0 1 0 1 1 Mi 0 1 1 Ai rps

ELD Ai,Mi, Mi,@rps 0 1 0 1 1 Mi 1 0 1 Ai rps

ELD Pi,@rps 0 1 0 1 1 Pi 1 1 1 0 rps

Reserved 0 1 0 1 1 d 1 1 1 1 d d d

NOTE: “d” means DON’T Care.

CaImMAC1616 S3CC11B/FC11B

21-52

Overall COP Instruction Set Map (Continued)

Instruction 12 11 10 9 8 7 6 5 4 3 2 1 0

EADD Ai,Mi, @rpd,mga 0 1 1 0 0 Mi mga 0 Ai rpd

ESUB Ai,Mi, @rpd,mga 0 1 1 0 0 Mi mga 1 Ai rpd

ELD Ai,Mi, @rpd,mga 0 1 1 0 1 Mi mga 0 Ai rpd

EADD Ai,Mi, @rpd,P 0 1 1 0 1 Mi 0 0 1 Ai rpd

ESUB Ai,Mi, @rpd,P 0 1 1 0 1 Mi 0 1 1 Ai rpd

ELD Ai,Mi, @rpd,P 0 1 1 0 1 Mi 1 0 1 Ai rpd

ELD @rpd,P 0 1 1 0 1 Pi 1 1 1 0 rpd

reserved 0 1 1 0 1 d 1 1 1 1 d d d

EADD Ai,Ci, Cj,@rps 0 1 1 1 0 0 0 Ci Cj Ai rps

ESUB Ai,Ci, Cj,@rps 0 1 1 1 0 0 1 Ci Cj Ai rps

ECP Ai,Ci, Cj,@rps 0 1 1 1 0 1 0 Ci Cj Ai rps

EMAX Ai,Ci, Ci,@rps 0 1 1 1 0 1 1 Ci 0 Ai rps

EMIN Ai,Ci, Ci,@rps 0 1 1 1 0 1 1 Ci 1 Ai rps

ELD mg1,@rps 0 1 1 1 1 mg1 0 0 rps

ELD An,@rps 0 1 1 1 1 0 An 0 1 rps

ELD srg,@rps 0 1 1 1 1 1 srg 0 1 rps

ELD @rpd,mg1 0 1 1 1 1 mg1 1 0 rpd

ELD @rpd,An 0 1 1 1 1 0 An 1 1 rpd

ELD @rps,srg 0 1 1 1 1 1 srg 1 1 rpd

EMAD Mi, XiYi, Xi,@rp01s, Yi,@rp3s 1 0 0 0 XiYi Xi Yi 0 Mi rp3 rp01s

EMSB Mi, XiYi, Xi,@rp01s, Yi,@rp3s 1 0 0 0 XiYi Xi Yi 1 Mi rp3 rp01s

EMLD Mi, XiYi, Xi,@rp01s, Yi,@rp3s 1 0 0 1 XiYi Xi Yi 0 Mi rp3 rp01s

EMUL XiYi, Xi,@rp01s, Yi,@rp3s 1 0 0 1 XiYi Xi Yi 1 0 rp3 rp01s

ELD Xi,@rp01s, Yi,@rp3s 1 0 0 1 0 0 Xi Yi 1 1 rp3 rp01s

reserved 1 0 0 1 0 1 d d 1 1 d d d

reserved 1 0 0 1 1 d d d 1 1 d d d

ESFT asr,asa 1 0 1 0 0 0 0 0 0 asr asa

ESFTA asr,asa 1 0 1 0 0 0 0 0 1 asr asa

ESFTL asr,asa 1 0 1 0 0 0 0 1 0 asr asa

ESFTD asr,asa 1 0 1 0 0 0 0 1 1 asr asa

ELD SA,#imm:5 1 0 1 0 0 0 1 0 imm:5

ENMSK SG,#imm:4 1 0 1 0 0 0 1 1 0 imm:4

ELD srgd,srgd 1 0 1 0 0 0 1 1 1 srgs srgd

S3CC11B/FC11B CaImMAC1616

 21-53

Overall COP Instruction Set Map (Continued)

Instruction 12 11 10 9 8 7 6 5 4 3 2 1 0

ELD rpui,rpd1.adr:2 1 0 1 0 0 1 0 adr:2 rpui

ELD rpd1.adr:2,rpui 1 0 1 0 0 1 1 adr:2 rpui

ESD0 ns,#imm:4 1 0 1 0 1 0 0 ns imm:4

ESD1 ns,#imm:4 1 0 1 0 1 0 1 ns imm:4

ESD2 ns,#imm:4 1 0 1 0 1 1 0 ns imm:4

ESD3 ns,#imm:4 1 0 1 0 1 1 1 ns imm:4

ELD An,rpdi.adr:5 1 0 1 1 0 rpd An adr:5

ELD rpdi.adr:5,An 1 0 1 1 1 rpd An adr:5

EMOD0 An,mg 1 1 0 0 mod0 An mg

EMOD0 An,Am 1 1 0 1 0 0 An 0 mod0 Am

EMOD0 An,mgx 1 1 0 1 0 0 An 1 mod0 mgx

ELD mg,An 1 1 0 1 0 1 An mg

EMAD Mi, XiYi, Ai,Mj 1 1 0 1 1 0 0 0 Mi Ai Mj XiYi

EMSB Mi, XiYi, Ai,Mj 1 1 0 1 1 0 0 1 Mi Ai Mj XiYi

EMLD Mi, XiYi, Ai,Mj 1 1 0 1 1 0 1 0 Mi Ai Mj XiYi

EMUL XiYi, Ai,Mj 1 1 0 1 1 0 1 1 0 Ai Mj XiYi

EMAX Ai,Ci 1 1 0 1 1 0 1 1 1 Ai Ci 0 0

EMIN Ai,Ci 1 1 0 1 1 0 1 1 1 Ai Ci 0 1

EMAX Ai,Ai’ 1 1 0 1 1 0 1 1 1 Ai 0 1 0

EMIN Ai,Ai’ 1 1 0 1 1 0 1 1 1 Ai 0 1 1

NOP 1 1 0 1 1 0 1 1 1 d 1 1 d

ELD mg1d,mg1s 1 1 0 1 1 1 0 mg1s mg1d

ELD mg2d,mg2s 1 1 0 1 1 1 1 mg2s mg2d

EMAD Mi, XiYi, Ai,MjSL 1 1 1 0 0 0 0 0 Mi Ai Mj XiYi

EMSB Mi, XiYi, Ai,MjSL 1 1 1 0 0 0 0 1 Mi Ai Mj XiYi

EMLD Mi, XiYi, Ai,MjSL 1 1 1 0 0 0 1 0 Mi Ai Mj XiYi

EMUL XiYi, Ai,MjSL 1 1 1 0 0 0 1 1 0 Ai Mj XiYi

EMAD Mi, XiYi 1 1 1 0 0 0 1 1 1 0 Mi XiYi

EMSB Mi, XiYi 1 1 1 0 0 0 1 1 1 1 Mi XiYi

CaImMAC1616 S3CC11B/FC11B

21-54

Overall COP instruction set map (Continued)

Instruction 12 11 10 9 8 7 6 5 4 3 2 1 0

EMAD Mi, XiYi, Ai,MjSR 1 1 1 0 0 1 0 0 Mi Ai Mj XiYi

EMSB Mi, XiYi, Ai,MjSR 1 1 1 0 0 1 0 1 Mi Ai Mj XiYi

EMLD Mi, XiYi, Ai,MjSR 1 1 1 0 0 1 1 0 Mi Ai Mj XiYi

EMUL XiYi, Ai,MjSR 1 1 1 0 0 1 1 1 0 Ai Mj XiYi

EMLD Mi, XiYi 1 1 1 0 0 1 1 1 1 0 Mi XiYi

EMUL XiYi 1 1 1 0 0 1 1 1 1 1 0 XiYi

ERPR rpi 1 1 1 0 0 1 1 1 1 1 1 rpi

ELD An,#imm:5 1 1 1 0 1 0 An imm:5

EADD An,#imm:5 1 1 1 0 1 1 An imm:5

ECP An,#imm:5 1 1 1 1 0 0 An imm:5

EMOD1 An 1 1 1 1 0 1 An T mod1

ERPN rpi,An 1 1 1 1 1 0 0 0 0 An rpi

ERPS rps 1 1 1 1 1 0 0 0 1 0 rps

ERPD rpd 1 1 1 1 1 0 0 0 1 1 rpd

EMOD2 Mi 1 1 1 1 1 0 0 1 Mi mod2

ETST cc T/EC3 1 1 1 1 1 0 1 0 TE cc

ER/ES bs 1 1 1 1 1 0 1 1 ES bs

ELD Pi,mg1 1 1 1 1 1 1 0 0 0 Pi mg1

ELD mg1,Pi 1 1 1 1 1 1 0 0 1 Pi mg1

ELD mgx,An 1 1 1 1 1 1 0 1 0 An mgx

ELD sdid,sdis 1 1 1 1 1 1 0 1 1 sdis sdid

EBK #imm:4 1 1 1 1 1 1 1 0 0 imm:4

ESEC0 #imm:4 1 1 1 1 1 1 1 0 1 imm:4

ESEC1 #imm:4 1 1 1 1 1 1 1 1 0 imm:4

ESEC2 #imm:4 1 1 1 1 1 1 1 1 1 imm:4

S3CC11B/FC11B CaImMAC1616

 21-55

QUICK REFERENCE

opc op1 op2 op3 op4 op5 op6 Function Flag

EMAD Mi XiYi mgx @rps – – Mi<-Mi+P, P<-Xi*Yi, op3<-op4 VMi

EMSB Mi<-Mi-P, P<-Xi*Yi, op3< -op4 VMi

EMLD Mi<- P, P<-Xi*Yi, op3< -op4 VMi

EMUL – P<-Xi*Yi, op3< -op4 VMi

EMAD Mi XiYi Ai Mj

MjSR

MjSL

– – Mi<-Mi+P, P<-Xi*Yi, op3<-op4 VMi,
V,N,Z

EMSB Mi<-Mi-P, P<-Xi*Yi, op3< -op4 VMi,
V,N,Z

EMLD Mi<- P, P<-Xi*Yi, op3< -op4 VMi,
V,N,Z

EMUL – P<-Xi*Yi, op3< -op4 VMi,
V,N,Z

EMAD Mi XiYi Xi @rp01s Yi @rp3s Mi<-Mi+P, P<-Xi*Yi, op3<-op4,
op5<-op6

VMi

EMSB Mi<-Mi-P, P<-Xi*Yi, op3< -op4,
op5<-op6

VMi

EMLD Mi<- P, P<-Xi*Yi, op3< -op4,
op5<-op6

VMi

EMUL – P<-Xi*Yi, op3< -op4, op5< -op6 VMi

EMAD Mi XiYi – – – – Mi<-Mi+P, P<-Xi*Yi VMi

EMSB Mi<-Mi-P, P<-Xi*Yi VMi

EMLD Mi<- P, P<-Xi*Yi VMi

EMUL – P<-Xi*Yi VMi

EADD Mi P mgx

An

@rps – – Mi<-Mi+P, op3<-op4 VMi

ESUB Mi<-Mi-P, op3<-op4 VMi

ELD MißP, op3<-op4 VMi

EADD Mi P @rpd mga

P

– – Mi<-Mi+P, op3<-op4 VMi

ESUB Mi<-Mi-P, op3<-op4 VMi

ELD MißP, op3<-op4 VMi

EADD Ai Mi mgx @rps – – Ai<-Ai+Mi, op3< -op4 V,N,Z,C

ESUB Ai<-Ai-Mi, op3<-op4 V,N,Z,C

ELD Ai<- Mi, op3< -op4 V,N,Z

CaImMAC1616 S3CC11B/FC11B

21-56

QUICK REFERENCE (Continued)

opc op1 op2 op3 op4 op5 op6 Function Flag

EADD Ai Mi Mi @rps – – Ai<-Ai+Mi, op3<-op4 V,N,Z,C,
VMi

ESUB Ai<-Ai-Mi, op3< -op4 V,N,Z,C,
VMi

ELD Ai<- Mi, op3<-op4 V,N,Z,V
Mi

EADD Ai Mi @rpd mga

P

– – Ai<-Ai+Mi, op3<-op4 V,N,Z,C

ESUB Ai<-Ai-Mi, op3< -op4 V,N,Z,C

ELD Ai<- Mi, op3<-op4 V,N,Z

ELD An mg
Am
mgx

imm:16

– – – – An< -op2 V,N,Z

EADD An<-An+op2 V,N,Z,C

ESUB An<-An-op2 V,N,Z,C

ECP An-op2 V,N,Z,C

ELD An imm:5 – – – – An< -op2 V,N,Z

EADD An<-An+op2 V,N,Z,C

ECP An-op2 V,N,Z,C

* opc – opcode, opi- operand I
 VMi – VM0 or VM1 according to Mi (w hen VMi is written, MV is written)

S3CC11B/FC11B CaImMAC1616

 21-57

Quick Reference (Continued)

opc op1 op2 op3 op4 Function Flag

ELD Xi @rp01s Yi @rp3s op1<-op2, op3<-op4 –

ELD An adr:16
rpdi.adr:5

@rps

– – An<-op2 V,N,Z

ELD adr:16
rpdi.adr:5

@rpd

An – – op1<-An –

ELD mgx imm:16
An

– – op1<-op2 –

ELD mg1 mg1
Pi

@rps

– – op1<-op2 –(VMi)*

ELD mg imm:16

An

– – op1<-op2 –(VMi)*

ELD Pi mg1
@rps

– – op1<-op2 –

ELD srg srg
@rps

– – op1<-op2 –

ELD @rpd Pi
mg1
srg

– – op1<-op2 –

ELD rpui rpd1.adr:2 – – op1<-op2 –

ELD rpd1.adr:2 rpui – – op1<-op2 –

ELD Mi Mi’ – – Mi<-Mi’ VMi

EADD Mi P
PSH

– – Mi<-Mi+op2 VMi

ESUB – – Mi<-Mi-op2 VMi

EADD Ai Ci Cj @rps Ai<-Ai+Ci, op3<-op4 V,N,Z,C

ESUB – – – Ai<-Ai-Ci, op3<-op4 V,N,Z,C

ECP – – – Ai-Ci, op3< -op4 V,N,Z,C

EMAX Ai Ci Ci @rps Ai<-max (Ai,Ci), op3<-op4, RP3<-
address

V,N,Z,C

EMIN – – Ai<-min(Ai,Ci), op3<-op4, RP3<-
address

V,N,Z,C

ERPN rpi imm:16
An

– – rpi<-mod(rpi+op2) –

ECLD Dn ereg – – Dn<-ereg –

CaImMAC1616 S3CC11B/FC11B

21-58

Quick Reference (Continued)

opc op1 op2 op3 op4 Function Flag

ECLD ereg Dn – – ereg<-Dn –

ELD SA imm:5 – – SA<-op2 –

EMAX Ai Ci
Ai’

– – Ai<-max(Ai,op2), RP3<-address V,N,Z,C

EMIN – – Ai<-min(Ai,op2), RP3< -address V,N,Z,C

ELD mg2 mg2 – – op1<-op2 –

ELD sdi sdi – – op1<-op2 –

ENOP – – – – No Operation –

NOTE: VMi is affected when op1 is MAi(H)

Quick Reference (Continued)

opc op1 op2 Function Flag

ESFT asr asa {SG,SR}<-op1<</>>op2 (logical) VS,N,Z,C

ESFTA {SG,SR}<-op1<</>>op2 (arithmetic) VS,N,Z,C

ESFTL SG<-SG|(op1<</>>op2) VS,N,Z,C

ESFTD SR<-op1<</>>op2, SG<-SG|(op1<</>>op2) VS,N,Z,C

ENMSK SG imm:4 SG<-SG&(mask_pattern by imm) VS,N,Z

ESD0 ns imm:4 SD0.ns<-op2 –

ESD1 SD1.ns<-op2 –

ESD2 SD2.ns<-op2 –

ESD3 SD3.ns<-op2 –

ERPS rps – op1<-mod(op1+Si) –

ERPD rpd – op1<-mod(op1+Di) –

ERPR rpi – RP3<-bit_reverse(op1) –

ESEC0 imm:4 – MSR2.SEC0< -op1 –

ESEC1 MSR2.SEC1< -op1 –

ESEC2 MSR2.SEC2< -op1 –

EBK imm:4 – MSR2[15:12]<-op1 –

ER bs – op1<-0 –

ES op1<-1 –

ETST cct T

EC3

op2<-1 if (cct) –

EDIVQ Mi – Division Step VMi, NQ

ERESR Mi<-Mi+2P if (NQ=1) VMi

S3CC11B/FC11B CaImMAC1616

 21-59

Quick Reference (Continued)

opc op1 op2 Function Flag

ESLA Mi<-Mi<<1 VMi

ESRA Mi<-Mi>>1 VMi

ECR Mi<-0 VMi

ESAT Mi<-saturated(Mi) VMi

ERND Mi<-Mi+8000h VMi

ESLA(T*) An – op1<-op1<<1 (arithmetic) V,N,Z,C

ESRA(T*) op1<-op1>>1 (arithmetic) V,N,Z,C

ESLA8(T*) op1<-op1<<8 (arithmetic) V,N,Z,C

ESRA8(T*) op1<-op1>>8 (arithmetic) V,N,Z,C

ESLC(T*) op1<-{op1[14:0],C} V,N,Z,C

ESRC(T*) op1<-{C,op1[15:1]} V,N,Z,C

EINCC(T*) op1<-op1+C V,N,Z,C

EDECC(T*) op1<-op1-C’ V,N,Z,C

EABS(T*) op1<-|op1} V,N,Z,C

ENEG(T*) op1<-op1’+1 V,N,Z,C

EFS8(T*) op1[15:8]<-op1[7] V,N,Z,C

EFZ8(T*) op1[15:8]<-0 V,N,Z,C

EEXP(T*) SA<-exp(op1) VS,N,Z,C

EEXPC(T*) SA<-SA+exp(C,op1) VS,N,Z,C

* if T=1, instruction is executed

CaImMAC1616 S3CC11B/FC11B

21-60

INSTRUCTION SET

GLOSSARY

This chapter describes the CalmMAC16 instruction set, with the details of each instruction. The following notations
are used for the description.

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically, <op1> is the
destination (and source) operand and <op2> is a source operand.

<dest>,<src> Destination and source operand for load.

adr:N N-bit direct address specifier

imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

 ̂ Bit-wise XOR

N**M Mth power of N

It is further noted that only the affected flags are described in the tables in this section. That is, if a flag is not
affected by an operation, it is NOT specified.

S3CC11B/FC11B CaImMAC1616

 21-61

EABS/EABST (Note) – Absolute

Format: EABS(T) An

Operation: An <- |An|

 This instruction calculates the absolute value of one of 16-bit Accumulator (An), and stores the
 result back into the same Accumulator.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

 N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: EABST instruction can be executed only when the T flag is set.
 Otherwise, No operation is performed.

Examples: EABS A

 EABST C

 # of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-62

EADD (1) – Add Accumulator

Format: EADD An, <op>

 <op>: #simm:5 / #simm:16

 Am

 mg / mgx

Operation: An <- An + <op>

 This instruction adds the values of one of 16-bit Accum ulators (An) and <op> together, and stores
 the result back into the same Accumulator. If <op> is immediate value, it is first right adjusted and
 sign-extended to 16-bit value. If <op> is 16-bit register, it is zero-extended.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

 N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: None

Example s: EADD A, #0486h

 EADD C, A

 EADD A, RP0

of Words: 1

 2 when <op> is : #simm:16

S3CC11B/FC11B CaImMAC1616

 21-63

EADD (2)
– Add Accumulator w/ One Parallel Move

Format: 1. EADD Ai, Mi, <dest>,<src>

 <dest>,<src>: mgx, @rps

 Mi, @rps

 @rpd, mga

 @rpd, P

 2. EADD Ai, Ci, Cj, @rps

Operation: 1. Ai <- Ai + Mi, <dest> <- <src>

 2. Ai <- Ai + Ci, Cj <-@rps

 This instruction adds the values of 16-bit Accumulator Ai (A or B register) and higher 16-bit part of
 Multiplier Accumulator MAi (MA0 or MA1 register) or the value of 16-bit Accumulator Ci (C or D
 register) together, and stores the result back into Accumulator Ai. This instruction also stores a
 source operand from memory or register to the destination register or memory location.

Flags: C: Set if carry is generated by addition. Reset if not.

 Z: Set if result is zero by addition. Reset if not.

 V: Set if overflow is generated by addition. Reset if not.

 N: Exclusive OR of V and MSB of result by addition. Refer to Chapter 2 for more detailed explanation
 about this convention.

 VMi *: Set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi if <dest> is Mi.

Examples: EADD A, MA0, X0,@RP0+S1

 EADD B, MA1, MA1,@RP1+S0

 EADD A, MA1, @RP3+D1, MA0

 EADD B, D, C, @RP2+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-64

EADD (3) – Add Multiplier Accumulator

Format: EADD Mi, <op>

 <op>: P / PSH

Operation: MAi <- MAi + <op>

 This instruction adds the values of 36-bit Multiplier Accumulator MAi (MA0 or MA1 register) and
 <op> together, and stores the result back into Multiplier Accumulator MAi. The “PSH” means 16-
 bit arithmetic right shifted P register value.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EADD MA0, P

 EADD MA1, PSH

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-65

EADD (4)
 – Add Multiplier Accumulator w/ One Parallel Move

Format: EADD Mi, P, <dest>,<src>

 <dest>,<src>: mgx, @rps

 An, @rps

 @rpd, mga

 @rpd, P

Operation: MAi <- MAi + P, <dest> <- <src>

 This instruction adds the values of 36-bit Multiplier Accumulator MAi (MA0 or MA1 register) and
 Product Register P together, and stores the result back into Multiplier Accumulator MAi. This
 instruction also stores source operand from memory or register to destination register or memory.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the destination Mi.

Examples: EADD MA0, P, Y0, @RP1+S1

 EADD MA1, P, C, @RP2+S0

 EADD MA1, P, @RP0+D0, B

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-66

EBK – Pointer/Index Register Bank Select

Format: EBK #imm:4

Operation: MSR2[15:12] <- imm:4

 This instruction loads the 4-bit immediate value to the specified bit field of MSR2 register (bit 15 ~
 bit 12). Only 4-bit field of 16-bit register value is changed

Flags: –

Notes: –

Examples: EBK #1010b

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-67

ECLD – Coprocessor Accumulator Load from host processor

Format: ECLD ereg, Dn

ECLD Dn, ereg

Operation: ereg <- Dn or Dn <- ereg

This instruction moves the selected 16-bit general purpose register value of host processor to the An
(A, B, C, or D) accumulator register or shifter register (SA, SR, SG, SI), or vice versa. This
instruction is mapped to “CLD” instruction of CalmRISC microcontroller.

Flags: –

Notes: This instruction has delay slot. Because this instruction is 2-cycle instruction.

Examples: ECLD A, R0

 ECLD R3, BH

ECLD SI, R3

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-68

ECP (1) – Compare Accumulator

Format: ECP An, <op>

 <op>: #simm:5 / #simm:16

 Am

 mg / mgx

Operation: An - <op>

This Instruction compares the values of Accumulator An and <op> by subtracting <op> from
Accumulator. Content of Accumulator is not changed. If <op> is immediate value, it is first right
adjusted and sign-extended to 16-bit value. If <op> is 16-bit register, it is zero-extended.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: –

Examples: ECP A, #0486h

 ECP C, A

ECP D, RP0

of Words: 1

 2 when <op> is : #simm:16

S3CC11B/FC11B CaImMAC1616

 21-69

ECP (2) – Compare Accumulator w/ One Parallel Move

Format: ECP Ai, Ci, Cj,@rps

Operation: Ai - Ci, Cj <- @rps

 This Instruction compares the values of Accumulator Ai (A or B register) and Ci (C or D register)
 by subtracting Ci from Ai. Content of Accumulator Ai is not changed. This instruction also stores a
 source operand from memory or register to the des tination register or memory location.

Flags: C: Set if carry is generated by addition. Reset if not.

 Z: Set if result is zero by addition. Reset if not.

 V: Set if overflow is generated by addition. Reset if not.

 N: Exclusive OR of V and MSB of result by addition. Refer to Chapter 2 for more detailed explanation
 about this convention.

Notes: None.

Examples: ECP B, D, C,@RP2+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-70

ECR – Clear MA Accumulator

Format: ECR Mi

Operation: MAi <- 0

 This Instruction clears the value of 36-bit MAi (MA0 or MA1) accumulator. The extension nibble of
 selected MA accumulator is also cleared.

Flags: VMi *: 0.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ECR MA1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-71

EDECC/EDECCT * – Decrement with Carry

Format: EDECC(T) An

Operation: An <- An - ~C

 This instruction subtracts 1 from the value of one of 16-bit Accumulator (An) if current carry flag is
 cleared, and stores the result back into the same Accumulator.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

 N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * EDECCT instruction can be executed only when the T flag is set.
 Otherwise, No operation is performed.

Examples: EDECC A

 EDECCT D

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-72

EDIVQ – Division Step

Format: EDIVQ Mi,P

Operation: if (NQ = 0)

 Adder output <- MAi – P

 else

 Adder output <- MAi + P

 (Adder output > 0)

 MAi <- Adder output * 2 + 1

 else

 MAi <- Adder output * 2

 This Instruction adds or subtracts one of the MAi accumulator from P register according to the NQ
 bit value and calculates one bit quotient and new partial remainder.

Flags: NQ: If (Adder output > 0) NQ <- 0, else NQ <- 1

 VMi *: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the Mi.

Examples: EDIVQ MA0,P

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-73

EEXP/EEXPT * – Exponent Value Evaluation

Format: EEXP(T) An

Operation: SA <- exponent(An)

 This instruction evaluates the exponent value of one of 16-bit Accumulator (An), and stores the
 result back into 7-bit SA register.

Flags: C: Set if LSB of source An accumulator is 1. Reset if not.

 Z: Set if exponent evaluation result is zero. Reset if not.

 VS: Set if the value of source An accumulator is all zeroes or all ones. Reset if not.

 N: Reset.

Notes: * EEXPT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: EEXP A

 EEXPT C

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-74

EEXPC/EEXPCT * – Exponent Value Evaluation with Carry

Format: EEXPC(T) An

Operation: if (VS = 1)

 SA <- exponent({C,An})

 else

 no operation

 This instruction evaluates the exponent value which concatenates carry and one of 16-bit
 Accumulator (An), adds the result with SA register value, and stores the added result back into 7-
 bit SA register. It can be used for multi-precision exponent evaluation.

Flags: C: Set if LSB of source An accumulator is 1. Reset if not.

 Z: Set if exponent evaluation result is zero. Reset if not.

 VS: Set if the value of carry and source An accumulator is all zeroes or all ones. Reset if not.

 N: Reset.

Notes: * EEXPCT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: EEXPC D

 EEXPCT B

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-75

EFS/EFST *
 – Force to Sign MSB8 bits

Format: EFS(T) An

Operation: An <- {8{An[7]},An[7:0]}

 This instruction forces the value of MSB 8 bits of 16-bit Accumulator (An) with byte sign bit of An
 register (An[7]), and stores the result back into the same Accumulator.

Flags: C: Reset.

 Z: Set if result is zero. Reset if not.

 V: Reset.

 N: MSB of result.

Notes: * EFS8T instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: EFS8 A

 EFS8T D

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-76

EFZ/EFZT *
 – Force to Zero MSB 8bits

Format: EFZ(T) An

Operation: An <- {8{0},An[7:0]}

 This instruction forces the value of MSB 16 bits of 16-bit Accumulator (An) with zero, and stores
 the result back into the same Accumulator.

Flags: C: Reset.

 Z: Set if result is zero. Reset if not.

 V: Reset.

 N: Reset.

Notes: * EFZ8T instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: EFZ8 C

 EFZ8T B

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-77

EINCC/EINCCT * – Increment with Carry

Format: EINCC(T) An

Operation: An <- An + C

 This instruction adds 1 from the value of one of 16-bit Accumulator (An) if current carry flag is set,
 and stores the result back into the same Accumulator.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

 N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * EINCCT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: EINCC A

 EINCCT C

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-78

ELD (1)
 – Load Accumulator

Format: 1. ELD An, <mem>

 <mem> : @rps

 rpdi.adr:5 / adr:16

 2. ELD An, <op>

 <op> : Am

 #simm:5 / #simm:16

 mgx / mg

Operation: An <- <mem> or <op>

 This instruction load <mem> or <op> value to the one of 16-bit Accumulator (An). If <op> is
 immediate value, it is first right adjusted and sign-extended to 16-bit value. If <op> is 16-bit
 register, it is zero-extended.

Flags: Z*: Set if result is zero. Reset if not.

 V*: Set if overflow is generated. Reset if not.

 N*: Set if loaded value is negative.

Notes: * Flags are not affected when a source operand is from memory.

Examples: ELD A, @RP0+S0

 ELD B, RPD1.5h

 ELD C, #0486h

 ELD D, A

 ELD A, RP0

of Words: 1

 2 when <op> is : adr:16 or #simm:16

S3CC11B/FC11B CaImMAC1616

 21-79

ELD (2) – Load Accumulator w/ One Parallel Move

Format: ELD Ai, Mi, <dest>,<src>

 <dest>,<src>: mgx, @rps

 Mi, @rps

 @rpd, mga

 @rpd, P

Operation: Ai <- MAi, <dest> <- <src>

 This instruction load higher 16-bit part of Multiplier Accumulator MAi to the 16-bit Accumulator Ai.
 This instruction also stores source operand from memory or register to destination register or
 memory.

Flags: Z: Set if result is zero by load. Reset if not.

 V: Set if overflow is generated by load. Reset if not.

 N: Set if loaded value is negative.

 VMi *: Set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi if <dest> is Mi.

Examples: ELD A, MA X0,@RP0+S1

 ELD A, MA MA,@RP1+S0

 ELD A, MA @RP3+D1, A

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-80

ELD (3)
 – Load Multiplier Accumulator

Format: ELD MA0, MA1

 ELD MA1, MA0

Operation: MAi <- MAi’

 This instruction loads the value of the one 36-bit Multiplier Accumulator MAi from the other
 Multiplier Accumulator.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to destination Multiplier Accumulator.

Examples: ELD MA1, MA0

 ELD MA0, MA1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-81

ELD (4) – Load Multiplier Accumulator w/ One Parallel Move

Format: ELD Mi, P, <dest>,<src>

 <dest>,<src>: mgx, @rps

 An, @rps

 @rpd, mga

 @rpd, P

Operation: MAi <- P, <dest> <- <src>

 This instruction load sign-extended 32-bit Product register P to the 36-bit Multiplier Accumulator
 MAi. This instruction also stores source operand from memory or register to destination register or
 memory.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not

Notes: * VMi denotes for VM0 or VM1 according to destination Multiplier Accumulator.

Examples: ELD MA0, P, X0,@RP0+S1

 ELD MA1, P, A,@RP1+S0

 ELD MA1, P, @RP3+D1, A

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-82

ELD (5)
 – Load Other Registers or Memory

Format: ELD <dest>, <src>

 <dest>,<src>: mg1, @rps

 srg, @rps

 Pi, @rps

 @rpd, An

 @rpd, mg1

 @rpd, srg

 @rpd, Pi

 rpui, rpd1.adr:2

 rpd1.adr:2, rpui

 rpdi.adr:5, An

 adr:16, An

 mgx, #simm:16

 mg, #simm:16

 SA, #simm:5

 mg1d, mg1s

 mg2d, mg2s

 sdid, sdis

 srgd, srgs

 mg, An

 mgx, An

 Pi, mg1

 mg1, Pi

Operation: <dest> <- <src>

This instruction load <src> value to <dest>. If the width of immediate is less than the width of
 <dest>, the immediate field is sign-extended and if the width of <src> is more than the width of
 <dest>, LSB part of <src> is written to <dest>.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to destination Mi if <dest> is Mi.

S3CC11B/FC11B CaImMAC1616

 21-83

ELD (5)
– Load Other Registers or Memory (Continued)

Examples: ELD @RP0+D0, B

 ELD RPD1.5h, RP2

 ELD MC0, #0486h

 ELD RPD1, MC0

 ELD X0, Y1

of Words: 1

 2 when <dest> or <src> is : adr:16 or #imm:16

CaImMAC1616 S3CC11B/FC11B

21-84

ELD (6)
 – Dual Load

Format: ELD Xi,@rp01s, Yi,@rp3s

Operation: Xi <- operand1 by @rp01s, Yi <- operand2 by @rp3s

 This instruction loads two operands from data memory (one from X memory space, and the other
 from Y memory space) to the specified 16-bit Xi and Yi register, respectively.

Flags: –

Notes: –

Examples: ELD X0,@RP1+S1, Y1,@RP3+S0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-85

EMAD (1)
 – Multiply and Add

Format: EMAD Mi, XiYi

Operation: MAi <- MAi + P, P <- Xi * Yi

This instruction adds the values of 36-bit Multiplier Accumulator MAi and P register together, and
stores the result back into Multiplier Accumulator MAi. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EMAD MA0, X1Y0

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-86

EMAD (2)
 – Multiply and Add w/ One Parallel Move

Format: EMAD Mi, XiYi, <dest>,<src>

 <dest>,<src> : Ai,Mj

 Ai,MjSR*

 Ai,MjSL**

 mgx,@rps

Operation: MAi <- MAi + P, P <- Xi * Yi, <dest> <- <src>

This instruction adds the values of 36-bit Multiplier Accumulator MAi and P register together, and
stores the result back into Multiplier Accumulator MAi. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores source operand from data memory or 16-bit higher portion of the MAj register to the
destination register.

Flags: VMi ***: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

 When <dest> is Ai

 Z: Set if the value to Ai is zero by load. Reset if not.

 V: Set if overflow is generated by load. Reset if not.

N: Set if loaded value is negative.

Notes: * MjSR : 1-bit right shifted MAj[31:16]

 ** MjSL : 1-bit left shifted MAj[31:16]

*** VMi denotes for VM0 or VM1 according to the Mi.

Examples: EMAD MA0, X1Y0, A,MA1SR

EMAD MA1, X0Y0, X0,@RP1+S1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-87

EMAD (3)
 – Multiply and Add w/ Two Parallel Moves

Format: EMAD Mi, XiYi, Xi,@rp01s, Yi,@rp3s

Operation: MAi <- MAi + P, P <- Xi * Yi, Xi <- operand1 by @rp01s, Yi <- operand2 by @rp3s

This instruction adds the values of 36-bit Multiplier Accumulator MAi and P register together, and
stores the result back into Multiplier Accumulator MAi. At the same time, multiplier multiplies Xi
register value and Yi register value, and stores the result to the P register. This instruction also
stores two source operands from data memory (one from X memory space and one from Y memory
space) to the 16-bit Xi register and Yi register respectively.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to the current MA bank.

Examples: EMAD MA0, X1Y0, X0,@RP0+S1, Y0,@RP3+S0

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-88

EMAX (1)
 – Maximum Value Load

Format: EMAX Ai, <op>

 <op>: Ci

 Ai’

Operation: if (<op> >= Ai)

 Ai <- <op>, RP3 <- previous address with RPi register

 This instruction conditionally loads <op> value to the one of 16-bit Accumulator(Ai) and latches the
 previous address value to the RP3 pointer when <op> is greater than or equal to Ai. Otherwise, no
 operation is performed.

Flags: C*: Set if carry is generated. Reset if not.

 Z*: Set if result is zero. Reset if not.

 V*: Set if overflow is generated. Reset if not.

 N*: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * Flags are generated from the operation (Ai - <op>)

Examples: EMAX A, C

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-89

EMAX (2) – Maximum Value Load w/ One Parallel Move

Format: EMAX Ai, Ci, Ci,@rps

Operation: if (Ci >= Ai)

 Ai <- Ci, Ci <- @rps, RP3 <- previous address with RPi register

This instruction conditionally loads Ci value to the one of 16-bit Accumulator (Ai) and latches the
previous address value to the RP3 pointer when <op> is greater than or equal to Ai. Otherwise, no
operation is performed. This instruction also stores source operand from data memory to the
destination accumulator (the same accumulator register Ci). RP3 register can not be used as a
pointer register of parallel move part.

Flags: C*: Set if carry is generated. Reset if not.

 Z*: Set if result is zero. Reset if not.

 V*: Set if overflow is generated. Reset if not.

N*: Exclusive OR of V and MSB of result. Refer to Programming MODEL Part for more detailed
explanation about this convention.

Notes: * Flags are generated from the operation (Ai – Ci)

Examples: EMAX A, D, D, @RP1+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-90

EMIN (1) – Minimum Value Load

Format: EMIN Ai, <op>

 <op>: Ci

 Ai’

Operation: if (<op> <= Ai)

 Ai <- <op>, RP3 <- previous address with RPi register

This instruction conditionally loads <op> value to the one of 16-bit Accumulator(Ai) and latches the
previous address value to the RP3 pointer when <op> is less than or equal to Ai. Otherwise, no
operation is performed.

Flags: C*: Set if carry is generated. Reset if not.

 Z*: Set if result is zero. Reset if not.

 V*: Set if overflow is generated. Reset if not.

N*: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * Flags are generated from the operation (<op> - Ai)

Examples: EMIN B, D

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-91

EMIN (2)
 – Minimum Value Load w/ One Parallel Load

Format: EMIN Ai, Ci, Ci,@rps

Operation: if (Ci <= Ai)

 Ai <- Ci, Ci <- @rps, RP3 <- previous address with RPi register

This instruction conditionally loads <op> value to the one of 16-bit Accumulator (Ai) and latches the
previous address value to the RP3 pointer when <op> is less than or equal to Ai. Otherwise, no
operation is performed. This instruction also stores source operand from data memory to the
destination accumulator (the same accumulator register Ci). RP3 register can not be used as a
pointer register of parallel move part.

Flags: C*: Set if carry is generated. Reset if not.

 Z*: Set if result is zero. Reset if not.

 V*: Set if overflow is generated. Reset if not.

N*: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * Flags are generated from the operation (Ci - Ai)

Examples: EMIN B, D, D, @RP0+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-92

EMLD (1)
 – Multiply and Load

Format: EMLD Mi, XiYi

Operation: MAi <- P, P <- Xi * Yi

 This instruction loads the P register value to the values of 36-bit Multiplier Accumulator MAi At the
 same time, multiplier multiplies Xi register value and Yi register value, and stores the result to the
 P register.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EMLD MA0, X1Y0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-93

EMLD (2)
 – Multiply and Load w/ One Parallel Move

Format: EMLD Mi, XiYi, <dest>,<src>

 <dest>,<src> : Ai,Mj

 Ai,MjSR*

 Ai,MjSL**

 mgx,@rps

Operation: MAi <- P, P <- Xi * Yi, <dest> <- <src>

This instruction loads the P register value to the one of 36-bit Multiplier Accumulator MAi. At the
same time, multiplier multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores source operand from data memory or 16-bit higher portion of the
MAj register to the destination register.

Flags: VMi ***: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

 When <dest> is Ai

 Z: Set if the value to Ai is zero by load. Reset if not.

 V: Set if overflow is generated by load. Reset if not.

N: Set if loaded value is negative.

Notes: * MjSR: 1-bit right shifted MAj[31:16]

 ** MjSL: 1-bit left shifted MAj[31:16]

*** VMi denotes for VM0 or VM1 according to Mi.

Examples: EMLD MA0, X1Y0, A,MA1SR

EMLD MA1, X0Y0, X0,@RP1+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-94

EMLD (3)
 – Multiply and Load w/ Two Parallel Moves

Format: EMLD Mi, XiYi, Xi,@rp01s, Yi,@rp3s

Operation: MAi <- P, P <- Xi * Yi, Xi <- operand1 by @rp01s, Yi <- operand2 by @rp3s

This instruction loads the P register value to one of 36-bit Multiplier Accumulator MAi. At the same
time, multiplier multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores two source operands from data memory (one from X memory
space and one from Y memory space) to the 16-bit Xi register and Yi register respectively.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EMLD MA1, X1Y0, X0,@RP1+S1, Y0,@RP3+S0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-95

EMSB (1) – Multiply and Subtract

Format: EMSB Mi, XiYi

Operation: MAi <- MAi - P, P <- Xi * Yi

This instruction subtracts the P register from the values of 36-bit Multiplier Accumulator MAi, and
stores the result back into the same Multiplier Accumulator MAi. At the same time, multiplier
multiplies Xi register value and Yi register value, and stores the result to the P register.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EMSB MA0, X1Y0

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-96

EMSB (2) – Multiply and Subtract w/ One Parallel Move

Format: EMSB Mi, XiYi, <dest>,<src>

 <dest>,<src> : Ai,Mj

 Ai,MjSR*

 Ai,MjSL**

 mgx,@rps

Operation: MAi <- MAi - P, P <- Xi * Yi, <dest> <- <src>

This instruction subtracts the P register from the values of 36-bit Multiplier Accumulator MAi, and
stores the result back into the same Multiplier Accumulator MAi. At the same time, multiplier
multiplies Xi register value and Yi register value, and stores the result to the P register. This
instruction also stores source operand from data memory or 16-bit higher portion of the MAj register
to the destination register.

Flags: VMi ***: Set if result is overflowed to guard-bits. Reset if not.

 MV: Set if guard-bit is overflowed. Unchanged if not.

 When <dest> is Ai

 Z: Set if the value to Ai is zero by load. Reset if not.

 V: Set if overflow is generated by load. Reset if not.

N: Set if loaded value is negative.

Notes: * MjSR : 1-bit right shifted MAj[31:16]

 ** MjSL : 1-bit left shifted MAj[31:16]

*** VMi denotes for VM0 or VM1 according to Mi.

Examples: EMSB MA0, X1Y0, A,MA0SR

EMSB MA1, X0Y0, X0,@RP1+S1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-97

EMSB (3)
 – Multiply and Subtract w/ Two Parallel Moves

Format: EMSB Mi, XiYi, Xi,@rp01s, Yi,@rp3s

Operation: MAi <- MAi - P, P <- Xi * Yi, Xi <- operand1 by @rp01s, Yi <- operand2 by @rp3s

This instruction subtracts the P register from the values of 36-bit Multiplier Accumulator MAi, and
stores the result back into the same Multiplier Accumulator MAi. At the same time, multiplier
multiplies Xi register value and Yi register value, and stores the result to the P register. This
instruction also stores two source operands from data memory (one from X memory space and one
from Y memory space) to the 16-bit Xi register and Yi register respectively.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: EMSB MA1, X1Y0, X0,@RP0+S1, Y0,@RP3+S0

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-98

EMUL (1) – Multiply

Format: EMLU XiYi

Operation: P <- Xi * Yi

This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register.

Flags: –

Notes: –

Examples: EMUL X1Y0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-99

EMUL (2) – Multiply w/ One Parallel Move

Format: EMUL XiYi, <dest>,<src>

 <dest>,<src> : Ai,Mj

 Ai,MjSR*

 Ai,MjSL**

 mgx,@rps

Operation: P <- Xi * Yi, <dest> <- <src>

This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores source operand from data memory or 16-bit higher portion of the
MAj register to the destination register.

Flags: When <dest> is Ai

 Z: Set if the value to Ai is zero by load. Reset if not.

 V: Set if overflow is generated by load. Reset if not.

N: Set if loaded value is negative.

Notes: * MjSR : 1-bit right shifted MAj[31:16]

 ** MjSL : 1-bit left shifted MAj[31:16]

Examples: EMUL X1Y0, A,MA1SR

EMUL X0Y0, X0,@RP1+S1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-100

EMUL (3) – Multiply w/ Two Parallel Moves

Format: EMUL XiYi, Xi,@rp01s, Yi,@rp3s

Operation: P <- Xi * Yi, Xi <- operand1 by @rp01s, Yi <- operand2 by @rp3s

This instruction multiplies Xi register value and Yi register value, and stores the result to the P
register. This instruction also stores two source operands from data memory (one from X memory
space and one from Y memory space) to the 16-bit Xi register and Yi register respectively.

Flags: –

Notes: –

Examples: EMUL X1Y0, X0,@RP0+S1, Y0,@RP3+S0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-101

ENEG/ENEGT *
 – Negate

Format: ENEG(T) An

Operation: An <- ~An + 1

 This instruction negates the value of one of 16-bit Accumulator (An), and stores the result back
 into the same Accumulator.

Flags: C: set if carry is generated. Reset if not.

 Z: set if result is zero. Reset if not.

 V: set if overflow is generated. Reset if not.

 N: exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ENEGT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ENEG A

ENEGT C

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-102

ENMSK – Masking SG

Format: ENMSK SG,#imm:4

Operation: SG[15:0] <- SG[15:0] & mask pattern

This instruction masks MSB n bit (n = 16 - #imm:4) of SG[15:0] register, and stores back the result
into the SG[15:0] register.

Flags: Z: Set if result is zero. Reset if not.

 VS: Reset.

N: Reset.

Notes:

Examples: ENMSK SG,#3h

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-103

ENOP – No Operation

Format: ENOP

Operation: No operation.

Flags: –

Notes: –

Examples: ENOP

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-104

ER – Bit Reset

Format: ER bs

Operation: Specified bit in bs field <- 0

This instruction sets the specified bit in bs field to 0.

Flags: –

Notes: –

Examples: ER OP

ER ME3

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-105

ERESR – Restoring Remainder

Format: ERESR Mi,P

Operation: if (NQ = 0)

 Adder output <- MAi + 0

 else

 Adder output <- MAi + 2*P

This Instruction adds two times of the P register and one of the MAi accumulator when NQ bit of
MSR1 register is set. Else, performs no operation. It calculates true remainder value of non-restoring
division.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ERESR MA1,P

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-106

ERND – Round

Format: ERND Mi

Operation: MAi <- MAi + 000008000h

This Instruction adds one of the 36-bit MAi accumulator and rounding constant and stores the result
value into the same accumulator register. It performs two’s complement rounding.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ERND MA0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-107

ERPD – Update Pointer w/ Destination Index

Format: ERPD rpd

Operation: RPi <- mod (RPi + D0/D1)

This Instruction updates the selected pointer with the selected index value. The modulo arithmetic
affect the result value when ME bit of selected pointer is set. It only modifies the pointer without
memory access.

Flags: –

Notes: –

Examples: ERPD RP0+D1

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-108

ERPN – Update Pointer w/ Immediate Value

Format: ERPN rpi,<op>

 <op> : #imm:16

 An

Operation: RPi <- mod (RPi + <op>)

This Instruction updates the selected pointer with 16-bit <op> value. If <op> is one of 16-bit An
register, LSB 16-bit of the accumulator An is only valid. The modulo arithmetic affect the result value
when ME bit of selected pointer is set. It only modifies the pointer without memory access.

Flags: –

Notes: –

Examples: ERPN RP3,#1555h

ERPN RP1,A

of Words: 1

 2 when <op> is #imm:16

S3CC11B/FC11B CaImMAC1616

 21-109

ERPR – Bit-Reverse Pointer

Format: ERPR rpi

Operation: RP3 <- bit-reverse (RPi)

This Instruction generates the reversed bit pattern on LSB n bit of the selected pointer according to
the MC1[15:13] bit values which specifies bit reverse order. (Refer to MC1 register configuration in
chapter 2) The result bit pattern is written to current bank RP3 register pointer field. The source
pointer value is not changed at all.

Flags: –

Notes: –

Examples: ERPR RP2

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-110

ERPS – Update Pointer w/ Source Index

Format: ERPS rps

Operation: RPi <- mod (RPi + S0/S1)

This Instruction updates the selected pointer with the selected index value. The modulo arithmetic
affect the result value when ME bit of selected pointer is set. It only modifies the pointer without
memory access.

Flags: –

Notes: –

Examples: ERPS RP0+S1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-111

ES – Bit Set

Format: ES bs

Operation: Specified bit in bs field <- 1

This instruction sets the specified bit in bs field to 1.

Flags: –

Notes: –

Examples: ES OP

ES ME3

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-112

ESAT – Saturate

Format: ESAT Mi

Operation: if (VMi == 1)

 MAi <- maximum magnitude

This Instruction sets the 36-bit MAi accumulator to the plus or minus maximum value when selected
MAi register overflows. When no overflow occur, the MAi register is not changed.

Flags: VMi *: Reset

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ESAT MA0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-113

ESD0/ESD1/ESD2/ESD3 – Source/Destination Index Load

Format: ESD0* ns, #imm:4

 ESD1 ns, #imm:4

 ESD2 ns, #imm:4

ESD3* ns, #imm:4

Operation: Secified SDi register bit field in ns field <- #imm:4

This instruction loads 4-bit immediate value to the specified bit field of current bank SDi register.
Only 4-bit field of 16-bit value is changed.

Flags: –

Notes: * If XSD bit of MSR0 register is 1, the selected register is the extended index registers (SD0E and
 SD3E). Else, the selected register is the regular index register. (SD0 and SD3)

Examples: D0 D0, #3h

ESD1 S1, #Fh

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-114

ESEC0/ESEC1/ESEC2 – EI Selection Field Load

Format: ESEC0 #imm:4

 ESEC1 #imm:4

ESEC2 #imm:4

Operation: Specified SECi (I=0~2) field of MSR2 register <- #imm:4

This instruction loads 4-bit immediate value to the specified bit field of MSR2 register. Only 4-bit field
of 16-bit value is changed.

Flags: –

Notes: –

Examples: ESEC0 #3h

ESEC1 #Fh

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-115

ESFT – Logical Shift by Barrel Shifter

Format: ESFT asr,asa

Operation: {SR,SG} <- asr<<asa

 This instruction shifts the value of 16-bit asr values by the amount of 7-bit asa. If the value of asa
 is positive, left shift operation is performed, and if the value of asa is negative right shift operation
 is performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
 stored into SG register. The other bits of SR and SG register are filled with zeros.

Flags: C: Set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.

 Z: Set if SR result is zero. Reset if not.

 VS: Reset.

 N: MSB of SR result.

Notes: –

Examples: ESFT A, B

 ESFT SI,SA

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-116

ESFTA – Arithmetic Shift by Barrel Shifter

Format: ESFTA asr,asa

Operation: {SR,SG} <- asr<<asa

This instruction shifts the value of 16-bit asr values by the amount of 7-bit asa. If the value of asa is
positive, left shift operation is performed, and if the value of asa is negative right shift operation is
performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
stored into SG register. The remainder MSB bits of SR or SG register are sign extended and the
remainder LSB bits are filled with zeros.

Flags: C: Set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.

 Z: Set if SR result is zero. Reset if not.

 VS: Set if overflow is generated. Reset if not.

N: MSB of SR result.

Notes: –

Examples: ESFTA A, B

ESFTA SI,SA

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-117

ESFTD – Double Shift by Barrel Shifter

Format: ESFTD asr,asa

Operation: SG <- SG | (asr<<asa)

This instruction shifts the value of 16-bit asr values by the amount of 7-bit asa. If the value of asa is
positive, left shift operation is performed, and if the value of asa is negative right shift operation is
performed. The 16-bit shifted result is ORed with previous SG register value ,and then stored into SG
register.

Flags: C: Set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.

 Z: Set if SG result is zero. Reset if not.

 VS: Reset.

N: MSB of SG result.

Notes: –

Examples: ESFTD A, B

ESFTD SI,SA

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-118

ESFTL – Linked Shift by Barrel Shifter

Format: ESFTL asr,asa

Operation: SR<- asr<<asa, SG <- SG | (asr<<asa)

This instruction shifts the value of 16-bit asr values by the amount of 7-bit asa. If the value of asa is
positive, left shift operation is performed, and if the value of asa is negative right shift operation is
performed. The 16-bit shifted result is stored into SR register and the 16-bit shifted out result is
ORed with previous SG value and stored into SG register. The other bits of SR register are filled with
zeros.

Flags: C: Set if last shifted out bit is 1. Reset if not. Unchanged when shift amount is 0.

 Z: Set if SR result is zero. Reset if not.

 VS: Reset.

N: MSB of SR result.

Notes: –

Examples: ESFTL A, B

ESFTL SI,SA

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-119

ESLA (1)/ESLAT *
– Arithmetic 1-bit Left Shift Accumulator

Format: ESLA(T) An

Operation: An <- An<<1

This instruction shifts the value of one of 16-bit Accumulator (An) to 1-bit left , and stores the result
back into the same accumulator.

Flags: C: Set if shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESLAT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ESLA A

ESLAT D

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-120

ESLA (2)
 – Arithmetic 1-bit Left Shift Multiplier Accumulator

Format: ESLA Mi

Operation: MAi <- MAi <<1

This instruction shifts one of the 36-bit Multiplier Accumulator MAi to 1-bit left , and stores the result
back into the same Multiplier Accumulator.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ESLA MA0

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-121

ESLA8/ESLA8T *
 – Arithmetic 8-bit Left Shift Accumulator

Format: ESLA8(T) An

Operation: An <- An <<8

This instruction shifts the value of one of 16-bit Accumulator (An) to 8-bit left , and stores the result
back into the same accumulator.

Flags: C: Set if last shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESLA8T instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ESLA8 C

ESLA8T B

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-122

ESLC/ESLCT*
 – Arithmetic 1-bit Left Shift Accumulator w/ Carry

Format: ESLC(T) An

Operation: An <- An <<1, An[0] <- C

This instruction shifts the value of one of 16-bit Accumulator (An) to 1-bit left with carry : i.e. the
carry bit is shifted into LSB of An register, and stores the result back into the same accumulator.

Flags: C: Set if shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESLCT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Example s: ESLC A

ESLCT C

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-123

ESRA (1)/ESRAT *
 – Arithmetic 1-bit Right Shift Accumulator

Format: ESRA(T) An

Operation: An <- An >>1

This instruction shifts the value of one of 16-bit Accumulator (An) to 1-bit right, and stores the result
back into the same accumulator.

Flags: C: Set if shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESLRT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ESRA A

ESRAT B

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-124

ESRA (2)
 – Arithmetic 1-bit Right Shift Multiplier Accumulator

Format: ESRA Mi

Operation: MAi <- MAi >>1

This instruction shifts one of the 36-bit Multiplier Accumulator MAi to 1-bit right, and stores the
result back into the same Multiplier Accumulator.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ESRA MA1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-125

ESRA8/ESRA8T *
 – Arithmetic 8-bit Right Shift Accumulator

Format: ESRA8(T) An

Operation: An <- An >>8

This instruction shifts the value of one of 16-bit Accumulator (An) to 8-bit right, and stores the result
back into the same accumulator.

Flags: C: Set if last shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESRA8T instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ESRA8 D

ESRA8T B

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-126

ESRC/ESRCT * – Arithmetic 1-bit Right Shift Accumulator w/ Carry

Format: ESRC(T) An

Operation: An <- An >>1, An[15] <- C

This instruction shifts the value of one of 16-bit Accumulator (An) to 1-bit right with carry : i.e. the
carry bit is shifted into MSB of An register, and stores the result back into the same accumulator.

Flags: C: Set if shifted out bit is 1. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: * ESRCT instruction can be executed only when the T flag is set.

 Otherwise, No operation is performed.

Examples: ESRC A

ESRCT B

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-127

ESUB (1)
 – Subtract Accumulator

Format: ESUB An, <op>

 <op>: #simm:16

 Am

 mg / mgx

Operation: An <- An - <op>

This instruction subtracts <op> value from the value of one of 16-bit Accumulator (An), and stores
the result back into the same Accumulator. If <op> is immediate value, it is first right adjusted and
sign-extended to 16-bit value. If <op> is 16-bit register, it is zero-extended.

Flags: C: Set if carry is generated. Reset if not.

 Z: Set if result is zero. Reset if not.

 V: Set if overflow is generated. Reset if not.

N: Exclusive OR of V and MSB of result. Refer to Chapter 2 for more detailed explanation about this
 convention.

Notes: –

Examples: SUB A, #0486h

 ESUB B, C

ESUB D, RP0

of Words: 1

 2 when <op> is : #simm:16

CaImMAC1616 S3CC11B/FC11B

21-128

ESUB (2)
– Subtract Accumulator w/ One Parallel Move

Format: 1. ESUB Ai, Mi, <dest>,<src>

 <dest>,<src>: mgx, @rps

 Mi, @rps

 @rpd, mga

 @rpd, P

2. ESUB Ai, Ci, Cj, @rps

Operation: 1. Ai <- Ai - Mi, <dest> <- <src>

 2. Ai <- Ai - Ci, Cj <-@rps

This instruction subtracts higher 16-bit part of Multiplier Accumulator MAi (MA0 or MA1 register) or
the value of 16-bit Accumulator Ci (C or D register) from the values of 16-bit Accumulator Ai (A or B
register), and stores the result back into the same accumulator Ai. This instruction also stores a
source operand from memory or register to the destination register or memory location.

Flags: C: Set if carry is generated by addition. Reset if not.

 Z: Set if result is zero by addition. Reset if not.

 V: Set if overflow is generated by addition. Reset if not.

 N: Exclusive OR of V and MSB of result by addition. Refer to Chapter 2 for more detailed explanation
 about this convention.

VMi *: Set if result is overflowed to guard-bits. Reset if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi if <dest> is Mi.

Examples: ESUB A, MA0, X0,@RP0+S1

 ESUB B, MA1, MA1,@RP1+S0

 ESUB B, MA0, @RP3+D1, A

ESUB A, C, C, @RP2+S1

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-129

ESUB (3)
 – Subtract Multiplier Accumulator

Format: ESUB Mi, <op>

<op>: P / PSH

Operation: MAi <- MAi - <op>

This instruction subtracts <op> value from the values of 36-bit Multiplier Accumulator MAi, and
stores the result back into the same Multiplier Accumulator MAi. The “PSH” means 16-bit arithmetic
right shifted P register value.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ESUB MA0, P

ESUB MA1, PSH

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-130

ESUB (4) – Subtract Multiplier Accumulator w/One Parallel Move

Format: ESUB Mi, P <dest>,<src>

 <dest>,<src>: mgx, @rps

 An, @rps

 @rpd, mga

 @rpd, P

Operation: MAi <- MAi - P, <dest> <- <src>

This instruction subtracts the value of the Product register P from the value of 36-bit Multiplier
Accumulator MAi, and stores the result back into the same Multiplier Accumulator MAi. This
instruction also stores source operand from memory or register to destination register or memory.

Flags: VMi *: Set if result is overflowed to guard-bits. Reset if not.

MV: Set if guard-bit is overflowed. Unchanged if not.

Notes: * VMi denotes for VM0 or VM1 according to Mi.

Examples: ESUB MA0, P, Y0, @RP1+S1

 ESUB MA1, P, C, @RP2+S0

ESUB MA1, P, @RP0+D0, B

of Words: 1

S3CC11B/FC11B CaImMAC1616

 21-131

ETST – Test

Format: ETST cct, <op>

 <op> : T

 EC3

Operation: if (cct is true)

 <op> <- 1

 else

 <op> <- 0

This instruction sets the T flag of MSR0 register or EC[3] output port of CalmMAC16 to 1 if condition
specified in cct field is evaluated to truth. Else, resets <op>. This instruction must be executed
before executing the conditional instructions or branch instruction with EC3 as a condition code.

Flags: T : Set/reset according to the condition

Notes: –

Examples: ETST GT, EC3

ETST NEG, T

of Words: 1

CaImMAC1616 S3CC11B/FC11B

21-132

NOTES

S3CC11B/FC11B PROGRAM MEMORY ACCESS SPEED

 22-1

22 PROGRAM MEMORY ACCESS SPEED

OVERVIEW

The FMCON.0 had better be set logic "1" when the CPU clock is under 10 MHz. It will be helped to reduction current
consumption. In order to enable Y-Data ROM, FMCON.[1] is set to "1".

 3F0078H

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

Reset Value – – – – – – 0 0

Read/Write – – – – – – R/W R/W

.7–.2 Bits 7–2

 – Not used

.1 Y-Data ROM Control Bit

 0 Disable Y-Data ROM

 1 Enable Y-Data ROM

.0 Flash Memory Accessing Speed Selection Bit

 0 When fxx is more than 10 MHz

 1 When fxx is under 10 MHz

PROGRAM MEMORY ACCESS SPEED S3CC11B/FC11B

22-2

NOTES

S3CC11B/FC11B ELECTRICAL DATA

 23-1

23 ELECTRICAL DATA

OVERVIEW

Table 23-1. Absolute Maximum Ratings

(TA = 25°C)

Parameter Symbol Conditions Rating Unit

Supply voltage VDD – – 0.3 to + 4.6 V

Input voltage VI – – 0.3 to VDD + 0.3 V

Output voltage VO – – 0.3 to VDD + 0.3 V

Output current IOH One I/O pin active – 18 mA

high All I/O pins active – 60

Output current IOL One I/O pin active + 30 mA

low Total pin current + 100

Operating
temperature

TA – – 25 to + 85 °C

Storage
temperature

TSTG – – 65 to + 150 °C

Table 23-2. D.C. Electrical Characteristics

(TA = – 25°C to + 85°C, VDD = 2.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Operating Voltage VDD fx = 32MHz 3.0 – 3.6 V

 fx = 4MHz 2.0 – 3.6

Input high voltage V IH1 Ports 0 – 9, nRESET 0.8 VDD – VDD V

 V IH2 XIN and XtIN VDD–0.1 – VDD

Input low voltage VIL1 Ports 0 – 9, nRESET – – 0.2 VDD V

 VIL2 XIN and XTIN – – 0.1

ELECTRICAL DATA S3CC11B/FC11B

23-2

Table 23-2. D.C. Electrical Characteristics (Continued)

(TA = – 25°C to + 85°C, VDD = 2.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Output high voltage VOH VDD = 3.0 V to 3.6 V
IOH = – 1 mA

Ports 0–9

VDD-1.0 – – V

Output low voltage VOL VDD = 3.0 V to 3.6 V

IOL = 15 mA
Ports 0–9

– – 1.0 V

Input high leakage
current

ILIH1 VI = VDD

All input pins except ILIH2

– – 3 uA

 ILIH2 VIN = VDD

XIN, XOUT, XTIN

 20

Input low leakage
current

ILIL1 VIN = 0 V

All input pins except ILIL2

– – –3

 ILIL2 VIN = 0 V

XIN, XOUT, XTIN

 –20

Output high leakage
current

ILOH VOUT = VDD

All Output pins

– – 3

Output low leakage
current

ILOL VOUT = 0 V

All Output pins

– – –3

Pull-up resistor RL1 VIN = 0 V; VDD = 3.3 V;

TA = 25°C

Ports 0–9

3 60 90 kΩ

 RL2 VIN = 0 V; VDD = 3.3 V;

TA = 25°C

nRESET

150 300 450

LCD Voltage
Dividing Resistor

RLCD TA = 25 °C 30 50 70 kΩ

 VLCD-COMi
Voltage Drop
(i = 0-7)

VDC –15 uA per common pin – – 120 mV

 VLCD-SEGx
Voltage Drop
(x = 0–39)

VDS –15 uA per common pin – – 120

Middle Output
Voltage (1)

VLC2 VDD = 2.4V to 3.6V, 1/5 bias

LCD clock = 0Hz, VLC1 = VDD

0.8VDD-0.2 0.8VDD 0.8VDD+0.2 V

 VLC3 0.6VDD-0.2 0.6VDD 0.6VDD+0.2

 VLC4 0.4VDD-0.2 0.4VDD 0.4VDD+0.2

 VLC5 0.2VDD-0.2 0.2VDD 0.2VDD+0.2

NOTE: It is middle output voltage when LCD controller/driver is 1/8 duty and 1/5 bias.

S3CC11B/FC11B ELECTRICAL DATA

 23-3

Table 23-2. D.C. Electrical Characteristics (Continued)

(TA = – 25°C to + 85°C, VDD = 2.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current (1)

IDD1 (2) VDD = 3.3 V ± 10%

Crystal oscillator

20 MHz
4 MHz

– 16.0
4.0

32.0
8.0

mA

 fx=fOUT, 2.048 MHz X-tal 32.768 MHz – 25.0 50.0

 IDD2 (2) Idle mode
VDD = 3.3 V ± 10%
Crystal oscillator

20 MHz
4 MHz

– 1.0
0.4

2.0
0.8

mA

 IDD3
 (3) VDD = 3.3 V ± 10%

32 kHz crystal oscillator
– 60 100 uA

 IDD4 (3) Idle mode;
VDD = 3.3 V ± 10%
32 kHz crystal oscillator

TA = –5 °C to

+ 85 °C

– 6.0 20 uA

 IDD5 Stop mode;
VDD = 3.3 V ± 10%
TA = 25 °C

XTIN
= 0V

25 °C 0.2 2.0 uA

 –25°C~
85°C

 – 10

NOTES:
1. Supply current does not include current drawn through internal pull -up resistors, PWM, PLL, or external output current
 loads.
2. IDD1 and IDD2 include power consumption through sub clock oscillation and main oscillator is in normal mode.

3. IDD3 and IDD4 are current when main clock oscillation stops and the sub clock is used in normal mode.

4. Every value in this table is measured when bits 1-0 of the clock control register (CLKCON.1 -.0) is set to 11B.
5. If the fout (PLL’s output clock) is used for the system clock, the current consumption is added by 0.2mA/1MHz at VDD =

 3.3V and the current through PLL block to IDD1.

6. The current is added a little when Y-ROM is enabled.

ELECTRICAL DATA S3CC11B/FC11B

23-4

32 MHz

CPU Clock

4 MHz

0.4 kHz

2.0V 3.6V3.0V

Figure 23-1. Operating Voltage Range

S3CC11B/FC11B ELECTRICAL DATA

 23-5

Table 23-3. A.C. Electrical Characteristics

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Unit

Interrupt input high,
low width

tINTH,

tINTL

P0.0 – P0.3, P4.4 – P4.7;
VDD = 3.3 V

200 – – ns

RESET input low
width

tRSL VDD = 3.3 V 10 – – us

t INTHtINTL

0.8 VDD

0.2 VDD

Figure 23-2. Input Timing for External Interrupts (Ports 0, Ports 4)

RESET

tRSL

0.2 VDD

Figure 23-3. Input Timing for nRESET

ELECTRICAL DATA S3CC11B/FC11B

23-6

Table 23-4. Data Retention Supply Voltage in Stop Mode

(TA = – 25 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention supply
voltage

VDDDR 2.0 – 3.6 V

Data retention supply
current

IDDDR VDDDR = 1.5 V – – 2 uA

Execution of
STOP Instruction

RESET
Occur

~ ~

VDDDR

~ ~

Stop Mode
Normal
Operating ModeData Retention Mode

tWAIT

RESET

VDD

NOTE: tWAIT is the same as 2048 x 32 x 1/fxx

Oscillation
Stabilization Time

0.2VDD

Figure 23-4. Stop Mode Release Timing When Initiated by a nRESET

S3CC11B/FC11B ELECTRICAL DATA

 23-7

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention Mode
VDD

Normal
Operating
Mode

~ ~

Stop Mode

Osc Start
up Time

tWAIT

 NOTE: tWAIT is the same as 2048 x 32 x 1/fxx. The value of 2048 which is selected for the clock
source of the basic timer counter can be changed. And then the value of tWAIT will be changed.

Oscillation
Stabilization Time

0.2VDD

INT

Figure 23-5. Stop Mode(main) Release Timing Initiated by Interrupts

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention Mode
VDD

Normal
Operating
Mode

~ ~

Stop Mode

Osc Start
up Time

tWAIT

 NOTE: tWAIT is the same as 2048 x 32 x 1/fxx. The oscillator start up time is less then 100ms.
The value of 256 which is selected for the clock source of basic timer counter can be changed.
And then the value of tWAIT will be changed.

Oscillation
Stabilization Time

0.2VDD

INT

Figure 23-6. Stop Mode(sub) Release Timing Initiated by Interrupts

ELECTRICAL DATA S3CC11B/FC11B

23-8

Table 23-5. Main Oscillator Characteristics

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 3.6 V)

Oscillator Clock
Configuration

sParameter Test Condition Min Typ Max Unit

Ceramic
Oscillator

XIN

C1 C2

XOUT

Oscillation frequency (1) – 0.4 – 20 MHz

 Stabilization time (2) Stabilization
occurs when VDD
is equal to the
minimum oscillator
voltage range.

– – 4 ms

Crystal
Oscillator

XIN

C1 C2

XOUT

Oscillation frequency (1) – 0.4 – 20 MHz

 Stabilization time (2) VDD=2.0V to 3.6V – – 30 ms

External
Clock

XIN XOUT

XIN input frequency (1) – 0.4 – 20 MHz

 XIN input high and low

level width (tXH, tXL)

– 62.0 – 1250 ns

NOTES:
1. Oscillation frequency and XIN input frequency data are for oscillator characteristics only.

2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs, or when stop mode is
 terminated.

XIN

tXHtXL

1/fXIN

VDD - 0.1 V

0.1 V

Figure 23-7. Clock Timing Measurement at X IN

S3CC11B/FC11B ELECTRICAL DATA

 23-9

Table 23-6. Sub Oscillator Frequency

(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 3.6 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Unit

Crystal
Oscillator

XTIN

C1 C2

XTOUT

Oscillation frequency (1) – 32 32.768 35 kHz

 Stabilization time (2) VDD=3.0V to 3.6V – 1.0 2 s

 VDD=2.0V to 3.6V – 3.0 10 s

External
Clock

XTIN XTOUT

XTIN input frequency – 32 – 100 kHz

 XTIN input high and low

level width (t XTH, tXTL)

– 5 – 15 us

NOTES:
1. Oscillation frequency and XTin input frequency data are for oscillator characteristics only.

2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs .

XTIN

tXTHtXTL

1/fXT

VDD - 0.1 V

0.1 V

Figure 23-8. Clock Timing Measurement at XT IN

ELECTRICAL DATA S3CC11B/FC11B

23-10

Table 23-7. BLD Electrical Characteristics

(TA = – 25 °C, VDD = 2.0 V to 3.6 V)

Paramete r Symbol Conditions Min Typ Max Unit

BLD Voltage VB0 BLDCON.4–.2 = 001B 2.2 2.45 2.7 V

 VB1 BLDCON.4–.2 = 111B 2.45 2.70 2.95

BLD Circuit Response
Time

tB fW = 32.768 kHz – – 1.0 mS

BLD Operating Current IBL – – 50 100 uA

Table 23-8. PLL Electrical Characteristics

(TA = – 25 °C to + 85 °C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Conditions Min Typ Max Units

Input Clock Frequency fin – – 2.048 – MHz

Output Clock Frequency fvco – 16.38 – 32.768

Output Clock Duty – – 40 – 60 %

Settling Time Td VDD = 3.3V – – 600 uS

Accuracy – – – – 1 %

Table 23-9. 10-Bit A/D Converter Electrical Characteristics

(TA = –25 °C to + 85 °C, VDD = 3.0 V to 3.6 V)

Parameter Symbol Condition Min Typ Max Units

Resolution – – – 10 – bit

Total Accuracy – VDD = 3.3V

ADC clock = 2MHz

– – ± 3 LSB

Integral Linearity Error ILE – – ±2

Differential Linearity Error DLE – – ± 1

Offset Error of Top EOT – ± 1 ± 3

Offset Error of Bottom EOB – ± 1 ± 3

Conversion Time (1) TCON – 25 – – uS

Analog Input Voltage V IAN – VSS – VDD V

Analog Input Impedance RAN – 2 1000 – MΩ

Analog Input Current IADIN VDD = 3.3V – – 10 uA

Analog Block Current IADC – 1 3 mA

NOTES:
1. Conversion time' is the time required from the moment a conversion operation starts until it ends.
2. IADC is an operating current during A/D conversion

S3CC11B/FC11B ELECTRICAL DATA

 23-11

Table 23-10. 14-bit ADC/DAC Electrical Characteristics

(TA = 0 °C to + 70 °C, VDD = 3.0 V to 3.6 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Units

ADC Operating Current IADC VDD = 3.3 V, fs = 8 kHz – 1.5 3 mA

DAC Operating Current IDAC VDD = 3.3 V, fs = 8 kHz – 1.5 3 mA

Sampling Frequency fs - 3.6 8 11 kHz

Resolution – Input sine wave: 1 kHz
Measurement Bandwidth:
20 Hz – 4 kHz
fs = 8 kHz

– 14 – bits

Offset Error – – – ±20 mV

Signal-to-(Noise + THD)
Ratio

– 70 75 – dB

ADC Input Voltage Range – VDD = 3.3V – – 1.8 Vpp

DAC Output Voltage Range – VDD = 3.3V – – 1.8

ELECTRICAL DATA S3CC11B/FC11B

23-12

NOTES

S3CC11B/FC11B M ECHANICAL DATA

 24-1

24 MECHANICAL DATA

OVERVIEW

The S3CC11B/FC11B microcontroller is currently available in a 100-pin QFP and TQFP package.

M ECHANICAL DATA S3CC11B/FC11B

24-2

100-QFP-1420C

#100

20.00 ± 0.20

23.90 ± 0.30

14
.0

0
±

 0
.2

0

17
.9

0
±

 0
.3

0

0.15
+ 0.10
- 0.05

0-8

0.10 MAX

#1

0.65

NOTE: Dimensions are in millimeters.

(0.58)

0.
80

 ±
 0

.2
0

0.05 MIN

2.65 ± 0.10

3.00 MAX

0.80 ± 0.20

0.30
+ 0.10
- 0.05

(0
.8

3)
0.15 MAX

0.10 MAX

Figure 24-1. 100-QFP-1420C Package Dimensions

S3CC11B/FC11B M ECHANICAL DATA

 24-3

100-TQFP-1414

#100

14.00

16.00 ± 0.20
14

.0
0

16
.0

0
±

0.
20

0.08 MAX

0.127
+ 0.073
- 0.037

0-7

NOTE: Dimensions are in millimeters.

#1

0.50 (1.00)

0.
45

-0
.7

5

0.05-0.15

1.00 ± 0.05

1.20 MAX

0.20
+ 0.07
- 0.03

Figure 24-2. 100-TQFP-1414 Package Dimensions

M ECHANICAL DATA S3CC11B/FC11B

24-4

NOTES

S3CC11B/FC11B S3FC11B FLASH MCU

 25-1

25 S3FC11B FLASH MCU

OVERVIEW

The S3FC11B single-chip CMOS microcontroller is the FLASH ROM version of the S3CC11B microcontroller. It has an
on-chip FLASH ROM instead of masked ROM. The FLASH ROM is accessed by serial data formats.

The S3FC11B is fully compatible with S3CC11B, both in function and in electrical characteristics. Because of its simple
programming requirements, the S3FC11B is ideal for use as an evaluation for the S3CC11B.

S3FC11B FLASH MCU S3CC11B/FC11B

25-2

S3FC11B

(100-QFP-1420C)

P
0.

5/
S

I
P

0.
6/

S
O

P
0.

7/
S

C
K

V
LC

1
C

O
M

0/
P

9.
7

C
O

M
1/

P
9.

6
C

O
M

2/
P

9.
5

C
O

M
3/

P
9.

4
C

O
M

4/
P

9.
3

C
O

M
5/

P
9.

2
C

O
M

6/
P

9.
1

C
O

M
7/

P
9.

0
S

E
G

35
/P

8.
4

S
E

G
34

/P
8.

3
S

E
G

33
/P

8.
2

S
E

G
32

/P
8.

1
S

E
G

31
/P

8.
0

S
E

G
30

/P
7.

7
S

E
G

29
/P

7.
6

S
E

G
28

/P
7.

5

P
1.

5/
 I/

O
5

P
1.

6/
 I/

O
6

P
1.

7/
 I/

O
7

P
2.

0/
nW

E
P

2.
1/

nR
E

P
2.

2/
W

P
P

2.
3/

 R
/n

B
P

2.
4/

A
LE

P
2.

5/
C

LE
P

2.
6/

nC
E

0
P

2.
7/

nC
E

1
P

3.
0/

A
D

0
P

3.
1/

A
D

1
P

3.
2/

A
D

2
P

3.
3/

A
D

3/
T

0C
LK

P
3.

4/
T

0P
W

M
P

3.
5/

B
U

Z
/T

1C
LK

P
3.

6/
T

A
O

U
T

P
3.

7/
T

B
O

U
T

P
4.

0/
C

D
R

SEG27/P7.4
SEG26/P7.3
SEG25/P7.2
SEG24/P7.1
SEG23/P7.0
SEG22/P6.7
SEG21/P6.6
SEG20/P6.5
SEG19/P6.4
SEG18/P6.3
SEG17/P6.2
SEG16/P6.1
SEG15/P6.0
SEG14/P5.7
VDD2

VSS2

SEG13/P5.6
SEG12/5.5
SEG11/P5.4
SEG10/P5.3
SEG9/P5.2
SEG8/P5.1
SEG7/P5.0
SEG6/P4.7/INT7
SEG5/P4.6/INT6
SEG4/P4.5/INT5
SEG3/P4.4/INT4
SEG2/P4.3/CCLK
SEG1/P4.2/CFS
SEG0/P4.1/CDX

VDD3

VSS3

VREFOUT
ADGAIN

ADINN
ADINP
AVDD2

AVSS2

DAOUT

LPF
AVDD1

AVSS1

P0.4
P0.3/INT3

VDD1

VSS1

XOUT

XIN

TEST
XTin

XTout
nRESET

P0.2/INT2
P0.1/INT1
P0.0/INT0
P1.0/ I/O0
P1.1/ I/O1
P1.2/ I/O2
P1.3/ I/O3
P1.4/ I/O4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

(SDAT)
(SCLK)
(VDD1)

(VSS1)

(VPP)

(nRESET)

Figure 25-1. S3FC11B Pin Assignments (100-QFP-1420C)

S3CC11B/FC11B S3FC11B FLASH MCU

 25-3

S3FC11B

(100-TQFP-1414)

V
S

S
3

V
D

D
3

P
0.

5/
S

I
P

0.
6/

S
O

P
0.

7/
S

C
K

V
LC

1
C

O
M

0/
P

9.
7

C
O

M
1/

P
9.

6
C

O
M

2/
P

9.
5

C
O

M
3/

P
9.

4
C

O
M

4/
P

9.
3

C
O

M
5/

P
9.

2
C

O
M

6/
P

9.
1

C
O

M
7/

P
9.

0
S

E
G

35
/P

8.
4

S
E

G
34

/P
8.

3
S

E
G

33
/P

8.
2

S
E

G
32

/P
8.

1
S

E
G

31
/P

8.
0

S
E

G
30

/P
7.

7
S

E
G

29
/P

7.
6

S
E

G
28

/P
7.

5
S

E
G

27
/P

7.
4

S
E

G
26

/P
7.

3
S

E
G

25
/P

7.
2

P
1.

2/
 I/

O
2

P
1.

3/
 I/

O
3

P
1.

4/
 I/

O
4

P
1.

5/
 I/

O
5

P
1.

6/
 I/

O
6

P
1.

7/
 I/

O
7

P
2.

0/
nW

E
P

2.
1/

nR
E

P
2.

2/
W

P
P

2.
3/

 R
/n

B
P

2.
4/

A
LE

P
2.

5/
C

LE
P

2.
6/

nC
E

0
P

2.
7/

nC
E

1
P

3.
0/

A
D

0
P

3.
1/

A
D

1
P

3.
2/

A
D

2
P

3.
3/

A
D

3/
T

0C
LK

P
3.

4/
T

0P
W

M
P

3.
5/

B
U

Z/
T1

C
LK

P
3.

6/
T

A
O

U
T

P
3.

7/
T

B
O

U
T

P
4.

0/
C

D
R

S
E

G
0/

P
4.

1/
C

D
X

S
E

G
1/

P
4.

2/
C

F
S

SEG24/P7.1
SEG23/P7.0
SEG22/P6.7
SEG21/P6.6
SEG20/P6.5
SEG19/P6.4
SEG18/P6.3
SEG17/P6.2
SEG16/P6.1
SEG15/P6.0
SEG14/P5.7
VDD2

VSS2
SEG13/P5.6
SEG12/5.5
SEG11/P5.4
SEG10/P5.3
SEG9/P5.2
SEG8/P5.1
SEG7/P5.0
SEG6/P4.7/INT7
SEG5/P4.6/INT6
SEG4/P4.5/INT5
SEG3/P4.4/INT4
SEG2/P4.3/CCLK

VREFOUT
ADGAIN
ADININ
ADINP
AVDD2
AVSS2

DAOUT
LPF

AVDD1
AVSS1

P0.4
P0.3/INT3

VDD1
VSS1

Xout
Xin

TEST
XTin

XTout
nRESET

P0.2/INT2
P0.1/INT1
P0.0/INT0
P1.0/ I/O0
P1.1/ I/O1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5026 27 28 29 30
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

10
0 8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

7
6

7
7

7
8

7
9

8
0

(SDAT)
(SCLK)
(VDD1)
(VSS1)

(VPP)

(nRESET)

Figure 25-2. S3FC11B Pin Assignments (100-TQFP-1414)

S3FC11B FLASH MCU S3CC11B/FC11B

25-4

Table 25-1. Descriptions of Pins Used to Read/Write the FLASH ROM

During Programming

Pin Name Pin No. I/O Function

SDAT (P0.4) 100 QFP: 13
100 TQFP: 11

I/O Serial data pin. Output port when reading and input port when writing.
Can be assigned as a Input/push-pull output port.

SCLK (P0.3) 100 QFP: 14
100 TQFP: 12

I/O Serial clock pin. Input only pin.

VPP (TEST) 100 QFP: 19
100 TQFP: 17

I Power supply pin for FLASH ROM cell writing (indicates that FLASH
enters into the writing mode). When 12.5 V is applied, FLASH is in
writing mode and when 3.3 V is applied, FLASH is in reading mode.
When FLASH is operating, hold GND.

RESET
(nRESET)

100 QFP: 22
100 TQFP: 20

I Chip initialization

VDD1/VSS1
(VDD1/VSS1)

100 QFP: 15/16
100 TQFP: 13/14

I Logic power supply pin. VDD should be tied to
3.3 V during programming.

S3CC11B/FC11B DEVELOPMENT TOOLS

 26-1

26 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development support
system is configured with a host system, debugging tools, and support software. For the host system, any standard
computer that operates with windows95/98/NT/XP as its operating system can be used. One type of debugging tool
including hardware and software is provided: the effective cost and powerful in-circuit emulator, InvisibleMDS, for
CalmRISC16. Samsung also offers support software that includes debugger, Compiler, Assembler, and a program for
setting options.

CalmSHINE: IDE (INTEGRATED DEVELOPMENT ENVIRONMENT)

CalmRISC16 Samsung Host Interface for In-circuit Emulator, CalmSHINE, is a multi window based debugger for
CalmRISC16. CalmSHINE provides pull-down, pop-up and tool-bar menus, mouse support, function/hot keys, syntax
highlight, tool-tip, drag-and-drop and context -sensitive hyper-linked help. It has an advanced, multiple-windowed user
interface that emphasizes ease of use. Each window can be sized, moved, scrolled, highlighted, added or removed,
docked or undocked completely.

IN-CIRCUIT EMULATOR

The evaluation chip of CalmRISC16 has a basic debugging utility block. Using this block, evaluation chip directly interfaces
with host through only communication wire. So, InvisibleMDS offers simple and powerful debugging environment.

CalmRISC16 C-COMPILER: CalmCC16

The CalmRISC16 Compiler offers the standard features of the C language, plus many extensions for MCU applications,
such as interrupt handling in C and data placement controls, designed to take fully advantage of CalmRISC16 facilities. It
conforms to the ANSI specification. It supports standard library of functions applicable to MCU systems. The standard
library also conforms to the ANSI standard. It generates highly size -optimized code for CalmRISC16 by fully utilizing
CalmRISC16 architecture. It is available in a Windows version integrated with the CalmSHINE.

CalmRISC16 RELOCATABLE ASSEMBLER: Calm8ASM

The CalmRISC16 Assembler is a relocatable assembler for Samsung's CalmRISC16 MCU and its MAC1616 and
MAC2424 coprocessors. It translates a source file containing assembly language statements into a relocatable machine
object code file in Samsung format. It runs on WINDOWS95 compatible operating systems. It supports macros and
conditional assembly. It produces the relocatable object code only, so the user should link object files. Object files can be
linked with other object files and loaded into memory.

CalmRISC16 LINKER: Calm8LINK

The CalmRISC16 Linker combines Samsung object format files and library files and generates absolute, machine-code
executable hex programs or binary files for CalmRISC16 MCU and its MAC1616 and MAC2424 coprocessors. It
generates the map file, which shows the physical addresses to which each section and symbol is bounded, start
addresses of each section and symbol, and size of them. It runs on WINDOWS95 compatible operating systems.

DEVELOPMENT TOOLS S3CC11B/FC11B

26-2

EMULATION PROBE BOARD CONFIGURATION

Power
OFF

ON

JTAG10 JTAG20
osc1

JP1 JP2

Main
X-TAL

X-TALosc
Sub-

X-TAL
JPI1

U1

RESET

U2 BUS Width

Y-ROM

VCC

VSS
User

VDD

OFF

U3

Figure 26-1. Emulation Probe Board Configuration

20-pin/normal Pitch (2.54mm) = JTAG

Pin No. Pin Name Pin No. Pin Name

1 VDD 11 ETDO_TXD

3 ENJRST_UINIT 13 NC

5 ETDI_RXD 15 NC

7 ETMS 17 EOCLK

9 ETCK_MCLK 19 VDD

2,4,6,8,10,12,14,1
6,18,20

GND

NOTE: JTAG (10-pin) is not used.

S3CC11B/FC11B DEVELOPMENT TOOLS

 26-3

USE CLOCK SETTING FOR EXTERNAL CLOCK MODE

Proper crystal and capacitors for main clock should be inserted into pin socket on the IE Board as follows;

C
Y2

X-Tal

C
XIN XOUT

SUB CLOCK SETTING

For sub-clock mode a crystal, 32.768 kHz and capacitors should be inserted into pin socket on the IE Board as follows;

C
Y1

X-Tal

C
XTIN XTOUT

R

NOTE: The value of resistor is 0 kΩ.

THE LOWPASS FILTER FOR PLL

20k

R

C C
1000pF

MLPF

250pF

DEVELOPMENT TOOLS S3CC11B/FC11B

26-4

POWER SELECTION

JP10 State Description

OFF

POWER
_VDD

USER
_VDD

OFF

Same Power Source from Target System

Target
System

MDSVSS

DC
Jack
Power

User
Power CPUVSS

OFF

POWER
_VDD

USER
_VDD

OFF

Same Power Source from DC Jack

DC
Jack
Power

User
Power Target

System
MDSVSSCPUVSS

CLOCK SELECTION

U1 State Description

X-TAL

OSC

OSC is used to clock source for evaluation chip

CPU
OSC CLK

XMINMXOUT

X-TAL

OSC

X-TAL is used to clock source for evaluation chip

CPU

XMINMXOUTXTALOXTALI

S3CC11B/FC11B DEVELOPMENT TOOLS

 26-5

JP1, JP2 PIN ASSIGNM ENT

JP1 Function JP1 Function JP2 Function JP2 Function

1 VDD 2 GND 1 MP4_1 2 MP4_2

3 NC 4 NC 3 MP4_3 4 MP4_4

5 NC 6 NC 5 MP4_5 6 MP4_6

7 NC 8 AGND 7 MP4_7 8 MP5_0

9 NC 10 NC 9 MP5_1 10 MP5_2

11 NC 12 AGND 11 MP5_3 12 MP5_4

13 MP0_4 14 MP0_3 13 MP5_5 14 MP5_6

15 VDD 16 GND 15 GND 16 VDD

17 MXOUT 18 MXIN 17 MP5_7 18 MP6_0

19 MTEST 20 MXTIN 19 MP6_1 20 MP6_2

21 MXTOUT 22 MRESETB 21 MP6_3 22 MP6_4

23 MP0_2 24 MP0_1 23 MP6_5 24 MP6_6

25 MP0_0 26 MP1_0 25 MP6_7 26 MP7_0

27 MP1_1 28 MP1_2 27 MP7_1 28 MP7_2

29 MP1_3 30 MP1_4 29 MP7_3 30 MP7_4

31 MP1_5 32 MP1_6 31 MP7_5 32 MP7_6

33 MP1_7 34 MP2_0 33 MP7_7 34 MP8_0

35 MP2_1 36 MP2_2 35 MP8_1 36 MP8_2

37 MP2_3 38 MP2_4 37 MP8_3 38 MP8_4

39 MP2_5 40 MP2_6 39 MP9_0 40 MP9_1

41 MP2_7 42 MP3_0 41 MP9_2 42 MP9_3

43 MP3_1 44 MP3_2 43 MP9_4 44 MP9_5

45 MP3_3 46 MP3_4 45 MP9_6 46 MP9_7

47 MP3_5 48 MP3_6 47 MVLC1 48 MP0_7

49 MP3_7 50 MP4_0 49 MP0_6 50 MP0_5

JP11 PIN ASSIGNMENT

Pin No. 1 2 3 4 5 6

Pin Name AVSS2 DAOUT ADINP ADINN ADGAIN AVDD2

DEVELOPMENT TOOLS S3CC11B/FC11B

26-6

NOTES

	Table of Contents
	List of Figures
	List of Tables
	List of Instruction Descriptions
	1. Product Overview
	2. Address Space
	3. Calm16Core
	4. Exceptions
	5. Memory Map
	6. Instruction Set
	7. PLL (Phase Locked Loop)
	8. Reset and Power-Down
	9. I/O Ports
	10. Basic Timer
	11. Watch Timer
	12. 8-Bit Timer 0
	13. 16-Bit Timer 1(8-bit timer A&B)
	14. Serial I/O Interface
	15. SSFDC (Solid State Floppy Disk Card)
	16. 10-bit Analog-to-Digital Converter
	17. Codec
	18. LCD Controller/Driver
	19. Battery Level Detector
	20. 8/16-Bit Serial Interface for External Codec
	21. CalmMAC1616
	22. Program Memory Access Speed
	23. Electrical Data
	24. Mechanical Data
	25. S3FC11B Flash MCU
	26. Development Tools

